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THE TOMAS–STEIN INEQUALITY UNDER THE EFFECT OF

SYMMETRIES

RAINER MANDEL AND DIOGO OLIVEIRA E SILVA

Abstract. We prove new Fourier restriction estimates to the unit sphere S
d−1 on the

class of O(d − k) × O(k)-symmetric functions, for every d ≥ 4 and 2 ≤ k ≤ d − 2. As
an application, we establish the existence of maximizers for the endpoint Tomas–Stein
inequality within that class. Moreover, we construct examples showing that the range of
Lebesgue exponents in our estimates is sharp in the Tomas–Stein regime.

1. Introduction

The Fourier restriction conjecture predicts the validity of the estimate

(∫

Sd−1

|f̂(ω)|q dσ(ω)
) 1

q

≤ C(d, p, q)‖f‖Lp(Rd),(1.1)

as long as the dimension d ≥ 2 of the ambient Euclidean space R
d and the Lebesgue

exponents p, q ∈ [1,∞] satisfy the following conditions:

(1.2)
1

p
>

d+ 1

2d
and

d+ 1

p
+

d− 1

q
≥ d+ 1.

Integration on the left-hand side of (1.1) is with respect to the usual surface measure σ
on the unit sphere S

d−1 := {ω ∈ R
d : |ω| = 1}. The restriction conjecture has a rich

history, and is remarkable in its numerous connections and applications. It exhibits deep
links to Bochner–Riesz summation methods and to decoupling phenomena for the Fourier
transform, and is known to imply the Kakeya conjecture. Despite the great deal of attention
received by this circle of problems during the past four decades, the restriction conjecture
has been established only when d = 2 (see [14] for the non-endpoint case p′ > 3q, and
[11, 45] for the endpoint p′ = 3q) and remains an open question in dimensions d ≥ 3. For
further information on the restriction problem, we refer the interested reader to the survey
[41] and the recent account [38].

The special case q = 2 in (1.1) is well understood and of particular importance. If d ≥ 2

and 1 ≤ p ≤ 2(d+1)
d+3 , then the classical Tomas–Stein inequality [34, 42] states the existence
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of a constant C(d, p) < ∞, such that

(1.3)

(∫

Sd−1

|f̂(ω)|2 dσ(ω)
) 1

2

≤ C(d, p)‖f‖Lp(Rd),

for every f ∈ Lp(Rd). A well-known construction of Knapp (see [40]) reveals that the
range of Lebesgue exponents is sharp in this case. In particular, estimate (1.3) is of

endpoint type when p = 2(d+1)
d+3 , in the sense that it becomes false if either of the exponents

2, 2(d+1)
d+3 is increased. The Tomas–Stein inequality finds applications in harmonic analysis

and PDEs. In particular, it underlies most of the early progress towards the Fourier
restriction conjecture; see [41]. The argument is robust enough to be applied to other
manifolds, e.g. to the paraboloid, the cone, and the hyperboloid, in which case it implies the
foundational Strichartz estimates for the Schrödinger, Wave, and Klein–Gordon equations,
respectively; see [40]. Moreover, inequality (1.3) has been generalized to a variety of other
contexts, and found surprising applications ranging from fractal geometry [26] to number
theory [18], among many others.

Set pd := 2(d+1)
d+3 . The optimal Tomas–Stein constant,

Td := sup
06=f∈Lpd (Rd)

(∫
Sd−1 |f̂(ω)|2 dσ(ω)

) 1
2

‖f‖Lpd (Rd)

,

has attracted a great deal of attention in the recent literature. In the lowest dimen-

sional cases d ∈ {2, 3}, the dual exponent p′d = 2(d+1)
d−1 is an even integer, and the adjoint

Tomas–Stein inequality can be reformulated in terms of multilinear convolution operators.
Following this path, Christ–Shao [10] and Shao [33] established the precompactness of
maximizing sequences (modulo symmetries) for Td, and therefore the existence of maxi-
mizers, when d = 3 and d = 2, respectively. The exact form of the maximizers for T3 was
subsequently determined by Foschi [15] via a remarkable geometric argument, but d = 3
remains the unique dimension for which such a characterization in known. In fact, even
the mere existence of maximizers for Td is an outstanding open problem for every d ≥ 4.
Partial progress was recently obtained by Frank–Lieb–Sabin [17], who proved that if a
well-known conjecture about the optimal constant in the Strichartz inequality is true, then
maximizers for Td exist. More precisely, the main theorem in [17] states the following:
If Gaussians maximize the Strichartz inequality for the Schrödinger equation in R

d, then
maximizing sequences for Td, normalized in Lpd(Rd), are precompact in Lpd(Rd) up to
translations and, in particular, maximizers for Td exist. In remains an open problem to
turn this conditional result into an unconditional one.

1.1. Setting. Given a subgroup G ⊂ O(d) of the orthogonal group, a function f : Rd → C

is said to be G-symmetric in R
d if f ◦ A = f , for every A ∈ G. An especially interesting

situation arises when considering the subgroup Gk := O(d − k) × O(k), for some k ∈
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{0, 1, . . . , d}. In this paper, we are interested in restriction estimates to the unit sphere,

(1.4)

(∫

Sd−1

|f̂(ω)|q dσ(ω)
) 1

q

≤ C(k, d, p, q)‖f‖Lp(Rd),

which hold in the class of Gk-symmetric functions. We are led to define the Banach space

Lp
Gk

(Rd) := {f ∈ Lp(Rd) : f is Gk-symmetric}.

The cases k ∈ {0, d} correspond to radial functions on R
d. If f ∈ Lp(Rd) is radial, then f̂ is

continuous on R
d \ {0} whenever 1 ≤ p < 2d

d+1 ; see [35, Prop. 5.1]. In particular, inequality

(1.4) holds for radial functions provided 1 ≤ p < 2d
d+1 and 1 ≤ q ≤ ∞. This range

of exponents is in fact optimal, since the radially symmetric counterexample from (6.1)

reveals that the adjoint of the restriction operator fails to be bounded from Lq′(Sd−1) to

Lp′(Rd), for every 1 ≤ q ≤ ∞ and p ≥ 2d
d+1 . Thus the Lp–Lq mapping properties of the

restriction operator in the radial cases k ∈ {0, d} are completely understood. The cases
k ∈ {1, d−1} are likewise special. Since Knapp’s construction in R

d is rotationally invariant
with respect to d − 1 variables, we do not believe that G1-symmetry allows for a larger
range of Lebesgue exponents on which Fourier restriction estimates can hold. In fact,
in Remark 6.1 below we adapt Knapp’s construction to the G1-symmetric setting, thus
revealing that no estimate beyond those predicted by the restriction conjecture is possible.

1.2. Results. We focus on the situation when k ∈ {2, 3, . . . , d − 2}. Our first result
addresses the Tomas–Stein regime q = 2 in this case.

Theorem 1.1. Let d ≥ 4, k ∈ {2, 3, . . . , d−2}, and m := min{d−k, k}. Then the estimate

(1.5)

(∫

Sd−1

|f̂(ω)|2 dσ(ω)
) 1

2

≤ C(k, d, p)‖f‖Lp(Rd)

holds for every Gk-symmetric function f : Rd → C if 1 ≤ p ≤ 2(d+m)
d+m+2 .

Given that 2(d+m)
d+m+2 is strictly larger than the Tomas–Stein exponent pd = 2(d+1)

d+3 , The-

orem 1.1 improves upon (1.3). To the best of our knowledge, this result is new in every
dimension d ≥ 4. As an application of Theorem 1.1, we establish the precompactness of
maximizing sequences for the constrained optimization problem

Td,k := sup
06=f∈Lpd

Gk
(Rd)

(∫
Sd−1 |f̂(ω)|2 dσ(ω)

) 1
2

‖f‖Lpd (Rd)

,

and consequently the unconditional existence of maximizers for Td,k. This is the content
of our second result.

Theorem 1.2. Let d ≥ 4 and k ∈ {2, 3, . . . , d − 2}. Maximizing sequences for Td,k,

normalized in Lpd(Rd), are precompact in Lpd
Gk

(Rd). In particular, maximizers for Td,k

exist.
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In particular, the set of all normalized maximizers for Td,k is itself compact. We remark
that, in contrast to the conclusion of [17, Theorem 1.1], precompactness of complex-valued
maximizing sequences is not expected to hold modulo symmetries only, since Gk-symmetry
eliminates the loss of compactness due to translations. There is still the danger that a
maximizing sequence might conceivably converge weakly to zero. To show that this is
not the case, the proof of Theorem 1.2 will make use of a decay property of the Fourier
transform which is only available in the Gk-symmetric setting for 2 ≤ k ≤ d − 2; see
Proposition 2.4 and Corollary 2.5 below.

The range of exponents of Theorem 1.1 turns out to be optimal. This is a consequence of
our third result, which exhibits the necessary conditions for the restriction estimate (1.4)
to hold within the class of Gk-symmetric functions.

Theorem 1.3. Let d ≥ 4, k ∈ {2, 3, . . . , d− 2}, m := min{d− k, k}, and 1 ≤ p, q ≤ ∞. If

inequality (1.4) holds within the class of Gk-symmetric functions, then one of the following

conditions is satisfied:

(i) d+1
2d < 1

p < m+1
2m and d+m

p + d−m
q ≥ d+ 1;

(ii) 1
p = m+1

2m and 1
p + 1

q > 1;

(iii) 1
p > m+1

2m and 1
p + 1

q ≥ 1.

We shall see in Corollary 1.5 that the necessary conditions from (i) are sufficient when
d+m+2
2(d+m) ≤ 1

p < m+1
2m . For larger values of p, the sufficiency of these conditions remains an

open problem. On the other hand, conditions (ii) and (iii) turn out to be sufficient for
estimate (1.4) to hold in the Gk-symmetric setting. The crux of the matter is a Lorentz
space estimate at the endpoint p = q′ = 2m

m+1 , which is the content of our fourth result.

Theorem 1.4. Let d ≥ 4, k ∈ {2, 3, . . . , d−2}, and m := min{d−k, k}. Then the estimate

‖f̂‖
L

2m
m−1 ,∞

(Sd−1)
≤ C(k, d)‖f‖

L
2m
m+1 ,1

(Rd)

holds for every Gk-symmetric function f : Rd → C.

Compactness of Sd−1 and real interpolation [5, § 5.3] between Theorem 1.1, Theorem 1.4,
and the trivial endpoint (p, q) = (1,∞) together imply a range of estimates which we now
record; see Figure 1 for the corresponding Riesz diagram.

Corollary 1.5. Let d ≥ 4, k ∈ {2, 3, . . . , d − 2}, and m := min{d − k, k}. Then inequal-

ity (1.4) holds in the class of Gk-symmetric functions if one of the following conditions is

satisfied:

(i) d+m+2
2(d+m) ≤ 1

p < m+1
2m and d+m

p + d−m
q ≥ d+ 1;

(ii) 1
p = m+1

2m and 1
p + 1

q > 1;

(iii) 1
p > m+1

2m and 1
p + 1

q ≥ 1.

As a concluding remark, note that Corollary 1.5 (i) implies the diagonal estimate

(1.6) ‖f̂‖Lp(Sd−1) . ‖f‖Lp(Rd)
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at p = 2(d+m)
d+m+2 , for every Gk-symmetric f : R

d → C. In this case, if m = k = ⌊d2⌋,
then p′ = 2 + 8

3d
−1 + O(d−2). That (1.6) holds for general f ∈ Lp(Rd) in the range

p′ > 2+ 8
3d

−1 +O(d−2) was recently proved by Guth [19], and later improved in [20]. This
remains to date the state of the art in the high-dimensional restriction conjecture.

1
p

1
q

1

0 1

m−1
2m

d+1
2d

d+3
2d+2

m+1
2m

1
2

d+1
2d

Tomas–Stein

Theorem 1.1

Theorem 1.4

d+m+2
2(d+m)

restriction
conjecture

Figure 1. Riesz diagram for theGk-symmetric restriction problem to Sd−1.
Estimates in the orange region follow from the Tomas–Stein inequality, esti-
mates in the yellow region follow from Corollary 1.5, and in light of Theorem
1.3 no estimates are possible within the grey region. The possibility of es-
timates in the red region remains an open problem.

1.3. Historical remarks. The expectation that further Fourier restriction estimates are
available within certain classes of functions exhibiting additional symmetries has been
extensively explored in the literature. For instance, the well-known fact that the restriction
conjecture holds for radial functions has been generalized to the class of products of radial
functions and spherical harmonics [12]. On the paraboloid and the cone, the restriction
conjecture has been established for functions which are invariant under spatial rotations,
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and further estimates are known to hold in the cylindrically symmetric case, but only for
dyadically supported functions; see [31, 32]. This was later generalized to the mixed norm
setting; see [24, 25]. Very recently, the Gk-symmetric setting has been proposed in [44],
albeit in the context of adjoint restriction estimates on the unit sphere involving weight
functions supported on sets of the form {(y, z) ∈ R

d−k × R
k : |y| ≤ C|z|−α} for some

C,α > 0. With the present work, we also aim to initiate a systematic exploration of the
more general O(k1)× . . .×O(kn)-symmetric restriction problem to S

d−1, with
∑n

j=1 kj = d.
This so-called block-radial symmetry has been extensively explored in the related context
of Sobolev space embeddings, starting with the pioneering work of Lions [22].

Sharp Fourier Restriction Theory is a vibrant area of research which has flourished in
the last decade. A natural first step towards sharp restriction inequalities is to establish
the existence of maximizers. This provides a stepping stone towards a qualitative analysis,
the discovery of explicit maximizers, and the corresponding full characterization (which up
to now is only available in very special circumstances). Works addressing the existence of
maximizers for inequalities of endpoint Fourier restriction type tend to be a tour de force in
classical analysis, using a variety of sophisticated techniques. Besides the aforementioned
precompactness results on the unit sphere [10, 17, 33], we highlight the general method
developed in [13] together with the (unconditional) existence results on the paraboloid
[4, 39], the cone [28, 30], the hyperboloid [8, 9, 29], and the moment curve [6]. For a
more comprehensive discussion and further references, we refer the interested reader to the
survey [16].

1.4. Structure of the paper. In § 2, we discuss some analytic preliminaries, centered
around the interplay between Gk-symmetry and the Fourier transform. We also investigate
a useful family of oscillatory integrals, and establish weighted versions of the classical
inequalities of Hausdorff–Young and Hardy–Littlewood–Sobolev. In § 3, we prove the
weighted restriction estimates that will play a central role in the proof of Theorem 1.1,
which is then the subject of § 4. Theorems 1.2, 1.3, 1.4 are proved in § 5, § 6, § 7,
respectively.

1.5. Forthcoming notation. We reserve the letter d to denote the dimension of the
ambient space R

d. Given a Lebesgue exponent p ∈ [1,∞], its dual is p′ = p/(p − 1). The
usual Lebesgue and Lorentz spaces are denoted by Lp(Rd) and Lp,s(Rd), respectively, and
the corresponding (quasi-)norms are indexed accordingly. The Schwartz space is denoted
by S(Rd). The Fourier transform on R

d is normalized in the following way:

f̂(ξ) =

∫

Rd

f(x)e−iξ·x dx.

The indicator function of a set E ⊂ R
d is denoted by 1E, and its Lebesgue measure by

|E|. The usual surface measure on S
d−1 is denoted by σ, and its surface area is given by

σ(Sd−1) =
∫
Sd−1 dσ(ω) = 2π

d
2Γ(d2 )

−1. We shall write

‖F‖p
Lp(Sd−1)

=

∫

Sd−1

|F (ω)|p dσ(ω).
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Finally, we use the shorthand notation X . Y , Y & X, X = O(Y ) to denote the estimate
|X| ≤ CY for some positive constant C which is only allowed to depend on the space
dimension d, the symmetry index k, and possibly some other fixed parameters. We also
write X ≃ Y for X . Y . X.

2. Preliminaries

In this section, we discuss some analytic preliminaries related to duality, Bessel func-
tions, Gk-symmetry, oscillatory integrals, and present weighted variants of the classical
inequalities of Hausdorff–Young and Hardy–Littlewood–Sobolev.

2.1. Duality. The adjoint of the restriction operator to the unit sphere, R : Lp(Rd) →
Lq(Sd−1), f 7→ f̂ |Sd−1 , is the extension operator, R∗ : Lq′(Sd−1) → Lp′(Rd), F 7→ F̂ σ,
defined at x ∈ R

d via the expression

(2.1) F̂ σ(x) :=

∫

Sd−1

F (ω)eix·ω dσ(ω).

In particular, if F ≡ 1, then

(2.2) σ̂(x) = (2π)
d
2 |x| 2−d

2 J d−2
2
(|x|),

where Jν denotes the Bessel function of the first kind; this is a special case of the so-called
Bochner–Hecke formula (see [34, p. 347]). From the classical asymptotic formulae for Bessel
functions, see (2.4)–(2.5) below, or via a direct stationary phase argument, one has that

(2.3) |σ̂(x)| = O((1 + |x|) 1−d
2 );

see [34, p. 348]. Estimate (2.3) is a manifestation of the well-known fact that curvature
causes the Fourier transform to decay.

In this dual setting, a function F : Sd−1 → C is said to be Gk-symmetric on S
d−1 if

F ◦A = F , for every A ∈ Gk. In particular, a set S ⊂ S
d−1 will be called Gk-symmetric if

its indicator function 1S is Gk-symmetric, and similarly for subsets E ⊂ R
d.

2.2. Bessel functions. In view of identity (2.2), the Bessel function

Jν(r) :=

∞∑

j=0

(−1)j(12r)
2j+ν

j!Γ(ν + j + 1)

is expected to play a role in the analysis. Only ν, r ≥ 0 will be of interest. As is well-known,
for any fixed ν ≥ 0, one has that

(2.4) Jν(r) =
(πr

2

)− 1
2
cos
(
r − νπ

2
− π

4

)
+O(r−

3
2 ), as r → ∞;

(2.5) |Jν(r)| ≤
rν

2νΓ(ν + 1)
, for all r ≥ 0;

see [34, pp. 356–357] and [43, pp. 48–49]. From (2.4)–(2.5), it is natural to expect the
following result.
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Lemma 2.1. Let ν ≥ 0. There exist a constant Aν ∈ C\{0} and a function Rν : (0,∞) →
C, such that

(2.6) Jν(r) = (Aνe
ir +Aνe

−ir)r−
1
2
1[1,∞)(r) +Rν(r),

where additionally |Rν(r)| . rν(1 + r)−ν− 3
2 , for every r ≥ 0.

Proof. Let Aν := ( 2π )
1
2 e−i( νπ

2
+π

4
), and define the function Rν via identity (2.6) above. Then

the desired estimate for Rν follows from [43, p. 201]. �

2.3. Gk-symmetry. Given a Gk-symmetric function f : R
d → C, we shall define f0 :

(0,∞)2 → C via f0(|y|, |z|) := f(y, z), for (y, z) ∈ R
d−k×R

k, and denote the corresponding
Fourier variables by (η, ζ) ∈ R

d−k × R
k.

A function is radial if and only if its Fourier transform is radial. This well-known fact
admits the following straightforward generalization: Gk-symmetry is preserved under the
Fourier transform. Indeed, identity (2.2) implies the following result.

Lemma 2.2. Let f ∈ S(Rd) be Gk-symmetric, and set f0(|y|, |z|) := f(y, z). Then the

following identity holds at every (η, ζ) ∈ R
d−k × R

k :

f̂(η, ζ) = (2π)
d
2 |η| 2−d+k

2 |ζ| 2−k
2

∫ ∞

0

∫ ∞

0
ρ

d−k
2

1 ρ
k
2
2 f0(ρ1, ρ2)J d−k−2

2
(ρ1|η|)Jk−2

2
(ρ2|ζ|) dρ1 dρ2.

Proof. This follows from an explicit computation in polar coordinates and theGk-invariance
of f . Indeed, introducing coordinates (ρ1, ω1) in R

d−k and (ρ2, ω2) in R
k, we find that

f̂(η, ζ) =

∫ ∞

0

∫ ∞

0
ρd−k−1
1 ρk−1

2 f0(ρ1, ρ2)

×
(∫

Sd−k−1

e−iω1·ρ1η dσ(ω1)

)(∫

Sk−1

e−iω2·ρ2ζ dσ(ω2)

)
dρ2 dρ1.

The antipodal change of variables (ω1, ω2) −(ω1, ω2) then reduces the claim to identity
(2.2). The proof is complete. �

We will need to integrate Gk-symmetric functions in R
d over the unit sphere. The next

result provides the corresponding formula.

Lemma 2.3. Let f : Rd → C be Gk-symmetric and integrable on S
d−1, and set f0(|η|, |ζ|) :=

f(η, ζ). Then the following identity holds:

∫

Sd−1

f(η, ζ) dσ(η, ζ) =
σ(Sd−k−1)σ(Sk−1)

σ(Sd−1)

∫ 1

0
rd−k−1(1− r2)

k−2
2 f0(r,

√
1− r2) dr.

Proof. This follows from slice integration [1, Theorem A.4] and the Gk-invariance of f . �

As far as pointwise bounds for the extension operator of a Gk-symmetric function on
S
d−1 are concerned, we have the following result.
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Proposition 2.4. There exists C = Ck,d < ∞ with the following property. Let F ∈
L2(Sd−1) be Gk-symmetric. Then the pointwise bound

(2.7) |F̂ σ(y, z)| ≤ Ck,d‖F‖L2(Sd−1)(1 + |y|)k+1−d
2 (1 + |z|) 1−k

2

holds for every (y, z) ∈ R
d−k × R

k.

Proof. Let F ∈ L2(Sd−1) be Gk-symmetric and given. Start by noting that the function

F̂ σ is real-analytic since it is the Fourier transform of a compactly supported distribution.
Set F0(r) := F (rω,

√
1− r2ν) for r ∈ [0, 1], ω ∈ S

d−k−1, ν ∈ S
k−1; see [1, p. 241]. Since F

is integrable on S
d−1, we can appeal to the slice integration formula from [1, Theorem A.4]

to conclude, via a passage to polar coordinates, that

F̂ σ(y, z) ≃
∫ 1

0
rd−k−1(1− r2)

k−2
2 F0(r)

(∫

Sd−k−1

eiy·rω dσ(ω)

)(∫

Sk−1

eiz·
√
1−r2ν dσ(ν)

)
dr;

note that the implicit constant depends only on k, d. The Cauchy–Schwarz inequality,
Lemma 2.3, and estimate (2.3) together imply

|F̂ σ(y, z)|2 . ‖F‖2L2(Sd−1)

∫ 1

0
rd−k−1(1− r2)

k−2
2 (1 + r|y|)k+1−d(1 +

√
1− r2|z|)1−k dr.

The pointwise bound (2.7) follows from this via another application of the Cauchy–Schwartz
inequality together with elementary considerations in both regimes |y| ≤ 1, |y| > 1 sepa-
rately, and similarly for z. This concludes the proof of the proposition. �

For the purposes of the upcoming analysis in § 5, we will be interested in the following
straightforward consequence of Proposition 2.4 which, in the language of concentration
compactness theory [23], will preclude vanishing (i.e. mass sent to infinity) of maximizing
sequences.

Corollary 2.5. If d ≥ 4 and k ∈ {2, 3, . . . , d − 2}, then for every ε > 0, there exists

R = R(k, d, ε) < ∞ for which |F̂ σ(x)| < ε if |x| > R, for every Gk-symmetric F ∈ L2(Sd−1)
such that ‖F‖L2(Sd−1) = 1.

Remark 2.6. That no such property can hold for general F ∈ L2(Sd−1) follows at once
from the fact that the extension operator intertwines modulation and translation:

R∗(eiy·F )(x) =

∫

Sd−1

eiy·ωF (ω)eix·ω dσ(ω) =

∫

Sd−1

F (ω)ei(x+y)·ω dσ(ω) = R∗(F )(x+ y).

Indeed, if a nonzero function F and its modulation eiy·F are both Gk-symmetric on S
d−1,

then necessarily y = 0.

2.4. Oscillatory integrals. We will use the following simple bound on a certain class of
oscillatory integrals.
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Lemma 2.7. Let 0 < γ 6= 1. Then there exists a constant C = Cγ < ∞ such that, for

every a ≥ 1 and λ ∈ [−2, 2] \ {0}, the following inequality holds:
∣∣∣∣
∫ ∞

a
r−γeiλr dr

∣∣∣∣ ≤ C

{
|λ|γ−1, if 0 < γ < 1,

a1−γ , if γ > 1.

Proof. No generality is lost in assuming that λ ∈ (0, 2]. Changing variables λr = ρ,
∫ ∞

a
r−γeiλr dr = λγ−1

∫ ∞

λa
ρ−γeiρ dρ,

we see that the desired conclusion follows from

sup
R>0

∣∣∣∣
∫ ∞

R
ρ−γeiρ dρ

∣∣∣∣ < ∞ if 0 < γ < 1, sup
R>0

Rγ−1

∣∣∣∣
∫ ∞

R
ρ−γeiρ dρ

∣∣∣∣ < ∞ if γ > 1.

The first estimate follows from integration by parts, and the second estimate follows even
more simply from an application of the triangle inequality. �

2.5. Weighted Hausdorff–Young Inequality. While Lemma 2.8 below is clearly related
to Pitt’s inequality (also known as Hardy’s inequality; see [2, 3]), we choose to present a
self-contained, short proof of the special one-dimensional case which will be directly rele-

vant to our analysis. For convenience, set F(f) := f̂ .

Lemma 2.8. Let 1 < p ≤ 2 ≤ q < ∞, and δ := 1− 1
p − 1

q . If 0 ≤ δ < 1, then the estimate

‖F(f | · |−δ)‖Lq(R) ≤ C(p, q)‖f‖Lp(R)

holds for every f ∈ Lp(R).

Proof. If δ = 0, then the result amounts to the Hausdorff–Young inequality. If δ ∈ (0, 1),
then we have that

‖F(f | · |−δ)‖Lq(R) = ‖f̂ ∗ F(| · |−δ)‖Lq(R) ≃ ‖f̂ ∗ (| · |−(1−δ))‖Lq(R) . ‖f̂‖Lp′ (R) . ‖f‖Lp(R).

This chain of estimates results from consecutive applications of the Hardy–Littlewood–
Sobolev [34, p. 354] and the Hausdorff–Young inequalities. �

2.6. Weighted Hardy–Littlewood–Sobolev Inequality. Our analysis will rely on the
Lp–Lq mapping properties of the following family of integral operators, indexed by a, b ∈ R

and acting on functions f : R+ := [0,∞) → C via

Ta,b(f)(x) := x−a

∫

y≤x
y−bf(y) dy.

Lemma 2.9. Let 1 < p ≤ q < ∞ and a, b ∈ R. Then Ta,b : Lp(R+) → Lq(R+) is bounded

if bp′ < 1 and 1
p′ +

1
q = a+ b.

Proof. For any x ≥ 0, from Hölder’s inequality it follows that

|Ta,b(f)(x)| ≤ x−a

(∫ x

0
y−bp′ dy

) 1
p′

‖f‖Lp(R+) ≃ x
1
p′
−a−b‖f‖Lp(R+),
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where the implicit constant is finite as long as bp′ < 1. This implies

‖Ta,b(f)‖Lq,∞(R+) .
∥∥∥(·)

1
p′
−a−b

∥∥∥
Lq,∞(R+)

‖f‖Lp(R+),

where the first term on the right-hand side is finite precisely when 1
p′ +

1
q = a + b. To

conclude, note that the claimed strong-type estimate for 1 < p ≤ q < ∞ follows from the
Marcinkiewicz interpolation theorem [5, p. 9] applied to the bounds Lp(R+) → Lq,∞(R+)
with (1p ,

1
q ) ∈ {(1−max{b, 0}− δ, a+min{b, 0}− δ), (1−a− b+ δ, δ)}, for sufficiently small

enough δ > 0. Indeed, all exponents 1 < p ≤ q < ∞ satisfying bp′ < 1 and 1
p′ +

1
q = a+ b

are covered by this interpolation procedure since 0 < a+ b ≤ 1. This finishes the proof of
the lemma. �

Given ℓ ∈ (0,∞) and certain a, b ∈ R, the need will arise to consider the following related
family of integral operators, acting on functions f : [0, ℓ] → C via:

Sa,b(f)(x) := x−a

∫

y≤x
(x− y)−bf(y) dy.(2.8)

Useful1 estimates for Sa,b follow from the Stein–Weiss inequality [36], which extends the
Hardy–Littlewood–Sobolev inequality for fractional integrals.

Lemma 2.10. Let ℓ ∈ (0,∞), 1 < p ≤ q < ∞, a ≥ 0, and 0 < b < 1. Then Sa,b :

Lp([0, ℓ]) → Lq([0, ℓ]) is bounded if 1
p′ +

1
q ≥ a+ b.

Remark 2.11. In the endpoint case 1
p′ +

1
q = a + b, the assumption p ≤ q is in fact

necessary for the Lp–Lq boundedness of Sa,b. Indeed, if p > q, then let 0 < ε < p
q − 1 and

fε(x) := x−
1
p | log(x)|−

1+ε
p
1[0, 1

2
](x).

It is easy to check that fε ∈ Lp([0, 1]), but that |Sa,b(fε)(x)| & x
1
p′
−a−b| log(x)|−

1+ε
p for all

sufficiently small x > 0. In particular, Sa,b(fε) /∈ Lq([0, 1]) in view of our choice of ε.

Proof of Lemma 2.10. For every 0 ≤ x ≤ ℓ, we have

|Sa,b(f)(x)| ≤ |x|−δa

∫

R

|x− y|−b|y|−(1−δ)a|(f 1[0,ℓ])(y)|dy,

as long as 0 < δ < 1. The hypotheses make it possible to choose δ ∈ (0, 1) and exponents
p̃, q̃ satisfying 1 < p̃ ≤ p ≤ q ≤ q̃ < ∞, in such a way that

1

p̃′
> (1− δ)a,

1

q̃
> δa,

1

p̃′
+

1

q̃
= δa+ b+ (1− δ)a.

From the Stein–Weiss inequality [36, Theorem B∗
1 ], it then follows that ‖Sa,b(f)‖Lq̃(R) .

‖f 1[0,ℓ]‖Lp̃(R), which implies the desired conclusion via the inclusion of Lebesgue spaces on
bounded intervals since p̃ ≤ p and q ≤ q̃. This concludes the proof of the lemma. �

1Albeit non-optimal. We omit trivial improvements of Lemma 2.10 (obtainable e.g. via Hölder’s inequal-
ity) which are not directly relevant to the forthcoming analysis.
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In the course of the proof of Proposition 3.1 below, we will also invoke bounds for the
adjoint of the operator Sa,b, whose form we record here:

(2.9) S∗
a,b(g)(y) :=

∫

x≥y
(x− y)−bx−ag(x) dx.

Naturally, S∗
a,b : L

q′([0, ℓ]) → Lp′([0, ℓ]) if and only if Sa,b : L
p([0, ℓ]) → Lq([0, ℓ]).

3. Weighted 2D Restriction-type estimates

In this section, we analyze the Lp(R2)–Lq(S1) mapping properties of the operator Rα,β,
defined as follows:

(3.1) Rα,β(g)(ω) :=

∫

R2

g(x)1|ω1||x1|≥11|ω2||x2|≥1(1 + |x1|)−α(1 + |x2|)−βe−ix·(|ω1|,|ω2|) dx;

here α, β > 0, ω = (ω1, ω2) ∈ S
1, and x = (x1, x2) ∈ R

1+1. We highlight the role of the
indicator functions in the integrand of (3.1). Without them, the resulting operator would
have similar, but not identical, mapping properties to that of Rα,β, which by themselves
do not appear sufficient to prove Theorem 1.1. Considering the adjoint operator,

R∗
α,β(F )(x) = (1 + |x1|)−α(1 + |x2|)−β

∫

S1

F (ω)1|ω1||x1|≥11|ω2||x2|≥1e
ix·(|ω1|,|ω2|) dσ(ω),

we investigate the Lq′(S1)–Lp′(R2) boundedness of R∗
α,β, and start with the important

special case when p′ = p = 2. The main tool is the oscillatory integral estimate from
Lemma 2.7 which together with elementary considerations place us in the setting of the
weighted Hardy–Littlewood–Sobolev inequality, Lemma 2.10.

Proposition 3.1. Let 2 ≤ q < ∞ and α, β > 0 be such that 1
2 < α + β < 1. Then

R∗
α,β : Lq′(S1) → L2(R2) is bounded if α+ β +min{α, β} ≥ 3

2 − 1
q .

Proof. By symmetry, we may assume that α ≥ β, and by interpolation, that α, β /∈ {1
2}.

We can further assume that F ∈ Lq′(S1) is supported in the region {ω ∈ S
1 : ω1, ω2 ≥ 0},

since the other contributions can be estimated in a similar way. For such F , set F⋆(φ) :=
F (cosφ, sin φ), and compute:

‖R∗
α,β(F )‖2L2(R2) =

∫ π
2

0

∫ π
2

0
F⋆(ϕ)F⋆(φ)

(∫

min{cos(φ),cos(ϕ)}|x1|≥1
(1 + |x1|)−2αeix1(cosφ−cosϕ) dx1

)

×
(∫

min{sin(φ),sin(ϕ)}|x2|≥1
(1 + |x2|)−2βeix2(sinφ−sinϕ) dx2

)
dφdϕ

= 2

3∑

j=1

∫

(ϕ,φ)∈Ij
|F⋆(ϕ)||F⋆(φ)|

∣∣∣∣∣

∫

|x1|≥cos(ϕ)−1

(1 + |x1|)−2αeix1(cos φ−cosϕ) dx1

∣∣∣∣∣

×
∣∣∣∣∣

∫

|x2|≥sin(φ)−1

(1 + |x2|)−2βeix2(sinφ−sinϕ) dx2

∣∣∣∣∣ dφdϕ,
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where the regions {Ij}3j=1 ⊂ [0, π2 ]
2 are defined as follows:

I1 :=
{
0 ≤ ϕ ≤ π

4
, 0 ≤ φ ≤ ϕ

}
,

I2 :=
{π
4
≤ ϕ ≤ π

2
, 0 ≤ φ ≤ π

8

}
,

I3 :=
{π
4
≤ ϕ ≤ π

2
,
π

8
≤ φ ≤ ϕ

}
.

All the resulting oscillatory integrals will be estimated via Lemma 2.7. The ones over
the region I2 are easy to handle since | cosφ− cosϕ|, | sin φ− sinϕ| ≥ c, for some c > 0 and
every (ϕ, φ) ∈ I2. Therefore the contribution from I2 is bounded by a constant multiple of
‖F‖2L1(S1) = O(‖F‖2

Lq′ (S1)
).

To estimate the integrals over the regions I1, I3, we make use of the following lower
bounds, valid for some c > 0 and every 0 ≤ φ ≤ ϕ ≤ π

2 :

| cosϕ− cosφ| ≥ cos

(
ϕ+ φ

2

)
− cosϕ ≥ ϕ− φ

2
sin

(
ϕ+ φ

2

)

≥ c
ϕ− φ

2

ϕ+ φ

2
≥ c

4
(ϕ− φ)ϕ,

| sinϕ− sinφ| ≥ c

4
(ϕ− φ)

(π
2
− φ

)
.

(3.2)

Similarly, for some C < ∞ and every 0 ≤ φ ≤ ϕ ≤ π
2 , we have that:

| cosϕ− cosφ| ≤ C(ϕ− φ)ϕ, | sinϕ− sinφ| ≤ C(ϕ− φ)
(π
2
− φ

)
.(3.3)

Analysis on I1: If 0 < α, β < 1
2 , then Lemma 2.7 and the bounds (3.2) together imply:

∫

(ϕ,φ)∈I1
|F⋆(ϕ)||F⋆(φ)|

∣∣∣∣∣

∫

|x1|≥cos(ϕ)−1

(1 + |x1|)−2αeix1(cos φ−cosϕ) dx1

∣∣∣∣∣

×
∣∣∣∣∣

∫

|x2|≥sin(φ)−1

(1 + |x2|)−2βeix2(sinφ−sinϕ) dx2

∣∣∣∣∣ dφdϕ

.

∫

(φ,ϕ)∈I1
|F⋆(ϕ)||F⋆(φ)|| cos φ− cosϕ|2α−1| sinφ− sinϕ|2β−1 dφdϕ

.

∫

(φ,ϕ)∈I1
|F⋆(ϕ)||F⋆(φ)||ϕ(ϕ − φ)|2α−1

∣∣∣
(π
2
− φ

)
(ϕ− φ)

∣∣∣
2β−1

dφdϕ

.

∫ π
4

0
|F⋆(ϕ)|

(
|ϕ|2α−1

∫ ϕ

0
|F⋆(φ)||ϕ − φ|2α+2β−2 dφ

)
dϕ,(3.4)

where we have used that (π2 − φ)2β−1 . 1 since 0 ≤ φ ≤ π
4 . Setting (a, b) := (1 − 2α, 2 −

2α − 2β), we have a ≥ 0, 0 < b < 1 and a + b ≤ 2
q . Therefore definition (2.8), Hölder’s
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inequality, and Lemma 2.10 (which can be applied since q ≥ 2 and thus q ≥ q′) together
imply that (3.4) is bounded by
∫ π

4

0
|F⋆(ϕ)|Sa,b(|F⋆|)(ϕ) dϕ ≤ ‖F⋆‖Lq′ ([0,π

4
])‖Sa,b(|F⋆|)‖Lq([0,π

4
]) . ‖F⋆‖2Lq′ ([0,π

4
])
≤ ‖F‖2

Lq′ (S1)
.

If 0 < β < 1
2 < α, then Lemma 2.7 and estimates (3.2)–(3.3) together imply:

∫

(ϕ,φ)∈I1
|F⋆(ϕ)||F⋆(φ)|

∣∣∣∣∣

∫

|x1|≥cos(ϕ)−1

(1 + |x1|)−2αeix1(cos φ−cosϕ) dx1

∣∣∣∣∣

×
∣∣∣∣∣

∫

|x2|≥sin(φ)−1

(1 + |x2|)−2βeix2(sinφ−sinϕ) dx2

∣∣∣∣∣ dφdϕ

.

∫

(φ,ϕ)∈I1
|F⋆(ϕ)||F⋆(φ)|| cos φ|2α−1| sinφ− sinϕ|2β−1 dφdϕ

.

∫

(φ,ϕ)∈I1
|F⋆(ϕ)||F⋆(φ)|

(π
2
− φ

)2α−1 ∣∣∣
(π
2
− φ

)
(ϕ− φ)

∣∣∣
2β−1

dφdϕ

.

∫ π
4

0
|F⋆(ϕ)|

(∫ φ

0
|F⋆(ϕ)||ϕ − φ|2β−1 dφ

)
dϕ.(3.5)

Setting (a, b) := (0, 1 − 2β), we have a ≥ 0, 0 < b < 1, and a + b ≤ 2
q ; indeed, setting

γ := α+ β +min{α, β}, it follows that
2

q
− a− b ≥ 3− 2γ − (1− 2β) = 2− 2(α+ β) ≥ 0.

Lemma 2.10 again implies that the integral (3.5) is O(‖F‖2
Lq′ (S1)

).

Analysis on I3: If 0 < α, β < 1
2 , then Lemma 2.7, the bounds (3.2), and the change of

variables (π2 − ϕ, φ) (ϕ, π2 − φ) together yield

∫

(ϕ,φ)∈I3
|F⋆(ϕ)||F⋆(φ)|

∣∣∣∣∣

∫

|x1|≥cos(ϕ)−1

(1 + |x1|)−2αeix1(cos φ−cosϕ) dx1

∣∣∣∣∣

×
∣∣∣∣∣

∫

|x2|≥sin(φ)−1

(1 + |x2|)−2βeix2(sinφ−sinϕ) dx2

∣∣∣∣∣ dφdϕ

.

∫ π
2

π
4

|F⋆(ϕ)|
(∫ ϕ

π
8

(ϕ− φ)2α+2β−2
(π
2
− φ

)2β−1
|F⋆(φ)|dφ

)
dϕ

=

∫ π
4

0

∣∣∣F⋆

(π
2
− ϕ

)∣∣∣
(∫ π

2

ϕ
(ϕ− φ)2α+2β−2φ2β−1

∣∣∣F⋆

(π
2
− φ

)∣∣∣ dφ
)

dϕ

=

∫ π
4

0
|F̃⋆(ϕ)|S∗

a,b(|F̃⋆|)(ϕ) dϕ . ‖F̃⋆‖2Lq′ ([0,π
4
])
≤ ‖F‖2

Lq′ (S1)
,
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where F̃⋆ := F⋆(
π
2 −·). Here we used the Lq′–Lq bound for the adjoint operator S∗

a,b, recall

(2.9), implied by Lemma 2.10 with (a, b) := (1− 2β, 2− 2α− 2β). The analysis of the case
β < 1

2 < α proceeds along similar lines, and is therefore omitted. This concludes the proof
of the proposition. �

Next we extend the range of boundedness of R∗
α,β given by Proposition 3.1 via interpo-

lation with a trivial estimate for R∗
0,0.

Proposition 3.2. Let 1 < p ≤ 2 ≤ q < ∞ and α, β > 0 be such that 1
p′ < α + β < 2

p′ .

Then R∗
α,β : Lq′(S1) → Lp′(R2) is bounded if α+ β +min{α, β} ≥ 3

p′ − 1
q .

Proof. Set γ := α + β +min{α, β}. We use complex interpolation for the analytic family
of operators given by

(3.6) Es := R∗
p′αs
2

, p
′βs
2

,

where s ∈ S := {z ∈ C : 0 ≤ ℜ(z) ≤ 1}. Start by noting that, given simple functions
F ∈ L1(S1) and g ∈ L1(R2), the map

(3.7) s 7→
∫

R2

Es(F )(x)g(x) dx

is analytic in the interior of the strip S, continuous on S, and moreover the function defined
by (3.7) is uniformly bounded above in S.

Now, Proposition 3.1, with (α, β) replaced by (p′α/2, p′β/2), yields

(3.8) ‖Es(F )‖L2(R2) . ‖F‖
Lq′

1 (S1)
for ℜ(s) = 1, if

1

2
≤ 1

q′1
≤ p′

2
γ − 1

2
.

On the other hand, we have the following trivial estimate:

(3.9) ‖Es(F )‖L∞(R2) . ‖F‖
Lq′

0 (S1)
for ℜ(s) = 0, if 0 ≤ 1

q′0
≤ 1.

Since q ≥ p and γ ≥ 3
p′ − 1

q , we may choose q0, q1 satisfying the above conditions, with the

additional property that 1
q = 1−θ

q0
+ θ

q1
for θ := 2

p′ . Then Stein’s interpolation theorem [37,

p. 205] can be applied to the analytic family of operators {Es}s∈S given by (3.6), resulting
from (3.8)–(3.9) that

‖Es(F )‖Lp′ (R2) . ‖F‖Lq′ (S1), for ℜ(s) = θ =
2

p′
.

This amounts to the desired conclusion since θ = 2
p′ implies Eθ = R∗

α,β. �

Proposition 3.2 will later on be refined via interpolation with a non-trivial estimate for
the operator R∗

0,0. Since R∗
0,0 is similar but not identical to the two-dimensional extension

operator on the unit circle, we first need to prove the latter estimate. That is the content
of our next result.
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Proposition 3.3. Let 1 ≤ p < 4
3 and 1 ≤ q ≤ p′

3 . Then R∗
0,0 : Lq′(S1) → Lp′(R2) defines

a bounded operator.

Proof. We may assume p > 1, and will bound R0,0 : Lp(R2) → Lq(S1) instead. Given
f : R2 → C, set gx1(x2) := g(x1, x2) := f(x1, x2)1x−2

1 +x−2
2 ≤1. Then

R0,0(f)(ω) =

∫ ∞

1
|ω1|

∫ ∞

1
|ω2|

f(x1, x2)e
−i(x1|ω1|+x2|ω2|) dx1 dx2

=

∫ ∞

1
|ω1|

∫

R

g(x1, x2)e
−i(x1|ω1|+x2|ω2|) dx1 dx2

=

∫

R2

g(x)e−ix·(|ω1|,|ω2|) dx−
∫ 1

|ω1|

1
ĝx1(|ω2|)e−ix1|ω1| dx1.

Within the desired range of exponents, bounds for the first term are well-known [11, 45],
so we proceed to bound the second term in Lq(S1):

∫

S1

(∫ 1
|ω1|

1
|ĝx1(|ω2|)|dx1

)q

dσ(ω) =

∫ 1

0
(1− r2)−

1
2

(∫ 1√
1−r2

1
|ĝx1(r)|dx1

)q

dr

= sup
‖h‖

Lq′=1

∫ 1

0
(1− r2)

− 1
2q

(∫ 1√
1−r2

1
|ĝx1(r)|dx1

)
h(r) dr

= sup
‖h‖

Lq′=1

∫ ∞

1

(∫ 1

√
1−x−2

1

(1− r2)
− 1

2q |ĝx1(r)|h(r) dr
)

dx1

≤
∫ ∞

1

(∫ 1

√
1−x−2

1

(1− r2)
− p′

2(p′−q) dr

)1
q
− 1

p′

‖ĝx1‖Lp′ dx1.(3.10)

Here we changed variables, used duality, Fubini’s Theorem, and Hölder’s inequality. An-
other change of variables, the Hausdorff–Young inequality, and Hölder’s inequality in
Lorentz space [27, Theorem 3.4] together yield the following upper bound for (3.10):

∫ ∞

1

(∫ 1−
√

1−x−2
1

0
s
− p′

2(p′−q) ds

) 1
q
− 1

p′

‖gx1‖Lp dx1

.

∫ ∞

1



(
1−

√
1− x−2

1

)1− p′

2(p′−q)




1
q
− 1

p′

‖gx1‖Lp dx1

.

∫ ∞

1
(x−2

1 )
1
q
− 1

p′
− 1

2q ‖gx1‖Lp dx1 ≤ ‖(·)−
1
q
+ 2

p′ ‖Lp′,∞([1,∞))‖g‖Lp,1(R2).
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The first term on the right-hand side is finite since q ≤ p′

3 . Since |g| ≤ |f |, this establishes
the Lp,1(R2)–Lq(S1) boundedness of R0,0, provided 1 ≤ p < 4

3 and 1 ≤ q ≤ p′

3 . Real inter-
polation [5, Theorem 5.3.2] within this family of Lorentz space estimates and compactness
of S1 together yield the claimed strong type estimates. This concludes the proof of the
proposition. �

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. After some preliminary simplifications, we reduce
the analysis to three main estimates, which we address separately.

Fix d ≥ 4 and k ∈ {2, 3, . . . , d − 2}, and set m := min{k, d − k}. By a routine density
argument, it suffices to establish the estimate

(4.1) ‖f̂‖L2(Sd−1) ≤ C(k, d, p)‖f‖Lp(Rd), 1 ≤ p ≤ 2(d +m)

d+m+ 2
,

for every Gk-symmetric Schwartz function f : Rd → C. Our starting point is the following
formula from Lemma 2.2:
(4.2)

f̂(η, ζ) = (2π)
d
2 |η| 2−d+k

2 |ζ| 2−k
2

∫ ∞

0

∫ ∞

0
ρ

d−k
2

1 ρ
k
2
2 f0(ρ1, ρ2)J d−k−2

2
(ρ1|η|)Jk−2

2
(ρ2|ζ|) dρ1 dρ2,

which holds at every (η, ζ) ∈ R
d−k×R

k, for any Gk-symmetric Schwartz function f : Rd →
C. In light of Lemma 2.1, there exist nonzero constants A1, A2 ∈ C \ {0} and functions
R1, R2 : (0,∞) → C, such that, for every r ≥ 0,

J d−k−2
2

(r) = (A1e
ir +A1e

−ir)r−
1
2
1[1,∞)(r) +R1(r),(4.3)

Jk−2
2
(r) = (A2e

ir +A2e
−ir)r−

1
2
1[1,∞)(r) +R2(r).(4.4)

Moreover, the following estimates hold, for every r ≥ 0:

|R1(r)| . r
d−k−2

2 (1 + r)
k−d−1

2 ,(4.5)

|R2(r)| . r
k−2
2 (1 + r)−

k+1
2 .(4.6)

The decomposition (4.3)–(4.4) induces a splitting in (4.2),

(4.7) f̂ = (2π)
d
2


f̂1 +

5∑

j=2

(f̂j + f̂j)


 ,
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where each of the pieces is defined as follows:

f̂1(η, ζ) := |η|k−d+2
2 |ζ| 2−k

2

∫ ∞

0

∫ ∞

0
ρ

d−k
2

1 ρ
k
2
2 f0(ρ1, ρ2)R1(ρ1|η|)R2(ρ2|ζ|) dρ2 dρ1;(4.8)

f̂2(η, ζ) := A2|η|
k−d+2

2 |ζ| 1−k
2

∫ ∞

0

∫ ∞

1
|ζ|

ρ
d−k
2

1 ρ
k−1
2

2 f0(ρ1, ρ2)R1(ρ1|η|)eiρ2 |ζ| dρ2 dρ1;(4.9)

f̂3(η, ζ) := A1|η|
k−d+1

2 |ζ| 2−k
2

∫ ∞

1
|η|

∫ ∞

0
ρ

d−k−1
2

1 ρ
k
2
2 f0(ρ1, ρ2)e

iρ1|η|R2(ρ2|ζ|) dρ2 dρ1;

f̂4(η, ζ) := A1A2|η|
k−d+1

2 |ζ| 1−k
2

∫ ∞

1
|η|

∫ ∞

1
|ζ|

ρ
d−k−1

2
1 ρ

k−1
2

2 f0(ρ1, ρ2)e
i(ρ1|η|+ρ2|ζ|) dρ2 dρ1;(4.10)

f̂5(η, ζ) := A1A2|η|
k−d+1

2 |ζ| 1−k
2

∫ ∞

1
|η|

∫ ∞

1
|ζ|

ρ
d−k−1

2
1 ρ

k−1
2

2 f0(ρ1, ρ2)e
i(ρ1|η|−ρ2|ζ|) dρ2 dρ1.(4.11)

Note that each f̂j is Gk-symmetric. We proceed to find suitable bounds for ‖f̂j‖L2(Sd−1)

for each 1 ≤ j ≤ 5. By interchanging d− k and k, the estimates for f̂3, f̂5 are analogous to

those for f̂2, f̂4, respectively, and so the analysis actually reduces to three cases.

Recall that, for a given Gk-symmetric function f : Sd−1 → C, we set f0(|η|, |ζ|) = f(η, ζ),
and have, for some dimensional constant cd ∈ (0,∞) whose exact value will be unimportant,

(4.12) ‖f‖p
Lp(Rd)

= cpd

∫ ∞

0

∫ ∞

0
ρd−k−1
1 ρk−1

2 |f0(ρ1, ρ2)|p dρ1 dρ2.

4.1. Estimating f̂1. This is by far the easiest case to handle.

Proposition 4.1. For every 1 ≤ p < 2, there exists C = C(k, d, p) < ∞ such that

‖f̂1‖L2(Sd−1) ≤ C‖f‖Lp(Rd),

for every Gk-symmetric Schwartz function f : Rd → C.

Proof. Fix p ∈ [1, 2). From definition (4.8) of f̂1 and estimates (4.5)–(4.6), it follows that

|f̂1(η, ζ)| .
∫ ∞

0

∫ ∞

0
ρd−k−1
1 ρk−1

2 |f0(ρ1, ρ2)|(1 + ρ1|η|)
k−d−1

2 (1 + ρ2|ζ|)−
k+1
2 dρ2 dρ1

≤
(∫ ∞

0

∫ ∞

0
ρd−k−1
1 ρk−1

2 (1 + ρ1|η|)
p′(k−d−1)

2 (1 + ρ2|ζ|)−
p′(k+1)

2 dρ2 dρ1

) 1
p′

‖f‖Lp(Rd),

where the last line follows from an application of Hölder’s inequality and (4.12). The
change of variables (ρ1|η|, ρ2|ζ|) (ρ1, ρ2) then reveals that

(4.13) |f̂1(η, ζ)| . |η|
k−d

p′ |ζ|−
k
p′ ‖f‖Lp(Rd),
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for every (η, ζ) ∈ R
d−k × R

k. The latter estimate can be integrated over the unit sphere
|η|2 + |ζ|2 = 1 via Lemma 2.3, yielding:
∫

Sd−1

|f̂1(η, ζ)|2 dσ(η, ζ) .
∫ 1

0
rd−k−1(1− r2)

k−2
2

(
r

k−d

p′ (1− r2)
− k

2p′ ‖f‖Lp(Rd)

)2
dr

=

(∫ 1

0
r
2(d−k)( 1

2
− 1

p′
)−1

(1− r2)
k( 1

2
− 1

p′
)−1

dr

)
‖f‖2Lp(Rd) . ‖f‖2Lp(Rd)

since p < 2. This concludes the proof of Proposition 4.1. �

4.2. Estimating f̂2 and f̂3. The estimates in this section will follow, in the spirit of
Carleson–Sjölin [11], from a successive application of weighted versions of the Hausdorff–
Young and the Hardy–Littlewood–Sobolev inequalities.

Proposition 4.2. There exists C = C(k, d, p) < ∞ such that

‖f̂2‖L2(Sd−1) ≤ C‖f‖Lp(Rd), if 1 ≤ p ≤ 2(d+ k)

d+ k + 2
,

‖f̂3‖L2(Sd−1) ≤ C‖f‖Lp(Rd), if 1 ≤ p ≤ 2(2d − k)

2d− k + 2
,

for every Gk-symmetric Schwartz function f : Rd → C.

Proof. We focus on the estimate for f2 because the analysis of f3 is analogous up to
interchanging the roles of k, d − k. By interpolation with the trivial estimate at p = 1, it

suffices to consider the endpoint case p = p⋆ :=
2(d+k)
d+k+2 . Set δ := (k− 1)( 1

p⋆
− 1

2 ), and define

(4.14) g(ρ1, ρ2) := ρ
d−k−1

p⋆

1 ρ
k−1
p⋆

2 f0(ρ1, ρ2),

for each ρ1, ρ2 > 0, as well as the corresponding “slice” function gρ1 : (0,∞) → C,

(4.15) gρ1(ρ2) := ρ−δ
2 g(ρ1, ρ2)1[1,∞)(ρ2).

From the definitions (4.9) of f̂2 and (4.14)–(4.15) of g, gρ1 , respectively, it follows that

|f̂2(η, ζ)| . |η| 2−d+k
2 |ζ| 1−k

2

∣∣∣∣∣

∫ ∞

0
ρ

d−k
2

− d−k−1
p⋆

1 R1(ρ1|η|)
(∫ ∞

1
|ζ|

ρ−δ
2 g(ρ1, ρ2)e

iρ2|ζ| dρ2

)
dρ1

∣∣∣∣∣

≤ |η| 2−d+k
2 |ζ| 1−k

2

∫ ∞

0
ρ

d−k
2

− d−k−1
p⋆

1 |R1(ρ1|η|)|
(
|ĝρ1(|ζ|)|+

∫ 1
|ζ|

1
ρ−δ
2 |g(ρ1, ρ2)|dρ2

)
dρ1,

for every (η, ζ) ∈ R
d−k × R

k. Estimate (4.5) then implies

|f̂2(η, ζ)| . |ζ| 1−k
2

∫ ∞

0
ρ

d−k−1
p′⋆

1 (1 + ρ1|η|)
k−d−1

2

(
|ĝρ1(|ζ|)|+

∫ 1
|ζ|

1
ρ−δ
2 |g(ρ1, ρ2)|dρ2

)
dρ1

. |ζ| 1−k
2

∫ ∞

0
ρ

d−k−1
p′⋆

1 (1 + ρ1|η|)
k−d−1

2

(
|ĝρ1(|ζ|)|+ |ζ|δ−

1
p′⋆ ‖g(ρ1, ·)‖Lp⋆

ρ2
(R+)

)
dρ1,
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where the last line follows from an application of Hölder’s inequality. We break up the
latter integral into two pieces, and analyze both summands I, II (defined in (4.17), (4.16)
below) separately. The second one is easier to handle, and can be bounded using Hölder’s
inequality as follows:

II(η, ζ) := |ζ|
1−k
2

+δ− 1
p′⋆

∫ ∞

0
ρ

d−k−1
p′⋆

1 (1 + ρ1|η|)
k−d−1

2 ‖g(ρ1, ·)‖Lp⋆
ρ2

(R+) dρ1

. |η|
k−d

p′⋆ |ζ|−
k

p′⋆ ‖g‖Lp⋆ (R2
+) ≃ |η|

k−d

p′⋆ |ζ|−
k

p′⋆ ‖f‖Lp⋆(Rd).

(4.16)

Comparing with (4.13), we see that this piece can be handled exactly as in the proof of
Proposition 4.1, resulting in the following bound:

∫

Sd−1

II2(η, ζ) dσ(η, ζ) . ‖f‖2Lp⋆(Rd).

Here we only used p⋆ < 2. It remains to estimate the integral of (the square of) the first
summand, given by

(4.17) I(η, ζ) := |ζ| 1−k
2

∫ ∞

0
ρ

d−k−1
p′⋆

1 (1 + ρ1|η|)
k−d−1

2 |ĝρ1(|ζ|)|dρ1.

With that purpose in mind, specialize Lemma 2.8 to p = p⋆ and

1

q
=

1

q⋆
:= 1− 1

p⋆
− δ =

k + 1

2
− k

p⋆
=

d− k

2(d + k)
,

to obtain the following estimate:

(4.18) ‖ĝρ1‖Lq⋆ (R+) . ‖g(ρ1, ·)1[1,∞)‖Lp⋆(R+) ≤ ‖g(ρ1, ·)‖Lp⋆ (R+).

From Lemma 2.3, we have that
∫

Sd−1

I2(η, ζ) dσ(η, ζ)

.

∫ 1

0
rd−k−1(1− r2)−

1
2

(∫ ∞

0
ρ

d−k−1
p′⋆

1 (1 + ρ1r)
k−d−1

2 |ĝρ1(
√

1− r2)|dρ1
)2

dr

=

∫ 1

0
(1− s2)

d−k−2
2

(∫ ∞

0
ρ

d−k−1
p′⋆

1 (1 + ρ1
√

1− s2)
k−d−1

2 |ĝρ1(s)|dρ1
)2

ds

=

∫ ∞

0

∫ ∞

0
(ρ1ρ̃1)

d−k−1
p′⋆

(∫ 1

0
Kρ1,ρ̃1(s)|ĝρ1(s)||ĝρ̃1(s)|ds

)
dρ̃1 dρ1

= 2

∫ ∞

0

∫ ρ1

0
(ρ1ρ̃1)

d−k−1
p′⋆

(∫ 1

0
Kρ1,ρ̃1(s)|ĝρ1(s)||ĝρ̃1(s)|ds

)
dρ̃1 dρ1,(4.19)

where, for each (ρ1, ρ̃1) ∈ R
2
+, the function Kρ1,ρ̃1 : [0, 1] → R is defined via

Kρ1,ρ̃1(s) := (1− s2)
d−k−2

2 (1 + ρ1
√

1− s2)
k−d−1

2 (1 + ρ̃1
√

1− s2)
k−d−1

2 .
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Set I := [0, 1], and estimate the L( q⋆
2
)′(I)-norm of Kρ1,ρ̃1 as follows:

‖Kρ1,ρ̃1‖L(
q⋆
2 )′(I)

=

(∫ 1

0
r

q⋆(d−k−2)
q⋆−2

+1
(1− r2)−

1
2 (1 + ρ1r)

q⋆(k−d−1)
2(q⋆−2) (1 + ρ̃1r)

q⋆(k−d−1)
2(q⋆−2) dr

) q⋆−2
q⋆

.

(∫ 1
2

0
r

q⋆(d−k−2)
q⋆−2

+1
(1 + ρ1r)

q⋆(k−d−1)
2(q⋆−2) (1 + ρ̃1r)

q⋆(k−d−1)
2(q⋆−2) dr

) q⋆−2
q⋆

+ (1 + ρ1)
k−d−1

2 (1 + ρ̃1)
k−d−1

2

≤


ρ̃

q⋆(k−d+2)
q⋆−2

−2

1

∫ ∞

0
t
q⋆(d−k−2)

q⋆−2
+1
(
1 +

ρ1
ρ̃1

t

) q⋆(k−d−1)
2(q⋆−2)

(1 + t)
q⋆(k−d−1)
2(q⋆−2) dt




q⋆−2
q⋆

+ (1 + ρ1)
k−d−1

2 (1 + ρ̃1)
k−d−1

2

.ρ
k−d−1

2
1 ρ̃

k−d+1
2

+ 4
q⋆

1 + (1 + ρ1)
k−d−1

2 (1 + ρ̃1)
k−d−1

2 ,(4.20)

where in the last line we used the trivial bound 1 + ρ1
ρ̃1
t ≥ ρ1

ρ̃1
t. The contribution from the

second summand in (4.20) is straightforward to handle, and so we focus on the first one.
Going back to (4.19), we then have that
∫

Sd−1

I2(η, ζ) dσ(η, ζ)

.

∫ ∞

0

∫ ρ1

0
(ρ1ρ̃1)

d−k−1
p′⋆ ‖Kρ1,ρ̃1‖L(

q⋆
2 )′(I)

‖ĝρ1‖Lq⋆ (I)‖ĝρ̃1‖Lq⋆ (I) dρ̃1 dρ1

.

∫ ∞

0

∫ ρ1

0
(ρ1ρ̃1)

d−k−1
p′⋆ ρ

k−d−1
2

1 ρ̃
k−d+1

2
+ 4

q⋆

1 ‖g(ρ1, ·)‖Lp⋆ (R+)‖g(ρ̃1, ·)‖Lp⋆ (R+) dρ̃1 dρ1

=

∫ ∞

0
‖g(ρ1, ·)‖Lp⋆ (R+)

(
ρ−a
1

∫ ρ1

0
ρ̃−b
1 ‖g(ρ̃1, ·)‖Lp⋆ (R+) dρ̃1

)
dρ1,

where the second estimate follows from (4.18) and (4.20), and we set2

a :=
d− k + 1

2
− d− k − 1

p′⋆
, b := (d− k − 1)

(
1

2
− 1

p′⋆

)
− 4

q⋆
.

It is straightforward to check that these exponents satisfy a + b = 2
p′⋆

and bp′⋆ < 1. Since

we also have that 1 < p⋆ ≤ p′⋆ < ∞, Lemma 2.9 yields
∫

Sd−1

I2(η, ζ) dσ(η, ζ) .
∥∥‖g(ρ1, ·)‖Lp⋆ (R+)

∥∥
Lp⋆
ρ1

(R+)

∥∥∥∥ρ−a
1

∫ ρ1

0
ρ̃−b
1 ‖g(ρ̃1, ·)‖Lp⋆ (R+) dρ̃1

∥∥∥∥
L
p′⋆
ρ1

(R+)

.
∥∥‖g(ρ1, ·)‖Lp⋆ (R+)

∥∥2
Lp⋆
ρ1

(R+)
= ‖g‖2Lp⋆ (R2

+) ≃ ‖f‖2Lp⋆ (Rd).

This concludes the proof of Proposition 4.2. �

2Alternatively, a = 2d−1
d+k

and b = k−d−1
d+k

.
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4.3. Estimating f̂4 and f̂5. The estimates in this section are the most delicate ones, but
most of the work has been done already. We heavily rely on the weighted estimates for
the restriction-type operator Rα,β, recall (3.1), which we proved in § 3, and record the
following consequence.

Corollary 4.3. Let d ≥ 4, k ∈ {2, 3, . . . , d− 2},m := min{d − k, k}, and 1 ≤ p ≤ 2(d+m)
d+m+2 .

Set

(4.21) αp := (d− k − 1)

(
1

p
− 1

2

)
, βp := (k − 1)

(
1

p
− 1

2

)
.

Then Rαp,βp : Lp(R2) → L2(S1) defines a bounded operator.

Proof. By interpolation and compactness of S1, it suffices to consider the endpoint case

p = 2(d+m)
d+m+2 . Proposition 3.2 directly implies the desired conclusion in all situations of

interest, except when 2k = 4 = d, so we focus on that case. Proposition 3.1 implies

(4.22) ‖R∗
1
3
, 1
3

(F )‖L2(R2) . ‖F‖L2(S1),

and from Proposition 3.3 we have that

(4.23) ‖R∗
0,0(F )‖L6(R2) . ‖F‖L2(S1).

As in the proof of Proposition 3.2, Stein’s interpolation theorem [37, p. 205] can be applied
to the analytic family of operators {R∗

s
3
, s
3
: 0 ≤ ℜ(s) ≤ 1}, yielding from (4.22)–(4.23)

‖R∗
1
6
, 1
6

(F )‖L3(R2) . ‖F‖L2(S1).

This is equivalent, by duality, to the desired conclusion. �

The relevance of Corollary 4.3 becomes apparent once we note that from definitions
(4.10), (4.11) it follows that:

f̂4(η, ζ) = A1A2|η|
k−d+1

2 |ζ| 1−k
2 Rαp,βp(h)(−|η|,−|ζ|),(4.24)

f̂5(η, ζ) = A1A2|η|
k−d+1

2 |ζ| 1−k
2 Rαp,βp(h)(−|η|, |ζ|).

Here, αp, βp were defined in (4.21), and

(4.25) h(ρ1, ρ2) := ρ
d−k−1

2
1 ρ

k−1
2

2 (1 + ρ1)
αp(1 + ρ2)

βpf0(ρ1, ρ2)1[1,∞)2(ρ1, ρ2).

Proposition 4.4. For every 1 ≤ p ≤ 2(d+m)
d+m+2 , there exists C = C(k, d, p) < ∞ such that

‖f̂4‖L2(Sd−1) + ‖f̂5‖L2(Sd−1) ≤ C‖f‖Lp(Rd),

for every Gk-symmetric Schwartz function f : Rd → C.

Proof. By the usual considerations, it suffices to bound ‖f̂4‖L2(Sd−1). Identity (4.24) and
Lemma 2.3 together imply∫

Sd−1

|f̂4(η, ζ)|2 dσ(η, ζ) .
∫

S1

∣∣Rαp,βp(h)(ω)
∣∣2 dσ(ω),
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where the function h was defined in (4.25). For every 1 ≤ p ≤ 2(d+m)
d+m+2 , Corollary 4.3 and

(4.12) together yield
∫

Sd−1

|f̂4(η, ζ)|2 dσ(ω) . ‖h‖2Lp(R2) . ‖ρ
d−k−1

p

1 ρ
k−1
p

2 f0(ρ1, ρ2)‖2Lp
ρ1,ρ2

(R2
+) ≃ ‖f‖2Lp(Rd).

In the second estimate, we used the fact that the support of h is contained in [1,∞)2 ⊂ R
2,

so that 1 + ρj ∼ ρj, for each j ∈ {1, 2}. This concludes the proof of Proposition 4.4. �

4.4. Conclusion of the proof. The aim is to verify estimate (4.1) for every Gk-symmetric
Schwartz function f : Rd → C. Splitting f as in (4.7), by the subsequent considerations

it suffices to bound ‖f̂j‖L2(Sd−1), 1 ≤ j ≤ 5, appropriately in terms of ‖f‖Lp(Rd), whenever

1 ≤ p ≤ 2(d+m)
d+m+2 . In turn, this is accomplished by Propositions 4.1, 4.2, 4.4. The proof of

Theorem 1.1 is thus complete.

5. Proof of Theorem 1.2

In this section, we explain how Theorem 1.2 follows from Theorem 1.1. As in most
optimization problems, the difficulty is to find a weak limit of a maximizing sequence
which is non-zero. The key observation is that, in light of estimate (1.5), the Tomas–Stein

exponent pd = 2(d+1)
d+3 is no longer an endpoint exponent within the class of Gk-symmetric

functions, provided 2 ≤ k ≤ d− 2. Therefore Theorem 1.1 can be used in conjunction with
the Fourier decay property from Corollary 2.5 to show that maximizing sequences do not
converge weakly to zero.

Precompactness of maximizing sequences for non-endpoint, L2-based adjoint restriction
estimates is in general well-understood. We follow the approach of [8] which relies on
a useful reformulation of the Brézis–Lieb lemma [7] given in [13], but with an important
twist. Since translations are not symmetries of the Gk-symmetric problem, one may expect
precompactness to hold, instead of precompactness modulo translations as in the general
non-symmetric case [10, 17]. To facilitate the comparison with references [8, 13], and
especially [17], we choose to formulate and prove Theorem 1.2 for the extension operator
instead. Thus we are led to define the Hilbert space3 L2

Gk
(Sd−1) := {F ∈ L2(Sd−1) :

F is Gk-symmetric}, and the quantity

T∗
d,k := sup

06=F∈L2
Gk

(Sd−1)

‖F̂ σ‖
L
p′
d (Rd)

‖F‖L2(Sd−1)

.

By duality, we naturally have that T∗
d,k = Td,k, but we will use both designations in order

to keep track of the extremal problem under consideration.

3That L2
Gk

(Sd−1) is indeed a Hilbert space follows from the Riesz–Fischer Theorem, since Gk-symmetry

is preserved under pointwise limits.
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Theorem 5.1. Let d ≥ 4 and k ∈ {2, 3, . . . , d − 2}. Maximizing sequences for T∗
d,k,

normalized in L2(Sd−1), are precompact in L2
Gk

(Sd−1). In particular, maximizers for T∗
d,k

exist.

Theorem 5.1 is in fact equivalent to Theorem 1.2 via a well-known argument; see [39,
§ 6] for a more general statement along these lines. For the convenience of the reader, we
present the details of the relevant implication in Appendix A. The proof of Theorem 5.1
relies on [13, Proposition 1.1], which is a useful reformulation of the Brézis–Lieb lemma [7,
Theorem 1].

Proof of Theorem 5.1. Let (Fn)n∈N ⊂ L2
Gk

(Sd−1) be an L2-normalized maximizing se-

quence for T∗
d,k, i.e., Fn is Gk-symmetric, ‖Fn‖L2(Sd−1) = 1 for all n ∈ N, and

(5.1) ‖F̂nσ‖
L
p′
d (Rd)

→ T∗
d,k, as n → ∞.

From Theorem 1.1 in dual form and L2-normalization of (Fn)n∈N, there exists Ck,d < ∞,
such that

(5.2) sup
n∈N

‖F̂nσ‖Lp′⋆(Rd)
< Ck,d,

where p⋆ = 2(d+m)
d+m+2 and m = min{d − k, k}. Since m ≥ 2, we have that p⋆ > pd, or

equivalently p′⋆ < p′d. By convexity of Lp-norms, we further have that

(5.3) ‖F̂nσ‖
L
p′
d (Rd)

≤ ‖F̂nσ‖θLp′⋆ (Rd)
‖F̂nσ‖1−θ

L∞(Rd)
,

where θ = (d+m)(d−1)
(d+m−2)(d+1) ∈ (0, 1). Estimates (5.1), (5.2), (5.3) together imply the existence

of ε0 = ε0(k, d) > 0, depending only on k, d, for which ‖F̂nσ‖L∞(Rd) ≥ ε0 for every n ∈ N

(possibly after extraction of a subsequence). Thus there exists a sequence (xn)n∈N ⊂ R
d,

such that

(5.4) |F̂nσ(xn)| ≥ ε0 > 0, for every n ∈ N.

Corollary 2.5 guarantees4 the existence of a certain radius R = R(k, d) < ∞, depending
only on k, d, for which |xn| ≤ R for every n ∈ N. On the other hand, by the Cauchy–
Schwarz inequality together with the L2-normalization of (Fn)n∈N, we have that

‖F̂nσ‖L∞(Rd) ≤ ‖Fn‖L1(Sd−1)≤ σ(Sd−1)
1
2‖Fn‖L2(Sd−1) = σ(Sd−1)

1
2 ;

‖∇x(F̂nσ)‖L∞(Rd) ≤ ‖Fn| · |‖L1(Sd−1) ≤ ‖Fn‖L1(Sd−1)≤ σ(Sd−1)
1
2 .

It follows that the sequence (F̂nσ)n∈N is uniformly bounded and equicontinuous on the cube
QR := [−R,R]d ⊂ R

d. The Arzelà–Ascoli Theorem on compact subsets of Rd then implies

4Note the tension between estimates (2.7) and (5.4) which, in particular, reveals that a maximizing

sequence for T
∗
d,k cannot concentrate on a copy of Smin{d−k,k}−1 inside S

d−1. If k ∈ {1, d − 1}, this would

amount to concentration at a pair of antipodal points on S
d−1, which in [10, 17] was identified as the “most

essential obstacle” to the precompactness of maximizing sequences modulo symmetries.
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that the sequence (F̂nσ)n∈N has a subsequence which converges uniformly to a limit in QR.
That this limit is nonzero follows at once from (5.4) and the fact that (xn)n∈N ⊂ QR.

Now, since the sequence (Fn)n∈N is bounded on L2
Gk

(Sd−1), it has a weakly convergent

subsequence. In other words, there exists a function F⋆ ∈ L2
Gk

(Sd−1), such that Fn ⇀ F⋆

weakly in L2
Gk

(Sd−1), as n → ∞. Since the extension operator is bounded from L2
Gk

(Sd−1)

to Lp′d(Rd), it follows that F̂nσ ⇀ F̂⋆σ weakly in Lp′d(Rd), as n → ∞. Since uniform
convergence implies weak convergence, and weak limits are unique, from the previous

paragraph it follows that F̂⋆σ is nonzero, and so the function F⋆ is itself nonzero.

We are now in a position to apply [13, Proposition 1.1] to the extension operator on
S
d−1 with H = L2

Gk
(Sd−1), p = p′d ∈ (2,∞), (hn)n∈N = (Fn)n∈N, and h = F⋆. Hypotheses

(1) and (2) from [13, Proposition 1.1] hold by the assumptions on the sequence (Fn)n∈N,
and hypothesis (3) follows from the previous paragraph. Finally, hypothesis (4) is an easy
consequence of the compactness of Sd−1. The conclusion is that, possibly after extraction
of a subsequence, Fn → F⋆ in L2

Gk
(Sd−1), as n → ∞. In particular, F⋆ is a maximizer for

T∗
d,k. This finishes the proof of the theorem. �

6. Proof of Theorem 1.3

In this section, we construct appropriate examples to show the necessity of conditions
(i)–(iii) in the statement of Theorem 1.3. We work with the extension operator (2.1) rather
than with the restriction operator directly, and aim to show that the estimate

‖F̂ σ‖Lp′ (Rd) ≤ C(k, d, p, q)‖F‖Lq′ (Sd−1),

which is dual to (1.4), can only hold for every Gk-symmetric function F : S
d−1 → C

provided d, p, q, and m = min{d − k, k} are chosen in such a way that conditions (i)–(iii)
in the statement of Theorem 1.3 hold. As in the general non-symmetric situation, the first
condition d+1

2d < 1
p is dictated by the choice F ≡ 1, since

(6.1) σ̂ ∈ Lp′(Rd) if and only if p′ >
2d

d− 1
.

The latter equivalence follows from identity (2.2) together with the standard asymptotics
of Bessel functions at zero and infinity; recall (2.4)–(2.5).

The remaining necessary conditions are obtained from analyzing a Gk-symmetric variant
of Knapp’s construction. Let d ≥ 4, k ∈ {2, 3, . . . , d − 2} be given, and assume without
loss of generality that m = k, which we take as fixed from now onwards. Given δ ∈ (0, 12),
consider the following union of two “spherical caps” of radius δ:

Cδ := {(η, ζ) ∈ R
d−k × R

k : |η|2 + |ζ|2 = 1, |η| < δ} ⊂ S
d−1.
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By construction, the set Cδ is Gk-symmetric, and so are the indicator function 1δ := 1Cδ
and its Fourier extension, 1̂δσ. Using Lemma 2.3, we estimate:

(6.2) ‖1δ‖Lq′ (Sd−1) = σ(Cδ)
1
q′ ≃

(∫ δ

0
rd−k−1(1− r2)

k−2
2 dr

) 1
q′

≃ δ
d−k

q′ .

On the other hand, if (y, z) ∈ R
d−k ×R

k, then (2.2) together with a further application of
Lemma 2.3 yield:

(6.3) 1̂δσ(y, z) =

∫

Cδ
ei(y,z)·(η,ζ) dσ(η, ζ)

≃
∫ δ

0
rd−k−1(1− r2)

k−2
2 (r|y|) 2−d+k

2 J d−k−2
2

(r|y|)(
√

1− r2|z|) 2−k
2 Jk−2

2
(
√

1− r2|z|) dr.

Let {zj}j≥1 denote the increasing sequence of local maxima of the Bessel function J(k−2)/2.
By the asymptotic expansion (2.4), there exist constants 0 < c,C < ∞, such that |zj −
2πj| ≤ C, as j → ∞, and moreover Jk−2

2
(zj) ≥ cj−

1
2 , for every j ≥ 0. Recalling (2.5) and

shrinking c if necessary, we obtain

z
2−d+k

2 J d−k−2
2

(z) ≥ c, for every z ∈ (0, c),(6.4)

z
2−k
2 Jk−2

2
(z) ≥ cj

1−k
2 , for every z ∈ [zj − c, zj + c] and j ≥ 0.(6.5)

Consider the disjoint union E :=
⋃⌊cδ−2⌋

j=1 Ej, where each set Ej is defined as follows:

Ej :=

{
(y, z) ∈ R

d−k × R
k : 0 ≤ |y| ≤ cδ−1,

zj − c√
1− δ2

≤ |z| ≤ zj + c

}
.

Each set Ej is Gk-symmetric, and so is E. If (y, z) ∈ E, then estimates (6.5)–(6.4) applied
to (6.3) imply the following lower bound:

|1̂δσ(y, z)| & δd−kj
1−k
2 ,

provided δ ∈ (0, c) is chosen sufficiently small. On the other hand, there exists an index j0
with the following property: for each j ∈ {j0, j0 + 1, . . . , ⌊cδ−2⌋},

(zj + c)k −
(

zj − c√
1− δ2

)k

& jk−1,

provided δ > 0 is chosen sufficiently small. This follows directly from Taylor expansion,
and readily implies the size estimate |Ej | & δk−djk−1, for each j0 ≤ j ≤ ⌊cδ−2⌋. As a
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consequence,

‖1̂δσ‖p
′

Lp′ (Rd)
≥ ‖1̂δσ‖p

′

Lp′ (E)
&

⌊cδ−2⌋∑

j=j0

(δd−kj
1−k
2 )p

′ |Ej |

&

⌊cδ−2⌋∑

j=j0

(δd−kj
1−k
2 )p

′
(δk−djk−1)

= δ(d−k)(p′−1)

⌊cδ−2⌋∑

j=j0

j−
(k−1)(p′−2)

2 .

According to (k−1)(p′−2)
2 being smaller than, equal to, or larger than 1, we thus obtain

‖1̂δσ‖Lp′ (Rd) &





δ
d+k
p

−k−1
, if 1

p < k+1
2k ,

δ
d+k
p

−k−1| log(δ)|
1
p′ , if 1

p = k+1
2k ,

δ
d−k
p , if 1

p > k+1
2k .

The latter estimate is valid also when p′ = ∞. Together with (6.2), we finally conclude:

‖1̂δσ‖Lp′ (Rd)

‖1δ‖Lq′ (Sd−1)

&





δ
d+k
p

+ d−k
q

−d−1, if 1
p < k+1

2k ,

δ
d+k
p

+ d−k
q

−d−1| log(δ)|
1
p′ , if 1

p = k+1
2k ,

δ
d−k
p

+ d−k
q

−d+k, if 1
p > k+1

2k .

The proof of Theorem 1.3 is completed by letting δ → 0+.

Remark 6.1. If m = min{k, d − k} = 1, then the following G1-symmetric version of
Knapp’s construction reveals that estimates beyond those predicted by the restriction con-
jecture, recall (1.1)–(1.2). are not possible within the G1-symmetric setting. Define

Cδ := {(η, ζ) ∈ R
d−1 × R : |η|2 + ζ2 = 1, |η| < δ} ⊂ S

d−1

and E :=
⋃⌊(2δ)−2⌋

j=1 Ej, where

Ej :=

{
(y, z) ∈ R

d−1 × R : 0 ≤ |y| ≤ π

4δ
,
2πj − π

4√
1− δ2

≤ |z| ≤ 2πj +
π

4

}
.

Here, δ > 0 is a sufficiently small parameter, and the values {2πj}j≥1 are the counterparts
of the Bessel maxima {zj}j≥1 considered above. Naturally, the sets Cδ and E are both G1-

symmetric. Repeating the steps from the proof of Theorem 1.3, one finds that |Ej | & δ1−d

and thus ‖1̂δσ‖p
′

Lp′ (Rd)
& δ(d−1)p′−(d+1). In turn, this implies the following lower bound:

‖1̂δσ‖Lp′ (Rd)

‖1δ‖Lq′ (Sd−1)

& δ
d+1
p

+ d−1
q

−d−1
.
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The latter quotient remains bounded as δ → 0+ if and only if d+1
p + d−1

q ≥ d + 1, which

matches the second condition in (1.2). All in all, we recover the same necessary conditions
as in the general, non-symmetric case.

7. Proof of Theorem 1.4

In this section, we provide a short proof of Theorem 1.4. No generality is lost in assuming
m = k, f ∈ S(Rd), and throughout the proof we set p := 2k

k+1 . The representation formula

from Lemma 2.2 and the bounds (2.4)–(2.5) for Bessel functions together imply

|f̂(η, ζ)| ≃ |η| 2−d+k
2 |ζ| 2−k

2

∣∣∣∣
∫ ∞

0

∫ ∞

0
ρ

d−k
2

1 ρ
k
2
2 f0(ρ1, ρ2)J d−k−2

2
(ρ1|η|)Jk−2

2
(ρ2|ζ|) dρ1 dρ2

∣∣∣∣

.

∫ ∞

0

∫ ∞

0
ρd−k−1
1 ρk−1

2 |f0(ρ1, ρ2)|(1 + ρ1|η|)
k−d+1

2 (1 + ρ2|ζ|)
1−k
2 dρ1 dρ2.

Hölder’s inequality in Lorentz spaces [27, Theorem 3.4] then implies the following pointwise

bound for |f̂(η, ζ)|:

‖ρ
d−k−1

p

1 ρ
k−1
p

2 f0(ρ1, ρ2)‖Lp,1
ρ1,ρ2

(R2
+)‖ρ

d−k−1
p′

1 ρ
k−1
p′

2 (1 + ρ1|η|)
k−d+1

2 (1 + ρ2|ζ|)
1−k
2 ‖

Lp′,∞
ρ1,ρ2

(R2
+)

= ‖f‖Lp,1(Rd)‖(1 + |y||η|)k−d+1
2 (1 + |z||ζ|) 1−k

2 ‖Lp′,∞(Rd)

≃ ‖f‖Lp,1(Rd)|η|
k−d

p′ |ζ|−
k
p′ ,

where the last line follows from changing variables y  |η|y ∈ R
d−k and z  |ζ|z ∈ R

k,
and using the facts that 2k ≤ d and p′ = 2k

k−1 in order to control the corresponding weak
quasi-norm. The latter estimate can be integrated over the unit sphere, resulting in

‖f̂‖Lp′,∞(Sd−1) . ‖f‖Lp,1(Rd)‖|η|
k−d

p′ |ζ|−
k
p′ ‖Lp′,∞(Sd−1) . ‖f‖Lp,1(Rd).

This concludes the proof of Theorem 1.4.
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Appendix A. Theorem 5.1 implies Theorem 1.2

Let (fn)n∈N ⊂ Lpd
Gk

(Rd) be a maximizing sequence for Td,k, normalized in Lpd(Rd). In

other words, each fn is Gk-symmetric in R
d, ‖fn‖Lpd (Rd) = 1 for every n ∈ N, and

(A.1) ‖f̂n‖L2(Sd−1) → Td,k, as n → ∞.
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Let Fn := ‖f̂n‖−1
L2(Sd−1)

f̂n |Sd−1 . Then (Fn)n∈N ⊂ L2
Gk

(Sd−1) is an L2-normalized maximiz-

ing sequence for T∗
d,k, i.e. each Fn is Gk-symmetric on S

d−1, ‖Fn‖L2(Sd−1) = 1 for every

n ∈ N, and ‖F̂nσ‖
L
p′
d (Rd)

→ T∗
d,k, as n → ∞. By Theorem 5.1, there exists F⋆ ∈ L2

Gk

such that, possibly after extraction of a subsequence, Fn → F⋆ in L2(Sd−1), as n → ∞. In
particular, observe that ‖F⋆‖L2(Sd−1) = 1 and

(A.2) ‖F̂⋆σ‖
L
p′
d (Rd)

= T∗
d,k.

Since the sequence (fn)n∈N is bounded on Lpd
Gk

(Rd), it has a weakly convergent subsequence.

In other words, there exists a function f⋆ ∈ Lpd
Gk

(Rd), such that fn ⇀ f⋆ weakly in Lpd
Gk

(Rd),
as n → ∞. We claim that f⋆ is a maximizer for Td,k, and that in fact fn → f⋆ strongly in

Lpd
Gk

(Rd), as n → ∞. To see this, note that

(A.3) T2
d,k = lim

n→∞
‖f̂n‖2L2(Sd−1) = Td,k lim

n→∞
|〈fn, F̂nσ〉|

= Td,k|〈f⋆, F̂⋆σ〉| ≤ Td,k‖f⋆‖Lpd (Rd)‖F̂⋆σ‖
L
p′
d (Rd)

= ‖f⋆‖Lpd (Rd)T
2
d,k.

Here we used (A.1), duality, weak convergence of (fn)n∈N and continuity of the extension
operator, Hölder’s inequality, and (A.2) together with T∗

d,k = Td,k. From the chain of

inequalities (A.3), we read off that

(A.4) ‖f⋆‖Lpd (Rd) ≥ 1 = lim
n→∞

‖fn‖Lpd (Rd).

Since the reverse inequality holds since fn ⇀ f⋆ weakly in L
p′d
Gk

(Rd), as n → ∞, we actually

have equality in (A.4). But weak convergence together with convergence of norms implies
strong convergence; see [21, Theorem 2.11]. Therefore fn → f⋆ in Lpd

Gk
(Rd), as n → ∞. By

continuity of the restriction operator, it follows that f⋆ is a maximizer for Td,k, as desired.
This concludes the proof that Theorem 5.1 implies Theorem 1.2.
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[5] J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematischen
Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.

[6] C. Biswas and B. Stovall, Existence of extremizers for Fourier restriction to the moment curve.
Preprint, 2020. arXiv:2012.01528.

[7] H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of
functionals. Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.

http://arxiv.org/abs/2012.01528


30 RAINER MANDEL AND DIOGO OLIVEIRA E SILVA

[8] E. Carneiro, D. Oliveira e Silva, M. Sousa, Extremizers for Fourier restriction on hyperboloids.
Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 2, 389–415.
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[44] T. Weth and T. Yeşil, Fourier extension estimates for symmetric functions and applications to

nonlinear Helmholtz equations. arXiv:2005.12589. To appear in Ann. Mat. Pura Appl. (2021).
[45] A. Zygmund, On Fourier coefficients and transforms of functions of two variables. Studia Math. 50

(1974), 189–201.

Karlsruhe Institute of Technology, Institute for Analysis, Englerstrasse 2, D-76131

Kalrsruhe, Germany

Email address: rainer.mandel@kit.edu

School of Mathematics, University of Birmingham, B15 2TT, England

Email address: d.oliveiraesilva@bham.ac.uk

http://arxiv.org/abs/2005.12589

	1. Introduction
	1.1. Setting
	1.2. Results
	1.3. Historical remarks
	1.4. Structure of the paper
	1.5. Forthcoming notation

	2. Preliminaries
	2.1. Duality
	2.2. Bessel functions
	2.3. Gk-symmetry
	2.4. Oscillatory integrals
	2.5. Weighted Hausdorff–Young Inequality
	2.6. Weighted Hardy–Littlewood–Sobolev Inequality

	3. Weighted 2D Restriction-type estimates
	4. Proof of Theorem 1.1
	4.1. Estimating f"0362f1
	4.2. Estimating f"0362f2 and f"0362f3
	4.3. Estimating f"0362f4 and f"0362f5
	4.4. Conclusion of the proof

	5. Proof of Theorem 1.2
	6. Proof of Theorem 1.3
	7. Proof of Theorem 1.4
	Acknowledgements
	Appendix A. Theorem 5.1 implies Theorem 1.2
	References

