
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 100 (2021) 397–402

2212-8271 © 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Design Conference 2021.
10.1016/j.procir.2021.05.093

© 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Design Conference 2021.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Design Conference 2021

31st CIRP Design Conference 2021 (CIRP Design 2021)

AI-Based knowledge extraction for automatic design
proposals using design-related patterns

Carmen Krahea,*, Maksym Kalaidova, Markus Doellkenb,
Thomas Gwoschb, Andreas Kuhnlea, Gisela Lanza a, Sven Matthiesenb

aKarlsruhe Institute of Technology, wbk Institute of Production Science, Kaiserstrasse 12, 76131 Karlsruhe, Germany
bKarlsruhe Institute of Technology, IPEK Institute of Product Engineering, Kaiserstrasse 10, 76131 Karlsruhe,

Germany

* Corresponding author. Tel.: +49-721-608-44011 ; fax: +49-721-608-45005. E-mail address: carmen.krahe@kit.edu

Abstract

Engineering competence and the digitization of all processes along the product development process are highly decisive for today’s success of
industrial companies. The design process is very individual and strongly based on design engineers’ experience. Part of this knowledge and the
result of the design approach are fixated in the existing variations of the product generations, but are difficult to extract and to formalize.
Conclusions about design-related patterns between products of different generations or variants can be drawn from the model tree representing
the design engineer's thinking process for each individual CAD model. However, the model tree has hardly been used so far. The aim of this
paper is to examine whether there exist any common design patterns between CAD models of certain component classes by the exemplary use
case in the area of mechanical engineering. To identify patterns and to extract knowledge out of complex data sets, Machine Learning (ML),
especially Deep Learning, has proven an immense capability. Finally, based on the learned patterns, meaningful next design steps are to be
proposed in the form of an assistance system. The results show that there exist common design patterns for various classes of components. It is
illustrated on an exemplary component class that those patterns can be used to train an assistance system based on Recurrent Neural Networks
(RNNs). The corresponding design patterns were extracted from data of an industrial application partner. By transferring these design patterns to
the development of new product generations or variants, on the one hand the design process itself and thus the time to market can be shortened.
On the other hand, the knowledge from previous product generations contained in those patterns can be preserved. For further research the design
patterns of CAD models extracted by ML algorithms is a contribution to faster knowledge extrapolation.

© 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Design Conference 2021
Keywords: Artificial Intelligence; Pattern Recognition; Design; Product Development

1. Introduction

Today's companies face a multitude of challenges in the area
of product development. On the one hand, increasing
individualization leads to an increasing number of variants and
thus to growing complexity. Due to shorter product life cycles
and increasing global competition, on the other hand companies
are forced to bring innovative products to the market in the
shortest possible time [1]. The so-called time-to-market is an
essential factor for the market success of a product. Product

development plays a particularly important role here, both in
terms of time and costs [1,2]. In order to maintain the market
attractiveness of a product due to innovative features or to
comply with changing specifications or standards, different
generations or variants are usually launched on the market. For
efficiency reasons, product development is therefore very often
based on reference products, such as products from previous
generations or products from competitors. According to [3], the
majority of products are developed in generations. Reliably
working components or subsystems are taken over from

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Design Conference 2021

31st CIRP Design Conference 2021 (CIRP Design 2021)

AI-Based knowledge extraction for automatic design
proposals using design-related patterns

Carmen Krahea,*, Maksym Kalaidova, Markus Doellkenb,
Thomas Gwoschb, Andreas Kuhnlea, Gisela Lanza a, Sven Matthiesenb

aKarlsruhe Institute of Technology, wbk Institute of Production Science, Kaiserstrasse 12, 76131 Karlsruhe, Germany
bKarlsruhe Institute of Technology, IPEK Institute of Product Engineering, Kaiserstrasse 10, 76131 Karlsruhe,

Germany

* Corresponding author. Tel.: +49-721-608-44011 ; fax: +49-721-608-45005. E-mail address: carmen.krahe@kit.edu

Abstract

Engineering competence and the digitization of all processes along the product development process are highly decisive for today’s success of
industrial companies. The design process is very individual and strongly based on design engineers’ experience. Part of this knowledge and the
result of the design approach are fixated in the existing variations of the product generations, but are difficult to extract and to formalize.
Conclusions about design-related patterns between products of different generations or variants can be drawn from the model tree representing
the design engineer's thinking process for each individual CAD model. However, the model tree has hardly been used so far. The aim of this
paper is to examine whether there exist any common design patterns between CAD models of certain component classes by the exemplary use
case in the area of mechanical engineering. To identify patterns and to extract knowledge out of complex data sets, Machine Learning (ML),
especially Deep Learning, has proven an immense capability. Finally, based on the learned patterns, meaningful next design steps are to be
proposed in the form of an assistance system. The results show that there exist common design patterns for various classes of components. It is
illustrated on an exemplary component class that those patterns can be used to train an assistance system based on Recurrent Neural Networks
(RNNs). The corresponding design patterns were extracted from data of an industrial application partner. By transferring these design patterns to
the development of new product generations or variants, on the one hand the design process itself and thus the time to market can be shortened.
On the other hand, the knowledge from previous product generations contained in those patterns can be preserved. For further research the design
patterns of CAD models extracted by ML algorithms is a contribution to faster knowledge extrapolation.

© 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Design Conference 2021
Keywords: Artificial Intelligence; Pattern Recognition; Design; Product Development

1. Introduction

Today's companies face a multitude of challenges in the area
of product development. On the one hand, increasing
individualization leads to an increasing number of variants and
thus to growing complexity. Due to shorter product life cycles
and increasing global competition, on the other hand companies
are forced to bring innovative products to the market in the
shortest possible time [1]. The so-called time-to-market is an
essential factor for the market success of a product. Product

development plays a particularly important role here, both in
terms of time and costs [1,2]. In order to maintain the market
attractiveness of a product due to innovative features or to
comply with changing specifications or standards, different
generations or variants are usually launched on the market. For
efficiency reasons, product development is therefore very often
based on reference products, such as products from previous
generations or products from competitors. According to [3], the
majority of products are developed in generations. Reliably
working components or subsystems are taken over from

398 Carmen Krahe et al. / Procedia CIRP 100 (2021) 397–402
2 Author name / Procedia CIRP 00 (2019) 000–000

reference products and, if necessary, adapted slightly [3]. This
reduces the development effort, possible risks with regard to
functionality and manufacturability and required investments,
e.g. investments in production facilities [3]. In many
companies, a large number of existing product models of
different generations and variants exist in the form of CAD
data, which are very similar in their basic structure and often
only differ in individual subsystems or components. Especially
the reliable components and subsystem, which have been used
for multiple product generations, contain experience
knowledge accumulated over years. What is meant by this is for
example knowledge about the relationship between
embodiment design and product functionalities,
manufacturability or economic efficiency. The problem is that
this knowledge is mostly implicit and individual [4,5] and the
manufacturing-specific knowledge is partly not sufficient [6],
so it can only be described in a rule-based manner or
sophisticated models of embodiment function relations [7] with
high effort [8,9]. Machine Learning (ML) offers an enormous
potential here to extract unknown patterns and correlations
from data and to formalize implicit knowledge.

The product development process is highly complex and
relies heavily on the individual experience of design engineers.
Nevertheless, there is a structured procedure in accordance
with VDI 2221 [10], which design engineers can use as a
guideline. The implementation of the proposed phases as well
as the choice of the methods required for this is up to the design
engineer's experience.

The idea of systematically using existing experience
knowledge of design engineers has been pursued for some time
in the field of knowledge-based engineering (KBE). KBE
systems are a combination of object-oriented programming,
artificial intelligence and CAD [11]. According to [12] such a
KBE system can capture and reuse product and process
engineering knowledge in a convenient and maintainable
manner. According to [12], the ultimate objective of KBE is the
reduction of time and costs in product development by
automating repetitive tasks that do not require the creativity of
the design engineer. However, the use of KBE systems is
limited to design tasks where knowledge can be expressed in
explicit rules [13] that must first be formalized for example by
experts for the specific application. Other approaches use
existing knowledge through design reuse or shape retrieval of
existing CAD models, e.g. [14]. The idea of Group Technology
also aims at using and modifying existing designs of a product
family to generate a new component [15].

Current approaches using ML to process 3D data are
particularly concerned with classification, e.g. [16–19] and
shape completion of 3D models, e.g. [20–23]. An overview of
advances of Deep Learning on different 3D data
representations is given in [24]. In general, the approaches
attempt to learn relevant geometric properties from the 3D
objects. The necessary design steps required to create a
corresponding model are disregarded. Nevertheless, shape
completion methods could be used to automatically complete
semi-finished components. However, these approaches are not
yet applied in the design process.

In the area of engineering, various methods have already
been tested to generate recommendations based on complete

components [25,26]. In [27] a classification and similarity
search of components is implemented on the basis of the model
tree. The existing approaches are therefore only a passive
support for the design engineer in order to give him a good
overview of already existing CAD models, for example to avoid
duplicates. The model tree on component basis as
representation for the design process of a design engineer via
design features has hardly been used so far.

Therefore, the aim of this paper is to use ML methods to
extract implicit knowledge from CAD models in the form of
design patterns, as suggested in [28], to make it usable. With
this, the design engineer is supported in designing new variants
or generations with existing knowledge and moreover the
design process is accelerated. The basis for learning the design
patterns is the model tree in CAD, which is kind of a log file
representing the conceptual approach of the design engineer
[27]. Recurrent Neural Networks (RNNs) are suitable for
processing such sequential data because they can store
information over time. The specific research questions are:

 The definition of the term design pattern as well as an
examination on the basis of a data set from the industry
whether design patterns exist at all

 Development of a deep learning-based assistance
system trained on the design patterns, which suggests
next design steps to support the design engineer in
following proven procedures, thereby avoiding errors
and speeding up the design process

 Evaluation of the developed architecture in a case study
for an industrial application using data from the area of
mechanical engineering

2. Methodology

The basic prerequisite for the application of ML is first of
all the presence of patterns in the design process. For this
purpose, the term "design pattern" is defined in chapter 2.1 and
a graph-based survey is used to check whether patterns are
present within and across different classes of components in
chapter 2.2. Next, chapter 2.3 shows how the corresponding
patterns are prepared in order to finally apply the RNN
architecture shown in chapter 2.4.

2.1. Definition of design patterns

CAD models of components in their original format are the
basis for finding design patterns. The model tree contained in
these models provides information about the design features

Datum plane

System of coordinates

Design features

.prt

Fig. 1: Exemplary model tree of a CAD model in
.prt format

 Author name / Procedia CIRP 00 (2019) 000–000 3

and their parameterisation, which the design engineer used to
create the 3D model. In Fig. 1 an exemplary model tree is
shown in the software PTC Creo®. The design features used
can be divided into five different categories, such as shape
features (e.g. extrusion), engineering features (e.g. chamfer),
editing features (e.g. pattern), datum features (e.g. datum plane)
and surfaces. Each of these defined design features also has
additional parameters, such as dimensions and tolerances.
There are different ways to create a geometrically identical
component. For example, a cylinder can be represented by
extrusion or rotation. The model trees for one and the same 3D
model are therefore not necessarily identical. Nevertheless,
typical sequences of design features can be found even between
different model trees. These feature sequences are called design
patterns.

2.2. Examination of the presence of patterns in the design
process

A prerequisite for the application of ML is the existence of
design patterns across different model trees of the considered
CAD model data base. For this investigation, the model trees
are first displayed as a graph. Each design feature forms a node
in the graph, and the corresponding dependencies are
represented via the edges. Fig. 2 shows an exemplary graph.
Parameters of the design features are not considered here. To
determine the similarities of the graphs, the Neighbourhood
Matching algorithm according to [29] is used. This compares
the graphs for structural and contextual similarities, i.e. for the
structure of the model tree and the design features used. The
final result is a matrix that reflects the similarities between the
individual model trees represented by graphs. If there are
similarities between the individual model trees, it can be
assumed that design patterns do exist.

2.3. Extraction of design patterns

To process the model trees from the CAD models with ML,
they must first be prepared accordingly. In principle, there are
two ways of representing the design process (see Fig. 3). On
the one hand, the sequence of the design features and their
parametrizations can be read out from the model considering
parent-child relationships between those features. However, it

should be noted that the order of the features does not
necessarily correspond to the order in which the designer
created them. Different extraction methods can lead to different
sequences even considering the same model tree. Hence, the
assumed model tree hierarchy is not the only possible order, but
at least one possible order. Further, the features’ parameters
(e.g. dimensions) are represented as floats, while feature types
are categorical values and first are coded as integers from “1”
to the number of unique feature types (dictionary size).
Although it is possible to use categorical values as input to the
RNN, it is common practice to transform them into float
vectors, i.e. embeddings, which can be understood as semantic
representations. Intuition behind the embeddings is that, for
example, an extrusion is semantically much closer to a
rotational body than to a cosmetic thread. This kind of
relationships between different features should help the RNN
to learn sequential feature dependencies faster and more robust.
In order to do so, an embedding layer is preconnected to the
RNN. Therefore, a linear transformation from integer values to
corresponding embeddings is learned during the training phase.

On the other hand, the geometric development of the 3D
model can be tracked via the model tree by gradually removing
features and storing the corresponding intermediate states. Not
all features, however, do result in a geometrical change. A new
geometric state is therefore only spoken of if the volume of the
3D model varies. In a next step, the corresponding intermediate
states are converted into point clouds to make them processable
for ML.

To sum up, the design process can be represented by the
sequence of encoded design features and the geometric
development of the 3D model. In order to learn patterns from

component

profile1 profile2

cut1

cut3

round1

chamfer1

geometry dimensionmaterial

Fig. 3. Representation of the design process for each design state t via a) the
sequence of the design features used and b) the corresponding geometric
development of the 3D model in form of point clouds.

a)

b)

Fig. 2. Graph based representation of the model tree.

 Carmen Krahe et al. / Procedia CIRP 100 (2021) 397–402 399
2 Author name / Procedia CIRP 00 (2019) 000–000

reference products and, if necessary, adapted slightly [3]. This
reduces the development effort, possible risks with regard to
functionality and manufacturability and required investments,
e.g. investments in production facilities [3]. In many
companies, a large number of existing product models of
different generations and variants exist in the form of CAD
data, which are very similar in their basic structure and often
only differ in individual subsystems or components. Especially
the reliable components and subsystem, which have been used
for multiple product generations, contain experience
knowledge accumulated over years. What is meant by this is for
example knowledge about the relationship between
embodiment design and product functionalities,
manufacturability or economic efficiency. The problem is that
this knowledge is mostly implicit and individual [4,5] and the
manufacturing-specific knowledge is partly not sufficient [6],
so it can only be described in a rule-based manner or
sophisticated models of embodiment function relations [7] with
high effort [8,9]. Machine Learning (ML) offers an enormous
potential here to extract unknown patterns and correlations
from data and to formalize implicit knowledge.

The product development process is highly complex and
relies heavily on the individual experience of design engineers.
Nevertheless, there is a structured procedure in accordance
with VDI 2221 [10], which design engineers can use as a
guideline. The implementation of the proposed phases as well
as the choice of the methods required for this is up to the design
engineer's experience.

The idea of systematically using existing experience
knowledge of design engineers has been pursued for some time
in the field of knowledge-based engineering (KBE). KBE
systems are a combination of object-oriented programming,
artificial intelligence and CAD [11]. According to [12] such a
KBE system can capture and reuse product and process
engineering knowledge in a convenient and maintainable
manner. According to [12], the ultimate objective of KBE is the
reduction of time and costs in product development by
automating repetitive tasks that do not require the creativity of
the design engineer. However, the use of KBE systems is
limited to design tasks where knowledge can be expressed in
explicit rules [13] that must first be formalized for example by
experts for the specific application. Other approaches use
existing knowledge through design reuse or shape retrieval of
existing CAD models, e.g. [14]. The idea of Group Technology
also aims at using and modifying existing designs of a product
family to generate a new component [15].

Current approaches using ML to process 3D data are
particularly concerned with classification, e.g. [16–19] and
shape completion of 3D models, e.g. [20–23]. An overview of
advances of Deep Learning on different 3D data
representations is given in [24]. In general, the approaches
attempt to learn relevant geometric properties from the 3D
objects. The necessary design steps required to create a
corresponding model are disregarded. Nevertheless, shape
completion methods could be used to automatically complete
semi-finished components. However, these approaches are not
yet applied in the design process.

In the area of engineering, various methods have already
been tested to generate recommendations based on complete

components [25,26]. In [27] a classification and similarity
search of components is implemented on the basis of the model
tree. The existing approaches are therefore only a passive
support for the design engineer in order to give him a good
overview of already existing CAD models, for example to avoid
duplicates. The model tree on component basis as
representation for the design process of a design engineer via
design features has hardly been used so far.

Therefore, the aim of this paper is to use ML methods to
extract implicit knowledge from CAD models in the form of
design patterns, as suggested in [28], to make it usable. With
this, the design engineer is supported in designing new variants
or generations with existing knowledge and moreover the
design process is accelerated. The basis for learning the design
patterns is the model tree in CAD, which is kind of a log file
representing the conceptual approach of the design engineer
[27]. Recurrent Neural Networks (RNNs) are suitable for
processing such sequential data because they can store
information over time. The specific research questions are:

 The definition of the term design pattern as well as an
examination on the basis of a data set from the industry
whether design patterns exist at all

 Development of a deep learning-based assistance
system trained on the design patterns, which suggests
next design steps to support the design engineer in
following proven procedures, thereby avoiding errors
and speeding up the design process

 Evaluation of the developed architecture in a case study
for an industrial application using data from the area of
mechanical engineering

2. Methodology

The basic prerequisite for the application of ML is first of
all the presence of patterns in the design process. For this
purpose, the term "design pattern" is defined in chapter 2.1 and
a graph-based survey is used to check whether patterns are
present within and across different classes of components in
chapter 2.2. Next, chapter 2.3 shows how the corresponding
patterns are prepared in order to finally apply the RNN
architecture shown in chapter 2.4.

2.1. Definition of design patterns

CAD models of components in their original format are the
basis for finding design patterns. The model tree contained in
these models provides information about the design features

Datum plane

System of coordinates

Design features

.prt

Fig. 1: Exemplary model tree of a CAD model in
.prt format

 Author name / Procedia CIRP 00 (2019) 000–000 3

and their parameterisation, which the design engineer used to
create the 3D model. In Fig. 1 an exemplary model tree is
shown in the software PTC Creo®. The design features used
can be divided into five different categories, such as shape
features (e.g. extrusion), engineering features (e.g. chamfer),
editing features (e.g. pattern), datum features (e.g. datum plane)
and surfaces. Each of these defined design features also has
additional parameters, such as dimensions and tolerances.
There are different ways to create a geometrically identical
component. For example, a cylinder can be represented by
extrusion or rotation. The model trees for one and the same 3D
model are therefore not necessarily identical. Nevertheless,
typical sequences of design features can be found even between
different model trees. These feature sequences are called design
patterns.

2.2. Examination of the presence of patterns in the design
process

A prerequisite for the application of ML is the existence of
design patterns across different model trees of the considered
CAD model data base. For this investigation, the model trees
are first displayed as a graph. Each design feature forms a node
in the graph, and the corresponding dependencies are
represented via the edges. Fig. 2 shows an exemplary graph.
Parameters of the design features are not considered here. To
determine the similarities of the graphs, the Neighbourhood
Matching algorithm according to [29] is used. This compares
the graphs for structural and contextual similarities, i.e. for the
structure of the model tree and the design features used. The
final result is a matrix that reflects the similarities between the
individual model trees represented by graphs. If there are
similarities between the individual model trees, it can be
assumed that design patterns do exist.

2.3. Extraction of design patterns

To process the model trees from the CAD models with ML,
they must first be prepared accordingly. In principle, there are
two ways of representing the design process (see Fig. 3). On
the one hand, the sequence of the design features and their
parametrizations can be read out from the model considering
parent-child relationships between those features. However, it

should be noted that the order of the features does not
necessarily correspond to the order in which the designer
created them. Different extraction methods can lead to different
sequences even considering the same model tree. Hence, the
assumed model tree hierarchy is not the only possible order, but
at least one possible order. Further, the features’ parameters
(e.g. dimensions) are represented as floats, while feature types
are categorical values and first are coded as integers from “1”
to the number of unique feature types (dictionary size).
Although it is possible to use categorical values as input to the
RNN, it is common practice to transform them into float
vectors, i.e. embeddings, which can be understood as semantic
representations. Intuition behind the embeddings is that, for
example, an extrusion is semantically much closer to a
rotational body than to a cosmetic thread. This kind of
relationships between different features should help the RNN
to learn sequential feature dependencies faster and more robust.
In order to do so, an embedding layer is preconnected to the
RNN. Therefore, a linear transformation from integer values to
corresponding embeddings is learned during the training phase.

On the other hand, the geometric development of the 3D
model can be tracked via the model tree by gradually removing
features and storing the corresponding intermediate states. Not
all features, however, do result in a geometrical change. A new
geometric state is therefore only spoken of if the volume of the
3D model varies. In a next step, the corresponding intermediate
states are converted into point clouds to make them processable
for ML.

To sum up, the design process can be represented by the
sequence of encoded design features and the geometric
development of the 3D model. In order to learn patterns from

component

profile1 profile2

cut1

cut3

round1

chamfer1

geometry dimensionmaterial

Fig. 3. Representation of the design process for each design state t via a) the
sequence of the design features used and b) the corresponding geometric
development of the 3D model in form of point clouds.

a)

b)

Fig. 2. Graph based representation of the model tree.

400 Carmen Krahe et al. / Procedia CIRP 100 (2021) 397–402
4 Author name / Procedia CIRP 00 (2019) 000–000

the resulting feature sequences, they are now divided into
shorter sequence sections. Via a sliding window sequence
sections of a given length can be created. In addition, the data
set can be significantly enlarged, since several observations can
be created from one sequence.

2.4. RNN-based architecture to predict next design steps

The aim is to use RNNs to identify patterns based on the
sequence data created in chapter 2.3 in order to suggest next
design steps. In a first step only the design feature types is
predicted. A further expansion stage then additionally
considers the dimensions of each design feature. At the highest
stage of development, next design steps should include the
corresponding design feature (e.g. extrusion) with associated
dimensioning (e.g. extrusion depth) and the visual
representation of the next component state (see Fig. 4). Besides
the sequence of design features, this approach also requires the
geometric development of the 3D model as training data basis
(see chapter 2.3). This paper considers the first two stages of
development.

In order to investigate possible sequential patterns two
approaches are tested. First, one only takes a sequence of
integers (feature types) as input, passes it through the
embedding layer and then calculates an internal state of the
RNN layer, which is the basis for the next feature prediction.
Both during training and inference the neural net gets past
features as input and has one output only (next feature
prediction). Nevertheless, it has a many-to-many architecture,
since the prediction can continue until the end of sentence
(<EOS> token) is produced as output. Hereinafter, this
architecture will be referred to as vanilla RNN.
The second approach also takes into account features’
dimensions both for input and output. Since the neural net takes
two different types on data as input (categorical integers and
float vectors), it has two separate RNN branches for each of
them. After the internal states of both RNN branches are
calculated, they are concatenated to create a single state vector.
However, since the dimension of this vector is not suitable for
either of the tasks (to predict the next feature type and the
corresponding dimensions), it is passed through two additional
separate dense layers with proper output dimensions. Although
the neural net technically creates two outputs, it still takes a
sequence of features and the corresponding dimensions as input
and can make predictions until <EOS> token is produced,
therefore it can also be understood as a many-to-many net.

Hereinafter, this type of architecture is referred to as
multivariate RNN.

3. Case Study

The architecture of the vanilla RNN introduced in chapter 0
for predicting next design steps is shown as proof of concept
using an exemplary data set from the field of mechanical
engineering. After examining the data set for the presence of
design patterns, the corresponding patterns are extracted for an
exemplary component class and the RNN is trained.

3.1. Considered data base

Within the framework of the case study, CAD models of an
industrial application partner in the field of mechanical
engineering are used, which were created with PTC Creo®
Parametric. The CAD models in .prt format come from the four
component classes flange, housing, cover and adapter.
Exemplary representatives of the classes are shown in Fig. 5.
All four classes are used to examine the design samples. The
implementation of the vanilla RNN is illustrated by the class
cover.

3.2. Investigation of design patterns

First the model trees are extracted from the CAD models of
the considered data base with the help of PTC Creo® Object
TOOLKIT Java. A short overview over the lengths of
sequences extracted from the for different component classes
is given in Table 1.

Table 1. Overview of feature types and sequence lengths.

Class Number of
unique features

Sequence lengths

min max mean std

Adapter 18 10 107 30.87 11.68

Cover 25 15 262 111.28 68.72

Flange 17 10 159 69.54 49.36

Housing 26 11 553 217.62 117.36

An overview over the distribution of these feature types and
the most frequent features from each group is represented in
Table 2 for the class of covers. The overall number of unique
features is 25.

Adapter
917

Cover
294

Flange
60

Housing
347

Fig. 5. Exemplary objects from the considered component classes and
respective number of models.

Fig. 4. General RNN architecture to predict next design steps.

 Author name / Procedia CIRP 00 (2019) 000–000 5

Table 2. Overview of distribution of feature types and most frequent features
for cover class.

Feature
type

Counts
in

dataset

Share in
dataset

[%]

Most
frequent
feature

Counts
in

dataset

Share in dataset
[%]

datum 18270 49.45 datum
plane 15004 40.61

shapes 9131 24.72 cut 7216 19.53

engin. 8344 22.59 round 5311 14.38

editing 1074 3.25 pattern 697 1.89

surfaces 125 0.34 surface 125 0.34

In a first investigation, the similarity matrix of the model
trees is calculated according to chapter 2.2 for the individual
component classes. Fig. 6 (a) shows the results for the class
adapter in form of the frequencies of the occurred similarity
values. Obviously there is an overlap for a large part of the
model trees, which suggests the existence of design patterns
within a component class. For the investigation across different
component classes, the data set is first divided into a subset
consisting of the same number of model trees from each class.
Subsequently, the similarity matrix is calculated and based on
this, a density-based clustering is performed. The results are
shown in Fig. 6 (b). Most clusters are class-compliant. Only in
two clusters there seem to be similarities also between model
trees from different component classes. It is also apparent that
there can be several design approaches in one class of building
up components. For example, the model trees of the “cover”
class have been divided into three different clusters.

3.3. Next step prediction

The architecture of the RNN presented in chapter 0 is
exemplarily tested on the component class of covers (see
chapter 3.1). For this purpose, the data set is prepared according
to chapter 2.3. In the considered investigation, only the
sequence of design features serves as input. Desired output is
the next design step in form of the next design feature. An
overview over the particular net architecture is presented in

Table 3. As for recurrent layers, sigmoid activation function is
used in all cases. No regularization is applied. Categorical cross
entropy loss function is used as an optimization objective. For
training, Adam algorithm with default TensorFlow settings is
used.

Table 3. RNN Architecture

Layer # of units Activation function

Input 25 linear

Embedding 16 linear

RNN/ LSTM 16 sigmoid

Dense 25 linear

For the training, different input sequence lengths are tested.
Fig. 7 (a) represents the achieved training and validation
accuracy for according feature sequence lengths. Obviously,
longer sequences make it easier for the net to make legit
predictions. The maximum possible input sequence length
depends on the minimal sequence length of the data set (see
Table 1). For the given dataset, the accuracy does not saturate
even by the maximum length of 15 features. Since the latter
case shows the best accuracy with about 72 %, a typical
learning curve for this training case is presented in Fig. 7 (b).

4. Discussion

For the investigated data set, it could be shown that there are
obviously design patterns in the design procedure, especially
within a component class. However, the occurrence of the
patterns depends on the data set. Based on those patterns, an
RNN architecture is trained and an accuracy of 72 % could be
achieved for the considered component class. It is worth
mentioning that the extracted feature sequences are not the only
possible ones. The RNN’s output is, however, still penalized
every time it does not correspond to next feature that was
extracted for building up sequences out of the model tree.
Therefore, other metrics may be helpful to better evaluate the

Fig. 7. (a) Training and validation accuracy for different lengths of input
sequence and (b) course of loss over training epochs.

(a)

(b)

Fig. 6. (a) Histogram of similarities for adapter class and (b) obtained clusters
based on the similarities of the model trees of the four investigated
component classes.

(a)

(b)

 Carmen Krahe et al. / Procedia CIRP 100 (2021) 397–402 401
4 Author name / Procedia CIRP 00 (2019) 000–000

the resulting feature sequences, they are now divided into
shorter sequence sections. Via a sliding window sequence
sections of a given length can be created. In addition, the data
set can be significantly enlarged, since several observations can
be created from one sequence.

2.4. RNN-based architecture to predict next design steps

The aim is to use RNNs to identify patterns based on the
sequence data created in chapter 2.3 in order to suggest next
design steps. In a first step only the design feature types is
predicted. A further expansion stage then additionally
considers the dimensions of each design feature. At the highest
stage of development, next design steps should include the
corresponding design feature (e.g. extrusion) with associated
dimensioning (e.g. extrusion depth) and the visual
representation of the next component state (see Fig. 4). Besides
the sequence of design features, this approach also requires the
geometric development of the 3D model as training data basis
(see chapter 2.3). This paper considers the first two stages of
development.

In order to investigate possible sequential patterns two
approaches are tested. First, one only takes a sequence of
integers (feature types) as input, passes it through the
embedding layer and then calculates an internal state of the
RNN layer, which is the basis for the next feature prediction.
Both during training and inference the neural net gets past
features as input and has one output only (next feature
prediction). Nevertheless, it has a many-to-many architecture,
since the prediction can continue until the end of sentence
(<EOS> token) is produced as output. Hereinafter, this
architecture will be referred to as vanilla RNN.
The second approach also takes into account features’
dimensions both for input and output. Since the neural net takes
two different types on data as input (categorical integers and
float vectors), it has two separate RNN branches for each of
them. After the internal states of both RNN branches are
calculated, they are concatenated to create a single state vector.
However, since the dimension of this vector is not suitable for
either of the tasks (to predict the next feature type and the
corresponding dimensions), it is passed through two additional
separate dense layers with proper output dimensions. Although
the neural net technically creates two outputs, it still takes a
sequence of features and the corresponding dimensions as input
and can make predictions until <EOS> token is produced,
therefore it can also be understood as a many-to-many net.

Hereinafter, this type of architecture is referred to as
multivariate RNN.

3. Case Study

The architecture of the vanilla RNN introduced in chapter 0
for predicting next design steps is shown as proof of concept
using an exemplary data set from the field of mechanical
engineering. After examining the data set for the presence of
design patterns, the corresponding patterns are extracted for an
exemplary component class and the RNN is trained.

3.1. Considered data base

Within the framework of the case study, CAD models of an
industrial application partner in the field of mechanical
engineering are used, which were created with PTC Creo®
Parametric. The CAD models in .prt format come from the four
component classes flange, housing, cover and adapter.
Exemplary representatives of the classes are shown in Fig. 5.
All four classes are used to examine the design samples. The
implementation of the vanilla RNN is illustrated by the class
cover.

3.2. Investigation of design patterns

First the model trees are extracted from the CAD models of
the considered data base with the help of PTC Creo® Object
TOOLKIT Java. A short overview over the lengths of
sequences extracted from the for different component classes
is given in Table 1.

Table 1. Overview of feature types and sequence lengths.

Class Number of
unique features

Sequence lengths

min max mean std

Adapter 18 10 107 30.87 11.68

Cover 25 15 262 111.28 68.72

Flange 17 10 159 69.54 49.36

Housing 26 11 553 217.62 117.36

An overview over the distribution of these feature types and
the most frequent features from each group is represented in
Table 2 for the class of covers. The overall number of unique
features is 25.

Adapter
917

Cover
294

Flange
60

Housing
347

Fig. 5. Exemplary objects from the considered component classes and
respective number of models.

Fig. 4. General RNN architecture to predict next design steps.

 Author name / Procedia CIRP 00 (2019) 000–000 5

Table 2. Overview of distribution of feature types and most frequent features
for cover class.

Feature
type

Counts
in

dataset

Share in
dataset

[%]

Most
frequent
feature

Counts
in

dataset

Share in dataset
[%]

datum 18270 49.45 datum
plane 15004 40.61

shapes 9131 24.72 cut 7216 19.53

engin. 8344 22.59 round 5311 14.38

editing 1074 3.25 pattern 697 1.89

surfaces 125 0.34 surface 125 0.34

In a first investigation, the similarity matrix of the model
trees is calculated according to chapter 2.2 for the individual
component classes. Fig. 6 (a) shows the results for the class
adapter in form of the frequencies of the occurred similarity
values. Obviously there is an overlap for a large part of the
model trees, which suggests the existence of design patterns
within a component class. For the investigation across different
component classes, the data set is first divided into a subset
consisting of the same number of model trees from each class.
Subsequently, the similarity matrix is calculated and based on
this, a density-based clustering is performed. The results are
shown in Fig. 6 (b). Most clusters are class-compliant. Only in
two clusters there seem to be similarities also between model
trees from different component classes. It is also apparent that
there can be several design approaches in one class of building
up components. For example, the model trees of the “cover”
class have been divided into three different clusters.

3.3. Next step prediction

The architecture of the RNN presented in chapter 0 is
exemplarily tested on the component class of covers (see
chapter 3.1). For this purpose, the data set is prepared according
to chapter 2.3. In the considered investigation, only the
sequence of design features serves as input. Desired output is
the next design step in form of the next design feature. An
overview over the particular net architecture is presented in

Table 3. As for recurrent layers, sigmoid activation function is
used in all cases. No regularization is applied. Categorical cross
entropy loss function is used as an optimization objective. For
training, Adam algorithm with default TensorFlow settings is
used.

Table 3. RNN Architecture

Layer # of units Activation function

Input 25 linear

Embedding 16 linear

RNN/ LSTM 16 sigmoid

Dense 25 linear

For the training, different input sequence lengths are tested.
Fig. 7 (a) represents the achieved training and validation
accuracy for according feature sequence lengths. Obviously,
longer sequences make it easier for the net to make legit
predictions. The maximum possible input sequence length
depends on the minimal sequence length of the data set (see
Table 1). For the given dataset, the accuracy does not saturate
even by the maximum length of 15 features. Since the latter
case shows the best accuracy with about 72 %, a typical
learning curve for this training case is presented in Fig. 7 (b).

4. Discussion

For the investigated data set, it could be shown that there are
obviously design patterns in the design procedure, especially
within a component class. However, the occurrence of the
patterns depends on the data set. Based on those patterns, an
RNN architecture is trained and an accuracy of 72 % could be
achieved for the considered component class. It is worth
mentioning that the extracted feature sequences are not the only
possible ones. The RNN’s output is, however, still penalized
every time it does not correspond to next feature that was
extracted for building up sequences out of the model tree.
Therefore, other metrics may be helpful to better evaluate the

Fig. 7. (a) Training and validation accuracy for different lengths of input
sequence and (b) course of loss over training epochs.

(a)

(b)

Fig. 6. (a) Histogram of similarities for adapter class and (b) obtained clusters
based on the similarities of the model trees of the four investigated
component classes.

(a)

(b)

402 Carmen Krahe et al. / Procedia CIRP 100 (2021) 397–402
6 Author name / Procedia CIRP 00 (2019) 000–000

RNN’s performance. It is important to note that the validation
loss is lower in the beginning of training which is the same for
all investigated sequence lengths. This phenomenon can be
explained by the way the loss is calculated: while the training
loss is computed during the training, the validation is always
computed after each training epoch, where the net is already
trained, hence has better performance. Furthermore, it is
assumed that the models, on the basis of which design patterns
are extracted and the RNN is trained, are optimal and meet all
requirements, e.g. manufacturability and cost-effectiveness.

5. Conclusion and Outlook

In this paper it is shown how implicit knowledge from
existing CAD models can be extracted and formalized using
ML. The implicit knowledge is represented by design patterns
which, based on the CAD model tree, represent the design
procedure of the designer via design features. By using those
proven patterns in the development of new product generations
and variants, the design process can be accelerated on the one
hand and the implicit knowledge contained therein can be
transferred on the other. In a first investigation, it is shown for
an exemplary data set of an industrial application partner that
patterns do exist in the design process. Based on the extracted
model trees in the form of sequences, a Recurrent Neural
Network (RNN) is applied to learn patterns in order to predict
the next design steps. In a first case study the architecture is
used to predict the next design feature based on the previous
design steps. In further investigations, the approach is initially
to be extended by the prediction of corresponding
parameterizations of the individual design features. In a next
step not only the sequence of the design features shall serve as
input, but also the corresponding development of the 3D
geometry. Based on this, it is also possible to visually represent
the next design step.

Acknowledgements

This paper was also funded by the Federal Ministry of
Education and Research (BMBF) project AIAx, Machine
Learning-driven Engineering – CAx goes AIAx (01IS18048B).

References

 [1] Fleischer, B., 2019. Methodisches Konstruieren in Ausbildung und Beruf.
Springer Fachmedien Wiesbaden, Wiesbaden.

[2] VDI, 1987. Wirtschaftliche Entscheidungen beim Konstruieren: Methoden
und Hilfen.

[3] Albers, A., Bursac, N., Wintergerst, E., 2015. Product generation
development-importance and challenges from a design research
perspective, 16 pp.

[4] Deigendesch, T., 2009. Kreativität in der Produktentwicklung und Muster
als methodisches Hilfsmittel. Creativity in Product Development and
Patterns as a Methodological Means of Support.

[5] Kirchner, E., 2020. Werkzeuge und Methoden der Produktentwicklung:
Von der Idee zum erfolgreichen Produkt, 1st ed. 2020 ed., 1Online-
Ressource (XII, 452 Seiten).

[6] Doellken, M., Zimmerer, C., Matthiesen, S., 2020. CHALLENGES
FACED BY DESIGN ENGINEERS WHEN CONSIDERING
MANUFACTURING IN DESIGN – AN INTERVIEW STUDY. Proc.
Des. Soc.: Des. Conf. 1, 837–846.

[7] Grauberger, P., Bremer, F., Sturm, C., Hoelz, K., Wessels, H., Gwosch, T.,
Wagner, R., Lanza, G., Albers, A., Matthiesen, S., 2020. QUALITATIVE
MODELLING IN EMBODIMENT DESIGN - INVESTIGATING THE
CONTACT AND CHANNEL APPROACH THROUGH ANALYSIS OF
PROJECTS. Proc. Des. Soc.: Des. Conf. 1, 897–906.

[8] Albers, A., Deigendesch, T., Turki, T., 2009. Design Patterns in
Microtechnology. DS 58-5: Proceedings of ICED 09, the 17th International
Conference on Engineering Design, Vol. 5, Design Methods and Tools (pt.
1), Palo Alto, CA, USA, 24.-27.08.2009, 385–396.

[9] Albers, A., Turki, T., 2013. Supporting design of primary shaped micro
parts and systems through provision of experience. Microsyst Technol 19
(3), 471–476.

[10] VDI, 2019. Entwicklung technischer Produkte und Systeme: Gestaltung
individueller Produktentwicklungsprozesse.

[11] La Rocca, G., 2012. Knowledge based engineering: Between AI and
CAD. Review of a language based technology to support engineering
design. Advanced Engineering Informatics 26 (2), 159–179.

[12] Cooper, D., LaRocca, G., 09182007. Knowledge-based Techniques for
Developing Engineering Applications in the 21st Century, in: 7th AIAA
ATIO Conf, 2nd CEIAT Int'l Conf on Innov and Integr in Aero
Sciences,17th LTA Systems Tech Conf; followed by 2nd TEOS Forum, p.
333.

[13] Gembarski, P.C., Li, H., Lachmayer, R., 2017. KBE-Modeling
Techniques in Standard CAD-Systems: Case Study—Autodesk Inventor
Professional, in: Bellemare, J., Carrier, S., Nielsen, K., Piller, F.T. (Eds.),
Managing Complexity, vol. 26. Springer International Publishing, Cham,
pp. 215–233.

[14] Bai, J., Gao, S., Tang, W., Liu, Y., Guo, S., 2010. Design reuse oriented
partial retrieval of CAD models. Computer-Aided Design 42 (12), 1069–
1084.

[15] Mital, A., Desai, A., Subramanian, A., Mital, A., 2014. Product
Development: A Structured Approach to Consumer Product Development,
Design, and Manufacture, 2nd ed. ed. Elsevier Science, Burlington, 539 pp.

[16] Hegde, V., Zadeh, R., 2016. FusionNet: 3D Object Classification Using
Multiple Data Representations.

[17] Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space.

[18] Simonovsky, M., Komodakis, N., 2017. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs.

[19] Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015. Multi-view
Convolutional Neural Networks for 3D Shape Recognition.

[20] Sarmad, M., Lee, H.J., Kim, Y.M., 2019. RL-GAN-Net: A Reinforcement
Learning Agent Controlled GAN Network for Real-Time Point Cloud
Shape Completion.

[21] Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S., 2019.
TopNet: Structural Point Cloud Decoder, in: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Proceedings : 16-20 June
2019, Long Beach, California, pp. 383–392.

[22] Wang, Y., Tan, D.J., Navab, N., Tombari, F., 2020. SoftPoolNet: Shape
Descriptor for Point Cloud Completion and Classification.

[23] Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W., 2020. GRNet:
Gridding Residual Network for Dense Point Cloud Completion.

[24] Ahmed, E., Saint, A., Shabayek, A.E.R., Cherenkova, K., Das, R., Gusev,
G., Aouada, D., Ottersten, B., 2019. A survey on Deep Learning Advances
on Different 3D Data Representations, 35 pp.

[25] Chaudhuri, S., Koltun, V., 2010. Data-driven suggestions for creativity
support in 3D modeling, in: ACM SIGGRAPH Asia 2010 papers on -
SIGGRAPH ASIA '10, p. 1.

[26] Jaiswal, P., Huang, J., Rai, R., 2016. Assembly-based conceptual 3D
modeling with unlabeled components using probabilistic factor graph.
Computer-Aided Design 74, 45–54.

[27] Roj, R., 2016. Eine Methode für eine automatisierte
Informationsextraktion aus großen CAD-Datenbeständen zur Bauteilsuche
und Klassifikation. Dissertation, Wuppertal.

[28] Krahe, C., Iberl, M., Jacob, A., Lanza, G., 2019. AI-based Computer
Aided Engineering for automated product design - A first approach with a
Multi-View based classification. Procedia CIRP 86, 104–109.

[29] Nikolić, M., 2012. Measuring similarity of graph nodes by neighbor
matching. IDA 16 (6), 865–878.References

