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ABSTRACT: Current numerical weather prediction models show limited skill in predicting low-latitude precipitation. To

aid future improvements, be it with better dynamical or statistical models, we propose a well-defined benchmark forecast.

We use the arguably best available high-resolution, gauge-calibrated, gridded precipitation product, the Integrated

Multisatellite Retrievals for GPM (IMERG) ‘‘final run’’ in a 615-day window around the date of interest to build an

empirical climatological ensemble forecast. This window size is an optimal compromise between statistical robustness and

flexibility to represent seasonal changes. We refer to this benchmark as extended probabilistic climatology (EPC) and

compute it on a 0.18 3 0.18 grid for 408S–408N and the period 2001–19. To reduce and standardize information, a mixed

Bernoulli–Gamma distribution is fitted to the empirical EPC, which hardly affects predictive performance. The EPC is then

compared to 1-day ensemble predictions from the European Centre for Medium-Range Weather Forecasts (ECMWF)

using standard verification scores. With respect to rainfall amount, ECMWF performs only slightly better than EPS over

most of the low latitudes and worse over high-mountain and dry oceanic areas as well as over tropical Africa, where the lack

of skill is also evident in independent station data. For rainfall occurrence, EPC is superior over most oceanic, coastal, and

mountain regions, although the better potential predictive ability of ECMWF indicates that this is mostly due to calibration

problems. To encourage the use of the new benchmark, we provide the data, scripts, and an interactive web tool to the

scientific community.

SIGNIFICANCE STATEMENT: Precise precipitation forecasts in the tropics and subtropics are relevant for a large

and growing population. To gauge the success of improvements, an adequate baseline is needed. Here we use

satellite-based rainfall estimates from 2001 to 2019 to define a climatological reference forecast that we call extended

probabilistic climatology (EPC), as it combines rainfall observations from a window of 615 days around the date of

interest. We show that this simple approach outperforms current weather forecast models in some areas and forecast

aspects but is inferior in others. To foster the use of this new benchmark in the scientific and forecasting communities, we

provide the EPC data, scripts, and an interactive web tool to display EPC forecasts for selected locations.
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1. Introduction

Over the last more than 60 years, scientific and technical

advances have tremendously improved numerical weather

prediction (NWP) worldwide (Bauer et al. 2015; Alley et al.

2019). The quasi-exponential growth in computing power en-

abled the implementation of ensemble prediction systems

(EPSs) in the 1990s, where each member is started from

slightly different initial conditions to allow quantifying forecast

uncertainty (Molteni et al. 1996). EPSs are well in line with

recent developments in many research areas in that they foster

the transition from deterministic to probabilistic forecasts

(Gneiting and Katzfuss 2014).

Despite the overall triumph of NWP, quantitative precipi-

tation forecasts in the tropics remain a great challenge. For

example, Haiden et al. (2012) showed that in 2010/11 a deter-

ministic forecast of tropical rainfall with a 1-day lead time was

as skillful as a forecast in the extratropics for 6-day lead time.

More recently, Vogel et al. (2020) compared 1–5-day ensemble

predictions from the European Centre for Medium-Range

Weather Forecasts (ECMWF) and the Meteorological Service

of Canada (MSC) over the tropical belt from 308S and 308N
with Tropical Rainfall Measuring Mission (TRMM) 3B42

precipitation estimates and found that both models predict
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rainfall better than the reference only over about 50% (oc-

currence) and 60% (amount) of all land points. Forecast per-

formance is best over arid Australia and worst over oceanic

deserts, mountains, and large parts of tropical Africa. Specifically

for the summer monsoon season in northern tropical Africa,

Vogel et al. (2018) analyzed nine global EPSs and found that all

individual models and the multimodel ensemble are uncali-

brated and unreliable, and have no skill in predicting the

occurrence and amount of precipitation when compared to a

climatological forecast. This disappointing result is robust for

different subregions, accumulation periods, grid spacings, and

verification datasets. A possible reason for this is the excep-

tionally high degree of convective organization observed over

tropical Africa (Nesbitt et al. 2006; Roca et al. 2014), a process

that is difficult to capture with the convective parameteriza-

tions used in global NWP models (Vogel et al. 2018). Kniffka

et al. (2020) confirm the overall low skill in predicting local

rainfall in Africa but show a positive effect of propagating

synoptic-scale disturbances on forecasts of regional precipita-

tion. The overall poor performance of current operational

systems with respect to tropical rainfall calls for alternative

approaches reaching from convection-permitting resolution

(Pante and Knippertz 2019) to methods from statistics and

machine learning (Shi et al. 2015; Rasp et al. 2020; Vogel

et al. 2021).

Before developing and evaluating new models and ap-

proaches, it is essential to establish benchmark forecasts in

order to systematically assess forecast improvement. Rasp

et al. (2020) recently proposedWeatherBench as a standard for

data-driven weather forecasting, but the information provided

is deterministic only and precipitation data are taken from

reanalysis, which is not well suited for the question at hand,

since it is still fundamentally based on numerical modeling. In

the context of evaluating ensemble forecasts, a commonly used

reference is the probabilistic climatology, which is based on all

available past observations for a particular day of the year

(Jaun and Ahrens 2009; Pagano et al. 2013; Pinson and

Hagedorn 2012; Pappenberger et al. 2015). Closely related to

this concept, Vogel et al. (2018) and Vogel et al. (2020) intro-

duced the idea of an extended probabilistic climatology (EPC),

which is based on the consideration that climatologies of

neighboring days are very similar and can together better

capture the rainfall distribution for a given (sub)season. This

approach is particularly well suited for predicting precipita-

tion in the tropics, as many tropical regions show large sea-

sonal shifts with strongly varying numbers of dry and wet

days. An open question in this approach is the optimal

number of days around the considered date in the computation

of the EPC. This number should be large enough to give ro-

bust seasonal statistics, particularly in more arid parts of the

tropics, but small enough to capture the sometimes rather

sudden onsets of rainy seasons, particularly in monsoon re-

gions. For northern tropical Africa for example, Vogel et al.

(2018) used a window of 62 days, while Vogel et al. (2020)

varied this number across the tropical belt to account for local

differences.

The aim of the present paper is to establish a widely usable

and optimized probabilistic benchmark for the specific task of

predicting low-latitude (here 408S–408N) rainfall. To achieve

this, we use the arguably best currently available, high-

resolution, gauge-calibrated, gridded precipitation product

Integrated Multisatellite Retrievals for GPM (IMERG) ‘‘final

run’’ (referred to as IMERG-F hereafter) (Huffman et al.

2015). We employ the EPC approach proposed by Vogel et al.

(2018) and estimate an optimal window length for the com-

putation. A mixed Bernoulli–gamma (MBG) distribution is

then fitted to the resulting distributions at each grid point to

reduce and standardize the amount of information contained

in the benchmark, which is made freely available to the sci-

entific community.

The paper is structured as follows. All relevant datasets and

statistical tools used in this study are described in sections 2

and 3, respectively. Section 4 provides an analysis of the opti-

mal number of neighboring days in the construction of the

EPC, comparisons of forecast performance to the operational

ECMWF EPS and to rain gauge observations over tropical

Africa, one of themost problematic forecast regions worldwide

(Vogel et al. 2020), as well as the fit of the empirical EPC to the

full MBG probability distribution and its impact on forecast

performance. Conclusions are given in section 5.

2. Data

a. IMERG-F rainfall estimates

The computation of the EPC is performed for the low-

latitude belt from 408N to 408S for the years 2001–19 using daily
IMERG-F rainfall estimates (Hou et al. 2014; Huffman et al.

2015, 2019a). The data are provided on a 0.18 3 0.18 grid and

can be downloaded from (https://gpm.nasa.gov/data/directory).

The dataset contains blended precipitation estimations based

on passive microwave (PMW) and infrared (IR) retrievals at

a native temporal resolution of 30min. All PMW estimates

from the TRMM/GPM international constellation of satellites

are calibrated toward rainfall estimates of the GPM/TRMM

Combined Radar-Radiometer (CORRA) product. Initially

available since the start of GPM in mid-2014, the current ver-

sion V06B (as of 6 August 2020) provides precipitation data

dating back to June 2000 (Huffman et al. 2019b), thus covering

a major part of the preceding TRMM era (Kummerow et al.

1998; Huffman et al. 2007). Before 2014, radar information

was available for 408N–408S only, motivating the restriction

to this belt. Unlike in the near-real-time runs ‘‘early’’ and

‘‘late,’’ the ‘‘final run’’ data considered are calibrated with rain

gauge measurements provided by the Global Precipitation

Climatology Centre (GPCC; Schneider et al. 2016) on a

monthly basis. Rainfall estimates for shorter time scales are

rescaled such that they match the monthly sum. The degree to

which the original estimates are adjusted by the gauge cali-

bration process within a given region is generally determined

by the number of available rain gauges, which is highly variable

across the tropical continents. The analyses in sections 4a, 4b,

and 4d are based on daily data from 0000 to 0000 UTC, while

section 4c considers data from 0600 to 0600 UTC to better

match with reporting practices for weather stations, although

this will likely have a rather negligible impact on the

1562 WEATHER AND FORECAST ING VOLUME 36

Unauthenticated | Downloaded 12/13/21 06:26 PM UTC

https://gpm.nasa.gov/data/directory


climatologies. While sections 4a and 4d use the full resolution

of 0.18 3 0.18, IMERG-F data are regridded to 0.258 3 0.258 by
applying first-order conservative remapping for the compari-

son with the lower-resolution ECMWF ensemble forecasts in

sections 4b and 4c.

b. ECMWF ensemble forecasts

Based on the years 2012–19, EPC is compared to forecasts

from the operational ECMWF EPS, which consists of 50 per-

turbed members and a single control run at a grid resolution of

0.258 3 0.258. For the sake of simplicity, we only consider 24-h

accumulations initialized at 0000 UTC but the results by Vogel

et al. (2020) suggest that many forecast errors in ECMWF are

systematic and depend only little on lead time. A verification

with station observations for the years 2012–16 in section 4c

requires an accumulation from 0600 to 0600 UTC, which is

obtained by subtracting the accumulation at lead time 16 h

from that at lead time 130 h. The data are downloaded from

ECMWF’sMeteorologicalArchival andRetrieval System (MARS)

(https://www.ecmwf.int/en/forecasts).

c. Rain gauge observations

To provide an unbiased performance comparison for the

IMERG-F-based EPC and ECMWF ensemble forecasts, rain

gauge measurements from standard weather stations are used.

We concentrate here on the largest tropical landmass Africa,

where model forecasts have been shown to be particularly

challenging (Vogel et al. 2020). Unfortunately, the network of

meteorological ground stations in tropical Africa is relatively

sparse and station records often show gaps in time. Here we use

data from the Karlsruhe African Surface Station Database

(KASS-D), which brings together precipitation observations

from a wide variety of networks and sources, including not

freely available data from research projects and national

weather services. KASS-D data were also used in Vogel et al.

(2018). KASS-D provides 24-h accumulated precipitation

measured between 0600 and 0600 UTC on the following day.

We concentrate on 2012–16, which is characterized by a rela-

tively good spatial coverage and degree of completeness of

station records when compared to other recent time periods

available in KASS-D. Only stations with more than 80%

of available observations in every year of 2012–16 were se-

lected. Based on geographic position and rainfall climate (see

Nicholson et al. 2018), the stations are assigned to one of the

five regions West Sahel, Guinea Coast, East Sahel, Ethiopia,

and East Africa as illustrated in Fig. 1.

3. Forecast evaluation and statistical tests

To evaluate probabilistic forecasts, proper scoring rules

provide an appropriate choice of evaluation metrics. To assess

forecast performance for the prediction of occurrence and

amount of precipitation popular choices of proper scoring rules

are the Brier score (BS) (Brier 1950) and the continuous rank

probability score (CRPS) (Matheson and Winkler 1976;

Gneiting andRaftery 2007). Since BS and CRPS are negatively

oriented, smaller values indicate superior performance. To

quantify discrimination ability or potential predictive ability of

probabilistic forecasts for precipitation occurrence the area

under the receiver operating characteristic curve (AUC) (Fawcett

2006) is used. The AUC measure attains values between 0 and 1

with the interpretation that larger values are better.

To assess statistical significant differences of forecast per-

formance, a Diebold Mariano (DM) test is applied. This pro-

cedure tests the hypothesis that two methods have equal

predictive performance in the sense that the expectation of

the score difference vanishes (Diebold andMariano 1995;Gneiting

and Katzfuss 2014). Let F and G be two competing forecasts

and SF
n 5 (1/n)�n

i51S(Fi, yi) and SG
n 5 (1/n)�n

i51S(Gi, yi) are

the corresponding mean scores. The DM test is based on the

following statistic:

t
n
5

ffiffiffi
n

p SF
n 2 SG

n

ŝ
n

, (1)

FIG. 1. Geographical overview of the study domain with all considered station locations (dots) colored according to

the five regions given in the legend.
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where ŝ2
n 5 (1/n)�n

i51[S(Fi, yi)2S(Gi, yi)]
2 is an estimate of

the variance of the score differential. Under standard regu-

larity conditions, tn is asymptotically standard normal under

the null hypothesis of equal predictive performance of F andG.

If the null hypothesis is rejected, negative values of tn indicate

that F is superior whereas positive values of tn indicate thatG is

superior. In section 4, DM tests are applied at each grid point

by considering the CRPS values of competing forecasts over

the time period 2018/19. As pointed out by Wilks (2016),

summarizing and interpreting local test results requires an

adjustment for the effect of test multiplicity on the overall

result. Therefore, a Benjamini and Hochberg (1995) proce-

dure to control the false discovery rate at level a is applied.

Let m be the number of considered grid points and p1, . . . , pm
be the p values of the corresponding DM test at each grid

point. To apply a Bonferroni-type multiple-testing procedure,

let p(1) # � � �#p(m) be the ordered p values and k be the largest

i for which p(i) # (i/m)a, then reject all null hypothesis corre-

sponding to the p values p(1), . . . , p(k).

To test forecast equivalence, i.e., whether two forecasts

show no significant difference in their performance, we rec-

ommend using a specifically tailored equivalence test instead

of drawing conclusions based on nonsignificant DM test re-

sults. Equivalence tests have been mostly used in pharmaceu-

tical (e.g., Anderson and Hauck 1983) and economic research

(e.g., Johnston and Duke 2008). The most prominent example

is the ‘‘two one-sided t test’’ (TOST) (Schuirmann 1987).

Following the approach of the TOST procedure the two one-

sided DM (TODM) test is derived. Therefore, a predefined

upper u1 and lower u2 equivalence bound is required and two

composite null hypotheses, H1
0 and H2

0 of one-sided DM tests

are considered:

H1
0 : tn # u

1
,

H2
0 : tn $ u

2
. (2)

Rejection of both one-sided DM tests implies that the ob-

served difference falls within the predefined equivalence

margin [u1, u2] and is close enough to zero to be practically

equivalent. As shown by Berger and Hsu (1996) rejection of

the two individual tests on level a constitutes a rejection at

level a of joint null hypothesis. In section 4, we apply

TODM equivalence test at each grid point by considering

CRPS values of two forecasting methods over the time

period 2018/19. A critical requirement in this procedure is

to predefine an interval [u1, u2] that represents the range of

score differences that indicate equal forecast performance.

We choose the equivalence margin to be symmetric around

zero, i.e., the interval [2u, u]. The actual value of u should

be defined based on expertise but this choice is not

straightforward in the given use case and test results

strongly depend on it. Therefore, here we perform the

TODM test over a range of u values and plot the percentage

of significant grid points against u. Like for the classical DM

test discussed above, an adjustment for the effects of test

multiplicity is required. To achieve this, the Benjamini and

Hochberg procedure is applied to both one-sided DM

subtests of TODM.

4. EPC optimization and validation

In this section, we introduce the IMERG-F-based EPC

forecast benchmark and compare it to other rainfall informa-

tion. A first important step is the identification of an optimal

window length to construct the EPC (section 4a). Probabilistic

forecasts using this optimal window length are then compared

to ensemble predictions from the ECMWF EPS (section 4b)

and verified against and compared with surface station data

(section 4c). Finally a MBG distribution is fitted to the em-

pirical EPC at each grid point to reduce data volume and the

impact on forecast performance is assessed (section 4d).

a. Optimal window length

AnEPC forecast with a window size of6x days is denoted as

EPCx. Constructing the EPCx forecast based on N past years

thus results in aN(2x1 1)-member ensemble. In the following

analysis window sizes of x 2 [0, 2, 5, 10, 15, 20] are investigated

based on IMERG-F data from 0000 to 0000 UTC with 0.18 3
0.18 grid resolution. We use a cross-validation approach in that

EPCx forecasts are successively constructed from 18 out of the

19 years of available IMERG-F data and evaluated on the

omitted year in the computation of the mean CRPS values. A

time and space average of CRPS (top row in Table 1) indicates

that forecast performance generally improves for increasing x

but that the CRPS values for 10, 15, and 20 days are almost

identical. The annual mean evolution of this parameter (col-

ored solid lines in Fig. 2) indicates spatial mean values around

2.7mm day21 with a considerable interannual variability of up

to 8%. As expected, the year-to-year variations are highly

correlated with area-mean precipitation (gray dashed line in

Fig. 2). The relative behavior of the different choices of x,

however, is very robust with consistently best performance of

forecasts with windows of 15 and 20 days. Based on the eval-

uation period 2018/19 and by constructing EPC exclusively

from past years of IMERG-F data (2001–17 for 2018 and 2001–

18 for 2019) we test whether the extended concept, i.e., x . 0,

results in a more skillful forecast than EPC0. A two-sided DM

test applied to all days during 2018/19 and the entire 408S–408N
belt indicates that longer windows do in fact perform signifi-

cantly better in more than 96% of the grid points (bottom row

in Table 1). The highest fraction is found for x 5 5 and the

lowest for x 5 20 but differences are overall small. EPC0 is

nowhere viewed superior to the nonzero windows at the chosen

TABLE 1. Performance of IMERG-F-based EPC forecasts with

different window lengths for the 408S–408N belt and the period

2001–19. IMERG-F data accumulated from 0000 to 0000UTCwith

0.18 3 0.18 grid resolution are used. The time and space averaged

CRPS is shown in the top row. Percentage of grid points where

EPCx (with x being window length) is statistically superior to EPC0

based on a two-sided DM test with Benjamini–Hochberg correc-

tion and significance level a 5 0.05 is shown in the bottom row.

EPC0 is never viewed as superior.

Window (days) 0 2 5 10 15 20

CRPS (mm day21) 2.78 2.68 2.66 2.65 2.65 2.64

Percentage (%) — 96.18 96.54 96.44 96.28 96.05
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significance level a5 0.05. Applying a TODMequivalence test

to EPC15 and EPC20 (Fig. 3) reveals that the two are almost

indistinguishable in their performance. Even for an equiva-

lence margin u as small as 0.03mm day21 98% of grid points

show significant forecast equivalence. Ultimately, we decided

to use a window length of 615 days to account for the higher

percentage of significant points in Table 1. This choice is a

reasonable compromise between robust statistics and the

ability to capture sudden seasonal changes inmonsoon regions.

Additionally, the total window length of 31 days is very close

to a month, such that over land gauges and satellite esti-

mates should be fairly consistent as a result of the monthly

calibration.

b. Comparison of ECMWF ensemble forecasts with EPC15

A next logical step is to compare the performance of EPC15

with that of a dynamical model-based forecast, here from

the ECMWF EPS. Recall that this requires a remapping to

0.258 3 0.258 before the EPC computation to allow a fair

comparison with the coarser model data. Evaluation is done

here against IMERG-F rainfall, which creates a small advan-

tage for EPC, as both will contain the same systematic errors.

However, we will show in the next section that—at least for

Africa—a validation with independent station observations

leads to similar conclusions. Evaluation is performed over the

period 2012–19. EPC15 forecasts are constructed by succes-

sively considering 18 of the 19 available years and using the

omitted year for evaluation. The area-mean CRPS for these

eight years is 2.59mm day21 for EPC15 and thus considerably

less than the spatially averaged rainfall for 2012–19 of around

3.21mm day21 (Fig. 2). This value is only slightly lower than

the 2.65mm day21 obtained for the whole period and finer

spatial resolution given in Table 1. One would expect that the

coarse-graining averages out some local errors to reduce

the CRPS.

Corresponding CRPS computations for 1-day forecasts

by the ECMWF ensemble yield a much lower value of

2.21mm day21, and is in fact lower in every single year of the

considered period (black line in Fig. 2). Using EPC15 as a

reference forecast, a skill score can be defined for CRPS

(CRPSS). The spatial distribution of this parameter is shown in

Fig. 4a and reveals positive skill over most parts of the low

latitudes, particularly in the subtropics. Negative values occur

over the dry oceanic regions over the eastern South Pacific and

South Atlantic, while corresponding areas in the Indian Ocean

and Northern Hemisphere show neutral skill. Better perfor-

mance of EPC15 is also found over high mountain regions such

as the Andes and Himalayas. Tropical Africa stands out as an

area with neutral to negative skill. Compared to the study by

FIG. 2. Annual mean CRPS (left ordinate) for IMERG-F-based EPC forecasts based on

windows of size 0 (blue), 2 (green), 5 (orange), 10 (purple), 15 (red), and 20 days (brown) for

the study period 2001–19 and averaged spatially over the 408S–408Nbelt. The gray dashed line

shows spatially averaged yearly accumulated precipitation also based on IMERG-F (right

ordinate). Rainfall is accumulated from 0000 to 0000 UTC on a 0.18 3 0.18 grid. For com-

parison, the CRPS of ECMWF ensemble forecasts on a 0.258 3 0.258 grid for the years 2012–

19 is shown in black.

FIG. 3. Comparison of EPC15 and EPC20 based on IMERG-F

data (0000–0000UTC and 0.18 3 0.18 grid resolution). Shown is the

percentage of significant grid points according to a TODM equiv-

alence test with Benjamini–Hochberg correction and a 5 0.05

plotted against different values of the margin u (mm day21).
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Vogel et al. (2020, their Fig. 5a), which uses a coarser resolu-

tion, an earlier time period, and TRMM instead of IMERG-F,

there are considerable structural similarities but a tendency

toward higher CRPSS of ECMWF.

In addition to evaluating the full probabilistic forecasts us-

ing the CRPS, the skill of predicting occurrence of precipita-

tion is investigated using the BS with a threshold of 0.2mm.

Using EPC15 as reference forecast, the BS skill (BSS) of

the ECMWF ensemble is displayed in Fig. 4b. Here, a stark

land-sea contrast is evident. Over land, the ECMWF ensemble

is skillful over most areas except for some high mountain

and coastal regions. Land areas in the inner tropics with fre-

quent rainfall (Amazon basin, tropical Africa, southern India,

Southeast Asia, Maritime Continent) show neutral skill. Over

the ocean, skill is mostly negative or neutral except for near-

continental areas in the subtropics such as the Mediterranean

Sea. The drier parts of the oceans have strongly negative BSS,

while the intertropical convergence zone region shows neutral

skill. The exact reasons for these results are unclear but may lie

both in issues with IMERG-F to detect warm rain or drizzle

over the sea (Khan and Maggioni 2019) and with the ECMWF

model to realistically represent rainfall triggering over the

homogeneous ocean surface with a weak diurnal cycle. Again

there are large structural similarities with the TRMM-based

analysis presented by Vogel et al. (2020, their Fig. 4).

Finally, to quantify discrimination ability, the AUC skill of

ECMWF with EPC15 as the reference is visualized in Fig. 4c.

Values are positive almost everywhere, indicating that the

performance in CRPS and BS is negatively impacted by mis-

calibration (see discussion in Vogel et al. 2020). Areas with

neutral or even negative discrimination skill are restricted to

mountainous areas, parts of tropical Africa, and the inner

tropical Atlantic and eastern Pacific Oceans.

Given the overall better quality of IMERG-F data over

land and the larger socioeconomic relevance of forecasts, we

also present a more detailed performance comparison for

five selected tropical and subtropical regions. Figure 5 shows a

map of 2001–19 averaged annual precipitation based on

IMERG-F. The regions chosen are (i) the rainfall maximum

in tropical South America (82.88–52.58W, 12.58S–10.58N),

(ii) central Africa (178W–418E; 58S–178N), (iii) the Indian

subcontinent and adjacent waters (698–888E, 78–308N), (iv)

FIG. 4. (a) CRPS skill, (b) BS skill, and (c) AUC skill for ECMWF ensemble predictions for 1-day accumulated

precipitation and for occurrence of precipitation obtained by thresholding 1-day accumulated precipitation at

0.2mm. Skill measures are averaged over 2012–19 and relative to EPC15, which is constructed by successively

selecting 18 years from 2001 to 2019 and omitting the year used for evaluation. Rainfall is accumulated from 0000 to

0000 UTC on a 0.258 3 0.258 grid.
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Southeast Asia and the very wet Maritime Continent (92.58–
127.258E, 108S–248N), and (v) eastern Australia (138.58–1558E,
408–108S). For each region the mean values of CRPS, BS, and

AUC are given in Table 2. In terms of CRPS, EPC15 outper-

forms ECMWF slightly over the wet South American region

andmore clearly over drier central Africa, where the reduction

amounts to 4.6%. Over Southeast Asia, India, and relatively

dry eastern Australia (see Fig. 5), ECMWF is superior, in the

latter region with a reduction by 23%. The BS of EPC15 is

always smaller or equal to the BS of ECMWF with the largest

difference in central Africa. As discussed above, this is likely a

result of miscalibration of the ECMWF model with respect to

rainfall frequency. The higher AUC values for ECMWF for all

five regions indicate better discrimination ability compared to

EPC15, even for central Africa, where both CRPS and BS in-

dicate worse performance. Largest differences are again found

for Australia in agreement to the CRPS results.

c. Comparison with African station observations

The fact that the EPC15 forecasts are both constructed from

and verified against the IMERG-F dataset could bias results in

favor of EPC15. An independent comparison is obtained by

using ground observations from KASS-D as described in

section 2c. To match typical station reporting practices in

Africa we use accumulation periods from 0600 to 0600UTC for

IMERG-F data and ECMWF ensemble forecasts in contrast to

sections 4a and 4b. Just like in section 4b, IMERG-F data are

regridded to 0.258 3 0.258 by applying first-order conservative

remapping to allow for a fair comparison with ECMWF fore-

casts. For each station the nearest grid point is identified using

the Haversine formula. As an evaluation period we chose

2012–16, as our station record is relatively good for this period.

This implies that the ECMWF system evaluated here differs

somewhat from that considered in section 4b but, as shown in

Vogel et al. (2020), performance differences over time are

small during the post-2011 period. The IMERG-F-based

EPC15 forecasts are produced in a quasi-operational way by

only using data from preceding years (e.g., 2001–11 for a

forecast in 2012). Comparing point-to-area estimates of rainfall

is generally problematic due to the high spatial and temporal

variability of this quantity. In our case, the long sampling pe-

riod of 31 days implies a correlation distance for station aver-

ages large enough to make them comparable to gridded data at

0.258 (Bell and Kundu 2003). This, however, does not hold for

the full daily distribution, as point measurements can better

represent extremes.

Table 3 shows mean CRPS values and results from a two-

sided DM test for the five regions shown in Fig. 1. All show

superiority of EPC15 over ECMWF forecasts. Reductions in

CRPS range from 7%–8% in East Africa and West Sahel to

15% in the wet Guinea Coast region. According to the DM

test, EPC15 is viewed superior over large fractions of sta-

tions reaching from 99% in Guinea Coast to 82% in East

Africa, where ECMWF is superior over almost 17% of all

stations. The results are largely consistent with those pre-

sented in section 4b in that areas over tropical Africa are

FIG. 5. Annual precipitation amount (mm) averaged over the period 2001–19 based on IMERG-F. The colored boxes define specific areas

of interest used in the comparison of EPC15 and ECMWF ensemble forecasts.

TABLE 2. Comparison of forecast performance between EPC15 and the ECMWF ensemble for each box defined in Fig. 5. The first

column shows mean CRPS values (best score for each region in bold), and the second and third columns show mean BS and AUC at a

threshold of 0.2mm. Evaluation is performed for the years 2012–19. Both IMERG-F and ECMWF rainfall is accumulated from 0000 to

0000 UTC on a 0.258 3 0.258 grid.

Area

CRPS (mm day21) BS AUC

ECMWF EPC15 ECMWF EPC15 ECMWF EPC 15

South America 4.04 3.99 0.17 0.15 0.77 0.73

Central Africa 2.36 2.25 0.21 0.15 0.82 0.79

India 2.34 2.76 0.17 0.16 0.87 0.81

Australia 1.54 2 0.19 0.19 0.85 0.63

Southeast Asia 4.35 4.78 0.23 0.19 0.78 0.72
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particular difficult to forecast for ECMWF in contrast to other

tropical and subtropical regions. The fact that CRPS reductions

are comparable to Table 2 and Fig. 4a indicates that the supe-

riority of EPC15 is not strongly influenced by the choice of the

verification dataset.

To further investigate this issue, we also compute EPC15

from station observations. For an optimal comparison with the

IMERG-F-based EPC15 we select 76 stations from KASS-D

with 100% data coverage during the period 2001–16, 19 in

West Sahel, 50 in Guinea Coast, and 7 in East Africa. Using

station rainfall for verification, we can systematically com-

pare the forecast performance of the ECMWF ensemble

with the IMERG-F-based and the station-based EPC15. As

expected, ECMWF shows largest CRPS in all three regions

followed by IMERG-F EPC15 and then station EPC15, but

the difference between the former two is always larger than

between the latter two (Table 4). For the West Sahel and

Guinea Coast regions the difference in CRPS between the

two EPCs is 1%–2%, while it reaches 6% in East Africa,

where, however, only seven stations are available. For all

three regions, the CRPS increases relative to the results

shown in Table 3, which is caused by the smaller numbers of

stations and the different time period used here. Interestingly,

however, the gap in CRPS between EPC15 and ECMWF re-

mains almost constant, which underlines the robustness of the

EPC concept against time and space resolution, dataset used,

and time period considered.

d. Mixed Bernoulli–gamma fit

The previous sections have demonstrated that the EPC

concept produces forecasts of comparable skill to state-of-

the-art NWP models and thus can serve as a benchmark for

future forecast developments. To make the concept easy to

access and use, we will test in the following whether the

empirical EPC can be replaced by a smooth fitted theoretical

distribution without losing much predictive ability. Given

that an EPC15 forecast based on 19 years of IMERG-F data

consists of 589 rainfall values, a fitted three-parameter dis-

tribution reduces the data volume by a factor of almost 200.

Fitting a probability distribution is also more convenient to

work with (Bröcker and Smith 2008) and allows to derive

more consistent quantiles and probabilities, particular for

more extreme events (Wilks 2002).

To jointly represent occurrence and amount of precipitation,

we follow Williams (1998) and propose using a MBG distri-

bution (Sloughter et al. 2007; Cannon 2008) with parameter p

for the probability of a nonzero event, shape parameter a, and

scale parameter u of the gamma distribution (see appendix). To

allow for a performance comparison with the raw EPC15, the

CRPS for the MBG distribution is derived following the steps

from Scheuerer and Möller (2015) (see the appendix) result-

ing in

CRPS(F
Ga,b

, y)5py[2G
a,b

(y)]2 p
a

b
[2G

a11,b
(y)]

2p2 a

bp
B

�
a1

1

2
,
1

2

�
1 y(12 2p)1 p2 a

b
,

(3)

where B denotes the beta function, Ga,b is the gamma distri-

bution, and b 5 1/u is an inverse scale parameter, called rate

parameter. The parameters of the gamma distribution are fit-

ted using maximum likelihood estimation.

The following calculations are based on IMERG-F data

from 0000 to 0000 UTC and 0.18 3 0.18 grid resolution as in

TABLE 3. Verification of IMERG-F-based EPC15 and ECMWF ensemble forecasts against the African station observations displayed

and grouped in Fig. 1 for the period 2012–16. The number of available stations is given in the first column. Following columns show mean

CRPS values (best score for each region in bold) and the percentages of stations, where EPC15 and ECMWF forecasts are significantly

superior according to a two-sidedDM test results with Benjamini–Hochberg correction anda5 0.05. Rainfall is accumulated from 0600 to

0600 UTC on a 0.258 3 0.258 grid.

Area No. of stations

CRPS (mm day21) DM test (%)

ECMWF EPC 15 ECMWF EPC 15

West Sahel 65 2.07 1.93 6.15 92.31

Guinea Coast 103 3.88 3.31 0 99.03

East Sahel 24 1.11 1.02 4.16 91.67

Ethiopia 48 2.38 2.08 10.42 87.50

East Africa 84 2.89 2.70 16.67 82.14

TABLE 4. Comparison between themean 2012–16 CRPS (mmday21) for ECMWFensemble forecasts, EPC15 based on IMERG-F, and

ECP15 based on surface stations with 100% data availability in the period 2001–16 (best score for each region in bold). The number of

stations in each region is given in the first column. Verification is done against station observations. Accumulation is from 0600 to

0600 UTC, and the grid resolution is 0.258 3 0.258.

Area No. of stations ECMWF IMERG-F EPC15 Station EPC15

West Sahel 19 2.32 2.18 2.15

Guinea Coast 50 3.97 3.43 3.37

East Africa 7 3.14 2.95 2.77
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section 4a. EPC15 is constructed from the years 2001–17 for a

2018 forecast and from 2001 to 2018 for a 2019 forecast as in

section 4b. Comparing EPC15 and MBG for these two years

results in mean CRPS values of 2.52 and 2.54mm day21, re-

spectively, corresponding to a loss of less than 1%. The former

value is slightly lower than the one given in section 4b due to

the differences in resolution and time period. Concentrating on

land points, i.e., with a proportion of water surface , 50%

according to the GPM IMERG land–sea mask (Olson et al.

2019), the mean CRPS reduces to 1.94mm day21 for both

forecasts. A TODM equivalence test shows that already for a

relatively minor margin u of 0.03mm day21 (;1.2% of the

CRPS) 58.7%of all grid points are equivalent (Fig. 6a). Results

of the two forecasts are practically indistinguishable for

u greater 0.15mm day21. The curve for land points only is

much steeper, yielding 98.2% equivalence already for a u of

0.03mm day21 (Fig. 6b), indicating that MBG is a very good

alternative to EPC15 over land.

A horizontal distribution of the CRPSS of MBG relative to

EPC15 (Fig. 7) shows that most land points have values close

to zero with the exception of arid Australia, where a pre-

dominance of dry days maymake theMBGfit difficult. Such a

behavior, however, is not found over some other continental

deserts such as the Sahara and Arabian Desert. Interestingly,

some continental areas such as South America and Africa

even show a slightly superior forecast by MBG. As evident

from the average numbers stated above, performance over

the ocean is much less consistent. In particular over the drier

regions in the outer tropics MBG has a worse performance.

Here, many dry and drizzly days make the fit of the positively

skewedMBG distribution difficult, likely leading to too much

weight for higher values. The negative bias of IMERG-F in

these areas (Khan and Maggioni 2019) may exacerbate this

problem. As these areas are largely uninhabited and con-

tribute only small amounts to the global totals, larger errors

there are relatively acceptable. We therefore conclude that

MBG should be used as the benchmark forecast instead of

the raw EPC15 due to the much smaller data volume and the

advantages of having a full probability distribution.

5. Conclusions

Rainfall forecasts, even at short lead times of only a day, still

constitutes a large challenge for tropical and subtropical

latitudes. Current NWP systems generally have low skill over

these areas (Haiden et al. 2012; Vogel et al. 2020), calling for

enhanced efforts for improvement through postprocessing,

model development, higher resolution, statistical, or hybrid

approaches. To systematically and consistently gauge progress

in such developments, the definition of an adequate bench-

mark forecast is needed.

Here we used satellite-based rainfall estimates from IMERG-F

version V06B for the period 2001–19 to define such a bench-

mark for the 408S–408N belt. Given the large stochasticity

in tropical and subtropical rainfall, we concentrated on prob-

abilistic forecasts. The concept we use is based on past obser-

vations in a window around the date of interest to construct

an empirical-climatological probability forecast and is termed

Extended Probabilistic Climatology (EPC). Applying the

EPC concept to IMERG-F rainfall data and comparing

the results to ECMWF 1-day ensemble forecasts and sta-

tion data over tropical Africa, led to the following main

conclusions:

d A length of 615 days is identified as an optimal window

length for the EPC construction (termed EPC15), as it

provides a good compromise between statistical robustness

and enough flexibility to account for sudden seasonal onsets

of rainfall (e.g., in monsoon regions).
d The area- and time-mean CRPS for EPC15 at the highest

spatial resolution of 0.18 is 2.65 mm day21. Year-to-year

variability of this value is closely correlated with area

FIG. 6. Equivalence of EPC15 andMBG forecasts for the years 2018 and 2019 based on IMERG-F data (0000–0000 UTC accumulation

and 0.18 3 0.18 grid resolution) during 2011–17 and 2011–18, respectively, according to a TODM equivalence test with Benjamini–

Hochberg correction and a 5 0.05. Shown are the percentage of significant grid points for different values of the equivalence margin

u (mm day21) for (a) all points and (b) land points only (i.e., proportion of water surface, 50% according to the GPM IMERG land–sea

mask; Olson et al. 2019). Note the different u ranges in the two plots.
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mean annual rainfall. Coarse-graining the IMERG-F data

to 0.258 before EPC computation reduces the CRPS only

slightly.
d Raw ECMWF ensemble predictions are superior to EPC15

over most parts of the tropics and subtropics in terms of

forecasting the distribution of rainfall with the exception of

oceanic deserts, high mountain areas, and parts of tropical

Africa, where the difference in CRPS can exceed 10% in

subregions.
d With respect to precipitation occurrence, the skill of ECMWF

is neutral or slightly positive over land and strongly negative

over large parts of the low-latitude oceans. The fact that po-

tential predictive ability is positive almost everywhere, points

to considerable miscalibration problems.
d Focusing specifically on tropical Africa, the superiority of

EPC15 against ECMWF forecasts is robust against an

EPC15 construction and evaluation with surface stations

instead of IMERG-F data.
d The empirical EPC15 can be replaced by the three param-

eters of a fitted MBG distribution without much loss in

predictive quality. Over dry oceanic areas, where some issues

with IMERG-F data quality have been documented, the

MBG fit is difficult, but over many land areas the MBG-

based forecasts are even superior.

Based on these findings, we advocate the IMERG-F-based

MBG-fitted EPC15 as an adequate and powerful benchmark

ensemble forecast for future rainfall prediction studies fo-

cusing on low latitudes. To make the results as accessible as

possible for a wider community of researchers and opera-

tional weather services we have (i) set up a website (http://

www.epc.kit-weather.de), where EPC15 forecasts are inter-

actively displayed based on a clickable map (0.18 3 0.18 grid)
and lists of significant cities per country; (ii) provided the

code to replicate the results of this paper on Github (https://

github.com/evwalz/epc/); and (iii) made available parameters

of the fitted MBG distribution for the standard benchmark

EPC15 (0.18 3 0.18 grid) for each day of the year under (https://

doi.org/10.5445/IR/1000127274).

We strongly encourage other scientists to actively use these

resources, in particular to study in detail other low-latitude

regions based on their station records or to extend the analysis

presented in this paper to longer lead times. The new bench-

mark should also be used as a reference to further develop

postprocessing procedures that, as shown in Vogel et al. (2018,

2020), for ECMWF ensemble predictions, can lead to significant

improvements relative to the rawmodel output evaluated here.

Hopefully future generations of NWP models or postprocess-

ing, statistical (e.g., Vogel et al. 2021) or hybrid models will be

able to outperform EPC15 and show truly skillful forecasts

over tropical Africa. This would be of enormous socioeco-

nomic relevance for the large and growing population, mostly

in developing countries.
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APPENDIX

Mixed Bernoulli–Gamma Distribution

Let p be the probability of a nonzero event and denote by

ga,b the probability density function (PDF) of a gamma dis-

tribution Ga,b with shape parameter a and inverse scale

parameter b, called rate parameter, then the mixed Bernoulli–

gamma (MBG) PDF is

f
p,a,b

(y)5

�
pg

a,b
(y) , y. 0

12 p , else
,

and the MBG cumulative distribution function (CDF) is

F
p,a,b

(y)5

�
(12 p)1pG

a,b
(y) , y. 0

12 p , else
. (A1)

FIG. 7. Average CRPS skill of MBG forecasts relative to EPC15 forecasts for the years 2018 and 2019 based on

IMERG-F data (0000–0000 UTC and 0.18 3 0.18 grid resolution) during 2001–17 and 2001–18, respectively.
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The quantile function for the MBG distribution is

Q
p,a,b

(q)5

8><
>:

G21
a,b

�
q2 11p

p

�
, q. 12p

0, else

.

Let X have CDF in Eq. (A1), then

E(X)5p
a

b
,

Var(X)5
p[a(11a)]

(b2)2p2a2/b2
.

The CRPS for a CDF F and the corresponding observation y is

defined as

CRPS(F , y)5

ð1‘

2‘

F(t)2 1fy#tg

h i2
dt

5E
F
jY2 yj2 1

2
E
F
jY2Y 0j ,

where Y and Y0 are independent random variables with dis-

tribution function F and finite first moment (Gneiting and

Raftery 2007). The derivation of the CRPS for the MBG dis-

tribution is based on considerations from appendix A in

Scheuerer and Möller (2015):
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where B is the beta function. Putting both results together

yields the following:
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