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When the physics is well
known and well understood
the only way to advance
knowledge and technology
further is by way of
MATHEMATICS,
with its help if it already
exists, with new research
otherwise.

Rudolf Emil Kálmán (1930 – 2016)





Abstract

Interconnected systems are a major pillar of modern society. In recent years, interconnected
systems have gained an unprecedented extent. For such systems, existing approaches for
deriving models and designing observers reach their limits. In consequence, models and
observers are developed under severe simplifications of the systems’ physics which leads to
a poor applicability and underperformance. This thesis provides remedy by automating the
processes of deriving models and designing observers. To this end, we develop automatable
modeling and observation methods in the domain-unifying framework of port-Hamiltonian
systems (PHSs). These methods are the first to allow for an automated model generation and
observer design in a wide class of interconnected systems.

The methods and algorithms are implemented in a software prototype named AMOTO.
AMOTO is applied to the automated model generation and observer design in two case
studies. Numeric simulations verify the validity of the models and observers obtained from
AMOTO. Moreover, they outperform the models and observers resulting from state of the art
techniques which verifies the practical usefulness of the approach. Therewith, the methods,
algorithms, and tools from this thesis can help to solve the upcoming challenges in the
interconnected systems that constantly surround us.





Kurzfassung

Vernetzte Systeme stellen einen unverzichtbaren Teil moderner Gesellschaften dar. Mit dem
Ausrollen neuer Kommunikationstechnologien und in Folge der fortgeschrittenen Nutzung
von Synergiepotenzialen entstanden in den letzten Jahren vernetzte Systeme ungeahnten
Ausmaßes. Aufgrund der Komplexität dieser Systeme, gelangen bestehende Modellierungs-
und Beobachterentwurfsmethoden an ihre Grenzen. Modelle und Beobachter können des-
halb häufig nur unter erheblichen Vereinfachungen entwickelt werden. Die vorliegende
Dissertation schafft Abhilfe. Leitgedanke ist es, die Vorgänge der Modellerzeugung und des
Beobachterentwurfs zu automatisieren. Hierzu werden in dieser Arbeit automatisierbare
Modellierungs- und Beobachtermethoden auf Basis der Port-Hamiltonschen Systemtheorie
entwickelt.

Diese Methoden sind in einem Software-Prototyp namens AMOTO implementiert. In
zwei Fallstudien wird AMOTO jeweils zur automatisierten Modellherleitung und zum au-
tomatisierten Beobachterentwurf eingesetzt. Computersimulationen weisen in beiden Fallstu-
dien die Funktionstüchtigkeit der erzeugten Modelle und Beobachter nach und zeigen, dass
diese genauere Ergebnisse liefern, als Modelle und Beobachter, die mit Methoden des bisheri-
gen Stands der Technik entwickelt wurden. Dies unterstreicht die praktische Nutzbarkeit des
vorgestellten Ansatzes. Es zeigt sich ferner, dass der Ansatz auf eine große Klasse vernetzter
Systeme anwendbar ist. Somit leisten die Methoden, Algorithmen und Werkzeuge aus dieser
Arbeit einen wichtigen Beitrag zur Bewältigung zukünftiger Herausforderungen in vernetzen
Systemen.
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Chapter 1
Introduction

1.1 Motivation

Interconnected systems are a major pillar of our modern society. Well-known examples of
interconnected systems are the energy systems that constantly surround us. Over the last
few years, the rollout of powerful communication networks, the pursuit of efficiency, and
increased performance requirements have led to the advent of interconnected systems of
unforeseen extent. In the context of energy systems, large-scale multi-carrier energy systems
become reality (O’Malley et al. [2020]). Other examples that penetrate into practice are
interconnected industrial systems (Gao et al. [2019]), cooperative swarms of drones (Tahir
et al. [2019]), adaptive mechanic structures (Warsewa et al. [2020]), and sophisticated
automotive power networks for hybrid and electric vehicles (Mantilla-Pérez et al. [2020]).

From a system theoretic point of view, such interconnected systems have demanding
properties. First, they comprise a large number of interdependent system variables—a quality
that Duindam et al. [2009] call the “curse of dimensionality”. Second, many interconnected
systems cover multiple physical domains as, e.g., the electric, mechanic, hydraulic, and
thermal domain. Third, such systems consist of many subsystems each of which contributes
to the overall system behavior. Hence, subsystems can hardly be neglected or abstracted.
Fourth, in many cases, interconnected systems feature nonlinear dynamics. Due to these
reasons, the literature refers to interconnected systems often as “complex physical systems”
(see, e.g., van der Schaft and Jeltsema [2014]).

Models are inevitable for the development of control systems in interconnected systems.
A model in form of a set of ordinary differential equations (ODEs) is the basis for many
simulations and the natural starting point for a model-based control system design. The
modeling of interconnected systems, however, is a very challenging task. This can be
understood by two reasons:

1. The multi-physical nature of many interconnected systems disallows for an individual
person to oversee the entire system. Hence, the model derivation involves experts from
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2 Chapter 1. Introduction

multiple disciplines. Naturally, different experts speak different technical languages,
apply different methods, and use different notations.

2. The curse of dimensionality leads to extensive equations which makes it impossible
to develop models by hand. Even a partially computer-aided development as an alter-
native leads to solutions in which the engineer is still forced to handle mathematical
expressions of enormous size.

It is important to note that the curse of dimensionality goes beyond the system modeling.
In fact, it complicates all steps in a model-based control system development. In this the-
sis, we will elaborate this issue particularly for the design of observers. In interconnected
systems, observers are of considerable interest as they are essential for the supervision of a
system and often required for the practical implementation of a control law.

Due to the above reasons, the development of models and observers for interconnected
systems is cost-intensive, cumbersome, and prone to error. In consequence, models and
observers are frequently developed under severe simplifications in which the systems’ physics
are only roughly approximated, e.g., by neglecting important dynamics or nonlinearities. In
a wide operating range, however, these approximations are inadmissible which limits the
practical applicability of the obtained models and observers.

To avoid such unjustified simplifications, there are different model derivation and ob-
server design techniques in the literature. These approaches are outlined in the next section.

1.2 Literature Context

In the literature, there have been multiple computer-aided methods to handle the complexity
of interconnected systems in the model derivation and observer design. This section presents a
brief overview of these methods. A particular literature review on methods for the modeling
and observation in the framework of port-Hamiltonian systems (PHSs) can be found in
sections 3.1 and 4.1, respectively.

1.2.1 Model Derivation Methods

Existing methods for a computer-aided derivation of ODE models can be classified into two
groups, viz. data-based methods and physical-based methods. Data-based methods compute
a model based on data originating from the system or a virtual duplicate. In contrast, in
physical-based methods, a model is derived from knowledge about the physical relations
that govern the system. The focus of this thesis—and therewith of this subsection—is on
physical-based methods.

In analytical mechanics, there is a long tradition in the algorithmic derivation of ODE
models. This tradition traces back to the work of Joseph-Louis Lagrange and Sir William
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Rowan Hamilton and the formalisms named after them. The Lagrange and Hamilton for-
malisms and extensions thereof allow for a unified energy- and power-based modeling of
multi-domain systems (see Jeltsema and Scherpen [2009]). Despite their prominence, the
methods from analytical mechanics have received only limited attention in literature for the
computer-aided model derivation in interconnected systems. Two exceptions are the papers
of Leu and Hemati [1986] and Bachovchin and Ilić [2015]. In these papers, the authors
present methods for deriving the dynamic equations of robotic manipulators and electric
power systems, respectively, based on the Lagrange formalism.

Network-based modeling offers another approach to the computer-aided derivation of
ODE models for interconnected systems. The idea of a network-based modeling is to describe
the system under consideration by means of a graph. In contrast to the methods based on
analytical mechanics, there exists extensive literature on the modeling of interconnected
systems with network-based methods. It is neither in the scope of this section nor the
intention to go into the details of all publications in this field. Instead, the pioneering works,
some survey papers, and a few recent results are highlighted.

The history of network-based modeling ranges back to the work of Kirchhoff [1847] on
electric network theory. The first network-based methods for an ODE modeling of electric
circuits were published in the mid 1960s by Brayton and Moser [1964] and Chua and Rohrer
[1965]. Roberson and Wittenburg [1968] propose a formalism for the derivation of the
dynamic equations of a system of rigid bodies. The interconnection topology is described
by a graph which is analytically characterized by its incidence matrix. In the mid 1980s,
Cederbaum [1984] surveyed important applications of network-theory to the modeling,
analysis, and synthesis of electric circuits. A method for the computer-aided generation of
the equations of motion of planar multibody systems with open and closed kinematic chains
was presented by McPhee [1998]. The method integrates network modeling methods and
orthogonal projection methods. Schlacher et al. [1998] combine a network-based modeling
approach with the Lagrangian framework. Based hereon, the authors propose a method for
the computer-aided modeling of mechatronic systems.

The research activities in the field of a network-based modeling for mechanic, electric,
and mechatronic systems in the years between 2000 and 2016 have been reviewed by
Garziad and Saka [2017]. Dörfler et al. [2018] survey some recent results how network- and
graph-theory informs the modeling, analysis, and design of electric systems.

Network-based models have an excellent scalability which makes them appealing for
the treatment of interconnected systems. The main limitation of a network-based model-
ing approach is the assumption that the vertices and edges of the system-describing graph
represent some pre-defined system components. This assumption limits the reusability and
transferability of the models to other systems, in particular across different physical domains.
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1.2.2 Observer Design Methods

As early as 1966, Luenberger presented a “simple algorithm for computing the observer” [Lu-
enberger, 1966]. The development of algorithms for the practical observer design is closely
linked to the development of the observer theory as a whole. Needless to say that a complete
review of all algorithmic observer design methods is outside the scope of this subsection.
Instead, it is focused on approaches which are particularly appealing for a computer-aided
observer design in interconnected systems.

Well-known methods for the computer-aided design of observers date back to Ackermann
[1972] and Kautsky et al. [1985]. The former is implemented in Wolfram Mathematica and
can be accessed via the command EstimatorGains; the latter is behind the MATLAB
command place. The innovation of the following decades were strongly influenced by the
widespread availability of technical computing systems and an increasing computational
power. These developments fostered the advent of optimization-based observer design
techniques as proposed by Franceschini et al. [1994], Howell and Hedrick [2002], Ichihara
[2007], and Shoukry et al. [2018]. Approaches particularly based on the solution of linear
matrix inequalities (LMIs) were presented, e.g., by Cho and Rajamani [1997], Wang et al.
[2003], Moreno [2004], and Chen and Saif [2006]. Cheng et al. [1994] and Raghavan and
Hedrick [1994] derive an observer design strategy which is based on the numeric solution of
a Riccati equation. Similar, Edwards and Spurgeon [1994] presented an algorithm for the
model-based design of sliding mode observers which requires the solution of a Lyapunov
equation. Syrmos [1993] provided a computationally efficient observer design framework
based on the transmission zeros of the system. An approach based on orthogonal trans-
formations was proposed by Laila et al. [2011]. Schweers [2017] presented a method for
a computer-aided design of state estimators. The methods from Schweers [2017] rely on
data-based models of multi-domain systems.

The subsequent section briefly summarizes the insights of the literature review and states
the objectives of this thesis.

1.3 Research Objectives

The modeling of interconnected systems is a cumbersome and time-consuming task which
may involve experts from different engineering domains. The model derivation using the
power- and energy-based methods from analytical mechanics is a promising approach to
overcome these problems (cf. Jeltsema and Scherpen [2009]). However, a computer-aided
model generation with these methods has received only limited attention in the literature and
is, as for now, restricted to a rather small class of interconnected systems.
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On the other hand, many network-based modeling methods allow for an efficient model
derivation. However, these approaches are also limited to particular classes of systems as,
e.g., electric networks, power systems, mechatronic systems, or multi-body systems.

A unifying computer-aided modeling method which can be applied to a large class of
interconnected systems is lacking in the main literature.

For the computer-aided design of observers for interconnected systems there exist power-
ful methods in the literature. A limitation, however, is that these approaches are based on
a purely numerical model of the system. In such a model, there is hardly any information
about the physical structure of the system to be observed. On the one hand, this limits the
reusability of the resulting observers, e.g., in case of variations of the physical parameters.
On the other hand, the lack of interpretability hampers the exploitation of physical system
properties for the observer design.

Physical-oriented methods for a computer-aided observer design for interconnected
systems have been rarely reported in the literature so far.

The thesis at hand addresses the above research gaps. The idea is to consistently
automate the physical-based model derivation and observer design for interconnected systems.
Something that is, to the best of our knowledge, neither present in the literature nor existing
in practice. To this end, this thesis follows a port-Hamiltonian approach.

Port-Hamiltonian systems theory combines the Lagrangian/Hamiltonian-based modeling
framework with the network-based modeling framework: on the one hand, PHSs rely on the
Lagrangian/Hamiltonian paradigm in which energy serves as a unifying conserved quantity in
different physical domains; on the other hand, PHSs are build upon the port-based modeling
concept which emphasizes their affinity to the network-based paradigm. The combination of
these two frameworks establishes the advantages of a port-Hamiltonian approach, four of
which are:

i. its scalability to very large interconnected systems;
ii. its inherent ability to treat multi-domain systems;

iii. the deep physical insight provided by port-Hamiltonian models;
iv. the incorporation of nonlinearities while retaining underlying conservation laws.

For these reasons, port-Hamiltonian systems theory is the ideal methodological frame-
work for this thesis. The research objectives—restated in the light of this methodological
approach—are:
(O1) to develop methods for an automated generation of port-Hamiltonian models for a

wide class of interconnected systems,

(O2) to derive methods for an automated design of observers based on the port-Hamiltonian
models obtained from the techniques from O1.
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1.4 Structure and Notation

To ensure orientation and readability, the structure and notation of the remainder of this
thesis are presented here.

Structure Chapter 2 outlines the terminology applied in this thesis and provides the
necessary basics in port-Hamiltonian systems theory. The following three chapters contain
the main contributions of this work. Chapter 3 is devoted to the development of methods and
algorithms for an automated model generation. Methods and algorithms for an automated
observer design are presented in Chapter 4. Chapter 5 provides a proof of principle and
demonstrates the practical usefulness of the automated model generation and observer design.
Finally, the main conclusions of this work are drawn together in Chapter 6.

Notation Sets, groups, and spaces are written in blackboard bold. The cardinality of a set
M is denoted as |M|. The sets N, R, and C are the sets of natural, real, and complex numbers,
respectively. For the dimension of a vector space X we write dim(X). The group of n×n
orthogonal matrices is given by O(n). Vectors and matrices are written in bold font. Let
AAA ∈Rm×n be a matrix with m rows and n columns. For the transpose of AAA we write AAA>. Now
let m = n. The inverse of AAA is denoted by AAA−1 (if it exists). Spec(AAA) denotes the spectrum of
AAA, i.e., its set of eigenvalues. AAA� 0 and AAA� 0 mean that AAA is positive-definite and positive
semi-definite, respectively. A diagonal matrix is denoted by diag(·); likewise, blkdiag(·) is
a block diagonal matrix of matrices. Now let xxx ∈ Rm be a (column) vector. The Euclidean
norm of xxx is denoted as ‖xxx‖. For the kernel, image, and rank of the linear map xxx 7→ AAAxxx we
write ker(AAA), im(AAA), and rank(AAA), respectively.

Throughout this thesis, when using the expressions “we” or “us”, the author presumes
that the readers agree to what he is saying. In particular, these types of expressions are not
intended to imply any personalization of the academic discourse.



Chapter 2
Fundamentals

The aim of this thesis is to develop automatable port-Hamiltonian methods for the model
derivation and the observer design in interconnected systems. This chapter provides the
fundamentals towards this endeavor. To enable a clear and concise presentation of the techni-
cal contents, Section 2.1 outlines the terminology used throughout this work. Afterwards,
Section 2.2 provides selected fundamentals in port-Hamiltonian systems theory which are
necessary to derive automatable methods in chapters 3 and 4.

2.1 Terminology

This section is devoted to the definition of some terms of key importance for this work as,
e.g., interconnected system, automated model generation, and automated observer design.

2.1.1 Interconnected System

Our notion of an interconnected system is guided by the terminology from Willems [2007].
To approach a formal definition of an interconnected system, we first introduce the notion of
an open graph. The following definition is condensed from the elaboration of van der Schaft
and Maschke [2013].

Term 2.1 (Open graph)
An open graph is a directed graph G = (V,B) with vertices V and edges B. The set
VB⊂V is the subset of boundary vertices which represent the interfaces between the
graph system and its environment. The set VI := V \VB contains the inner vertices
of the open graph.

Based on the concept of an open graph, we may now introduce the concept of a networked
system.

7
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Term 2.2 (Networked system)
A networked system Σ is a system which can be described by an open graph G =

(V,B)withV=VI∪VB andB=BI∪BB. The elements ofVI represent multiple, pos-
sibly heterogeneous subsystems of the networked system. The interactions between
the subsystems are expressed by the set of inner edges BI := {(u,v) ∈ B | u,v ∈ VI}.
The subsystems may interact with the system environment via a set of boundary ver-
ticesVB. The boundary vertices are connected to the inner vertices by a set of bound-
ary edges BB := {(u,v) ∈ B | u ∈ VI,v ∈ VB}.

Figure 2.1 illustrates the open graph representation of an exemplary networked system with
nine inner vertices, three boundary vertices, twelve inner edges, and four boundary edges.

B1

B2 B3

1

2

3

4 5

6

7 8

9

system environment

networked system

Figure 2.1: Example of a networked system with nine inner vertices (1, . . . ,9), three boundary vertices
(B1,B2,B3), twelve inner edges, and four boundary edges

A networked system allows for any kind of interaction between the vertices of the open
graph, e.g., by an exchange of matter, information, or energy. This thesis will focus on
networked systems in which the interactions are established by an exchange of energy. The
exchange of energy between vertices requires the presence of a physical interconnection
between them. This motivates the notion of an interconnected system [Willems, 2007].

Term 2.3 (Interconnected system)
An interconnected systemΣ as a networked system inwhich the interactions between
the vertices are established through an exchange of energy.

In this thesis, we consider continuous-time, finite-dimensional, deterministic interconnected
systems. Some well-known examples of such systems are electric circuits (Kugi [2001]),
power systems (Dörfler et al. [2018]), gas networks (Pfeifer et al. [2018]), district heating
networks (Merkert et al. [2019]), interconnected industrial systems (Gao et al. [2019]),
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and battery systems (Kupper [2019]). Other examples are cooperative swarms of drones
(Tahir et al. [2019]), sophisticated automotive power networks (Mantilla-Pérez et al. [2020]),
large-scale mechatronic systems (Deroo [2016]), and adaptive mechanic structures (Warsewa
et al. [2020]).

2.1.2 Automated Model Generation

In order to approach the notion of an automated model generation let us first clarify the
meaning of a mathematical model. The following elaboration is inspired from Wellstead
[1979]:

Term 2.4 (Mathematical model)
Consider a system Σ. A mathematical model is an objective-specific description of Σ

in the form of mathematical functions and equations deduced from available infor-
mation about the system.

Next, the notion of a mathematical model is particularized to a physical-based model.

Term 2.5 (Physical-based model)
Consider a system Σ. A physical-based model is a mathematical model of Σ deduced
from the physical relations that govern the system.

Unless explicitly stated otherwise, in this work the term model denotes a physical-based
model. We aim at explicit ODE models in a state-space representation. Explicit state-space
models are particularly appealing for the design, analysis, and simulation of control systems.
The following definition combines the elaborations from Vidyasagar [1993, p. 1] and van der
Schaft [2016, p. 10]:

Term 2.6 (Explicit state-space model)
Consider a system Σ. An explicit state-space model of Σ is a model of the form

ẋxx(t) = fff (xxx(t),uuu(t), t) , (2.1a)

yyy(t) = ggg(xxx(t),uuu(t), t) , (2.1b)

for all t ∈ R≥0, where uuu(t) ∈ U ⊆ Rp, xxx(t) ∈ X ⊆ Rn, yyy(t) ∈ Y ⊆ Rq and sufficiently
smooth mappings fff : X×U×R≥0 → X, ggg : X×U×R≥0 → Y. The quantities uuu(t),
xxx(t), and yyy(t) are referred to as input, state, and output of the system, respectively;
U,X, andY are denoted as input-space, state-space, and output-space, respectively.

Remark 2.7 (Notation). In the remainder of this thesis, the time-dependence “(t)” of
vectors is omitted in the notation.

For interconnected systems, one distinguishes between global models and local models.
A global model of an interconnected system Σ is a model comprising the entire open graph
G = (V,B). In contrast, a local model is defined only on a connected subgraph G̃ ⊂ G .
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Moreover, we distinguish between a symbolic and a numeric model. In a symbolic model, the
functions fff and ggg from (2.1) depend (besides on xxx, uuu, and t) on the physical system parameters
in symbolic form as, e.g., a resistance R, a mass m, etc.; in contrast, in a numeric model,
the physical parameters are numerically specified, e.g., by information from data sheets or
parameter identification techniques. Hence, such a model is—except for the variables uuu, xxx,
and yyy—completely numerically determined.

Now we have everything prepared to introduce a term of key importance for this thesis,
viz. automated model generation.

Term 2.8 (Automated model generation)
Automated model generation describes the computer-aided derivation of a physical-
based explicit state-space model with minimal human assistance.

The modeling of interconnected systems may easily involve hundreds of equations. In
Chapter 5, we examine two examples for this. For a human developer, dealing with such a
number of equations is cumbersome and prone to error. Hence, this work particularly aims at
automating the formalization step of the model derivation, i.e., the “equation deriving part”.

2.1.3 Automated Observer Design

Observer theory is an important topic in systems and control theory. The observer concept
traces back to Luenberger [1964]. The following conception of an observer is taken from
Trumpf et al. [2011]:

Term 2.9 (Observer)
Given a system Σ whose variables can be partitioned into a set of known or mea-
sured variables and a set of unknown variables to be reconstructed. An observer for
Σ is a deterministic dynamic system which produces reconstructions of the unknown
variables on the basis of the known or measured variables.

We aim at “asymptotic observers” (Trumpf [2013]), i.e., observers where the reconstructions
asymptotically converge towards the values of the unknown variables. If the Euclidean
norm of the reconstruction error converges exponentially to zero, the observer is called
exponentially convergent (cf. Khalil [2002, Def. 4.5]). Moreover, we distinguish between
two observer architectures, viz. a centralized and a distributed observer architecture (cf.
Kupper [2019, Def. 2.5]). Given an interconnected system Σ, in a centralized architecture,
there is a single observer which receives information from all measurement sources to
calculate reconstructions of all unknown variables from Σ. In contrast, in a distributed
architecture, there is a dedicated observer for each subsystem of Σ. In each observer, the
available measurement information and the variables to be reconstructed are local with
respect to the subsystem.

Next, let us clarify the terms observer design and model-based observer design.
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Term 2.10 (Observer design)
Observer design refers to the process of specifying the parameters of an observer.

Term 2.11 (Model-based observer design)
Model-based observer design is an observer design which is based on amathematical
model of the system under consideration.

This thesis focuses on an observer design on the basis of physical-based explicit state-space
models. Such an observer design can rely either on global or local model knowledge (cf.
Deroo [2016]). The latter is of particular interest for the design of a distributed observer.

A model-based observer design can rely either on a symbolic or a numeric model. Ac-
cordingly, these two cases are denoted as symbolic and numeric observer design, respectively.
The former leads to an observer in which the observer parameters depend on the physical
parameters in symbolic form; the latter results in observer parameters that are completely
numerically specified. A symbolic observer design has two advantages over a numeric
observer design. First, a symbolic design provides more insight into the physical background
of the observer parameters. In Chapter 4, it will be shown that this insight allows us to use
the physical properties of the system beneficially for the observer design. Second, a symbolic
observer design enables the reusability of the resulting observer, e.g., in case of parameter
variations. A drawback of a symbolic observer design is that it may lead to computationally
expensive operations on large symbolic expressions. Both, symbolic and numeric observer
designs, are in the scope of this thesis.

Next, let us introduce a notion of major importance for this work, viz. automated
observer design.

Term 2.12 (Automated observer design)
Automated observer design refers to a computer-aided model-based observer design
with minimal human assistance.

The following example motivates the practical usefulness of an automated observer design:

Example 2.13:
Power systems are well-known examples of interconnected systems. State estimation
techniques are crucial for the operation of a power system. The state estimators ap-
plied in nowadays control centers are static. Recently, an IEEE taskforce pointed out
that in consequence of the energy transition, a static state estimation is increasingly in-
adequate and “should be reassessed and enhanced with new monitoring tools, such as
dynamic state estimation” [Zhao et al., 2019]. However, the extent of a power system
with hundred and more inputs, states, and outputs significantly hampers the design of
a dynamic state estimator. An automated observer design can overcome this problem—
as will be seen in Section 5.2.
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2.2 Port-Hamiltonian Systems

This section provides some fundamentals in port-Hamiltonian systems theory which are
necessary for the development of automatable modeling and observer design methods in
chapters 3 and 4, respectively.

In Subsection 2.2.1, we briefly recapitulate the notion of generalized power variables.
Afterwards, Subsection 2.2.2 introduces the concept of a Dirac structure. The focus of this
thesis is on explicit state-space models in form of input-state-output PHSs. This particular
class of PHSs is introduced in Subsection 2.2.3.

2.2.1 Generalized Power Variables

PHSs follow the power- and energy-based concept of the Lagrangian/Hamiltonian modeling
paradigm. A thorough introduction into this concept can be found, e.g., in Breedveld [2009],
Jeltsema and Scherpen [2009], and in the ageless book authored by Wellstead [1979].

The core idea of an energy-based modeling is to use energy as universally, domain-
independent conserved quantity. The interaction between two elements, subsystems, systems,
or alike is coupled to an exchange of energy, i.e., E =

∫
Pdt. The power P is described by two

time-dependent, generalized power variables, viz. a flow fff and an effort eee. Mathematically,
fff and eee are vectors fff ∈ F and eee ∈ E with F an abstract finite-dimensional vector space and
E its dual vector space E := F∗.The exchanged instantaneous power is given by the dual
pairing P = 〈eee | fff 〉.

The generalized variables have straightforward correspondences to system variables
from different physical domains. Table 2.1 summarizes the correspondences between the
generalized variables and the domain-specific variables for the electric, magnetic, mechanic,
hydraulic, thermal, and chemical domain.

Table 2.1: Correspondences between generalized variables and physical variables in the thermody-
namic framework of domains and variables (cf. Breedveld [2009, p. 24])

f flow e effort x state

electric I current V voltage Q charge
magnetic V voltage I current ψ flux linkage
kinetic translation F force v velocity p momentum
potential translation v velocity F force z displacement
kinetic rotation T torque ω angular velocity b angular momentum
potential rotation ω angular velocity T torque θ angular displacement
elastic hydraulic φ volume flow p pressure Λ volume
kinetic hydraulic p pressure φ volume flow Γ momentum of a fluid
thermal fS entropy flow T temperature S entropy
chemical fN molar flow µ chemical potential N number of moles
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This thesis makes use of a correspondence scheme which is known as thermodynamic
framework of domains and variables [Breedveld, 2009, p. 24]. In this framework, the
generalized state xxx is defined as the integral of the generalized flow over time, i.e., xxx :=

∫
fff dt,

see Table 2.1. Moreover, note that for each domain the product of the flow- and the effort-
related variable has the unit of power.

The following example illustrates how the concept of generalized power variables con-
tributes to a unified modeling of physical systems. The example will be successively applied
in this chapter.

Example 2.14:
Consider the electromagnetic, mechanic, and hydraulic systems in Figure 2.2 (a), (b),
and (c), respectively. The systems are structured as follows:
◦ The electromagnetic system consists of a current source feeding a current I0, an
inductor L, a resistor R, and two capacitorsC1 andC2.
◦ Themechanic system is composed of aHookean springwith stiffness k, a damper
with damping constant b, and two masses m1 and m2; an external force F0 acts
on the mass m1.
◦ The hydraulic system consists of a pump providing a volume flow φ0 and two
open tanks with fluid capacitances Cf,1 and Cf,2;1 the two tanks are connected
through a pipe with fluid inertance Lf and fluid resistance Rf.

(a)

−

+

V0

I0

C1

+

−

VC,1

IC,1
L

+ −VL

IL R

+ −VR

IR

C2

+

−

VC,2

IC,2
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(b)

m1 m2

k bF0

FM,1

FS FD

FM,2

v0 vS vD vM,2

(c)

Lf Rf

Cf,1 Cf,2

pT,1 pT,2

p0

pL pR

φ0 φL φR

φT,1 φT,2pT,1

Figure 2.2: Example systems in the electromagnetic (a), mechanic (b), and hydraulic domain (c)

Let us introduce the generalized power variables according to the following table:

fC,1 fC,2 fC,3 fR f0 eC,1 eC,2 eC,3 eR e0

(a) electromagnetic IC,1 IC,2 VL IR I0 VC,1 VC,2 IL VR V0

(b) mechanic FM,1 FM,2 vS FD F0 vM,1 vM,2 FS vD v0

(c) hydraulic φT,1 φT,2 pL φR φ0 pT,1 pT,2 φL pR p0

Under these correspondences the systems fromFigure 2.2 (a), (b), and (c) obey the same
network equations:

f0− fC,1− eC,3 = 0, (2.2a)

e0− fC,3− eR− eC,2 = 0, (2.2b)

eC,3− fR = 0, (2.2c)

fR− fC,2 = 0, (2.2d)

e0− eC,1 = 0. (2.2e)
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2.2.2 Dirac Structures

The notion of a Dirac structure is of central importance for the port-Hamiltonian framework.
The Dirac structure establishes the link between the Lagrangian/Hamiltonian and the network-
based point of view. It describes the network interconnections in form of a power-conserving,
geometric structure. Therewith, the Dirac structure generalizes the symplectic geometry of
the phase-space from the classical Hamiltonian equations of motion [van der Schaft, 2009,
p. 74]. The power-conservation is ensured by relating generalized power variables fff and eee in
such a way that the total power entering (or leaving) the Dirac structure is zero.

In Chapter 3, the determination of a Dirac structure will be the enabling step for an
automated model generation. A detailed introduction into the concept of a Dirac structure
can be found in Bloch and Crouch [1999], van der Schaft [2009], and van der Schaft and
Jeltsema [2014]. The following definition is taken from the latter:

Definition 2.15 (Dirac structure)
Consider the flows fff ∈ F and the efforts eee ∈ E = F∗ where F is an abstract finite-
dimensional vector space. A constant Dirac structure is a subspace D ⊂ F×E such
that

(i) 〈eee | fff 〉= 0, ∀( fff ,eee) ∈ D, (2.3a)

(ii) dimD= dimF. (2.3b)

Property (i) represents the power-conservation of the Dirac structure. The maximal dimen-
sion of any subspace D⊂ F×E satisfying property (i) is dimF [van der Schaft, 2009, p. 56].
Hence, property (ii) requires D to be of maximal dimension.

The following definition extends Definition 2.15 to the situation where a Dirac structure
is modulated by a state vector xxx ∈ X:

Definition 2.16 (Modulated Dirac structure)
A modulated Dirac structure is a family of constant Dirac structures D(xxx)⊂ F×E
indexed over xxx ∈ X.

Remark 2.17 (Real vector spaces). Throughout this thesis we have F = Rn. As E =

(Rn)∗ is isomorphic to Rn, we identify E with Rn.
Definitions 2.15 and 2.16 are coordinate-free. For the practical work, matrix representa-

tions of Dirac structures are of paramount importance. The following definition presents two
matrix representations, viz. the kernel representation and the input-output representation.

1The fluid capacitances Cf,i can be calculated as Cf,i = Ai/(ρg), where Ai is the cross-sectional area
of tank i, ρ the mass density of the (incompressible) fluid, and g the gravitational constant (i = 1,2).
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Definition 2.18 (Kernel representation)
A kernel representation of a modulated Dirac structureD(xxx)⊂Rn×Rn with xxx ∈X is

D(xxx) = {( fff ,eee) ∈ Rn×Rn | FFF (xxx) fff +EEE (xxx)eee = 000}, (2.4)

where the matrices FFF (xxx) and EEE (xxx) satisfy

(i) EEE (xxx)FFF>(xxx)+FFF (xxx)EEE>(xxx) = 000, (2.5a)

(ii) rank(FFF (xxx) EEE (xxx)) = n, (2.5b)

for all xxx ∈ X. The power balance of (2.4) is

eee> fff = 0, ∀( fff ,eee) ∈ D(xxx) . (2.6)

Remark 2.19 (Uniqueness of the kernel representation). The matrices FFF (xxx) and EEE (xxx)
are not uniquely determined by the kernel representation. For example, both ma-
trices can be multiplied from the left by an arbitrary invertible matrix TTT (xxx) without
changing D.

Proposition 2.20 (Input-output representation)
Let D(xxx) ⊂ Rn×Rn with xxx ∈ X be a Dirac structure in kernel representation. Let
rank(FFF (xxx)) = m (≤ n). We select m independent columns of FFF (xxx) and group them
into a matrix FFF1 (xxx). The remaining n−m columns are collected in a matrix FFF2 (xxx).
Possibly after permutations, we write FFF (xxx) = (FFF1 (xxx) FFF2 (xxx)). Correspondingly, we
split EEE (xxx), fff , and eee into (EEE1 (xxx) EEE2 (xxx)),

(
fff>1 fff>2

)>
, and

(
eee>1 eee>2

)>, respectively.
Then, the matrix (FFF1 (xxx) EEE2 (xxx)) is invertible for all xxx ∈ X and an input-output repre-
sentation of D(xxx) is given by

D(xxx) = {( fff ,eee) ∈ Rn×Rn | yyy = ZZZ (xxx)uuu} (2.7)

with
ZZZ (xxx) =−(FFF1 (xxx) EEE2 (xxx))

−1(EEE1 (xxx) FFF2 (xxx)) . (2.8)

The matrix ZZZ (xxx) satisfies ZZZ (xxx) = −ZZZ (xxx)> for all xxx ∈ X. The vectors uuu = (eee>1 fff>2 )
>

and yyy = ( fff>1 eee>2 )
> are referred to as input vector and output vector, respectively. The

power balance of (2.7) is

uuu>yyy = eee>1 fff 1 + fff>2 eee2 = 0, ∀(

(
fff 1

fff 2

)
,

(
eee1

eee2

)
) ∈ D(xxx) . (2.9)

Proof:
Bloch and Crouch [1999] prove this statement for a constant Dirac structure, i.e., the case
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where FFF (xxx) = FFF = const., EEE (xxx) = EEE = const.; the pointwise application of the proof from
Bloch and Crouch [1999] then proves the statement in Proposition 2.20.

Remark 2.21 (Implicit and explicit representations). Due to the structure of the equa-
tion systems, the kernel representation (2.4) and the input-output representation (2.7)
are denoted as implicit and explicit representations, respectively.

In the following, we continue with the example to illustrate the kernel and the input-
output representation of a Dirac structure.

Example 2.22:
Consider the three systems from Example 2.14. By rearranging the network equa-
tions (2.2), the internal interconnection structure of each of the systems can be de-
scribed by a Dirac structure in kernel representation (2.4):

D= {(


fC,1

fC,2

fC,3

fR

f0

 ,


eC,1

eC,2

eC,3

eR

e0

) ∈ R5×R5 |


0
0
0
0
0

=


−1 0 0 0 −1
0 0 1 0 0
1 0 0 1 1
1 1 0 0 1
0 0 0 0 0




− fC,1

− fC,2

− fC,3

− fR

f0

+


0 0 1 0 0
0 −1 0 −1 1
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 1




eC,1

eC,2

eC,3

eR

e0

}.
(2.10)

It can be easily verified that the matrices in (2.10) satisfy the conditions (2.5). An input-
output representation of (2.10) is given by

D= {(


fC,1

fC,2

fC,3

fR

f0

 ,


eC,1

eC,2

eC,3

eR

e0

) ∈ R5×R5 |


− fC,1

− fC,2

− fC,3

− fR

e0

=


0 0 1 0 −1
0 0 −1 0 0
−1 1 0 1 0
0 0 −1 0 0
1 0 0 0 0




eC,1

eC,2

eC,3

eR

f0

}. (2.11)

Note that the equation systems in (2.10) and (2.11) are equivalent to (2.2). The division
of the matrix in (2.11) into matrix blocks will be relevant in the following chapter.
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Example 2.22 gives a first hint that the matrix representations of a Dirac structure can
be derived from the network equations of the system. The structured derivation of such
representations is a central aspect of Chapter 3.

2.2.3 Input-State-Output Port-Hamiltonian Systems

In this thesis, we consider the class of explicit input-state-output PHSs. This is a particularly
important class of PHSs as it represents the starting point for the majority of controller
and observer design methods from the port-Hamiltonian theory, see, e.g., Ortega et al.
[2008], Venkatraman and van der Schaft [2010], Vincent et al. [2016], van der Schaft [2016],
Yaghmaei and Yazdanpanah [2019b].

Explicit input-state-output PHSs have first been introduced in the 1990s; amongst others,
pioneering works are from Maschke and van der Schaft [1992], Maschke et al. [1992], and
van der Schaft and Maschke [1995]. Kugi [2001] was the first to use this system class to solve
practical control engineering problems. Comprehensive information about the theoretical
background of explicit input-state-output PHSs can be found in the textbooks from Duindam
et al. [2009], van der Schaft and Jeltsema [2014], and van der Schaft [2016]. The following
definition is based on the latter:

Definition 2.23 (Explicit input-state-output PHS with feedthrough)
An explicit input-state-output PHS with feedthrough is an explicit state-space model
of the form

ẋxx = (JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu, (2.12a)

yyy = (GGG(xxx)+PPP(xxx))>
∂H
∂xxx

(xxx)+(MMM (xxx)+SSS (xxx))uuu, (2.12b)

where xxx ∈ X ⊆ Rn, uuu ∈ U ⊆ Rp, and yyy ∈ Y ⊆ Rp are the state vector, the input
vector, and the output vector, respectively. The Hamiltonian H is a continuously
differentiable function with H : X→ R that is bounded from below. The matrices
JJJ (xxx), RRR(xxx) ∈ Rn×n, GGG(xxx), PPP(xxx) ∈ Rn×p, MMM (xxx), SSS (xxx) ∈ Rp×p satisfy JJJ (xxx) = −JJJ>(xxx),
MMM (xxx) =−MMM>(xxx), and

ΘΘΘ(xxx) :=

(
RRR(xxx) PPP(xxx)

PPP>(xxx) SSS (xxx)

)
=

(
RRR(xxx) PPP(xxx)

PPP>(xxx) SSS (xxx)

)>
� 0, ∀xxx ∈ X. (2.13)

In the remainder of this work, the class of explicit input-state-output PHSs is briefly denoted
as explicit PHSs. The matrices, functions, and vectors in (2.12) allow for a deep physical
interpretation which is an essential advantage of an explicit PHS over an ordinary state-space
representation: the matrix JJJ (xxx) represents the internal energy-preserving interconnection
in the system; RRR(xxx) accounts for energy-dissipating effects; GGG(xxx), PPP(xxx), MMM (xxx), and SSS (xxx)
specify the interaction between the system and its environment via the system ports. The
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Hamiltonian H is a storage function which is strongly related to the total energy contained in
the system. The instantaneous power exchange between the system and its environment is
given by uuu>yyy.

A limitation of explicit PHSs is given for systems with irreversible thermodynamic pro-
cesses. For such systems, the energy function is defined implicitly as a Legendre submanifold
of the thermodynamic phase-space [Arnold, 1989, Appendix 4]. This implicit definition of
the energy function impedes an explicit modeling.

In the sequel, we turn our attention to a well-known special case of (2.12), viz. to explicit
PHSs without feedthrough.

Definition 2.24 (Explicit PHS without feedthrough)
An explicit input-state-output PHS without feedthrough is an explicit state-space
model of the form

ẋxx = (JJJ(xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+GGG(xxx)uuu, (2.14a)

yyy = GGG> (xxx)
∂H
∂xxx

(xxx), (2.14b)

where xxx, uuu, yyy, and H as in Definition 2.23 and JJJ (xxx) =−JJJ>(xxx), RRR(xxx) = RRR>(xxx)� 0.

The PHS (2.14) is particularly transparent with respect to the underlying Dirac structure. The
input-output representation of the Dirac structure (cf. Proposition 2.20) is specified by the
skew-symmetric matrix

ZZZ (xxx) =

−JJJ (xxx) −GGGR (xxx) −GGG(xxx)
GGG>R (xxx) 000 000
GGG>(xxx) 000 000

 . (2.15)

Hence, in the non-feedthrough case, the matrices JJJ (xxx) and GGG(xxx) of the PHS (2.14) can
directly be determined from the Dirac structure. Likewise, the matrix RRR(xxx) results from
RRR(xxx) =GGGR (xxx) R̃RR(xxx)GGG>R (xxx) for some resistive relation fff R =−R̃RR(xxx)eeeR with R̃RR(xxx) = R̃RR> (xxx)�
0. Our successive example illustrates the formulation of an explicit PHS based on a Dirac
structure.

Example 2.25:
Consider the three systems from Example 2.14. The energy-dissipating elements of
the three systems obey a linear resistive relation of the form fR = −DeR where D =

1/R, D = b, and D = 1/Rf for the electromagnetic, mechanic, and hydraulic system,
respectively. From the resistive relation and the Dirac structure (2.11) we can calculate
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the following explicit PHS:

d
dt

x1

x2

x3

= (

0 0 −1
0 0 1
1 −1 0

−
0 0 0

0 0 0
0 0 D−1

)
∂H
∂xxx

(xxx)+

1
0
0

u, (2.16a)

y =
(

1 0 0
)

∂H
∂xxx

(xxx) . (2.16b)

The states in (2.16) correspond to the generalized states of the energy-storing elements
of the systems. For the electromagnetic system, the states x1 and x2 are given by the
charges Q1 and Q2 on the capacitors C1 and C2, respectively; the state x3 relates to
the flux linkage of the inductor L. The input and output of the model are given by the
current I0 and the voltage V0, respectively. For the mechanic and hydraulic systems,
one can draw similar correspondences as summarized in the following table:

state x1 state x2 state x3 input u output y

(a) electromag. charge Q1 charge Q2 flux linkage ψ current I0 voltage V0

(b) mechanic momentum p1 momentum p2 displacement z0 force F0 velocity v0

(c) hydraulic volume Λ1 volume Λ2 momentum Γ volume flow φ0 pressure p0

The Hamiltonian in (2.16) is the sum of the energies of the individual energy-storing
elements and can be expressed as

H (xxx) =
1
2

xxx>

q1 0 0
0 q2 0
0 0 q3

xxx, (2.17)

where q1, q2, q3 are equal to C−1
1 , C−1

2 , L−1 for the electromagnetic system; m−1
1 , m−1

2 ,
k for the mechanic system; andC−1

f,1 ,C
−1
f,2 , L−1

f for the hydraulic system.

The previous example shows that PHSs can be used to model systems from different
domains in a unifying framework. The three systems are form equivalent and lead to
structurally identical port-Hamiltonian models. This, however, is an absolute special case. In
general, different systems will lead to port-Hamiltonian models of different structures.

Example 2.25 illustrates that a PHS preserves the underlying physical structure of the
system and therewith allows for a deep physical insight. Moreover, we have seen that a
port-Hamiltonian modeling approach differentiates between the network model and the
constitutive relations of the components. The Dirac structure is the connecting element as it
links the generalized port variables to the constitutive relations of the components connected
to the ports. This gives the port-Hamiltonian approach a high degree of modularity.

Another advantageous property of explicit PHSs is that they are inherently passive.



2.2. Port-Hamiltonian Systems 21

Proposition 2.26 (Passivity of explicit PHSs)
The explicit PHS fromDefinition 2.23 is passive. Moreover, if thematrixΘΘΘ(xxx) in (2.13)
is positive-definite for all xxx ∈ X, the PHS is strictly passive.

Proof:
The proof can be found in Appendix A.1.

Remark 2.27 (Passivity of non-feedthrough PHSs). The claim from Proposition 2.26
applies also for the PHS from Definition 2.24. For strict passivity, the requirement
of positive definiteness in (2.13) simplifies to RRR(xxx) = RRR>(xxx)� 0 for all xxx ∈ X.

The inherent passivity of PHSs facilitates the use of this system class for passivity-based
control design techniques [van der Schaft, 2016]. In Chapter 4, the passivity of PHSs will be
exploited for the automated model-based design of observers.

Another noteworthy property of an explicit PHS is that the system output yyy is determined
mainly on the basis of physical considerations, cf. Example 2.25. Hence, in general, the
output variables are different from the measured variables.2 This will also be taken into
account in Chapter 4.

This concludes the fundamentals chapter. Based on this groundwork, we will develop
port-Hamiltonian methods for an automated model generation and observer design in the
following two chapters.

2An exception in which the output variables coincide with the measurement variables is given for a
collocated actuator/sensor configuration.





Chapter 3
Automated Model Generation

This chapter addresses the development of methods for an automated generation of explicit
port-Hamiltonian models for interconnected systems. First, in Section 3.1 we review the
techniques that are available in the literature for describing an interconnected systems as
a PHS. We will identify a research gap in which existing methods suffer from different
shortcomings impeding an automated model generation. Based on this research gap the aims
of this chapter are formulated. Section 3.2 addresses these aims by deriving new methods
for the modeling of interconnected systems as PHSs. These methods constitute algorithms
which allow for the automated generation of explicit PHSs. The results from Section 3.2 will
be discussed in Section 3.3. The chapter ends with a brief summary of the main insights in
Section 3.4.

3.1 Literature Review

There have been different approaches for the derivation of port-Hamiltonian models of
interconnected systems. The basic idea of these approaches is to formulate a PHS by
describing the topological structure of the system as a graph. The available methods from
the literature are detailed in the sequel.

A pioneering work on the graph-based derivation of PHSs stems from Kugi [2001]. The
author describes electromagnetic systems as directed graphs. Based on the graph description,
a method for the structured derivation of an explicit port-Hamiltonian model is proposed.
Another milestone in this field stems from van der Schaft and Maschke [2013]. The authors
describe various interconnected systems as open directed graphs. Based on the directed
graphs, explicit port-Hamiltonian models are obtained. Fiaz et al. [2013] take up the idea
from van der Schaft and Maschke [2013] and propose a systematic framework for the port-
Hamiltonian modeling of power networks. Circuit graphs are used by Falaize and Hélie
[2016] to derive port-Hamiltonian models of analog circuits. The method from Falaize and
Hélie [2016] has been implemented in a Python tool to enable an automated model generation
of differential-algebraic equation (DAE) models, see Falaize and Hélie [2019]. Another
graph approach is proposed by Scheuermann et al. [2020]. The authors use solid graphs

23
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to derive discrete-time port-Hamiltonian models for the heat transfer in metallic foams. A
graph-based port-Hamiltonian model for adaptive mechanic structures has been presented by
Warsewa et al. [2020]. Gernandt et al. [2021] derive a method for a graph-based modeling of
nonlinear electrical circuits as implicit PHSs.

The above graph-based approaches are easy to automate and allow for a time-efficient
modeling of different classes of interconnected systems. However, as pointed out in the
conclusion of van der Schaft and Maschke [2013], approaches based on classical graphs
are limited to conservation or balance laws within a particular physical domain. This is
emphasized by the fact that each of the above-mentioned graph-based modeling techniques
aims at a special class of interconnected systems. Hence, these approaches cannot be applied
for a wide class of interconnected systems. In particular, they disallow for a treatment of
multi-domain systems.

The bond graph methodology is a promising framework to overcome the limitations
imposed by classical graph approaches [van der Schaft and Maschke, 2013]. Bond graphs are
a domain-neutral graphical representation of physically networked systems. By this, bond
graphs are an ideal starting point for the modeling of a large class of interconnected systems
involving the electric, mechanic, hydraulic, thermal, and chemical domains [Breedveld, 2009,
p. 24]. The bond graph concept was devised by Paynter [1961] and refined by Karnopp,
Rosenberg, and others. For a thorough introduction into the bond graph framework refer
to Borutzky [2010] or Karnopp et al. [2012]. For the derivation of a PHS, bond graphs are
particularly appealing as both—bond graphs and PHSs—share the same physically unifying
power- and energy-based modeling paradigm.

Rosenberg [1971] was the first to systematically derive a state-space formulation of bond
graphs. The method is based on a mathematical representation of the bond-graph referred to
as field representation. The formulation of a bond graph as a PHS was first investigated by
Golo et al. [2003]. The authors show that each well-posed bond graph permits an implicit
port-Hamiltonian formulation. Such an implicit PHS aims at a use in numerical simulations.
For the design of port-Hamiltonian control methods, however, an explicit PHS is required.
The transfer from an implicit to an explicit port-Hamiltonian representation is non-trivial. In
particular, as will be seen later, the existence of an explicit port-Hamiltonian formulation of a
bond graph is not guaranteed, even if the bond graph is well-posed. Lopes [2016] addresses
the formulation of a bond graph as differential-algebraic PHS. It has been shown that such
a differential-algebraic PHS can possibly be transferred into an explicit input-state-output
PHS [Lopes, 2016]. Concerning this transfer, there exists a sufficient condition which,
however, is restrictive as it demands some block matrices of the underlying Dirac structure to
be zero. A necessary condition for the existence of an explicit port-Hamiltonian formulation
of a bond graph is missing in the literature. Donaire and Junco [2009] provide a method
transferring a class of causal bond graphs to an explicit input-state-output PHS. The approach
is restricted to non-feedthrough systems. As with Rosenberg [1971], the starting point of
Donaire and Junco [2009] is a bond graph field representation. In the field representation,
the authors assume some of the block matrices to be constant or zero. Dai [2016] proposes a
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concept for formulating bond graphs as simulation models with port-Hamiltonian dynamics.
However, the models are not formulated as input-state-output PHSs and are restricted to a
use in numerical simulations.

As can be seen from the above, bond graphs are a promising starting point for the gener-
ation of port-Hamiltonian models. Nevertheless, the automated explicit port-Hamiltonian
formulation of bond graphs has only been treated for various special cases in literature
so far. Lopes [2016] and Donaire and Junco [2009] address this topic but are restricted
to particular classes of bond graphs. Moreover, the literature lacks necessary conditions
for the existence of an explicit port-Hamiltonian formulation of bond graphs. The results
of Lopes [2016] suggest that an automated generation of port-Hamiltonian models from
bond graphs is possible. However, a specific method which can be fully automated is missing.

The remainder of this chapter addresses the automated generation of explicit port-
Hamiltonian models from bond graphs. The specific aims are:

(i) to provide methods for the automated generation of an explicit port-Hamiltonian
model (2.12) based on bond graphs,

(ii) to derive necessary and sufficient conditions for the existence of the models in (i),
(iii) to implement the results from (i) and (ii) in algorithms that enable an automated

generation of explicit PHSs for a large class of interconnected systems.

3.2 Main Results

The previous section stated the aims of this chapter. This section presents the the main
results to reach these aims. Subsection 3.2.1 first present the solution strategy. Afterwards,
subsections 3.2.2 to 3.2.6 follow a stepwise procedure which will lead to the main results
to be presented in subsections 3.2.7 and 3.2.8. The results from this research have been
reported by Pfeifer et al. [2019b], Pfeifer et al. [2020a], Pfeifer et al. [2020b].

3.2.1 Basic Idea and Notation

PHSs and bond graphs are related by their port- and energy-based foundations. The leading
idea of the following subsections is to exploit this relationship to a high degree. To this end,
we strictly distinguish between balance equations and constitutive relations. The former are
described by means of a Dirac structure. Transferring this Dirac structure from an implicit to
an explicit representation will be the crucial step on the way to an explicit PHS.

The structure of the approach is depicted in Figure 3.1. Subsection 3.2.2 initially presents
a formal description of a bond graph. The formalized bond graph builds the basis for an
algorithmic implementation of the developed methods. In Subsection 3.2.3, the power-
conserving, energy-routing elements of the bond graph are described by a set of Dirac
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structures in implicit form. The set of Dirac structures is composed into one single Dirac
structure in Subsection 3.2.4. In Subsection 3.2.5, we transfer the composite Dirac struc-
ture from an implicit to an explicit representation. Based on the constitutive relations of
storages and resistors from Subsection 3.2.2 and the explicit form of the Dirac structure,
an explicit port-Hamiltonian formulation of a bond graph is derived in Subsection 3.2.6.
Subsection 3.2.7 summarizes the insights from the previous sections in a theorem and a
corresponding algorithm. Subsection 3.2.8 refines the result from Subsection 3.2.7 for a case
of particular practical interest, viz. for bond graphs containing dependent storages.

Formalized
bond graph
(Subsec. 3.2.2)

Set of Dirac
structures
(implicit form)

Single Dirac
structure
(implicit form)

Single Dirac
structure
(explicit form)

Explicit port-
Hamiltonian
model

Subsec. 3.2.3 Subsec. 3.2.4 Subsec. 3.2.5 Subsec. 3.2.6

Subsec. 3.2.6
Subsec. 3.2.7

Figure 3.1: Structure of the approach for an automated generation of explicit PHSs from bond graphs

This section makes use the following notation. Let G = (V,B) be a directed graph. G is
weakly connected if replacing its directed edges with undirected edges yields a connected
(undirected) graph. The set

B(u) := {(v,u),(u,v) ∈ B | v ∈ V} (3.1)

with M(u) := |B(u)| contains all incident edges at u ∈ V. The sets

←−
B (u) := {(v,u) ∈ B | v ∈ V}, (3.2a)
−→
B (u) := {(u,v) ∈ B | v ∈ V} (3.2b)

are the ingoing and outgoing edges at u∈V, respectively. Moreover, let M be a set of indices.
For each i ∈M, let AAAi ∈ Rn×mi be a matrix with n rows and mi columns. For the horizontal
concatenation of all AAAi we write (AAAi) and append “for all i ∈M”. Further, for each i ∈M,
suppose a (column) vector xxxi ∈ Rn. For the vertical concatenation of all xxxi we write (xxxi) and
append “for all i ∈M”.
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Sf Se

C R 0

1

GY

TF

. . .

. . .

Figure 3.2: Graphical representation of different types of bond graph elements

3.2.2 Bond Graph Formalization

Let us consider K-dimensional bond graphs (K ∈ N≥1) in the generalized bond graph frame-
work1 with the following types of elements: storages (C), modulated resistors (R), sources of
flow (Sf), sources of effort (Se), 0-junctions (0), 1-junctions (1), modulated transformers (TF)
and modulated gyrators (GY). Figure 3.2 illustrates the graphical representations of the
different types of elements. The set

E := {C,R,Sf,Se,0,1,TF,GY} (3.3)

collects the different types of elements. We now describe the topology of a bond graph by
a directed graph. For each α ∈ E, let us define a set Vα of cardinality Nα := |Vα | which
contains all elements of type α . Elements of type C, R, Sf, Se are denoted as exterior
elements; elements of type 0, 1, TF, GY are referred to as interior elements. The sets of
exterior and interior elements are defined as

VE := VC∪VR∪VSf∪VSe, NE := |VE|, (3.4a)

VI := V0∪V1∪VTF∪VGY, NI := |VI|, (3.4b)

respectively. The union V := ∪α∈EVα = ∪α∈{E,I}Vα is the set of all bond graph elements
(N := |V|). The N elements of V are connected by a set B of M bonds, i.e., M := |B|. Each
bond j ∈ B carries a flow fff j ∈ RK and an effort eee j ∈

(
RK
)∗.2

The directed graph G = (V,B) describes the topology of the bond graph. Analogous to
the naming of elements, we define sets of exterior and interior bonds:

BE := {(u,v),(v,u) ∈ B | v ∈ VE,u ∈ VI}, ME := |BE|, (3.5a)

BI := {(u,v) ∈ B | u,v ∈ VI}, MI := |BI|. (3.5b)

The set BE contains bonds which connect an exterior element to an interior element; BI

contains bonds which connect two interior elements with each other.3

1In contrast to the standard bond graph framework, the generalized bond graph framework comprises
only one type of storage elements, viz. C-type storages [Breedveld, 2009, p. 24].

2As
(
RK
)∗ is isomorphic to RK it is identified with RK .

3Without loss of generality we exclude the presence of bonds interlinking two exterior elements.
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We consider bond graphs that are non-degenerate, i.e., bond graphs where G = (V,B) is
weakly connected, and where each exterior element is connected by exactly one bond to one
interior element, i.e., for each v ∈ VE we have V(v) ⊂ VI with |B(v)| = 1 and |V(v)| = 1.
Moreover, we use the bond orientation rules from standard bond graph literature [Borutzky,
2010, p. 59] in which bonds are incoming to storages and resistors and outgoing from
sources of flow and effort. Without loss of generality, we assume each transformer and each
gyrator to have exactly one incoming and exactly one outgoing bond in order to enable an
unambiguous definition of transformer and gyrator ratios.

Next, we define and analyze an essential part of the bond graph, viz. the junction
structure.

Definition 3.1 (Junction structure)
The junction structure of a bond graph is the subgraph GI ⊂ G with GI = (VI,BI).

Property 3.2 (Bond graph properties)
From the properties of a non-degenerate bond graph, it follows: GI is weakly con-
nected, B= BE∪BI, and ME = NE.

So far, we described the topology of the bond graph by means of a directed graph. Next, we
formalize the constitutive relations of the bond graph elements. To this end, let us first make
the following two assumptions:

Assumption 3.3 (Modulation)
Modulation of resistors, transformers and gyrators can be expressed only in depen-
dence on states of C-type elements and constant parameters.

Assumption 3.4 (Dissipation)
The constitutive relations of modulated resistors are linear with respect to the respec-
tive power-port variables and in Onsager form.4

Borutzky [2010, p. 159] has shown that bond graphs violating Assumption 3.3 cannot
in general be formulated in an explicit form. Likewise, Assumption 3.4 is a well-known
requirement for formulating an explicit PHS of the form (2.12) (cf. van der Schaft and
Jeltsema [2014, p. 53]).

Now the constitutive relations for the different types of bond graph elements can be
specified.

◦ Each storage element i ∈ VC is specified by a constitutive relation of the form

fff j = ẋxxi, eee j =
∂Vi

∂xxxi
(xxxi), (3.6)

with j ∈ B(i) and energy state xxxi ∈ Xi, dim(Xi) = K (cf. [Borutzky, 2010, p. 357]).
The function Vi : Xi → R, xxxi 7→ Vi(xxxi) is a differentiable storage function that is

4For the notion of the Onsager form, refer to Borutzky [2010, p. 364].
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bounded from below. This storage function describes the energy contained in storage
i. The energy states of all storage elements are collected in an overall energy state
xxx := (xxxi) for all i ∈ VC with xxx ∈ X, dim(X) = KNC. The composite storage function
V (xxx) := ∑i∈VC Vi(xxxi) describes the energy of all storages.5

◦ Each resistive element i ∈ VR is given by a constitutive relation in Onsager (conduc-
tance) form [Borutzky, 2010, p. 365]

fff j = DDDi(xxx)eee j, (3.7)

with j ∈ B(i), DDDi(xxx) ∈ RK×K , and DDDi(xxx) = DDDi(xxx)> � 0. The matrices DDDi(xxx) are col-
lected in an overall dissipation matrix DDD(xxx) := blkdiag(DDDi(xxx)) for all i ∈ VR with
DDD(xxx) = DDD(xxx)> � 0.

◦ Elements i of type 0 and type 1 obey

i ∈ V0 : ∑
j∈
←−
B (i)

fff j− ∑
j∈
−→
B (i)

fff j = 000, eee j = eeek, ∀ j,k ∈ B(i) (3.8)

and

i ∈ V1 : ∑
j∈
←−
B (i)

eee j− ∑
j∈
−→
B (i)

eee j = 000, fff j = fff k, ∀ j,k ∈ B(i). (3.9)

◦ Transformers and gyrators are determined by constitutive relations of the form

i ∈ VTF : fff j =UUU i (xxx) fff k, eeek =UUU>i (xxx)eee j, (3.10)

and

i ∈ VGY : eee j =WWW i (xxx) fff k, eeek =WWW>i (xxx) fff j, (3.11)

where j ∈
←−
B (i), k ∈

−→
B (i) [Borutzky, 2010, pp. 358–359]. The square matrices UUU i (xxx)

and WWW i (xxx) have full rank K for all xxx ∈ X and are assembled in a transformer matrix
UUU (xxx) := blkdiag(UUU i (xxx)) and a gyrator matrix WWW (xxx) := blkdiag(WWW i (xxx)) for all i∈VTF

and VGY, respectively.

Source elements i ∈ VSf ∪VSe describe conditions at the system boundary. Thus, these
elements are not subject to specific constitutive relations.

Now we have all prerequisites for a formal definition of a bond graph.

5Note that from the properties of Vi(xxxi) it follows that V (xxx) is differentiable and bounded from below.
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Definition 3.5 (Bond graph)
Let assumptions 3.3 and 3.4 hold. A bond graph is a tuple

BG := (V,B,X,V,DDD,UUU ,WWW ,K) , (3.12)

with a set of elementsV, a set of bondsB, a state-spaceX, an energy storage function
V : X 7→ R, a dissipation matrix DDD(xxx), a transformer matrix UUU (xxx), a gyrator matrix
WWW (xxx), and dimension K. The matrices DDD,UUU ,WWW are parametrized over xxx ∈ X.

Remark 3.6 (Single- undmulti-bond graphs). In the literature, bond graphs with K = 1
are referred to as single-bond graphs and bond graphs with K > 1 are denoted as
multi-bond graphs Borutzky [2010]. Unless stated otherwise, the term “bond graph”
refers to a multi-bond graph.

In the following, the formal definition of a bond graph is applied to an example system.
In the course of chapters 3 and 4, this example system will continuously be used to exemplify
the developed methods. This demonstrates the algorithmic nature of these methods.

Example 3.7:
Consider the K-dimensional bond graph in Figure 3.3.

TF: UUU(xxx1) 01

GY: III

Se Sf

C: V1(xxx1) C: V2(xxx2)

C: V3(xxx3)R: DDD

eee1

fff 1

eee2

fff 2

eee3 fff 3

eeeC3

fff C3

eeeSf

fff Sf

eeeSe

fff Se

eeeR fff R

eeeC1fff C1
eeeC2fff C2

Figure 3.3: Exemplary bond graph

The elements and bonds are summarized in V = VE ∪VI, B = BE ∪BI, respectively,
with VE = {C1,C2,C3,R,S f ,Se}, VI = {0,1,T F,GY}, BE = {C1,C2,C3,R,S f ,Se}, and
BI = {1,2,3}. Note that in Figure 3.3 the elements of B are not explicitly highlighted
but can be identified from the indices of the efforts and flows. The system state vector
is xxx =

(
xxx>1 xxx>2 xxx>3

)> ∈ X where

X= {

xxx1

xxx2

xxx3

 ∈ R3K | ‖xxx1‖< ∞}.6 (3.13)
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Suppose an arbitrary, differentiable, non-negative storage function

V (xxx) =V1(xxx1)+V2(xxx2)+V3(xxx3). (3.14)

The R-type element is specified by a matrix DDD ∈ RK×K with DDD = DDD> � 0. The trans-
former T F is modulated by xxx1. The transformation ratio is given by a full rank matrix
UUU (xxx) =UUU> (xxx) ∈ RK×K with

UUU(xxx1) = exp(−κ diag(xxx1)) . (3.15)

where exp(·) denotes the matrix exponential. The gyrator GY has a constant gyration
ration of WWW = III ∈ RK×K . The formal description of the bond-graph from Figure 3.3 is
then given by

BG = ({C1,C2,C3,R,S f ,Se,0,1,T F,GY} ,{C1,C2,C3,R,S f ,Se,1,2,3} ,
X,V1(xxx1)+V2(xxx2)+V3(xxx3),DDD,exp(−κ diag(xxx1)) , III,K), (3.16)

where X and DDD as described above.

Recall that the problem addressed in this chapter is to derive an automatable modeling
method that transfers a bond graph into an explicit input-state-output PHS. In this context, it
is crucial that such a PHS respects the causality of the source elements of the bond graph.
In other words, the input vector of the PHS has to include flows of Sf elements and efforts
of Se elements, while the output vector has to include efforts of Sf elements and flows of
Se elements. This is formalized in the following property:

Property 3.8 (Inputs and outputs)
Let Bα = ∪i∈Vα

B(i) for α ∈ {Sf,Se}. The input vector uuu consists of ( fff j), (eeek) while
the output vector yyy consists of (eee j), ( fff k) for all j ∈ BSf, k ∈ BSe.

Based on Definition 3.5 and Property 3.8 we may now formally specify the problem under
consideration.

Problem 3.9 (Automated port-Hamiltonian formulation of a bond graph)
Given a bond graph as in Definition 3.5. What is an automatedmodelingmethod that
formulates the bond graph as a PHS (2.12)with Property 3.8? Under which conditions
does such a port-Hamiltonian formulation of a bond graph exist?

In the following subsections 3.2.3 to 3.2.6, we elaborate a solution to Problem 3.9.

6The state-space is restricted to bounded values of xxx1 in order to ensure the full rank property of the
matrix (3.15) for all xxx ∈ X.
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3.2.3 Description of Interior Elements as Dirac Structures

Let us first focus on the junction structure of the bond graph. The idea in this subsection is
to describe each element of the junction structure by a dedicated Dirac structure. For the
Dirac structure we formulate a generic pattern which makes its generation appealing for an
automation. Before we consider the main lemma of this subsection, viz. Lemma 3.12, we
introduce two preliminary statements. In the sequel, we will often modify flows and efforts
from Dirac structures by means of permutations. If the flows and efforts of a particular Dirac
structure are permuted in the same manner, this can be seen as a change of basis. Intuitively,
such a change of basis should not alter the fact that the considered vector space is a Dirac
structure. Proposition 3.10 and Corollary 3.11 formally analyze this intuition and provide a
practical calculation law to formulate the Dirac structure in the new coordinates.

Proposition 3.10 (Orthogonal transformation)
Consider a modulated Dirac structure (2.4) and let TTT (xxx) ∈O(n) be a family of orthog-
onal matrices parametrized over xxx ∈ X. Then

D̃(xxx) = {( f̃ff , ẽee) ∈ Rn×Rn | F̃FF (xxx) f̃ff + ẼEE (xxx)ẽee = 000} (3.17)

with F̃FF (xxx) = FFF (xxx)TTT (xxx)>, ẼEE (xxx) = EEE (xxx)TTT (xxx)> is a modulated Dirac structure.

Proof:
Inserting fff = TTT (xxx)> f̃ff and eee = TTT (xxx)> ẽee into (2.4) gives (3.17). Equation (3.17) is a Dirac
structure as it fulfills (2.5):

(i) F̃FF (xxx) ẼEE>(xxx)+ ẼEE (xxx) F̃FF>(xxx) = FFF (xxx)EEE>(xxx)+EEE (xxx)FFF>(xxx) = 000, (3.18a)

(ii) rank
(

F̃FF (xxx) ẼEE (xxx)
)
= rank

((
FFF (xxx) EEE (xxx)

)
TTT>(xxx)

)
= rank

(
FFF (xxx) EEE (xxx)

)
= n.

(3.18b)

Corollary 3.11 (Equivalent Dirac structures)
Given two vector spaces Di (xxx) = {( fff i,eeei) ∈ Rn×Rn | FFF i (xxx) fff i +EEE i (xxx)eeei = 000} with
xxx ∈ X, i ∈ {1,2}. If for every xxx ∈ X there exists a TTT (xxx) ∈ O(n) such that ( fff 1,eee1) 7→
(TTT (xxx) fff 1,TTT (xxx)eee1) is a bijection between D1 (xxx) and D2 (xxx), then “D1 (xxx) is a Dirac
structure” is equivalent to “D2 (xxx) is a Dirac structure”.

Proof:
The proof follows directly from a twofold application of Lemma 3.10.

Now follows the main lemma of this subsection. This lemma makes use of the following
notation: 000K is the K×K-dimensional zero matrix; 000a,b

K is an (a×b) block matrix of zero
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matrices 000K . Analogously, IIIK is the K×K-dimensional identity matrix and IIIa×b
K is an (a×b)

block matrix of identity matrices IIIK .

Lemma 3.12 (Set of Dirac structures)
Given a bond graph (3.12)with the set of interior elementsVI =V0∪V1∪VTF∪VGY,
NI = |VI|. The constitutive relations of all elements of VI can be described by a set
of Dirac structures DS with |DS| = NI. For each element i ∈ VI there exists a corre-
sponding element Di (xxx) ∈ DS with

Di (xxx) = {(

((
fff j
)

( fff k)

)
,

(
(eee j)

(eeek)

)
) ∈ RK·M(i)×RK·M(i) |

FFF i (xxx)

( (
fff j
)

−( fff k)

)
+EEE i (xxx)

(
(eee j)

(eeek)

)
= 000},

(3.19)

where j ∈
←−
B (i),k ∈

−→
B (i), and B(i) =←−B (i)

⋃−→
B (i)with M(i) := |B(i)|. Depending on

the type of i, the matrices FFF i (xxx) and EEE i (xxx) in (3.19) are of one of the following forms:

i ∈ V0 : FFF i (xxx) =

(
III1×M(i)

K

000(M(i)−1)×M(i)
K

)
, (3.20a)

EEE i (xxx) =

(
000K 0001×(M(i)−1)

K

III(M(i)−1)×1
K −IIIK(M(i)−1),

)
, (3.20b)

i ∈ V1 : FFF i (xxx) =

(
000K 0001×(M(i)−1)

K

III(M(i)−1)×1
K −IIIK(M(i)−1)

)(
IIIK·|
←−
B (i)| 000

000 −IIIK·|
−→
B (i)|

)
,

(3.20c)

EEE i (xxx) =

(
III1×M(i)

K

000(M(i)−1)×M(i)
K

)(
IIIK·|
←−
B (i)| 000

000 −IIIK·|
−→
B (i)|

)
, (3.20d)

i ∈ VTF : FFF i (xxx) =

(
IIIK UUU i (xxx)
000K 000K

)
, (3.20e)

EEE i (xxx) =

(
000K 000K

−UUU>i (xxx) IIIK

)
, (3.20f)

i ∈ VGY : FFF i (xxx) =

(
000K WWW i (xxx)
−WWW>i (xxx) 000K

)
, (3.20g)

EEE i (xxx) =

(
IIIK 000K

000K IIIK

)
. (3.20h)

Proof:
First, we prove that each element Di (xxx) ∈ DS describes the constitutive relations of the
corresponding interior element i ∈VI. Second, we show that the elements Di (xxx) ∈DS define
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Dirac structures.
For i∈V0∪VTF,∪VGY, we insert the matrices ((3.20a),(3.20b)), ((3.20e),(3.20f)), ((3.20g),(3.20h))
into the equation system of (3.19) and obtain the constitutive relations (3.8), (3.10), (3.11), re-
spectively. Analogously, for i ∈ V1 we may write (3.9) as F̃FF i f̃ff i + ẼEE iẽeei = 000 with(

000K 0001×(M(i)−1)
K

III(M(i)−1)×1
K −IIIK(M(i)−1)

)((
f̃ff j
)(

f̃ff k
))+

(
III1×M(i)

K

000(M(i)−1)×M(i)
K

)(
(ẽee j)

−(ẽeek)

)
= 000, (3.21)

for all j ∈
←−
B (i),k ∈

−→
B (i). To bring (3.21) to the form of the equation system in (3.19), we per-

form a change of coordinates fff i = TTT>i f̃ff i, eeei = TTT>i ẽeei, with TTT i = blkdiag(IIIK·|
←−
B (i)|,−IIIK·|

−→
B (i)|)

which yields ((3.20c),(3.20d)).
Inserting the matrices FFF i (xxx) and EEE i (xxx) from ((3.20a),(3.20b)), ((3.20e),(3.20f)), ((3.20g),(3.20h))

into (2.5) shows that these matrices indeed define Dirac structures. Analogously, the matrices
F̃FF i and ẼEE i from (3.21) define a Dirac structure. As TTT i ∈ O(M(i)), by Corollary 3.11 the
matrices ((3.20c),(3.20d)) then also define a Dirac structure.

Remark 3.13 (Dirac structures for 0- and 1-type elements). In Lemma 3.12, for i ∈
V0 ∪V1 we have FFF = const. and EEE = const., i.e., the matrices FFF (xxx) and EEE (xxx) are
independent of xxx. The corresponding Dirac structures are thus non-modulated Dirac
structures.

With the following example we continue Example 3.7 and illustrate the generation of
Dirac structures according to Lemma 3.12:

Example 3.14:
Consider the K-dimensional bond graph from Example 3.7 with its formal description
(3.16). The set of interior elements is given by VI = {0,1,T F,GY} with NI = 4. Define
a corresponding set of Dirac structures DS = {D0,D1,DT F ,DGY} where the elements
Di are of the form (3.19) (i ∈ VI). By applying the calculation rules from the above
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Lemma 3.12, the equation systems of the Dirac structures read: 7

D0 :


III III III III
000 000 000 000
000 000 000 000
000 000 000 000




fff S f

fff 2

− fff C2

− fff 3

+


000 000 000 000
III −III 000 000
III 000 −III 000
III 000 000 −III




eeeS f

eee2

eeeC2

eee3

= 000, (3.22a)

D1 :


000 000 000 000
III III 000 000
III 000 III 000
III 000 000 III




fff Se

− fff C1

− fff R

− fff 1

+


III −III −III −III
000 000 000 000
000 000 000 000
000 000 000 000




eeeSe

eeeC1

eeeR

eee1

 = 000, (3.22b)

DT F :

(
III UUU(xxx1)

000 000

)(
fff 1

− fff 2

)
+

(
000 000
−UUU(xxx1) III

)(
eee1

eee2

)
= 000, (3.22c)

DGY :

(
000 III
−III 000

) (
fff 3

− fff C3

)
+

(
III 000
000 III

)(
eee3

eeeC3

)
= 000, (3.22d)

whereUUU(xxx1) = exp(−κ diag(xxx1)) (cf. (3.15)).

3.2.4 Composition into a Single Dirac Structure

From Lemma 3.12 we obtain NI Dirac structures which describe the constitutive equations
of the NI interior elements of the bond graph. Next, we compose these NI Dirac structures
obtained into one single Dirac structure. To this end, we follow the idea from Batlle et al.
[2011] who proposed to describe the interconnection of some Dirac structures again by a
Dirac structure—a so-called interconnection Dirac structure [Batlle et al., 2011].

The NI Dirac structures from Lemma 3.12 are formulated such that the vectors and
matrices are ordered according to ingoing and outgoing bonds. For the determination of
an interconnection Dirac structure, we first rewrite these Dirac structures such that the
interconnection variables (i.e., the flows and efforts of interior bonds) become visible.

7Throughout this example, square zero matrices and identity matrices are of dimension K.
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Proposition 3.15 (Rewriting the Dirac structures)
Consider the situation from Lemma 3.12with the set of Dirac structuresDS. LetBI(i)
and BE(i) denote the sets of interior and exterior bonds at i ∈VI, respectively. For all
i ∈ VI, the elements Di ∈ DS can then be written such that the vectors and matrices
of Di are sorted by exterior and interior bonds:

Di (xxx) = {(

((
fff j
)

( fff k)

)
,

(
(eee j)

(eeek)

)
) ∈ RK·M(i)×RK·M(i) |

((FFF j (xxx)) (FFFk (xxx)))

((
ε( j) fff j

)
(ε(k) fff k)

)
+((EEE j (xxx)) (EEEk (xxx)))

(
(eee j)

(eeek)

)
= 000}, (3.23)

for all j ∈ BE(i),k ∈ BI(i) where ε : B(i)→{−1,1} is a sign function with

ε(b) =

{
1, b ∈

←−
B (i),

−1, b ∈
−→
B (i).

(3.24)

Proof:
From Property 3.2 we know that B= BE∪BI. It follows that for each i ∈VI we can permute
the vectors and matrices of Di ∈DS in (3.19) such that they are sorted by exterior and interior
bonds. The rest follows from Corollary 3.11.

Based on Proposition 3.15, we may now formulate an interconnection Dirac structure by
relating the flows and efforts of the interior bonds of the Dirac structures (3.23).

Proposition 3.16 (Interconnection Dirac stucture)
Consider the Dirac structures (3.23). For each i ∈ VI, let us define fff IC

i := (ε(k) fff k)

and eeeIC
i := (eeek) for all k ∈ BI(i). For the Dirac structures (3.23), we can obtain an

interconnection Dirac structure of the following form:

DIC = {( fff IC,eeeIC) ∈ R2KMI×R2KMI |
(
FFF IC

i
)(

fff IC
i
)
+
(
EEE IC

i
)(

eeeIC
i
)
= 000,∀i ∈ VI}, (3.25)

where fff IC := ( fff IC
i ), eeeIC := (eeeIC

i ), and FFF IC
i ,EEE IC

i ∈ R2KMI×KMI(i) for all i ∈ VI.

Proof:
We have to show that (i) the equation system in (3.25) indeed describes the interconnections
between the Dirac structures (3.23) and (ii) that (3.25) is a Dirac structure.
The junction structure consists of NI interior elements which are connected by MI interior
bonds (cf. Definition 3.1). Each interior bond is incident to two interior elements. Thus, for
each k ∈ BI the flow fff k appears exactly twice in fff IC: once with a positive sign and once with
a negative sign. Analogously, for each k ∈ BI the effort eeek appears exactly twice in eeeIC, both
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times with a positive sign. Let us equate these variables appearing twice by setting(
IIIKMI IIIKMI

000KMI 000KMI

)(
( fff k)

−( fff k)

)
+

(
000KMI 000KMI

IIIKMI −IIIKMI

)(
(eeek)

(eeek)

)
= 000, (3.26)

for all k ∈ BI. The matrices in (3.26) satisfy (2.5) and can thus be related to a Dirac structure.
By permutations, we rearrange the entries of the vectors in (3.26) such that they are in the
same order as in fff IC and eeeIC (cf. Corollary 3.11). 8 Finally, we rename the columns of the
resulting matrices according to their affiliation to elements of VI and obtain the equation
system in (3.25).

Proposition 3.16 provides a constructive9 way for determining an interconnection Dirac
structure for the NI Dirac structures describing the interior elements. The interconnection
Dirac structure exclusively contains flows and efforts of the interior bonds. The overall
number of Dirac structures is then NI +1, i.e., NI Dirac structures from the interior elements
plus one interconnection Dirac structure. In the next lemma, we compose the NI +1 Dirac
structures into one single Dirac structure.

8Note that by 2MI = ∑i∈VI
MI(i), the sizes of the matrices in (3.26) and (3.25) are equal.

9As a matter of fact, the construction rules are mainly in the proof of Proposition 3.16
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Lemma 3.17 (Composition of Dirac structures)
Consider NI Dirac structures of the form (3.23) with a corresponding interconnection
Dirac structure (3.25). Then, the NI + 1 Dirac structures can be merged into a single
Dirac structure:

D(xxx) = {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |

(
FFFC (xxx) FFFR (xxx) FFFSf (xxx) FFFSe (xxx)

)
︸ ︷︷ ︸

=FFF(xxx)


− fff C

− fff R

fff Sf

fff Se

+

(
EEEC (xxx) EEER (xxx) EEESf (xxx) EEESe (xxx)

)
︸ ︷︷ ︸

=EEE(xxx)


eeeC

eeeR

eeeSf

eeeSe

}, (3.27)

where fff α ,eeeα ∈ RKNα and FFFα (xxx) ,EEEα (xxx) ∈ RKNE×KNα for α ∈ {C,R,Sf,Se}.10 The
composite Dirac structure (3.27) can be calculated as follows:
Define a full-rankmatrixΓΓΓ

> (xxx)∈R2KMI×K(2MI+ME) as a (1×NI) blockmatrixΓΓΓ
> (xxx)=

(ΓΓΓ>i (xxx)) of matrices ΓΓΓ
>
i (xxx) ∈ R2KMI×KM(i) for all i ∈ VI with

ΓΓΓ
>
i (xxx) = FFF IC

i (EEEk (xxx))
>+EEE IC

i (FFFk (xxx))
> , ∀k ∈ BI(i). (3.28)

Choose a matrix ΛΛΛ(xxx) ∈ RKME×K(2MI+ME) such that im(ΛΛΛ> (xxx)) = ker(ΓΓΓ> (xxx)) for all
xxx ∈ X. Since rank(ΓΓΓ> (xxx)) = 2KMI for all xxx ∈ X, we have dim(ker(ΓΓΓ> (xxx))) = KME

and such a matrix ΛΛΛ(xxx) always exists. Matrix ΛΛΛ(xxx) can be written as a (1×NI) block
matrix (ΛΛΛi (xxx)) of matricesΛΛΛi (xxx)∈RKME×KM(i) for all i∈VI. Then, a composite Dirac
structure is given by:

D(xxx) = {
(
( fff j),(eee j)

)
∈ RKME×RKME |

(ΛΛΛi (xxx)(FFF j (xxx)))︸ ︷︷ ︸
=F̃FF (xxx)

(
fff j
)
+(ΛΛΛi (xxx)(EEE j (xxx)))︸ ︷︷ ︸

=ẼEE (xxx)

(eee j) = 000}, (3.29)

for all j ∈ BE(i), i ∈VI, where F̃FF (xxx), ẼEE (xxx) are square matrices of size KME. The Dirac
structure (3.29) relates the flows fff j and efforts eee j of only the exterior bonds j ∈ BE.
Hence, by permutations we can easily obtain (3.27).

Proof:
Batlle et al. [2011] consider the general composition of an arbitrary number of Dirac

10Note that ME = NE (cf. Property 3.2).
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structures coupled by any interconnection Dirac structure. The authors show that (3.29) is
a calculation rule for a composite Dirac structure in which the interconnection variables
have been eliminated [Batlle et al., 2011, Eq. (44),(45)]. In the case of Lemma 3.17, the
interconnection variables are the flows and efforts of the interior bonds. These variables have
been eliminated from the composite Dirac structure (3.29). Hence, (3.29) contains only flows
and efforts corresponding to exterior bonds. By permutations, we can then rewrite (3.29) as
(3.27) (cf. Corollary 3.11).

Remark 3.18 (Signs of fff C and fff R). The negative sign of fff C and fff R in the equation
system of (3.27) stems from the bond orientation rules in which bonds are incoming
to storages and resistors (cf. Subection 3.2.2).
Remark 3.19 (Automated composition). The calculations in this subsection can be
easily automated in standard computer algebra systems. In particular, this includes
the determination of a matrix ΛΛΛ satisfying im(ΛΛΛ>) = ker(ΓΓΓ>) in Lemma 3.17 [Batlle
et al., 2011].

In the following, we proceed with our example and illustrate the composition of the
Dirac structures.

Example 3.20:
Consider the four Dirac structures specified by (3.22) from Example 3.14. By permuta-
tions, we may rewrite the equation systems from (3.22) in the form (3.23):

D0 :


III III III III
000 000 000 000
000 000 000 000
000 000 000 000



− fff C2

fff S f

− fff 3

fff 2

+


000 000 000 000
000 III 000 −III
−III III 000 000
000 III −III 000




eeeC2

eeeS f

eee3

eee2

= 000, (3.30a)

D1 :


000 000 000 000
III 000 III 000
000 III III 000
000 000 III III



− fff C1

− fff R

fff Se

− fff 1

+


−III −III III −III
000 000 000 000
000 000 000 000
000 000 000 000




eeeC1

eeeR

eeeSe

eee1

 = 000, (3.30b)

DT F :

(
III UUU(xxx1)

000 000

) (
fff 1

− fff 2

)
+

(
000 000
−UUU(xxx1) III

) (
eee1

eee2

)
= 000, (3.30c)

DGY :

(
III 000
000 −III

) (
− fff C3

fff 3

)
+

(
000 III
III 000

)(
eeeC3

eee3

)
= 000, (3.30d)

where UUU(xxx1) = exp(−κ diag(xxx1)). The dashed lines indicate the partitioning of the
flow and effort vectors with respect to the affiliation of the variables to exterior and
interior bonds. Next, we determine an interconnection Dirac structureDIC (3.25). From
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Proposition 3.16, one obtains the following equation system for DIC:



III 000
000 000
000 III
000 000
000 000
000 000︸ ︷︷ ︸
FFF IC

0

000
III
000
000
000
000︸︷︷︸

FFF IC
1

000 000
III 000
000 III
000 000
000 000
000 000︸ ︷︷ ︸
FFF IC

T F

III
000
000
000
000
000


︸ ︷︷ ︸

FFF IC
GY



− fff 3

fff 2

− fff 1

fff 1

− fff 2

fff 3


+



000 000
000 000
000 000
−III 000
000 000
000 III︸ ︷︷ ︸
EEEIC

0

000
000
000
000
−III
000︸ ︷︷ ︸

EEEIC
1

000 000
000 000
000 000
000 000
III 000
000 −III︸ ︷︷ ︸

EEEIC
T F

000
000
000
III
000
000


︸ ︷︷ ︸

EEEIC
GY



eee3

eee2

eee1

eee1

eee2

eee3


= 000.

(3.31)
Equation (3.31) relates flow and efforts only of interior bonds. In this case, the dashed
lines separate the vector entries with respect to their origin from the different inte-
rior elements. As can be seen, the matrices in (3.31) are simply column-wise permuta-
tions of the matrices in (3.26). Now we can compose the Dirac structures according to
Lemma 3.17. By using (3.30) and (3.31) we calculate (3.28) and obtain

ΓΓΓ
> (xxx) =



000 000 000 −III
000 000 000 000
000 −III 000 000
−III 000 000 000
000 000 000 000
III 000 000 000︸ ︷︷ ︸

ΓΓΓ0

000 000 000 000
−III 000 000 000
000 000 000 000
000 000 000 000
000 000 000 −III
000 000 000 000︸ ︷︷ ︸

ΓΓΓ1

000 000
000 −UUU(xxx1)

000 III
000 000
III 000

−UUU(xxx1) 000︸ ︷︷ ︸
ΓΓΓT F (xxx1)

III 000
000 000
000 000
000 −III
000 000
000 000


︸ ︷︷ ︸

ΓΓΓGY

.

(3.32)
With a computer algebra system, we compute a matrix ΛΛΛ(xxx1) with im(ΛΛΛ>(xxx1)) =

ker(ΓΓΓ>(xxx1)):

ΛΛΛ
>(xxx1)=



−III 000 000 000
000 000 000 III
000 III 000 000
000 000 000 000
000 000 000 000
000 000 III 000︸ ︷︷ ︸

ΛΛΛ0

000 000 000 −UUU−1(xxx1)

000 000 000 000
−UUU(xxx1) 000 000 000

000 000 III 000
000 III 000 000
000 000 000 000︸ ︷︷ ︸

ΛΛΛ1(xxx1)

−UUU−1(xxx1) 000
000 000
000 III
000 000
000 000
000 000︸ ︷︷ ︸

ΛΛΛT F (xxx1)

000 III
III 000
000 000
000 000
000 000
000 000


︸ ︷︷ ︸

ΛΛΛGY

.

(3.33)
Finally, with (3.33) and (3.30) we calculate (3.29) and obtain a single Dirac structure de-
scribing the equations of the junction structure. The equation system of the composed
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Dirac structure reads

000 −III 000
000 000 III
000 000 000
000 000 000
III 000 000
000 000 000︸ ︷︷ ︸

FFFC

000
000
000
III
000
000︸︷︷︸

FFFR

−III
000
000
000
000
000︸ ︷︷ ︸

FFFSf

−UUU−1(xxx1)

000
000
III
III
000


︸ ︷︷ ︸

FFFSe(xxx1)



− fff C1

− fff C2

− fff C3

− fff R

fff S f

fff Se



+



000 000 III
000 000 000

UUU(xxx1) 000 000
000 000 000
000 000 000
000 −III 000︸ ︷︷ ︸

EEEC(xxx1)

000
000

UUU(xxx1)

000
000
000︸ ︷︷ ︸

EEER(xxx1)

000
III
III
000
000
III︸︷︷︸

EEESf

000
000

−UUU(xxx1)

000
000
000


︸ ︷︷ ︸

EEESe(xxx1)



eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe


= 000. (3.34)

It can be seen that (3.34) relates flows and efforts of only exterior bonds. Moreover,
(3.34) is in the form of the equation system from (3.27).

3.2.5 Explicit Representation of the Dirac Structure

The Dirac structure obtained from Lemma 3.17 is in kernel representation which is an
implicit form. For the derivation of an explicit PHS, the natural next step is to transfer the
Dirac structure from an implicit form into an explicit form. In the following, we consider
methods for transferring a Dirac structure from an (implicit) kernel representation into an
(explicit) input-output representation (2.7). The basic idea to this end is simple: we rearrange
the implicit equations in (3.27) such that a suitable explicit representation is obtained.

Bloch and Crouch [1999] show that for each Dirac structure in kernel representation
there exists an input-output representation and vice versa. However, as with the kernel
representation (cf. Remark 2.19), the input-output representation of a Dirac structure is not
unique. In particular, not all input-output representations of a Dirac structure allow for a
subsequent derivation of an explicit PHS with a suitable choice of inputs and outputs, viz. an
explicit PHS with Property 3.8. The inputs and outputs of an explicit PHS are determined by
the inputs and outputs of the underlying explicit form of the Dirac structure. Thus, based
on Property 3.8, we deduce that the input vector of the input-output representation has to
contain all flows corresponding to Sf elements and all efforts corresponding to Se elements;
the output vector has to contain the corresponding conjugated variables. This is formalized
in the following property:
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Property 3.21 (Inputs and outputs of the Dirac structure)
Let Bα = ∪i∈Vα

B(i) for α ∈ {Sf,Se}. The input vector of the explicit Dirac structure
includes ( fff j), (eeek) while the output vector includes (eee j), ( fff k) for all j ∈ BSf, k ∈ BSe.

We seek to formulate the Dirac structure (3.27) in an explicit representation that has Prop-
erty 3.21. To this end, it is essential that the bond graph does not contain dependent sources.
Dependent sources occur if the values imposed by two sources are conflicting. For example,
think of an electric circuit with two voltage sources in parallel or two current sources in
series. Intuitively, for such systems, it is impossible to find a model which has both con-
flicting variables as inputs. Hence, we assume the source elements of the bond graph to be
independent—which is ensured by the following assumption:

Assumption 3.22 (Independent sources)
The matrices in (3.27) fulfill

rank(EEESf (xxx) FFFSe (xxx)) = K (NSf +NSe) , ∀xxx ∈ X. (3.35)

In Appendix B.1, is is proven that the source elements from the bond graph are independent if
and only if Assumption 3.22 is met. Conversely, if Assumption 3.22 is violated, the junction
structure implies a dependency between source elements. Dependent sources are serious
modeling inconsistencies which may occur from physically implausible structures in the
bond graph. They must be resolved by modifications of the bond graph [Karnopp et al., 2012,
p. 169]. Based on the exclusion of dependent sources in Assumption 3.22, one can now state
the following lemma:
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Lemma 3.23 (Input-output representation)
Consider a Dirac structure (3.27) which fulfills Assumption 3.22. The Dirac structure
can be formulated in an input-output representation with Property 3.21:

D(xxx) = {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |

yyyC

yyyR

yyyP

= ZZZ (xxx)

uuuC

uuuR

uuuP

}, (3.36)

where ZZZ (xxx) is skew-symmetric for all xxx ∈ X and

uuuC =

(
eeeC,1

−fff C,2

)
, uuuR =

(
eeeR,1

−fff R,2

)
, uuuP =

(
fff Sf

eeeSe

)
, (3.37a)

yyyC =

(
− fff C,1

eeeC,2

)
, yyyR =

(
− fff R,1

eeeR,2

)
, yyyP =

(
eeeSf

fff Se

)
. (3.37b)

The matrix ZZZ (xxx) exists for all xxx ∈ X and is given by:

ZZZ (xxx) =
(

FFFC,1 (xxx) EEEC,2 (xxx) FFFR,1 (xxx) EEER,2 (xxx) EEESf (xxx) FFFSe (xxx)
)−1

·
(

EEEC,1 (xxx) FFFC,2 (xxx) EEER,1 (xxx) FFFR,2 (xxx) FFFSf (xxx) EEESe (xxx)
)
.

(3.38)

The matrices in (3.38) can be obtained from splitting (possibly after some permuta-
tions) FFFC (xxx) and FFFR (xxx) into (FFFC,1 (xxx) FFFC,2 (xxx)) and (FFFR,1 (xxx) FFFR,2 (xxx)), respectively,
such that

(i)
(

FFFC,1 (xxx) FFFR,1 (xxx) EEESf (xxx) FFFSe (xxx)
)
has full column rank (3.39a)

(ii) rank
(

FFFC,1 (xxx) FFFR,1 (xxx) EEESf (xxx) FFFSe (xxx)
)
=

rank
(

FFFC (xxx) FFFR (xxx) EEESf (xxx) FFFSe (xxx)
)
, (3.39b)

for all xxx ∈ X. According to the manner in which FFFC (xxx) and FFFR (xxx) are split, we parti-
tion EEEC (xxx) and EEER (xxx) into (EEEC,1 (xxx) EEEC,2 (xxx)) and (EEER,1 (xxx) EEER,2 (xxx)), respectively. In
the same way, we split fff C, eeeC and fff R, eeeR .

Proof:
Let Assumption 3.22 hold. For the sake of notation, we neglect the argument xxx and the
supplement “for all xxx ∈ X” in this proof. We apply the ideas from Bloch and Crouch
[1999, Theorem 4] to show that we always find decompositions (FFFR,1,FFFR,2), (FFFC,1,FFFC,2),
(EEEC,1,EEEC,2), (EEER,1,EEER,2) for FFFC, FFFR, EEEC, EEER, respectively, such that

rank
(

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
= KNE (3.40)
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holds. Choose decompositions of FFFC and FFFR (possibly after some permutations) such that the
conditions in (3.39) are fulfilled. Let FFFC,2, FFFR,2 denote the rest of FFFC, FFFR, respectively, i.e.,
FFFC = (FFFC,1 FFFC,2), FFFR = (FFFR,1 FFFR,2). Next, split EEEC and EEER according to the decomposition
chosen for FFFC and FFFR, respectively, into EEEC = (EEEC,1 EEEC,2) and EEER = (EEER,1 EEER,2). By (3.39a)
the matrix (FFFC,1 FFFR,1 EEESf FFFSe) has full column rank. Thus, its adjoint (FFFC,1 FFFR,1 EEESf FFFSe)

>

is surjective. In particular we have

im
(

EEEC,1 EEER,1 FFFSf EEESe

)
= im

((
EEEC,1 EEER,1 FFFSf EEESe

)
·
(

FFFC,1 FFFR,1 EEESf FFFSe

)>)
= im

(
EEEC,1FFF>C,1 +EEER,1FFF>R,1 +FFFSfEEE>Sf +EEESeFFF>Se

)
. (3.41)

For (3.27), equation (2.5a) reads

000 = EEEFFF>+FFFEEE>

= EEEC,1FFF>C,1 +EEEC,2FFF>C,2 +EEER,1FFF>R,1 +EEER,2FFF>R,2 +EEESfFFF>Sf +EEESeFFF>Se +

FFFC,1EEE>C,1 +FFFC,2EEE>C,2 +FFFR,1EEE>R,1 +FFFR,2EEE>R,2 +FFFSfEEE>Sf +FFFSeEEE>Se,

(3.42)

from which follows

im
(

EEEC,1FFF>C,1 +EEER,1FFF>R,1 +FFFSfEEE>Sf +EEESeFFF>Se

)
= im

(
FFFC,1EEE>C,1 +FFFC,2EEE>C,2 +EEEC,2FFF>C,2 +FFFR,1EEE>R,1

+ FFFR,2EEE>R,2 +EEER,2FFF>R,2 +EEESfFFF>Sf +FFFSeEEE>Se

)
⊆ im

(
FFFC,1EEE>C,1 FFFC,2EEE>C,2 EEEC,2FFF>C,2 FFFR,1EEE>R,1 FFFR,2EEE>R,2 EEER,2FFF>R,2 EEESfFFF>Sf FFFSeEEE>Se

)
⊆ im

(
FFFC,1 FFFC,2 EEEC,2 FFFR,1 FFFR,2 EEER,2 EEESf FFFSe

)
(3.39)
= im

(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
.

(3.43)

Combining (3.41) and (3.43) we can derive

im
(

FFF EEE
)
= im

(
EEEC,1 EEER,1 FFFSf EEESe

)
+

im
(

FFFC,1 FFFC,2 EEEC,2 FFFR,1 FFFR,2 EEER,2 EEESf FFFSe

)
(3.44)

⊆ im
(

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
⊆ im

(
FFF EEE

)
.

Thus, equality holds in the above formula and we have

rank
(

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
= rank

(
FFF EEE

) (2.5b)
= KNE. (3.45)

Hence, the square matrix (FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe) has full rank and is invertible.
From Bloch and Crouch [1999] it follows that under the above rank condition (3.45) the
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kernel representation (3.27) can be formulated as the input-output representation (3.36). The
matrix ZZZ can be determined by the following calculation law which is formally derived in
Appendix B.2:

ZZZ =−ZZZ> = −
(

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)−1

·
(

EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)
.

(3.46)

We continue with our example to illustrate the reformulation of a Dirac structure in an
explicit input-output form.

Example 3.24:
Consider the Dirac structure from Example 3.20 given in an implicit representation:

D(xxx1) = {(



fff C1

fff C2

fff C3

fff R

fff S f

fff Se


,



eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe


) ∈ R6K×R6K |



000 −III 000
000 000 III
000 000 000
000 000 000
III 000 000
000 000 000︸ ︷︷ ︸

FFFC

000
000
000
III
000
000︸︷︷︸

FFFR

−III
000
000
000
000
000︸ ︷︷ ︸

FFFSf

−UUU−1(xxx1)

000
000
III
III
000


︸ ︷︷ ︸

FFFSe(xxx1)



− fff C1

− fff C2

− fff C3

− fff R

fff S f

fff Se



+



000 000 III
000 000 000

UUU(xxx1) 000 000
000 000 000
000 000 000
000 −III 000︸ ︷︷ ︸

EEEC(xxx1)

000
000

UUU(xxx1)

000
000
000︸ ︷︷ ︸

EEER(xxx1)

000
III
III
000
000
III︸︷︷︸

EEESf

000
000

−UUU(xxx1)

000
000
000


︸ ︷︷ ︸

EEESe(xxx1)



eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe


= 000}. (3.47)

Recall that NC = 3, NR = 1 = NSf = 1 = NSe = 1 and thatUUU(xxx1) has full rank (see Exam-
ple 3.7). With thematrices in (3.47), Assumption 3.22 is fulfilled as rank(EEESf FFFSe(xxx1))=

2K. Hence, we can apply Lemma 3.23 to determine an explicit representation of (3.47).
First, we search splittings of FFFC (xxx) and FFFR (xxx) such that (3.39a) and (3.39b) are fulfilled.
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Take

FFFC,1 =



−III 000
000 III
000 000
000 000
000 000
000 000


, FFFC,2 =



000
000
000
000
III
000


, (3.48)

and FFFR,1 = FFFR, i.e., FFFR,2 is an empty matrix. It can be easily verified that this choice
satisfies the conditions in (3.39). Thus, we may evaluate (3.38) with this splitting choice
to determine the matrix ZZZ (xxx) and obtain the following explicit representation of (3.47):

D(xxx1) = {(



fff C1

fff C2

fff C3

fff R

fff S f

fff Se


,



eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe


) ∈ R6K×R6K |



− fff C2

− fff C3

eeeC1

− fff R

eeeS f

fff Se


=



000 −III −UUU−1(xxx1) 000 III 000
III 000 000 000 000 000

UUU−1(xxx1) 000 000 III 000 −III
000 000 −III 000 000 000
−III 000 000 000 000 000
000 000 III 000 000 000





eeeC2

eeeC3

− fff C1

eeeR

fff S f

eeeSe


}. (3.49)

As can be seen from the above example, Lemma 3.23 assigns the variables of the
source elements appropriately to inputs and outputs of the Dirac structure (cf. (3.37)). By
this, the resulting Dirac structure has Property 3.21. It follows from Lemma 3.23, that
Assumption 3.22 is a sufficient condition for the existence of a Dirac structure representation
with Property 3.21. Of course, it would be desirable to show that Assumption 3.22 is
also necessary. However, for a proof of necessity, the non-uniqueness of an input-output
representation of a Dirac structure is a stumbling block. As a remedy, the next proposition
shows that there is some kind of uniqueness, viz. that the input-output representation is
unique for a certain arrangement of variables.

Proposition 3.25 (Uniqueness of ZZZ (xxx))
For any given order of the variables in (3.37), the matrix ZZZ (xxx) in (3.36) is unique. This
statement is independent of Assumption 3.22.

Proof:
For the sake of releasing notational burden we will suppress the argument xxx to the matrices
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during the proof. Let ZZZ and ZZZ′ ∈ RKNE×KNE be two matrices fulfilling the equationsyyyC

yyyR

yyyP

= ZZZ

uuuC

uuuR

uuuP

 and

yyyC

yyyR

yyyP

= ZZZ′

uuuC

uuuR

uuuP

 . (3.50)

Recall (3.37) and that dimD= KNE. As (yyy>C yyy>R yyy>P )
> linearly depends on (uuu>C uuu>R uuu>P )

>, we
have that D is isomorphic to RKNE via

RKNE → D,

uuuC

uuuR

uuuP

 7→ (



fff C,1

fff C,2

fff R,1

fff R,2

fff Sf

fff Se


,



eeeC,1

eeeC,2

eeeR,1

eeeR,2

eeeSf

eeeSe


) where

yyyC

yyyR

yyyP

= ZZZ

uuuC

uuuR

uuuP

, (3.51)

D→ RKNE , (



eeeC,1

eeeC,2

eeeR,1

eeeR,2

eeeSf

eeeSe


,



fff C,1

fff C,2

fff R,1

fff R,2

fff Sf

fff Se


) 7→

uuuC

uuuR

uuuP

 . (3.52)

From (3.50) it follows that

ZZZ

uuuC

uuuR

uuuP

= ZZZ′

uuuC

uuuR

uuuP

 (3.53)

and thus ZZZ = ZZZ′ as
(
uuu>C uuu>P uuu>R

)> ranges over all of RKNE .

Based on Proposition 3.25, we can now show that Assumption 3.22 is also a necessary
condition for the existence of an explicit Dirac structure representation with Property 3.21.

Proposition 3.26 (Existence condition)
Assumption 3.22 is a necessary and sufficient condition for the existence of an input-
output representation of (3.27) which has Property 3.21. This statement is true inde-
pendent of the specific realization of FFF (xxx) and EEE (xxx) in (3.27) (cf. Remark 2.19).

Proof:
From the proof of Lemma 3.23 it follows that Assumption 3.22 is a sufficient condition for
transferring (3.27) into an input-output representation with Property 3.21. So it is left to show
that it is also necessary. To this end, we use the uniqueness of ZZZ (xxx) from Proposition 3.25.
For the sake of brevity, we neglect the argument xxx and the supplement “for all xxx ∈ X” in this
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proof. Moreover, we give a shorthand to two matrices:

XXX =
(

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
∈ RKNE×KNE , (3.54a)

YYY =
(

EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)
∈ RKNE×KNE . (3.54b)

Assume we can write D in both forms (3.27) and (3.36). Moreover, Assumption 3.22 is
fulfilled if XXX has full rank. Note that in the situation of Lemma 3.23 we have ZZZ =−XXX−1YYY
which gives a hint that we should prove and use XXXZZZ =−YYY along the way. As an element
( fff ,eee) of D fulfills the equations in (3.27), we have

FFF



− fff C,1

− fff C,2

− fff R,1

− fff R,2

fff Sf

fff Se


+EEE



eeeC,1

eeeC,2

eeeR,1

eeeR,2

eeeSf

eeeSe


= 000 (3.55)

or equivalently—after reordering11:

XXX

yyyC

yyyR

yyyP

=−YYY

uuuC

uuuR

uuuP

 . (3.56)

The same element ( fff ,eee) also fulfills (3.36), i.e., we haveyyyC

yyyR

yyyP

= ZZZ

uuuC

uuuR

uuuP

 , (3.57)

where ZZZ is unique according to Proposition 3.25. By multiplying with XXX from right we
obtain

XXX

yyyC

yyyR

yyyP

= XXXZZZ

uuuC

uuuR

uuuP

 . (3.58)

Combining (3.56) and (3.58) yields

XXXZZZ

uuuC

uuuR

uuuP

=−YYY

uuuC

uuuR

uuuP

 . (3.59)

Whence XXXZZZ =−YYY since (uuu>C uuu>R uuu>P )
> ranges over all of RKNE . Let us now investigate the

rank of XXX . First, note that imXXX = im(XXX XXXZZZ) as imXXXZZZ ⊆ imXXX . From this the statement that
XXX has full rank follows:

rankXXX = rank
(

XXX XXXZZZ
) (3.59)

= rank
(

XXX −YYY
) (3.54)

= rank
(

FFF EEE
) (2.3b)

= KNE. (3.60)

11cf. (B.5) and (B.6)
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Note that (3.60) holds for any realization of FFF and EEE. Moreover, every submatrix in XXX must
have full column rank. In particular, Assumption 3.22 holds.

Lemma 3.23 presents a method which allows to convert the Dirac structure (3.27) to an
explicit form (3.36). The independence of source elements in Assumption 3.22 was proven
to be necessary and sufficient for the existence of (3.36). Note that Lemma 3.23 does not
make any assumptions on the presence of dependent storages. For the aim of deriving an
explicit PHS, dependent storages are particularly unpleasant: they contribute to the energy in
a system without having a dedicated representation in the system’s state vector. Systems with
dependent storages lead in general to mathematical models in forms of DAEs [Borutzky,
2010, p. 142]. Therefore, we now consider an important special case of (3.36) which—in
addition to independent sources—also requires independent storages. Later, we will relax
the latter restriction and allow for dependent storages.

Assumption 3.27 (Independent storages and sources)
The matrices in (3.27) fulfill

rank(FFFC (xxx) EEESf (xxx) FFFSe (xxx)) = K (NC +NSf +NSe) , ∀xxx ∈ X. (3.61)

Note that Assumption 3.27 implies Assumption 3.22. The subsequent corollary makes use
of Assumption 3.27 and addresses an important special case of Lemma 3.23.
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Corollary 3.28 (Input-output representation under Assumption 3.27)
Consider a Dirac structure (3.27) which fulfills Assumption 3.27. The Dirac struc-
ture (3.27) can then be formulated in an input-output representation

D(xxx) = {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |

yyyC

yyyR

yyyP

=

ZZZCC (xxx) −ZZZCR (xxx) −ZZZCP (xxx)
ZZZ>CR (xxx) ZZZRR (xxx) −ZZZRP (xxx)
ZZZ>CP (xxx) ZZZ>RP (xxx) ZZZPP (xxx)


︸ ︷︷ ︸

ZZZ(xxx)

uuuC

uuuR

uuuP

}, (3.62)

where ZZZ (xxx) =−ZZZ> (xxx) for all xxx ∈ X and

uuuC = eeeC, uuuR =

(
eeeR,1

−fff R,2

)
, uuuP =

(
fff Sf

eeeSe

)
, (3.63a)

yyyC =− fff C, yyyR =

(
− fff R,1

eeeR,2

)
, yyyP =

(
eeeSf

fff Se

)
. (3.63b)

The matrix ZZZ (xxx) is given by (3.38) with FFFC,1 (xxx) = FFFC (xxx), EEEC,1 (xxx) = EEEC (xxx) and
(FFFR,1 (xxx) FFFR,2 (xxx)) a splitting of FFFR (xxx) such that (3.39) is fulfilled. Moreover, Assump-
tion 3.27 is necessary and sufficient for the existence of the representation (3.62)with
vectors as in (3.63).

Proof:
The proof of Corollary 3.28 follows directly from Lemma 3.23 under Assumption 3.27,
which also shows that Assumption 3.27 is a sufficient condition. The proof for the necessity
of the assumption is the same as the one given for Proposition 3.26.

Note that Corollary 3.28 requires only a splitting of R-type power variables; the splitting
of C-type variables disappears.12 The corollary is illustrated in the following example which
continues the previous ones:

Example 3.29:
Recall the Dirac structure from Example 3.24 in implicit representation (3.47). Assump-
tion 3.27 is satisfied as rank(FFFC EEESf FFFSe(xxx1)) = 5K for all xxx1. Hence, we can apply
Corollary 3.28 to determine an explicit representation of (3.47). The splittingFFFR,2 = FFFR

satisfies the conditions in (3.39). By using this splitting we obtain the following explicit
12In fact, this is the property with which Corollary 3.28 particularizes Lemma 3.23.
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representation of (3.47):

D(xxx1) = {(



fff C1

fff C2

fff C3

fff R

fff S f

fff Se


,



eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe


) ∈ R6K×R6K |



− fff C1

− fff C2

− fff C3

eeeR

eeeS f

fff Se


=



000 000 000 III 000 000
000 000 III UUU−1(xxx1) −III 000
000 −III 000 000 000 000
−III −UUU−1(xxx1) 000 000 000 III

000 III 000 000 000 000
000 000 000 −III 000 000





eeeC1

eeeC2

eeeC3

− fff R

fff S f

eeeSe


}. (3.64)

The dashed lines indicate the matrix blocks according to (3.62). Compared to (3.49) in
Example 3.29, (3.64) is another explicit representation of (3.47). In particular, in (3.64)
all storage flows fff C are on the left side of the equation system.

The previous example illustrates that Corollary 3.28 yields an explicit representation in
which the flows fff C are on the left side of the equation system. Recalling the constitutive
relations of C-type elements (3.6), in particular fff C = ẋxx, gives us a hint why this choice is
useful: it paves the way for a dynamics equation of form ẋxx = fff (xxx,uuu). The next subsection is
devoted to deriving such a model.

3.2.6 Formulation of an Explicit Port-Hamiltonian System

Based on the Dirac structure from Corollary 3.28 we now derive an explicit PHS. To this end,
we merge the explicit form of the Dirac structure with the constitutive relations of storages
and resistors.

Consider a Dirac structure of the form (3.62) with vectors as in (3.63). Let us first elaborate
the constitutive relations of the storage elements and the resistive elements of the bond graph.
For C-type elements, the constitutive relations read

yyyC
(3.63)
= − fff C

(3.6)
= −ẋxx, uuuC

(3.63)
= eeeC

(3.6)
=

∂V
∂xxx

(xxx) . (3.65)

For R-type elements, the constitutive relation (3.7) from Subsection 3.2.2 read fff R = DDD(xxx)eeeR

with DDD(xxx) =DDD(xxx)>� 0. In the Dirac structure (3.62), the vectors fff R and eeeR are split and their
components are assigned to inputs uuuR and outputs yyyR. In the following, make the assumption
that this splitting can also be applied to fff R = DDD(xxx)eeeR without loosing the symmetry and
positive semi-definiteness of DDD(xxx):
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Assumption 3.30 (Resistive relation in input-output form)
The resistive relations can be reorganized as

uuuR =−R̃RR(xxx)yyyR, (3.66)

with R̃RR(xxx) = R̃RR(xxx)> � 0 and uuuR, yyyR as in (3.63).

In Appendix B.3 it is argued that Assumption 3.30 is not restrictive. The negative sign in
(3.66) accounts for the opposite orientations of the vectors ( fff R,eeeR) and (uuuR,yyyR) (see (3.37)).
Now we can merge the Dirac structure and the constitutive relations of storages and resistors
into an explicit PHS.

Lemma 3.31 (Port-Hamiltonian formulation)
Given an explicit Dirac structure (3.62) and constitutive relations of storages as in
(3.65). Let Assumption 3.30 hold, that is, let the constitutive relations of resistive
elements be given as in (3.66). Then, (3.62), (3.65), and (3.66) can be written as explicit
input-state-output PHS of the form (2.12). The state vector and the Hamiltonian of
the PHS are given by xxx and H (xxx) =V (xxx) from (3.65), respectively. The input vector of
the PHS is uuu = uuuP; the output vector is yyy = yyyP. The matrices of the PHS are calculated
as:

JJJ (xxx)=−1
2 ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK> (xxx)

)
ZZZ>CR (xxx)−ZZZCC (xxx) , (3.67a)

RRR(xxx)= 1
2 ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK> (xxx)

)
ZZZ>CR (xxx) , (3.67b)

GGG(xxx)= 1
2 ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK> (xxx)

)
ZZZRP (xxx)+ZZZCP (xxx) , (3.67c)

PPP(xxx)=−1
2 ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK> (xxx)

)
ZZZRP (xxx) , (3.67d)

MMM (xxx)= 1
2 ZZZ>RP (xxx)

(
K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK> (xxx)

)
ZZZRP (xxx)+ZZZPP (xxx) , (3.67e)

SSS (xxx)= 1
2 ZZZ>RP (xxx)

(
K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK> (xxx)

)
ZZZRP (xxx) , (3.67f)

where
K̃KK (xxx)= (III + R̃RR(xxx)ZZZRR (xxx))−1. (3.67g)

Remark 3.32 (Existence of K̃KK). The existence ofmatrix K̃KK (xxx) in (3.67g)will be discussed
later in Lemma 3.33.
Proof:
The proof follows four steps: (i) we eliminate the resistive variables in (3.62); (ii) we
decompose the structure obtained from (i) into symmetric and skew-symmetric parts; (iii)
we substitute storage variables with (3.65); (iv) we show that the definiteness condition (2.13)
holds. Again, we omit the argument xxx and the supplement “for all xxx ∈ X” for all matrices in
this proof.
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Substituting the second row from the linear equation system in (3.62) into (3.66) yields

uuuR =−R̃RRZZZ>CRuuuC + R̃RRZZZRPuuuP− R̃RRZZZRRuuuR

⇔
(
III + R̃RRZZZRR

)
uuuR =−R̃RRZZZ>CRuuuC + R̃RRZZZRPuuuP

⇔ uuuR =−K̃KKR̃RRZZZ>CRuuuC + K̃KKR̃RRZZZRPuuuP, (3.68)

with K̃KK as in (3.67g). Inserting (3.68) into the first and third row from the linear equation
system in (3.62) yields(

yyyC

yyyP

)
=

[(
ZZZCC −ZZZCP

ZZZ>CP ZZZPP

)
+

(
ZZZCR

−ZZZ>RP

)
K̃KKR̃RR
(

ZZZ>CR −ZZZRP

)](uuuC

uuuP

)
. (3.69)

The first addend in the square bracket is a skew-symmetric matrix. The second addend is
decomposed into a skew-symmetric and a symmetric matrix. Using this decomposition and
R̃RR = R̃RR>, (3.69) reads(

yyyC

yyyP

)
=

[(
ZZZCC −ZZZCP

ZZZ>CP ZZZPP

)
+

1
2

(
ZZZCR

−ZZZ>RP

)(
K̃KKR̃RR− R̃RRK̃KK>

)(
ZZZ>CR −ZZZRP

)
+

1
2

(
ZZZCR

−ZZZ>RP

)(
K̃KKR̃RR+ R̃RRK̃KK>

)(
ZZZ>CR −ZZZRP

)](uuuC

uuuP

)
. (3.70)

Equation (3.70) can be written as(
yyyC

yyyP

)
=

[(
−JJJ −GGG
GGG> MMM

)
︸ ︷︷ ︸

=ΨΨΨ

+

(
RRR PPP

PPP> SSS

)]
︸ ︷︷ ︸

=ΘΘΘ

(
uuuC

uuuP

)
, (3.71)

with JJJ, GGG, MMM, RRR, PPP, SSS as in (3.67) and ΨΨΨ =−ΨΨΨ
>, ΘΘΘ = ΘΘΘ

>. Inserting (3.65) into (3.71) then
yields (2.12). Using the idea of van der Schaft and Jeltsema [2014, p. 56], we prove the
positive semi-definiteness of ΘΘΘ (cf. (2.13)):

(
uuu>C uuu>P

)
ΘΘΘ

(
uuuC

uuuP

)
=
(

uuu>C uuu>P
)

ΘΘΘ

(
uuuC

uuuP

)
+
(

uuu>C uuu>P
)

ΨΨΨ

(
uuuC

uuuP

)
︸ ︷︷ ︸

=0

(3.72)

=
(

uuu>C uuu>P
)
(ΘΘΘ+ΨΨΨ)

(
uuuC

uuuP

)
(3.73)

=
(

uuu>C uuu>P
)(yyyC

yyyP

)
(2.3a),(3.66)

= yyy>R R̃RRyyyR ≥ 0. (3.74)

In the previous lemma, the calculation of the matrices of the PHS requires the existence
of a matrix K̃KK (xxx) = (III+ R̃RR(xxx)ZZZRR (xxx))−1, where R̃RR(xxx) = R̃RR>(xxx)� 0 and ZZZRR (xxx) =−ZZZ>RR(xxx)
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for all xxx ∈X. The matrix K̃KK (xxx) (or related expressions) has appeared in previous publications
addressing the derivation of state-space formulations of bond graphs, e.g., Rosenberg [1971,
eq. (7)], Wellstead [1979, eq. (29)], Donaire and Junco [2009, eq. (14)], and Lopes [2016,
Remark 2]. However, to the best of our knowledge, the existence of K̃KK has not been discussed
so far. The following lemma shows that K̃KK (xxx) always exists:

Lemma 3.33 (Existence of K̃KK)
Let XXX ,YYY ∈ Rp×p with XXX = XXX> � 0 and YYY =−YYY>. Then, the matrix KKK := (III +XXXYYY ) is
regular. In particular K̃KK := KKK−1 always exists.

Proof:
The idea of the proof is to show that (i) we can (without loss of generality) regard XXX to be
diagonal; 13 (ii) the matrix KKK is invertible. For (ii) we investigate first the case of XXX being
positive-definite. Afterwards, we generalize to the case of XXX being positive semi-definite.
Recall that XXX is symmetric and positive semi-definite and that YYY is skew-symmetric. Without
loss of generality we may assume XXX to be diagonal. Indeed, since XXX is a symmetric and
real matrix, there exists (by the Spectral Theorem) an orthogonal matrix TTT ∈ O(p) such
that TTT XXXTTT> is diagonal. Moreover, III +XXXYYY is invertible if and only if TTT (III +XXXYYY )TTT> =

III +(TTT XXXTTT>)(TTTYYY TTT>) = III + X̃XXỸYY is invertible, where X̃XX = TTT XXXTTT> is diagonal and positive
semi-definite and ỸYY = TTTYYY TTT> is skew-symmetric. Thus, we can assume XXX to be diagonal in
the remainder of the proof.
The matrix III +XXXYYY is regular if and only if 0 is not an eigenvalue of it, that is if −1 is not an
eigenvalue of XXXYYY . We will show that the only possible real-valued eigenvalue of XXXYYY is 0.
Throughout this proof we use Spec(XXX) to denote the (real) spectrum of XXX , i.e., the set of real
eigenvalues of XXX .

◦ Case 1: XXX is positive-definite. Let
√

XXX be a diagonal matrix which is a square root of
XXX , i.e.,

√
XXX
√

XXX = XXX . Such a matrix exists and is invertible since XXX is diagonal and
positive-definite. Because the spectrum of a matrix is invariant under conjugation, we
have

Spec(XXXYYY ) = Spec
(√

XXX
−1

XXXYYY
√

XXX
)

= Spec
(√

XXXYYY
√

XXX
)
= Spec

(√
XXXYYY
√

XXX
>)
⊆ {0}, (3.75)

where the last inclusion holds since
√

XXXYYY
√

XXX
>

is real and skew-symmetric. Thus, −1
is not an eigenvalue of XXXYYY and III +XXXYYY is invertible.

◦ Case 2: XXX is (genuine) positive semi-definite. By the same conjugation argument as
at the beginning of the proof (this time with a permutation matrix) we may assume

13Note that this does not immediately follow from XXX = XXX> � 0 but must be analyzed in relation to
III +XXXYYY .
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without loss of generality that XXX is of the form

XXX =

(
XXX ′ 000
000 000

)
, (3.76)

where XXX ′ ∈ R`×` is a positive-definite diagonal matrix. With the same block decompo-
sition we write YYY as

YYY =

(
YYY ′ YYY ′′

∗ ∗

)
, where YYY ′ ∈ R`×`. (3.77)

We have

XXXYYY =

(
XXX ′YYY ′ XXX ′YYY ′′

000 000

)
. (3.78)

Thus, Spec(XXXYYY ) = Spec(XXX ′YYY ′)∪Spec(000)⊆ {0}, where the last inclusion uses case 1
applied to XXX ′YYY ′. Hence, III +XXXYYY is invertible.

Let us illustrate the insights from this subsection by deriving a PHS for the example
system.

Example 3.34:
Consider the Dirac structure from Example 3.29 in explicit representation (3.64). From
Example 3.7 recall the constitutive relations of storages and resistors: the three stor-
age elements are described by an arbitrary differentiable, non-negative storage func-
tion V (xxx); the resistive element has been specified by fff R = DDDeeeR where DDD = DDD> � 0
arbitrary. For an input-output splitting of R-type variables as in (3.64), we can write

fff R = DDDeeeR
(3.64)⇔ uuuR =− DDD︸︷︷︸

=R̃RR

yyyR. (3.79)

Thus, Assumption 3.30 is fulfilled. With the calculation rules from Lemma 3.31, we
then obtain an explicit PHS of the form (2.12):ẋxx1

ẋxx2

ẋxx3

= (

000 000 000
000 000 −III
000 III 000

−
 DDD DDDUUU−1(xxx1) 000

UUU−1(xxx1)DDD UUU−1(xxx1)DDDUUU−1(xxx1) 000
000 000 000

)
∂H
∂xxx

(xxx)

+(

000 000
III 000
000 000

−
000 −DDD

000 −UUU−1(xxx1)DDD
000 000

)

(
fff S f

eeeSe

)
(3.80a)(

eeeS f

fff Se

)
= (

000 000
III 000
000 000

+

000 −DDD
000 −UUU−1(xxx1)DDD
000 000

)>
∂H
∂xxx

(xxx)+

(
000 000
000 DDD

)(
fff S f

eeeSe

)
. (3.80b)
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In (3.80) we have H (xxx) =V (xxx), MMM (xxx) = 000, UUU(xxx1) = exp(−κ diag(xxx1)), and xxx ∈ X. The
variables from the source elements are correctly allocated to inputs and outputs; hence,
the (3.80) has Property 3.8. By the symmetry of DDD and UUU it can be seen that the ma-
trices in (3.80) indeed have the desired symmetry and skew-symmetry properties from
Definition 2.23.

Investigating RRR(xxx1) for the case DDD = III gives:

(
xxx>1 xxx>2 xxx>3

)
RRR(xxx1)

xxx1

xxx2

xxx3

= ‖xxx1 +UUU−1(xxx1)xxx2‖2 ≥ 0, ∀xxx ∈ X. (3.81)

Hence, for DDD = III the matrix RRR(xxx1) is positive semi-definite which verifies the definite-
ness condition 2.13.

The above example illustrates how the methods from this subsection can be used to
derive an explicit PHS based on a Dirac structure and the constitutive relations of storages
and resistors. In the next subsection, these methods are embedded into a main theorem which
addresses the derivation of an explicit PHS from a bond graph.

3.2.7 Theorem and Algorithm

This subsection first provides a theorem which summarizes the insights from subsections 3.2.3
to 3.2.6. The theorem addresses the existence of an explicit port-Hamiltonian formulation of
a bond graph. Afterwards, we assemble the corresponding methods in an algorithm which
calculates an explicit PHS based on a given bond graph. The theorem and the algorithm are
major results of this chapter.
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Theorem 3.35 (Explicit Port-Hamiltonian Formulation of Bond Graphs)
Given a K-dimensional bond graph as in Definition 3.5. The junction structure of the
bond graph can be described by a Dirac structure in implicit form:

D(xxx) = {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |

(
FFFC (xxx) FFFR (xxx) FFFSf (xxx) FFFSe (xxx)

)
− fff C

− fff R

fff Sf

fff Se



+
(

EEEC (xxx) EEER (xxx) EEESf (xxx) EEESe (xxx)
)

eeeC

eeeR

eeeSf

eeeSe

= 000}, (3.82)

where fff α = ( fff i) ∈ RKNα , eeeα = (eeei) ∈ RKNα for all i ∈ Vα and FFFα (xxx) ,EEEα (xxx) ∈
RKNE×KNα with α ∈ {C,R,Sf,Se}. Let

rank(FFFC (xxx) EEESf (xxx) FFFSe (xxx)) = K (NC +NSf +NSe) , ∀xxx ∈ X. (3.83)

hold (i.e., Assumption 3.27). Then, (3.82) can be formulated in an explicit representa-
tion

D(xxx) = {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |

yyyC

yyyR

yyyP

= ZZZ (xxx)

uuuC

uuuR

uuuP

}, (3.84)

where ZZZ (xxx) = −ZZZ> (xxx) ∈ RKNE for all xxx ∈ X with uuuC = eeeC, uuuR = (eee>R,1 fff>R,2)
>, uuuP =

( fff>Sf eee>Se)
>, yyyC = − fff C, yyyR = (− fff>R,1 eee>R,2)

>, and yyyP = (eee>Sf fff>Se)
>. Suppose the re-

sistive relations can be reorganized as uuuR = −R̃RR(xxx)yyyR with R̃RR(xxx) = R̃RR(xxx)> � 0 (i.e.,
Assumption 3.30). The bond graph can then be formulated as an explicit PHS (cf.
Definition 2.23)

ẋxx = (JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu, (3.85a)

yyy = (GGG(xxx)+PPP(xxx))>
∂H
∂xxx

(xxx)+(MMM (xxx)+SSS (xxx))uuu, (3.85b)

that has Property 3.8. Assumption 3.27 and Assumption 3.30 together form a
sufficient condition for formulating the bond graph as an explicit PHS (3.85) with
Property 3.8. A necessary condition for the existence of such a model is given by
rank(EEESf (xxx) FFFSe (xxx)) = K (NSf +NSe) for all xxx ∈ X (i.e., Assumption 3.22).
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Proof:
Consider a K-dimensional bond graph as in Definition 3.5. First, consider the set of interior
elements VI with |VI| = NI. According to Lemma 3.12, the equations of the elements
of VI can be described by a corresponding set of Dirac structures DS with |DS| = NI.
From Lemma 3.17 it follows that the NI elements of DS can be composed into a single
Dirac structure in implicit form (3.82). Now let Assumption 3.27 hold. Then, (3.82) can be
formulated in an explicit representation (3.84). Consider the constitutive relations (3.65) of C-
type elements. Let Assumption 3.30 hold for uuuR,yyyR as in (3.84), i.e., the constitutive relation
of R-type elements can be written as (3.66). According to Lemma 3.31, the equations (3.62),
(3.65), and (3.66) can then be written as PHS (3.85). From Lemma 3.31, it follows that uuu = uuuP

and yyy = yyyP which is why the explicit PHS has Property 3.8.
Next, we prove sufficiency and necessity for the respective assumptions. Sufficiency of
assumptions 3.27 and 3.30 follows directly from the above considerations. Now for the
necessity of Assumption 3.22. Property 3.8 implies Property 3.21. In Proposition 3.26 we
show that Assumption 3.22 is necessary (and sufficient) for formulating the junction structure
equations as explicit Dirac structure satisfying Property 3.21. In Lemma 3.31 it is shown,
that the inputs and outputs of the explicit Dirac structure directly translate into the inputs
and outputs of the explicit PHS. Thus, under Property 3.8, the necessity of Assumption 3.22
from Proposition 3.26 also accounts for the subsequent derivation of an explicit PHS. This
concludes the proof.

Theorem 3.35 provides two conditions, one sufficient and one necessary, for the existence
of an explicit port-Hamiltonian formulation of a bond graph. The sufficient condition is
composed of two subconditions, viz. (i) that the system contains no dependent sources
and no dependent storages (i.e., Assumption 3.27) and (ii) that the constitutive relations
of energy-dissipating elements can be formulated in a suitable input-output representation
(i.e., Assumption 3.30). The necessary existence condition requires the system to contain no
dependent sources (i.e., Assumption 3.22).

The methods associated to Theorem 3.35 constitute an algorithm which can be used
to generate an explicit PHS from a given bond graph. A pseudo code listing is given in
Algorithm 3.36. The input of the algorithm is a formal bond graph as defined in Definition 3.5.
The output is a complete specification of the resulting port-Hamiltonian model, viz. the
matrices, Hamiltonian, state vector, input vector, and output vector of the PHS.

It is straightforward to implement Algorithm 3.36 in a computer algebra system. Based
on such an implementation, one can compute an explicit PHS from a bond graph. This
computation runs fully automatic, i.e., except for the specification of the bond graph, it
requires no action from the user. Thus, provided the existence conditions from Theorem 3.35
are satisfied, we can automatically generate an explicit PHS from a bond graph.

A limitation of Algorithm 3.36 is that it cannot be applied to systems with dependent
storages as such systems violate Assumption 3.27. Dependent storages occur for example in
multi-phase power systems with Y -connected inductive loads and in mechanic system with
rigidly coupled masses. Of course, we are also interested in an automated modeling of such
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systems. Hence, in the following subsection, we relax Assumption 3.27 in order to enable a
generation of PHSs from bond graphs possibly containing dependent storages.

Algorithm 3.36 Port-Hamiltonian formulation of a bond graph
Input: K-dimensional bond graph (3.12)

1: // Methods from Subsection 3.2.3
2: for all i ∈ VI do
3: compute FFF i (xxx), EEE i (xxx) according to (3.20)
4: construct Di (xxx) as in (3.19)
5: end for
6: // Methods from Subsection 3.2.4
7: for all i ∈ VI do
8: bring Di (xxx) to the form (3.23)
9: compute DIC according to (3.25)

10: compute ΓΓΓ
>
i (xxx) according to (3.28)

11: end for
12: ΓΓΓ

> (xxx)← (ΓΓΓ>i (xxx)) for all i ∈ VI

13: ΛΛΛ
> (xxx)← ker(ΓΓΓ> (xxx))

14: write ΛΛΛ
> (xxx) as (ΛΛΛ>i (xxx)) for all i ∈ VI

15: compute D(xxx) according to (3.29)
16: bring D(xxx) to the form (3.27)
17: // Methods from Subsection 3.2.5
18: if Assumption 3.22 is violated then
19: print "Bond graph contains dependent sources. No PHS can be computed!"
20: terminate
21: end if
22: if Assumption 3.27 is violated then
23: print "Bond graph contains dependent storages or

storages determined by sources. Algorithm terminates!"
24: terminate
25: end if
26: split FFFR (xxx) such that (3.39) is fulfilled
27: split EEER (xxx), fff R, eeeR in same parts as FFFR (xxx)
28: compute ZZZ (xxx) according to (3.38) with FFFC,1 (xxx) = FFFC (xxx), EEEC,1 (xxx) = EEEC (xxx)
29: compute uuui,yyyi according to (3.63), i ∈ {C,P,R}
30: compute D(xxx) as in (3.62)
31: // Methods from Subsection 3.2.6
32: if Assumption 3.30 is violated then
33: print "No suitable input-output splitting of

R-type elements exists. Algorithm terminates!"
34: terminate
35: end if
36: bring resistive relation to form (3.66)
37: compute PHS matrices with (3.67)
38: xxx← (xxxi),∀i ∈ VC and H (xxx)←V (xxx)
39: uuu← uuuP, yyy← yyyP
40: return explicit PHS (3.85)
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3.2.8 Systems with Dependent Storages

The aim of this subsection is to develop a method which derives an explicit PHS from
bond graphs with dependent storages. The leading idea is to express variables according to
dependent storages as functions of variables only according to independent storages. Based
hereon, we formulate the port-Hamiltonian dynamics and output in terms of the system
inputs and independent storages. Portions of this section have previously been published in
Pfeifer et al. [2020b].

Consider a bond graph as from Definition 3.5. In the following, we distinguish between
two types of storages elements, viz. independent storages Ci and dependent storages Cd.14

Correspondingly, let us decompose the set of storages VC into VCi and VCd . We then have
NC = NCi +NCd , where NCi = |VCi | and NCd = |VCd |. Recall Lemma 3.23: provided there are
no dependent sources, the junction structure of the bond graph can always be described as a
Dirac structure in input-output representation (3.36). Using the composition VC = VCi ∪VCd ,
the Dirac structure (3.36) reads:

D= {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |


yyyCi

yyyCd

yyyR

yyyP

=


ZZZCiCi (xxx) −ZZZCiCd (xxx) −ZZZCiR (xxx) −ZZZCiP (xxx)
ZZZ>CiCd

(xxx) ZZZCdCd (xxx) −ZZZCdR (xxx) −ZZZCdP (xxx)
ZZZ>CiR (xxx) ZZZ>CdR (xxx) ZZZRR (xxx) −ZZZRP (xxx)
ZZZ>CiP (xxx) ZZZ>CdP (xxx) ZZZ>RP (xxx) ZZZPP (xxx)




uuuCi

uuuCd

uuuR

uuuP

}, (3.86)

where

uuuCi = eeeCi , uuuCd =− fff Cd
, (3.87a)

yyyCi
=− fff Ci

, yyyCd
= eeeCd , (3.87b)

and the remaining vectors as in (3.37). It is well known that power variables of depen-
dent storages are functions only of power variables of independent storages and inputs
from sources [Wellstead, 1979, p. 226]. Thus, without loss of generality we may assume

14The index i refers to independent and is not to be confused with the index I which stands for interior.
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ZZZCdCd (xxx) = 000, ZZZCdR (xxx) = 000 and write (3.86) as

D= {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |


yyyCi

yyyCd

yyyR

yyyP

=


ZZZCiCi (xxx) −ZZZCiCd (xxx) −ZZZCiR (xxx) −ZZZCiP (xxx)
ZZZ>CiCd

(xxx) 000 000 −ZZZCdP (xxx)
ZZZ>CiR (xxx) 000 ZZZRR (xxx) −ZZZRP (xxx)
ZZZ>CiP (xxx) ZZZ>CdP (xxx) ZZZ>RP (xxx) ZZZPP (xxx)




uuuCi

uuuCd

uuuR

uuuP

}. (3.88)

As can be seen in (3.88), dependent storages can be (i) dependent on independent storages
(i.e., ZZZCiCd (xxx) 6= 0) and/or (ii) determined by sources (i.e., ZZZCdP (xxx) 6= 0). Wellstead [1979,
p. 227] showed that case (ii) leads to mathematical models of the form ẋxx = fff (xxx,uuu, u̇uu, t). Due
to the dependence on u̇uu, no explicit PHS of the form (2.12) can be obtained for such systems.
Hence, we exclude case (ii) in the following considerations. Moreover, we assume ZZZCiCd (xxx)
to be constant. The following assumption summarizes the preconditions on the matrix blocks
in (3.88):

Assumption 3.37 (Matrix blocks in (3.88))
In (3.88), we have ZZZCdP (xxx) = 000 for all xxx ∈ X and ZZZCiCd (xxx) = ZZZCiCd = const.

Next, we elaborate the consequence of the decomposition VC =VCi ∪VCd to the constitutive
relations of storages. With the inputs and outputs from (3.88), we can rewrite the constitutive
relations (3.6) as (

fff Ci

fff Cd

)
(3.87)
= −

(
yyyCi

uuuCd

)
=

(
ẋxxi

ẋxxd

)
, (3.89a)(

eeeCi

eeeCd

)
(3.87)
=

(
uuuCi

yyyCd

)
=

(
∂Vi
∂xxxi

(xxxi)
∂Vd
∂xxxd

(xxxd)

)
, (3.89b)

where xxxi ∈ RKNCi , xxxd ∈ RKNCd are the energy states and Vi : RKNCi → R, Vd : RKNCd → R are
the storage functions of the independent and dependent storage elements, respectively. The
overall energy in the system is then given by the composite storage function V (xxxi,xxxd) =

Vi(xxxi)+Vd(xxxd). The storage functions Vi(xxxi) and Vd(xxxd) are bounded from below. Moreover,
so far, they are allowed to be any differentiable linear or nonlinear function. In the latter case,
however, it is (in general) impossible to solve (3.88) and (3.65) for an explicit expression which
relates the states of the dependent storages as a function of the states of the independent
storages. As a remedy, we restrict our attention to the important special case of linear
storages, i.e., the case of quadratic positive-definite storage functions.

Assumption 3.38 (Quadratic storage functions)
The storage functions in (3.65) are of the formVi(xxxi) =

1
2 xxx>i QQQixxxi andVd(xxxd) =

1
2 xxx>d QQQdxxxd

where QQQi = QQQ>i � 0 and QQQd = QQQ>d � 0.

Based on assumptions 3.37 and 3.38, we express the variables of dependent storages by
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means of variables of the independent storages in the following lemma. This is the key
lemma of this subsection.

Lemma 3.39 (Port-Hamiltonian formulation in case of dependent storages)
Given a Dirac structure in explicit representation (3.88) that fulfills Assumption 3.37.
Moreover, suppose constitutive relations of storages (3.65) which satisfy Assump-
tion 3.38. For the constitutive relations of resistors, let Assumption 3.30 hold, which
enables us to write them as (3.66). Then, (3.88), (3.65), and (3.66) can be written as
explicit input-state-output PHS of the form (2.12). The input, state, and output of
the PHS are given as uuu = uuuP, xxx = xxxi, and yyy = yyyP, respectively. The Hamiltonian is
H (xxx) = Vi(xxxi) =

1
2 xxx>i QQQixxxi where QQQi = QQQ>i � 0. The matrices of the PHS are calcu-

lated as

JJJ (xxx) =
1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK>(xxx)ZZZ>CiR(xxx) L̃LL>

)
− 1

2

(
L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)ZZZ>CiR(xxx)+ZZZCiCi (xxx) L̃LL>+ L̃LLZZZCiCi (xxx)

)
,

(3.90a)

RRR(xxx) =
1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK>(xxx)ZZZ>CiR(xxx) L̃LL>

)
+

1
2

(
L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)ZZZ>CiR(xxx)−ZZZCiCi (xxx) L̃LL>+ L̃LLZZZCiCi (xxx)

)
,

(3.90b)

GGG(xxx) =
1
2
(
III + L̃LL

)
ZZZCiP (xxx)

− 1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK>(xxx)− L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)

)
ZZZRP (xxx) ,

(3.90c)

PPP(xxx) =
1
2
(
III− L̃LL

)
ZZZCiP (xxx)

− 1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK>(xxx)+ L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)

)
ZZZRP (xxx) ,

(3.90d)

MMM (xxx) =
1
2

ZZZ>RP(xxx)
(

K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK>(xxx)
)

ZZZRP (xxx)+ZZZPP (xxx) , (3.90e)

SSS (xxx) =
1
2

ZZZ>RP(xxx)
(

K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK>(xxx)
)

ZZZRP (xxx) , (3.90f)

where K̃KK (xxx) =
(
III + R̃RR(xxx)ZZZRR (xxx)

)−1 and L̃LL =
(
III +ZZZCiCdQQQ−1

d ZZZ>CiCd
QQQi
)−1.

Remark 3.40 (Existence of K̃KK and L̃LL). In Lemma3.33, it has been shown that thematrix
K̃KK (xxx) always exists for all x ∈ X. The existence of the matrix L̃LL will be discussed later
in Lemma 3.44.
Proof:
The basic approach of the proof is similar as in the proof of Lemma 3.31, i.e., in the case
without dependent storages. In the proof of Lemma 3.31, the first step was to eliminate
variables that belong to resistive elements. In the proof at hand, however, we will eliminate
both, variables that belong to resistive elements and variables that belong to dependent
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storages. In this context, a cornerstone is to derive an expression which relates the variables
of interest without using variables that belong to dependent storages—which is step (i) of
this proof. In step (ii), we decompose the equation system obtained from (i) into a symmetric
and a skew-symmetric part and insert the constitutive relations of the independent storages
from (3.65). In the third step (iii), we prove the definiteness condition (2.13). Compared to
the proof of Lemma 3.31, step (iii) is more delicate as we have to consider the dependent
storages in the power balance of the system. For the sake of releasing notational burden, we
will suppress the argument xxx to the matrices during the proof.

(i) Let assumption 3.37 hold. Substituting the third line from the equation system of
(3.88) into (3.66) gives

uuuR =−R̃RR
(

ZZZ>CiR uuuCi +ZZZRR uuuR−ZZZRP uuuP

)
⇔ uuuR =−K̃KK R̃RRZZZ>CiR uuuCi + K̃KK R̃RRZZZRP uuuP, (3.91)

with K̃KK =
(
III + R̃RRZZZRR

)−1. According to Lemma 3.33, K̃KK always exists. Now we use an idea
of Wellstead [1979, pp. 226-227] to eliminate the variables that belong to dependent storages.
In addition to Assumption 3.37, let Assumption 3.38 hold. With (3.89b), the second line of
the equation system of (3.88) reads:

yyyCd
= ZZZ>CiCd

uuuCi

⇔ ∂Vd

∂xxxd
(xxxd) = ZZZ>CiCd

(
∂Vi

∂xxxi
(xxxi)

)
⇔ QQQd xxxd = ZZZ>CiCd

QQQi xxxi

⇔ xxxd = QQQ−1
d ZZZ>CiCd

QQQi xxxi. (3.92)

By differentiating (3.92) with respect to time and using (3.89a), we obtain

ẋxxd = QQQ−1
d ZZZ>CiCd

QQQi ẋxxi

⇔ 000 =−uuuCd +QQQ−1
d ZZZ>CiCd

QQQi yyyCi
. (3.93)

Insertion of (3.91) into the first line of the equation system in (3.88) gives

yyyCi
=
(

ZZZCiCi +ZZZCiRK̃KKR̃RRZZZ>CiR

)
uuuCi−ZZZCiCduuuCd +

(
−ZZZCiP−ZZZCiRK̃KKR̃RRZZZRP

)
uuuP. (3.94)

Equations (3.93) and (3.94) can be written in matrix-vector form:(
III ZZZCiCd

−QQQ−1
d ZZZ>CiCd

QQQi III

)(
yyyCi

uuuCd

)
=(

ZZZCiCi +ZZZCiRK̃KKR̃RRZZZ>CiR −ZZZCiP−ZZZCiRK̃KKR̃RRZZZRP

000 000

)(
uuuCi

uuuP

)
.

(3.95)

Next, we use the inversion rules for 2×2 block matrices from Lu and Shiou [2002] to invert
the matrix on the left-hand side of equation (3.95). The Schur complement of this matrix is
given by:

LLL := III +ZZZCiCdQQQ−1
d ZZZ>CiCd

QQQi. (3.96)
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The regularity of the matrix LLL will be discussed in Lemma 3.44. Provisionally, let us suppose
that the inverse of LLL exists and is given by L̃LL := LLL−1. By applying the inversion rules from
Lu and Shiou [2002], we can then write (3.95) equivalently as(

yyyCi

uuuCd

)
=

(
ZZZ1 ZZZ2

ZZZ3 ZZZ4

)(
uuuCi

uuuP

)
, (3.97)

with

ZZZ1 = L̃LL
(

ZZZCiCi +ZZZCiR K̃KK R̃RRZZZ>CiR

)
, (3.98a)

ZZZ2 = L̃LL
(
−ZZZCiP−ZZZCiR K̃KK R̃RRZZZRP

)
, (3.98b)

ZZZ3 = QQQ−1
d ZZZ>CiCd

QQQi L̃LL
(

ZZZCiCi−ZZZCiR K̃KK R̃RRZZZ>CiR

)
, (3.98c)

ZZZ4 = QQQ−1
d ZZZ>CiCd

QQQi L̃LL
(
−ZZZCiP−ZZZCiR K̃KK R̃RRZZZRP

)
. (3.98d)

The first line of (3.97) will pave the way to the state differential equation (2.12a) of the PHS.
However, we also require an expression for the output equation (2.12b). To this end, we insert
(3.91) into the fourth line of the equation system of (3.88) and obtain

yyyP =
(

ZZZ>CiP−ZZZ>RPK̃KKR̃RRZZZ>CiR

)
uuuCi +

(
ZZZPP +ZZZ>RPK̃KKR̃RRZZZRP

)
uuuP. (3.99)

The first line of the equation system in (3.97) and equation (3.99) can be written together in
matrix-vector form as(

yyyCi

yyyP

)
=

(
L̃LL
(
ZZZCiCi +ZZZCiR K̃KK R̃RRZZZ>CiR

)
−L̃LL
(
ZZZCiP +ZZZCiR K̃KK R̃RRZZZRP

)
ZZZ>CiP−ZZZ>RP K̃KK R̃RRZZZ>CiR ZZZPP +ZZZ>RP K̃KK R̃RRZZZRP

)(
uuuCi

uuuP

)
. (3.100)

Note that (3.100) is independent of variables that belong to resistive elements and dependent
storages.

(ii) The matrix in (3.100) can be decomposed into a skew-symmetric and a symmetric
part. Using this decomposition, (3.100) can be equivalently written as(

yyyCi

yyyP

)
=

[(
−JJJ −GGG
GGG> MMM

)
︸ ︷︷ ︸

=ΨΨΨ

+

(
RRR PPP

PPP> SSS

)]
︸ ︷︷ ︸

=ΘΘΘ

(
uuuCi

uuuP

)
, (3.101)

with JJJ , RRR , GGG , PPP , MMM, SSS as in (3.90) and ΨΨΨ =−ΨΨΨ
>, ΘΘΘ = ΘΘΘ

>. By inserting the identities of the
independent variables from (3.65) into (3.101), we finally obtain an explicit PHS (2.12) with
uuu = uuuP, xxx = xxxi, yyy = yyyP and Hamiltonian H (xxx) =Vi(xxxi).

(iii) In the last step, we show that the definiteness condition (2.13) holds. Let us merge
(3.101) with the second line of the equation system in (3.88):yyyCi

yyyP

yyyCd

=


−JJJ −GGG 000

GGG> MMM 000
000 000 000


︸ ︷︷ ︸

=:Ψ̃ΨΨ

+

 RRR PPP 000
PPP> SSS 000

ZZZ>CiCd
000 000




︸ ︷︷ ︸
=:Θ̃ΘΘ

uuuCi

uuuP

uuuCd

 . (3.102)
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Note that Ψ̃ΨΨ is skew-symmetric but Θ̃ΘΘ is not symmetric. Nevertheless, Θ̃ΘΘ� 0 implies ΘΘΘ� 0.
In the following, we show that Θ̃ΘΘ� 0:

(
uuu>Ci

uuu>P uuu>Cd

)
Θ̃ΘΘ

uuuCi

uuuP

uuuCd

 =
(

uuu>Ci
uuu>P uuu>Cd

)(
Ψ̃ΨΨ+ Θ̃ΘΘ

)uuuCi

uuuP

uuuCd


(3.102)
=

(
uuu>Ci

uuu>P uuu>Cd

)yyyCi

yyyP

yyyCd


(2.9)
= −yyy>R uuuR

(3.66)
= yyy>R R̃RRyyyR ≥ 0. (3.103)

Hence, we have Θ̃ΘΘ� 0, which implies ΘΘΘ� 0. This concludes the proof.

Remark 3.41 (Dependent states as a function of independent states). The following
expression (i.e., (3.92)) relates the dependent states as functions of the independent
states:

xxxd = QQQ−1
d ZZZ>CiCd

QQQi xxxi. (3.104)

Equation (3.104) can be used, for example, to express the total energy in the system
as a function only of xxxi:

V (xxxi,xxxd) = Vi(xxxi)+Vd(xxxd)

= 1
2 xxx>i QQQixxxi +

1
2 xxx>d QQQdxxxd

(3.104)
= 1

2 xxx>i QQQi

(
III +ZZZCiCdQQQ−1

d ZZZ>CiCd
QQQi

)
xxxi

(3.96)
= 1

2 xxx>i QQQiLLLxxxi =V (xxxi). (3.105)

Remark 3.42 (Dynamics of the dependent states). By inserting (3.65) into the second
line of (3.97), we yield an explicit expression for the dynamics of the dependent states:

ẋxxd = QQQ−1
d ZZZ>CiCd

QQQiL̃LL
(

ZZZCiCi−ZZZCiRK̃KKR̃RRZZZ>CiR

)
QQQixxxi

−QQQ−1
d ZZZ>CiCd

QQQiL̃LL
(
ZZZCiP +ZZZCiRK̃KKR̃RRZZZRP

)
uuuP.

(3.106)

A central prerequisite for the proof of Lemma 3.39 is the existence of the matrix L̃LL = LLL−1,
where LLL =

(
III +ZZZCiCdQQQ−1

d ZZZ>CiCd
QQQi
)

with QQQi, QQQd symmetric, positive-definite and ZZZCiCd a
matrix of proper size. In the sequel, we prove that this prerequisite is indeed fulfilled, i.e., that
LLL is always regular. To this end, we will make use of the following concepts (see Deuflhard
and Hohmann [1995, p. 273]):
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Definition 3.43 (Rayleigh quotient and numerical range)
Given a quadratic matrix AAA ∈ Rn×n and a non-zero vector xxx ∈ Rn. The Rayleigh quo-
tient ρ(AAA,xxx) is defined as

ρ(AAA,xxx) :=
xxx>AAAxxx
xxx>xxx

. (3.107)

The set of all Rayleigh quotients over non-zero vectors

W (AAA) := {ρ(AAA,xxx) |xxx ∈ Rn \{000}} (3.108)

is called numerical range of AAA.

We have Spec(AAA)⊆W (AAA) and for a symmetric matrix AAA we have W (AAA) = [λmin,λmax] by
the min-max Theorem (also known as Courant-Fischer Theorem), where λmin and λmax are
the smallest and the largest eigenvalues of AAA [Deuflhard and Hohmann, 1995, Lemma 8.29,
p. 273].

The following lemma is the key step to show that L̃LL always exists:

Lemma 3.44 (Regularity of a matrix)
Let XXX ∈ Rp×p be a symmetric positive-definite matrix and YYY ∈ Rp×p be any matrix
whose numerical range W (YYY ) is contained in [0,∞), i.e., YYY has only non-negative
eigenvalues. Then the matrix III +YYY XXX is regular.

Proof:
Without loss of generality we may assume XXX to be diagonal.15 The regularity of III +YYY XXX
will be proven by showing that YYY XXX has only eigenvalues in [0,∞), i.e., that −1 is not an
eigenvalue of YYY XXX . Let

√
XXX be the diagonal matrix which is a square root of XXX , i.e.,

√
XXX
√

XXX =√
XXX
√

XXX
>
= XXX . Such a matrix exists and is invertible since XXX is diagonal and positive-definite.

Because the spectrum of a matrix is invariant under conjugation, we have

Spec(YYY XXX) = Spec
(√

XXXYYY XXX
√

XXX
−1)

= Spec
(√

XXXYYY
√

XXX
)
= Spec

(√
XXXYYY
√

XXX
>)

⊆W
(√

XXXYYY
√

XXX
>)
⊆W (YYY ) · (0,∞)⊆ [0,∞).

(3.109)

In (3.109), the second to last inclusion holds since

xxx>
√

XXXYYY
√

XXX
>

xxx
xxx>xxx

=
xxx>
√

XXXYYY
√

XXX
>

xxx

xxx>
√

XXX
√

XXX
>

xxx︸ ︷︷ ︸
∈W (YYY )

· x
xx>
√

XXX
√

XXX
>

xxx
xxx>xxx︸ ︷︷ ︸
∈W (XXX)

(3.110)

15cf. the proof of Lemma 3.33 and note that for TTT ∈O(p) we have W (TTTYYY TTT>) ∈ [0,∞).



3.2. Main Results 67

and W (XXX) ⊆ (0,∞) by the min-max Theorem. Thus, −1 is not an eigenvalue of YYY XXX and
III +YYY XXX is invertible.

Corollary 3.45
The matrix L̃LL(xxx) from Lemma 3.39 always exists.

Proof:
Recall that QQQd � 0 and thus QQQ−1

d � 0, which also implies QQQ−1
d � 0. Hence, ZZZCiCdQQQ−1

d ZZZ>CiCd

is positive semi-definite. The Rayleight quotient of a positive semi-definite matrix is always
≥ 0, i.e., W (ZZZCiCdQQQ−1

d ZZZ>CiCd
)⊆ [0,∞). As QQQi is symmetric and positive-definite, the claim

follows from Lemma 3.44.

Remark 3.46 (Alternative proof of Lemma 3.33). By interchangingYYY and XXX , the proof
of Lemma 3.44 can be easily extended to also show regularity of III +XXXYYY . By this,
we obtain an alternative proof of Lemma 3.33 for the existence of matrix K̃KK (xxx) (cf.
Remark 3.40).

Now we have everything prepared to collect the insights from the previous lemmas in
a summarizing theorem about the existence of an explicit port-Hamiltonian formulation—
similar to Theorem 3.35. In contrast to Theorem 3.35, however, the following theorem
focuses on bond graphs that possibly contain dependent storages.
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Theorem 3.47 (Explicit PHSs from Bond Graphs with Dependent Storages)
Given a K-dimensional bond graph as in Definition 3.5 with linear storages (i.e., As-
sumption 3.38). The junction structure of the bond graph can be described by a Dirac
structure in implicit form (3.82). Let rank(EEESf (xxx) FFFSe (xxx)) = K (NSf +NSe) hold for all
xxx ∈ X (i.e., Assumption 3.22). Then, (3.82) can be formulated in an explicit form

D= {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |


yyyCi

yyyCd

yyyR

yyyP

=


ZZZCiCi (xxx) −ZZZCiCd (xxx) −ZZZCiR (xxx) −ZZZCiP (xxx)
ZZZ>CiCd

(xxx) 000 000 −ZZZCdP (xxx)
ZZZ>CiR (xxx) 000 ZZZRR (xxx) −ZZZRP (xxx)
ZZZ>CiP (xxx) ZZZ>CdP (xxx) ZZZ>RP (xxx) ZZZPP (xxx)


︸ ︷︷ ︸

ZZZ(xxx)


uuuCi

uuuCd

uuuR

uuuP

}, (3.111)

where ZZZ (xxx) =−ZZZ> (xxx) for all xxx ∈ X and uuuCi = eeeCi , uuuCd =− fff Cd
, uuuR = (eee>R,1 − fff>R,2)

>,
uuuP = ( fff>Sf eeeSe)

>, yyyCi
=− fff Ci

, yyyCd
= eeeCd , yyyR = (− fff>R,1 eee>R,2)

>, yyyP = (eee>Sf fff>Se)
>. Suppose

the resistive relations can be reorganized as uuuR = −R̃RR(xxx)yyyR with R̃RR(xxx) = R̃RR(xxx)> � 0
(i.e., Assumption3.30). Moreover, letZZZCdP (xxx)= 000 for all xxx∈X andZZZCiCd (xxx)= ZZZCiCd =

const. (i.e., Assumption 3.37). The bond graph can then be formulated as an explicit
PHS as from Definition 2.23:

ẋxx = (JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu, (3.112a)

yyy = (GGG(xxx)+PPP(xxx))>
∂H
∂xxx

(xxx)+(MMM (xxx)+SSS (xxx))uuu, (3.112b)

that has Property 3.8. The input, state, and output of the PHS are given as uuu = uuuP,
xxx = xxxi, and yyy = yyyP, respectively, with the Hamiltonian being H (xxx) =Vi(xxxi).

Proof:
Consider a K-dimensional bond graph as in Definition 3.5 which fulfills Assumption 3.38.
From Theorem 3.35 it is known that the junction structure of the bond graph can be described
by a Dirac structure of the form (3.82). Let Assumption 3.22 hold. From Lemma 3.23 it
follows that (3.82) can be written as (3.111) where the zero blocks are due to the fact that
variables of dependent storages are functions only of power variables of independent storages
and inputs from sources [Wellstead, 1979, p. 226]. Let assumptions 3.30 and 3.37 hold. It
follows from Lemma 3.39 that the bond graph can then be formulated as an explicit PHS
(3.112) with inputs, states, outputs, and Hamiltonian as stated. By uuu = uuuP and yyy = yyyP, the
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PHS has Property 3.8.

Theorem 3.47 provides a sufficient condition for the existence of an explicit port-
Hamiltonian formulation of bond graphs with dependent storages. The condition is composed
of four subconditions, viz. (i) that the system contains no dependent sources (i.e., Assump-
tion 3.22); (ii) that the constitutive relation of energy-dissipating elements can be formulated
in a suitable input-output representation (i.e., Assumption 3.30); (iii) that the variables from
dependent storages are static functions of only variables from independent storages (i.e.,
Assumption 3.37); and (iv) that the storage elements are linear (i.e., Assumption 3.38). By
these conditions, Theorem 3.47 generalizes Theorem 3.35 with respect to the occurence of
dependent storages but is less general concerning the permitted storage functions.

Algorithm 3.48 collects the methods associated to Theorem 3.47 in a pseudo code listing
to calculate an explicit PHS from a given bond graph. It is straightforward to implement the
algorithm in a computer algebra system. Such an implementation enables the automated
generation of an explicit PHS based on a bond graph system with dependent storages.

Algorithm 3.48 Port-Hamiltonian formulation of a bond graph with dependent storages
Input: K-dimensional bond graph (3.12) with linear storages

1: // Methods from subsections 3.2.3 and 3.2.4 are as in Algorithm 3.36
2: execute line 1 to 14 from Algorithm 3.36
3: // Methods from Subsection 3.2.5
4: if Assumption 3.22 is violated then
5: print "Bond graph contains dependent sources. No PHS can be computed!"
6: terminate
7: end if
8: split FFFC (xxx) and FFFR (xxx) such that (3.39) is fulfilled
9: split EEEC (xxx), fff C, eeeC in same parts as FFFC (xxx)

10: split EEER (xxx), fff R, eeeR in same parts as FFFR (xxx)
11: compute ZZZ (xxx) according to (3.38)
12: compute uuui,yyyi according to (3.37), i ∈ {C,P,R}
13: compute D(xxx) as in (3.111)
14: // Methods from Subsection 3.2.8
15: if Assumption 3.30 or 3.37 is violated then
16: print "Existence conditions are violated. Algorithm terminates!"
17: terminate
18: end if
19: bring resistive relation to form (3.66)
20: compute PHS matrices with (3.90)
21: xxx← xxxi and H (xxx)←Vi(xxxi)
22: uuu← uuuP, yyy← yyyP
23: return explicit PHS (3.112)

To illustrate the automated model generation based on Algorithm 3.48, let us consider a
new example.
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Example 3.49:
Consider the single-bond graph (K = 1) in Figure 3.4.

R: D 0 TF: U 0 GY: W (xi,xd) Se

C: Vi(xi) C: Vd(xd)

eR

fR

fCi
eCi fCd

eCd

eSe

fSe

Figure 3.4: Exemplary bond graph with dependent storages

The C-type element with storage function Vi(xi) is considered as independent stor-
age element; the C-type element with storage function Vd(xd) is a dependent stor-
age element. The respective storage functions are given by Vi(xi) = x2

i /(2ci) and
Vd(xd) = x2

d/(2cd) where ci,cd > 0. The constitutive relation of the R-type element
is specified by fR = DeR where D > 0. The transformer TF has a constant transforma-
tion ratioU > 0 and the gyratorGY is state-modulated with an arbitrary gyration ratio
W (xi,xd)> 0 for all xi,xd ∈ R.
By executing the first two lines of Algorithm 3.48, we obtain a Dirac structure of the
form (3.111):

D= {(


fCi

fCd

fR

fSe

 ,


eCi

eCd

eR

eSe

) ∈ R4×R4 |


− fCi

eCd

eR

fSe

=


0 −U −1 − U

W (xi,xd)

U 0 0 0
1 0 0 0
U

W (xi,xd)
0 0 0




eCi

− fCd

− fR

eSe

}. (3.113)

Assumptions 3.30 and 3.37 are satisfied for (3.113). Hence, from Theorem 3.47 we
know that the bond graph from Figure 3.4 permits an explicit port-Hamiltonian formu-
lation of the form (3.112). By executing the remainder of Algorithm 3.48, we obtain the
following explicit PHS:

ẋ =−
(

Dci
ci+U2 cd

)
︸ ︷︷ ︸
=RRR(x)=RRR

∂H
∂x

(x)+
(

U ci
W (x)(ci+U2 cd)

)
︸ ︷︷ ︸

=GGG(x)−PPP(x)

u, (3.114a)

y =
(

U
W (x)

)
︸ ︷︷ ︸

=(GGG(x)+PPP(x))>

∂H
∂x

(x), (3.114b)

with u = eSe, x = xi, y = fSe, and H(x) = Vi(xi).16 In this example, the expressions for
JJJ, MMM, and SSS are calculated as zero. Note that RRR > 0. Moreover, the inputs and outputs
are such that the PHS has Property 3.8.
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Example 3.49 illustrates that one can obtain an explicit PHS also for systems with
linear dependent storages. In the next section, we discuss the main results presented in
subsections 3.2.7 and 3.2.8 with respect to the overall objectives of this thesis and previous
results from the related literature.

3.3 Discussion

Theorems 3.35 and 3.47 are the main theoretical results of this chapter. The two theorems are
the first to give rigorous existence conditions for the complete transfer from a bond graph to
an explicit PHS. In the literature, there exist some existence conditions for intermediate steps
of this transfer. Golo et al. [2000] and Golo et al. [2003] show that the junction structure of a
bond graph can always be related to a Dirac structure in implicit form which is in line with
the findings from Theorem 3.35. Donaire and Junco [2009] provide sufficient conditions
for the transfer from a Dirac structure in explicit form to a non-feedthrough PHS. Verbally
formulated sufficient conditions for the existence of an explicit PHS have been given by
van der Schaft [2009, p. 70] and van der Schaft and Jeltsema [2014, p. 53]. Theorems 3.35
and 3.47 put the conditions of Golo et al. [2000], Golo et al. [2003], Donaire and Junco
[2009], van der Schaft [2009], and van der Schaft and Jeltsema [2014] into the perspective
of an explicit port-Hamiltonian formulation of bond graphs.17 Therewith, the conditions
from the two theorems relate to, link, and generalize existing conditions and knowledge and
streamline the present body of literature towards a fully automated model generation for
interconnected systems.

From theorems 3.35 and 3.47 it follows that two important classes of bond graphs permit
an explicit port-Hamiltonian formulation, viz. (i) bond graphs with nonlinear independent
storages and (ii) bond graphs with linear dependent storages. Both cases, (i) and (ii), allow
for nonlinearities in the interconnection structure arising from a state-modulation of energy-
routing or energy-dissipating elements.

The independence of sources (i.e., Assumption 3.22) is shown to be a necessary condition
for the existence of an explicit PHS. This condition is not strict as, in real physical systems,
dependent sources are impossible to occur. It is noteworthy that Assumption 3.22 is also
necessary for a bond graph to be well-posed in the sense of Golo et al. [2003, Def. 2].

Another condition from theorems 3.35 and 3.47 for the existence of a PHS is that the
resistive relations can be rewritten in an input-output form (i.e., Assumption 3.30). This
assumption is well-known from the literature (see, e.g., van der Schaft and Jeltsema [2014,
p. 53] or van der Schaft [2009, p. 69] and is also mild. In Appendix B.3, it is shown that
Assumption 3.30 is always fulfilled if the resistive elements are truly dissipative. This is
satisfied by most multi-bond graphs and, in particular, for all single-bond graphs.

16The function W (x) =W (xi) in (3.114) can be obtained from the gyration ratio W (xi,xd) by using
the substitution rule for xd from (3.104) (cf. Remark 3.41).

17A more detailed discussion of theorems 3.35 and 3.47 in the light of previous work is out of the
scope of this section but can be found in the literature notes provided in Appendix B.5.
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A limitation of theorems 3.35 and 3.47 is given for systems with nonlinear dependent
storages. For such systems, however, there exist different strategies to eliminate dependent
storages by adding or removing certain bond graph elements. The interested reader is referred
to Borutzky [2010] and Karnopp et al. [2012].

As an interim conclusion, explicit PHSs are capable of describing a large class of bond
graphs according to Definition 3.5. So it is left to discuss the capabilities and restrictions of
Definition 3.5.

Definition 3.5 encompasses a comprehensive class of bond graphs as it allows for multi-
port systems with nonlinearities in the energy-storing elements and state-modulations in
the energy-routing and energy-dissipating elements. On the other hand, Definition 3.5 is
limited to resistive relations that are linear in the power variables (i.e., Assumption 3.4).
This represents the most relevant case of resistive relations (cf. van der Schaft and Jeltsema
[2014, pp. 53–54] and Borutzky [2010, p. 364]), but excludes some phenomena that are of
practical interest as, e.g., the dissipative relation describing the pressure drop in gas networks
(cf. Strehle et al. [2018]) or the dissipative relation of nonlinear loads in AC power systems
(cf. Strehle et al. [2020]). Hence, Appendix B.4 relaxes Assumption 3.4 which allows to
consider bond graphs containing nonlinear resistive relations. Based hereon, Theorem 3.35
is generalized to systems with nonlinear dissipation. This leads to a novel class of explicit
PHSs with nonlinear dissipation and feedthrough, which has, to the best of our knowledge,
not been presented in the literature so far.18 This generalization is straightforward which is
why Assumption 3.4 is uncritical.19

Provided the existence conditions from theorems 3.35 and 3.47 are fulfilled, algo-
rithms 3.36 and 3.48, respectively, enable the fully automated calculation of an explicit
PHS from a given bond graph. The two algorithms are the first to enable such a fully
automated calculation and the main practical result of this chapter.

A PHS obtained from algorithms 3.36 and 3.48 has Property 3.8 and thus correctly
reflects the source elements of the underlying bond graph. The state vector of the PHS
consists of the states of the independent energy storages. This is in line with the literature,
where the order of an ODE model of a bond graph is known to be equal to the number of
independent storages [Borutzky, 2010, p. 119]. The Hamiltonian of the PHS is the sum
of the storage functions of the independent storages. Hence, the properties of the energy
storages directly translate from the bond graph into the explicit PHS.

The calculation laws in algorithms 3.36 and 3.48 reveal state-modulated resistors, trans-
formers, or gyrators to result in an explicit PHS with state-dependent matrices. On the
other hand, if all bond graph elements of the types R, TF, and GY are non-modulated, the
matrices of the explicit PHS are constant. If, in addition, the storages obey quadratic storage
functions (i.e., Assumption 3.38 holds), the resulting PHS is linear. For the feedthrough-case,

18For the case of no feedthrough, this class of PHSs particularizes to the class of PHSs with nonlinear
resistive structure introduced by van der Schaft [2016, Def. 6.1.4].

19On the other hand, the PHS obtained in Section B.4 does not have the favorable symmetry and
definiteness properties of (2.12) which is why we do not consider the PHS from Section B.4 any
further.
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algorithms 3.36 and 3.48 reveal the parameters of R-type elements to possibly appear in each
of the matrices of the PHS—and not only in the dissipation matrix RRR(xxx). This is in line with
previous findings in the literature from Donaire and Junco [2009][p. 145, Remark] and van
der Schaft and Jeltsema [2014, Example 4.1].

As can be seen, algorithms 3.36 and 3.48 ensure important properties of the system
to translate into the explicit PHS. On the other hand, the results show that the physical
interpretability of explicit models has natural limits. Introducing a causality from inputs
over states to outputs leads to inter-subsystem dependencies that go beyond the physical
interconnection structure. Therefore, the matrices of an explicit model usually do not have a
subsystem-wise block structure.

A practical limitation of algorithms 3.36 and 3.48 is given for the development of fully
symbolic models. The algorithms require matrix inversions, see (3.38), (3.67g), and (3.90). The
inversion of large symbolic matrices, however, may lead to large expressions. Thereby, one
cannot state an absolute limit for the allowed matrix sizes. The practical invertibility of a
symbolic matrix strongly depends on the specific structure of the matrix. If the inversion of a
symbolic matrix is intractable, one can still approach with local models.

The development of numeric models is free of such limitations. In the numeric case, the
maximal size of the involved matrices is determined by the memory of the applied computer.
Thereby, the sizes of the matrices grow with O(K2) where K is the dimension of the bond
graph. The practical limit, however, is given by the computation time for the matrix inver-
sions. In the worst case, the computation time for a matrix inverse grows polynomially with
O(s3) where s is the matrix order [Lyche, 2020, p. 65]. In both algorithms, the largest matrix
to be inverted is given in (3.38). This matrix is of order KN. Hence, the upper bound for the
computation time for algorithms 3.36 and 3.48 grows with O(K3N3), i.e., cubically with the
product of the dimension and the sum of elements in the bond graph. It is noteworthy, that in
practice this worst case rarely occurs as the matrix in (3.38) is typically a sparse matrix.

In conclusion, for a large class of interconnected systems the methods from this chapter
enable an efficient automated generation of explicit port-Hamiltonian models. The obtained
models transparently reflect important properties of the underlying physical systems.

3.4 Summary and Contributions

Modeling an interconnected system as an explicit state-space system is a cumbersome task.
The methods and algorithms from this chapter provide remedy as they enable an automated
generation of explicit port-Hamiltonian models on the basis of a bond graph representation
of the system. The main contributions of this chapter are:

(C1.1) necessary and sufficient conditions for the existence of an explicit port-Hamiltonian
formulation of bond graphs (theorems 3.35 and 3.47);
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(C1.2) fully automatable algorithms which allow to compute an explicit PHS based on a
given bond graph (algorithms 3.36 and 3.48).

The methods and algorithms from this chapter are the first to allow for an automated
generation of physical-based explicit state-space models for a large class of interconnected
systems. Therewith, these contributions meet the research objective O1 from Section 1.3.
Successive examples verified the theoretical findings and illustrated the algorithmic nature of
the automated model generation.



Chapter 4
Automated Observer Design

The previous chapter presented methods for an automated generation of port-Hamiltonian
models for interconnected systems. The obtained models may serve as the starting point for
numerical simulations as well as for the design of controllers and observers. This chapter
focuses on the latter, i.e., the PHS-based design of observers. Thereby, we aim for an
automatable observer design which exploits the port-Hamiltonian structure of the model.

First, the state of the art in observer design methods for PHSs is reviewed in Section 4.1.
We will identify two research gaps which significantly hamper an automated observer design
for a large class of PHSs. From the research gaps we deduce the objectives of the chapter. To
reach these objectives, new PHS-based observers which allow for an automated design are
derived in Section 4.2. Finally, in Section 4.3 and Section 4.4 we discuss the new developed
methods in the light of the existing literature and summarize the contributions from this
chapter, respectively.

4.1 Literature Review

The first notable work on the observer design for PHSs was conducted by Sira-Ramírez
and Cruz-Hernández [2001]. The authors propose a passivity-based observer design for
so-called generalized Hamiltonian systems, i.e., autonomous PHSs. Since then, several
methods addressing the observer design for PHSs have been reported in the literature. These
methods will be reviewed in the sequel. For the review, the approaches are classified into
observer designs for linear PHSs and observer designs for nonlinear PHSs.

Linear PHSs are a special class of linear state-space systems. Hence, for the state
reconstruction of such systems it is natural to approach with a standard Luenberger observer
or Kalman filter, see, e.g., Khalil et al. [2012]. As argued in Section 1.2, the design of such
an observer can be automated by applying well-known methods. Cardoso Ribeiro [2016]
show that the Luenberger observer is also a viable option if the linear model arises from the
structure-preserving discretization of an infinite-dimensional PHS.1 Kotyczka and Wang

1Kotyczka et al. [2019] follow an approach similar to Cardoso Ribeiro [2016].
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[2015] design a compensator for linear PHSs based on a dual observer. However, the dual
observer does not provide an explicit reconstruction of the system state (cf. Luenberger
[1971]). Atitallah et al. [2015] address the combined input and state reconstruction for linear
PHSs. The authors propose two observers: the first observer determines a reconstruction
of the state; the second observer reconstructs the unknown input. As argued in Section 2.2,
besides the state and input, the output of a PHS is in general also not fully available for
measurement. This leads to an input-state-output reconstruction problem as was first tackled
in a preliminary work of this thesis authored by Pfeifer et al. [2019a]. The authors propose an
interval input-state-output estimator for linear PHSs. The approach from Pfeifer et al. [2019a]
can be automated but involves an observer existence condition that is rather restrictive.

In the above, we considered linear observer methods. For nonlinear PHSs, there exist
also several observer methods. For the nonlinear observer methods, one can distinguish
between two kinds of nonlinearities, viz. (a) nonlinearities in the interconnection structure
and (b) nonlinearities in the storages. The former are characterized by state-dependent
matrices of the PHSs; the latter are characterized by possibly non-quadratic Hamiltonians.

Wang et al. [2005] were the first to address the design of observers for nonlinear PHSs.
The authors develop adaptive and non-adaptive state observers for systems with nonlinear
interconnection structures and nonlinear storages. However, the observers are only asymp-
totic when the system reaches a steady state. Venkatraman and van der Schaft [2010] present
a passivity-based, globally exponentially stable observer for PHSs with nonlinear intercon-
nection structure and nonlinear storages. The proposed observer design is delicate as it
requires the solution of a set of algebraic equations and partial differential equations (PDEs).
A closed-form solution for such a system of equations exists only in special cases and is
difficult to determine. Hence, the observer design from Venkatraman and van der Schaft
[2010] cannot be automated. Vincent et al. [2016] present two nonlinear, passivity-based
observers for PHSs with nonlinear interconnection structure: a proportional observer and
a proportional observer with integral action. An interconnection and damping assignment
passivity-based control (IDA-PBC)-like observer design for PHSs with nonlinear storages
has been proposed by Yaghmaei and Yazdanpanah [2019b].2 As with the approach from
Venkatraman and van der Schaft [2010], the observer design of Yaghmaei and Yazdanpanah
[2019b] requires the solution of a set of PDEs which hinders its automation.

Another two notable publications in this field stem from Biedermann et al. [2018] and
Biedermann and Meurer [2021]: the former present a passivity-based observer design for a
class of state-affine systems; the latter propose a dissipativity- and IDA-PBC-based observer
design for nonlinear systems that can be decomposed into a time varying state affine part,
a nonlinear feedback part, and a perturbation term. Thereby, the observer designs from
Biedermann et al. [2018] and Biedermann and Meurer [2021] can be also applied to a class
of PHSs with nonlinear interconnection structure and linear storages.

2The observer from Yaghmaei and Yazdanpanah [2019b] allows for a separation principle as known
from linear systems theory, see Yaghmaei and Yazdanpanah [2019a].
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Table 4.1 provides an overview of the existing observers for linear and nonlinear PHSs.
In the first column, the publications are listed in the order they are mention above. The second
column of Table 4.1 differentiates between linear and nonlinear interconnection structures
in the underlying port-Hamiltonian model. Similar, the third column distinguishes between
linear and nonlinear storages. The fourth column shows the variables to be reconstructed by
the respective observer.

Table 4.1: Classification of existing observers for PHSs with respect to the interconnection structure,
storages, and reconstructed variables

Publication Interc. structure Storages Reconstr. variables

Khalil et al. [2012] linear linear states
Cardoso Ribeiro [2016] linear linear states
Kotyczka and Wang [2015] linear linear —
Atitallah et al. [2015] linear linear states, inputs
Pfeifer et al. [2019a] linear linear states, inputs, outputs

Wang et al. [2005] nonlinear nonlinear states
Venkatraman and van der Schaft [2010] nonlinear nonlinear states
Vincent et al. [2016] nonlinear linear states
Yaghmaei and Yazdanpanah [2019b] linear nonlinear states
Biedermann et al. [2018] nonlinear linear states
Biedermann and Meurer [2021] nonlinear linear states

From Table 4.1 it can be seen that the method from Pfeifer et al. [2019a] is the only
approach which enables a reconstruction of inputs, states, and outputs. However, as men-
tioned above, this approach involves an existence condition which is rather strict. Hence, the
method from Pfeifer et al. [2019a] is applicable to only a small class of linear PHSs.

The second and third columns in Table 4.1 show that the observers from Wang et al.
[2005] and Venkatraman and van der Schaft [2010] are the only two approaches which are
applicable to PHSs with nonlinearities in both, the interconnection structure and storages.
However, the observer of Wang et al. [2005] is in general not asymptotic and the observer
design from Venkatraman and van der Schaft [2010] cannot be automated.

To summarize, there exist powerful observer methods for linear and nonlinear PHSs in
the literature However, there are two research gaps which hamper the automated design of
observers for interconnected systems. First, the only existing observer for the reconstruction
of inputs, states, and outputs of a linear PHS is the estimator from Pfeifer et al. [2019a].
Unfortunately, this approach is applicable to only a small class of systems. Second, as
argued above, the available observer design schemes for PHSs with nonlinearities in both,
the interconnection structure and storages, cannot be automated.
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This chapter addresses these research gaps by developing automated observer design
methods for linear and nonlinear PHSs. Specifically, the objectives of this chapter are

(i) to develop an automatable design for an observer that is able to reconstruct the inputs,
states, and outputs in a large class of linear PHSs, and

(ii) to derive an observer with an automatable design scheme for PHSs with nonlinear
interconnection structures and nonlinear storages.

The objectives (i) and (ii) focus on the design of centralized observers based on global
model knowledge. For interconnected systems, however, the design of distributed observers
based on local model information is also of high interest (cf. Chapter 2). Hence, a secondary
objective of this chapter is

(iii) to investigate how the methods from (i) and (ii) can be applied for an automated design
of distributed observers based on local models.

4.2 Main Results

The previous section stated the aims of this chapter. To reach these aims we will now
derive observers and corresponding design schemes for different classes of PHSs. First, in
Subsection 4.2.1 we consider an automatable design scheme for an observer that reconstructs
the inputs, states, and outputs of a linear PHS. Next, Subsection 4.2.2 outlines the design of
a globally exponentially convergent state-output observer for a class of nonlinear PHSs. The
methods from subsections 4.2.1 and 4.2.2 are presented in the light of an automated design
of centralized observers based on global model knowledge. Subsection 4.2.3 shows that
these methods can also be used for an automated design of distributed observers based on
local model knowledge. To this end, we first reconsider the methods from Subsections 4.2.1
for the design of a distributed observer for linear interconnected systems with unknown
subsystem interactions. Afterwards, we particularize the methods from Subsection 4.2.2 for
the design of a distributed state observer for nonlinear interconnected systems with known
subsystem interactions. Figure 4.1 depicts an overview of the observers from this section
and illustrates their relations.

4.2.1 Automated Design of an Input-State-Output
Observer for Linear PHSs

Consider an interconnected system with linear interconnection structure, linear dissipation,
and linear storages. In Chapter 3, it was shown that a large class of such systems can be
described by linear input-state-output port-Hamiltonian models. For such models, we have
seen that the entries of the inputs uuu and outputs yyy are determined by physical constraints at the
system boundary. The corresponding variables may or may not be available for measurement.
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Figure 4.1: Overview of the observers developed in Section 4.2

Thus, the individual entries of uuu and yyy may or may not be known during runtime. This is
in contrast to classical observer theory, where the complete system input and output are
assumed to be known or measured (cf. Luenberger [1971]). As a remedy, let us introduce
a measurement vector mmm which contains the variables that are available for measurement.
The aim is then to determine an asymptotic observer which provides reconstructions of uuu, xxx,
and yyy based on knowledge of mmm. Following the notion of a state observer, we denote such
an observer as input-state-output observer. In the following, we formalize the problem of
designing such an input-state-output observer in an automated manner.
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Problem 4.1 (Automated input-state-output observer design)
Given a linear explicit PHS

ẋxx = (JJJ−RRR) QQQxxx+(GGG−PPP)uuu, xxx|t=0 = xxx0, (4.1a)

yyy = (GGG+PPP)>QQQxxx+(MMM+SSS)uuu, (4.1b)

with uuu,yyy ∈ Rp and xxx ∈ Rn. For the storage matrix QQQ ∈ Rn×n we have QQQ = QQQ> � 0.
The remaining matrices are constant matrices of appropriate sizes which satisfy the
usual symmetry and definiteness properties of an explicit PHS (cf. Definition 2.23).
We assume that uuu, xxx, and yyy are (in general) non-measurable. Instead, let us consider
measurements mmm ∈ Rq of the form

mmm =CCCuuuu+CCCxxxx+CCCyyyy, (4.2)

whereCCCu,CCCx, andCCCy are constant matrices of proper sizes.
The aim of this subsection is to give an answer to the following problem: How can
we—in an automated manner—design an asymptotic observer that produces recon-
structions of uuu, xxx, and yyy based on the model (4.1) and the measurements (4.2)?

Problem 4.1 requires to develop an observer that is able to reconstruct the inputs, states, and
outputs of the system (4.1). The leading idea is to rewrite the system step by step until we
obtain a representation which allows to apply existing methods from linear observer theory.

We now consider the first step of this procedure. The input-state-output reconstruction
from Problem 4.1 involves three equations, viz. a dynamics equation (4.1a), an output equa-
tion (4.1b), and a measurement equation (4.2). The following lemma shows that Problem 4.1
can be reduced to a reconstruction problem which involves only two equations:

Lemma 4.2 (Output reconstruction based on ûuu and x̂xx)
Consider the situation in Problem 4.1. Let ûuu and x̂xx be reconstructions of uuu and xxx,
respectively, with ûuu→ uuu and x̂xx→ xxx for t → ∞. Then, we can calculate an output
reconstruction

ŷyy = (GGG+PPP)>QQQx̂xx+(MMM+SSS) ûuu, (4.3)

with ŷyy→ yyy for t→ ∞.

Proof:
Let ûuu and x̂xx be reconstructions of uuu and xxx with ûuu→ uuu and x̂xx→ xxx for t → ∞, respectively.
By substituting uuu, xxx, and yyy in (4.1b) with their respective reconstructions, we obtain (4.3). In
particular, we have ŷyy→ yyy for t→ ∞.

From Lemma 4.2 it follows that the input-state-output reconstruction problem can be
reduced to an input-state reconstruction problem. To solve the input-state reconstruction
problem, it is desirable to formulate the system only in terms of inputs and states, i.e., without
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outputs. In the next step, we again use the output equation (4.1b) to eliminate the outputs
from the measurement equation (4.2).

Lemma 4.3 (State-space system in standard form)
Equations (4.1a) and (4.2) can be written as a state-space system in standard form

ẋxx = AAAxxx+BBBuuu, xxx|t=0 = xxx0, (4.4a)

mmm =CCCxxx+DDDuuu, (4.4b)

where AAA = (JJJ−RRR)QQQ, BBB = (GGG−PPP), CCC = CCCx + CCCy (GGG+PPP)>QQQ, and DDD = CCCu +

CCCy (MMM+SSS).

Proof:
From (4.1a), we directly obtain the calculation rules for the matrices AAA and BBB. Inserting (4.1b)
into (4.2) yields the expressions for CCC and DDD.

Lemma 4.3 shows that a system with dynamics (4.1a) and measurements (4.2) can be
formulated by means of a state-space system in standard form. Note that in (4.4) we have a
clear differentiation in the description of the system’s physics (i.e., (4.4a)) and the system’s
measurements (i.e., (4.4b)). Thereby, the input uuu of the system (4.4) is in general unknown.
Instead, all measurements are specified by mmm in (4.4b). Nevertheless, mmm may contain mea-
surements of an input, that is, a row of (4.4b) in which DDD contains exactly one “1” while
the corresponding row of CCC contains exclusively zeros. For the upcoming considerations,
it will be helpful (i) to split the input vector uuu into known inputs uuuk and unknown inputs
uuuu and (ii) to split the vector mmm accordingly into the measured inputs uuuk and the remaining
measurements m̃mm. By doing so, the system (4.4) reads

ẋxx = AAAxxx+BBBkuuuk +BBBuuuuu, xxx|t=0 = xxx0, (4.5a)

m̃mm = C̃CCxxx+ D̃DDkuuuk + D̃DDuuuuu, (4.5b)

where uuuk ∈ Rpk , uuuu ∈ Rpu , xxx ∈ Rn, m̃mm ∈ Rq̃ with pk + pu = p and q̃ = q− pk. The matrices
C̃CC ∈ Rq̃×n and

(
D̃DDk D̃DDu

)
∈ Rq̃×p can be obtained by removing those rows from the matrices

CCC and DDD, respectively, that correspond to uuuk in mmm.
Equation (4.5) represents a linear system with known and unknown inputs. For such a

system, it would be natural to apply an unknown-input observer. However, such an approach
is significantly hampered by the fact that the measurement vector m̃mm directly depends on the
unknown inputs uuuu. Hence, it is desirable to find a formulation of (4.5) without a feedthrough
of uuuu. The next step of our procedure presents such a formulation.

Without loss of generality we may assume that rank(BBBu) = pu (≤ n) and rank(C̃CC) =

q̃(≤ n). If either the first or the second statement is violated, we introduce new inputs or
outputs, respectively, for which these conditions are fulfilled [Singer, 2019, p. 19]. In order
to eliminate the feedthrough from the system, we make the assumption that in the system (4.5)
the number of measurements is greater than the number of unknown inputs:
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Assumption 4.4 (Number of measurements and unknown inputs)
We have q̃ > pu.

Compared to the existence conditions from Pfeifer et al. [2019a], Assumption 4.4 is not
overly strict. In most practical systems, this assumption can be satisfied by providing a
sufficient number of measurements. Based on Assumption 4.4, we can now eliminate the
feedthrough from the system.

Lemma 4.5 (Feedthrough elimination)
Consider the system with feedthrough (4.5). Let Assumption 4.4 hold. Then, a formu-
lation of (4.5) without feedthrough is given by

ẋxx = AAAxxx+BBBkuuuk+BBBuuuuu, xxx|t=0 = xxx0, (4.6a)

m̄mm = C̄CCxxx. (4.6b)

The reduced measurement output m̄mm ∈ Rq̃−r is given by m̄mm = UUU>2
(
m̃mm− D̃DDkuuuk

)
where

r = rank(D̃DDu). The matrix C̄CC ∈ Rq̃−r×n has full column rank and can be calculated as
C̄CC =UUU>2 C̃CC. The matrixUUU2 is obtained from a singular value decomposition of DDDu, i.e.,

DDDu =
(

UUU1 UUU2

)
ΣΣΣVVV>, (4.7)

withUUU1 ∈Rq̃×r,UUU2 ∈Rq̃×q̃−r, ΣΣΣ ∈Rq̃×pu , andVVV ∈Rpu×pu . The matrix ΣΣΣ contains the
singular values of DDDu on its diagonal.

Proof:
We first show that the construction law of the vector m̄mm indeed leads to an elimination of the
feedthrough. Afterwards, we proof that the matrix C̄CC has full column rank.

Let us first introduce a new measurement output without feedthrough of the known
inputs:

mmm∗ := m̃mm− D̃DDkuuuk = C̃CCxxx+ D̃DDuuuuu. (4.8)

Note that the vector mmm∗ can be easily computed online during runtime.
Now we eliminate the unknown inputs by applying the idea from Irle [2016, p. 106]. Let

Assumption 4.4 hold. Consider the singular value decomposition (4.7). For the case q̃ 6= 0
and pu 6= 0, Assumption 4.4 implies UUU2 to exist. By multiplying mmm∗ from the left with UUU>2
and by the properties of orthogonal matrices we obtain

UUU>2 mmm∗︸ ︷︷ ︸
=:m̄mm

=UUU>2 C̃CC︸ ︷︷ ︸
=:C̄CC

xxx+
(

000 UUU>2 UUU2

)(diag(σi) 000
000 000

)
VVV>︸ ︷︷ ︸

=000

uuuu, (4.9)

where σi are the singular values of D̃DDu for i = 1, . . . ,r.
Now for the rank of C̄CC. From the Sylvester rank inequality we obtain

rank
(

UUU>2 C̃CC
)
≥ rank

(
UUU>2
)︸ ︷︷ ︸

q̃−r

+ rank
(
C̃CC
)︸ ︷︷ ︸

q̃

−q̃ = q̃− r. (4.10)
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On the other hand, we have

rank
(

UUU>2 C̃CC
)
≤min{rank

(
UUU>2
)
, rank

(
C̃CC
)
}= q̃− r. (4.11)

Combining (4.10) and (4.11) then yields rank
(
C̄CC
)
= q̃− r.

Remark 4.6 (Case D̃DDu = 000). In (4.5), suppose D̃DDu = 000, i.e., there is no feedthrough of
the unknown-input to eliminate. This case obviates the singular value decomposition
and therewith the need for Assumption 4.4.

The previous lemmas constitute a stepwise procedure to formulate a PHS (4.1) with
measurements (4.2) as linear unknown-input system without feedthrough (4.6). In the literature,
there exists a number of state observers for such an unknown-input system. The thesis of
Singer [2019] provides a systematic comparison of these observers with respect to the
automatability of their designs. An approach that is particularly easy to automate is the
unknown-input observer design from Darouach et al. [1994]. The following assumption
represents a necessary and sufficient condition for the existence of this observer (cf. Darouach
et al. [1994, Theorem 1] and Singer [2019, Remark 3.2]):

Assumption 4.7 (Strong∗ detectability)
The system (4.6) is strong∗ detectable, i.e., lim

t→∞
m̄mm→ 000 implies lim

t→∞
xxx→ 000.

For a brief introduction to the concept of strong∗ detectability, the reader is referred to
Appendix C.1. The existence condition from Assumption 4.7 now allows to state the main
theorem of this subsection. In this theorem, the state observer from Darouach et al. [1994] is
extended by an input and an output reconstruction.

Theorem 4.8 (Input-state-output observer)
Consider a PHS (4.1)with measurements (4.2). Let Assumption 4.4 hold which permits
to formulate an unknown-input system (4.6). For the system (4.6), let Assumption 4.7
hold. Then, there exist matricesNNN ∈Rn×n, LLL∈Rn×(q̃−r), FFF ∈Rn×pk , and EEE ∈Rn×(q̃−r)

such that the system

żzz = NNNzzz+LLLm̄mm+FFFuuuk, zzz|t=0 = zzz0, (4.12a)

x̂xx = zzz−EEEm̄mm, (4.12b)

ûuuu =
(
C̄CCBBBu

)+ ( ˙̄mmm−C̄CCAAAx̂xx−C̄CCBBBkuuuk
)
, (4.12c)

ŷyy = (GGG+PPP)>QQQx̂xx+(MMM+SSS)(uuu>k ûuu>u )
>, (4.12d)

is an asymptotic input-state-output observer for the PHS (4.1) based on measure-
ments (4.2). In (4.12), the vector zzz ∈ Rn is the observer state and the term

(
C̄CCBBBu

)+ is
the Moore-Penrose inverse of C̄CCBBBu.

Proof:
We first prove that (4.12a) and (4.12b) yield an asymptotic reconstruction of the system state—
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independently of the unknown inputs. To this end, we follow the approach from Darouach
et al. [1994]. Afterwards, we show that (4.12c) and (4.12d) yield an asymptotic reconstruction
of the unknown inputs and outputs, respectively.

Let Assumption 4.7 hold. Consider the reconstruction error εεε = x̂xx− xxx. With (4.6) and
(4.12), the error dynamics read

ε̇εε = NNNεεε +
(
NNNKKK +LLLC̄CC−KKKAAA

)
xxx+(FFF−KKKBBBk)uuuk−KKKBBBuuuuu, (4.13)

where KKK = III +EEEC̄CC. Suppose we have

000 = NNNKKK +LLLC̄CC−KKKAAA, (4.14a)

000 = FFF−KKKBBBk, (4.14b)

000 = KKKBBBu. (4.14c)

If the conditions in (4.14) hold, the error dynamics read ε̇εε = NNNεεε . If, in addition, NNN is a
Hurwitz matrix, we have εεε → 000 for t→ ∞.

Next, we show that we can always find matrices NNN, LLL, FFF , and EEE such that (4.14) is fulfilled
and NNN is a Hurwitz matrix.

Assumption 4.7 implies rank
(
C̄CCBBBu

)
= rank(BBBu) = pu [Hautus, 1983, Theorem 1.6].

Hence, from (4.14c) we obtain the following solution set for EEE:

EEE =−BBBu
(
C̄CCBBBu

)+
+YYY

(
III−
(
C̄CCBBBu

)(
C̄CCBBBu

)+)
, (4.15)

where (
C̄CCBBBu

)+
=
((

C̄CCBBBu
)> (C̄CCBBBu

))−1 (
C̄CCBBBu

)> (4.16)

and YYY ∈ Rn×pu is an arbitrary matrix [Rao and Mitra, 1972]. Based on a particular solution
for EEE we can then calculate matrix FFF from (4.14b):

FFF =
(
III +EEEC̄CC

)
BBBk. (4.17)

For the determination of the matrix NNN we write (4.14a) as

NNN = KKKAAA−ZZZC̄CC, (4.18)

where ZZZ = (LLL+NNNEEE). From Darouach et al. [1994, Theorem 2] and Hautus [1983, Theo-
rem 1.5] it follows that Assumption 4.7 implies the pair

(
KKKAAA,C̄CC

)
to be detectable. Thus,

there always exists a matrix ZZZ such that NNN is Hurwitz. Substituting (4.18) into ZZZ = (LLL+NNNEEE)
yields the following expression for LLL:

LLL = ZZZ
(
III +C̄CCEEE

)
−KKKAAAEEE, (4.19)

which then satisfies (4.14a). Hence, we can always find matrices (NNN,LLL,FFF ,EEE) such that the
conditions in (4.14) are fulfilled and such that NNN is a Hurwitz matrix.

Now for the reconstruction of the unknown inputs. We apply the idea of Ding [2008,
p. 143]. Deriving (4.6b) with respect to time gives

˙̄mmm = C̄CCẋxx = C̄CCAAAxxx+C̄CCBBBkuuuk +C̄CCBBBuuuuu. (4.20)
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With
(
C̄CCBBBu

)+ we may solve (4.20) for uuuu:

uuuu =
(
C̄CCBBBu

)+ ( ˙̄mmm−C̄CCAAAxxx−C̄CCBBBkuuuk
)
. (4.21)

In (4.21), we substitute uuuu with ûuuu and xxx with x̂xx and obtain (4.12c). By comparing (4.21) and
(4.12c), we may deduce ûuuu→ uuuu from x̂xx→ xxx for t→ ∞.

Finally, Lemma 4.2 proves (4.12d) to yield an output reconstruction ŷyy with ŷyy→ yyy for
t→ ∞.

In order to automate the design of the observer from Theorem 4.8, a computationally
evaluable formulation of Assumption 4.7 is required. The subsequent proposition provides
such a formulation.

Proposition 4.9 (Evaluation of Assumption 4.7)
Assumption 4.7 is satisfied if and only if the following two conditions hold:

i. rank
(
C̄CCBBBu

)
= rank(BBBu) = pu, (4.22a)

ii. rank

(
sIII−AAA −BBBu

C̄CC 000

)
= n+ pu, ∀s ∈ Spec(AAA) : Re(s)≥ 0. (4.22b)

Proof:
The proof follows directly from Darouach et al. [1994, Theorem 2] and Hautus [1983,
Theorem 1.5] by noting that, in condition ii., “∀s ∈ C” is equivalent to “∀s ∈ Spec(AAA)” (cf.
Hautus [1969]).

Algorithm 4.10 now summarizes the above insights in an automatable design scheme
which determines the free observer parameters of the input-state-output observer from
Theorem 4.8, i.e., the matrices NNN,LLL,FFF , and EEE.

In line 20 of Algorithm 4.10, the choice of the eigenvalues of the matrix NNN determines the
dynamics of the state reconstruction error (cf. (4.13)). Appendix C.2 provides a straightfor-
ward method for the automated placement of the eigenvalues of NNN. Based on the eigenvalues
chosen for NNN, the determination of the matrix ZZZ in code line 21 can be accomplished by the
standard pole placement techniques presented in Section 1.2.

The block diagram in Figure 4.2 depicts the structure of the input-state-output observer.
As can be seen, the observer consists of two stages, viz. a pre-processing of the measurements
and the actual observer (4.12).

The input-state-output observer in Figure 4.2 yields asymptotic reconstructions ûuu, x̂xx, and
ŷyy of the inputs, states, and outputs of the PHS. Theorem 4.8 gives a sufficient condition for the
existence of such an input-state-output observer; Algorithm 4.10 provides a corresponding
design scheme which can be fully automated. Hence, these methods solve Problem 4.1.
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Algorithm 4.10 Automated design of an input-state-output observer
Input: PHS (4.1) with measurements (4.2)

1: Calculate matrices AAA, BBB, CCC, and DDD according to Lemma 4.3
2: Split uuu into (uuuk,uuuu) and mmm into (uuuk, m̃mm) (possibly after permutations)
3: Calculate BBBk, BBBu, D̃DDk, and D̃DDu
4: if D̃DDu = 000 then
5: UUU2← III
6: else
7: if Assumption 4.4 is met then
8: [(UUU1,UUU2),ΣΣΣ,VVV ]← svd(D̃DDu)
9: else

10: print "Feedthrough could not be eliminated. Algorithm terminates!"
11: terminate
12: end if
13: end if
14: C̄CC←UUU>2 CCC
15: if (4.22a) or (4.22b) (i.e., Assumption 4.7) is violated then
16: print "Observer existence condition is violated. Algorithm terminates!"
17: terminate
18: end if
19: Calculate EEE and FFF from (4.15) and (4.17), respectively
20: Specify the eigenvalues of NNN that correspond to the observable subsystem of (KKKAAA,C̄CC)
21: Calculate ZZZ from (4.18) by pole placement techniques
22: Calculate NNN and LLL from (4.18) and (4.19), respectively
23: return (NNN,LLL,FFF ,EEE)

Input-state-output observer

System (4.1) with
measurements (4.2)

Splitting:
mmm =

(
uuu>k , m̃mm

>)>

Input-state-output
observer (4.12)

DDD1

UUU>2

uuu>k

m̄mm

−

m̃mm

mmmuuu

ûuu
x̂xx
ŷyy

xxx0

zzz0

Figure 4.2: Block diagram of the system with the input-state-output observer
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Example 4.11 illustrates the results from above.

Example 4.11:
Consider the following linear PHS:(

ẋ1

ẋ2

)
=

(
0 −1
1 −d

)
∂H
∂xxx

+

(
1
d

)
u, (4.23a)

y =
(

1 −d
)

∂H
∂xxx

+du, (4.23b)

with d > 0 and Hamiltonian H(xxx) = xxx>xxx. In the system, u, xxx, and y are unknown. In-
stead, we consider q = 2 measurements

mmm =

(
−d

0

)
︸ ︷︷ ︸

=CCCu

u+

(
0 2d
0 2

)
︸ ︷︷ ︸

=CCCx

xxx+

(
1
0

)
︸︷︷︸
=CCCy

y. (4.24)

With the formulas from Lemma 4.3, we can write (4.23a) and (4.24) as the following
state-space system:

ẋxx =

(
0 −2
2 −2d

)
xxx+

(
1
d

)
u, (4.25a)

mmm =

(
2 0
0 2

)
xxx, (4.25b)

where u is an unknown input. As can be seen, in (4.25) we have no feedthrough which
is why Assumption 4.4 is irrelevant in this example (cf. Remark 4.6). Moreover, the
conditions in (4.22) are satisfied. Hence, Assumption 4.7 is met and we can design an
input-state-output observer. From (4.15) and (4.17) we obtain

EEE =−1
2

(
d−1 0

1 0

)
(4.26)

and FFF ∈ R2×0, respectively. The eigenvalues of the matrix NNN are placed at λmin = −1
and λmin =−2 where λmin = min{Re(λi)}with λi the eigenvalues of the matrix AAA from
(4.25) (i = 1,2). Via pole placement, we obtain

ZZZ =
1
2

 0 Re
(√

d2−4
)
+d− 2

d +2

Re
(√

d2−4
)
+d +1 0

 . (4.27)

Based on (4.27), we may now calculate NNN and LLL with (4.18) and (4.19) as

NNN =

 −Re(√d2−4
)
−d−2 0

0 −Re
(√

d2−4
)
−d−1

 (4.28a)
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and

LLL =

(
−Re(

√
d2−4)+d+2

2d
1
2

(
Re
(√

d2−4
)
+d− 2

d +2
)

0 0

)
, (4.28b)

respectively. This concludes the observer design.
The obtained input-state-output observer are illustrated by means of the results

obtained from numerical simulations. The parameter d is chosen to d = 1. The initial
values of the system and the observer are xxx0 = (0 0)> and ẑzz0 = (1 1)> (= x̂xx0), respec-
tively. The unknown input is a unit sawtooth signal with an angular frequency of 1 s−1.

Figure 4.3 depicts the inputs, states, and outputs of the system (4.23) (solid, blue)
together with the corresponding reconstructions from the input-state-output observer
(dashed, red).
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Figure 4.3: Inputs, states, and outputs of the PHS (4.23) (solid, blue) and corresponding observer
reconstructions (dashed, red)

As can be seen, after three seconds the reconstructions of the input and states lie on
top of the true system variables. Moreover, we obtain an output reconstruction which
is identical to the true output. Unfortunately, this identity is coincidence and cannot
be regarded as a general property of the observer.

The previous example illustrates the algorithmic design of a symbolic input-state-output
observer for a PHS (4.1). The obtained observer yields asymptotic reconstructions of the
unknown system variables which confirms the theoretical results from this subsection.

The present subsection was devoted to the development of an observer for linear PHSs.
In the next subsection, we turn our attention to the automated observer design for nonlinear
PHSs.

4.2.2 Automated Observer Design for a Class of
Nonlinear PHSs

Consider an interconnected system with nonlinearities in the interconnection structure
and storages. The former kind of nonlinearity appears, for example, in the transforma-
tions between different reference frames in electric and mechanic systems as, e.g., the
dq-transformation or generalized coordinate transformations, respectively (cf. Karnopp
[1969]); the latter kind is present, for instance, in systems involving the potential energy of a
mass3 (cf. van der Schaft [2009, p. 66]) or systems exhibiting effects from relativistic me-
chanics (cf. Wellstead [1979, p. 27]). Systems with nonlinear interconnection structure and
nonlinear storages lead to explicit port-Hamiltonian models with state-dependent matrices
and possibly non-quadratic Hamiltonians (cf. Section 3.3). For many of such PHSs, the state
and output of the system are unknown and have to be reconstructed. However, in contrast
to Subsection 4.2.1, we now consider the situation where at least the input of the system is
known. Besides the system input, we are given measurements that may be nonlinear in the

3Recall that the potential energy V (x) of a mass m is given by V (x) = mgx, where g is the gravitional
constant. This storage function is non-quadratic in the state and the corresponding storage element
therewith nonlinear.
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states. The aim of this section is then to find an automatable design scheme for an asymptotic
observer which reconstructs the states and outputs of the system. This is formalized in the
following problem:

Problem 4.12 (Automated observer design for nonlinear PHSs)
Consider an explicit PHS of the form

d
dt

(
xxx′

xxx′′

)
=
(
JJJ(xxx′)−RRR(xxx′)

) ∂H
∂xxx

(xxx)+GGG(xxx′)uuu, xxx|t=0 = xxx0, (4.29a)

yyy = GGG>(xxx′)
∂H
∂xxx

(xxx) , (4.29b)

with xxx′ ∈ X′ ⊂ Rn1 , xxx′′ ∈ X′′ ⊂ Rn−n1 , uuu ∈ U⊂ Rp, and yyy ∈ Y⊂ Rp, where X′ and X′′

are closed and bounded and therewith compact. The overall state vector is defined as
xxx := (xxx′> xxx′′>)> ∈ X= X′×X′′, where X is then also compact. The matrices in (4.29)
are of proper sizes, continuously differentiable in xxx′, and have the usual symmetry
and definiteness properties from Definition 2.23. Let the Hamiltonian of (4.29) be of
the form

H (xxx) =
1
2

(
xxx′> xxx′′>

)(QQQ′ 000
000 QQQ′′

)(
xxx′

xxx′′

)
+NNN(xxx′), (4.30)

where QQQ := blkdiag
(
QQQ′,QQQ′′

)
= QQQ> � 0 and NNN : X′→ R, xxx′ 7→ NNN(xxx′). The function NNN

may be any function that is positive semi-definite and twice continuously differen-
tiable in xxx′.
Suppose uuu is known but xxx and yyy are unknown. Moreover, assume measurements
mmm ∈ Rq with q≥ n1 of the form mmm =CCC(xxx′)QQQxxx whereCCC(xxx′) is continuous in xxx′:(

mmm1

mmm2

)
=

(
QQQ′−1 000

CCC′(xxx′) CCC′′(xxx′)

)(
QQQ′ 000
000 QQQ′′

)(
xxx′

xxx′′

)
. (4.31)

Note that we have mmm1 = xxx′, i.e., xxx′ is the measured part of the state vector xxx.
What is an asymptotic observer for (4.29) that produces reconstructions of xxx and yyy
based on knowledge on mmm? How can we design such an observer in an automated
manner?

Remark 4.13 (Class of systems). At first glance, the class of systems addressed in
Problem 4.12 may seem rather restrictive. However, as Venkatraman and van der
Schaft [2010] point out, this class covers a considerable number of physical exam-
ples such asmechanical and electromechanical PHSs, see, e.g., Yaghmaei and Yazdan-
panah [2019b, Eq. (23) and (27)]. Moreover, note that themeasurement equation can
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also be written in the form(
mmm1

mmm2

)
=

(
III 000

C̃CC
′
(xxx′) C̃CC

′′
(xxx′)

)(
xxx′

xxx′′

)
.4 (4.32)

In (4.32), we have mmm1 = xxx′, mmm2 = C̃CC(xxx′)xxx which reveals the generality of this formulation.
Remark 4.14 (System feedthrough). In Problem 4.12, we consider a PHS without
feedthrough. This is in contrast to Problem 4.1 from Subsection 4.2.1. However,
due to the known inputs there is no loss of generality in neglecting the feedthrough
(cf. Ludyk [1995, p. 7]). Throughout this section the omission of the feedthrough will
allow for a compact notation.

Problem 4.12 contains a state-output reconstruction problem which involves three equa-
tions, viz. a dynamics equation (4.29a), an output equation (4.29b), and a measurement
equation (4.31). Note that the measurement equation may be nonlinear in the states. Similar
to Lemma 4.2, the following lemma shows that the state-output reconstruction problem from
Problem 4.12 can be easily reduced to a state reconstruction problem which involves only
two equations. Thereby, we consider an exponential convergence of the reconstructions.

Lemma 4.15 (Output reconstruction based on x̂xx)
Consider the situation in Problem 4.12. Let x̂xx be a reconstruction of xxx with ‖xxx− x̂xx‖ ≤
k1e−k2t for t ≥ 0 and some positive constants k1,k2 ∈R>0. Then, we can calculate an
output reconstruction

ŷyy = GGG>(x̂xx′)
∂H
∂xxx

(x̂xx), (4.33)

with ‖yyy− ŷyy‖ ≤ k3e−k2t for all t ≥ 0 and some positive constant k3 ∈ R>0.

Proof:
Because X′ and X are compact, GGG> and ∂H

∂xxx are bounded in xxx′ and xxx, respectively, i.e.,
there exist constants kG,kH ∈ R>0 such that ‖GGG>(xxx′)‖ < kG and ‖ ∂H

∂xxx (xxx)‖ < kH for all
xxx′ ∈ X′ and xxx ∈ X. Moreover, since GGG> is continuously differentiable and X′ is compact,
GGG> is Lipschitz continuous on X′ with constant LG = supxxx′∈X′ ‖ ∂GGG

∂xxx′ (xxx
′)‖ that is ‖GGG>(xxx′1)−

GGG>(xxx′2)‖ ≤ LG‖xxx′1− xxx′2‖ for all xxx′1,xxx
′
2 ∈ X′. Likewise ∂H

∂xxx is Lipschitz continuous with a
constant LH on X.

4To bring (4.32) to the form (4.31), we write mmm = C̃CC(xxx′)QQQ−1QQQxxx =CCC(xxx′)QQQxxx with CCC(xxx′) = C̃CC(xxx′)QQQ−1.
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We now can conclude

‖yyy− ŷyy‖= ‖GGG>(xxx′)∂H
∂xxx

(xxx)−GGG>(x̂xx′)
∂H
∂xxx

(x̂xx)‖

≤ ‖GGG>(xxx′)∂H
∂xxx

(xxx)−GGG>(xxx′)
∂H
∂xxx

(x̂xx)‖+‖GGG>(xxx′)∂H
∂xxx

(x̂xx)−GGG>(x̂xx′)
∂H
∂xxx

(x̂xx)‖

≤ ‖GGG>(xxx′)‖‖∂H
∂xxx

(xxx)− ∂H
∂xxx

(x̂xx)‖+‖GGG>(xxx′)−GGG>(x̂xx′)‖‖∂H
∂xxx

(x̂xx)‖

≤ kGLH‖xxx− x̂xx‖+LG‖xxx′− x̂xx′‖kH

≤ (kGLH +LGkH)k1e−k2t ,

(4.34)

where in the last step we used ‖xxx′− x̂xx′‖ ≤ ‖xxx− x̂xx‖ and ‖xxx− x̂xx‖ ≤ k1e−k2t .

Lemma 4.15 shows that an exponentially convergent reconstruction of the output can
always be obtained from an exponentially convergent reconstruction of the state. Hence,
Problem 4.12 can be formulated as an ordinary state reconstruction problem that involves
two equations, viz. (4.29a) and (4.31). This motivates to approach with a Luenberger-like
observer consisting of an internal model of the system dynamics and a measurement error
injection term. This is the approach we follow in the subsequent lemma.

Lemma 4.16 (Asymptotic state observer)
Consider a system with dynamics (4.29a) and measurements (4.31). Suppose there
exists a matrix LLL ∈ Rn×q depending continuously on xxx′ such that

RRR(xxx′)+
1
2

LLL(xxx′)CCC(xxx′)+
1
2

CCC>(xxx′)LLL>(xxx′)� 0, (4.35)

for all xxx′ ∈ X′. Then, there exists a globally exponentially convergent state observer
of the form

˙̂xxx =
(
JJJ(xxx′)−RRR(xxx′)

) ∂H
∂xxx

(x̂xx)+GGG(xxx′)uuu+LLL(xxx′)
(
mmm−CCC(xxx′)QQQx̂xx

)
, (4.36)

with initial value x̂xx|t=0 = x̂xx0. The vectors x̂xx′ ∈ X′ and x̂xx′′ ∈ X′′ of the splitting x̂xx =(
x̂xx′> x̂xx′′>

)> are mimicking the splitting of xxx = (xxx′> xxx′′>)>.

Proof:
Let us define the reconstruction error as εεε := xxx− x̂xx. With (4.29a), (4.30), (4.31), and (4.36), the
error dynamics can be expressed as

ε̇εε =
(
JJJ(xxx′)−RRR(xxx′)−LLL(xxx′)CCC(xxx′)

)
QQQεεε, (4.37)

with initial value εεε0 = xxx0− x̂xx0. Obviously, εεε ≡ 000 is an equilibrium of (4.37). Next, we analyze
the stability of this equilibrium by using Lyapunov’s direct method. Consider the Lyapunov
candidate

V (εεε) =
1
2

εεε
>QQQεεε. (4.38)
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As shown in Proposition C.4 from Appendix C.3, for a system and a Lyapunov candidate of
the form (4.37) and (4.38), respectively, we obtain

V̇ (εεε) =−εεε
>QQQRRR(xxx′)+

1
2

LLL(xxx′)CCC(xxx′)+
1
2

CCC>(xxx′)LLL>(xxx′)︸ ︷︷ ︸
=:ΓΓΓ

QQQεεε. (4.39)

It is noteworthy that (4.39) is independent of the matrix JJJ(xxx′). Now let (4.35) hold. We then
have ΓΓΓ = ΓΓΓ

> � 0 which is equivalent to QQQΓΓΓQQQ = (QQQΓΓΓQQQ)> � 0. From this follows that V̇ (εεε)

is negative-definite and thus εεε ≡ 000 an asymptotically stable equilibrium of (4.37). Moreover,
as shown in Proposition C.5 from Appendix C.3, the positive definiteness of QQQ and QQQΓΓΓQQQ
implies the existence of positive constants k1,k2,k3 ∈ R>0 such that

k1‖εεε‖2 ≤V (εεε)≤ k2‖εεε‖2 (4.40a)

and

V̇ (εεε)≤−k3‖εεε‖2 (4.40b)

hold for all xxx ∈ X. Hence, εεε ≡ 000 is a globally exponentially stable equilibrium of (4.37)
[Khalil, 2002, Theorem 4.10]. This implies (4.36) to be a globally exponentially convergent
observer for the system consisting of (4.29) and (4.31).

Equation (4.35) is a sufficient condition for the existence of an asymptotic observer of
the form (4.36). Thus, the observer design problem is to find a matrix LLL(xxx′) such that (4.35)
is fulfilled. For the case where RRR(xxx′) = RRR = const., CCC(xxx′) = CCC = const., we can approach
with a constant matrix LLL(xxx′) = LLL. In this case, (4.35) represents a LMI. There exist powerful
numerical methods to solve such an LMI, see, e.g., Boyd et al. [1994]. On the other hand,
such an LMI-based design approach suffers from two shortcomings: (a) it is restricted to
the case RRR(xxx′) = RRR = const., CCC(xxx′) = CCC = const.; (b) in general it is limited to a numeric
observer design, i.e., it disallows for a symbolic observer design. Hence, in the sequel, we
consider an alternative approach for finding a matrix LLL(xxx′) such that (4.35) is satisfied.

Recall that RRR(xxx′) � 0 for all xxx′ ∈ X′. For (4.35) to hold, we need to find a matrix LLL(xxx′)
which moves the zero eigenvalues of −RRR(xxx′) to the left. The following lemma proposes a
choice of LLL(xxx′) which has the best chances to accomplish this:

Lemma 4.17 (Observer design)
Consider two matrices RRR(sss) ∈ Rn×n and CCC(sss) ∈ Rq×n depending on some parameter
sss ∈ S. Let RRR(sss) = RRR>(sss) � 0 for all sss ∈ S. There exists a matrix LLL(sss) ∈ Rn×q which
satisfies

RRR(sss)+
1
2

LLL(sss)CCC(sss)+
1
2

CCC>(sss)LLL>(sss)� 0, ∀sss ∈ S, (4.41)

if and only if (4.41) is satisfied for LLL(sss) =CCC>(sss).

Proof:
We show that the following two statements are equivalent:
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(i) ∀sss ∈ S : ∃LLL(sss) ∈ Rn×q s.t. RRR(sss)+
1
2

LLL(sss)CCC(sss)+
1
2

CCC>(sss)LLL>(sss)� 0, (4.42a)

(ii) ∀sss ∈ S : RRR(sss)+CCC>(sss)CCC(sss)� 0. (4.42b)

By setting LLL(sss) =CCC>(sss) it is easy to see that that (ii) implies (i). We now show that (i) also
implies (ii). To this end, we show the contraposition, i.e., that if RRR(sss)+CCC>(sss)CCC(sss) is not
positive-definite, then the matrix in (i) is not positive-definite for all LLL(sss).
Let (ii) be violated. The matrix RRR(sss)+CCC>(sss)CCC(sss) is positive semi-definite, i.e.,

RRR(sss)+CCC>(sss)CCC(sss)� 0, ∀sss ∈ S, (4.43)

as RRR(sss)� 0 and

vvv>CCC>(sss)CCC(sss)vvv = ‖CCC(sss)vvv‖ ≥ 0, ∀sss ∈ S,∀vvv ∈ Rn, (4.44)

i.e., CCC>(sss)CCC(sss) � 0 for all sss ∈ S. From (4.43) and the negation of (ii) follows, that there
exists a non-zero vector vvv ∈ Rn and a value sss0 ∈ S such that

vvv>
(

RRR(sss0)+CCC>(sss0)CCC(sss0)
)

vvv = 0. (4.45)

For this vvv and sss0 we have

vvv>RRR(sss0)vvv+ vvv>CCC>(sss0)CCC(sss0)vvv = 0,

⇔ vvv>RRR(sss0)vvv = 0 ∧ vvv>CCC>(sss0)CCC(sss0)vvv = 0,

⇔ vvv>RRR(sss0)vvv = 0 ∧ vvv ∈ ker(CCC(sss0)) . (4.46)

For the left hand side of (4.42a) we obtain

vvv>RRR(sss0)vvv︸ ︷︷ ︸
=0

+
1
2

vvv>LLL(sss0)CCC(sss0)vvv︸ ︷︷ ︸
=000

+
1
2

vvv>CCC>(sss0)︸ ︷︷ ︸
=000

LLL>(sss0)vvv = 0. (4.47)

Hence, for sss0 ∈ S and for all LLL(sss) the matrix

RRR(sss0)+
1
2

LLL(sss0)CCC(sss0)+
1
2

CCC>(sss0)LLL>(sss0) (4.48)

is not positive-definite. This is the contraposition of statement (i).

Remark 4.18 (Scaling of the observer gain). Lemma 4.17 holds also for an observer
gain LLL(sss) = αCCC>(sss)where α ∈R>0. The parameter α can be used to increase (α > 1)
or decrease (α < 1) the convergence rate of those observer states that are influenced
by the error injection.

Lemma 4.16 presents a state observer for the PHS (4.29). Lemma 4.17 provides a simple
design for such an observer. From Lemma 4.15 we know, that a state observer can be easily
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extended to a state-output observer. In the following theorem, we summarize these insights
to formulate a globally exponentially convergent state-output observer for the PHS (4.29):

Theorem 4.19 (State-output observer)
Consider a nonlinear PHS (4.29) with Hamiltonian (4.30) and measurements (4.31). Let

RRR(xxx′)+CCC>(xxx′)CCC(xxx′)� 0, ∀xxx′ ∈ X′. (4.49)

hold. A globally exponentially convergent state-output observer for the system is
given by

˙̂xxx =
(
JJJ(xxx′)−RRR(xxx′)

) ∂H
∂xxx

(x̂xx)+GGG(xxx′)uuu+CCC>(xxx′)
(
mmm−CCC(xxx′)QQQx̂xx

)
, (4.50a)

ŷyy = GGG>(xxx′)
∂H
∂xxx

(x̂xx), (4.50b)

with initial value x̂xx|t=0 = x̂xx0.

Proof:
The proof follows directly from Lemma 4.15, Lemma 4.16, and Lemma 4.17. In the latter
we substitute sss ∈ S with xxx′ ∈ X′.

It is important to note that the observer from Theorem 4.19 is directly obtained from the
system model. In particular, there are no free observer parameters which is why its design is
inherently automatable. Hence, Theorem 4.19 solves Problem 4.12.

In the following, the nonlinear observer from Theorem 4.19 is illustrated. To this end,
we resume with the example that was used to demonstrate the methods from Chapter 3. This
illustrates the consistency between the methods from chapters 3 and 4.

Example 4.20:
Consider the PHS from Example 3.34 for K = 1:ẋ1

ẋ2

ẋ3

= (

 0 0 0
0 0 −1
0 1 0

−
 d deκx1 0

deκx1 de2κx1 0
0 0 0

)
∂H
∂xxx

+

 0 d
1 deκx1

0 0

(u1

u2

)
,

(4.51a)(
y1

y2

)
=

(
0 1 0
−d −deκx1 0

)
∂H
∂xxx

+

(
0 0
0 d

)(
u1

u2

)
, (4.51b)

with d > 0 and the non-quadratic Hamiltonian

H(xxx) =
1
2

xxx>

q1 0 0
0 q2 0
0 0 q3

xxx+
1
4

x4
1, (4.52)
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where q1,q2,q3 > 0. For the system, consider two measurements m1 = x1 and m2 =

eκx1x3. The corresponding measurement equation reads:

mmm =

(
q−1

1 0 0
0 0 q−1

3 eκx1

)
︸ ︷︷ ︸

=CCC(x1)

q1 0 0
0 q2 0
0 0 q3


x1

x2

x3

 . (4.53)

Following the notation from Problem 4.12, we have xxx′ = x1 and xxx′′ = (x2 x3)
>.

Now for the observer. We have

RRR(x1)+CCC>(x1)CCC(x1) =

 d +q−2
1 deκx1 0

deκx1 de2κx1 0
0 0 q−2

3 e2κx1

� 0, (4.54)

for all xxx∈X. Thus, the observer existence condition (4.49) is satisfied and an asymptotic
state-output observer is given by (4.50).

Now, the results obtained from numerical simulation of the system (4.51) and the
observer (4.50) are illustrated. The system parameters are chosen to d = 1, q1 = 1

2 ,
q2 =

1
3 , q3 =

1
4 , and κ = 0.1. The initial values of the system and the observer are given

by xxx0 = (0 0 0)> and x̂xx0 = (1 1 1)>, respectively. The input signals are specified to
u1 = σ(t−10s) and u2 = sin(0.1s−1 t) where σ(·) is the unit step function.

Figure 4.4 depicts the states xi (solid, blue) and the reconstructions x̂i (dashed, red)
for i = 1,2,3.
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Figure 4.4: States of the system (4.51) (solid, blue) and corresponding reconstructions from the
observer (4.50) (dashed, red)

As can be seen, the state reconstructions reach the true states in less than ten seconds.
The reconstructions of the system output are given in the following figure:
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Figure 4.5: Outputs of the system (4.51) (solid, blue) and corresponding reconstructions from the
observer (4.50) (dashed, red)

The figure shows that the reconstructed outputs also converge to the true outputs.

In the following two corollaries, we analyze the results obtained so far more in detail.
First, we consider the case of linear measurements, i.e., the case where in (4.31) we have
CCC(xxx′) =CCC = const.
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Corollary 4.21 (Linear Measurements)
Given a system with dynamics (4.29a) and measurements (4.31) where the measure-
ment matrix is a constant matrix CCC(xxx′) = CCC. The existence condition (4.35) for an
observer of the form (4.36) is satisfied if and only if it is satisfied for the constant ma-
trix LLL =CCC>.

Proof:
The claim follows directly from Lemma 4.16 and Lemma 4.17 under CCC(xxx′) =CCC.

The main point from Corollary 4.21 is as follows. Despite the fact that the matrix RRR(xxx′)
is parametrized over xxx′, a constant observer gain LLL is sufficient to evaluate if the existence
condition (4.35) is solvable or not. In other words, for CCC(xxx′) =CCC = const., there is no benefit
in approaching with a parametrized observer gain LLL(xxx′).5 In this context, Corollary 4.21
reflects the idea behind Lemma 4.17. Loosely speaking, if the output error injection allows
to access those parts of −RRR(xxx′) which corresponds to zero eigenvalues, we can shift them to
the left. In the case of linear measurements, a constant observer gain which is independent of
xxx′ is sufficient towards this endeavor. On the other hand, if RRR(xxx′) is already positive-definite,
the observer (4.36) is asymptotic without any error injection. This is addressed in the last
corollary of this subsection.

Corollary 4.22 (Strictly passive systems)
Consider a strictly passive PHS (4.29) with measurements (4.31), i.e., the case where
RRR(xxx′) � 0 for all xxx′ ∈ X′. A globally exponentially convergent state observer for the
system is given by (4.36) with LLL = 000.

Proof:
The statement follows from Lemma 4.16 under RRR(xxx′)� 0 for all xxx′ ∈ X′.

Corollaries 4.21 and 4.22 conclude the observer design methods from this subsection.
Thereby, like the previous Subsection 4.2.1, the subsection at hand addressed the design of a
centralized observer based on global model knowledge. However, as argued in Chapter 2,
the design of distributed observers based on local model knowledge is also of interest in the
context of interconnected systems. This is the topic to be addressed in the next subsection.

4.2.3 Automated Design of Distributed Observers

In this subsection, we investigate how the methods from subsections 4.2.1 and 4.2.2 can be
applied for an automated design of distributed observers based on local model knowledge.6

5This statement is limited to the property of an observer of being asymptotic.
6As outlined in Chapter 2, the here applied notion of a distributed observer follows that of Castanedo
[2013] and Kupper [2019].
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First, the system setup is briefly outlined. Afterwards, two approaches for an automated
design of distributed observers are presented. The first approach is based on the methods
from Subsection 4.2.1; the second approach is based on the methods from Subsection 4.2.2.

Consider an interconnected system Σ described by an open graph G = (V,B) where
V=VI∪VB, B= BI∪BB (cf. Term 2.3). Let the set of inner vertices VI represent N = |VI|
subsystems Σi (i ∈ VI). The N subsystems are coupled through M = |BI| inner edges that
represent power-conserving interconnections. Moreover, the subsystems Σi may interact
with the environment of Σ via P boundary vertices and corresponding boundary edges
(P = |VB|= |BB|). Each edge j ∈ B carries an effort eee j ∈ RK j and a flow fff j ∈ RK j where
K j ∈ N≥1 for all j ∈ B.

Figure 4.6 depicts the situation for an example system Σ with VI = {1,2,3}, VB =

{B1,B2}, BI = {(1,2),(2,3)}, BB = {(B1,1),(B2,2)}, i.e., N = 3, M = 2, and P = 2.

B1

B2

1

2

3
eee(B1,1)

fff (B1,1)

eee(B2,2)

fff (B2,2)

eee
(1,2)fff

(1,2)

eee(2,3) fff (2,3)

Figure 4.6: Exemplary interconnected system

In the following, we consider the situation where both—the observers and the model
knowledge—are distributed according to the subsystems Σi of Σ. The first approach for an
automated design of a distributed observer is based on the methods from Subsection 4.2.1.

Design of a Distributed Observer with the Methods from Subsection 4.2.1

Given an interconnected system Σ consisting of N subsystems as described above. Suppose
that Σ is a linear system. Moreover, let us consider the case where the interactions between
the subsystems are completely unknown.

Assumption 4.23 (Unknown interaction)
For each j ∈ B, the effort-flow pair (eee j, fff j) is not available for measurement.

From Assumption 4.23 we deduce that the input and output of each subsystem model is
completely unknown. Moreover, subsystem states may also be unknown. Hence, for each
subsystem the input, state, and output have to be reconstructed. To this end, we consider
measurements that are linear combinations of the respective inputs, states, and outputs.
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From a subsystem perspective, this setup is a special case of Problem 4.1 from Sub-
section 4.2.1. Accordingly, the following corollary reconsiders the methods from Subsec-
tion 4.2.1 in a subsystem-wise manner to design a distributed input-state-output observer:

Corollary 4.24 (Distributed observer for system with unknown interactions)
Consider an interconnected system Σ described by a graph G = (V,B). Let the sub-
systems Σi be described by linear explicit PHSs of the form

ẋxxi = (JJJi−RRRi) QQQixxxi +(GGGi−PPPi)uuui, xxxi|t=0 = xxxi,0, (4.55a)

yyyi = (GGGi +PPPi)
>QQQixxxi +(MMMi +SSSi)uuui, (4.55b)

with uuui,yyyi ∈Rpi and xxxi ∈Rni for i ∈VI. In (4.55), we have QQQi = QQQ>i � 0; the remaining
matrices satisfy the usual symmetry and definiteness conditions of such a PHS (cf.
Definition 2.23). For each i ∈ VI, consider qi > pi linear independent measurements
mmmi ∈ Rqi of the form

mmmi =CCCi,uuuui +CCCi,xxxxi +CCCi,yyyyi. (4.56)

Then, for each i ∈ VI we can formulate an unknown-input system

ẋxxi = AAAixxxi +BBBiuuui, (4.57a)

m̄mmi = C̄CCixxxi, (4.57b)

where m̄mmi ∈ Rqi−ri with ri = rank(CCCi,u +CCCi,y (MMMi +SSSi)).
Let (4.57) be strong∗ detectable for each i ∈ VI. Then, for each i ∈ VI we can find an
asymptotic input-state-output observer of the form

żzzi = NNNizzzi +LLLim̄mmi, zzzi|t=0 = zzz0,i, (4.58a)

x̂xxi = zzzi−EEE im̄mmi, (4.58b)

ûuui =
(
C̄CCiBBBi

)+ ( ˙̄mmmi−C̄CCiAAAix̂xx
)
, (4.58c)

ŷyyi = (GGGi +PPPi)
>QQQix̂xxi +(MMMi +SSSi) ûuui. (4.58d)

Proof:
The proof is given for one subsystem i ∈ VI but translates to all other subsystems. Let
Assumption 4.23 hold. Consider the PHS (4.55) with measurements (4.56). Assumption 4.23
implies that uuui is completely unknown. The rest follows from Theorem 4.8 for the special
case without known inputs.

The observers from Corollary 4.24 process only local measurement information to
calculate reconstructions of the subsystems’ inputs, states, and outputs. By this, the observers
are fully distributed.

The design of the individual observers requires to determine the matrices NNNi, LLLi, and
EEE i. These matrices can be automatically computed via a subsystem-wise application of
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Algorithm 4.10. For each subsystem, the respective execution of the algorithm requires only
local model knowledge.

In the above, we considered a linear system where the exogenous variables of the
subsystems are completely unknown. Instead, there have been measurements that are local
with respect to the individual subsystems. In the following, we switch to a contrary case, viz.
a class of nonlinear systems where the interactions between the subsystems are completely
known without having additional measurement information from inside the system. Here,
we apply the methods from Subsection 4.2.2 to propose an automated scheme for the design
of distributed observers.

Design of a Distributed Observer with the Methods from Subsection 4.2.2

Suppose an interconnected system Σ consisting of N nonlinear subsystems. Let us consider
the case in which the interactions amongst the subsystems and between the subsystems and
the environment of Σ are fully available for measurement.

Assumption 4.25 (Known interaction)
For each j ∈ B, the effort-flow pair (eee j, fff j) is known or measured.

A key implication of Assumption 4.25 is that the input and the output of each subsystem
model is known or measured. Thus, in this case all inputs are known and the measurement
vector equals the output vector. Hence, no input and output reconstruction is required. As
an example, we can think of a system consisting of subsystems with collocated sensors and
actuators.

The following corollary particularizes the methods from Subsection 4.2.2 for an auto-
mated design of a distributed nonlinear observer:
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Corollary 4.26 (Distributed observer for system with known interactions)
Given an interconnected system Σ described by a graph G = (V,B). For each i ∈ VI,
let the subsystem Σi be described by an explicit PHS of the form

ẋxxi = (JJJi(yyyi)−RRRi(yyyi))
∂Hi

∂xxxi
(xxxi)+GGGiuuui, xxxi|t=0 = xxxi,0, (4.59a)

yyyi = GGG>i
∂Hi

∂xxxi
(xxxi), (4.59b)

with uuui ∈Ui⊂Rpi , xxxi ∈Xi⊂Rni , and yyyi ∈Yi⊂Rpi whereXi andYi are compact. The
Hamiltonian of (4.59) is given by Hi(xxxi) =

1
2 xxx>i QQQixxxi +NNNi(yyyi) where QQQi = QQQ>i � 0 is a

matrix andNNNi :Yi→R, yyyi 7→NNNi(yyyi) is a positive semi-definite and twice differentiable
function that may be nonlinear.
Let Assumption 4.25 hold. Moreover, let

RRRi(yyyi)+GGGiGGG>i � 0, ∀yyyi ∈ Yi (4.60)

be satisfied for all i ∈ VI. Then, for each i ∈ VI an exponentially convergent state
observer is given by

˙̂xxxi = (JJJi(yyyi)−RRRi(yyyi))
∂Hi

∂xxxi
(x̂xxi)+GGGi

(
uuui + yyyi−GGG>i

∂Hi

∂xxxi
(x̂xxi)

)
, (4.61)

with initial value x̂xxi|t=0 = x̂xxi,0.

Proof:
We particularize the results from Section 4.2.2 to the case where the measurement output
equals the passive output.

Let (4.60) hold. The proof is given for the subsystem i ∈ VI but translates to all other
subsystems. Consider the state reconstruction error εεε i = xxxi− x̂xxi. With (4.59a) and (4.61), the
error dynamics read

ε̇εε i =
(

JJJi(yyyi)−RRRi(yyyi)−GGGiGGG>i
)

QQQiεεε i. (4.62)

Applying the Lyapunov function candidate Vi(εεε i) =
1
2 εεε>i QQQiεεε i we obtain

V̇ (εεε i) =−εεε
>
i QQQi

(
RRRi(yyyi)+GGGiGGG>i

)
︸ ︷︷ ︸

�0

QQQiεεε i. (4.63)

From this follows that εεε i ≡ 000 is exponentially stable (cf. proof of Lemma 4.16). Thus, (4.61)
is an exponentially convergent observer for (4.59).

Remark 4.27 (PHS with feedthrough). Corollary 4.26 can be easily extended to a
PHS with feedthrough (cf. Remark 4.14).

As can be seen, the observers from Corollary 4.26 require only knowledge of the in-
teractions between the subsystems and are therewith distributed. Moreover, analogously
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to Subsection 4.2.2, the observers do not require a dedicated design. Instead, the observer
parameters can be directly determined based on local model information, viz. the subsystems
models.

This section showed that the centralized methods from subsections 4.2.1 and 4.2.2 can
also be applied for an automated design of distributed observers based on local model infor-
mation. It is important to note that the presented idea to distribute an observer design is not
restricted to the two special cases from this subsection. The proposed principle may also be
applied to several intermediate cases. For example, in Section 5.3 the methods from from
Subsection 4.2.2 are applied to a nonlinear interconnected systems with partially known
subsystem interaction. A theoretical examination of such intermediate cases, however, would
not give new insights which is why we refrain from this step at this point.

This concludes the presentation of automated design methods for centralized and dis-
tributed observers for PHSs. In the next section, we discuss the presented methods with
respect to the overall objectives of this thesis and previous results from the related literature.

4.3 Discussion

The first main results of this chapter is Theorem 4.8 in which an automatable design scheme
for an input-state-output observer for linear PHSs is proposed. A sufficient existence con-
dition for this observer requires (i) that there are more (independent) measurements than
unknown inputs (i.e., q̃ > pu) and (ii) that the state-space system (4.6) is strong∗ detectable. In
comparison, the existence condition for the input-state-output estimator from the preliminary
work authored by Pfeifer et al. [2019a] demands the number of measurements to be greater
or equal to the number of unknown inputs plus the number of states, i.e., q̃≥ pu +n. Hence,
subcondition (i) is significantly less restrictive than the existence condition from Pfeifer
et al. [2019a]. Hautus [1983, Theorem 1.12] showed that subcondition (ii) is necessary and
sufficient for the existence of an asymptotic state observer for a system (4.6). Thus, for the
presented approach, subcondition (ii) is inevitable.

An interesting special case of Theorem 4.8 appears for a PHS with known inputs. In this
case, subcondition (i) is always fufilled. Moreover, subcondition (ii) reduces to the condition
of the system being detectable. This indicates the existence conditions of Theorem 4.8 to
be reasonable. For the special case of known inputs, the observer design from Theorem 4.8
yields a standard Luenberger observer extended by an output reconstruction.

The subconditions (i) and (ii) can be evaluated by a computer algebra system (cf. Re-
mark 4.9). If both subconditions are fulfilled, we can automatically design an input-state-
output observer by using Algorithm 4.10. Thereby, as for the modeling, the system size for
a purely symbolic observer design is limited (cf. Section 3.3). The symbolic computation
of the singular value decomposition, the generalized inverse, and the pole placement may
lead to expressions of considerable size. Again, it is impossible to state an absolute limit
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for the system size as the feasibility of the symbolic calculations strongly depend on the
specific structure of the matrices. For a numeric observer design with Algorithm 4.10 the
computational complexity is determined by the complexity of the calculation of the inverse
matrices required for the pole placement. Here, the upper bound is polynomial and given by
O(n3) where n is the number of system states, see Lyche [2020, p. 65].7

The observer obtained from Algorithm 4.10 requires the first time-derivative of the
measurement vector which, however, is unavoidable for an input reconstruction with a
continuous observer [Hou and Patton, 1998]. To circumvent this problem, one can approach
with a discontinuous sliding mode observer as from Edwards and Spurgeon [1994]. The
design of sliding mode observers, however, involves more degrees of freedom which makes
its automation delicate. The interested reader may refer to the thesis of Singer [2019].

Let us summarize that for linear PHSs with unknown inputs, states, and outputs we
can design asymptotic observer in an automated manner. The existence conditions of the
observer are reasonable.

The second main result of this chapter is Theorem 4.19. The theorem provides a sufficient
condition for global exponential convergence of a state-output observer applicable to a class
of nonlinear PHS. This class is quite general as it allows for state-dependent matrices and a
possibly non-quadratic Hamiltonian. Venkatraman and van der Schaft [2010] consider an
almost identical class of systems. A limitation of this class of PHSs is the assumption that
those states which are responsible for the state-dependence of the PHSs matrices and which
constitute the non-quadratic part of the Hamiltonian are measured. On the other hand, in
practical systems this assumption may be satisfied by an appropriate sensor placement.

The observer from Theorem 4.19 obviates a dedicated “design” as it can be derived
directly from the system model. This is in contrast to the observer design from Venkatra-
man and van der Schaft [2010] which requires the closed-form solution of a set of PDEs
and algebraic equations. According to the underlying model, the observer resulting from
Theorem 4.19 will be symbolic or numeric.

The existence condition of the observer requires the error system to be sufficiently
damped. Thereby, the damping consists of two parts, viz. the natural damping of the system
and a virtual damping arising from the error injection. To ensure a fast convergence of all
observer states, the error injection must access those states subject to no or weak natural
dissipation. On the other hand, if the natural damping is sufficiently strong on all states (i.e.,
the system is strictly passive), one can completely omit the error injection in the observer (cf.
Corollary 4.22).

The damping interpretation is closely related to well-known insights for the control of
PHSs, see, e.g., Kugi [2001, Sec. 2.4] and van der Schaft [2016, Sec. 7.1]. By this relation,
the results from Subsection 4.2.2 may also be applied for the design of controllers. As an
example, in Appendix C.4 we use Lemma 4.17 for the automated design of an asymptotically
stabilizing feedback controller for PHSs without feedthrough.

7The upper bound O(n3) is under the assumption that the number of states is greater than the number
of measurements and greater than the number of unknown inputs.
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As an interim conclusion, for a class of nonlinear PHSs we can derive globally exponen-
tially convergent observers directly from the system model.

A third considerable result from this chapter is given in corollaries 4.24 and 4.26. Corol-
lary 4.24 shows that is is straightforward to reconsider the approach from Theorem 4.8 to
design subsystem observers for linear interconnected systems on the basis of local models.
The obtained observers only require measurement information which is local with respect to
the subsystems. Even further, the observers from Corollary 4.24 obviate any information on
the interactions between the subsystems. Hence, the observers (and their design) are fully
distributed which is at the cost of a sufficiently large number of interior measurements in
each subsystem.

Analogously to Corollary 4.24, Corollary 4.26 shows that for nonlinear interconnected
systems with known interactions between subsystems, the design of the centralized observers
from Theorem 4.19 translates into the design of a distributed observer. This claim is not
restricted to the observer design from Theorem 4.19 but applies to many observer designs
from the literature, see Section 4.1. Although this result is intuitive, to the best of the author’s
knowledge it was not explicitly stated in the literature yet. The key is that known interaction
variables imply the inputs and outputs of the local models to be known. Hence, based on
the subsystem models, we can design distributed observers in an independent manner. To
this end, the observer existence condition has to be fulfilled for each subsystem, e.g., by a
suitable partitioning of the system into subsystems and/or an appropriate sensor placement.

It is noteworthy that, in general, the distributed observers resulting from corollaries 4.24
and 4.26 cannot be extracted from a centralized observer of the system. This can be explained
by the fact that a local model of a subsystem is in general not equal to the corresponding
submodel of a centralized model. For example, in Section 5.3, we consider an interconnected
system in which the local models have feedthrough while the global model has not.

A natural limitation of the deterministic observer methods from this chapter is that they
do not explicitly consider uncertainties. An analysis of the influence of measurement noise
to the observers from this chapter will be provided in the numerical simulations that follow
in Chapter 5.

Let us conclude the discussion of this section. For linear PHSs with unknown inputs,
states, and outputs, we can design asymptotic observers in an automated manner. Moreover,
for an important class of nonlinear PHSs we developed an approach to derive globally
exponentially convergent observers directly from the system model. The observer methods
can be also applied for an automated design of distributed observers based on local model
knowledge.
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4.4 Summary and Contributions

The extent of interconnected systems hampers a manual or partially computer-aided observer
design. Existing automatable observer design techniques are purely numeric and disregard
the physical background of a system. This chapter addressed this research gap by presenting
methods and algorithms for an automated design of observers for PHSs. The original contri-
butions of this research are:

(C2.1) an automatable design scheme for an asymptotic observer applicable to linear PHSs
with unknown inputs, states, and outputs (Theorem 4.8 and Algorithm 4.10);

(C2.2) a globally exponentially convergent state-output observer for an important class of
nonlinear PHSs; the observer exploits the natural damping of the system and obviates
a dedicated “design” as it is directly obtained from the system model (Theorem 4.19);

(C2.3) two automated designs of distributed observers (corollaries 4.24 and 4.26) based on
local model knowledge which are obtained from a reconsideration of the methods
from C2.1 and C2.2.

The presented techniques are the first to enable an automated design of observers for a
considerable class of PHSs and therewith reach research objective O2 from Section 1.3. The
automated observer design methods were demonstrated for a linear and a nonlinear example
system. Numerical simulations verified the convergence of the obtained observers.



Chapter 5
Proof of Principle

The aim of this thesis is to show that for a large class of interconnected systems the process of
deriving explicit state-space models and the process of designing observers can be automated.
This chapter provides a proof of principle towards this endeavor. To this end, in Section 5.1
the methods from the previous two chapters are integrated in a software prototype. The pro-
totype enables an automated generation of models and observers for interconnected systems.
In Section 5.2 and Section 5.3, the prototype is applied to two example systems, viz. an
unbalanced power distribution system and a large-scale nonlinear system, respectively. The
validity of the obtained models and observers is analyzed through numerical simulations. The
proof of principle ends with a discussion and a summary of the contributions in Section 5.4
and Section 5.5, respectively.

5.1 Software Prototype

The prototype is named AMOTO which is an acronym for automatic model generation and
observer design tool. AMOTO implements the methods from Chapter 3 (viz. algorithms 3.36
and 3.48) and Chapter 4 (viz. Algorithm 4.10 and Theorem 4.19). The development of
AMOTO started in 2018. The first version of the program has been presented in Pfeiffer et al.
[2019]. The current version is 1.1.4. The core of the tool is implemented in the Wolfram
language. Hence, the main calculations are performed by the Mathematica kernel. A graphi-
cal user interface (GUI) for AMOTO was developed in Java. The Wolfram J/Link interface
enables the communication between the Java GUI and the Mathematica core. AMOTO
requires Wolfram Mathematica version 11 and Java runtime version 8 or respective later
versions.

The workflow in AMOTO is as follows. First, the user enters a bond graph representation
of the interconnected system under consideration. The constitutive relations of the bond
graph elements are entered symbolically or numerically. Moreover, we specify in the bond
graph model which variables are available for measurement. To this end, bond graph variables
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can be set to “measured”. This step is optional and only required if we aim at an automated
observer design.

Based on the bond graph model, the user can start the model generation in which
AMOTO derives an explicit port-Hamiltonian model. The calculation runs fully automatic.
After the calculation, the resulting PHS is displayed to the user. Afterwards, we may run the
automated observer design. The obtained observer equations are also displayed to the user.

AMOTO features an export function in which the obtained models and observers can be
written to external files in the formats of Mathematica, MATLAB, and LATEX. This facilitates
subsequent steps in the development of models and observers as, e.g., their simulation,
analysis, documentation and, finally, their implementation in the system under consideration.

Figure 5.1 summarizes the workflow for the development of models and observer with
AMOTO.

Interconn.
system

Bond
graph

Model
generation

Observer
design

PHS Observer

Simulation, Analysis, DocumentationImplementation

AMOTO

Figure 5.1: Illustration of the workflow with the software prototpye AMOTO

Figure 5.2 depicts the AMOTO GUI. The GUI consists of a menu bar, a graph panel, a
type list, an element list, an element panel, a tool bar, and a log panel.

In the sequel, the different parts of the GUI and their functionalities are briefly described.

◦ Menu bar: The menu bar consists of the three menu points “File”, “Edit”, and “About”.
By clicking on “File” we can open a new blank model, save the current bond graph,
or load a bond graph from an existing file. Under “Edit” the user may change pro-
gram options as, e.g., the directory of the Mathematica kernel or the grid size in the
graph panel. License information and the current software version are provided under
“About”.

◦ Graph panel: The graph panel is the central playground to create bond graphs. With a
right click on the graph panel, bond graph elements can be added. Moreover, by right
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menu bar
tool bar

graph paneltype list

element list

element panel

log panel

Figure 5.2: Screenshot of the AMOTO GUI with labeling of the panels, bars, and lists in red

clicking on an existing element, one can connect this element to another element by
inserting a bond. Within the graph panel, elements and bonds can be moved with drag
and drop. Elements and bonds can be deleted by right clicking on the corresponding
instance and choosing “remove”. Measurements can be specified by right clicking on
a bond. For the selected bond, we then specify whether the flow, the effort or both are
measured. Measurements of states are specified by right clicking on a C-type element
and choosing the corresponding option.

◦ Type list: In the type list, the user can choose the type of element that is supposed to
be added to the bond graph.
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◦ Element list: The element list displays all elements of the current bond graph. By
clicking on an entry from the element list, the respective element is highlighted in the
graph panel in bold font.

◦ Element panel: The element panel displays basic information about a selected element
of the bond graph. The information appears when clicking on the respective element
in the graph panel or element list. For a selected element, the element panel first
displays the name and type of the selected element. By clicking on the name, the
element name can be edited. For elements of type TF and GY, the element panel
provides an additional input field for the transformer and gyrator ratio, respectively.
For elements of type R, an input field for the constitutive relation of the considered
element is displayed. Likewise, for C-type elements, the energy state and the storage
function can be specified. The ratios of TF- and GY-type elements as well as the
constitutive relations of R- and C-type elements can be specified in the Mathematica
language either symbolically or numerically.

◦ Tool bar: The tool bar provides access to the main functional features of AMOTO.
It consists of three parts, viz. “Dimension”, “AMOTO. . . ”, and “Export. . . ”. In the
field “Dimension” we can specify the dimension of the bond graph. For the automated
generation of the model and observer equations, we click on the button “AMOTO. . . ”.
In the following user dialog, we select if the model equations, the observer equations or
both are to be calculated. In the dialog, by clicking on “Run” we start the calculations,
which are performed by the Mathematica kernel. The resulting equations are displayed
in a new pop-up window. By clicking on “Export. . . ”, the obtained model and/or
observer equations may be written to an external file. For the export, one can choose
between the file extensions ∗.wl, ∗.m, and ∗.tex, i.e., file formats for Mathematica,
MATLAB, and LATEX, respectively.

◦ Log panel: The log panel is used to document the session. The most important feature
is that the log panel informs the user if any existence conditions are violated. Moreover,
the log panel reports if there are problems with the program configuration.

This concludes the presentation of AMOTO. In the subsequent sections, AMOTO will
be applied for the model generation and observer design in two interconnected systems.
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5.2 Case Study 1: Unbalanced Distribution
System

5.2.1 Study Objectives

Distribution systems are the final stage in the delivery of electric power. The distribution
level plays a crucial role for the decarbonization of electric energy. In the control-oriented
power systems research, the distribution system is one of the hot topics often addressed under
the names “Smart grid” or “Microgrid”, see, e.g., Schiffer et al. [2016]; Simpson-Porco et al.
[2017]; Strehle et al. [2019].

A distribution system is a multi-phase power system that operates on a medium to low
voltage level. Compared to transmission systems, the treatment of distribution systems is
more intricate as their voltages and currents are unbalanced [Kersting, 2017]. In many cases,
a distribution system comprises a high number of buses and lines and therewith involves
high dimensional variable spaces.

State estimation techniques are of key importance for the monitoring and control of a
distribution system. The state estimators currently used in distribution system control centers
rely on the assumption that the network is in quasi-steady state [Zhao et al., 2019]. The
quasi-steady state assumption simplifies the design of a state estimator for the network to
the derivation of a static weighted least squares (WLS) estimator. However, as the IEEE
Task Force on Power System Dynamic State and Parameter Estimation recently pointed
out, in reality, power systems never operate in quasi-steady state as there are continuous
variations of generation and demand [Zhao et al., 2019]. The situation is aggravated by the
recent changes in the distribution system, viz. the extensive integration of distributed energy
resources, complex loads, and demand-response technologies. In the distribution system,
these changes induce faster transients and stronger harmonic distortions [IEEE Standards
Association, 2014]. A WLS-based state estimator is unable to capture these transients and
harmonics which motivates the development of new monitoring techniques.

Power system dynamic state estimation (PSDSE) is a promising approach to account
for the recent changes in the distribution system. The survey papers from Primadianto and
Lu [2017] and Zhao et al. [2019] outline the state of the art in PSDSE. In contrast to a
WLS-based state estimation, PSDSE methods are based on a state-space dynamic model.
Based on the dynamic model, an estimator is derived by designing a Luenberger observer, a
Kalman filter, or extensions thereof. In existing PSDSE approaches, the system dynamics
originate from a dynamic modeling of components that are connected to the network as for
example synchronous generators or storage systems, see, e.g., Zhao et al. [2017]; Singh and
Pal [2019]; Alhelou et al. [2019] and references therein. To our knowledge, in all existing
approaches, the network is still described in quasi-steady state. In the literature, there are
no previous reports on PSDSE approaches that reject the quasi-steady state assumption for
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the network.1 In other words, the benefit of considering the network dynamics for the state
estimation has been largely unexplored.

AMOTO is used to bridge this research gap. First, we derive a distribution system model
which explicitly considers the line dynamics. Based on the model, we apply the automated
observer design to generate a dynamic state estimator. The performance of the obtained
model and estimator is analyzed through numerical simulations.

This study will demonstrate the capabilities of AMOTO. In particular, it will be shown
that
◦ AMOTO is able to automatically generate a model and an observer for an unbalanced

distribution system;
◦ the obtained model and observer produce plausible results;
◦ in distribution systems with fast transients, harmonic distortion, and measurement

noise the observer extends the functionalities of a WLS-based state estimation.

5.2.2 System Description

Consider a three-phase unbalanced distribution system with N buses. The three phases
are denoted by A, B, and C. P of the N buses are connected to higher-level systems. The
remaining N−P buses are connected to N−P uncontrollable loads. Thereby, each load is
connected to exactly one bus. The N buses are connected by M three-phase lines. As can be
seen, such a distribution system is clearly an interconnected system in the sense of Term 2.3:
the set of inner vertices VI contains the N buses; the set of boundary vertices VB contains
the P higher-level systems and N−P loads; the set of inner edges BI contains the M lines;
and the set of boundary vertices BB contains the N (lossless) connections to the higher-level
systems and loads. Let us assume that the open graph G = (V,B) with V = VI∪VB and
B= BI∪BB is connected.

Figure 5.3a shows an exemplary distribution system with N = 33, M = 32, and P = 1.
The depicted system is the well-known IEEE 33 Bus System from Baran and Wu [1989].
The nominal voltage of this system is 12.66 kV; the system frequency is 50 Hz. The open
graph representation of the IEEE 33 Bus System is illustrated in Figure 5.3b.

5.2.3 Bond Graph Model

This subsection presents a methodology for deriving a bond graph model of an unbalanced
distribution system. To this end, we first describe the components of a distribution system

1An exception is given by the class of transient state estimation methods, see, e.g., Watson and Yu
[2008]. This class of methods, however, focuses on fault detection and isolation and cannot be used
for a continuous system monitoring.
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Figure 5.3: IEEE 33 Bus System: schematic diagram (a) and open graph representation (b)
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Figure 5.4: π-section equivalent circuit of a three-phase distribution line

R: RRR j GY: III C: LLL j

1 I j,2I j,1

Figure 5.5: Bond graph representation of the π-section model from Figure 5.4

separately. The overall distribution system model can then be obtained by assembling the
component models. The component models are as follows.

A bus i ∈ VI is modeled as ideal Kirchhoff node, i.e., a 0-junction. An element i ∈ VB is
modeled as three-phase voltage source, i.e., an Se-type element.2 We describe an element
j ∈ BB as an ideal (lossless) connection, i.e., an ordinary power bond. Finally, a line
j ∈ BI is described by the π-section model in Figure 5.4. The π-section model considers
phase resistances Rk, j, phase self inductances Lk,k, j and line-line mutual inductances Lk,l, j

where k, l ∈ {A,B,C}, k 6= l. The latter are necessary as distribution lines are in general
untransposed [Kersting, 2017, p. 79]. The resistances and inductances are collected in the
following resistance and inductance matrices:

RRR j =

RA, j 0 0
0 RB, j 0
0 0 RC, j

 , and LLL j =

LA,A, j LA,B, j LA,C, j

LA,B, j LB,B, j LB,C, j

LA,C, j LB,C, j LC,C, j

 , (5.1)

respectively, with j ∈ BI. Figure 5.5 depicts the bond graph representation of the π-section
model of line j ∈ BI from Figure 5.4. The ports I1, j and I2, j are open ports for the
interconnection to the incident buses.

By using the above component models, we may construct a bond graph model of an
unbalanced distribution system. Figure 5.6 depicts the obtained bond graph model for the
IEEE 33 Bus System from Figure 5.3. Note that each line model L j consists of a bond graph
as depicted in Figure 5.5 ( j ∈ BI).
2The parameters of loads are constantly changing during system operation and are unknown for the
state estimation [Kersting, 2017, p. 28]. Hence, we describe the loads by the voltages across them.
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Figure 5.6: IEEE 33 Bus System: bond graph model with measured variables highlighted in green
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5.2.4 Automated Model Generation

To demonstrate the automated model generation for the IEEE 33 Bus System, the bond
graph from Figure 5.6 was entered into AMOTO. The system parameters were taken from
Baran and Wu [1989].3 Based on the entered bond graph, we then run the automated model
generation of AMOTO. After approximately 19 seconds4, AMOTO outputs a linear PHS of
the form

ẋxx =−RRRQQQxxx+GGGuuu, (5.2a)

yyy = GGG>QQQxxx, (5.2b)

with xxx ∈ R96 and uuu,yyy ∈ R99.
The complete model is far too large to be displayed in the format of this thesis. Hence,

we focus on structural properties of the model.
The state vector consists of the magnetic flux linkages ψ of the M = 32 lines. Each line

is described by three states, viz. the magnetic flux linkages of the phases A, B, and C. Hence,
the overall number of states is 3 ·32 = 96 and the state vector is given by xxx = ((ψ)k) j for all
k ∈ {A,B,C} and j ∈ BI.

The input vector of (5.2) consists of the 3 ·33 = 99 bus voltages, i.e., uuu = ((V )k)i for all
k ∈ {A,B,C} and i ∈ VI. The output vector contains the corresponding 99 bus currents, i.e.,
yyy = ((I)k)i for all k ∈ {A,B,C} and i ∈ VI. These are the currents that flow between the
buses on the one hand and the loads and higher level system on the other hand. As the bus
voltages and currents are uncontrollable, the input vector is a pure disturbance vector; the
output vector is the corresponding disturbance output vector.

The matrix RRR in (5.2) is given by RRR = blkdiag(RRR j) with j ∈ BI where RRR j is from (5.1).
Likewise, the matrix QQQ is a block diagonal matrix that contains the inverse matrices of the
inductance matrices from (5.1), i.e., QQQ = blkdiag(LLL−1

j ). The matrix GGG is a sparse matrix.
The non-zero entries in GGG appear in 3×3 diagonal blocks which are either diag(1,1,1) or
−diag(1,1,1). The arrangement of the non-zero blocks reflects the incidence matrix of
the connected subgraph GI = (VI,BI). The remaining PHS matrices JJJ, PPP, MMM, and SSS are
calculated to zero.

5.2.5 Automated Observer Design

To demonstrate the automated observer design of AMOTO for the IEEE 33 Bus System,
we first define a set of measurement buses VM ⊆ VI . We assume the following buses to be

3Baran and Wu [1989] provide values only for the self-inductances of the lines. The ratio between
the line self-inductances and the line-line mutual inductances is assumed to be 0.8, see Geis-Schroer
et al. [2021].

4Calculated on a computer with Intel(R) Core(TM) i7-6600U CPU @ 2.60 GHz and 12 GB RAM.
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equipped with measurement units:

VM = {2,4,6,8,10,12,14,16,18,20,22,23,25,27,29,31,33}. (5.3)

In each measurement bus i ∈ VM, sensors provide synchronized measurements of the three-
phase network currents, i.e., the currents flowing through the incident lines. The load currents
are assumed to be non-measured. For the entire system, we assume only one three-phase
voltage measurement which is located at bus 2. This voltage measurement acts as reference
for the voltage reconstructions. In Figure 5.6, the buses and quantities that are available for
measurement are highlighted in green.

In the graph panel of AMOTO we enter the measurements to the bond graph by setting
the appropriate efforts and flows to “measured”. From the extended bond graph, AMOTO
computes a measurement equation of the form m̄mm = C̄CCyyy with m̄mm ∈ R96 and C̄CC ∈ {0,−1}96×99.
Based on the measurement equation and the model (5.2), AMOTO calculates an input-state-
output observer of the form

żzz = NNNzzz, zzz|t=0 = zzz0, (5.4a)

x̂xx = zzz−EEEm̄mm, (5.4b)

ûuu2 =
(
C̄CCGGG2

)+ ( ˙̄mmm+C̄CCRRRx̂xx−C̄CCGGG1uuu1
)
, (5.4c)

ŷyy = GGG>QQQx̂xx, (5.4d)

with zzz ∈ R96. The vectors x̂xx ∈ R96 and ŷyy ∈ R99 are reconstructions of the magnetic flux
linkages of the lines and the bus currents, respectively. The vector uuu1 ∈R3 contains the known
inputs, i.e., the three-phase bus voltage at bus 2. The vector ûuu2 ∈ R96 is a reconstruction of
the unknown inputs, i.e., the three-phase bus voltages at the remaining buses. The matrices
GGG1 and GGG2 can be obtained from splitting the matrix GGG from (5.2) according to the splitting
of uuu.

The matrix NNN is calculated as a diagonal matrix. The diagonal values of NNN are negative
and lie in the complex plane left to the eigenvalues of the matrix −RRRQQQ from (5.2). This is
meaningful, as it ensures the error dynamics to be faster than the system dynamics. The
matrix EEE is a sparse matrix. The arrangement of the non-zero matrix blocks again reflects
the incidence matrix of the connected subgraph GI = (VI,BI).

This concludes the presentation of the results obtained from the automated model
generation and observer design of AMOTO for the IEEE 33 Bus System. Next, the obtained
model and observer are validated through numerical simulations.

5.2.6 Simulation Setup

The aim of the simulation study is (i) to evaluate the validity of the model (5.2) and the
observer (5.4) and (ii) to compare the performance of the observer with the performance of a
WLS-based estimation. It is interesting to note that we can use AMOTO to calculate a WLS
estimator for (ii). The detailed derivation of a WLS estimator for the IEEE 33 Bus System
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with AMOTO is illustrated in Appendix D.1.

As a ground truth we use the verified MATLAB/Simulink time-domain simulation model
of the IEEE 33 Bus System from Wong [2020]. By default, this simulation model describes
a scenario in which the system is balanced and in quasi-steady state. Hence, to account for
the recent changes in distribution systems, the model from Wong [2020] is modified in three
points:
◦ On the buses {4,21,27,30,31}, {7,17,22,25,26}, and {3,12,24,28,32}, load imbalances

for the phases A, B, and C are introduced, respectively. For these buses, the load at the
concerning phase is 30 % higher than the load at the other phases.
◦ At t1 = 1s, t2 = 2s, and t3 = 3s we consider load transients in which the active and

reactive power of the three-phase loads at the buses 14, 17, and 26, respectively,
increase by the factor 2.
◦ The voltage at bus 1 is subject to harmonic distortion. We consider the 3rd, 5th, 7th

and 11th harmonics of the fundamental frequency. The amplitudes of the harmonics
are set to 2.5 % of the amplitude of the fundamental frequency.5

From now on, we denote to the modified model from Wong [2020] as benchmark model.
For the evaluation of the model and observer, first the benchmark model has been simulated
which gives us time series for all bus voltages, bus currents, line currents, and line flux
linkages. The bus voltages are the inputs of the model (5.2). Hence, based on the time-series
of the bus voltages one may simulate (5.2). Likewise, the time-series of the variables from
the vectors m̄mm and uuu1 obtained from the simulation of the benchmark model are collected.
With these data one may simulate the observer (5.4).

All simulations were conducted in MATLAB/Simulink R2019a with a fixed-step solver
at a simulation step size of 0.01 ms. The model, the observer, and the WLS estimator were
written to MATLAB code by using the export function from AMOTO. The resulting files
comprise more than 18000 lines of MATLAB code. The initial values of the models and the
observer are chosen such that the simulation starts in quasi-steady state. The simulation time
was set to T = 4s.

5.2.7 Simulation Results

For the evaluation of the model (5.2) and observer (5.4) we use the relative error signal power
(RESP).6 For each signal obtained from the model and observer, an error signal based on
the corresponding signal from the benchmark model is computed. The RESP is then the
quotient of the signal power of the error signal and the signal power of the benchmark signal.
Therewith, the RESP is a relative measure for the similarity of a signal to the corresponding

5This yields a total harmonic distortion of 5% which is within the range of an allowed total harmonic
distortion [IEEE Standards Association, 2014].

6Note that the deterministic, periodic nature of the signals obtained from the model (5.2) and ob-
server (5.4) make the well-known similarity measures from statistics inappropriate for this study.
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benchmark signal. The formal definition of the RESP can be found in Appendix D.2.

First, we analyze the RESP of the bus currents that have been computed from the
model (5.2) and the observer (5.4). Figure 5.7 shows the three-phase average RESP over the
bus number for the model and the observer in blue and red, respectively. The underlying
numerical data can be found in Table D.1 and Table D.2 in Appendix D.3.
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Figure 5.7: Three-phase average RESP of the bus currents for the model (5.2) (blue) and the ob-
server (5.4) (red)

As can be seen, for each of the buses the RESP of the model takes values equal or less
than 0.25 %. Hence, we can say that the model (5.2) accurately reproduces the behavior of
the benchmark model.7 For the observer, we obtain even smaller RESP values of less than
0.025 %. This can be explained by the observer error injection, which induces a robustness
against model uncertainties.

Figure 5.8 depicts the time courses of the three-phase bus current at bus 17 for the
benchmark model (solid, green), the model (5.2) (dashed, blue) and the observer (5.4) (dot-
dashed, red) for the time between 1.95 s and 2.10 s. We can clearly identify the fundamental
frequency of 50 Hz. Due to the load imbalance at phase B of bus 17, the amplitude of the
current at phase B is slightly higher than the amplitudes for the currents at the phases A and
C. At t = 2s we can see the load jump in which the amplitude of the bus current increases
approximately by the factor of 2. As can be seen, the model (5.2) and the observer (5.4)
correctly reproduce the behavior of the benchmark model at this crucial point. Visually, we
cannot distinguish between the obtained currents.

As an interim result, let us summarize that the model (5.2) accurately reflects the behavior
of the benchmark model. Moreover, the observer (5.4) produces estimates that are very close
to the values from the benchmark model. Hence, we can say that the observer is asymptotic.

Next, we compare the simulation results of the observer (5.4) with the results obtained
for the WLS estimator (D.8). The RESPs for all bus voltage signals are given in Table D.3
and Table D.4 in Appendix D.3. For the observer, the mean RESP over all reconstructed bus

7The remaining difference between the models can be further decreased by choosing a smaller
simulation step size.
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Figure 5.8: Bus current at bus 17 for the benchmark model (solid, green), the model (5.2) (dashed, blue)
and the observer (5.4) (dotdashed, red) for the time between 1.95 s and 2.10 s

voltages is 1.5×10−3 % (standard deviation: 9.2×10−4 %). The respective value for the
WLS estimator is 5.1 % (standard deviation: 6.3×10−2 %). Hence, the observer significantly
outperforms the WLS estimator. This can be explained by two reasons.

First, the WLS estimator cannot capture the harmonic distortion. This is illustrated in
Figure 5.9 which shows one oscillation period of the voltage at phase A of bus 17 starting
from 2 s. In contrast to the WLS estimator (dotdashed, brown) the observer (dashed, red) is
able to reconstruct the harmonic distortion from the benchmark model (solid, green).

Second, the WLS estimator cannot deal with abrupt changes in the load. This is shown
in Figure 5.10 which depicts the estimated bus current for phase A of bus 17 between 1.95 s
and 2.1 s. As can be seen, the WLS estimator (dotdashed, brown) requires about four periods
to reach the amplitude of the current computed by the observer (dashed, red) and benchmark
model (solid, green). Naturally, such errors in the bus current lead to an increase of the
voltage RESP.

In the last part of this case study, we now analyze the validity of the reconstructions from
the observer and the WLS estimator under measurement noise. To this end, the measurement
equation is extended by noise, i.e., m̄mm = C̄CCyyy+ εεε where εεε is vector-valued Gaussian random
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Figure 5.9: Bus voltage at phase A of bus 17 for the benchmark model (solid, green), the observer (5.4)
(dashed, red), and the WLS estimator (D.8) (dotdashed, brown) for the time between 2 s and 2.02 s
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Figure 5.10: Bus current at phase A of bus 17 for the benchmark model (solid, green), the observer (5.4)
(dashed, red), and the WLS estimator (D.8) (dotdashed, brown) for the time between 1.95 s and 2.1 s

process with zero mean and covariance matrix σ2IIIq̄, σ ∈ R≥0. The above simulations of the
observer and the WLS estimator are then repeated on the basis of the noisy measurements.

The results are depicted in Figure 5.11. The figure shows the mean RESPs of the
reconstructed bus voltages for the observer (5.4) (red) and the WLS estimator (D.8) (brown)
for different noise variances σ2. For the six considered noise variances 10−5, 10−4, 10−3,
10−2, 10−1, and 100, the mean signal-to-noise ratios (SNRs) over all measurement signals
is given by 98.0 dB, 86.5 dB, 75.0 dB, 63.4 dB, 51.9 dB, and 40.4 dB, respectively. As seen,
starting on a low level, the mean RESP of the reconstructions from the observer increases
with increasing noise variance. In contrast, the RESPs of the WLS estimator are almost
constant over the different noise variances.

Figure 5.11 shows that for a variance smaller or equal to 10−2 (i.e., an SNR≥ 63.4dB),
the observer gives adequate reconstructions which have a significantly lower mean RESP
than the reconstructions obtained from the WLS estimator. However, an increasing noise
level leads to an increasing deterioration of the reconstructions from the observer. In con-
trast, the WLS estimator remains almost unaffected by the measurement noise. This can be
explained by the smoothing property of the phase-locked loops for the phasor computation
in the WLS estimator.
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Figure 5.11: Mean RESPs over all voltages from the reconstructions of the observer (5.4) (red) and the
WLS estimator (D.8) (brown) for different noise variances σ2

In conclusion, the observer (5.4) captures harmonic distortion and thus allows for a bus-
specific power quality assessment, e.g., to identify critical loads. Moreover, the algorithm
immediately detects fast transients which is an important prerequisite for the application of
new primary control schemes in low-inertia power systems (cf. Milano et al. [2018] and
Strehle et al. [2019]). Therewith, the proposed observer extends the functionalities of a
classical WLS-based power system state estimation. The basis for these functionalities are
measurements with a low to moderate SNR. Provided such measurements are available, the
proposed observer is a promising approach to deal with the challenges in the supervision of
future power systems.

5.3 Case Study 2: Large-Scale Nonlinear
System

5.3.1 Study Objectives

Compared to the previous subsection, we now turn our attention to a nonlinear system. We
consider an interconnected system of academic nature which features nonlinearities in both,
the interconnection structure and storages. Based on the system, it will be shown that
◦ AMOTO is able to automatically generate global and local models of a nonlinear

interconnected system;
◦ AMOTO can be used to derive a centralized and a distributed observer based on local

and global model knowledge, respectively;
◦ in numerical simulations, the centralized and the distributed observer obtained from

AMOTO yield asymptotic reconstructions of the unknown system variables.

Moreover, we will discuss the convergence of the observers in the presence of measurement
noise.
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Figure 5.12: Large-scale nonlinear interconnected system
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Figure 5.13: Interior structure of the subsystems j ∈ Vs from Figure 5.12

5.3.2 System Description

Let us consider the interconnected system from Figure 5.12. The system consists of 15
subsystems Vs = {1, . . . ,15} and five zero junctions V0 = {01, . . . ,05}. Following Defi-
nition 2.1, the set of inner vertices is given by VI = Vs ∪V0. The 20 inner vertices are
connected by 20 inner edges BI = {I1, . . . , I20}. The system contains four boundary ver-
tices VB = {Sf1, . . . ,Sf4} which determine the flow variables at the system boundary. The
boundary vertices are connected to the subsystems j = 1,10,12,15 by four boundary edges
BB = {B1,B2,B3,B4}.

Each subsystem j ∈ Vs consists of a four-dimensional bond graph as depicted in Fig-
ure 5.13. The bond graph contains two energy-storing elements with storage functions
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V1, j(xxx1, j) =
1
2

xxx>1, jQQQ1, jxxx1, j +
‖xxx1, j‖4

‖xxx1, j‖2 + cos(‖xxx1, j‖2 +1)
, (5.5a)

V2, j(xxx2, j) =
1
2

xxx>2, jQQQ2, jxxx2, j, (5.5b)

where xxx1, j,xxx2, j ∈ R4 and QQQ1, j,QQQ2, j ∈ R4×4 symmetric, positive-definite matrices ( j ∈ Vs).
The two energy-dissipating elements are specified by the symmetric, positive-definite matri-
ces DDD1, j,DDD2, j ∈ R4×4 ( j ∈ Vs). The junction structure consists of a 1-junction, a 0-junction,
and a state-modulated transformer with transformation ratio

UUU j(xxx1, j) = exp(diag(xxx1, j)) ∈ R4×4, (5.6)

where exp(·) is the matrix exponential ( j ∈Vs). The port I is an open port for the connection
to the inner edges. Likewise, the port B is an open port for the connection to boundary edges
and hence only relevant for the subsystems j = 1,10,12,15.

5.3.3 Automated Model Generation

This subsection initially presents a global model obtained from AMOTO for the system
depicted in Figure 5.12. Afterwards, a local model for the subsystems j ∈ Vs is described.

Global Model

For the global model, we first set up a bond graph model of the overall system. To this
end, we substitute the subsystems j ∈ Vs in Figure 5.12 by their bond graph representation
from Figure 5.13. The resulting overall bond graph is entered into AMOTO. The dissipation
matrices DDD1, j,DDD2, j are specified with the numerical values as given in Appendix D.4 ( j ∈Vs).

AMOTO outputs a nonlinear PHS of the form

ẋxx =−RRR(xxx′)
∂H
∂xxx

+GGGuuu, (5.7)

yyy = GGG>
∂H
∂xxx

, (5.8)

with xxx ∈ R120 and uuu,yyy ∈ R16.
The vector xxx′ ∈R60 is the subvector of xxx which contains the states of the storage elements

with the storage functions V1, j, i.e., xxx′ = (xxx1, j) for all j ∈Vs. The input vector consists of the
flows that are determined by the boundary vertices, i.e., uuu = ( fff B,i) for i ∈ BB. The output
vector contains the conjugated variables, i.e., the efforts, and is thus given by yyy = (eeeB,i) for
i ∈ BB.

The Hamiltonian in (5.7) is the sum of the individual storage functions from (5.5):

H (xxx) =
15

∑
j=1

(V1, j(xxx1, j)+V2, j(xxx2, j)) . (5.9)
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The matrix RRR(xxx′) consists of 30×30 non-zero blocks of the size 4×4. This reveals the
damping of the energy-dissipating elements to act across subsystem boundaries. On the other
hand, RRR(xxx′) neither reflects the incidence nor the adjacency relations of the subsystems or
alike. In contrast, the matrix GGG is a sparse matrix in which the only non-zero blocks are four
identity matrices III4. These identity matrices are located in the lines corresponding to ẋxx2, j for
j = 1,10,12,15. This makes the matrix GGG transparent with respect to the system structure.
The remaining matrices of the PHS are calculated to zero.

Local Model

Next we use AMOTO to derive a local model of the subsystems j ∈ Vs. To this end, the
bond graph from Figure 5.13 is entered into AMOTO and the automated model generation is
executed.8 We obtain the following PHS for subsystem j ∈ Vs:

d
dt

(
xxx1, j

xxx2, j

)
︸ ︷︷ ︸

=xxx j

=−

(
000 000
000 DDD2, j

)
︸ ︷︷ ︸

=RRR j

∂H j

∂xxx j
(xxx j)+

(
000 III
III UUU(xxx1, j)

)
︸ ︷︷ ︸

=GGG j(xxx1, j)

(
fff B, j

fff I , j

)
︸ ︷︷ ︸

=uuu j

, (5.10a)

(
eeeB, j

eeeI , j

)
︸ ︷︷ ︸

=yyy j

=

(
000 III
III UUU(xxx1, j)

)
︸ ︷︷ ︸

=GGG>j (xxx1, j)

∂H j

∂xxx j
(xxx j)+

(
000 000
000 DDD−1

1, j

)
︸ ︷︷ ︸

=SSS j

(
fff B, j

fff I , j

)
︸ ︷︷ ︸

=uuu j

, (5.10b)

where uuu,xxx,yyy ∈ R8 and H j(xxx j) =V1, j(xxx1, j)+V2, j(xxx2, j) with the storage functions from (5.5).
As can be seen, the PHS is passive but not strictly passive (cf. Proposition 2.26). Moreover,
in contrast to the global model, the local model has feedthrough. Keep in mind that the input
fff B, j is only relevant for the subsystems j = 1,10,12,15. For the remaining subsystems, the
input fff B, j can be neglected.

5.3.4 Automated Observer Design

First, we apply AMOTO to design a centralized observer based on the global model. Subse-
quently, we use the local model to design a distributed observer.

Centralized Observer Based on the Global Model

Consider the global model (5.7). For the centralized observer design, suppose that uuu and xxx′

are known. Hence, the measurement vector reads mmm = xxx′ = (xxx1, j) for j ∈ Vs. In AMOTO,
we set the variables from uuu and xxx′ to “measured” and execute the automated observer design.

8The open ports B and I of the bond graph in Figure 5.13 are terminated with two Sf-type elements
as AMOTO does not allow for open ports.



126 Chapter 5. Proof of Principle

The program first calculates a measurement equation of the form (4.31):

mmm = xxx′ =


QQQ−1

1,1 000 000 000 000 000 . . .

000 000 QQQ−1
1,2 000 000 000 . . .

000 000 000 000 QQQ−1
1,3 000 . . .

...
...

...
...

...
. . .


︸ ︷︷ ︸

=CCC∈R60×120

QQQxxx, (5.11)

where QQQ = blkdiag
(
QQQ1, j,QQQ2, j

)
for all j ∈ Vs. Moreover, AMOTO reports that the observer

existence condition RRR(xxx′) +CCC>CCC is met (cf. Theorem 4.19). The obtained centralized
nonlinear state-output observer reads

˙̂xxx =−RRR(xxx′)
∂H
∂xxx

(x̂xx)+GGGuuu+αCCC> (mmm−CCCQQQx̂xx) , (5.12a)

ŷyy = GGG>
∂H
∂xxx

(x̂xx), (5.12b)

where x̂xx ∈ R120, ŷyy ∈ R16. The parameter α ∈ R>0 is a convergence parameter (see Re-
mark 4.18).

Distributed Observer Based on the Local Model

Now consider the local model (5.10). For the design of a distributed observer, assume uuu j

and xxx1, j to be known ( j ∈ Vs). Note that from a global point of view we have now more
known variables than for the centralized observer. In the local bond graph model in AMOTO,
the variables uuu j and xxx1, j are set to “measured”. Afterwards, we run the automated observer
design. AMOTO outputs the local measurement equation

mmm j = xxx1, j =
(

QQQ−1
1, j 000

)
︸ ︷︷ ︸
=CCC j∈R4×8

QQQ jxxx j, (5.13)

where QQQ j = blkdiag
(
QQQ1, j,QQQ2, j

)
( j ∈ Vs). The observer existence condition RRR j +CCC>j CCC j � 0

is fulfilled for all j ∈Vs. The obtained state-output observer for the subsystems j ∈Vs read:

˙̂xxx j =−RRR j
∂H j

∂xxx j
(x̂xx j)+GGG j(xxx1, j)uuu j +αCCC>j

(
mmm j−CCC jQQQ jx̂xx j

)
, (5.14a)

ŷyy j = GGG>j (xxx1, j)
∂H j

∂xxx
(x̂xx j)+SSS juuu j, (5.14b)

where x̂xx j, ŷyy j ∈ R8 and α ∈ R>0. All subsystem observers (5.14) together form the distributed
observer.

5.3.5 Simulation Setup

The objective of the simulation study is to analyze the convergence of the reconstructions pro-
duced by the centralized and distributed observer. To this end, the global model (5.7), the cen-
tralized observer (5.12), and the distributed observer (5.14) are exported to MATLAB/Simulink.
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It is noteworthy that the MATLAB code only for the nonlinear expression RRR(xxx′) from (5.7)
comprises about 5000 lines of MATLAB code.

For the simulation, the matrices DDD1, j, DDD2, j, QQQ1, j, and QQQ2, j are chosen as diagonal matrices.
The diagonal entries were specified by random numbers between 0.1 and 10. The obtained
matrices can be found in Appendix D.4. For the observers (5.12) and (5.14), the convergence
parameter is set to α = 10.

For the specification of the input of the model (5.7), we split uuu ∈ R16 into uuu =(
uuu>1 uuu>2 uuu>3 uuu>4

)>. The subvectors uuuk ∈ R4 are chosen as

uuuk = 100 ·
(

1 1 1 1
)>

pulse5%
0.2s(t− t0,k), (5.15)

for k = 1, . . . ,4. The function pulsew
T (t) is a periodic pulse excitation of period T and pulse

width w:

pulsew
T (t) =

{
1, (i−1)T ≤ t < (i−1+w)T

0, otherwise
, (5.16)

with i ∈ N≥1.
The initial state of the system (5.7) is set to xxx0 = (2 . . .2)> ∈ R120. The centralized

observer (5.12) is initialized with x̂xx0 = (1 . . .1)> ∈ R120. Accordingly, the initial values of
the distributed observer (5.14) are set to x̂xx0, j = (1 . . .1)> ∈ R8 for j ∈ Vs.

The simulation was carried out in MATLAB / Simulink R2019a by using the automatic
variable-step solver selection from Simulink. The simulation time was set to 20 seconds.

5.3.6 Simulation Results

In order to analyze the convergence of the centralized and the distributed observer let us
introduce a variable tδ ,i. Consider a state xi and a corresponding reconstruction x̂i. For a
constant δ ∈R>0, tδ ,i is defined as the smallest time t ≥ 0 such that |xi− x̂i|< δ for all t > tδ ,i.
The time tδ ,i is hence a measure for the advance of the convergence of a reconstruction
towards the true state. In the sequel, we set δ = 0.01.

Figure 5.14 shows the values of t0.01,i for the i = 1, . . . ,120 states as obtained from the
centralized observer (5.12) (red) and the distributed observer (5.14) (brown). The correspond-
ing numerical data can be found in Appendix D.5. For both observers, in the majority of
states, the time t0.01,i is smaller than one second (see lowest help line in Figure 5.14). For
some states, t0.01,i is higher than 1 s but still less than 5 s, e.g., for i = 32,64,78. An outlier
is given for the 87th state from the distributed observer by t0.01,87 ≈ 12.8s. This outlier can
be explained by two reasons: (i) the state x87 is subject to a weak natural damping (see the
third element in the matrix DDD2,11 in Appendix D.4); (ii) the error injection in the observer
has no access to this observer state. The centralized observer is robust against (i) as it makes
use of the damping of all subsystems and not only of one single subsystem (cf. matrix RRR(xxx′)
in (5.7)). From Figure 5.14 we can also see that none of the observers outperforms the other
over all states. This might be unintuitive at a first glance as a centralized observer is usually
expected to produce better results as a distributed observer. However, this does not apply in
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our case as the distributed observer has more known variables available than the centralized
observer.
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Figure 5.14: Time tδ ,i for δ = 0.01 over the state number i for the centralized and distributed observer

Figure 5.15 depicts the time courses of the first, fifth, and 32nd state of the model (5.7),
the centralized observer (5.12), and the distributed observer (5.14) in solid blue, dashed red,
and dashdotted brown, respectively, for the time between 0s and 1s. As can be seen, the
reconstructions of the first and fifth state quickly converge to the true values. The con-
vergence of the 32nd state is slower which confirms the corresponding value from Figure 5.14.

Finally, let us discuss the convergence of the observers under the influence of measure-
ment noise. To this end, a zero-mean Gaussian white noise is added to the measurements. Af-
terwards, the simulations of the centralized observer (5.12) and the distributed observer (5.14)
are rerun on the basis of the noisy measurements.

The simulation setup and the results are described in Appendix D.6. It turns out that those
observer states whose convergence is ascribed only to the natural damping of the system re-
main unaffected by the measurement noise. In contrast, observer states which are influenced
by the measurement error injection lose the property of asymptotic convergence.What can be
stated positively, however, is that these reconstructions reach with increasing time a tolerance
band around the value of the variable to be reconstructed. The width of this tolerance
band depends on the noise level. In practice, it has to be considered whether such a toler-
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Figure 5.15: System state xi from the model (5.7) and reconstructions x̂i from the centralized ob-
server (5.12) and the distributed observer (5.14) for i = 1,5,32 and the time between 0 s and 1 s

ance band is acceptable or if additional measures for noise suppression are to be implemented.

Let us conclude the insights from this subsection. AMOTO was shown to be able to
generate a model, a centralized observer, and a distributed observer for a large-scale nonlinear
system. The simulation results verify the theoretical result that the obtained observers are
asymptotic. In the case of noisy measurements, the property of asymptotic convergence
reduces to a convergence into a tolerance band around the value to be reconstructed.

5.4 Discussion

The previous two sections demonstrated the capabilities of the software prototype AMOTO.
It was shown that the program can be used for the automated model generation and observer
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design in linear and nonlinear interconnected systems with 100 states and more. The results
from this chapter have been confirmed in many other studies as, e.g., by Muller [2018]
in which AMOTO is applied to the modeling of a wind turbine system with doubly fed
induction generator.

In numerical simulations, the obtained models produced plausible results. Section 5.2
showed that the model obtained from AMOTO yields simulation results that are almost
identical to the results produced by a verified benchmark model from the literature. This is
remarkable as the AMOTO model is a causal ODE model while the benchmark model is an
acausal, component-based Simscape model. Numerical simulations verified the observers
obtained from AMOTO to be asymptotic. In the presence of measurement noise, the property
of asymptotic convergence reduces to a convergence into a tolerance band whose width
depends on the noise level. In this context, a pre-processing of the measurements may be
good choice to reduce the influence of the noise to the observer.

In AMOTO, the user exclusively operates on an intuitive graphical level. As was shown,
this prevents the engineer from dealing with hundreds of equations. Therewith, AMOTO
enables a transparent and comfortable modeling and observer design for interconnected
systems. The program fits seamlessly in the workflow for developing control systems. The
bond graph for AMOTO can be generated with well-known computer tools that feature
extensive component libraries, e.g., Modelica or 20-sim. Moreover, AMOTO’s export
function allows to write the obtained models and observers to the file formats of MATLAB,
Mathematica, and LATEXfor subsequent steps in the development of control systems as, e.g.,
their simulation, analysis, and documentation.

In both case studies, the time required to calculate the models and observers is well
under a minute. It is noteworthy, however, that the models and observers obtained from
AMOTO may exceed the simulation capabilities of MATLAB/Simulink. The bottleneck
is not the simulation itself but the compilation of a model or observer. Large expressions
that involve several thousand lines of MATLAB code may lead to the situation where the
compilation cannot be finished in a reasonable time.

In conclusion, this proof of principle demonstrated that AMOTO allows for an intuitive,
time-efficient, and error-resistant model generation and observer design for large-scale
interconnected systems.

5.5 Summary and Contributions

This chapter presented a proof of principle for the automated model generation and observer
design. To this end, the software prototype AMOTO integrating the methods and algorithms
from Chapter 3 and Chapter 4 was introduced. In a first case study, AMOTO was applied to
design a time-domain dynamic state estimator for an unbalanced power distribution system.
In a second case study, we applied AMOTO to a large-scale nonlinear interconnected
system. In both case studies, numerical simulations illustrated the validity of the models
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and observers that were generated by AMOTO. The main achievements of this chapter,
including contributions are:

(C3.1) a software prototype for an automated model generation and observer design which
fits seamlessly in the workflow for the development of control systems;

(C3.2) a time-domain dynamic state estimator which extends the functionalities of a static
WLS-based state estimation and which is, to the best of our knowledge, the first
power system state estimator that explicitly considers the line dynamics;

(C3.3) a demonstration that we can automatically generate a model, a centralized observer,
and a distributed observer for a nonlinear interconnected system.

These contributions verify that the process of deriving explicit state-space models and
the process of designing model-based observers for interconnected systems can be indeed
automated. Moreover, they emphasize the practical usefulness of such an approach.
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Conclusion

The model derivation in interconnected systems is time- and cost-intensive and may require
experts from different engineering fields. Moreover, for such systems, the curse of dimension-
ality leads to extensive equations which makes a manual or partially computer-aided model
development prone to error. Besides the modeling, the curse of dimensionality hampers
many subsequent steps in a model-based control system development as, e.g., the design
of observers. Hence, to reduce complexity, engineers may be forced to apply unjustified
simplifications in the description of the systems’ physics.

This thesis outlined a new approach to handle the complexity of interconnected systems.
The idea is to consistently automate the model derivation and observer design in the phys-
ically unifying framework of port-Hamiltonian systems (PHSs). Following this idea, this
work has made innovative methodological contributions in two areas: first, methods and al-
gorithms for an automated generation of explicit port-Hamiltonian models from bond graphs
have been presented; second, methods and algorithms for an automated PHS-based design
of observers have been developed. By these contributions, we reach the research objectives
stated in Chapter 1. The approach is intuitive, efficient, and error-resistant and allows to treat
a wide class of interconnected systems covering the electric, mechanic, hydraulic, thermal,
and chemical domain.

The methods and algorithms from this work are implemented in a software prototype
named AMOTO. AMOTO was successfully demonstrated for two interconnected systems,
viz. an unbalanced power distribution network and a large-scale nonlinear system. For the
former, one obtains a dynamic state estimator which significantly extends the functionalities
of the static WLS estimator that is used in nowadays power system control centers. Various
numerical simulations verify the validity of the models and observers generated by AMOTO.

A natural direction for future research is to consider the automated design of controllers.
Appendix C.4 provides a first result towards this direction. Moreover, the thesis at hand
follows an approach based on explicit models and observers. Two well-known limitations
of an explicit approach are (i) that it disallows to consider systems with irreversible
thermodynamic processes, and (ii) that it imposes an input-state-output causality on the
system which may reduce the physical transparency in the obtained models and observers.
This motivates to reconsider the research questions from this thesis in the framework of
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implicit PHSs—a class of systems that has been recently proposed, e.g., by van der Schaft
and Maschke [2018] and Beattie et al. [2018].

As a final conclusion, this thesis is the first to consistently automate the processes of a
physics-based state-space model derivation and a model-based observer design for a wide
class of interconnected systems.
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Appendices for Chapter 2

A.1 Proof of Proposition 2.26

Proposition 2.26 claims that explicit PHSs are passive or even strictly passive as a conse-
quence of their system formulation. The proof of this statement follows here.
Proof:
The proof is oriented on van der Schaft [2016, p. 114]. Consider the explicit PHS from
Definition 2.23. As the Hamiltonian H is bounded from below, we always find a constant
c ∈ R≥0 such that V (xxx) = H (xxx)+ c is a non-negative function. The time derivative of V is
calculated as

V̇ (xxx) =
(

∂V
∂xxx

(xxx)
)>

ẋxx =
(

∂H
∂xxx

(xxx)
)>

ẋxx

(2.12a)
=

(
∂H
∂xxx

(xxx)
)>(

(JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu
)

=−
(

∂H
∂xxx

(xxx)
)>

RRR(xxx)
∂H
∂xxx

(xxx)+
(

∂H
∂xxx

(xxx)
)>

(GGG(xxx)−PPP(xxx))uuu. (A.1)

With (2.12b), the last term in (A.1) can be written as(
∂H
∂xxx

(xxx)
)>

(GGG(xxx)−PPP(xxx))uuu

= yyy>uuu−2
(

∂H
∂xxx

(xxx)
)>

PPP(xxx)uuu−uuu> (MMM (xxx)+SSS (xxx))> uuu. (A.2)

Inserting (A.2) into (A.1) and recalling that MMM (xxx) is skew-symmetric yields

V̇ (xxx) =−
(

∂H
∂xxx

(xxx)
)>

RRR(xxx)
∂H
∂xxx

(xxx)+ yyy>uuu−2
(

∂H
∂xxx

(xxx)
)>

PPP(xxx)uuu−uuu>SSS>(xxx)uuu. (A.3)

135



136 Appendix A. Appendices for Chapter 2

Equation (A.3) can be rearranged as

V̇ (xxx) = uuu>yyy−
((

∂H
∂xxx (xxx)

)>
uuu>
)(

RRR(xxx) PPP(xxx)
PPP>(xxx) SSS (xxx)

)
︸ ︷︷ ︸

=ΘΘΘ(xxx)

(
∂H
∂xxx (xxx)

uuu

)
(2.13)
≤ uuu>yyy, ∀t ≥ 0. (A.4)

Hence, the PHS is passive. If ΘΘΘ(xxx) is positive-definite for all xxx ∈ X, we have V̇ < uuu>yyy for
all non-equilibrium points and the system is strictly passive.
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Appendices for Chapter 3

B.1 Discussion on Assumption 3.22

In Subsection 3.2.5, it was argued that the source elements of a bond graph are independent
if and only if Assumption 3.22 is met. In the following, we prove this statement formally.
To this end, let us first introduce another matrix representation of a Dirac structure, viz. the
image representation.

Definition B.1 (Image representation)
An image representation of a Dirac structure D(xxx)⊂ Rn×Rn with xxx ∈ X is

D(xxx) = {( fff ,eee) ∈ Rn×Rn | ∃λ ∈ Rn s.t. fff = EEE>(xxx)λ ,eee = FFF>(xxx)λ}. (B.1)

As with the kernel representation from Definition 2.18, the matrices FFF (xxx) and EEE (xxx)
in (B.1) satisfy (2.5); the power balance is given by (2.6).

Now for the dependent sources.

Proposition B.2 (Dependent sources)
Given a bond graph according to Definition 3.5 whose junction structure is described
by a Dirac structure of the form (3.27). The source elements of the bond graph are
independent for all xxx ∈ X if and only if Assumption 3.22 is satisfied.

Proof:
We first show that a violation of Assumption 3.22 implies that the bond graph has dependent
source elements. To this end, we use the idea from Golo et al. [2003, Remark 1].

Let Assumption 3.22 be violated, i.e.,

∃xxx ∈ X : rank
(

EEESf (xxx) FFFSe (xxx)
)
< K (NSf +NSe) . (B.2)
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For such an xxx, the matrix (EEESf (xxx) FFFSe (xxx)) has not full rank and there exists a non-zero
matrix (UUU (xxx) VVV (xxx)) such that(

UUU (xxx) VVV (xxx)
)(

EEESf (xxx) FFFSe (xxx)
)>

= 000. (B.3)

By post-multiplying (B.3) with a non-zero λ ∈ RK(NSf+NSe) we obtain

UUU (xxx) EEE>Sfλ︸ ︷︷ ︸
(B.1)
= fff Sf

+VVV (xxx) FFF>Seλ︸ ︷︷ ︸
(B.1)
= eeeSe

= 000. (B.4)

Equation (B.4) reveals the junction structure to imply an algebraic dependency between fff Sf

and eeeSe. This proves Assumption 3.22 to be a necessary condition for the independence of
sources. The proof for sufficiency is obtained from the backwards calculation of the above
formulas from (B.4) over (B.3) to (B.2).

B.2 Analysis of the Input-Output Matrix

At the end of the proof of Lemma 3.23, we apply the insights from the proof of Theorem 4
from Bloch and Crouch [1999] for the construction of the skew-symmetric matrix ZZZ (xxx).
In their proof, Bloch and Crouch [1999] consider the Dirac structure on abstract (finite-
dimensional) vector spaces. This is in contrast to most practical cases in which a Dirac
structure is considered on Euclidean vector spaces. In the following proposition, we elaborate
the calculation law of the matrix ZZZ (xxx) from Lemma 3.23 for Dirac structures on Euclidean
vector spaces:

Proposition B.3 (Caculation law for ZZZ (xxx))
The calculation law (3.38) ensures the equation systems in (3.36) and (3.27) to describe
the same relations. Moreover, (3.38) yields a matrix ZZZ (xxx) that is skew-symmetric.

Proof:
We neglect the argument xxx and the supplement “for all xxx ∈ X” in this proof.

Using the splitting of FFFC, FFFR, EEEC, EEER and likewise the splitting of fff C, fff R, eeeC, eeeR, the
condition in (3.27) reads

−FFFC,1 fff C,1−FFFC,2 fff C,2−FFFR,1 fff R,1−FFFR,2 fff R,2 +FFFSf fff Sf +FFFSe fff Se

+EEEC,1eeeC,1 +EEEC,2eeeC,2 +EEER,1eeeR,1 +EEER,2eeeR,2 +EEESfeeeSf +EEESeeeeSe = 000. (B.5)
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Combining and gathering the different matrices we can write this as

(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)


− fff C,1

eeeC,2

− fff R,1

eeeR,2

eeeSf

fff Se


+

(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)


eeeC,1

− fff C,2

eeeR,1

− fff R,2

fff Sf

eeeSe


= 000, (B.6)

which is equivalent to

− fff C,1

eeeC,2

− fff R,1

eeeR,2

eeeSf

fff Se


=−

(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)−1(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)


eeeC,1

− fff C,2

eeeR,1

− fff R,2

fff Sf

eeeSe


,

(B.7)
i.e., equivalent to the condition in (3.36). To prove the skew-symmetry of ZZZ we again follow
the idea of Bloch and Crouch [1999, Theorem 4]. Equation (2.5a) can be written as

000 = EEEFFF>+FFFEEE>

= EEEC,1FFF>C,1 +EEEC,2FFF>C,2 +EEER,1FFF>R,1 +EEER,2FFF>R,2 +EEESfFFF>Sf +EEESeFFF>Se +

FFFC,1EEE>C,1 +FFFC,2EEE>C,2 +FFFR,1EEE>R,1 +FFFR,2EEE>R,2 +FFFSfEEE>Sf +FFFSeEEE>Se.

(B.8)

Resorting and combining the matrices we can write this as

000 =
(

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)>
+(

EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)>
.

(B.9)
Inverting the first and last matrix we get the equation of the skew-symmetry of ZZZ:

−ZZZ> =
(

EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)>((
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)−1
)>

=−
(

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)−1(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)
= ZZZ.

(B.10)
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B.3 Discussion on Assumption 3.30

In Subsection 3.3, it was argued that Assumption 3.30 is always fulfilled if all resistive
elements from the bond graph are truly dissipative. In the following proposition, we elaborate
this statement more in detail:

Proposition B.4 (Truly dissipative resistive elements)
Given a bond graph according to Definition 3.5. Let all resistive elements i ∈ VR be
truly dissipative, i.e., they obey the constitutive relation

fff j = DDDi(xxx)eee j, (B.11)

with j ∈ B(i), DDDi(xxx) ∈RK×K , and DDDi(xxx) = DDDi(xxx)> � 0, for all xxx ∈X. Note that in con-
trast to the general case from Subsection 3.2.2, we now assume DDDi(xxx) to be positive-
definite. Let the junction structure of the bond graph be described by aDirac structure
in kernel form (3.27) which satisfies Assumption 3.22. Then, we always find an input-
output representation (3.36) of (3.27) with a splitting of resistive variables that fulfills
Assumption 3.30.

Proof:
We neglect the argument xxx and the supplement “for all xxx ∈ X” in this proof.

Consider a Dirac structure in kernel form (3.27) which satisfies Assumption 3.22. From
Lemma 3.23 and the properties of a causal bond graph we know that we always find an
input-output representation of (3.27) in the form (3.36) where for each j ∈ B(i), i ∈ VR the
pair

(
fff j,eee j

)
lies either completely in

(
fff R,1,eeeR,1

)
or completely in

(
fff R,2,eeeR,2

)
. Possibly

after permutations, we may thus write the resistive relations (B.11) as(
fff R,1

fff R,2

)
=

(
DDD11 000
000 DDD22

)
︸ ︷︷ ︸

=DDD

(
eeeR,1

eeeR,2

)
, (B.12)

where DDD11 = DDD>11 � 0 and DDD22 = DDD>22 � 0 are block diagonal matrices. Equation (B.12) may
be rewritten as (

eeeR,1

− fff R,2

)
︸ ︷︷ ︸

=uuuR

=−

(
DDD−1

11 000
000 DDD22

)
︸ ︷︷ ︸

=R̃RR

(
− fff R,1

eeeR,2

)
︸ ︷︷ ︸

=yyyR

, (B.13)

where R̃RR = R̃RR> � 0. Equation (B.13) is of the form (3.66) which is why Assumption 3.30 is
fulfilled.
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B.4 Port-Hamiltonian Systems with Nonlinear
Dissipation

In this section, it is shown that the modeling approach from Chapter 3 can be generalized to
systems with resistive relations which are nonlinear in the power variables.

Consider the Dirac structure obtained from Corollary 3.28:

D(xxx) = {(


fff C

fff R

fff Sf

fff Se

 ,


eeeC

eeeR

eeeSf

eeeSe

) ∈ RKNE×RKNE |

yyyC

yyyR

yyyP

=

ZZZCC (xxx) −ZZZCR (xxx) −ZZZCP (xxx)
ZZZ>CR (xxx) ZZZRR (xxx) −ZZZRP (xxx)
ZZZ>CP (xxx) ZZZ>RP (xxx) ZZZPP (xxx)


︸ ︷︷ ︸

ZZZ(xxx)

uuuC

uuuR

uuuP

}, (B.14)

where ZZZ (xxx) = −ZZZ> (xxx) ∈ RKNE for all xxx ∈ X. The inputs and outputs in (B.14) are given
by uuuC = eeeC, uuuR = (eee>R,1 fff>R,2)

>, uuuP = ( fff>Sf eee>Se)
>, yyyC = − fff C, yyyR = (− fff>R,1 eee>R,2)

>, and
yyyP = (eee>Sf fff>Se)

>. With the following assumption, we exclude the presence of causal paths
between resistive elements:

Assumption B.5 (Matrix block in (B.14))
In (B.14), we have ZZZRR (xxx) = 000 for all xxx ∈ X.

Recall the constitutive relations of storages from (3.65):

yyyC =− fff C =−ẋxx, uuuC = eeeC =
∂V
∂xxx

(xxx) , (B.15)

and define zzz := uuuC. For resistive elements, suppose nonlinear constitutive relations which
are expressed as the graph of an input-output map (cf. van der Schaft and Jeltsema [2014,
p. 24]):

uuuR = ΦΦΦ(yyyR,xxx,zzz,uuu), (B.16)

where yyy>R uuuR ≤ 0. Now we have everything prepared for a port-Hamiltonian formulation of a
system with nonlinear dissipation.



142 Appendix B. Appendices for Chapter 3

Proposition B.6 (PHS of a system with nonlinear dissipation)
Given an explicit Dirac structure (B.14)which satisfies Assumption B.5. Let the consti-
tutive relations of storage elements and resistive elements be given in the forms (B.15)
and (B.16), respectively. Equations (B.14), (B.15), and (B.16) can be written as explicit
input-state-output PHSs of the form

ẋxx = JJJ (xxx)zzz−R (xxx,zzz,uuu)+GGG(xxx)uuu, (B.17a)

yyy = GGG>(xxx)zzz+P (xxx,zzz,uuu)+MMM (xxx)uuu, (B.17b)

with mappingsR (xxx, ·, ·) : Rn→Rn,P (xxx, ·, ·) : Rn→Rp and uuu = uuuP, yyy = yyyP. In (B.17),
the matrices and mappings satisfy JJJ (xxx) =−JJJ>(xxx), MMM (xxx) =−MMM>(xxx), and(

zzz
uuu

)>(
R (xxx,zzz,uuu) 000

0 P (xxx,zzz,uuu)

)
≥ 0, ∀xxx ∈ X,zzz ∈ Rn,uuu ∈ U. (B.18)

The matrices can be obtained from JJJ (xxx) = −ZZZCC (xxx), GGG(xxx) = ZZZCP (xxx), and MMM (xxx) =
ZZZPP (xxx); the mappings are calculated as

R (xxx,zzz,uuu) =−ZZZCR (xxx)ΦΦΦ

(
ZZZ>CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
, (B.19a)

P (xxx,zzz,uuu) = ZZZ>RP (xxx)ΦΦΦ

(
ZZZ>CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
. (B.19b)

Proof:
Inserting uuuC = zzz and (B.16) into the first line of the equation system from (B.14) yields

yyyC = ZZZCC (xxx)uuuC−ZZZCR (xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)−ZZZCP (xxx)uuuP. (B.20)

For the second term from the right side we write

−ZZZCR (xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)
(B.16)
= −ZZZCR (xxx)ΦΦΦ

(
ZZZ>CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
︸ ︷︷ ︸

=R(xxx,zzz,uuu)

. (B.21)

By inserting (B.21) into (B.20) we obtain (B.17a):

yyyC = ZZZCC (xxx)zzz+R (xxx,zzz,uuu)−ZZZCP (xxx)uuuP

(B.15)⇔ −ẋxx = ZZZCC (xxx)zzz+R (xxx,zzz,uuu)−ZZZCP (xxx)uuuP

⇔ ẋxx =−ZZZCC (xxx)︸ ︷︷ ︸
=JJJ(xxx)

zzz−R (xxx,zzz,uuu)+ZZZCP (xxx)︸ ︷︷ ︸
=GGG(xxx)

uuuP︸︷︷︸
=uuu

. (B.22)

Now for the output equation. From the third line of the equation system in (B.14) and
with uuu = uuuP, yyy = yyyP we obtain

yyy = ZZZ>CP (xxx)︸ ︷︷ ︸
=GGG>(xxx)

zzz+ZZZ>RP(xxx)uuuR +ZZZ>PP(xxx)︸ ︷︷ ︸
=MMM(xxx)

uuu. (B.23)
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For the second term from the right side we write

ZZZ>RP(xxx)uuuR
(B.16)
= ZZZ>RP(xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)

(B.14)
= ZZZ>RP(xxx)ΦΦΦ

(
ZZZ>CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
︸ ︷︷ ︸

=P(xxx,zzz,uuu)

.

(B.24)
Inserting (B.24) into (B.23) yields (B.17b).

Next, we show that (B.18) holds. By multiplying (B.17a) from the right side with zzz> we
obtain

zzz>ẋxx =−zzz>R (xxx,zzz,uuu)+ zzz>GGG(xxx)uuu. (B.25)

On the other hand, by the power balance of the Dirac structure (B.14) we have

zzz>ẋxx
(B.15)
= −uuu>C yyyC

(2.9)
= uuu>R yyyR +uuu>P yyyP. (B.26)

Equating (B.25) and (B.26) yields

−zzz>R (xxx,zzz,uuu)+ zzz>GGG(xxx)uuu = uuu>R yyyR +uuu>P yyyP. (B.27)

The last term reads

uuu>P yyyP
(B.14)
= uuu>P

(
ZZZ>CP(xxx)uuuC +ZZZ>RP(xxx)uuuR +ZZZPP (xxx)uuuP

)
= uuu>P ZZZ>CP(xxx)uuuC +uuu>P ZZZ>RP(xxx)uuuR

(B.16)
= uuu>P ZZZ>CP(xxx)uuuC +uuu>P ZZZ>RP(xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)

(B.14)
= uuu>P ZZZ>CP(xxx)uuuC +uuu>P ZZZ>RP(xxx)ΦΦΦ

(
ZZZ>CR(xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
. (B.28)

With (B.19a) and uuu = uuuP, yyy = yyyP we write (B.28) as

uuu>P yyyP = uuu>ZZZ>CP(xxx)︸ ︷︷ ︸
=GGG>(xxx)

zzz+uuu>P (xxx,zzz,uuu) . (B.29)

By inserting (B.29) into (B.27) we prove (B.18):

−zzz>R (xxx,zzz,uuu)+�����zzz>GGG(xxx)uuu = uuu>R yyyR +�����
uuu>GGG>(xxx)zzz+uuu>P (xxx,zzz,uuu)

⇔ −zzz>R (xxx,zzz,uuu)−uuu>P (xxx,zzz,uuu) = uuu>R yyyR

(B.16)
≤ 0. (B.30)

To the best of our knowledge, the explicit PHS (B.17) has not been presented in the
literature so far. The next proposition shows that this PHS is passive.

Proposition B.7 (Passivity of a PHS with nonlinear dissipation)
The explicit port-Hamiltonian model from (B.17) is passive.
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Proof:
Recall that zzz = ∂V

∂xxx (xxx) where V (xxx) is a storage function that is bounded from below. We
always find a constant c ∈R≥0 such that Ṽ (xxx) =V (xxx)+c is a positive definite function. The
derivative of Ṽ (xxx) with respect to time reads

˙̃V (xxx) =
(

∂Ṽ
∂xxx

(xxx)
)>

ẋxx =
(

∂V
∂xxx

(xxx)
)>

ẋxx = zzz> (JJJ (xxx)zzz−R (xxx,zzz,uuu)+GGG(xxx)uuu)

=−zzz>R (xxx,zzz,uuu)+ zzz>GGG(xxx)uuu. (B.31)

Transposing (B.17b) and multiplying with uuu from the right gives

yyy>uuu = zzz>GGG(xxx)uuu+P> (xxx,zzz,uuu)uuu

⇔ zzz>GGG(xxx)uuu = yyy>uuu−uuu>P (xxx,zzz,uuu) . (B.32)

Inserting (B.32) into (B.31) then yields

˙̃V (xxx) =−zzz>R (xxx,zzz,uuu)+ yyy>uuu−uuu>P (xxx,zzz,uuu)

= yyy>uuu−

(
zzz
uuu

)>(
R (xxx,zzz,uuu) 000

0 P (xxx,zzz,uuu)

)
︸ ︷︷ ︸

≥0

≤ yyy>uuu. (B.33)

For the case of no feedthrough we obtain from Proposition B.6 the “input-state-output
PHS with nonlinear resistive structure” introduced by van der Schaft [2016, Def. 6.1.4]. This
special case is outlined in the subsequent corollary.

Corollary B.8 (PHS with nonlinear dissipation from van der Schaft [2016])
Given an explicit Dirac structure (B.14)which satisfies Assumption B.5. LetZZZRP (xxx)= 0
and ZZZPP (xxx) = 0 for all xxx ∈ X. Equations (B.14), (B.15), and (B.16) can be written as
explicit input-state-output PHSs of the form

ẋxx = JJJ (xxx)zzz−R (xxx,zzz,uuu)+GGG(xxx)uuu, (B.34a)

yyy = GGG>(xxx)zzz, (B.34b)

where JJJ (xxx) =−JJJ>(xxx) and zzz>R (xxx,zzz,uuu)≥ 0 for all xxx ∈ X, zzz ∈ Rn, uuu ∈ U.

Proof:
The proof follows directly from Proposition B.6 under ZZZRP (xxx) = 0 and ZZZPP (xxx) = 0.
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B.5 Notes to Section 3.3

The following notes provide some additional information to the discussion from Section 3.3,
especially with regard to the related literature:

Theorems 3.35 and 3.47 are the first to give rigorous existence conditions for the
complete transfer from a bond graph to an explicit PHS. In the literature, there exist some
existence conditions for intermediate steps of this transfer. Golo et al. [2000] and Golo et al.
[2003] show that the junction structure of a bond graph can always be related to a Dirac
structure in implicit form. This is in line with our findings from Theorem 3.35.Donaire
and Junco [2009] provide sufficient conditions for the transfer from a Dirac structure in
explicit form to a non-feedthrough PHS. Theorems 3.35 and 3.47 put the conditions of Golo
et al. [2000], Golo et al. [2003], and Donaire and Junco [2009] into the perspective of an
explicit port-Hamiltonian formulation of bond graphs. It turns out, that the most crucial step
for such a formulation is the transfer of the Dirac structure from an implicit to an explicit
representation. Concerning this transfer, Theorem 3.35 is the first to provide necessary and
sufficient conditions.

The sufficient existence condition from Theorem 3.35 makes the well-known conditions
for the derivation of an explicit PHS mathematically traceable. In the literature, there exist
three well-known prerequisites under which a system can be formulated as an explicit PHS,
see, e.g., van der Schaft [2009, p. 70] or van der Schaft and Jeltsema [2014, p. 53]. The
class of explicit input-state-output PHS occurs if “(1) the external port variables can be
split into input and output variables, (2) there are no algebraic constraints between the state
variables, and (3) the resistive structure is linear and of input-output form”1 [van der Schaft
and Jeltsema, 2014, p. 53]. These conditions are formulated only verbally which makes
them mathematically untraceable and hampers their practical evaluation. For the particular
case of bond graph systems, Theorem 3.35 provides remedy as it gives mathematically
traceable representations of the three conditions (1), (2), and (3), viz. assumptions 3.22, 3.27,
and 3.30, respectively. Based on these assumptions, computer algebra systems can evaluate
if an explicit PHS exists or not.

The existence conditions from Theorem 3.35 are related to the existence condition for an
implicit port-Hamiltonian formulation of a bond graph. Golo et al. [2003] shows that each
well-posed bond graph2 permits an implicit port-Hamiltonian formulation. Assumption 3.22
(i.e., the independence of sources) is a necessary condition for a bond graph to be well-posed.
Moreover, Assumption 3.27 (i.e., the independence of sources and the independence of
storages) is sufficient for the well-posedness. In consequence, each explicit PHS obtained
from Theorem 3.35 permits an implicit representation. This is intuitive as the class of

1Compared to the original texts, the points (1) and (2) have been switched in the order.
2For the well-posedness of a bond graph the reader is asked to refer to Golo et al. [2003, Def. 2].
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implicit PHSs is more general than the class of explicit PHSs. Lopes [2016] gives conditions
under which an implicit PHS can be transferred into an explicit PHS [Lopes, 2016, Propriété
6]. However, the results from Theorem 3.35 show that the conditions from Lopes [2016] are
unnecessarily strict.

Assumptions 3.22 and 3.27 can be interpreted by means of bond graph causality. The
transfer of the Dirac structure from an implicit to an explicit form can be interpreted as
the causalization of the bond graph.3 A first indication of this interpretation has already
been given by Lopes [2016]. A causality-based interpretation of assumptions 3.22 and 3.27
reads “in the causal bond graph, all sources have proper causality” and “in the causal bond
graph, all sources have proper causality and all storages are in preferred (integral) causality”,
respectively.

Theorem 3.47 generalizes the results from previous literature on state-space models of
systems with dependent storages. In bond graph theory, dependent storages are well-known
to lead in general to models in the form of DAEs (cf. Borutzky [2010, pp. 142–143]).
Nevertheless, Theorem 3.47 states that (under the given conditions) we can obtain a PHS in
the form of an ODE. This insight is in line with some previous results from the literature.
For linear systems, Wellstead [1979] has shown that if Assumption 3.37 is satisfied we can
always obtain an explicit state-space model in spite of the presence of dependent storages.
Theorem 3.47 generalizes the results from Wellstead [1979] to nonlinearities in the junction
structure. Moreover, the insights from Theorem 3.47 are in line with the findings of Donaire
and Junco [2009]. Compared to Donaire and Junco [2009], however, Theorem 3.47 is more
general as it allows for systems that possibly contain feedthrough. Najnudel et al. [2018]
stated conditions under which the dependent storages can be expressed by independent
storages. However, the work of Najnudel et al. [2018] is restricted to dependent storages
that occur from the parallel or serial interconnection of storage elements. Theorem 3.47
generalizes these results to more subtle structures which lead to the dependence between
storage elements.

Algorithms 3.36 and 3.48 are the first to enable a fully automated generation of
explicit port-Hamiltonian models. In the literature, there exists various algorithms
that are related to algorithms 3.36 and 3.48. Golo et al. [2000] present an algorithm
which determines a Dirac structure in explicit form based on a bond graph [Golo et al.,
2000, Algorithm 3]. The algorithm is based on graphical manipulations. Dai [2016]
provides an algorithm for the generation of a Dirac structure in implicit form [Dai,
2016, Algorithm 1]. Moreover, the author provides an algorithm for transferring a
Dirac structure from an implicit to an explicit form [Dai, 2016, Algorithm 4].Donaire
and Junco [2009] derive calculation rules for the matrices of a PHS based on a Dirac
structure in explicit form [Donaire and Junco, 2009, Theorem 1]. An algorithm for the
determination of an implicit PHS from an analog circuit was proposed by Falaize and

3For the concept of bond graph causality refer to Borutzky [2010, pp. 92ff.].
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Hélie [2016]. The algorithm is implemented in a Python program package named PyPHS,
see Falaize and Hélie [2019]. As can be seen, different aspects concerning an automated
generation of explicit port-Hamiltonian models have been addressed in the literature. How-
ever, algorithms 3.36 and 3.48 are the first to fully automate the derivation of an explicit PHS.





Appendix C
Appendices for Chapter 4

C.1 Detectability, Strong Detectability, and
Strong∗ Detectability

This section gives a brief introduction into the concepts of detectability, strong detectability,
and strong∗ detectability. The latter is of particular importance for the observer design in
Subsection 4.2.1.

Consider a linear state-space system in standard form:

ẋxx = AAAxxx+BBBuuu, xxx|t=0 = xxx0, (C.1a)

yyy =CCCxxx+DDDuuu. (C.1b)

The following definition is inspired by Sontag [1998, p. 329]:

Definition C.1 (Detectability)
The system (C.1) is detectable if in the autonomous system yyy ≡ 000 implies lim

t→∞
xxx→ 000,

for all xxx0.

In Definition C.1, we assume the input uuu of the system to be known. Hence, the restriction
to the autonomous system (i.e., the case where uuu ≡ 000) is without loss of generality (cf.
Ludyk [1995, p. 7]). In the following, the concept of detectability is extended to systems
with unknown inputs. This leads us to the definitions of strong detectability, and strong∗

detectability as introduced by Hautus [1983].

Definition C.2 (Strong detectability)
The system (C.1) is strong detectable if yyy≡ 000 implies lim

t→∞
xxx→ 000, for all xxx0 and uuu.

149
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Definition C.3 (Strong∗ detectability)
The system (C.1) is strong∗ detectable if lim

t→∞
yyy→ 000 implies lim

t→∞
xxx→ 000.

Note that strong∗ detectability implies strong detectability.

C.2 Specification of the Eigenvalues for the
Error Dynamics Matrix

The state reconstruction error dynamics of the observer proposed in Theorem 4.8
obey ε̇εε = NNNεεε (i.e., (4.13) under (4.14)). The design of the observer is conducted with
Algorithm 4.10. In code line 21 of Algorithm 4.10, we have to specify the eigenvalues of the
matrix NNN. Here, an automatable procedure for this is proposed.

Recall (4.18), i.e,
NNN = KKKAAA−ZZZC̄CC (C.2)

and define ĀAA := KKKAAA. Let Assumption 4.7 hold. Then the pair
(
ĀAA,C̄CC

)
is detectable (cf.

Darouach et al. [1994, Theorem 2] and Hautus [1983, Theorem 1.5]).
First, we apply a Kalman decomposition with respect to observability to

(
ĀAA,C̄CC

)
. Let

OOO ∈Rq̄n×n denote the observability matrix of
(
ĀAA,C̄CC

)
with r = rank(OOO)(≤ n). Collect r linear

independent rows of OOO in a matrix TTT 1 ∈Rr×n. The rows of TTT 1 span the observable subspace.
Collect the vectors of a basis of ker(OOO) in a matrix TTT 2 ∈ R(n−r)×n. The rows of TTT 2 span the
orthogonal complement of the observable subspace.

Conjugating (C.2) with TTT :=
(
TTT>1 TTT>2

)>
gives

TTT NNNTTT−1︸ ︷︷ ︸
=:NNN†

= TTT ĀAATTT−1︸ ︷︷ ︸
=:ĀAA†

− TTT ZZZ︸︷︷︸
=:ZZZ†

C̄CCTTT−1︸ ︷︷ ︸
=:C̄CC†

, (C.3)

where

ĀAA†
=

(
ĀAA†

11 000
ĀAA†

21 ĀAA†
22

)
, C̄CC†

=
(

C̄CC†
1 000

)
, (C.4)

with ĀAA†
11 ∈Rr×r, ĀAA†

21 ∈R(n−r)×r, ĀAA†
22 ∈R(n−r)×(n−r), and C̄CC†

1 ∈Rq̄×r. Note that the eigenval-
ues are invariant under conjugation, i.e., the eigenvalues of NNN† are equal to the eigenvalues
of NNN. Moreover, as

(
ĀAA,C̄CC

)
is detectable, ĀAA†

22 is a Hurwitz matrix.
Now we have everything prepared to specify the eigenvalues of NNN. The first r eigenvalues

λi(NNN) are placed at
λi(NNN) = min

{
Re
(

λi(ĀAA
†
11)
)
−β ,γ

}
, (C.5)

where β ∈ R≥0, γ ∈ R<0, and λi(ĀAA
†
11) the i-th eigenvalue of the matrix ĀAA†

11 (i = 1, . . . ,r).
The remaining n− r eigenvalues are set to

λi+r(NNN) = λi(ĀAA
†
22), (C.6)
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where λi(ĀAA
†
22) is the i-th eigenvalue of the matrix ĀAA†

22 (i = 1, . . . ,n− r). This choice is
motivated by (C.3) and (C.4) which reveal the (stable) eigenvalues of ĀAA†

22 are also eigenvalues
of NNN† and therewith of NNN.

With the chosen eigenvalues for NNN† and (C.3) we can calculate the matrix ZZZ† by using
well-established pole placement techniques. Finally, by ZZZ = TTT−1ZZZ† we obtain the matrix ZZZ
in the original coordinates.

C.3 Additional Statements for the Proof of
Lemma 4.16

In the proof of Lemma 4.16, we applied Lyapunov’s direct method to prove 000 to be a globally
exponentially stable equilibrium point of an error system. In this proof, we made use of the
following two propositions:

Proposition C.4 (V̇ for an autonomous system)
Consider the autonomous system

ẋxx = AAA(sss)QQQxxx, (C.7)

where xxx ∈ Rn, AAA(sss) ∈ Rn×n, and QQQ ∈ Rn×n with QQQ = QQQ> � 0 for some parameter
sss ∈ S. In order to analyze the stability of the equilibrium xxx≡ 000 suppose the Lyapunov
function candidate

V (xxx) =
1
2

xxx>QQQxxx. (C.8)

The derivative of (C.8) with respect to time can be expressed as

V̇ (xxx) = xxx>QQQ
(

1
2

(
AAA(sss)+AAA>(sss)

))
QQQxxx. (C.9)

Equation (C.9) depends only on the symmetric part of the matrix AAA(sss), i.e., V̇ (xxx) it is
independent of the skew-symmetric part of AAA(sss).

Proof:
The derivative of (C.8) reads

V̇ (xxx) =
1
2

ẋxx>QQQxxx+
1
2

xxx>QQQẋxx

(C.7)
=

1
2
(AAA(sss)QQQxxx)>QQQxxx+

1
2

xxx>QQQAAA(sss)QQQxxx

=
1
2

xxx>QQQAAA>(sss)QQQxxx+
1
2

xxx>QQQAAA(sss)QQQxxx

= xxx>QQQ
(

1
2

(
AAA(sss)+AAA>(sss)

))
QQQxxx. (C.10)
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Proposition C.5 (Lower and upper bound)
Given a vector xxx ∈ Rn and a family of symmetric, positive-definite matricies DDD(sss) ∈
Rn×n depending continuously on some parameter sss ∈ S with S compact. Then, there
exist positive constants k1,k2 ∈ R>0 such that

k1‖xxx‖2 ≤ xxx>DDD(sss)xxx≤ k2‖xxx‖2, ∀sss ∈ S,∀xxx ∈ Rn. (C.11)

Proof:
We first show that, without loss of generality, DDD(sss) can be assumed to be diagonal.

As DDD(sss) is symmetric there exists a continuous family of orthogonal matrices TTT (sss) such
that

xxx>DDD(sss)xxx = xxx>TTT>(sss)TTT (sss)DDD(sss)TTT>(sss)︸ ︷︷ ︸
=:D̃DD(sss)

TTT (sss)xxx, (C.12)

for all sss∈ S and for all xxx∈Rn where D̃DD(sss) is a diagonal matrix with the (positive) eigenvalues
of DDD(sss) on its diagonal. By defining yyy := TTT (sss)xxx we may rewrite (C.11) as

k1‖yyy‖2 ≤ yyy>D̃DD(sss)yyy≤ k2‖yyy‖2, ∀sss ∈ S,∀yyy ∈ Rn. (C.13)

In (C.13), we use that

‖yyy‖2 = ‖TTT (sss)xxx‖2 = 〈TTT (sss)xxx,TTT (sss)xxx〉 = 〈xxx,TTT>(sss)TTT (sss)xxx〉 = ‖xxx‖2, ∀sss ∈ S, (C.14)

i.e., the invariance of the Euclidean norm under orthogonal transformations. Equation (C.13)
shows that, without loss of generality, we may assume DDD(sss) to be diagonal.

Now for the claim from the proposition. Let DDD(sss) be a positive-definite and diagonal
matrix for all sss ∈ S. Recall that DDD(sss) depends continuously on sss. Hence, the eigenvalues
λi(sss) of DDD(sss) are also continuous in sss for i = 1, . . . ,n. From the positive definiteness of DDD(sss)
and the compactness of S we conclude that all eigenvalues λi(sss) are contained in a compact
subset of R>0. Thus, there exist positive constants k1,k2 ∈ R>0 with k1 ≤ λi(sss)≤ k2 for all
sss ∈ S and i = 1, . . . ,n. Such constants then fulfill (C.11) as

k1xxx>IIIxxx≤ xxx>DDD(sss)xxx≤ k2xxx>IIIxxx, ∀sss ∈ S,∀xxx ∈ Rn. (C.15)
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C.4 Automated Design of a Feedback
Controller

Subsection 4.2.2 aims at the design of observers. The resulting methods, however, can also
be used for the design of controllers. In the following proposition, we use Lemma 4.17 for
the automated design of an asymptotically stabilizing feedback controller for nonlinear PHSs
without feedthrough:

Proposition C.6 (Automated design of a feedback controller)
Consider the nonlinear PHS without feedthrough from Definition 2.24:

ẋxx = (JJJ(xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+GGG(xxx)uuu, (C.16a)

yyy = GGG> (xxx)
∂H
∂xxx

(xxx). (C.16b)

Suppose a feedback controller of the form

uuu =−KKK (xxx)
∂H
∂xxx

(xxx) . (C.17)

The condition
RRR(xxx)+GGG(xxx)KKK (xxx)� 0, ∀xxx ∈ X, (C.18)

is a sufficient condition for xxx ≡ 000 being an asymptotically stable equilibrium of the
closed-loop system. Moreover, (C.18) can be fulfilled if and only if it is fulfilled for
KKK (xxx) = GGG>(xxx), that is the output feedback:

uuu =−GGG>(xxx)
∂H
∂xxx

(xxx) =−yyy. (C.19)

Proof:
Inserting (C.17) into (C.16a) gives the closed-loop dynamics:

ẋxx = (JJJ (xxx)−RRR(xxx)−GGG(xxx)KKK (xxx))
∂H
∂xxx

(xxx) . (C.20)

As H (xxx) is bounded from below, we always find a constant c ∈ R≥0 such that H̃ (xxx) =
H (xxx)+ c is a positive definite function. Let us apply H̃ (xxx) as Lyapunov function candidate
to analyze the stability of the equilibrium xxx≡ 000. The derivative of H̃ (xxx) with respect to time
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reads:

˙̃H (xxx) =
(

∂ H̃
∂xxx

(xxx)
)>

ẋxx =
(

∂H
∂xxx

(xxx)
)>

ẋxx

(C.20)
=

(
∂H
∂xxx

(xxx)
)>

(JJJ (xxx)−RRR(xxx)−GGG(xxx)KKK (xxx))
∂H
∂xxx

(xxx)

=−
(

∂H
∂xxx

(xxx)
)>

(RRR(xxx)+GGG(xxx)KKK (xxx))
∂H
∂xxx

(xxx) . (C.21)

Let (C.18) hold. Then, we have ˙̃H < 0 for all xxx 6= 000 and ˙̃H = 0 for xxx = 000. Hence, (C.18)
is a sufficient condition for xxx ≡ 000 being asymptotically stable. The rest follows from
Lemma 4.17.
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Appendices for Chapter 5

D.1 Design of a WLS Estimator for Section 5.2

Section 5.2 addresses the observation of the IEEE 33 Bus System. We compare the perfor-
mance of an observer generated with AMOTO with the performance of a WLS estimator.
Here, it is illustated that this WLS estimator can also be generated with AMOTO.

Initially, we revise the bond graph model of the IEEE 33 Bus System from Section 5.2
under the assumption that the system is in quasi-steady state. From the resulting static bond
graph model a static PHS is generated by using AMOTO. Moreover, we apply AMOTO
to calculate a measurement equation for the static model. Based on the static PHS and the
measurement equation we then derive a WLS estimator.

D.1.1 Static Bond Graph Model

In the bond graph model from Section 5.2, the elements i ∈ VI, i ∈ VB, and j ∈ BB are
already described with static submodels. Hence, it suffices to reconsider the submodel of the
lines j ∈ BI.

Let the system be in quasi-steady state. For the lines j ∈ BI, the π-equivalent circuit from
Figure 5.4 then translates into the circuit in Figure D.1. The impedances from Figure D.1
can be collected in an impedence matrix:

ZZZ j =

Z j,A,A Z j,A,B Z j,A,C

Z j,A,B Z j,B,B Z j,B,C

Z j,A,C Z j,B,C Z j,C,C

 , j ∈ BI. (D.1)

The impedance matrix for the line j ∈ BI is calculated from the resistance and inductance
matrices from (5.1):

ZZZ j =

R j,A 0 0
0 R j,B 0
0 0 R j,C

+ i2π f

L j,A,A L j,A,B L j,A,C

L j,A,B L j,B,B L j,B,C

L j,A,C L j,B,C L j,C,C

 , (D.2)
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ZA,A, j

ZB,B, j

ZC,C, j

ZA,B, j

ZB,C, j

ZA,C, j

+

+

+

+

+

+

− − − −−−

Figure D.1: Quasi-steady state π-section equivalent circuit of a three-phase distribution line

where i is the imaginary unit and f = 50Hz is the system frequency.
A bond graph representation of Figure D.1 is shown in Figure D.2. As can be seen, from

a bond graph point of view the impedance ZZZ j is a resistive element. Hence, the line model
from Figure D.2 is static. Therewith, all subsystem models are static and we have a static
bond graph modeling approach for distribution systems. For the IEEE 33 Bus System, a
static bond graph model is given by Figure 5.6 by replacing each line model L j with the
bond graph from Figure D.2 ( j ∈ BI).

R: ZZZ j

1 I j,2I j,1

Figure D.2: Bond graph representation of the π-section model from Figure D.1

D.1.2 Automated Model Generation

The static bond graph model of the IEEE 33 Bus System is entered into AMOTO and the
automated model generation is executed. AMOTO calculates a static port-Hamiltonian
model consisting only of an output equation:

yyy = SSSuuu, (D.3)

where uuu,yyy ∈ C99 and SSS ∈ C99×99 with SSS = SSS>. As for the dynamic model (5.2), the input
vector and the output vector from (D.3) contain the bus voltages and currents, respectively.
However, in the static model these quantities are not in the time-domain but in the phasor
domain. The matrix SSS reflects the system topology. Moreover, we can identify the inverses
of the impedance matrices (D.1) in the non-zero matrix blocks of SSS.
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D.1.3 Estimator Design

For the estimator design, we assume the same measured variables as for the observer design
in Section 5.2. The measured variables are collected in a vector mmm ∈ C99. With AMOTO we
calculate a measurement equation which relates the measurements to the inputs and outputs
of (D.3):

mmm =CCCuuuu+CCCyyyy, (D.4)

where CCCu,CCCy ∈ {−1,0,1}99×99. Inserting the static model (D.3) into (D.4) yields

mmm = (CCCu +CCCySSS)︸ ︷︷ ︸
=CCC

uuu (D.5)

The matrix CCC ∈ C99×99 is quadratic and of full rank. Hence, a static input-output estimator
for the IEEE 33 Bus System can be easily calculated to

ûuu =CCC−1mmm, (D.6)

ŷyy = SSSûuu, (D.7)

where ûuu ∈ C99 and ŷyy ∈ C99 are reconstructions of uuu and yyy, respectively.

Remark D.1 (WLS estimator). In general, the matrix CCC is a rectangular matrix with
more rows than columns. Hence, from (D.5) we in general obtain

ûuu =
(

CCC>CCC
)−1

CCC>mmm. (D.8)

This is the well known WLS estimator from the power systems literature under unit
covariance.

D.2 Definition of the Relative Error Signal Power

In Subsection 5.2.7, we use the relative error signal power (RESP) as a measure for similarity
of a signal to a benchmark signal. In this section, the RESP is formally introduced.

Consider a benchmark time-signal sbm : [0,T ]→ R, t 7→ sbm(t). The mean power of the
signal sbm(t) is

pbm =
1
T

∫ T

0
s2

bm(t)dt. (D.9)

Furthermore, consider a second signal sap(t) : [0,T ]→ R, t 7→ sap(t) which represents an
approximation of the signal sbm(t). This approximation may stem, e.g., from a model or
an observer. We define the error signal as ε(t) := sbm(t)− sap(t). The (mean) error signal
power is defined as

pε :=
1
T

∫ T

0
ε(t)2dt =

1
T

∫ T

0

(
sbm(t)− sap(t)

)2 dt. (D.10)

The RESP is defined as the quotient of (D.9) and (D.10):

rε :=
pε

pbm
. (D.11)
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D.3 Numeric Data for the Simulation Results
from Section 5.2

This section provides the numeric data from the simulation results in Subsection 5.2.7.
Table D.1 and Table D.2 display the numeric values for the RESP of the bus currents

for the model (5.2) and the observer (5.4), respectively. For the model and the observer, the
data underlying Figure 5.7 are given in the last column of the respective table. Likewise,
Table D.3 and Table D.4 show the RESP values of the bus voltages for the observer (5.4) and
the WLS estimator (D.8), respectively.
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Table D.1: RESP of the bus currents computed from the model (5.2) in %

Bus no. Phase A Phase B Phase C Mean
1 0.1587 0.1587 0.1587 0.1587
2 0.1644 0.1587 0.1591 0.1607
3 0.1641 0.1632 0.1579 0.1617
4 0.1567 0.1564 0.1605 0.1579
5 0.1827 0.1779 0.1720 0.1776
6 0.1178 0.1739 0.1949 0.1622
7 0.1625 0.1588 0.1462 0.1558
8 0.1595 0.1640 0.1661 0.1632
9 0.1512 0.1489 0.1605 0.1535
10 0.2112 0.1867 0.1776 0.1918
11 0.3662 0.1441 0.2361 0.2488
12 0.1354 0.1763 0.1451 0.1523
13 0.1615 0.1643 0.1814 0.1690
14 0.1519 0.1615 0.1588 0.1574
15 0.1700 0.1640 0.1180 0.1506
16 0.1696 0.1443 0.2321 0.1820
17 0.1461 0.1597 0.1448 0.1502
18 0.1649 0.1616 0.1615 0.1627
19 0.1575 0.1587 0.1590 0.1584
20 0.1587 0.1590 0.1587 0.1588
21 0.1583 0.1583 0.1583 0.1583
22 0.1584 0.1583 0.1583 0.1583
23 0.1575 0.1591 0.1613 0.1593
24 0.1583 0.1583 0.1582 0.1583
25 0.1587 0.1586 0.1586 0.1586
26 0.1698 0.1975 0.1451 0.1708
27 0.1837 0.1428 0.1768 0.1678
28 0.1478 0.1544 0.1603 0.1542
29 0.1605 0.1617 0.1553 0.1592
30 0.1583 0.1561 0.1577 0.1574
31 0.1601 0.1621 0.1599 0.1607
32 0.1545 0.1537 0.1580 0.1554
33 0.1674 0.1681 0.1571 0.1642

Mean 0.1668 0.1615 0.1641 0.1641
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Table D.2: RESP of the bus currents computed from the observer (5.4) in %

Bus no. Phase A Phase B Phase C Mean
1 0.0004 0.0004 0.0005 0.0004
2 0.0134 0.0107 0.0155 0.0132
3 0.0047 0.0058 0.0040 0.0048
4 0.0129 0.0162 0.0162 0.0151
5 0.0232 0.0229 0.0246 0.0236
6 0.0034 0.0101 0.0120 0.0085
7 0.0028 0.0025 0.0030 0.0028
8 0.0006 0.0007 0.0006 0.0006
9 0.0003 0.0003 0.0003 0.0003
10 0.0116 0.0114 0.0114 0.0114
11 0.0159 0.0161 0.0160 0.0160
12 0.0003 0.0004 0.0002 0.0003
13 0.0004 0.0001 0.0003 0.0003
14 0.0023 0.0023 0.0023 0.0023
15 0.0066 0.0076 0.0067 0.0070
16 0.0038 0.0047 0.0038 0.0041
17 0.0003 0.0004 0.0003 0.0004
18 0.0001 0.0001 0.0001 0.0001
19 0.0019 0.0019 0.0017 0.0018
20 0.0047 0.0047 0.0043 0.0046
21 0.0057 0.0077 0.0069 0.0068
22 0.0011 0.0010 0.0011 0.0010
23 0.0107 0.0115 0.0115 0.0112
24 0.0023 0.0025 0.0020 0.0023
25 0.0009 0.0006 0.0009 0.0008
26 0.0104 0.0043 0.0055 0.0067
27 0.0071 0.0101 0.0108 0.0093
28 0.0272 0.0243 0.0200 0.0239
29 0.0082 0.0079 0.0083 0.0081
30 0.0001 0.0003 0.0004 0.0003
31 0.0012 0.0013 0.0020 0.0015
32 0.0027 0.0027 0.0022 0.0025
33 0.0011 0.0011 0.0011 0.0011

Mean 0.0057 0.0059 0.0060 0.0059
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Table D.3: RESP of the bus voltages computed from the observer (5.4) in %

Bus no. Phase A Phase B Phase C Mean
1 0.0004 0.0004 0.0004 0.0004
2 0.0000 0.0000 0.0000 0.0000
3 0.0004 0.0004 0.0004 0.0004
4 0.0006 0.0006 0.0005 0.0006
5 0.0007 0.0008 0.0006 0.0007
6 0.0014 0.0014 0.0011 0.0013
7 0.0016 0.0017 0.0014 0.0016
8 0.0017 0.0018 0.0015 0.0017
9 0.0019 0.0020 0.0017 0.0019
10 0.0021 0.0023 0.0019 0.0021
11 0.0021 0.0023 0.0019 0.0021
12 0.0021 0.0023 0.0019 0.0021
13 0.0024 0.0026 0.0022 0.0024
14 0.0025 0.0028 0.0023 0.0025
15 0.0025 0.0029 0.0024 0.0026
16 0.0026 0.0030 0.0024 0.0026
17 0.0027 0.0032 0.0025 0.0028
18 0.0027 0.0032 0.0025 0.0028
19 0.0000 0.0000 0.0000 0.0000
20 0.0001 0.0001 0.0001 0.0001
21 0.0002 0.0002 0.0001 0.0001
22 0.0002 0.0002 0.0001 0.0002
23 0.0004 0.0005 0.0005 0.0005
24 0.0005 0.0008 0.0008 0.0007
25 0.0005 0.0010 0.0009 0.0008
26 0.0015 0.0014 0.0012 0.0013
27 0.0015 0.0015 0.0012 0.0014
28 0.0020 0.0017 0.0015 0.0017
29 0.0024 0.0019 0.0017 0.0020
30 0.0026 0.0019 0.0017 0.0021
31 0.0027 0.0020 0.0020 0.0022
32 0.0027 0.0020 0.0020 0.0023
33 0.0027 0.0020 0.0020 0.0023

Mean 0.0015 0.0015 0.0013 0.0015
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Table D.4: RESP of the bus voltages computed from the WLS estimator (D.8) in %

Bus no. Phase A Phase B Phase C Mean
1 4.9917 4.9873 4.9897 4.9896
2 4.9997 4.9956 4.9957 4.9970
3 5.0374 5.0351 5.0249 5.0325
4 5.0555 5.0554 5.0416 5.0508
5 5.0734 5.0755 5.0581 5.0690
6 5.1040 5.1130 5.0824 5.0998
7 5.1020 5.1090 5.0769 5.0960
8 5.1173 5.1256 5.0929 5.1119
9 5.1313 5.1407 5.1065 5.1262
10 5.1450 5.1553 5.1201 5.1401
11 5.1481 5.1586 5.1233 5.1433
12 5.1536 5.1644 5.1291 5.1490
13 5.1681 5.1786 5.1437 5.1635
14 5.1710 5.1806 5.1465 5.1660
15 5.1732 5.1819 5.1487 5.1679
16 5.1765 5.1843 5.1521 5.1710
17 5.1797 5.1834 5.1555 5.1729
18 5.1810 5.1848 5.1567 5.1742
19 5.0005 4.9963 4.9967 4.9978
20 5.0061 5.0019 5.0042 5.0041
21 5.0068 5.0025 5.0056 5.0050
22 5.0082 5.0021 5.0067 5.0057
23 5.0461 5.0433 5.0318 5.0404
24 5.0617 5.0570 5.0426 5.0538
25 5.0705 5.0616 5.0505 5.0609
26 5.1083 5.1178 5.0871 5.1044
27 5.1140 5.1241 5.0933 5.1105
28 5.1295 5.1448 5.1110 5.1284
29 5.1407 5.1595 5.1250 5.1417
30 5.1488 5.1680 5.1339 5.1502
31 5.1552 5.1783 5.1401 5.1579
32 5.1570 5.1804 5.1405 5.1593
33 5.1574 5.1808 5.1409 5.1597

Mean 5.1036 5.1099 5.0865 5.1000
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D.4 Numeric System Parameters for the
Simulation in Section 5.3

In Section 5.3, we consider a large-scale nonlinear interconnected system depending on some
symmetric, positive-definite (4×4) matrices DDD1, j, DDD2, j, QQQ1, j, and QQQ1, j ( j∈Vs = {1, . . . ,15}).
For the simulation of the system, we have to specify these matrices numerically. To this
end, the matrices DDD1, j, DDD2, j, QQQ1, j, and QQQ1, j were chosen as diagonal matrices. The diagonal
entries were specified by random numbers between 0.1 and 10. The obtained matrices are as
follows:

DDD1,1 = diag(7.58,6.22,2.18,6.67) DDD2,1 = diag(6.84,2.99,5.66,9.08) (D.12)

DDD1,2 = diag(6.10,7.05,5.50,4.40) DDD2,2 = diag(4.53,5.16,8.50,6.57) (D.13)

DDD1,3 = diag(6.23,3.57,5.72,3.58) DDD2,3 = diag(9.75,5.64,5.86,8.54) (D.14)

DDD1,4 = diag(2.41,3.34,7.82,1.85) DDD2,4 = diag(8.52,0.27,2.65,8.52) (D.15)

DDD1,5 = diag(8.02,7.25,0.71,5.62) DDD2,5 = diag(5.72,7.34,3.65,4.90) (D.16)

DDD1,6 = diag(8.26,6.99,5.52,8.56) DDD2,6 = diag(9.09,3.63,2.50,8.78) (D.17)

DDD1,7 = diag(6.40,5.70,0.36,4.75) DDD2,7 = diag(5.26,2.50,8.01,7.72) (D.18)

DDD1,8 = diag(0.76,1.56,0.35,1.96) DDD2,8 = diag(4.79,3.38,5.10,2.16) (D.19)

DDD1,9 = diag(1.89,1.73,4.63,2.89) DDD2,9 = diag(6.96,7.57,5.87,7.87) (D.20)

DDD1,10 = diag(3.04,6.66,6.26,2.69) DDD2,10 = diag(3.36,9.62,8.63,9.07) (D.21)

DDD1,11 = diag(7.77,9.32,3.21,2.90) DDD2,11 = diag(3.95,9.37,0.80,9.63) (D.22)

DDD1,12 = diag(0.44,5.33,9.04,9.08) DDD2,12 = diag(9.23,3.41,2.91,5.36) (D.23)

DDD1,13 = diag(1.44,2.76,6.12,3.21) DDD2,13 = diag(8.71,6.02,5.85,5.27) (D.24)

DDD1,14 = diag(6.38,9.15,8.65,2.26) DDD2,14 = diag(2.70,2.86,4.49,4.29) (D.25)

DDD1,15 = diag(8.66,7.43,8.19,7.80) DDD2,15 = diag(1.10,3.83,0.30,7.96) (D.26)
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QQQ1,1 = diag(8.40,9.47,1.29,4.71) QQQ2,1 = diag(6.03,4.90,8.19,0.48) (D.27)

QQQ1,2 = diag(4.56,8.81,4.65,3.66) QQQ2,2 = diag(7.51,2.04,2.90,7.59) (D.28)

QQQ1,3 = diag(5.09,8.76,2.71,1.96) QQQ2,3 = diag(7.41,6.37,4.99,2.71) (D.29)

QQQ1,4 = diag(5.12,6.05,0.77,8.14) QQQ2,4 = diag(8.27,7.79,7.36,0.17) (D.30)

QQQ1,5 = diag(5.58,8.58,3.80,3.32) QQQ2,5 = diag(2.11,8.80,9.62,2.54) (D.31)

QQQ1,6 = diag(1.32,9.49,5.95,5.71) QQQ2,6 = diag(7.11,1.95,5.09,8.45) (D.32)

QQQ1,7 = diag(1.57,6.96,6.55,3.16) QQQ2,7 = diag(3.16,6.88,5.65,0.67) (D.33)

QQQ1,8 = diag(4.61,7.88,0.98,5.70) QQQ2,8 = diag(2.88,8.12,0.96,0.49) (D.34)

QQQ1,9 = diag(6.74,5.13,8.26,8.24) QQQ2,9 = diag(7.34,2.84,3.05,8.56) (D.35)

QQQ1,10 = diag(7.00,9.44,5.36,9.15) QQQ2,10 = diag(4.83,0.24,8.11,6.61) (D.36)

QQQ1,11 = diag(9.58,7.78,5.43,7.21) QQQ2,11 = diag(1.40,1.80,0.45,4.35) (D.37)

QQQ1,12 = diag(3.07,4.88,2.45,0.32) QQQ2,12 = diag(0.97,1.61,6.02,5.80) (D.38)

QQQ1,13 = diag(8.85,6.92,5.37,1.14) QQQ2,13 = diag(5.18,9.53,0.91,9.05) (D.39)

QQQ1,14 = diag(1.13,6.20,2.94,4.21) QQQ2,14 = diag(1.48,3.29,4.65,9.90) (D.40)

QQQ1,15 = diag(3.11,6.26,5.56,1.13) QQQ2,15 = diag(8.03,8.87,8.83,1.09) (D.41)

D.5 Numeric Data for the Simulation Results
from Section 5.3

In Section 5.3, we use the time tδ ,i as a measure for the convergence of a reconstruction
towards the variable to reconstruct. Table D.5 depicts the values of tδ ,i with δ = 0.01
for the reconstructions obtained from the centralized observer (5.12) and the distributed
observer (5.14) for the 120 states of the system (5.7).
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Table D.5: Time t0.01,i for the centralized observer (5.12) and the distributed observer (5.14)

State i (5.12): t0.01,i in s (5.14): t0.01,i in s State i (5.12): t0.01,i in s (5.14): t0.01,i in s
1 0.34 0.46 61 0.35 0.34
2 0.41 0.46 62 0.15 0.17
3 0.35 0.46 63 0.89 0.95
4 0.40 0.46 64 3.25 4.34
5 0.11 0.11 65 0.48 0.46
6 0.29 0.32 66 0.43 0.46
7 0.08 0.10 67 0.40 0.46
8 1.19 1.07 68 0.37 0.46
9 0.63 0.46 69 0.10 0.09
10 0.58 0.46 70 0.20 0.22
11 0.70 0.46 71 0.21 0.26
12 0.75 0.46 72 0.07 0.07
13 0.31 0.14 73 0.58 0.46
14 0.55 0.44 74 0.37 0.46
15 0.32 0.19 75 1.26 0.46
16 0.23 0.10 76 0.50 0.46
17 0.53 0.46 77 0.42 0.28
18 0.14 0.46 78 1.63 1.98
19 0.48 0.46 79 0.25 0.07
20 0.37 0.46 80 0.11 0.08
21 0.07 0.06 81 0.30 0.46
22 0.05 0.13 82 0.80 0.46
23 0.13 0.16 83 0.28 0.46
24 0.15 0.20 84 0.50 0.46
25 0.53 0.46 85 0.68 0.83
26 0.14 0.46 86 0.59 0.27
27 0.48 0.46 87 3.41 12.82
28 0.37 0.46 88 0.15 0.11
29 0.07 0.07 89 0.50 0.46
30 0.58 2.21 90 0.25 0.46
31 0.22 0.24 91 0.90 0.46
32 2.85 3.17 92 0.48 0.46
33 0.53 0.46 93 0.55 0.51
34 0.14 0.46 94 0.72 0.84
35 0.48 0.46 95 0.54 0.26
36 0.37 0.46 96 0.18 0.15
37 0.46 0.39 97 0.60 0.46
38 0.03 0.07 98 0.64 0.46
39 0.10 0.13 99 0.32 0.46
40 0.29 0.37 100 0.48 0.46
41 0.48 0.46 101 0.23 0.10
42 0.43 0.46 102 0.18 0.08
43 0.40 0.46 103 1.55 0.87
44 0.37 0.46 104 0.12 0.10
45 0.07 0.07 105 0.23 0.46
46 0.61 0.65 106 0.51 0.46
47 0.30 0.36 107 1.10 0.46
48 0.06 0.06 108 0.46 0.46
49 0.28 0.46 109 0.70 1.15
50 0.42 0.46 110 0.54 0.49
51 0.44 0.46 111 0.60 0.22
52 0.41 0.46 112 0.12 0.11
53 0.15 0.28 113 0.36 0.46
54 0.26 0.27 114 0.67 0.46
55 0.10 0.10 115 0.07 0.46
56 0.98 0.89 116 0.30 0.46
57 0.48 0.46 117 0.41 0.52
58 0.43 0.46 118 0.30 0.14
59 0.40 0.46 119 0.47 1.74
60 0.37 0.46 120 0.39 0.54
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D.6 Noise Study for the Observers from
Section 5.3

At the end of Section 5.3, it was commented on the behavior of the centralized observer (5.12)
and the distributed observer (5.14) in the presence of measurement noise. The section at hand
provides the simulation details that build the basis for the comments from Section 5.3.

To analyze the behavior of the observers under measurement noise, the measurement
equations (5.11) and (5.13) are extended by Gaussian random processes. The extended
measurement equations for the centralized observer (5.12) and the distributed observer (5.14)
read

mmm =CCC QQQ xxx + εεε , (D.42a)

mmm j =CCC jQQQ jxxx j + εεε j, ∀ j ∈ Vs, (D.42b)

respectively. In (D.42), εεε and εεε j are vector-valued Gaussian random processes with zero
mean and covariance matrices σ III60 and σ III4, respectively, where σ ∈ R≥0. The simulations
of the centralized observer (5.12) and the distributed observer (5.14) are then rerun on the basis
of the noisy measurements (D.42). Thereby, the noise variance is set to σ2 = 10−4 which
leads to a mean SNR over all measurement signals of 51.8 dB. To ensure comparability, the
same realization of the noise process is applied to the centralized and distributed observer.
The results of the simulations under noise are presented in the sequel.

The bar diagram in Figure D.3 depicts the number of states with tδ ,i ≤ 10s for different
values of the tolerance δ . The red and brown bars correspond the centralized and the
distributed observer, respectively.
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te
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s Centralized observer (5.12)
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Figure D.3: Number of observer states with tδ ,i ≤ 10s for different values of δ for the centralized
observer (5.12) and the distributed observer (5.14) in the presence of measurement noise
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For the centralized observer, there are no states with tδ ,i ≤ 10s if δ ≤ 10−3. For δ = 10−2

and δ = 10−1, we have 24 and 108 states with tδ ,i ≤ 10s, respectively. Only for δ = 100, all
states achieve a tδ ,i ≤ 10s. For the distributed observer, there are 59 states with tδ ,i ≤ 10s
for δ ∈ [10−4,10−3]. For δ = 10−2, 119 states have a time tδ ,i ≤ 10s;1 for δ ≥ 10−1 all 120
states have a tδ ,i ≤ 10s.

Figure D.3 reveals the centralized observer to be negatively influenced by the measure-
ment noise. Thereby, the noise deteriorates the convergence behavior of all reconstructions.
In the noise-free case, each of the 120 states has a tδ ,i ≤ 10s for δ = 10−2 (cf. Figure 5.14).
In contrast, under noisy measurements this number reduces to 24 states. On the other hand,
the figure shows that for t ≥ 10s all reconstructions remain in a tolerance band of width
δ = 100 around the values of the true states.

For the distributed observer, the situation is different. Half of all reconstructions remain
unaffected by the measurement noise. The explanation of this can be found in the subsystem
observer dynamics (5.14a) and the structure of the matrices RRR j in (5.10a). The error injection,
and therewith the noise, acts on the first four elements of the state vector of each subsystem
state. The corresponding reconstructions converge to and remain in a tolerance band of
width δ = 10−1 around the value to be observed. In contrast, the last four elements of the
observer state converge due to a natural damping contained in the matrix RRR j. Thereby, the
matrix RRR j is a 4×4 block diagonal matrix. Hence, there is no coupling from the first four to
the second four observer states (and vice versa) and the latter remain unaffected by the noise.

In conclusion, the above results show that those observer states converging only due to
the natural damping of the system remain unaffected by the measurement noise. In contrast,
in observer states influenced by the error injection the property of asymptotic convergence
reduces to the convergence into a tolerance band around the value to be observed. The width
δ of this tolerance band depends on the noise level.

1Note that in the absence of noise there is also one state in the distributed observer which has a
tδ ,i > 10s for δ = 10−2, see Figure 5.14.





Abbreviations

AMOTO automatic model generation and observer design tool
DAE differential-algebraic equation
GUI graphical user interface
IDA-PBC interconnection and damping assignment passivity-based control
LMI linear matrix inequality
ODE ordinary differential equation
PDE partial differential equation
PHS port-Hamiltonian system
PSDSE power system dynamic state estimation
RESP relative error signal power
SNR signal-to-noise ratio
WLS weighted least squares
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