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Abstract: Mathematical models of the human heart are evolving to become a cornerstone of pre-
cision medicine and support clinical decision making by providing a powerful tool to understand
the mechanisms underlying pathophysiological conditions. In this study, we present a detailed
mathematical description of a fully coupled multi-scale model of the human heart, including elec-
trophysiology, mechanics, and a closed-loop model of circulation. State-of-the-art models based
on human physiology are used to describe membrane kinetics, excitation-contraction coupling and
active tension generation in the atria and the ventricles. Furthermore, we highlight ways to adapt
this framework to patient specific measurements to build digital twins. The validity of the model
is demonstrated through simulations on a personalized whole heart geometry based on magnetic
resonance imaging data of a healthy volunteer. Additionally, the fully coupled model was employed
to evaluate the effects of a typical atrial ablation scar on the cardiovascular system. With this work,
we provide an adaptable multi-scale model that allows a comprehensive personalization from ion
channels to the organ level enabling digital twin modeling.

Keywords: computational modeling; whole heart; electro-mechanic coupling; multi-physics; closed-
loop circulation

1. Introduction

Cardiovascular diseases are the biggest contributors to the mortality and morbidity in
the European Union, affecting millions of people every year [1]. While diagnostic tools and
therapeutic options continuously improve and more data become available to researchers,
the treatment of diseases, such as ischemic heart disease or atrial fibrillation remains dif-
ficult due to the highly complex nature of the human heart and cardiovascular system.
Evidently, the complex mechanisms underlying these pathophysiological conditions are
notoriously difficult to evaluate in the clinical environment due to ethical and technical
limitations. Computational models of the human heart have the ability to avoid these
limitations and provide a valuable tool for clinical research and practice [2]. Already today,
these models can improve diagnosis [3], risk stratification [4], therapy planning [5,6], and
intraprocedural support [7]. Furthermore, the vision of providing therapies customized
to each individual patient heavily relies on mechanistic models to build a digital twin
based on our knowledge of physiology and the fundamental laws of physics on the one
hand and measured characteristics of the individual patient on the other hand [8]. An
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essential component of such a mechanistic model is the representation of the cardiac elec-
trophysiology (EP) to reproduce the depolarization and repolarization sequence with a
reaction-diffusion model. On the microscopic or cellular level, the reaction part was first
described by Hodgkin and Huxley [9], while the diffusion on the macroscopic level can
be modeled as described in [10]. Another essential component of the mechanistic model
is cardiac mechanics (M) to describe the deformation, and the interplay between these
systems described by myofilament models to drive the contraction and relaxation of the
myocardium. The latter depends on the loading conditions imposed by the circulatory
system, which is most accurately described by a fluid-structure interaction (FSI) problem,
and the tissue that is surrounding the heart. Due to the complexity of this multi-physics
problem, only a few cardiac simulation frameworks have been proposed that solve the
complete EP-M-FSI system [11–14]. The most common way is to replace the FSI part by
lumped parameter models of the circulatory system. More specifically, most simulations of
the coupled EP-M problem focus on (bi-)ventricular models of a single heart beat and there-
fore only require isolated ventricular pre- and afterload models such as a 3- or 4-element
Windkessel. To observe changes in cardiac function over multiple heartbeats, closed-loop
models [15–18] are necessary and need to be coupled to the mechanical system [19–25].
EP-M models of the whole heart have been present for a few years now and have made
impressive progress (e.g., [26–30]). However, only a few included the active contraction
of the atria [31–33]. Land et al. [34] developed a model of active contraction for the atria
based on human tissue preparations. This model can now be incorporated into coupled
tissue level simulations, as was previously done for the ventricles [35,36].

Another aspect of such a complex model is the parameterization of all its compo-
nents. With personalized heart models in mind, this is ideally done using patient-specific
measurements. However, the majority of parameters can only be measured by invasive
procedures, estimated indirectly, or not at all due technical limitations. Hence, efficient
workflows are necessary to gain as much information as possible and incorporate them
into digital twin models. Anatomically accurate heart models based on imaging data are
created using (semi-)automatic workflows [37–39]. To make these heart models compa-
rable to each other, universal coordinate systems have been proposed for the atria [40]
and the ventricles [41,42]. Furthermore, we can build on already existing pipelines for
the personalization of passive mechanical behavior of the heart [43,44], ventricular after-
load models [45], and cardiac electrophysiology based on electrocardiograms [46–49] or
electroanatomical mapping [50,51].

In this study, we present a detailed mathematical description of a fully coupled
multi-scale model of the human heart building on previous work in cardiac mechan-
ics [25,31,43,52–55] and cardiac electrophysiology [49,56–60]. We parameterize and use
state-of-the-art myofilament models based on human physiology to describe membrane
kinetics, excitation-contraction coupling and active tension generation in the atria and the
ventricles. To solve the coupled EP-M problem, we apply a staggered scheme in time where
the monodomain equation and the deformation are solved sequentially. Additionally,
the proposed electro-mechanical whole-heart model is coupled to a novel 0D closed-loop
model of the cardiovascular system. Here, we use a quasi Newton method to update
the pressure values in all four chambers and reach convergence in fewer iterations com-
pared to standard Newton methods. Furthermore, we briefly touch on the possibilities
of such models to be tailored to patient-specific measurements and demonstrate their
capabilities by simulating the complete heart cycle using an anatomical model of the heart
of a healthy volunteer. Subsequently, the simulation data are evaluated and compared
to magnetic resonance imaging (MRI) data with a focus on left ventricular function and
atrio-ventricular plane displacement (AVPD). Finally, a typical radio-frequency ablation
(RFA) scar is introduced into the left atrium and simulation results are compared to the
healthy reference case. Hence, we demonstrate not only the possibility to adapt the model
to pathological scenarios but the capability of the whole-heart model to respond to local
changes in loading conditions.
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2. Methods
2.1. Four-Chamber Heart Model

The geometric model used in this study is based on magnetic resonance imaging (MRI)
data of a 32-year-old healthy volunteer provided by Heidelberg University Hospital. The
data were acquired using a 1.5 T MR tomography system (Philips Medical Systems) and
consist of a static whole heart image at diastasis, as well as time resolved MRI in 2-, 3-,
and 4-chamber long axis view and 12 time resolved short axis slices with a 10 mm spacing.
Endocardial and epicardial boundaries of the myocardial wall were segmented and labeled
manually from the static whole heart image to create the atrial (ΩA) and ventricular (ΩV)
domains. As in Fritz et al. [31], the heart is surrounded by a pericardial layer (ΩPericardium)
representing the surrounding tissue in which the heart is embedded. Additionally, the
tetrahedral mesh was extended by volumetric representations of the inferior and superior
vena cava, the pulmonary veins, pulmonary artery, ascending aorta (further summarized in
ΩMajorVessels), the mitral and tricuspidal valve (ΩValves), and adipose tissue (ΩAdiposeTissue)
around the base of the heart. Previously, the openings of the pulmonary veins and the
venae cavae were fixed directly, which constrained atrial motion. This limitation was
ameliorated by instead fixing the terminal ends of the major arteries and veins to allow
for a free contraction of the atria [61]. Adipose tissue was added to the free space between
the epicardial surface and the pericardium to obtain a continuous contact surface [32].
Two different discretizations are used: (1) the mechanical reference domain ΩM = ΩV ∪
ΩA ∪ΩValves ∪ΩAdiposeTissue ∪ΩMajorVessels ∪ΩPericardium, as shown in Figure 1b; (2) the
electrophysiological reference domain ΩEP = ΩV ∪ΩA as a subset of ΩM.

(a) (b)
Figure 1. (a) triangulated surfaces used for the boundary conditions: ΓN = ΓLV ∪ ΓRV ∪ ΓLA ∪ ΓRA for the pressure in the
left and right ventricle and atrium; ΓD for the dirichlet boundary; ΓP for the pericardium. (b) clipped reference domain ΩM

of the patient specific heart.
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2.2. Cardiac Elasto-Mechanics

We consider the bounded reference domain ΩM ⊂ R3 for the human heart, which
is deformed at time t ∈ [0, T] into the current configuration Ωϕ

M = ϕ(t, ΩM) by the
deformation vector

ϕ: [0, T]×ΩM −→ R3 , ϕ(t, x) = x + u(t, x) ,

where u : [0, T]×ΩM −→ R3 is the displacement at a given position x ∈ ΩM over time. The
deformation on the continuum body ΩM is characterized by the axioms of conservation
of mass, linear momentum and angular momentum. Following ([62], Chapter 3), the
displacement u is determined by the solution of the Navier–Cauchy equations for t ∈ (0, T)

$0aϕ− divϕTϕ = fϕ in Ωϕ
M , (1a)

Tϕnϕ = gϕ on Γϕ
N , (1b)

with reference density $0, acceleration aϕ and the Cauchy stress Tϕ. The vector-valued
function gϕ represents applied boundary forces on all Neumann boundaries Γϕ

N. The
PDE (1) describes the deformation on the unknown domain Ωϕ

M. We therefore pull back the
displacement onto the reference domain using the techniques provided in [62,63]: Denoting
the Fréchet derivative in space by D , we introduce the deformation gradient

F := Dϕ: [0, T]×ΩM −→ R3×3 , F(t, x) = I + D u(t, x) ,

and define the symmetric second Piola–Kirchhoff stress tensor

S(x, F) := det(F)F−1TϕF−> ,

to obtain the following equations in the reference configuration for t ∈ (0, T)

$0∂2
t u− div(F S) = f in ΩM ,

F Sn = g on ΓN .

The passive material properties of the cardiac tissue are described as follows: we
assume that the material is hyperelastic, i.e., a stored energy function W = W(F) exists,
such that the stress response is given by

S(F) = F−1 D W(F)
D F

.

As a consequence of objectivity, the material is frame-indifferent, i.e., there exist
representations W̃ = W̃(C) and Ŵ = Ŵ(E), such that

W(F) = W̃(C) = Ŵ(E) , F−1 D W(F)
D F

= 2
D W̃(C)

D C
=

D Ŵ(E)
D E

, C =F>F , E =
1
2
(F>F− I) .

The model is complemented by additional boundary conditions (Figure 1a), namely
a Dirichlet boundary on ΓD on the distal end of the major vessels ΩMajorVessels and the
outer surface of the pericardium ΩPericardium. On the inner surface of the pericardium ΓP, a
contact boundary condition for the deformation is used (see Section 2.2.1). The Neumann
boundary ΓN is given by the inner surfaces of the cardiac chambers ΓLV ∪ ΓRV ∪ ΓLA ∪ ΓRA,
where a pressure

p =
(

pLV, pRV, pLA, pRA
)
∈ R4 (2)

from the cardiovascular system (see Section 2.2.2) is applied.
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With these assumptions, we obtain the equations of cardiac elasticity in the reference
configuration for t ∈ (0, T)

$0∂2
t u− div(F S(x, F)) = 0 in ΩM , (3a)

u = 0 on ΓD , (3b)

[ϕ] = 0 on ΓP , (3c)

F S(x, F)n = pCn on ΓC , C ∈ {LV, RV, LA, RA} . (3d)

The cardiac muscle tissue is nearly incompressible, i.e., J := det(F) ≈ 1. Therefore,
we include, in the elastic energy, a penalty function Wκ with bulk modulus κ � 1, which
satisfies the conditions

Wκ(1) = 0 , lim
J→∞

Wκ(J) = ∞ , lim
J→0

Wκ(J) = ∞ .

For our applications, we use two different hyperelastic materials in subsets of ΩM.
For the active part of the heart composed of cardiomyocytes, we use the anisotropic model
of Guccione et al. [64]:

WG = ŴG(E) =
µG

2
exp

[
Q(E)− 1

]
+

κ

2
(J − 1)2 , E =

1
2
(QF>FQ> − I) , (4)

where µG > 0 is the shear modulus, WG,κ(J) = (J − 1)2, and Q = (f | s | n) is the
transformation resulting from the orthogonal fiber, sheet and sheet-normal directions

f : ΩM −→ S2 , s : ΩM −→ S2 , n : ΩM −→ S2 , (5)

and Q : R3×3 → R is a scalar function

Q(E) = bfE2
11 + bs(E2

22 + E2
33 + E2

23 + E2
32) + bfs(E2

12 + E2
21 + E2

13 + E2
31) , E = (Eij)i,j=1,...,3 ,

with scaling parameters bf, bs, bfs. Purely passive tissue is characterized by a Neo–
Hookean material

WNH = W̃NH(C) = µNH(tr(C)− 3)− µNH ln(det C) +
κ

2
ln2(det C) ,

with shear modulus µNH > 0 and WNH,κ = 1
2 ln2(J).

In addition to the passive material behavior, we model the active material response
to electrical activation by an active stress approach. Given the deformed fiber directions
lϕ = Fl, l = f, s, n and the active tension Ttot generated by a cellular tension evolution
model depending on (c, q) and determined by (10c) and (12), we calculate the active stress
response by

Ta = Ttot(c, q)
fϕ⊗ fϕ

‖fϕ‖ . (6)

We use the additive decomposition S = F−1DFW(F)+ JF−1TaF−> to compute the stress.

2.2.1. Contact Boundary Conditions

Cardiac deformation is physiologically restricted by the pericardium and the sur-
rounding tissue. In particular, it has been shown that including the interaction between
ventricles, atria, and the pericardium during cardiac simulations allows one to better
reproduce atrioventricular plane displacement (AVPD) [31,32] and thus cardiac motion.
Realistic implementations of the interaction between the heart and surrounding tissue
were first introduced by Fritz et al. [31]. They assumed frictionless and permanent contact
between the epicardium and the pericardium using a penalty formulation. Other models
describe these interactions using normal Robin boundary conditions on the epicardium
with constant spring stiffness [26,32] or spatially varying spring stiffness [61] informed by
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image-derived motion. In this study, the sliding contact problem in Fritz et al. [31] between
the epicardium and the inner pericardial surface (3c) is used by defining a contact energy

WP = ε
∫

ΓP

g2
P da ,

with the penalty parameter ε > 0 and the penalty functional

gP(t, x) = (x⊥ −ϕ(t, x)) · n ,

where n is the surface normal of the epicardium and x⊥ the projection of the deformed
point onto the pericardium. This contact energy is then added to the hyperelastic en-
ergy functional.

2.2.2. Closed-Loop Circulatory Model

The heart’s main purpose is to effectively pump blood throughout the body. There-
fore, it is important to define realistic hemodynamic boundary conditions for a computer
model of cardiac mechanics. Most accurately, this is done by solving an FSI problem. To
date, FSI models were typically restricted to a single chamber due to their computational
complexity [11–14]. Since here, we are not interested in a detailed distribution of pressure
and flow throughout all cardiac chambers, an alternative solution is to use a lumped pa-
rameter model of the circulatory system. For simulations spanning multiple heart beats, a
closed-loop model is required to preserve the total blood volume in the circulatory system.
Several closed-loop models of the circulatory system have been proposed [15,18,23,24,65]
and all of them share some of their structure. However, in all cases, the circulatory system
was only coupled to the finite element model of one or both of the ventricles, while the
atria were represented by a time-varying elastance. To the best of our knowledge, there is
no published work on coupling all four heart chambers with the circulatory model.

In the deformed configuration, the ventricular volume is computed from the reference
domains for each chamber C and the corresponding deformed chamber volumes are then
denoted by |Ωϕ

LV|, |Ω
ϕ
RV|, |Ω

ϕ
LA|, |Ω

ϕ
RA| with

|Ωϕ
C| =

∫
Ωϕ

C

1 dx =
∫

ΩC

J dx , C ∈ {LV, RV, LA, RA} .

We approximate the chamber volumes on the discrete geometry by summing up the
volumes of all tetrahedrons constructed by a surface triangle K ⊂ ΓC and an inner point
xC. We assume that each chamber Ωϕ

C is star-shaped around the point xC. By denoting the
vectors of the vertices of K by aK, bK, cK, we obtain

|Ωϕ
C| ≈ ∑

K⊂∂ΩC

1
6
(ϕ(t, aK)−ϕ(t, xC)) ·

(
(ϕ(t, bK)−ϕ(t, aK))× (ϕ(t, cK)−ϕ(t, aK))

)
.

To simulate the response of the circulatory system given the discrete volumes, we
reinterpret the system as a series of transmissions [66] as shown in Figure 2. Our goal is
to find a pressure vector (2) in such a way, that the chamber volumes of the circulatory
model coincide with the discrete volumes of the mechanics simulation [20]. The circulatory
chamber and vessel volumes v : [0, T]→ R8 are denoted by

v = (vLV, vRV, vLA, vRA, vSysVen, vSysArt, vPulVen, vPulArt) .

A series of ODEs is solved to find a solution v, to obtain

vLV = |Ωϕ
LV| , vRV = |Ωϕ

RV| , vLA = |Ωϕ
LA| , vRA = |Ωϕ

RA| .

Let z : [0, T]→ R12 be the intermediate variables

z =
(

pSysVen, pSysArt, pPulVen, pPulArt, QSysArt, QSysPer, QSysVen, QRavQPulArt, QPulPer, QPulVen, QLav
)

,
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describing the systemic venous, systemic arterial, pulmonary venous and pulmonary
arterial pressures and flows. Then the closed-loop equations read

∂tv = Gv(p, z) in (0, T) , (7a)

depending on

z = Gz(p, v) . (7b)

The relations z = Gz(p, v) in (7b) are given by the flows

QSysArt = max

 pLV −
vSysArt
CSysArt

RSysArtValve + RSysArt
, 0

 , QSysPer =

vSysArt
CSysArt

− pSysVen

RSysPer
,

QSysVen =
pSysVen − pRA

RSysVen
, QRav = max

{
pRA − pRV

RRavValve
, 0
}

,

QPulArt = max

{
pRV − vPulArt

CPulArt

RPulArtValve + RPulArt
, 0

}
, QPulPer =

vPulArt
CPulArt

− pPulVen

RPulPer
,

QPulVen =
pPulVen − pLA

RPulVen
, QLav = max

{
pLA − pLV

RLavValve
, 0
}

,

and the circulatory pressures

pSysArt = pLV − RSysArtValveQSysArt , pSysVen =
vSysVen

CSysVen
,

pPulArt = pRV − RPulArtValveQPulArt , pPulVen =
vPulVen
CPulVen

.

The evolution of v in (7a) is determined by

∂tvRV = QRav −QPulArt , ∂tvSysArt = QSysArt −QSysPer ,

∂tvLV = QLav −QSysArt , ∂tvSysVen = QSysPer −QSysVen ,

∂tvRA = QSysVen −QRav , ∂tvPulArt = QPulArt −QPulPer ,

∂tvLA = QPulVen −QLav , ∂tvPulVen = QPulPer −QPulVen .

The pressure values for the boundary condition (3d) are computed iteratively at each
time step. Within one time step tn of the mechanical problem, we first find an approximated
pressure pn,0 through the closed-loop model. During the first time steps, we choose pn,0

as a fixed increment of 1 Pa from the previous time step. After the fifth time step, we
extrapolate pn,0 using a 4th order Adams-Bashforth scheme:

pn,0 = pn−1 + ∆tn

(
55
24

∆pn−1

∆tn−1
− 59

24
∆pn−2

∆tn−2
+

37
24

∆pn−3

∆tn−3
− 9

24
∆pn−4

∆tn−4

)
, (8)

with ∆pk

∆tk
= pk−pk−1

tk−tk−1
, k ∈ N. We then start the iteration to calculate the correct pressure:

during each iteration cycle i, we update the mechanical and circulatory models for the
given pressure boundary pn,i. The contraction is calculated as in Section 2.5. The ODEs of
the circulatory model are updated with a Runge–Kutta 4 scheme. We compare the residual
r : R4 → R4 for each chamber

r(pn,i) = (rLV, rRV, rLA, rRA)
>



Mathematics 2021, 9, 1247 8 of 33

with rC = |ΩC| − vC for C ∈ {LV, RV, LA, RA}. If the absolute values of the residuals |rC|
are below a threshold εp, the pressure pn,i is accepted and we move to the next time step.
Otherwise, we update p by a quasi-Newton method [67]:

pn,i = pn,i−1 −C−1
i r(pn,i) , (9)

where Ci is the compliance matrix determined by

C−1
i = C−1

i−1 +
(
Mpn,i −C−1

i−1Mrn,i
) Mpn,i>C−1

i−1

Mpn,i>C−1
i−1Mrn,i

, C−1
0 = I

with Mpn,i = pn,i − pn,i−1, Mrn,i = r(pn,i)− r(pn,i−1). Updating the compliance matrix by
applying a quasi-Newton method is an improvement compared to the modified Newton
method proposed by Kerckhoffs et al. [20], which makes it possible to reach convergence
in fewer iterations.

RPulVen pLA
RLavValve pLV

RSysArtValve

pSysArt

RSysArt

RSysPer

RSysVen
pRARRavValve

pRVRPulArtValve

pPulArt

RPulArt

RPulPer

pPulVen

CPulVen vLA vLV CSysArt

CPulArt vRV vRA

pSysVen

CSysVen

Figure 2. Schematic of the circulatory system model with the pressure values of p and z, resistances R, fixed compliances C
and volumes of variable compliances vC with C ∈ {LV, RV, LA, RA}.

2.3. Cardiac Electrical Activity

On the reference domain ΩEP, the cardiac electric activity can be described by the
monodomain model as explained by Keener and Sneyd [10]. This reaction-diffusion
equation includes the transmembrane voltage Vm : [0, T]×ΩEP → R coupled to ODEs
describing the vector of gating variables w : [0, T] × ΩEP → [0, 1]nw and the vector of
intracellular ion concentrations c : [0, T]×ΩEP → Rnc

+ , so that the system in (0, T)×ΩEP is
given by

βCm∂tVm = ∇ · σ∇Vm − βIion(Vm, w, c) + βIext , (10a)

∂tw = Gw(Vm, w, c) , (10b)

∂tc = Gc(Vm, w, c) , (10c)

depending on the conductivity tensor σ : ΩEP → R3×3, the external stimulus Iext : [0, T]×
ΩEP → R, the total ionic current Iion : R× [0, 1]nw × Rnc

+ → R, the functions Gw : R×
[0, 1]nw ×Rnc

+ → Rnw and Gc : R× [0, 1]nw ×Rnc
+ → Rnc , the cellular surface-to-volume

ratio β ∈ R+ and the membrane capacitance Cm ∈ R+. The system (10) is complemented
by initial values at t = 0 for all x ∈ ΩEP

Vm(0, x) = V0
m(x) , w(0, x) = w0(x) , c(0, x) = c0(x) , (10d)
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and homogeneous Neumann boundary conditions

σ∇Vm · n = 0 on (0, T)× ∂ΩEP . (10e)

The dimensions nw and nc, the ionic current Iion(Vm, w, c), the vector functions
Gw(Vm, w, c) and Gc(Vm, w, c) are specified by the choice of the cell model. According to
the Hodgkin–Huxley model [9], the total ionic current can be written as

Iion(Vm, w, c) =
k

∑
i=1

gi

( nw

∏
j=1

w
pi,j
j

)(
Vm − Ei

)
+ H(Vm, w, c) ,

with the maximal conductance gi and the reversal potential Ei for each ion channel i. More
complex models add terms to the classical Hodgkin-Huxley model for additional ion

channels. Those are of the form I = g(
nw
∏
j=1

w
pj
j )(Vm − E) and increase the number k or are

summarized in the function H(Vm, w, c). The components of Gw(Vm, w, c) are typically
given by

Gwj(Vm, wj) = αj(Vm)
(
1− wj

)
− β j(Vm)wj for j = 1, . . . , nw ,

where for j = 1, . . . , nw the positive functions αj(Vm) and β j(V) are fitted to the experi-
mental data measured for the specific gate j. Due to different physiological properties on
the cellular level for the atria and the ventricles, different models should be chosen on the
domains ΩA and ΩV. The atrial and ventricular cell model used for simulations presented
in this work are specified in Section 2.4.1.

The anisotropic conductivity tensor

σ(x) = σf f⊗ f + σs s⊗ s + σn n⊗ n ∈ R3×3
sym ,

depends on the fiber, sheet, and sheet-normal direction (5) with conductivity parameters
σf ≥ σs ≥ σn ≥ 0. The depolarization waves are initiated by the stimuli Iext(t, x) in the
stimulation area Ωstim ⊂ ΩEP, and we set

Iext(t, x) =

{
Aj t ∈ (tj, tj + τj) , x ∈ Ωstim

0 else
(11)

depending on the starting time tj ≥ 0, duration τj > 0, and amplitude Aj > 0.

2.4. Electro-Mechanical Coupling Mechanisms
2.4.1. Cellular Electro-Mechanical Model

The mathematical description of electrophysiological activity on the cellular level is
represented by the term Iion in Equation (10a) coupled to the ODEs (10b) and (10c). In
general, Equation (10b,c) can represent any model that describes gating mechanisms and
the transport of ions. Here, the models by Courtemanche et al. [68] and O’Hara et al. [69]
are used for the atria and the ventricles, respectively. For the model by O’Hara et al., the
modifications to the h- and j-gate as proposed by [70,71] were implemented.

Active tension development for q : [0, T] × ΩEP → Rnq is represented by a recent
model for human cardiac contraction proposed by Land et al. [72]. It consists of a system
of ODEs summarized as

∂tq = Gq(q, c, γf, γ̇f) in (0, T)×ΩEP , (12)

where γf =
√
(Ff)>(Ff) is the stretch in fiber direction. Bidirectional coupling between

the models of electrophysiology and active stress is established by replacing the algebraic
formulation of the troponin buffer in the Courtemanche et al. and O’Hara et al. models by
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the evolution of calcium bound to troponin from the Land et al. model. Therefore, the ion
concentration c depends on the stretch γf and Equation (10c) extends to

∂tc = Gc(Vm, w, c, γf) in (0, T)×ΩEP . (13)

The components of (13) for the intracellular concentration of calcium ions [Ca2+]i
change to

∂t[Ca2+]i =
1

1 + [CMDN]maxKCMDN
([Ca2+ ]i+KCMDN)2

(14)

·
[

2INaCa − Ip,Ca − ICa,L − Ib,Ca

2FVi
+

Vup(Iup,leak − Iup) + IrelVrel

Vi
− ∂t[Ca2+]TRPN

]
,

for the model by Courtemanche et al. and

∂t[Ca2+]i =
1

1 + [CMDN]maxKCMDN
([Ca2+ ]i+KCMDN)2[

−(IpCa + ICab − 2INaCa)
Acap

2Fvmyo
− J

vnsr

vmyo
+ JCa

vss

vmyo
− ∂t[Ca2+]TRPN

]
, (15)

for the model by O’Hara et al. with

∂t[Ca2+]CaTRPN = [TRPN]max · ∂tCaTRPN , (16)

∂tCaTRPN = kCaTRPN

[(
[Ca2+]i

[Ca2+]T50(γf)

)nCaTRPN

(1−CaTRPN)−CaTRPN

]
. (17)

CaTRPN is a component of q and represents the fraction of troponin C units with
calcium bound to its regulatory binding site in the Land et al. model, [TRPN]max is the
maximum concentration of troponin in the myoplasm, and [Ca2+]T50(γf) is the length-
dependent sensitivity to intra-cellular calcium.

The above modifications are introduced in [35,36] for the O’Hara et al. model. Param-
eters or equations not defined specifically are adopted from the original models and given
in detail in the supplementary material.

Originally, the active stress model by Land et al. was developed and driven by experi-
mentally measured human calcium transients (CaT) for the atria [34] and ventricles [72],
respectively. Due to differences in the CaTs of the two models used in this study compared
to the ones used by Land et al., a re-parameterization of the tension model is necessary to
achieve physiologically correct active tension development. Based on the work of [34,36,72],
we manually adjusted the parameters of the model to match key features of active tension
to isometric twitch data of intact human tissue preparations from literature.

2.4.2. Mechano-Electric Feedback

As the conductivity tensor σ is oriented along the myocyte orientation f, s, n, Equa-
tion (10a) has to be evaluated on the deformed geometry Ωϕ for t ∈ (0, T)

βCm∂
ϕ
t Vm = ∇ϕ · σ∇ϕVm − βIion(Vm, w, c) + βIext in Ωϕ

EP , (18)

where the derivatives are dependent on the deformed variable xϕ = ϕ(t, x). Applying the
Piola transform on this equation, the corresponding Lagrange formulation reads

βCm∂tVm = ∇ · ((F−1σF−>)∇Vm)− βIion(Vm, w, c) + βIext in (0, T)×ΩEP . (19)

Furthermore, the existence of stretch-activated currents ISAC was first confirmed
by Guharay and Sachs [73]. Different models were developed to describe the current
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ISAC(Vm, γf) carried by these channels [74–79]. In this case, ISAC is added to Iion, so that
the ion current Iion = Iion(Vm, w, c, γf) also depends on the stretch. For the simulations
presented in Section 4, the deformation was not considered for the calculation of electro-
physiology and no stretch-activated channels were incorporated.

2.5. Electro-Mechanical Coupling Algorithm

The fully coupled whole heart model used for the numerical simulations in Section 4
is described by the following PDE-ODE system

βCm∂tVm = ∇ · σ∇Vm − βIion(Vm, w, c, γf) + βIext in (0, T)×ΩEP , (20a)

∂tw = Gw(Vm, w, c) in (0, T)×ΩEP , (20b)

∂tc = Gc(Vm, w, c, γf) in (0, T)×ΩEP , (20c)

∂tq = Gq(q, c, γf, γ̇f) in (0, T)×ΩEP , (20d)

S(x, F) = DFW(F) + Sa in (0, T)×ΩM , (20e)

$0∂2
t u = div(F S(x, F)) in (0, T)×ΩM , (20f)

∂tv = Gv(p, z) in (0, T) , (20g)

with boundary conditions

σ∇Vm · n = 0 on (0, T)× ∂ΩEP , (20h)

u = 0 on (0, T)× ΓD , (20i)

[ϕ] = 0 on (0, T)× ΓP , (20j)

F S(x, F)n = pCn on (0, T)× ΓC , C ∈ {LV, RV, LA, RA} . (20k)

This is complemented by the evaluation of the pressure vector p and the intermediate
variables z as described in Section 2.2.2. As the cardiac electrophysiology is computed
on ΩEP and the elasto-mechanical equations are solved on ΩM, a mapping between the
corresponding discrete meshes is required to couple the problem. This mapping from the
vertices of the mesh of ΩEP to the quadrature points of the finite element disctetization of
ΩM is denoted asMEP,M and the mapping vice versa asMM,EP. Both mappings are realized
via linear interpolation. In space, the PDEs in ΩM and ΩEP are discretized with the finite
element method, using linear conforming tetrahedral elements for the electrophysiology
and quadratic elements for the elasto-mechanic part.

In time, we employ a staggered approach. First, the equations for the electrophysiology
defined on ΩEP are solved, updating Vm, w, c, q. This is realized via a first order operator
splitting method as proposed by Sundnes et al. [80] where (10) is split in the reaction
and diffusion part. The space-independent ODE system for the reaction is solved in time
by explicit integration methods. The linear PDE modeling the diffusion is solved by a
Crank-Nicolson scheme in time. The details are given in the Supplementary Material. The
time step MtEP = 10 µs is used, so that the monodomain equation is computed MtM/MtEP
times, before the mechanics is updated. Then, Ttot(c, q) is mapped viaMM,EP to ΩM to
evaluate the active stress response (6). Now, the equations for elasto-mechanics are solved
on ΩM. Starting with the update of the pressure vector p as explained in Section 2.2.2,
a new displacement u is computed with a Newmark β-scheme, the details of which are
again given in the supplementary material. Then, the chamber volumes of the discrete
geometry are computed, cf. Section 2.2.2. Additionally, the volumes of the circulatory
system v are updated with a fourth order Runge–Kutta scheme and time step Mtp = 0.1 ms.
Then, the new vector z is computed. If the difference between the computed volumes is
larger than a tolerance value, the procedure starts with an update of p again. Else, the
elasto-mechanics are finished for the time step and the stretch γf is mapped withMM,EP
to ΩEP. The new stretch is used for the next update of the electrophysiology. The overall
scheme is illustrated in Figure 3.
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electrophysiology

compute Vn+1
m , wn+1, cn+1, qn+1

with MtEP

set Vn,0
m = Vn

m, wn,0 = wn,
cn,0 = cn, qn,0 = qn

wn,j+1 with Vn,j
m , wn,j, cn,j

cn,j+1 with Vn,j
m , wn,j, cn,j, γn

f

Ṽn,j+1
m with Vn,j

m , wn,j+1, cn,j

qn,j+1 with qn,j, cn,j+1, γn
f

Vn,j+1
m with Ṽn,j+1

m in PDE

elasto-mechanics

compute pn+1, un+1, vn+1, zn+1

with MtM

set i = 0, un,0 = un, vn,0 = vn,
zn,0 = zn, compute pn,0 via (8)

while
‖r(pn,i)‖∞ > tol

pn,i with (9)

un,i+1 with un,i, pn,i

for k = 0, . . . , MtM
Mtp
− 1 = mv

vn,i,k+1 with vn,i,k, pn,i, zn,i

then vn,i+1 = vn,mv

zn,i+1 with pn,i, vn,i+1

MEP,M
(
Ttot(cn+1, qn+1)

)

MM,EP
(
γn+1

f
)

for j = 0, . . . , MtM
MtEP
− 1

i = i + 1

Figure 3. Staggered algorithm for the fully coupled problem at time steps tn+1 = (n + 1)MtM evaluating the solutions at
tn = nMtM with different time step sizes MtM = 0.001 s, MtEP = 0.00001 s and Mtp = 0.0001 s for n > 5 and tol = 10−7 mL.

3. Patient-Specific Simulation and Evaluation
3.1. Personalizing Electro-Mechanical Whole Heart Models: Building Digital Twins

Personalized in silico cardiology is evolving to become an important component of
therapy planing and starts to inform the decision making process throughout the clinical
workflow by maximizing the value of available clinical data [8]. Building a digital twin can
comprise different aspects including statistical and mechanistic models. In the following,
a brief overview of the important aspects of cardiac modeling is given and we highlight
strategies on how to incorporate personalized information in our modeling framework.

3.1.1. Cardiac Anatomy

The first step to a personalized in silico model is to create an anatomically accurate
representation of the heart in a discretized finite element model. Medical imaging data
plays an important role in this step, since it provides the individuals shape of the heart and
structural information such as the location of a scar, fiber architecture, and fibrosis in a non-
invasive procedure [81,82]. In the case of whole heart models, a semi-automatic workflow
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has been proposed by Strocchi et al. [39]. However, a manual adjustment of the discretized
model is still necessary and multiple tools are available to make this process more efficient
(e.g., meshtool [83], vmtk [84]). Since anatomy is highly individualized, it is necessary to
ensure the comparability between datasets. To solve this problem, a standardized 17 sector
map of the ventricles can be used [85]. Similarly, universal coordinate systems have been
proposed for the ventricles [41,42] and atria [40].

3.1.2. Fiber Orientation

Recovering patient-specific fiber and sheet orientation is possible through diffusion
tensor MRI [86]. However, this kind of imaging data are only available from ex vivo
measurements and is not acquired in vivo and thus, Laplace–Dirichlet rule-based (LDRB)
methods are used to define fiber and sheet orientations in the ventricles [87–89] and
atria [58,90]. Nevertheless, information about the transmural distribution of fiber and sheet
angles from observations [91,92] can be used to parametrize LDRB methods to specify fiber
and sheet angles at the endocardium and epicardium (αendo,αepi, βendo,βepi).

3.1.3. Passive Stress

MRI data are typically acquired during the early diastolic state of the heart cycle
when movement and chamber pressure are minimal. However, residual stress in the
tissue cannot be measured with standard imaging techniques and the pressure inside the
heart’s cavities can only be measured by invasive procedures. Therefore, a pressure and
stress-free reference configuration of the heart has to be estimated to accurately model the
biomechanical diastolic function. Methods applied in the context of cardiac mechanics try
to find a stress-free reference configuration by using fixed-point iterations, as originally
proposed by Sellier et al. [93]. Parameters for the constitutive model are mostly chosen
manually [94] by utilizing the empirical end-diastolic pressure-volume relation (EDPVR)
described by Klotz et al. [95] as a fitting target. In Kovacheva et al. [43], the constitutive
parameters were determined by solving an optimization problem using a gradient-free
method: the distance between the simulated EDPVR and the one proposed by Klotz
et al. was minimized together with an additional condition imposed on the unloaded
volume. The latter volume relation was again proposed by Klotz et al. However, values
from different sources contradict each other [96]. Recently, Marx et al. [44] presented an
automated method to match passive material parameters to the shape of a patient-specific
EDPVR and to find an unloaded reference configuration of the heart simultaneously. Their
method requires a mesh generated from clinical imaging data and at least one data point of
the EDPVR.

3.1.4. Active Stress

Personalizing the systolic part of the heart cycle is done by adjusting the characteristics
of the active tension model. This is done until the deformation of the heart is similar to
the one observed in MRI data or until the ejected blood volume of the recorded heart
beat is reached. Personalizing other characteristics of active tension development, such
as the rate of contraction is more difficult in biophysically motivated models, due to the
high number of parameters, which are typically not well constrained by the available
experimental data [72]. Therefore, most personalized electro-mechanical models utilize a
simplified model to drive contraction [33,61]. These models only comprise a small set of
parameters that are linked to distinct characteristics (e.g., peak tension, rate of contraction
and relaxation) of tension development, making them easier to fit to experimental data.
As a consequence, these simpler models miss the important connection to calcium and are
driven by activation times only.

3.1.5. Electrophysiology

Myocardial tissue in the atria and the ventricles shows regionally varying anisotropic
properties with regard to conduction velocity (CV) [97]. Considering that CV is not a
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parameter of the momodomain equation, we cannot adjust it directly. However, assuming
a planar wavefront propagation, Costa et al. [98] found that CV is proportionally related
to the conductivity σ and the surface-to-volume ratio β by CV ∝

√
σ/β. Since CV is

much more likely to be measured in clinical scenarios than conductivity (e.g., [51,99]),
one way to personalize the conduction model is to match CV. Costa et al. [98] realized
this and proposed an automated parameterization strategy to find optimal conductivity
values for a given CV. This strategy should be applied to each patient-specific mesh due to
the dependency of CV on the spatial discretization [100] and the cellular models used in
the study.

Mostly, atrial and ventricular activation is initiated by an externally applied stimulus
Iext mimicking the effect of the specialized cardiac conduction system at the sinus node and
the Purkinje muscle junction. Timing and position of the stimulus are crucial for a proper
depolarization pattern and orchestrated mechanical activation of the heart. In the atria, a
stimulation at the sinus node is enough to initiate a heart beat. However, it is not trivial
to properly activate the ventricles. This is due to the conduction of the depolarization
wave through the atrio-ventricular node (AVN), the His–Purkinje system (HPS), and conse-
quently the ventricular myocardium. Especially the HPS is highly individualized and rarely
modeled explicitly [101] but rather implicitly by capturing its effect at the Purkinje muscle
junctions [49,57,102]. Respective activation sequences can be personalized by using in-vivo
measurements like electrocardiograms (ECG) or body surface potential maps (BSPM) to
estimate sites of earliest activation [49,102,103]. Alternatively, the HPS can be modeled
using N fascicular sites for the stimulus combined with a thin, fast conducting endocardial
layer [104]. The conduction delay introduced by the AVN is typically represented by a
predefined time delay between the onset of atrial and ventricular depolarization or by a
model representing the AVN function [105].

3.2. Experimental Setup

Two simulations were conducted: one representing a normal heart beat as a reference
and a second including a scar in the left atrium as a result of a typical radio-frequency
ablation therapy for atrial fibrillation.

3.2.1. Parameterization

To capture the highly anisotropic characteristics of myocardial tissue, fiber and sheet
architecture was incorporated into the model. For the ventricles, a method based on Bayer
et al. [87] was applied. The original algorithm was adapted (https://github.com/KIT-IBT/
LDRB_Fibers (accessed on 23 May 2021), release v0.1) [106] to eliminate a discontinuity of
the fibers in the free walls and to yield a fiber rotation that is proportional to the transmural
Laplace solution. As shown in Figure 4, fiber angles change linearly from αendo = 60◦ at
the endocardium to αepi = −60◦ at the epicardium, as suggested by Streeter et al. [91].
Furthermore, the sheet angles change from βendo = −65◦ to βepi = 25◦ at the endo- and
epicardium, respectively [87]. The atrial fiber and sheet orientation in this work are based
on 22 seed points that define anatomical landmarks used to calculate numerous paths
which split the atria in regions with distinct fiber orientation [58,59].

https://github.com/KIT-IBT/LDRB_Fibers
https://github.com/KIT-IBT/LDRB_Fibers
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Figure 4. Myocyte orientation in the fiber direction f resulting from the algorithms in [58,106]. Fiber twist through the wall
is shown in a slice through the ventricles.

Using the method proposed by Costa et al. [98], σ was optimized to achieve CVs that
resulted in a realistic activation sequence. To simplify atrial activation, only three different
conductivities were assigned to differentiate atrial bulk tissue, fast conducting bundles, and
slow conducting regions [107]. The algorithm by Wachter et al. [58] was used to label the
fast conducting regions including the crista terminalis, the pectinate muscles, Bachmann’s
bundle, middle and upper posterior inter-atrial connection, the coronary sinus, and the
scar in the left atrium (Figure 5).

Figure 5. Anterior (left) and posterior (right) view of the atria with labels for fast conducting and slow conducting materials,
as well as the scar. Transparant volumes represent the atrial bulk tissue.

They were assumed to be transversely isotropic with CVs of 2.25 m/s in longitudinal
direction and 1.45 m/s in transverse direction. Slow regions were set to be isotropic with
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a CV of 0.65 m/s, which is a commonly used simplification of the structural reality [107].
Atrial bulk tissue used the same value for a CV of 1.45 m/s in longitudinal direction and
0.65 m/s in transverse direction.

Ventricular myocardium was assumed to be orthotropic with CVs of 0.87 m/s, 0.6 m/s,
0.4 m/s in longitudinal, transversal, and normal directions respectively. Additionally, a thin,
fast-conducting endocardial layer was labeled using the consistent ventricular coordinates
(Cobiveco) [42]. The CV in this layer was three times higher than in the rest of the ventricle
to represent the effect of the HPS. All parameters used in the whole heart simulations are
listed in Table 1.

Table 1. Overview of electrophysiological parameters for the whole heart model.

Parameter Value Unit Description

(σf, σs, σn) (0.47, 0.27, 0.15) S/m conductivities in ventricular bulk tissue
(σf, σs, σn) (3.25, 2.75, 2.25) S/m conductivities in ventricular fast conducting layer
(σf, σs, σn) (0.99, 0.26, 0.26) S/m conductivities in atrial bulk tissue
(σf, σs, σn) (2.35, 0.99, 0.99) S/m conductivities in atrial fast conducting regions
(σf, σs, σn) (0.26, 0.26, 0.26) S/m conductivities in atrial slow conducting regions
(σf, σs, σn) (10−12, 10−12, 10−12) S/m conductivities in scar tissue
β 140, 000 1/m membrane surface-to-volume ratio
Cm 0.01 F/m2 membrane capacitance
AV-delay 0.160 s atrio-ventricular conduction delay
BCL 1 s basic cycle length (=1/heartrate)

The depolarization wave was initiated by a stimulus Iext with a cycle length of
BCL = 1 s at the position of the most common sinus node exit site at the junction of
the right atrial appendage and the superior vena cava [108]. Conduction between the left
and right atrium was only possible via Bachmann’s bundle, a middle and upper posterior
inter-atrial connection, and the coronary sinus. Otherwise, the tissue was isolated in the
middle of the septal wall through duplicated vertices. 160 ms after the atrial stimulus, the
ventricles were excited at five distinct positions. These five positions represent common
sites of earliest activation in the ventricles and were chosen based on observations by
Durrer et al. [109] and simulation results obtained in [104]. The activation pattern includes
three sites of earliest activation in the LV (mid-posterior inferior xLV,mpi, mid-posterior
superior xLV,mps, basal anterior paraseptal xLV,bap) and two in the RV (septal xRV,s and free
wall xRV,fw). Their position is given in terms of universal coordinates in Table 2 and the
resulting activation times are shown in Figure 6.

Table 2. Sites of earliest activation in terms of the coordinate system Cobiveco [42]: a apicobasal;
m transmural; r rotational; v transventricular.

Root point Extent
x xroot = {a, m, r, v} δm δrad

xLV,mps {0.65, 1, 0.99, 0} 0.05 3 mm
xLV,mpi {0.55, 1, 0.175, 0} 0.05 3 mm
xLV,bap {0.9, 1, 0.57, 0} 0.05 3 mm
xRV,s {0.4, 1, 0.85, 1} 0.05 3 mm

xRV,fw {0.45, 1, 0.15, 1} 0.1 3 mm
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Figure 6. Ventricular local activation times. Arrows indicate sites of earliest activation.

In the mechanical model, myocardial tissue in the atria and ventricles was modeled
as a transversely isotropic material as defined in Equation (4). These parameters were
determined using the method proposed by Kovacheva et al. [43] to match the empirical
EDPVR of Klotz et al. [95]. Purely passive tissue was modeled as an isotropic Neo-Hookean
solid using different material parameters. All mechanical parameters are listed in Table 3.

Table 3. Overview of passive mechanical parameters in WG, WNH for the whole heart model.

Parameters
Domain Model µ (Pa) bf bs bfs κ (Pa) ρ0 (kg/m2)

ΩV Guccione 325.56 11.01 4.4 7.71 106 1082
ΩA Guccione 325.56 11.01 4.4 7.71 106 1082

ΩValves Neo-Hooke 105 - - - 103 1082
ΩAdiposeTissue Neo-Hooke 3725 - - - 103 1082
ΩMajorVessels Neo-Hooke 104 - - - 103 1082
ΩPericardium Neo-Hooke 104 - - - 103 1082

For our particular subject, no measured data were available that can be related to
circulatory system parameters. Therefore, all values were chosen based on models found
in literature that share some of their structure with the model proposed in Section 2.2.2.
The list of parameter values and corresponding references can be found in Table 4.

The radio-frequency ablation scar only affected electrophysiological properties in this
study. Specifically, the scar was assumed to be non-conducting and consists of a single
lesion around all pulmonary veins isolating the whole roof of the left atrium plus a linear
lesion towards the atrioventricular plane on the posterior side (Figure 5).
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Table 4. Overview of circulatory system parameters in Section 2.2.2 for the whole heart model.

Parameter Value Unit Description Ref.

RSysArtValve 0.006 mmHg · s ·mL−1 aortic valve resistance [110,111]
RSysArt 0.03 mmHg · s ·mL−1 systemic arterial resistance [112,113]
CSysArt 3.0 mL ·mmHg−1 systemic arterial compliance [112–114]
VSysArtUnstr 800.0 mL unstressed systemic arterial volume [110]
RSysPer 0.6 mmHg · s ·mL−1 systemic peripheral resistance [112,113]
RSysVen 0.03 mmHg · s ·mL−1 systemic venous resistance [115,116]
CSysVen 150.0 mL ·mmHg−1 systemic venous compliance [110,111,116]
VSysVenUnstr 2850.0 mL unstressed systemic venous resistance [110,115]
RRavValve 0.003 mmHg · s ·mL−1 tricuspid valve resistance [20,111]
RPulArtValve 0.003 mmHg · s ·mL−1 pulmonary valve resistance [110]
RPulArt 0.02 mmHg · s ·mL−1 pulmonary arterial resistance [117,118]
CPulArt 10.0 mL ·mmHg−1 pulmonary arterial compliance [117,119]
VPulArtUnstr 150.0 mL unstressed pulmonary arterial volume [110]
RPulPer 0.07 mmHg · s ·mL−1 pulmonary peripheral resistance [120,121]
RPulVen 0.03 mmHg · s ·mL−1 pulmonary venous resistance [20]
CPulVen 15.0 mL ·mmHg−1 pulmonary venous compliance [119]
VPulVenUnstr 200.0 mL unstressed pulmonary venous volume [110]
RLavValve 0.003 mmHg · s ·mL−1 mitral valve resistance [20]

3.2.2. Initialization

As a first step, the cellular models were paced to a limit cycle at a cycle length of 1 s
for a total of 1000 cycles. In this step, stretch γf and stretch rate γ̇f were set to 1 and 0
respectively. The resulting values of the state variables {w, c, q} were assigned to each
vertex of ΩEP as initial values. These values can be found in the supplementary material.

A backward displacement method [93,122] was used to find the unloaded configura-
tion of ΩM for all four cavities simultaneously. As no measured pressure data was available,
population-based values for the diastatic pressure were assumed (pLV = pLA = 8.25 mmHg,
pRV = pRA = 3.5 mmHg). The algorithm was stopped manually after 3 iterations with a
residual norm of 0.0052 m and unloaded volumes vRV = 49.8%, vLV = 52.2%, vRA = 55.0%,
vLA = 55.2% with respect to the reference configuration. Afterwards, the unloaded config-
uration was inflated with the same pressure to pre-stress the tissue. Both, the unloaded
and pre-stressed geometries are shown in the supplementary material together with the
simulated EDPVR. To reduce the amount of heart beats that need to be run to reach a stable
limit cycle of the circulatory system, purely mechanical simulations were done to find more
suitable initial conditions for the circulatory model. The resulting initial values from which
the coupled reference simulations was started are shown in Table 5.

Table 5. Initial conditions for the circulatory system model.

Parameter Value Unit Description

Vtot 5700.0 mL total volume
VSysArt 981.1396 mL systemic arterial volume
VPulArt 303.7683 mL pulmonary arterial volume
VPulVen 349.6759 mL pulmonary venous volume
pLV 8.0246 mmHg left ventricular pressure
pLA 8.2061 mmHg left atrial pressure
pRV 5.8073 mmHg right ventricular pressure
pRA 5.8071 mmHg right atrial pressure
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3.2.3. Evaluation

To evaluate the simulation results, the deformation of the heart was analyzed in
terms of atrio-ventricular valve displacement (AVPD), left ventricular blood volume, and
intra-cavitary pressure-volume relationships. For the left ventricular volume and the
AVPD, the in silico results were compared to time-resolved MR imaging data that were
analyzed using the freely available software Segment (version 3.2 R8531, [123]). AVPD was
measured by projecting the mean displacement of the surrounding tissue of the mitral- and
tricuspidvalve onto the apico-basal heart axis. Pressure-volume relationships are provided
as output by the circulatory system model. Since the circulatory model is a closed loop, all
simulations were run for multiple cycles until the difference in stroke volumes of the left
and right ventricle was less than 1 mL.

4. Results
4.1. Cellular Electro-Mechanical Model

The calcium transients (CaT) of the cell models differ from the experimental traces
used by Land et al. to calibrate their model regarding key biomarkers such as time to peak
of the calcium transient (TPCaT) and relaxation times to 50% and 90% decay from the peak
calcium concentration (RT50, RT90). Therefore, a re-parameterization of the tension model
by Land et al. was necessary after introducing the bidirectional coupling into the models
of Courtemanche et al. and O’Hara et al.

For the atrial model, the parameters from Land et al. [34] were used. In tissue sim-
ulations this choice of parameters caused unphysiological behavior due to the introduc-
tion of length-dependent effects. An unphysiological rise in tension in the atria was
observed during the contraction of the ventricles. The passive increase in volume and the
atrio-ventricular plane displacement (AVPD) resulted in the atria being stretched by the
ventricles, thus prolonging the time of contraction of the atria. Land et al. [34] encoun-
tered the same problem and suggested faster atrial contraction and crossbridge cycling
rates as a solution. The CaT of the Courtemanche et al. electrophysiological model al-
ready promoted a faster contraction with faster TPCaT compared to physiological values.
Therefore, calcium cycling rates were left unchanged. Instead, the change in calcium
sensitivity with respect to γf was reduced to β1 = −0.5 and the half-activation point was
increased to [Ca2+]T50(γf = 1) = 1.05 µM. The re-parameterized atrial electro-mechanical
model (Courtemanche–Land opt.) showed a time to peak tension TPT = 73.5 ms and
RT50 = 78.1 ms after a total of 1000 cycles at a basic cycle length (BCL) of 1 s (Figure 7),
which is in close agreement with atrial human tissue preparation data (Table 6).

Table 6. Literature values for time to peak of calcium transient (TPCaT) and active tension development (TPT) as well as
relaxation time to 50%, 90% and 95% respectively (RT50, RT90, RT95) from human tissue preparations. The list of ventricular
values were originally compiled in [36].

Calcium Transient Active Tension
Tissue TPCaT (ms) RT50 (ms) RT90 (ms) TPT (ms) RT50 (ms) RT95 (ms) Ref.

Ventricle 47.8± 10.0 151.1± 89.2 315.6± 161.2 - - - [124]
Ventricle - - - 165± 7 116± 6 334± 43 [125]
Ventricle - - - 157± 10 117± 8 477± 31 [126]
Ventricle - - - 235.0± 13.4 153± 71 309± 13.7 [127]
Ventricle - - - 151.0± 6.1 98.0± 7.7 173.0± 10.7 [127]

Atria 52.5± 3.1 177.5± 9.0 - 109.6± 3.6 110.2± 84.0 - [128]
Atria - - - 85.0± 5.5 66.1± 5.9 - [129]
Atria - - - 88.3± 2.5 73.3± 1.7 - [129]



Mathematics 2021, 9, 1247 20 of 33

Figure 7. Action potential (left), CaT (center), and active tension (right) of the optimized (solid line) and the original (dashed
line) atrial model with reference experimental values from literature [129]. TPCaT: time to peak of calcium transient; TPT:
time to peak tension; RT50/90/95: relaxation times to 50/90/95% decay from peak calcium/tension. Only the last cycle is
visualized.

As a baseline for the ventricular model, the parameterization of [72] is used. First,
the modifications suggested by Margara et al. [36] to the Hill coefficient of cooperative
activation and the tropomyosin rate constant were adopted. Additionally, the same value
for the half-activation point [Ca2+]T50(γf = 1) = 1.05 µM was used as for the atrial
model. This reduced diastolic resting tension, which otherwise exceeded 2 kPa in tissue
simulations in pre-stressed (γf > 1) conditions. The CaT and active tension development
of the final ventricular model is shown in Figure 8. Compared to the original model by
Land et al. [72], the optimized model (OHaraRudy+Land opt.) showed more physiological
behavior compared to experimental data after stimulating the model for 1000 cycles at a
BCL of 1 s (TPT = 154.8 ms, RT50 = 121.7 ms, RT95 = 275.0 ms). To achieve deformations
comparable with MRI data, the parameter Tref in the OHaraRudy+Land opt. model was
set to 480 kPa in multi-scale simulations. All adjusted parameters are given in Table 7.

Figure 8. Action potential (left), CaT (center), and active tension (right) of the optimized (solid line) and the original (dashed
line) ventricular model with reference experimental values from literature [125]. TPCaT: time to peak of calcium transient;
TPT: time to peak tension; RT50/90/95: relaxation times to 50/90/95% decay from peak calcium/tension. Only the last cycle
is visualized.
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Table 7. Optimized parameters for the atrial and ventricular tension development model. The original values are taken
from [34,72]. Values not listed in this table are unchanged from the original publications.

Atria Ventricle
Parameter Original Value Optimized Original Value Optimized

ku 1/ms 1/ms 1/ms 0.04/ms
nTm 5 5 5 2.4
[Ca2+]ref

T50 0.86 µM 1.05 µM 0.805 µM 1.05 µM
β1 −2.4 −0.5 −2.4 −2.4

4.2. Electro-Mechanical Whole-Heart Simulation

The final discretizations were created using Gmsh [130]. ΩM consists of 26,681 quadratic
tetrahedral elements with an average edge length of 7.2 mm, yielding 48,780 nodes with
135,897 degrees of freedom. Since electrophysiological simulations require a finer spatial
discretization [100], a subset of ΩM was rediscretized to yield ΩEP with 7,434,101 linear
tetrahedral elements and an average edge length of 0.6 mm. All simulations were run on
a 2019 Apple iMac™ using 8 MPI processes. A single heart beat took between 20 to 24 h
to compute.

Starting from the pre-stressed reference geometry as described in Section 3.2, the
reference heartbeat was simulated using the geometry shown in Figure 1. After eight beats,
the simulation reached a stable limit cycle with a stroke volume (SV) difference between the
two ventricles of less than 1 mL. As shown in Figure 9, the four major phases of the cardiac
cycle were reproduced faithfully. After initiating the heart beat with an electrical stimulus
at the location of the sinus node (Figure 9a), the atria contract and ventricular end-diastole
later reached 180 ms (Figure 9b). Followed by a short time of isovolumetric contraction,
the aortic and pulmonary valves open and the ejection of blood from the ventricles begins.
Meanwhile, the atria relax and passively fill with blood (Figure 9c). During isovolumetric
relaxation (Figure 9d), all valves close and the pressure reduces. As soon as the pressure is
low enough, the mitral and tricuspid valves open and the ventricles fill with blood.

The results of the circulatory system are shown in Figure 10 for the last simulated
heartbeat. Atrial PV-loops exhibit the typical figure-of-eight shape, with the A-wave and
the V-wave both present. Additionally, a short spike in pressure with little change in
volume (C-wave) can be observed in both atria immediately after the onset of ventricular
contraction. With SVLV = 126.16 mL and SVRV = 125.24 mL, ventricular stroke volumes
are close to the values derived from the imaging data (SVMRI

LV = 132 mL, SVMRI
RV = 129 mL).

However, systolic blood pressure is elevated in both the left (pLV = 154.6 mmHg) and
the right ventricle (pRV = 48.7 mmHg). Flow through the mitral and tricuspid valve is
observed during early diastolic filling (E-wave) and during atrial contraction (A-wave).
With an E/A ratio of 1.11 in the left ventricle and 0.85 in the right ventricle, both are
considered to function normally.
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(a) (b)

(c) (d)
Figure 9. Snapshots of the deformation of the heart during the final cycle. Visualized is the stretch in
fiber direction γf in a clipped long axis four chamber view. (a) at rest; (b) end-diastole; (c) end-systole;
(d) end of isovolumetric relaxation.

The LV and RV volume at the beginning of the last heart beat demonstrates a discrep-
ancy with respect to the segmented volumes from the MRI data and the initial volumes in
the pre-stressed geometry. The volume reduced from 200.5 mL to 179.4 mL in the LV and
increased from 188.5 mL to 224.8 mL in the RV during equilibration to a stable limit cycle.
Therefore, LV volume was normalized for both simulated and MRI results for comparison
(Figure 11). In both control and ablation cases, atrial systole contributed 11–13% to the
end-diastolic ventricular blood volume. Major differences can be observed during ventric-
ular systole and diastole. With a peak ejection rate (PER) of PERLV = 2094.8 mL/s, it took
only 160 ms until end-systole was reached. The PERMRI

LV = 882 mL/s in the MRI data was
markedly lower resulting in a time to end-systole of 398 ms. The opposite behavior was ob-
served during ventricular relaxation. Peak filling rate (PFR) in the MRI data was more than
two times higher than in the simulation (PFRMRI

LV = 1027 mL/s and PFRLV = 408.3 mL/s).
Hence, ventricular relaxation in the model was significantly slower than in the MRI data,
taking 660 ms and 289 ms, respectively.
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Figure 10. Results of the circulatory system for the reference simulation (solid line) and the simulation with an ablation scar
in the left atrium (dashed line) after reaching a stable limit cycle. First column from top to bottom: (1) Wiggers diagram
showing pressure with respect to time; (2) cavity volume with respect to time; (3) flow through mitral valve (LAV), tricuspid
valve (RAV), systemic arterial flow (SysArt), and pulmonary arterial flow (PulArt). The second and third column show the
phase diagrams of the pressure-volume relationship for the left atrium (LA), left ventricle (LV), right atrium (RA), and right
ventricle (RV).
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Figure 11. Left ventricular (LV) cavity volume derived from imaging data (black) and numerical
simulation (red). LV volume was normalized to the maximally measured volumes.

AVPD was measured relative to the position of the valves during diastasis and is
shown in Figure 12. Negative values are associated with the movement of the valves
towards the apex. During the contraction of the atria, both the mitral and the tricuspid valve
were pulled up by 5 mm and 7 mm, respectively. Peak AVDP was reached at end-systole
with a displacement of−10.7 mm for the mitral valve and−11.9 mm for the tricuspid valve.
However, before moving towards the apex, the valves moved 2–3 mm in the opposite
direction, which is associated with the bulging of the atrioventricular valves into the atria.
This behavior could not be observed in the MRI data, since the temporal resolution was
too low to capture it. Compared to the MRI data, the tricuspid valve is displaced 5 mm
less during systole. However, valve displacement during atrial contraction is of the same
magnitude. In contrast, the mitral valve is displaced 1.5 mm more during atrial contraction
compared to the MRI data and differs only by −2.1 mm during systole.
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Figure 12. Atrioventricular plane displacement from imaging data (dashed line) and numerical simulation (solid line).

Starting from the last cycle of the control heart beat simulation, an ablation scar was
introduced in the left atrium. It took three heart cycles for the volumes in the circulatory
system to adapt to the new conditions and to reach a limit cycle with a stroke volume
difference of less than 1 mL. As shown in Figure 13, the scar isolates the whole roof of the
left atrium from electrical signals. Since all the pathways between the left and right atrium
are still intact, there is no measurable difference with regard to the electrical activation in
the rest of the atrium. Due to the isolated area in the left atrium, a significant proportion of
tissue is not developing any active tension hence reducing the overall contractile function
of the left atrium. Less blood is pumped out of the LA into the LV, reducing the LV end-
diastolic volume by 2.5 mL to 200.4 mL. This can be observed by a decreased flow through
the mitral valve during atrial contraction and consequently by an increase of the E/A ratio
to 1.46. Right atrial and ventricular pumping efficiency are unaffected by the ablation scar.
Additionally, a decreased AVPD during atrial contraction is observed.

Figure 13. Atrial local activation times from the reference simulation (left) and the simulation including an ablation scar in
the left atrium (right).
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5. Discussion
5.1. Bidirectional Coupling between the Mechanical and Electrophysiological Systems

Bidirectional coupling or strong coupling is required to simulate physiological behav-
ior of the heart including mechano-electric feedback (MEF). Electrophysiological properties
of cells are temporarily altered due to mechanical deformation. Currently, three major
mechanisms are known to contribute to MEF: (1) the deformation of cardiac tissue during
contraction and relaxation changes the electrical gradient σ∇Vm; (2) the transmembrane
voltage Vm is directly modified through stretch activated currents (SACs) ISAC(Vm, γf); (3)
the stretch in the cells changes the binding affinity of calcium to troponin C, thus altering
the intracellular levels of calcium. For the numerical experiments described in Section 3.2,
we did not consider the effect of deformation on the electrical gradient. Its effect should be
marginal during normal sinus rhythm, since large deformations only occur at times when
the electrical gradient is small, i.e., during the action potential plateau phase or repolariza-
tion. However, this effect can alter the electrical activity of the heart, especially at shorter
cycle lengths or reentry, and should be considered in such scenarios [131]. While SACs
have been used extensively in simulation studies, the underlying mechanisms that relate
stretch to changes in ion channel conductance are not well understood and the majority of
published models of SACs are not well constrained by experimental data [74–79]. Since
we use human electro-mechanical cell models and the parameterization of SACs is out
of the scope of this study, we decided to exclude them from our model until more data
from humans are available. Nevertheless, both of the currently missing effects can be easily
added to the presented framework.

As illustrated in Figures 7 and 8, the cellular electro-mechanical combination of models
proposed in this study yields physiologically accurate active tension in line with data from
human tissue preparations. However, when used in a multi-scale environment, it still has
room for improvement as reflected in the time course of LV volume (Figure 11). The global
behavior of the LV does not entirely reflect the contractile dynamics observed in MRI data.
During relaxation, the reduction in stress and increase in ventricular volume is too slow.
As a result, no clear diastasis phase can be observed in our model. Furthermore, the rate of
contraction during systole is higher and the model reaches end-systole more than twice as
fast as the MRI data suggests. This behavior can be observed in other simulation studies
using the Land et al. tension model [72,132] or other tension models based on sliding
filament theory [31,133], suggesting that not all mechanisms of cardiac contraction are fully
represented in the most recent models. A simulation study by Campbell suggests that an
acceleration of the relaxation can be achieved by introducing interfilamentory movement
resulting from compliance in the sarcomere [134]. Possibly, a similar effect could result
from an increase in myocardial stiffness and should be investigated further.

A limitation of our electro-mechanical model is that the dependence on stretch rate
γf in Equation (12) had to be neglected by setting γ̇f = 0 for all numerical experiments.
Adding stretch rate dependence introduced strong unphysical oscillations in the multi-scale
model resulting in an unstable numerical scheme. Regazzoni et al. [135] identified the
source of these instabilities to be an inconsistent treatment of macroscopic and microscopic
strains in staggered solution strategies of deformation in conjunction with an active stress
model with a stretch rate dependence. This condition applies to the staggered approach
used in this work (Section 2.5) and should be solved in the future either by implementing
the proposed stabilization term in [135] or solving the whole system monolithically.

5.2. Circulatory System

As demonstrated in the numerical experiments, the closed-loop lumped-parameter
model proposed in this manuscript is strongly coupled to the deformation problem and
can reproduce major features of the human circulatory system. In the atria, the typical
figure-of-eight shape is observed in the pressure-volume (PV) loops consisting of an A-
and a V-loop corresponding to the atrial and ventricular contraction respectively. Addi-
tionally, a short increase in pressure in early systole known as the C-wave can be observed.
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Physiologically, this is the result of the atrioventricular valve’s cusps bulging into the atria
during ventricular isovolumetric contraction. In the model, this observation was made
possible by including physical representations of the valves in the mechanical mesh and
was visible in the AVPD as well (Figure 12). In the ventricular PV-loops, the four major
phases are present: (1) isovolumetric contraction; (2) ejection of blood from the ventricles;
(3) isovolumetric relaxation; (4) passive filing with blood. Except for LV volume, no data
related to the circulatory system were available from the healthy volunteer. Therefore, the
parameterization of the lumped parameter model is motivated entirely by values obtained
from literature and might not be fully representative to our specific case. The systolic
pressures of the LV and the RV are too high for a healthy heart and are likely the result
of the steep increase in stress due to the tension model. An optimized tension model
could potentially address this issue and properly reflect systolic and diastolic behavior of
the ventricles.

Using a closed-loop system makes it possible to study the influence of local changes
in the cardiac tissue on the whole system. This was demonstrated by introducing an RFA
scar into the left atrium (LA). The steady state of the circulatory system adapted to the
decreased contractile function of the LA in a matter of 3 heart cycles and indicates that
the general pumping efficiency of the ventricles is not heavily affected by the scar. Scar
tissue typically shows an increased stiffness due to the higher collagen content compared
to myocardial tissue. This could contribute to higher local stresses on the tissue in the atria
and increasingly affect ventricular function. We did not consider this in our simulation
setup and it should be included in further investigations of such scenarios. Studies like
this can only be done with a whole heart model including the atria, the ventricles, and
a circulatory system with a description of all necessary compartments. However, such
a model is computationally very expensive and renders a patient-specific optimization
of haemodynamic parameters challenging, especially since most of the parameters are
unavailable from human measurements due to their invasive nature.

5.3. Numerical Considerations

The simulation framework proposed in this study was previously verified in N-version
benchmarks that investigated the spatio-temporal convergence of the electrophysiological
system [100] and the mechanical system [136], respectively.

For the solution of the monodomain equation, a small spatial resolution is required
to avoid spatial undersampling artifacts leading to a reduction in conduction velocity or
even conduction block. With an average spatial discretization of 0.6 mm of the electro-
physiological domain ΩEP, we use a coarser mesh than all values tested in [100]. Recently,
Woodworth et al. published in [137] a convergence study for the monodomain problem
coupled to the cell model of ten Tusscher et al. [138]. The spatial discretization needed to be
in the convergence region is out of scope of the technical requirements for the simulations
of this work. However, to match prescribed velocities [132] for the electrical activation
pattern the conductivity values are increased for the whole heart simulations. As shown in
Figures 6 and 13, the resulting activation sequence matches normal patterns observed in
humans [107,109].

The benchmark of the mechanical deformation problem only considered a simpli-
fied approach, which cannot be directly translated to a whole heart simulation scenario.
However, it includes important aspects of cardiac function, such as the active contraction
of the heart muscle, pressure boundary conditions, and a complex distribution of fiber
orientations. We extended this benchmark problem to include different spatial resolutions
and finite elements of a different order. The results are presented in the supplementary
material and show negligible deviations in the solution for a similar spatial discretization
as the left ventricle in our whole heart model as long as quadratic elements are used.
Quadratic elements additionally reduce the effect of volumetric locking that is introduced
by the penalty formulation used to enforce quasi-incompressability. For linear tetrahedral
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elements, volumetric locking is a major concern and would require a substantially smaller
spatial discretization to achieve the large deformations required in cardiac mechanics.

To the best of our knowledge, there is currently no extensive existence result nor
convergence study available for the fully coupled electro-mechanical problem. Some
results were first presented by Andreianov et al. [139] and an extensive proof is given
in [140], where an active strain decomposition was assumed in contrast to the active stress
formulation used in this work. Moreover, the equations of finite elasticity were linearized
and assumed to be isotropic. The authors mention that the proof is extensible to anisotropic
and polyconvex material formulations, for which there are some existence results ([63],
Chapter 7). Unfortunately, the material formulation and boundary conditions used in this
work do not satisfy the necessary assumptions.

First, ideas to establish a benchmark for the coupled system were proposed by Quar-
teroni et al. [11] and Santiago et al. [12]. Their results implicate that the change in con-
duction velocity due the spatial discretization errors in the solution of the monodomain
equation are the most prominent and cause a temporal shift in mechanical activation. The
magnitude of the deformation itself was not affected for the tested scenarios. This supports
the approach applied in this study to use different spatial resolutions for the mechanical
and the electrophysiological problems. However, using two domains requires projection
techniques to transfer values between these domains. To solve this, linear interpolation
using shape functions was used. Extrapolation of values is avoided by ensuring that the
boundaries of the domains are identical.

6. Conclusions

In this work, we propose a framework for the fully coupled cardiac electro-mechanical
problem with a detailed description of appropriate boundary conditions such as a lumped
parameter model of the human circulatory system and a contact handling that replicates
the effects of the tissue surrounding the heart.

We provide parameterizations of a fully coupled excitation contraction model for
cells of the atrial and ventricular myocardium. Both the intracellular calcium transient
and the tension development match data of human tissue preparations from literature.
Furthermore, the validity of the model is demonstrated through a simulation on a personal-
ized heart geometry created from magnetic resonance imaging data of a healthy volunteer.
Coupling the 0D lumped parameter model of human circulation to all four chambers of
the 3D electromechanical model enables a faithful reproduction of the major phases of
the cardiac cycle as well as the characteristic figure of eight shape in the atrial PV-loops
and flow patterns observed in clinical practice. Including the influence of the surrounding
tissue into the model yields an atrioventricular plane displacement close to that observed
in the MRI data. Finally, we demonstrate the potential of the model to include pathological
changes and predict effects of therapeutic interventions by introducing an ablation lesion in
the left atrium which led to changes in the activation and contraction of the left atrium. As
a result of the changed loading conditions, the end-diastolic volume, and thus, the cardiac
output of the left ventricle was reduced as well.

The adaptability of the framework allows comprehensive personalization of the model
and paves the way towards digital twin modeling.
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