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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Engineering competence and the digitization of all processes along the product development process are highly decisive for today’s success of 
industrial companies. The design process is very individual and strongly based on design engineers’ experience. Part of this knowledge and the 
result of the design approach are fixated in the existing variations of the product generations, but are difficult to extract and to formalize. 
Conclusions about design-related patterns between products of different generations or variants can be drawn from the model tree representing 
the design engineer's thinking process for each individual CAD model. However, the model tree has hardly been used so far. The aim of this 
paper is to examine whether there exist any common design patterns between CAD models of certain component classes by the exemplary use 
case in the area of mechanical engineering. To identify patterns and to extract knowledge out of complex data sets, Machine Learning (ML), 
especially Deep Learning, has proven an immense capability. Finally, based on the learned patterns, meaningful next design steps are to be 
proposed in the form of an assistance system. The results show that there exist common design patterns for various classes of components. It is 
illustrated on an exemplary component class that those patterns can be used to train an assistance system based on Recurrent Neural Networks 
(RNNs). The corresponding design patterns were extracted from data of an industrial application partner. By transferring these design patterns to 
the development of new product generations or variants, on the one hand the design process itself and thus the time to market can be shortened. 
On the other hand, the knowledge from previous product generations contained in those patterns can be preserved. For further research the design 
patterns of CAD models extracted by ML algorithms is a contribution to faster knowledge extrapolation. 
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1. Introduction

Today's companies face a multitude of challenges in the area
of product development. On the one hand, increasing 
individualization leads to an increasing number of variants and 
thus to growing complexity. Due to shorter product life cycles 
and increasing global competition, on the other hand companies 
are forced to bring innovative products to the market in the 
shortest possible time [1]. The so-called time-to-market is an 
essential factor for the market success of a product. Product 

development plays a particularly important role here, both in 
terms of time and costs [1,2]. In order to maintain the market 
attractiveness of a product due to innovative features or to 
comply with changing specifications or standards, different 
generations or variants are usually launched on the market. For 
efficiency reasons, product development is therefore very often 
based on reference products, such as products from previous 
generations or products from competitors. According to [3], the 
majority of products are developed in generations. Reliably 
working components or subsystems are taken over from 
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reference products and, if necessary, adapted slightly [3]. This 
reduces the development effort, possible risks with regard to 
functionality and manufacturability and required investments, 
e.g. investments in production facilities [3]. In many 
companies, a large number of existing product models of 
different generations and variants exist in the form of CAD 
data, which are very similar in their basic structure and often 
only differ in individual subsystems or components. Especially 
the reliable components and subsystem, which have been used 
for multiple product generations, contain experience 
knowledge accumulated over years. What is meant by this is for 
example knowledge about the relationship between 
embodiment design and product functionalities, 
manufacturability or economic efficiency. The problem is that 
this knowledge is mostly implicit and individual [4,5] and the 
manufacturing-specific knowledge is partly not sufficient [6], 
so it can only be described in a rule-based manner or 
sophisticated models of embodiment function relations [7] with 
high effort [8,9]. Machine Learning (ML) offers an enormous 
potential here to extract unknown patterns and correlations 
from data and to formalize implicit knowledge.  

The product development process is highly complex and 
relies heavily on the individual experience of design engineers. 
Nevertheless, there is a structured procedure in accordance 
with VDI 2221 [10], which design engineers can use as a 
guideline. The implementation of the proposed phases as well 
as the choice of the methods required for this is up to the design 
engineer's experience. 

The idea of systematically using existing experience 
knowledge of design engineers has been pursued for some time 
in the field of knowledge-based engineering (KBE). KBE 
systems are a combination of object-oriented programming, 
artificial intelligence and CAD [11]. According to [12] such a 
KBE system can capture and reuse product and process 
engineering knowledge in a convenient and maintainable 
manner. According to [12], the ultimate objective of KBE is the 
reduction of time and costs in product development by 
automating repetitive tasks that do not require the creativity of 
the design engineer. However, the use of KBE systems is 
limited to design tasks where knowledge can be expressed in 
explicit rules [13] that must first be formalized for example by 
experts for the specific application. Other approaches use 
existing knowledge through design reuse or shape retrieval of 
existing CAD models, e.g. [14]. The idea of Group Technology 
also aims at using and modifying existing designs of a product 
family to generate a new component [15]. 

Current approaches using ML to process 3D data are 
particularly concerned with classification, e.g. [16–19] and 
shape completion of 3D models, e.g. [20–23]. An overview of 
advances of Deep Learning on different 3D data 
representations is given in [24]. In general, the approaches 
attempt to learn relevant geometric properties from the 3D 
objects. The necessary design steps required to create a 
corresponding model are disregarded. Nevertheless, shape 
completion methods could be used to automatically complete 
semi-finished components. However, these approaches are not 
yet applied in the design process. 

In the area of engineering, various methods have already 
been tested to generate recommendations based on complete 

components [25,26]. In [27] a classification and similarity 
search of components is implemented on the basis of the model 
tree. The existing approaches are therefore only a passive 
support for the design engineer in order to give him a good 
overview of already existing CAD models, for example to avoid 
duplicates. The model tree on component basis as 
representation for the design process of a design engineer via 
design features has hardly been used so far.  

Therefore, the aim of this paper is to use ML methods to 
extract implicit knowledge from CAD models in the form of 
design patterns, as suggested in [28], to make it usable. With 
this, the design engineer is supported in designing new variants 
or generations with existing knowledge and moreover the 
design process is accelerated. The basis for learning the design 
patterns is the model tree in CAD, which is kind of a log file 
representing the conceptual approach of the design engineer 
[27]. Recurrent Neural Networks (RNNs) are suitable for 
processing such sequential data because they can store 
information over time. The specific research questions are: 

 The definition of the term design pattern as well as an 
examination on the basis of a data set from the industry 
whether design patterns exist at all 

 Development of a deep learning-based assistance 
system trained on the design patterns, which suggests 
next design steps to support the design engineer in 
following proven procedures, thereby avoiding errors 
and speeding up the design process 

 Evaluation of the developed architecture in a case study 
for an industrial application using data from the area of 
mechanical engineering 

2. Methodology 

The basic prerequisite for the application of ML is first of 
all the presence of patterns in the design process. For this 
purpose, the term "design pattern" is defined in chapter 2.1 and 
a graph-based survey is used to check whether patterns are 
present within and across different classes of components in 
chapter 2.2. Next, chapter 2.3 shows how the corresponding 
patterns are prepared in order to finally apply the RNN 
architecture shown in chapter 2.4. 

2.1. Definition of design patterns 

CAD models of components in their original format are the 
basis for finding design patterns. The model tree contained in 
these models provides information about the design features 

Datum plane

System of coordinates

Design features

.prt

Fig. 1: Exemplary model tree of a CAD model in 
.prt format 
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and their parameterisation, which the design engineer used to 
create the 3D model. In Fig. 1 an exemplary model tree is 
shown in the software PTC Creo®. The design features used 
can be divided into five different categories, such as shape 
features (e.g. extrusion), engineering features (e.g. chamfer), 
editing features (e.g. pattern), datum features (e.g. datum plane) 
and surfaces. Each of these defined design features also has 
additional parameters, such as dimensions and tolerances. 
There are different ways to create a geometrically identical 
component. For example, a cylinder can be represented by 
extrusion or rotation. The model trees for one and the same 3D 
model are therefore not necessarily identical. Nevertheless, 
typical sequences of design features can be found even between 
different model trees. These feature sequences are called design 
patterns. 

2.2. Examination of the presence of patterns in the design 
process 

A prerequisite for the application of ML is the existence of 
design patterns across different model trees of the considered 
CAD model data base. For this investigation, the model trees 
are first displayed as a graph. Each design feature forms a node 
in the graph, and the corresponding dependencies are 
represented via the edges. Fig. 2 shows an exemplary graph. 
Parameters of the design features are not considered here. To 
determine the similarities of the graphs, the Neighbourhood 
Matching algorithm according to [29] is used. This compares 
the graphs for structural and contextual similarities, i.e. for the 
structure of the model tree and the design features used. The 
final result is a matrix that reflects the similarities between the 
individual model trees represented by graphs. If there are 
similarities between the individual model trees, it can be 
assumed that design patterns do exist. 

2.3. Extraction of design patterns 

To process the model trees from the CAD models with ML, 
they must first be prepared accordingly. In principle, there are 
two ways of representing the design process (see Fig. 3). On 
the one hand, the sequence of the design features and their 
parametrizations can be read out from the model considering 
parent-child relationships between those features. However, it 

should be noted that the order of the features does not 
necessarily correspond to the order in which the designer 
created them. Different extraction methods can lead to different 
sequences even considering the same model tree. Hence, the 
assumed model tree hierarchy is not the only possible order, but 
at least one possible order. Further, the features’ parameters 
(e.g. dimensions) are represented as floats, while feature types 
are categorical values and first are coded as integers from “1” 
to the number of unique feature types (dictionary size). 
Although it is possible to use categorical values as input to the 
RNN, it is common practice to transform them into float 
vectors, i.e. embeddings, which can be understood as semantic 
representations. Intuition behind the embeddings is that, for 
example, an extrusion is semantically much closer to a 
rotational body than to a cosmetic thread. This kind of 
relationships between different features should help the RNN 
to learn sequential feature dependencies faster and more robust. 
In order to do so, an embedding layer is preconnected to the 
RNN. Therefore, a linear transformation from integer values to 
corresponding embeddings is learned during the training phase.  

On the other hand, the geometric development of the 3D 
model can be tracked via the model tree by gradually removing 
features and storing the corresponding intermediate states. Not 
all features, however, do result in a geometrical change. A new 
geometric state is therefore only spoken of if the volume of the 
3D model varies. In a next step, the corresponding intermediate 
states are converted into point clouds to make them processable 
for ML.  

To sum up, the design process can be represented by the 
sequence of encoded design features and the geometric 
development of the 3D model. In order to learn patterns from 

component

profile1 profile2
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cut3

round1

chamfer1

geometry dimensionmaterial

Fig. 3. Representation of the design process for each design state t via a) the 
sequence of the design features used and b) the corresponding geometric 
development of the 3D model in form of point clouds. 

a) 

b) 

Fig. 2. Graph based representation of the model tree. 
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reference products and, if necessary, adapted slightly [3]. This 
reduces the development effort, possible risks with regard to 
functionality and manufacturability and required investments, 
e.g. investments in production facilities [3]. In many 
companies, a large number of existing product models of 
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sequence of the design features used and b) the corresponding geometric 
development of the 3D model in form of point clouds. 

a) 

b) 

Fig. 2. Graph based representation of the model tree. 
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the resulting feature sequences, they are now divided into 
shorter sequence sections. Via a sliding window sequence 
sections of a given length can be created. In addition, the data 
set can be significantly enlarged, since several observations can 
be created from one sequence. 

2.4. RNN-based architecture to predict next design steps 

The aim is to use RNNs to identify patterns based on the 
sequence data created in chapter 2.3 in order to suggest next 
design steps. In a first step only the design feature types is 
predicted. A further expansion stage then additionally 
considers the dimensions of each design feature. At the highest 
stage of development, next design steps should include the 
corresponding design feature (e.g. extrusion) with associated 
dimensioning (e.g. extrusion depth) and the visual 
representation of the next component state (see Fig. 4). Besides 
the sequence of design features, this approach also requires the 
geometric development of the 3D model as training data basis 
(see chapter 2.3). This paper considers the first two stages of 
development. 

In order to investigate possible sequential patterns two 
approaches are tested. First, one only takes a sequence of 
integers (feature types) as input, passes it through the 
embedding layer and then calculates an internal state of the 
RNN layer, which is the basis for the next feature prediction. 
Both during training and inference the neural net gets past 
features as input and has one output only (next feature 
prediction). Nevertheless, it has a many-to-many architecture, 
since the prediction can continue until the end of sentence 
(<EOS> token) is produced as output. Hereinafter, this 
architecture will be referred to as vanilla RNN. 
The second approach also takes into account features’ 
dimensions both for input and output. Since the neural net takes 
two different types on data as input (categorical integers and 
float vectors), it has two separate RNN branches for each of 
them. After the internal states of both RNN branches are 
calculated, they are concatenated to create a single state vector. 
However, since the dimension of this vector is not suitable for 
either of the tasks (to predict the next feature type and the 
corresponding dimensions), it is passed through two additional 
separate dense layers with proper output dimensions. Although 
the neural net technically creates two outputs, it still takes a 
sequence of features and the corresponding dimensions as input 
and can make predictions until <EOS> token is produced, 
therefore it can also be understood as a many-to-many net. 

Hereinafter, this type of architecture is referred to as 
multivariate RNN.  

3. Case Study 

The architecture of the vanilla RNN introduced in chapter 0 
for predicting next design steps is shown as proof of concept 
using an exemplary data set from the field of mechanical 
engineering. After examining the data set for the presence of 
design patterns, the corresponding patterns are extracted for an 
exemplary component class and the RNN is trained. 

3.1. Considered data base 

Within the framework of the case study, CAD models of an 
industrial application partner in the field of mechanical 
engineering are used, which were created with PTC Creo® 
Parametric. The CAD models in .prt format come from the four 
component classes flange, housing, cover and adapter. 
Exemplary representatives of the classes are shown in Fig. 5. 
All four classes are used to examine the design samples. The 
implementation of the vanilla RNN is illustrated by the class 
cover. 

3.2. Investigation of design patterns 

First the model trees are extracted from the CAD models of 
the considered data base with the help of PTC Creo® Object 
TOOLKIT Java. A short overview over the lengths of 
sequences extracted from the for different component classes 
is given in Table 1. 

Table 1. Overview of feature types and sequence lengths. 

Class Number of 
unique features 

Sequence lengths 

min max mean std 

Adapter 18 10 107 30.87 11.68 

Cover 25 15 262 111.28 68.72 

Flange 17 10 159 69.54 49.36 

Housing 26 11 553 217.62 117.36 

An overview over the distribution of these feature types and 
the most frequent features from each group is represented in 
Table 2 for the class of covers. The overall number of unique 
features is 25. 
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Fig. 5. Exemplary objects from the considered component classes and 
respective number of models. 

Fig. 4. General RNN architecture to predict next design steps. 
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Table 2. Overview of distribution of feature types and most frequent features 
for cover class.  

Feature 
type 

Counts 
in 

dataset 

Share in 
dataset 

[%] 

Most 
frequent 
feature 

Counts 
in 

dataset 

Share in dataset 
[%] 

datum 18270 49.45 datum 
plane 15004 40.61 

shapes 9131 24.72 cut 7216 19.53 

engin. 8344 22.59 round 5311 14.38 

editing 1074 3.25 pattern 697 1.89 

surfaces 125 0.34 surface 125 0.34 

In a first investigation, the similarity matrix of the model 
trees is calculated according to chapter 2.2 for the individual 
component classes. Fig. 6 (a) shows the results for the class 
adapter in form of the frequencies of the occurred similarity 
values. Obviously there is an overlap for a large part of the 
model trees, which suggests the existence of design patterns 
within a component class. For the investigation across different 
component classes, the data set is first divided into a subset 
consisting of the same number of model trees from each class. 
Subsequently, the similarity matrix is calculated and based on 
this, a density-based clustering is performed. The results are 
shown in Fig. 6 (b). Most clusters are class-compliant. Only in 
two clusters there seem to be similarities also between model 
trees from different component classes. It is also apparent that 
there can be several design approaches in one class of building 
up components. For example, the model trees of the “cover” 
class have been divided into three different clusters. 

3.3. Next step prediction 

The architecture of the RNN presented in chapter 0 is 
exemplarily tested on the component class of covers (see 
chapter 3.1). For this purpose, the data set is prepared according 
to chapter 2.3. In the considered investigation, only the 
sequence of design features serves as input. Desired output is 
the next design step in form of the next design feature. An 
overview over the particular net architecture is presented in 

Table 3. As for recurrent layers, sigmoid activation function is 
used in all cases. No regularization is applied. Categorical cross 
entropy loss function is used as an optimization objective. For 
training, Adam algorithm with default TensorFlow settings is 
used. 

Table 3. RNN Architecture 

Layer # of units Activation function 

Input 25 linear 

Embedding 16 linear 

RNN/ LSTM 16 sigmoid 

Dense 25 linear 

For the training, different input sequence lengths are tested. 
Fig. 7 (a) represents the achieved training and validation 
accuracy for according feature sequence lengths. Obviously, 
longer sequences make it easier for the net to make legit 
predictions. The maximum possible input sequence length 
depends on the minimal sequence length of the data set (see 
Table 1). For the given dataset, the accuracy does not saturate 
even by the maximum length of 15 features. Since the latter 
case shows the best accuracy with about 72 %, a typical 
learning curve for this training case is presented in Fig. 7 (b). 

4. Discussion 

For the investigated data set, it could be shown that there are 
obviously design patterns in the design procedure, especially 
within a component class. However, the occurrence of the 
patterns depends on the data set. Based on those patterns, an 
RNN architecture is trained and an accuracy of 72 % could be 
achieved for the considered component class. It is worth 
mentioning that the extracted feature sequences are not the only 
possible ones. The RNN’s output is, however, still penalized 
every time it does not correspond to next feature that was 
extracted for building up sequences out of the model tree. 
Therefore, other metrics may be helpful to better evaluate the 

Fig. 7. (a) Training and validation accuracy for different lengths of input 
sequence and (b) course of loss over training epochs. 

(a) 

(b) 

Fig. 6. (a) Histogram of similarities for adapter class and (b) obtained clusters 
based on the similarities of the model trees of the four investigated 
component classes. 

(a) 

(b) 
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the resulting feature sequences, they are now divided into 
shorter sequence sections. Via a sliding window sequence 
sections of a given length can be created. In addition, the data 
set can be significantly enlarged, since several observations can 
be created from one sequence. 

2.4. RNN-based architecture to predict next design steps 

The aim is to use RNNs to identify patterns based on the 
sequence data created in chapter 2.3 in order to suggest next 
design steps. In a first step only the design feature types is 
predicted. A further expansion stage then additionally 
considers the dimensions of each design feature. At the highest 
stage of development, next design steps should include the 
corresponding design feature (e.g. extrusion) with associated 
dimensioning (e.g. extrusion depth) and the visual 
representation of the next component state (see Fig. 4). Besides 
the sequence of design features, this approach also requires the 
geometric development of the 3D model as training data basis 
(see chapter 2.3). This paper considers the first two stages of 
development. 

In order to investigate possible sequential patterns two 
approaches are tested. First, one only takes a sequence of 
integers (feature types) as input, passes it through the 
embedding layer and then calculates an internal state of the 
RNN layer, which is the basis for the next feature prediction. 
Both during training and inference the neural net gets past 
features as input and has one output only (next feature 
prediction). Nevertheless, it has a many-to-many architecture, 
since the prediction can continue until the end of sentence 
(<EOS> token) is produced as output. Hereinafter, this 
architecture will be referred to as vanilla RNN. 
The second approach also takes into account features’ 
dimensions both for input and output. Since the neural net takes 
two different types on data as input (categorical integers and 
float vectors), it has two separate RNN branches for each of 
them. After the internal states of both RNN branches are 
calculated, they are concatenated to create a single state vector. 
However, since the dimension of this vector is not suitable for 
either of the tasks (to predict the next feature type and the 
corresponding dimensions), it is passed through two additional 
separate dense layers with proper output dimensions. Although 
the neural net technically creates two outputs, it still takes a 
sequence of features and the corresponding dimensions as input 
and can make predictions until <EOS> token is produced, 
therefore it can also be understood as a many-to-many net. 

Hereinafter, this type of architecture is referred to as 
multivariate RNN.  

3. Case Study 

The architecture of the vanilla RNN introduced in chapter 0 
for predicting next design steps is shown as proof of concept 
using an exemplary data set from the field of mechanical 
engineering. After examining the data set for the presence of 
design patterns, the corresponding patterns are extracted for an 
exemplary component class and the RNN is trained. 

3.1. Considered data base 

Within the framework of the case study, CAD models of an 
industrial application partner in the field of mechanical 
engineering are used, which were created with PTC Creo® 
Parametric. The CAD models in .prt format come from the four 
component classes flange, housing, cover and adapter. 
Exemplary representatives of the classes are shown in Fig. 5. 
All four classes are used to examine the design samples. The 
implementation of the vanilla RNN is illustrated by the class 
cover. 

3.2. Investigation of design patterns 

First the model trees are extracted from the CAD models of 
the considered data base with the help of PTC Creo® Object 
TOOLKIT Java. A short overview over the lengths of 
sequences extracted from the for different component classes 
is given in Table 1. 

Table 1. Overview of feature types and sequence lengths. 

Class Number of 
unique features 

Sequence lengths 

min max mean std 

Adapter 18 10 107 30.87 11.68 

Cover 25 15 262 111.28 68.72 

Flange 17 10 159 69.54 49.36 

Housing 26 11 553 217.62 117.36 

An overview over the distribution of these feature types and 
the most frequent features from each group is represented in 
Table 2 for the class of covers. The overall number of unique 
features is 25. 
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Table 2. Overview of distribution of feature types and most frequent features 
for cover class.  

Feature 
type 

Counts 
in 

dataset 

Share in 
dataset 

[%] 

Most 
frequent 
feature 

Counts 
in 

dataset 

Share in dataset 
[%] 

datum 18270 49.45 datum 
plane 15004 40.61 

shapes 9131 24.72 cut 7216 19.53 

engin. 8344 22.59 round 5311 14.38 

editing 1074 3.25 pattern 697 1.89 

surfaces 125 0.34 surface 125 0.34 

In a first investigation, the similarity matrix of the model 
trees is calculated according to chapter 2.2 for the individual 
component classes. Fig. 6 (a) shows the results for the class 
adapter in form of the frequencies of the occurred similarity 
values. Obviously there is an overlap for a large part of the 
model trees, which suggests the existence of design patterns 
within a component class. For the investigation across different 
component classes, the data set is first divided into a subset 
consisting of the same number of model trees from each class. 
Subsequently, the similarity matrix is calculated and based on 
this, a density-based clustering is performed. The results are 
shown in Fig. 6 (b). Most clusters are class-compliant. Only in 
two clusters there seem to be similarities also between model 
trees from different component classes. It is also apparent that 
there can be several design approaches in one class of building 
up components. For example, the model trees of the “cover” 
class have been divided into three different clusters. 

3.3. Next step prediction 

The architecture of the RNN presented in chapter 0 is 
exemplarily tested on the component class of covers (see 
chapter 3.1). For this purpose, the data set is prepared according 
to chapter 2.3. In the considered investigation, only the 
sequence of design features serves as input. Desired output is 
the next design step in form of the next design feature. An 
overview over the particular net architecture is presented in 

Table 3. As for recurrent layers, sigmoid activation function is 
used in all cases. No regularization is applied. Categorical cross 
entropy loss function is used as an optimization objective. For 
training, Adam algorithm with default TensorFlow settings is 
used. 

Table 3. RNN Architecture 

Layer # of units Activation function 

Input 25 linear 

Embedding 16 linear 

RNN/ LSTM 16 sigmoid 

Dense 25 linear 

For the training, different input sequence lengths are tested. 
Fig. 7 (a) represents the achieved training and validation 
accuracy for according feature sequence lengths. Obviously, 
longer sequences make it easier for the net to make legit 
predictions. The maximum possible input sequence length 
depends on the minimal sequence length of the data set (see 
Table 1). For the given dataset, the accuracy does not saturate 
even by the maximum length of 15 features. Since the latter 
case shows the best accuracy with about 72 %, a typical 
learning curve for this training case is presented in Fig. 7 (b). 

4. Discussion 

For the investigated data set, it could be shown that there are 
obviously design patterns in the design procedure, especially 
within a component class. However, the occurrence of the 
patterns depends on the data set. Based on those patterns, an 
RNN architecture is trained and an accuracy of 72 % could be 
achieved for the considered component class. It is worth 
mentioning that the extracted feature sequences are not the only 
possible ones. The RNN’s output is, however, still penalized 
every time it does not correspond to next feature that was 
extracted for building up sequences out of the model tree. 
Therefore, other metrics may be helpful to better evaluate the 

Fig. 7. (a) Training and validation accuracy for different lengths of input 
sequence and (b) course of loss over training epochs. 

(a) 

(b) 

Fig. 6. (a) Histogram of similarities for adapter class and (b) obtained clusters 
based on the similarities of the model trees of the four investigated 
component classes. 

(a) 

(b) 
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RNN’s performance. It is important to note that the validation 
loss is lower in the beginning of training which is the same for 
all investigated sequence lengths. This phenomenon can be 
explained by the way the loss is calculated: while the training 
loss is computed during the training, the validation is always 
computed after each training epoch, where the net is already 
trained, hence has better performance. Furthermore, it is 
assumed that the models, on the basis of which design patterns 
are extracted and the RNN is trained, are optimal and meet all 
requirements, e.g. manufacturability and cost-effectiveness. 

5. Conclusion and Outlook 

In this paper it is shown how implicit knowledge from 
existing CAD models can be extracted and formalized using 
ML. The implicit knowledge is represented by design patterns 
which, based on the CAD model tree, represent the design 
procedure of the designer via design features. By using those 
proven patterns in the development of new product generations 
and variants, the design process can be accelerated on the one 
hand and the implicit knowledge contained therein can be 
transferred on the other. In a first investigation, it is shown for 
an exemplary data set of an industrial application partner that 
patterns do exist in the design process. Based on the extracted 
model trees in the form of sequences, a Recurrent Neural 
Network (RNN) is applied to learn patterns in order to predict 
the next design steps. In a first case study the architecture is 
used to predict the next design feature based on the previous 
design steps. In further investigations, the approach is initially 
to be extended by the prediction of corresponding 
parameterizations of the individual design features. In a next 
step not only the sequence of the design features shall serve as 
input, but also the corresponding development of the 3D 
geometry. Based on this, it is also possible to visually represent 
the next design step. 
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