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Abstract
We present an integrated market model which considers the dependencies between
the wholesale market and the highly regulated balancing power markets. This fosters
the understanding of the mechanisms of these markets and, thus, allows the evaluation
of the designs of these markets and their interplay. In contrast to existing literature,
in our model the prices on the different markets are interdependent and endogenously
determined, which also applies to the switch from inframarginal suppliers to extra-
marginal suppliers. Linked to this, the implementation of a specific assignment of the
suppliers to the different markets is according to their production costs and their ability
to provide balancing power. We prove the existence of a market equilibrium, analyze
its outcome and contrast this with German market data. Based on this model, we
assess design changes, partly stipulated by recent European regulation. This includes
uniform pricing as a common settlement rule (effect: no truthful bidding in general),
standardized prequalification criteria (promising measure for cost reduction), market
flexibilization via “free energy bids” (no increased competition) and the alternative
score “mixed-price rule” (no effect on the equilibrium).
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1 Introduction

To ensure a proper working of the electricity system, ancillary services are used. The
most important short-term service is balancing power (henceforth abbreviated as BP,
see Appendix1): it balances demand and supply deviations in real-time. This ensures a
stable grid frequency in alternating current grids. BP procurement is carried out by the
system operator entity, e.g. transmission system operators (TSO) in Europe (ENTSO-E
2020). The mechanism on the BP markets are procurement auctions, i.e., prequalified
suppliers compete for BP provision (Ocker et al. 2016).

Prequalified suppliers can act on different electricity markets (wholesale market
and BP markets), and the suppliers, who provide BP, must run their plant at a minimal
load and sell this electricity on the wholesale market. This causes interdependencies
between the wholesale market and the BP markets (Just and Weber 2008). This is a
major focus of our research. We provide a stylized integrated market model to identify
and examine the characteristics of the different markets and their interdependencies.
This approach does not only foster the understanding of the interdependent markets,
but it also allows to examine and evaluate elements and changes of the market designs.
Thus, our paper contributes to the field of electricity regulation.

In Europe, the “Electricity Balancing Guideline” states the framework conditions
for a pan-European BP market with a harmonized structure (European Commission
2017a). This includes a harmonized settlement rule (uniform pricing) to incentivize
truthful bidding and increase efficiency, andmarket flexibilization (“free energy bids”)
to ease the integration of volatile renewable energy sources. With the same intention,
the “System Operation Guideline” sets requirements for prequalification (European
Commission 2017b). In addition, there were changes in the auction design stipulated
by the regulatory authority “Bundesnetzagentur” in Germany. In 2018, the scoring rule
(rule for winner determination) changed to the so-called “mixed-price rule,” aiming
at BP cost reduction (Bundesnetzagentur 2018). While the intentions of these design
changes are clear, so far, their effects on the interlinked wholesale and BP markets
have not been assessed. We close this gap by applying our model to examine and
evaluate these design changes.

The theoretical foundations for BP auction design are laid by Bushnell and Oren
(1994) who analyze bidding strategies for different scoring rules and settlement rules.
They derive conditions for efficient equilibria. Chao and Wilson (2002) show that a
scoring rule consisting only of the capacity bid suffices the efficiency condition if
incentive compatibility is imposed. The latter yields that suppliers energy bids reveal
their variable cost, and energy bids are paid the wholesale market price. Müsgens
et al. (2014) transfer this to the German BP markets. Here, the proposed scoring rule
of Chao and Wilson (2002) is applied, but energy pricing is based on bids. They
argue that a switch from pay-as-bid to uniform pricing ensures efficient activation. We
relate to these contributions and present an equilibrium model for the wholesale and
BP markets, considering different scoring and settlement rules.2 The distinguishing

1 The appendices are available in Ehrhart and Ocker (2021).
2 The scoring rule proposed by Chao and Wilson (2002) is applied in many European countries (Ocker
et al. 2016) and will be implemented in future harmonized European BP auctions (European Commission
2017a).
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feature of ourmodel is that we consider the dependencies between themarkets endoge-
nously: prices are not exogenously given, but the result of the interplay between the
markets. In contrast, Müsgens et al. (2014) assume an exogenous wholesale market
price, which yields two classes of suppliers: suppliers with production units which
have variable cost below the wholesale market price (inframarginal), and suppliers
with variable cost above the wholesale market price (extramarginal). This distinction
is crucial for the cost of BP provision: inframarginals include opportunity costs of not
trading at the wholesale market, extramarginals cover their expenses by BP profits. In
our model, the market interplay induces a specific assignment of the suppliers to the
different markets according to their production costs and their ability to provide BP.
Thus, inframarginality and extramarginality are endogenously determined.3

Building on our market model, we prove the existence of an equilibrium and ana-
lyze its allocation, costs and prices. A central result is that all suppliers of negative
BP are inframarginal, while in the positive market suppliers are inframarginal and
extramarginal, depending on their production cost. We also consider empirical market
data by comparing our theoretical results with German market results of 2015. Fur-
thermore, we prove that lowering BP prequalification criteria is a promising means to
reduce total costs. The mixed-price rule, however, does not impact the market equilib-
rium, although it may incentivize suppliers to change their bidding behavior. We also
show that energy bids are not expected to foster competition, and that a switch of the
settlement rule to uniform pricing does not incentivize truthful bidding in general.

The paper is structured as follows. Section 2 discusses related literature, Sect. 3
illustrates the electricity market design and Sect. 4 introduces our model. Section 5
presents equilibrium results, and Sect. 6 analyzesmarket design changes. Finally, Sect.
7 concludes.

2 Related literature

The first formalization of the economic conditions for BP markets is provided for
California in the course of the electricity sector unbundling in the 1990s (e.g. Kirsch
and Singh 1995; Borenstein et al. 1995; Kahn et al. 2001). Opportunity costs between
markets, the effects of market power and of a change of the settlement rule are investi-
gated. With focus on auction design, efficiency properties and incentive compatibility
are examined, focusing on the scoring rule and equilibrium bidding strategies (e.g.
Kamat andOren2002). There are several contributions dealingwith regulatory aspects:
increased renewables’ penetration, information feedback schemes and further design
variables, such as auction lead time and learning (e.g.Vandezande et al. 2010;Müsgens
and Ockenfels 2011; Van der Veen and Hakvoort 2016; Borne et al. 2018; Doraszelski
et al. 2018).

In Germany, there is an ongoing discussion on regulation and market imperfec-
tions since the liberalization of the auctions in 2002. Market entry barriers due to

3 Endogeneity is also incorporated in the model of Just and Weber (2008): BP suppliers cannot offer
their entire capacity on the wholesale market, but have to run their units at a minimal load. However, the
methodology for solving differs: Just and Weber (2008) apply a numerical solving procedure, whereas our
model is solved analytically.
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prequalification (Müller and Rammerstorfer 2008), dynamics of the reserve prices
(Rammerstorfer and Wagner 2009) and strategic capacity withholding of suppliers
with market power are assessed (Heim and Götz 2013). Recently, a number of market
modifications were implemented, e.g. the aggregation of the four regional German BP
markets to a single market and the shortening of the reservation period. Literature on
BP auction design also widens, e.g. an examination of arbitrage opportunities between
the wholesale market and the BP markets (Haucap et al. 2014; Just and Weber 2015;
Ocker et al. 2018a). The massive subsidization of wind and solar generation yields to
an investigation of renewables and theBPmarket. The “GermanParadox” is presented:
balancing reserves reduced by 15%, while wind and solar capacity tripled since 2008.
The reasons are shorter intraday trading products and grid control cooperations (Hirth
and Ziegenhagen 2015; Ocker et al. 2017).

3 Electricity markets

3.1 Electricity wholesale market

Electric energy (henceforth energy) is traded at forward markets and at spot markets
(e.g. Ströbele 2013;KULeuvenEnergy Institute 2015; Zweifel et al. 2017). At forward
markets trading is more long-term, whereas at spot markets the point of delivery is
instantaneous. Spotmarkets include a “day-ahead” and an “intraday”market. The day-
ahead auction is considered as the central market place for electricity trading for the
following day. On the contrary, intraday trading is done close to real-time and its main
purpose is adjusting to changing circumstances, e.g. weather forecast or unplanned
outages of units (Ocker et al. 2020).

3.2 Balancing power auctions

Traded volumes at the wholesale market usually differ from the actual production. The
reason is that contracted volumes are based on predictions of supply and demand. A
deviation which persists until real-time has a direct influence on the grid frequency in
alternating current systems: if too much (little) energy is supplied, the grid frequency
increases (decreases), which can lead to blackouts. To avoid this, system operators
apply BP for stabilization (Zweifel et al. 2017).

Three different BP qualities can be distinguished: Primary BP (PBP), Secondary
BP (SBP), and Tertiary BP (TBP) (e.g. ENTSO-E 2016).4 They differ in the reaction
time.5 Each of the BP qualities comprises a separate procurement auction (Ocker et al.
2016).We focus on theweekly SBP andTBP auctions because they include the scoring
rule proposed by Chao and Wilson (2002).

4 PBP is also referred to as “Frequency Containment Reserve (FCR)”, SBP as “automatic Frequency
Restoration Reserve (aFRR),” and TBP as “manual Frequency Restoration Reserve (mFRR).” We refer to
the German terms.
5 First, PBP is activated to limit deviations from the grid frequency, then SBP is utilized to restore frequency
and, finally, TBP is activated as long-term measure. In Germany, PBP must be available after 30 s until 5
min, SBP after 5 min until 15 min, and TBP after 15 min until 60 min after an imbalance.
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The deviation of the contracted production is separated in an overproduction (e.g.
from wind plants during a storm) or an underproduction (e.g. from solar plants during
a cloudy day). Thus, BP needs to provide an increased and decreased energy supply,
which is implemented via two BP products: for the “positive product” (negative prod-
uct) suppliers provide upward (downward) regulation (e.g. ENTSO-E 2016; Ocker
et al. 2016). BP provision requires a prequalification, which leads to a highly invariant
and limited supplier set.6 Suppliers encounter two types of cost: “capacity cost” for
reserving balancing capacity [megawatt, MW], and “energy cost” for the delivery of
balancing energy [megawatt hour, MWh]. In Germany, capacity costs are part of the
grid tariff, whereas energy costs are accounted to the imbalanced party (see Sect. 3.3).

Suppliers submit three-dimensional bids: a capacity offer [MW], a capacity bid
[Euro/MW], and an energy bid [Euro/MWh].7 Based on these bid information, scores
of suppliers are calculated and those with the lowest scores are awarded. Until the
regulatory intervention in 2018, the scoring rule in the German SBP and TBP markets
was based on the capacity bid; then, it included also the energy bid (mixed-price rule).
For settlement, pay-as-bid (PaB) pricing or uniform pricing (UP) is applied. If PaB
is used, awarded suppliers are paid their submitted bids, if UP is used, all awarded
suppliers are paid a uniformprice. In theGermanSBP andTBPmarkets PaB is applied.
Ultimately, the delivery of balancing energy is activated according to a merit-order of
energy bids, i.e., suppliers with the lowest energy bids are utilized first and, thus, for
the longest timespan.

3.3 Imbalance settlement scheme

BP procurement is the physical means to cope with imbalances. The financial set-
tlement is done via the imbalance price. A market party’s difference between the
contracted volumes and the actual physical position multiplied with the imbalance
price gives her penalty payment in a certain timeframe (Koch and Hirth 2019). In
Germany, the imbalance price is directly linked to the activated balancing energy bids.
Thus, the German imbalance price can be interpreted as a levy for the balancing energy
costs incurred to those responsible for activation (regelleistung.net 2021). To avoid
the penalty payment, market parties can close open positions by trading short-term.

4 Stylizedmarket model

4.1 Basic model

There are three energy markets: a wholesale market, a positive BP market and a
negative BP market. We consider a certain period (e.g. year). The average demand on
the wholesale market in this period is denoted by D and measured in gigawatt (GW).

6 For prequalification see regelleistung.net (2021) and for market concentration see Kaut et al. (2017).
7 This is the crucial difference to the German PBP market because here suppliers solely submit capacity
bids.
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The capacity demand on the positive and negative BP market is fixed and given by
B+ and B− (with B = B+ + B−).

There is a set of energy suppliers, each with one power plant, which have the
same capacity but differ in their variable energy production cost c between c and c.
We assume that UP is implemented on all considered markets, which is the common
settlement rule on the wholesale market and the planned rule for future European
BP auctions (European Commission 2017a). Thus, all awarded suppliers receive the
marginal price. On the BP markets, the uniform price for balancing energy is repeat-
edly determined within a pre-defined period of time – the “Balancing Energy Pricing
Period” (BEPP). That is, uniform price for each BEPP is determined by the high-
est activated balancing energy bid within the BEPP. The application of UP allows to
assume that the suppliers reveal their cost in their bids, which is the usual assumption
for the wholesale market. For the BP markets, see Sect. 6.4. Thus, the supply function
S : [c, c] → R

+ and its inverse S−1 : R+ → [c, c] are strictly increasing.
There are two different types of suppliers: BP-capable BP suppliers and non-BP-

capable nBP suppliers. nBP suppliers only participate on the wholesale market, while
BP suppliers can participate on the wholesale market and the BP markets. For the
latter, they must run their plant on a minimal load (share of capacity) m ∈ [0, 1)
and sell this energy on the wholesale market. The total supply includes both the BP
and the nBP suppliers: S(c) = SBP (c) + SnBP (c), where SBP : [c, c] → R

+ and
SnBP : [c, c] → R

+ denote the supply functions of BP and nBP suppliers. We assume
that BP suppliers are uniformly distributed among all suppliers: at each cost level c,
the BP suppliers’ share of the supply S(c) is δ ∈ (0, 1] and the nBP suppliers’ share
is 1 − δ.

Discrepancies between demand and supply are balanced by calling BP. The func-
tions

z− : (0, B−] → [0, 1]
z+ : [0, B+] → [0, 1] (1)

describe the cumulated relative frequency of the differences between demand and
supply in the period: z−(x) is the relative frequency of an excess supply of at least
x GW and, thus, refers the call of negative balancing capacity of at least x GW.
Analogously, z+(y) applies to an excess demand of at least y GW and, thus, to the
call of positive BP.8 The z-functions (1) also describe the relative calling frequencies
(abbrev.: rcf): z−(x) or z+(y) is the share of time within the period where a minimum
of x negative or y positive balancing capacity is called, respectively. For example, the
rcf in the German SBP market of 2015 is shown in Fig. 1. The interval [−2000;0]
MW belongs to the negative market (note that the curve of z− is shown reversely in
the figure), while the interval [0; 2000] MW belongs to the positive market. That is,
B− = 2 GW and B+ = 2 GW.

The z-functions (1) are strictly decreasing with z−(B−) = z+(B+) = 0 and
z−(x) + z+(y) ≤ 1 for x ∈ (0, B−] and y ∈ [0, B+]. The integrals
8 Discrepancies are only caused by production deviations, which can be justified by the increasing renew-
ables share.
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Fig. 1 Empirical functions for the rcf in the German positive (interval [0; 2000] MW) and negative (interval
[−2000; 0] MW) SBP market (peak and offpeak period) (Hertz 2021)

B̃− =
∫ B−

0
z−(x)dx and B̃+ =

∫ B+

0
z+(y)dy (2)

are the expected total negative balancing capacity and the expected total positive bal-
ancing capacity that are needed to balance the excess supply and excess demand. Thus,
γ − = B̃−/B− and γ + = B̃+/B+ are the fraction of provided negative balancing
capacity and of positive balancing capacity, i.e., the fraction of the balancing capaci-
ties for the delivery of balancing energy demand (with B̃ = B̃+ + B̃−). We call the
BP markets symmetric if the difference between demand and supply on the wholesale
market is symmetrically distributed, i.e., B− = B+ = B

2 and z−(x) = z+(y) for
x = y. In this case, B̃− = B̃+ and the average demand and average supply are equal.

Let c+
0 (c−

0 ) denote the lowest variable cost of all suppliers on the positive (negative)
BP market and c+

1 (c−
1 ) the highest variable cost.

9 The merit-order in the BP markets
maps a supplier (according to her cost c) onto a merit-order position on the positive
market by the bijective function r+ : [c+

0 , c+
1 ] → [0, B+] =: R+ and on the negative

market by r− : [c−
0 , c−

1 ] → [0, B−] =: R−, with the derivatives r+
c (c) > 0 and

r−
c (c) < 0. Each rank is assigned a rcf by the mappings a+ : R+ → [a+

min, a
+
max ]

and a− : R− → [a−
min, a

−
max ], with the derivatives a+

r (r) < 0 and a−
r (r) < 0. The

rcf determines the average share of time in which the supplier delivers BE. The values
a+
max and a

−
max (a

+
min and a

−
min) denote the highest (lowest) rcf in the two BP markets.

The rcf are determined by the z-functions (1), where

a+
min = z+(B+) = 0 , a+

max = z+(0) ∈ (0, 1) ,

a−
min = z−(B−) = 0 , a−

max = lim
x↓0 z

−(x) ∈ (0, 1) ,

a+
max + a−

max ≤ 1 . (3)

9 Any supply fluctuation requires BP activation and the costs are accounted to the suppliers. However, we
do not account for these additional costs in the model because they reflect on average around 0.1% of the
suppliers’ variable cost (see Appendix, available in Ehrhart and Ocker 2021). Instead, we assume that all
wholesale market suppliers deviate identically and dc denotes the average cost of balancing energy perMW
for supply fluctuations (c + dc represents the imputed variable cost).
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On the wholesale market, suppliers constantly produce energy and are remunerated
for each unit by the wholesale market price pW . On the BP markets, suppliers receive
the balancing capacity price p+

BC or p−
BC , and, if they are called, additionally a bal-

ancing energy price p+
BE (c) or p−

BE (c). The balancing capacity prices p+
BC and p−

BC
are the same for all suppliers and are determined by the highest accepted capacity bid
in the positive and the negative BP market, respectively. The balancing energy price
p+
BE (c) (p−

BE (c)) is determined by the associated costs of the highest merit-order
position that is needed to cover the demand within the BEPP. Thus, the length of the
BEPP influences a supplier’s balancing energy prices: the longer the BEPP, the higher
is the number of draws for balancing energy demand, and, thus, the higher (lower) are
the cost of the last supplier on the positive (negative) market. We model the average
supplier’s balancing energy price in dependence of factor ϑ ∈ [0, 1] that corresponds
to the length of the BEPP:

p+
BE (c) = c (1 − ϑ) + c+

1 ϑ , (4)

p−
BE (c) = −c (1 − ϑ) − c−

0 ϑ . (5)

The caseϑ = 1models the longest possible BEPP, inwhich the balancing energy price
p+
BE (p−

BE ) is always determined by the highest (lowest) supplier’s cost c+
1 (c−

0 ).
10

The smaller ϑ (i.e., the shorter the BEPP), the closer moves the supplier’s average
balancing energy price to her cost c.

Suppliers’ profit per produced energy unit on the wholesale market πW , on the
positive BP market π+

BP , and on the negative BP market π−
BP are given by11

πW (c) = pW − c , (6)

π+
BP (c) = m(pW − c) + (1 − m)[p+

BC + a+(r+(c))(p+
BE (c) − c)] , (7)

π−
BP (c) = (pW − c) + (1 − m)[p−

BC + a−(r−(c))(c + p−
BE (c))] . (8)

In the positive BPmarket, the suppliers’ profit (7) consists of the profit from selling the
minimal load on the wholesale market and the profit from providing BP, that is, bal-
ancing capacity and energy. In the negative BPmarket, suppliers are continuously paid
the wholesale market price pW for their entire capacity, although they may decrease
the load level. The provision of negative BP has no impact on their trading on the
wholesale market. The first part of (8) is the margin of selling the entire capacity at
the wholesale market and the second part is the BP profit.

4.2 Efficient activation of balancing power

Within the interval [ B−
1−m , B

1−m ], which applies to the positive BP market, the rcf
decreases from a+

max to a+
min = 0, and thus, the suppliers’ active capacities decrease

fromm+(1−m)a+
max tom. Due to the condition a−

max +a+
max ≤ 1, 1−(1−m)a−

max ≥
10 Note that suppliers submit negative energy bids in the negative market, see (8).
11 The wholesale market price fluctuates and, thus, the supplier’s profit, i.e., pW and πW (c) are average
values.
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m + (1−m)a+
max and, thus, the curve of active capacities is strictly decreasing within

[0, B
1−m ]. Applying the z-functions (1) together with (3), the curve of the BP suppliers’

active capacities for providing energy for the BP markets and the wholesale market is
given by the strictly decreasing function j(q):

j(q) =
{
m + (1 − m) (1 − z−(B− − q(1 − m))) : q ∈ [0, B−

1−m )

m + (1 − m) z+(q(1 − m) − B−) : q ∈ [ B−
1−m , B

1−m ] .
(9)

Using the maximum rcf a+
max leads to

j(q) =

⎧⎪⎨
⎪⎩
1 : q = 0

m + (1 − m) a+
max : q = B−

(1−m)

m : q = B
1−m .

(10)

The integral

J (m, B) =
∫ B

1−m

0
j(q)dq (11)

is the average active capacity of all BP suppliers. With (2) we get

J (m, B) = B−

1 − m
− B̃− + mB+

1 − m
+ B̃+ . (12)

The symmetric case is given by j( B
2(1−m)

) = 1+m
2 , j( B

1−m − q) = 1 + m − j(q)

for q ∈ [0, B
2(1−m)

], and

J (m, B) = B (1 + m)

2(1 − m)
. (13)

That is, in the symmetric case (see Fig. 2), J (m, B) is independent of the shape of the
j-curve. Since the asymmetry in the German markets is small (see Fig. 1 for the SBP
market), we restrict the following analysis to the symmetric case.

An efficient allocation on the BP markets requires that suppliers with low variable
cost have higher production volumes than those with high variable cost (see also
Müsgens et al. 2014). From the j-function (10), illustrated by Fig. 2, the efficiency
condition follows directly:

(A0) Rank of costs c−
0 < c−

1 = c+
0 < c+

1

In the negative BP market, c−
0 belongs to the supplier on the last rank in the merit-

order with a−
min = 0. This supplier continuously produces with her entire capacity.

The supplier with c−
1 has a rcf of a−

max . This supplier operates with the load m + (1−
a−
max ) (1−m) < 1. Thus, efficiency requires c−

0 < c−
1 . In the positive BP market, c+

0
belongs to the supplier on the first rank in the merit-order with rcf a+

max . This supplier
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Fig. 2 Example of a j-function in a symmetric BP market

operates on the load levelm+a+
max (1−m) ≤ m+(1−a−

max ) (1−m) because of a+
max+

a−
max ≤ 1. Thus, c−

1 = c+
0 . The supplier with c

+
1 is on the last rank of the merit-order

and never provides BP, but runs the plant on the load levelm on the wholesale market.
SinceBP suppliers only use the share 1−m of their capacities to provideBP, together

they need the capacity B
1−m to cover B. To cover B−, a total capacity of B−

1−m is needed,
which is provided by the BP suppliers with costs between c−

0 and c−
1 . The BP suppliers

in the subsequent cost interval [c+
0 , c+

1 ] with c+
0 = c−

1 together provide B+
1−m for cov-

ering B+. Hence, the interval [c−
0 , c+

1 ] corresponds to cumulated BP capacities in the

interval [0, B
1−m ], where [c−

0 , c−
1 ) corresponds to [0, B−

1−m ) and [c+
0 , c+

1 ] to [ B−
1−m , B

1−m ].
Within the interval [0, B−

1−m ), the rcf increases from a−
min = 0 to a−

max . Thus, in the
negative BP market, the suppliers’ (expected) active capacities for providing energy
for the BP markets and the wholesale market decrease from 1 to 1 − (1 − m)a−

max .

4.3 Stability andmarket clearing

BP suppliers either participate only in the wholesale market or simultaneously in a
BP market and the wholesale market. For an allocation to be stable, the first and last
position in the merit-orders are crucial. The supplier with c−

0 has to be indifferent
between her last position in the merit-order of the negative BP market and a switch
to the wholesale market. The supplier with c+

1 must be indifferent between her last
position in the merit-order of the positive BP market and not participating at all. The
suppliers with c−

1 (c+
0 ) has to be indifferent between a switch to the positive (negative)

BP market. These requirements lead to the following conditions.

(M0)Between − market (pW − c−
0 ) + (1 − m)p−

BC
!= pW − c−

0

(M1)Market − entrance m(pW − c+
1 ) + (1 − m)p+

BC
!= 0

(M2)BP − markets (pW − c−
1 ) + (1 − m)(p−

BC + a−
max (c

−
1 + p−

BE (c)))
!= m(pW − c+

0 ) + (1 − m)(p+
BC + a+

max (p
+
BE (c) − c+

0 ))

123



Design and regulation of balancing power auctions: an…

If one of these conditions is violated, either producing suppliers have an incentive
to switchmarkets or non-producing suppliers have an incentive to enter the BPmarket.

Market clearing and energy balance require the following conditions:

(S0)Wholesalemarket D = SnBP (pW ) + SBP (c−
1 ) + mB+

1−m
(S1)PositiveBPmarket B+ = (1 − m)(SBP (c+

1 ) − SBP (c+
0 ))

(S2)NegativeBPmarket B− = (1 − m)(SBP (c−
1 ) − SBP (c−

0 ))

(S3)Energybalance D − SnBP (pW ) + SBP (c−
0 ) + B̃− − B̃+ + J (m, B) = 0

Demand D on the wholesale market is met by the contracted supply, provided
by nBP and BP suppliers. The supply SnBP (pW ) includes all nBP units with cost
between c and pW . The supply of the BP units consists of SBP (c−

1 ), i.e., the negative

BP suppliers with cost between c and c−
1 , and of mB+

1−m , i.e., the positive BP suppliers
with cost between c+

0 and c+
1 who only supplym. The demand for positive and negative

balancing capacity is provided by the (1 − m)th share of BP units within the interval
[c+

0 , c+
1 ] and [c−

0 , c−
1 ] (S1, S2). Condition (S3) requires that total supplymeets demand

D also in case of deviations. Positive deviations B̃+ and negative deviations B̃− are
balanced by the BP suppliers with cost between c−

0 and c+
1 , whose active capacities

are given by J (m, B).

4.4 Total system costs

Total system costs C with a linear supply function S(c) = α c + β , α ∈ R
+ and

β ∈ R
+, are

C =
D−qBP−q0∫

(1−δ)β

S−1
nBP (q) dq +

q0∫

δβ

S−1
BP (q) dq +

B
1−m∫

0

j(q) S−1
BP (q + q0) dq , (14)

with q0 = SBP (c−
0 ) and qBP = J (m, B). Equation (14) gives the total costs for the

wholesale market and the BP markets. The first integral are the costs of nBP suppliers
in the interval [0, D − qBP − q0], the second integral are the costs of BP suppliers in
the interval [0, q0], and the third integral are the costs for the BP markets, given by the
costs of BP suppliers in the interval [q0, q0 + B

1−m ] weighted with the average active
capacity of function j(q).

5 Market equilibrium and empirical results

5.1 Allocation, costs and prices

The propositions in this section are derived under (A0), (M0), (M1), (M2), (S0), (S1),
(S2), (S3), symmetric BP markets, and a linear supply function S(c) = α c + β ,
α, β ∈ R

+, and
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SBP (c) = δ(α c + β) , (15)

SnBP (c) = (1 − δ)(α c + β) . (16)

Proposition 1 There exists an equilibrium of the wholesale market and the BPmarkets
with the following prices:

1. Wholesale market price: pW = D − β

α
≤ m c+

1 + (1 − m) c+
0

2. Balancing capacity price in the positive market: p+
BC = m

1 − m
(c+

1 − pW ) =
B
2

m
1−m

δ α
3. Balancing capacity price in the negative market: p−

BC = 0

See Appendix12 for the proof. The wholesale market price pW is determined by the
inverse supply function at demand D. Condition pW ≤ m c+

1 + (1 − m) c+
0 ensures

stability since a higher pW induces suppliers of positiveBP to switch into thewholesale
market. The capacity price p+

BC in the positive BPmarket covers the wholesale market
loss of the supplier with c+

1 > pW caused by her costs of supplying the minimal load
m and a rcf of zero. The capacity price p−

BC is zero.

Proposition 2 In the equilibrium of the wholesale market and both BP markets the
following holds for c−

0 , c
+
1 , c

−
0 , and c+

1 :

1. The cost c−
0 of the supplier on the last rank in the negative BP market is given by

c−
0 = D − β

α
−

B
2

1+m
1−m

δ α
= pW −

B
2

1+m
1−m

δ α
< pW .

2. The costs c−
1 and c+

0 of the suppliers on the first rank in both BP markets are given
by

c−
1 = c+

0 = D − β

α
−

B
2

m
1−m

δ α
= pW −

B
2

m
1−m

δ α
= pW − p+

BC ≤ pW .

3. The cost c+
1 of the supplier on the last rank in the positive BP market is given by

c+
1 = D − β

α
+

B
2

δ α
= pW +

B
2

δ α
> pW .

See Appendix13 for the proof. Since the cost c−
1 of the last supplier of negative BP

is determined by pW − p+
BC , c

−
1 ≤ pW . Thus, all suppliers of negative BP are infra-

marginal. This also applies to the suppliers of positive BP with low cost, beginning

12 The appendices are available in Ehrhart and Ocker (2021).
13 The appendices are available in Ehrhart and Ocker (2021).
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with c+
0 = c−

1 , while the suppliers with higher cost are extramarginal. According to
Proposition 2 (2.), if theminimum loadm converges to zero, the line between suppliers
of negative BP and those of positive BP, given by c−

1 , converges to the line between
inframarginals and extramarginals, given by pW . That is, c−

1 = c+
0 = pW for m = 0.

Proposition 3 In the equilibrium of the wholesale market and both BP markets the
following holds for the profits of the suppliers:

1. πW (c) and πBP (c) decrease in c.
2. πW (c) ≥ 0 for c ∈ [c, pW ] and πBP (c) ≥ 0 for c ∈ [c−

0 , c+
1 ].

3. πW (c) ≥ πBP (c) for c ∈ [c, c−
0 ] and πBP (c) ≥ πW (c) for c ∈ [c−

0 , c+
1 ].

See Appendix14 for the proof. On all markets, suppliers’ profits are greater than zero
and decrease with their variable cost. For low cost c < c−

0 the profit is higher in the
wholesale market than in the BP markets, while for higher cost c > c−

0 it is the other
way round.

Proposition 4 The equilibrium of the wholesale market and both BP markets ensures
overall market efficiency, i.e., it minimizes the total system costs C.

See Appendix15 for the proof.16

5.2 Comparison with Germanmarket data

We calibrate our model to the German wholesale market and SBP markets in 2015.17

Details are provided in the Appendix18. Table 1 shows that total BP costs of 2013 (403
Mio. Euro) nearly halved in 2015 (205 Mio. Euro). Hence, costs move towards our
model result of 137 Mio. Euro.19

Balancing capacity costs decreased from 345 Mio. Euro in 2013 to 141 Mio. Euro
in 2015. Our model predicts costs of 123 Mio. Euro for 2015, which are accounted
entirely to the positive market. In the negative market costs decreased around 80%
since 2013 (from 202 Mio. Euro to 39 Mio. Euro) and move towards our prediction
of 0 Mio. Euro. The development of the balancing energy costs is not uniform: they
reduced by 8 Mio. Euro from 2013 to 2014 and then increased by 14 Mio. Euro from
2014 to 2015. Thus, there is a difference between the observed balancing energy costs
and our model prediction of 50 Mio. Euro in 2015.20 We discuss this in Sect. 6.3.

14 The appendices are available in Ehrhart and Ocker (2021).
15 The appendices are available in Ehrhart and Ocker (2021).
16 Note that in case of asymmetric BPmarkets or a non-linear supply function, efficiency is not guaranteed.
17 We focus on the SBP market because it has a higher demand than the TBP market and, thus, is regarded
as the most important BP quality (e.g. Borne et al. 2018). We consider the market of 2015 because since
July 2016 the Austrian and German TSOs procure a common SBP merit-order, i.e., activation is linked
within the two countries. Note that the conclusions drawn for the SBP market can be transferred to the TBP
market because they share the same market design and have similar market characteristics (see Sect. 3.2).
18 The appendices are available in Ehrhart and Ocker (2021).
19 Note that balancing capacity demand remained nearly constant since 2013, while balancing energy
demand declined continuously since 2013 (Bundesnetzagentur 2016a, b, 2017).
20 It is noted that our predicted balancing energy costs are a lower bound in our model (see Appendix,
available in Ehrhart and Ocker 2021).
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Table 1 Empirical and model results for the German SBP market with unit Mio. Euro

Cost parameter Observed 2013 Observed 2014 Observed 2015 Model 2015

Balancing capacity costs 345 210 141 123

Positive market 143 132 102 123

Negative market 202 78 39 0

Balancing energy costs 58 50 64 14

Positive market 95 65 72 40

Negative market −37 −15 −8 −26

Total BP costs 403 260 205 137

6 Market design changes

We analyze four relevant and topical design changes. These were either already intro-
duced (lowering BP prequalification criteria, free energy bids) or already withdrawn
(mixed-price rule) or will be implemented in the near future (uniform pricing) by the
regulator.

6.1 Lowering balancing power prequalification criteria

First, we consider the measure of increasing the set of BP suppliers by lowering pre-
qualification criteria (e.g. regelleistung.net 2021). An increasing share of prequalified
BP suppliers δ has the following effects: By Proposition 1, p+

BC decreases, while
pW and p−

BC do not change. By Proposition 2, the interval [c−
0 , c+

1 ] becomes smaller
because c−

0 increases and c+
1 decreases. The reduction of the interval length is caused

by a higher density ofBP suppliers.More precisely, the difference between pW = D−β
α

and c−
0 , between pW and c−

1 = c+
0 , and between c+

1 and pW decreases.

Proposition 5 The total costs (14) decrease in δ.

The proof is in the Appendix21. This result recommends to lower prequalification
criteria.

6.2 Free energy bids

The European Commission (2017a) foresees so-called “free energy bids:” BP sup-
pliers can submit only energy bids close to real-time (i.e., no capacity payment), if
they did not participate or were not awarded in the regular (capacity bid) auction. In
Germany, free energy bids were introduced on November, 03, 2020. The rationale is
to increase competition and, thus, to reduce costs for BP activation (German TSOs
2020). However, our analysis does not support this hypothesis.

21 The appendices are available in Ehrhart and Ocker (2021).
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Proposition 6 The extension of our model by allowing suppliers, who were not allo-
cated on a BP market, to submit free energy bids does not change the equilibrium
results in Sect. 5.1.

The proof is in the Appendix22. The reason is that it is not profitable for suppliers
to enter the BP markets or to switch between the BP markets with free energy bids.
This results is supported by the market outcome in Germany: nearly no additional free
energy bids are submitted and an increase in liquidity since November is not observed
(Bundesnetzagentur 2020).

6.3 Switch of the scoring rule: themixed-price rule

In Germany, the trend of increasing energy bids, particularly in 2018, caused very high
imbalance prices. As a reaction, the German regulator decided to change the scoring
rule to the so-called “mixed price rule” in late 2018 (Bundesnetzagentur 2018). While
the prior score was determined only by the capacity bid bBC (see Sect. 3.2), the
mixed price score b is determined by a combination of bBC and the energy bid bBE :
b = bBC +�bBE with � > 0. The rationale behind this modificationwas to incentivize
a changed bidding behavior to prevent extreme energy bids. However, the mixed-price
rule has no effect on the equilibrium in our model.

Proposition 7 The equilibrium results in Sect. 5.1 also hold under the mixed-price
rule.

See Appendix23 for the proof.
Yet, market results changed because some suppliers submitted lower energy bids

and higher capacity bids (regelleistung.net 2021). Transferred to our model, where
∗ denotes the equilibrium bids under the prior scoring rule and mp under the mixed
price rule, this means

bmp
BC > b∗

BC and bmp
BE < b∗

BE . (17)

In the Appendix24 we show by means of a micro-economic model that the mixed-
price rule generates incentives for (17), if the suppliers think “myopically” and do not
adapt their beliefs about their opponents’ bidding behavior to the new rule. However,
in our model in Sect. 4, these changed bids cannot establish an equilibrium because,
for example, higher capacity bids lead to higher capacity payments, which violates
Condition (M1). We therefore expected that these changes would have disappeared in
the course of time. Before this could have happened, after some months the regulator
returned to the prior scoring rule because of a drawback of the new rule: high and
frequent imbalances occurred as a result of low imbalance prices (see Sect. 3.3),

22 The appendices are available in Ehrhart and Ocker (2021).
23 The appendices are available in Ehrhart and Ocker (2021).
24 The appendices are available in Ehrhart and Ocker (2021).
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which did not incentivize market parties to close open positions (Higher Regional
Court Düusseldorf 2019).25

6.4 Switch of the settlement rule: uniform pricing

The European Commission (2017a) further foresees UP because it should induce
suppliers to report their true costs in their bids (e.g. Müsgens et al. 2014).26 However,
we do not attribute this property to UP. Only for a specific ϑ a bidder with cost c
is incentivized to truthfully reveal her cost. Hence, incentive compatibility does not
apply in general.

Proposition 8 A supplier’s optimal energy bid b∗
BE depends positively on her cost c

and negatively on the length ϑ of the BEPP. For the positive [negative] BP market
the following applies: (i) ϑ = 0: b∗

BE > c [−c], (ii) ϑ = 1: b∗
BE < c [−c], (iii) there

exists a ϑ ∈ (0, 1): b∗
BE = c [−c].

See Appendix27 for the proof.We provide an intuitive explanation. The time a supplier
delivers balancing energy depends on her merit-order position. Hence, the length of
the BEPP has an impact on the suppliers’ bidding strategy. The longer the BEPP,
the more bids are taken into account for the determination of the price. This induces
suppliers to reduce their energy bids, even below their costs, for the sake of a better
merit-order position (Ocker et al. 2018a, b). In our model, the case ϑ = 1 corresponds
to UP for only one BEPP, and the case ϑ ∈ (0, 1) to UP for several BEPPs. Assuming
that the last accepted bid determines the uniform price, a short BEPP increases the
probability that a bidder’s own bid sets the price. Thus, ϑ = 0 corresponds to PaB
and suppliers have an incentive to exaggerate their costs in their bids. Note that the ϑ

that induces b∗
BE = c [−c] depends on c. Generally, a unique ϑ that induces truthful

bidding to all suppliers does not exist. However, since the differences between the
incentive-compatible ϑ are expected to be small, we take the freedom and assume
truthful bidding in our model.

In practice, we doubt that suppliers understate their costs in their bids in case of
a long BEPP. Moreover, UP may also be prone to manipulation by large suppliers
submitting multiple bids, which is not captured by our model. These suppliers have
an incentive to exaggerate some of their bids or even reduce their offered capacity to
increase the bid that determines the uniform price and, thus, to increase their payment
and profit (Haufe and Ehrhart 2018).

25 The intraday market prices were around 500 Euro/MWh and imbalance prices around 100 Euro/MWh.
This resulted in an undersupply of balancing capacity of nearly 10 GW, which could not be met by the
contracted SBP and TBP volumes of 3 GW. As a relieving measure, German TSOs procured additional
balancing capacities, which caused capacity bid prices of over 37,000 Euro/MW (German TSOs 2019).
26 In Germany, UP will be introduced at the end of 2021 (regelleistung.net, 2021).
27 The appendices are available in Ehrhart and Ocker (2021).

123



Design and regulation of balancing power auctions: an…

7 Conclusion

We present an integrated market model which considers the dependencies between the
wholesale and BP markets. We prove the existence of a market equilibrium, analyze
its outcome and contrast this with German market data. Moreover, we show that the
mixed-price rule does not impact the market equilibrium but may incentivize suppliers
to change their bidding behavior in an undesirable way. Free energy bids do not foster
competition, and a switch to UP does not lead to truthful bidding in general. Lowering
BP prequalification criteria is a promising means to reduce costs.

Section 6.3 illustrated that if the imbalance price is too low, there are insufficient
incentives to close open positions. As a reaction, German TSOs changed the imbalance
scheme: the imbalance price is now linked to the intraday market price, in accordance
with the European target design (ACER 2021). In case of an electricity undersupply
(oversupply) and the necessity for positive (negative) BP, the imbalance price will be
at least as high (low) as a certain intraday index. This sets the right incentives: BP
activation is more costly than self-balancing in the intraday market.

Some of our assumptions may be relaxed in an extended model: the linear supply,
the same share of BP production units in the supply, or the homogeneous must-run
capacities for all units. Further extensions may include suppliers with multiple plants
and those with market power. Finally, experimental studies may help to test and foster
our theoretical findings.
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