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LOCAL FOLIATION OF MANIFOLDS BY SURFACES
OF WILLMORE TYPE

by Tobias LAMM, Jan METZGER & Felix SCHULZE (*)

ABSTRACT. — We show the existence of a local foliation of a three dimensional
Riemannian manifold by critical points of the Willmore functional subject to a
small area constraint around non-degenerate critical points of the scalar curvature.
This adapts a method developed by Rugang Ye to construct foliations by surfaces
of constant mean curvature.

RESUME. — Nour prouvons l’existence d’un feuilletage local d’une variété riema-
nienne de dimension trois autour des points critiques de la courbure scalaire par les
points critiques non dégénérés de la fonctionnelle de Willmore sous la contrainte
d’aire petite. On adapte une méthode développée par Rugang Ye pour construire
un feuilletage par des surfaces & courbure moyenne constante.

1. Introduction

In this paper we consider the Willmore functional
1 2
FE)=- [ H*du
4 Js

for surfaces ¥ immersed in a 3-dimensional Riemannian manifold (M, g).
Here H = \; + )2 denotes the sum of the principal curvatures of X.
More precisely, we consider the variational problem

(1.1) inf{F(X) | ¥ — M with |X| =a}
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1640 Tobias LAMM, Jan METZGER & Felix SCHULZE

where a € (0,00) is a (small) prescribed constant and |%| denotes the area
of ¥ with respect to the induced metric.
The Euler-Lagrange equation for this variational problem is

(1.2) AH + H|A]? + H Ric(v,v) = AH.

Here A denotes the Laplace—Beltrami operator on X, A is the trace free
part of the second fundamental form A of ¥ and Ric(v,v) is the Ricci-
curvature of (M, g) in direction of the normal v to ¥. Note that the left
hand side is two times the first variation of F and the right hand side of
this expression is a Lagrange-parameter A € R multiplied with the first
variation of the area functional.

In previous papers the first two authors have shown that if (M,g) is
compact then there exists a small ay € (0,00) depending only on (M, g)
such that the infimum in (1.1) is attained for all a € (0,ap) on smooth
surfaces X, [6]. See [1] and [14] for alternative proofs and [11] for a recent
parabolic approach. Existence and multiplicity results of Willmore surfaces
in Riemannian manifolds have been studied previously in a perturbative
setting in [12], [13] where the functionals F and the L?*-norm of A are
considered without a constraint.

For a — 0 the surfaces 3, converge to critical points of the scalar curva-
ture [5, 6, 9]. A similar result has been obtained previously for small isoperi-
metric surfaces by Druet [2]. This was later generalized by Laurain [8] to
surfaces with constant mean curvature.

It is natural to ask about the precise structure of this family when a
tends to zero. A similar situation was considered by Ye [15] for surfaces of
constant mean curvature, which are critical for the isoperimetric problem,
that is to minimize area subject to prescribed enclosed volume. He proves
that given a non-degenerate critical point p of the scalar curvature one
can find a pointed neighborhood U = U \ {p} which is foliated by hyper-
surfaces of constant mean curvature. That is U = |J He(Hy,00) D H Where
Y g has constant mean curvature H. For H — oo these surfaces become
spherical and approach geodesic spheres S,.(p) with radius r ~ % Ye uses
an implicit function argument to show that the Xy can be constructed as
graphs over S,.(0). The main difficulty is that the operator linearizing the
mean curvature has an approximate kernel corresponding to translations.
This approximate kernel can be dealt with by allowing a translation of the
S5-(0) and using the non-degeneracy of the second derivative of the scalar
curvature. Our result in this paper is to adapt the method of Ye to the case
of the Willmore functional. More precisely, we get the following result:

ANNALES DE L’INSTITUT FOURIER



SURFACES OF WILLMORE TYPE 1641

THEOREM 1.1. — Let (M, g) be a smooth Riemannian manifold and let
p € M be such that V Sc(p) = 0 and such that V? Sc(p) is non-degenerate.
Then there exists ag € (0,00), a neighborhood U of p and for each a €
(0,ap) a spherical surface ¥, which satisfies (1.2) for some A € R and
2| = a. The X, are mutually disjoint and g ,,) Xa = U \ {p}.

More detailed information on the structure of this foliation can be found
in Section 3 where the implicit function argument is carried out. In particu-
lar, we refer to Corollary 5.2 for some comments about the local uniqueness
of the X,.

The paper is organized as follows: In Section 2 we calculate the expan-
sion of the Willmore functional on small geodesic spheres to set up the
argument. In Section 3 we use the implicit function theorem to solve the
equation in a very similar manner to Ye. First we solve the equation in
the kernel of the linearized operator using the non-degeneracy condition on
the scalar curvature and by a generic implicit function argument we solve
perpendicular to the kernel. Proposition 4.4 in Section 4 establishes that
the ¥, indeed form a foliation as claimed. Finally in Section 5 we prove a
local uniqueness reslut for the X, as solutions to (1.2).

Remarks. — During the preparation of this manuscript, the authors
learned that Norihisa Tkoma, Andrea Malchiodi and Andrea Mondino [4]
have an independent proof of Theorem 1.1.

2. The Willmore operator on geodesic spheres

In this section we compute the basic geometric quantities and the Will-
more operator of small geodesic spheres. We consider a setup similar as
in [15], i.e. we consider a point p € M3 and an orthonormal basis {e; };)?:1
of T,,M which we use to identify T, M with R3. Furthermore, we consider
the map

¢:R*D B, (0) = M : x+ exp,(a'e;),

where p, > 0 is the injectivity radius of p. Let g be the pulled back metric
of M via ¢, with (-,-) denoting the euclidean metric on R®. We consider
the map ¥, : R — R3: z + oz and denote g := 0~ 2W%g.

We now compute the second fundamental form of S,(0) C T,M for
0 < p < 0~ 'p,. The normal to S, w.r.t. g is given by z/|z|, and working
w.l.o.g. at the north pole, i.e. e; for i = 1,2 are tangent vectors and ej is
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1642 Tobias LAMM, Jan METZGER & Felix SCHULZE
parallel to the normal, we obtain

Vo) =g (e, |xl| )
<“—W> )+ Lottt

1
= ; (gz] p2 gzl +x Fﬂsz)

This yields since z! =0 for [ = 1,2

>
S
I
Q
—
D
2‘
L(n
X

I

Q
N

o

i LG i
(2.1) W= (6% +a'T};) .

Furthermore, we have

k i
0=yg(v,py(ei)) = %Qki - %7

where p-(-) = e — (e;, v)v is the orthogonal projection onto the subspace
perpendicular to v. This gives

0 0
(2.2) Oim = D (»’ngki) = Omi T+ kagkiu

which we can use to compute

: 1, 0 0 0
xle = iglk <xl6$lgjk + xl@gu@ - xlaxkglj>

1, )
(2.3) = 59 g < Ho1 %3k + 0ik = Gik — Onj +9kj)
0
_ ik l
- 29 Dl Ik

We denote partial derivatives with a semicolon, instead of a comma for
covariant derivatives. From [10] and the definition of g we have the formula

0’2 0‘3 .
(24) 9i5(x) = 9i5(0) + - Ripgj 2727 + ~= Ripgj.r 2210’
1 2 .
+ 04 (20 Rzqu rs + Rzpqt R]rst) xpqurl,s + O(O—Q|£L’|5)7

where the curvature terms are all corresponding to g and are evaluated at
0. Since

0

ox™

j

.
= —glvgjw%ng
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and differentiating further (using that the first derivatives of g;; vanish at
0) we obtain:

s .. 2 . .
(2.5) gY(z)=¢"(0) — % R',;] oz — R’qurzrpz "+ O(a|z|b).
Combining (2.4) and (2.5), we see

zkla 1

e,
2972 5 595k —29 s (gkg(sx))‘szl

o2 o3
g 3 Ripgj 2P2? + — Rkpq] raPaia”

+ 0'4 (10 Rk:qu TS + 45 Rk}pqt Rjrst> 2Pl x®

20 + 0(05II5)>

1 1
=3 2RZ xp:nq+4a R’pqwx”xq:ﬂ

i 1 7 .5
+ o* (10 R’ qjirs T R’ gt Rjrst> 2Paix"x
+0(0|z]).
Combining this with (2.1) and (2.3), we can thus write

. 1 .0 _
) ik 1 I 7
P'hj—5j+§9 x@gﬂ—eXp(aj)
where exp here is the exponential map on matrices and
. 1 .
a'; = 39 Rl ol + 40 Rlqu’r aPaidz’

A 7 % T,.S
+ot (10 R pgirs 50 B pat Rjrst) aPriz"e® + O(o°|z[?).

This yields
deta [ &0 Lo 10\ _ tr(al
ets (05 + ST 2 exp(tr(aj))

1 1
=1- gaz Rpq 2Px? — 103 Rpgr 2P2la”

1 7 1
+o ( 0 Rpg.rs ~% R¥ pat kat—i-lS R, R7.5> 2Pl S +O(05|$|5)~

Note that for the Gauss curvature we have from (2.1)

]_ i ]. ik 1 8 1 7 r ik a
KSp = EdetQ <5j + 59 T axlgjk) = ?dew’ (5j + 59 ﬁgkj ’

TOME 70 (2020), FASCICULE 4



1644 Tobias LAMM, Jan METZGER & Felix SCHULZE

since %gkg =0 V k=1,2,3. Combining this with the above computation,
this yields
KSP (.’L‘)
1
2

1 , 1 :
(1 - 502 Ricpq 2Pz — 103 Ricpq,r 2Px2”
(2.7)

Ric 7 Ric,, Ric
_ g4 Z2PeTs ' Rk _ _pg oS P 0l T S
0< 10 +90quterst 13 ):vxxx)

+ p20(a%|z).

Combining (2.1), (2.3) and (2.6) we get for the mean curvature, using
Ricpg = —R

quia

1 ; 1 . 0 1 1 . 0
H — 5t - ikl Y —~ (241 =ikl Y y
S, P Y2< J+2g x@xlg]k> p( +1r3 <29 o9

1 1 1
= — (2 - Z0® Ricyy P27 — ~0° Ricy,r 222"
(2.8) p 3 4 ’
4 1 : 1 % D nq T S
— 0 Ricpg,rs +4—5 R pat Rirst | 2Px%2"x
+ p tO(0®|z).

For the norm squared of the traceless second fundamental form, we have
|A|? = 1(H? — 4K), which yields
2.9 A2 = p254 1Ri 'R, 1R' Ri PG T .8
() ‘ |—P g 9 Vg WStiTS 1ICpq NICys | 7T X" T
+p 20(0°|z]?)

We now aim to compute the laplacian of H on S;. Using formula (3.2)
in [3], we have

ASTH = AYH — Hess(H)(v,v) + g(VH, H)

(2.10) _ _ 977
= AYH — Hess(H)(z,x) — Ha' oOH

oxt’
where H = — Hv is the mean curvature vector of S1, and His any extension
of H. We have
~ . O*H o OH
2.11 AH =g¥ —— — g7k —
( ) g 0zi0zI 9754 ozk
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From (2.4) and (2.5) we get

g 1 ...,/ 0 0 0
gzjrfj = §gwgkl (axiglj + @gu - ng)

ki ij O L g 5 0

=99 %glj - 29 g @gij
= (9¢' + 0(0?)) (¢ + O(d?))

0.2
(2.12) X <3 (Riipj + Ripij) 2 + 0(03))

— 5 (5 +0(0%) (47 + 0(0%)

2
X (03 (Ritpj + Ripiy) 2 + 0(03))

2
= §02 Rickp zP 4+ O(o?).

We choose an extension of the mean curvature H on S; via
H:= pHs,.
Combining this with (2.8) and (2.12), this yields
gk OH 4 4o 5
(2.13) —g JFU,@ =97 Ric,” Ricgq 2Px? + O(0”).
Similarly, using (2.5) and (2.8) we obtain

(2.14)
i 02H g 0t
9" i ( T3 Rpg” " 0(03)>
2 3
. ( — 50'2 RiCij —% (RiCij,p +2 RiCipJ') P
1. 2. 2. 1
—o (5 Ricij pg +g Ricip,jq +3 Ricip ¢ +g

Ricpq,i;

1645

4 S 8 S
+ R ' Rapgt +ER i Rajqt >xpxq + 0(05)>

2
= —502 Sc —o® Sc , 2P

3 1 . 2 . en:
-0t (5 SC.pq +5(A Ric)pq + 5 Ric,” Ricsq

4 . 8 ;
+ E Ricét Rqut +£ Rszpt Rsiqt ) xPxd + 0(0'5),
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where we used that, due to the sign convention on the curvature tensor
(Rici; = *th‘jt) and the second contracted Bianchi identity 2Ricti’t =
Sc i, we have

RiCip’qj = RiCip,jq + qusi Ricsp _"_qusp Ricg;

and thus
97 Ricip q; = 3 Sc pg + Ric,” Ricg, + R, Ricy; -
This yields, using (2.11) with (2.13) and (2.14) that
9717 2 5 3 P
(2.15) AYH = —37 Sc—0°Scpx
3 1 . 2 . oen
ot (5 S¢ pq —l—g(A Ric)pq — YT Ric,” Ricgg

4 8 ; 5
+ g ];{iCS75 Rqut +£ Rszpt Rsiqt ).’Epl‘q -+ O(UO).

Furthermore, using (2.8) we see

OH , . 2 3 .
2.16) -— — 2’27 = 262 Ricy, 2Pz + =0 Ricyy , 2P2%2"
ox'oxd 3 pa 2 pa
rtox ’
4 6.,. 12 7 D,q T .S 5
+0o gRlcpqws—l-*45 R*,yt Rirst |2Px%2"2® + O(0”)

and combining (2.3) with (2.6) and (2.8)
oW OH 1 L0 OH
ljFlf)li:ilej il

@iy Haak ~ 27 T g

2
= —504 Rkqu Ricgs 2Px%2z" + O(0®) = O(c®),

since Rkpq,, Ricgs zPzlx"x® = 0 by symmetry considerations. Combining

(2.16) and (2.17), this yields
o . 9H
i % k
Sz " " T i g

2 3
— Z252R; Prd 1 53R D T
= -o” Ricpq 2Px? + 57 Ricpq,r 2P 22

(2.18) 3
6 12 .
+ot <5 Ricpg,rs +£ Rlpqt Rirst> R e

—Hess(H)(z,z) = —

+0(0").
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y (2.8) we have

‘8H 4
2.19) — H1! o2
(2.19) “or T 37

4 8 . 2
+ot <5 Ricpg,rs +£ Rzpqt Rirst 5 Ricpq Ricm> wPaiz"z* +0(0”)

3
Ricpq 2Px? + 20 Rlcpq raxPariz”

Combining (2.10) with (2.15), (2.18) and (2.19) we arrive at

OH
ozt

ASTH = A9H — Hess(H)(z, z) — Ha'
2
= —§02 Sc +20? Ricpq 2721
—*(Scp 2P — 3Ricy, , 2P2lz")

3 1 . 2 . .
(2.20) — ot ( S¢ pq —l—*A Ricpq _E Rlcpk Ricyq

RIC Rk‘pql + Rkl m Rqu ) rPaxd

2
+ot (2 RiCpq.rs +§ R® . Rirst —5 Ricg Ricrs> aPrisz®
+0(0”)

We now aim to compute the area constrained Willmore equation on Si,
that is for A € R the quantity

(2.21) Wya i= A5 H + H|A]? + HRic(v,v) + 0> \H.

To deal with the Ricci term we do a Taylor expansion in normal coordinates
on the original manifold around p. We get for the Ricci curvature of g that

1
Ricyq(2) = Ricpq(0) + Ricpg,r(0)2” + 9 Ricpg;rs (0)2"2* + O(|z) -

Rescaling as before via the map ¥,, we obtain for the Ricci curvature of g

ol
(2.22) Ricyy(w) = 0? Ricy, +0° Ricpg 27 + — Rlcpq rs 2% + O(0"|z]?).

Recall that we denote partial derivatives with a semicolon, instead of a
comma for covariant derivatives. Since the Christoffel symbols and deriva-
tives thereof are of order at least 02 we see that we have on S':

o2

Ric(v,v) = o?aPz! (Rlcpq +o Ricygr " + — 5 Ricpg,rs 2" ) + O(c®)

TOME 70 (2020), FASCICULE 4



1648 Tobias LAMM, Jan METZGER & Felix SCHULZE

and thus, combining this with (2.8)
(2.23) H Ric(v,v) = 20° Ricyy 2727 + 20° Ricy,,, 2P xlz"

1
+o* <Ricpq’,«5 —3 Ricpq Ricm> aPzlz"z® + O(a°).

Combining this with (2.20), (2.8) and (2.9) we arrive at the following propo-
sition, where we replace the radius p by r.

PROPOSITION 2.1. — Let p € M? and {e;}_, be an orthonormal basis
of T, M, via which T, M can be identified with R3. Furthermore, we consider
the map

¢:R*>B, (0) > M:z— expp(miei),
where p, > 0 is the injectivity radius of p. Let g be the pulled back metric
of M via ¢, and consider the map ¥, : R = R3 : x — rx and the rescaled
metric g := r~2W}g. Then for 0 < r < p, one has the following expansion
of the area constrained Willmore equation (2.21) on Sy:

Wra(S1) = 272 ()\ - % + 2 Ricp, xpxq> -3 (Scp 2P + 5 Ricpg,s 2P a%2*)

A 3 1 2
— T4 <3 Ricpq +5 SCJ’(I +3A RiCpq *E Ricpk Rickq
4

+45

8
Rickl Rk:pql +£ Rklpm Rqum ) xPrd

2 2 X
+ 4 (3 Ricpg,st +§ Rkpql Ristl -3 Ricpq Ricgt ) xPaizrsat

+O(r®).

3. The equation

In this section we prove Theorem 1.1 via the implicit function theorem.
We consider a setup similar to Ye [15]. Let (M, g) be given with injectivity
radius p > 0. Fix a base point p € M and an orthonormal frame {e;}_,
for T,,(M). Consider the map:

c:R*D B,(0) & M : 7+ exp,(7),
where exp,, : T, M — M denotes the exponential map of M at p. Let e} be
the parallel transports of the e; to ¢(7) along the geodesic t > c(t7)]:e[0,1)-
Define the map

F.:R*D>B,0) = M: x> expc(T)(xie[).

ANNALES DE L’INSTITUT FOURIER



SURFACES OF WILLMORE TYPE 1649

Let O = {¢o € C*2(5y) | “90”04%(51) < 1} and for ¢ € Q let S, =

{1+ ¢(x))x |z € S1}. For 7 € B, C R and r € (0,p/2) let S(r,7,¢) =
F.(V,(S,)) where ¥, denotes scaling by r as in Section 2. Define

$:(0,p/2) x B,(0) x Q5 x R — C3(Sy) : (r, 7,0, ) = B(r, 7,0, A)
where 5(7’, 7,0, A) is the function
(3.1) AH + H|A? + HRic(v,v) + AH
evaluated on S(r, 7, ) with respect to the metric g and pulled back to Sy

via the parameterization z — F (¥, ((1 + ¢(z))z)).
Our goal is to find rg € (0, p/2) and a map

(0,70) = B, x 4 x R: 7 — (7(r), 3(r), A(r))
so that

&)(73 7(r), p(r), X(T)) =0.
Then for all r € (0,79) the surfaces X, := S(r,7(r), §(r)) solve the equation

AH + H|AP? + HRic(v,v) + A(r)H = 0

as claimed. Up to reparameterization, the family (3;),c(0,r,) is the family
of solutions as in Theorem 1.1, see Corollary 4.3 for details.

An equivalent way to define &)(r, T, ¢, ) is to evaluate the operator (3.1)
on S, with respect to the metric g™ := (¢, o ¥,)*g. To get a uniform scale
in r, we consider instead the rescaled metric ¢™7 := r~2§™" and define the
rescaled function ®(r, 7, p, ) to be the operator

(3.2) AprHyr + Hy | Avr |2 + Hyp Ricy o (v, ) + 72 MH,
evaluated on S, with respect to ¢g"” and pulled back to S; via the pa-

rameterization « — (1 + ¢(z))z of S,. From the scaling of the geometric
quantities, we get B
O(r, 7,0, 0) =1®(r, 7,0, A).
By definition
(3.3) O(r, 7,0, A) = Wr 2 (S1),

where W, 5 (S1) is from Proposition 2.1 and the geometric quantities in the
expression for W, »(S1) are evaluated at ¢(7). Note that after shifting by 7,
the metric g in Proposition 2.1 corresponds to the metric g™ here.

The linearization of the Willmore operator ® is denoted by W. It was
calculated in [7, Section 3|. For a variation of an arbitrary surface ¥ with
normal speed f it is given by

(34)  Wif=LLf+ %v*(mw) —OVHHA(VS, ) + ALf + fQ,

TOME 70 (2020), FASCICULE 4



1650 Tobias LAMM, Jan METZGER & Felix SCHULZE

where V* = —div, L = —A — |A|? — Ric(v,v), and

Q = |VH|? + 20(VH) + HAH + 2(V2H, A) + 2H?| A2
(3.5) . . 1oy 1o,
+2H(A,T) — HV Ric(v,v,v) — §H |AI* + §H Ric(v, v).
Here w = Ric(v, - )T is the tangential projection of the 1-form Ric(v, ) to X
and T = R(-,v,v,-). All the geometric quantities in W), are evaluated on 3
with respect to the corresponding ambient geometry. For given f € C*4(S;)
the family ¢ — S(r,7,tf) is a normal variation of S(r,7,0) with normal
speed 7 f, so that

(3.6) O, (r,7,0,\) f =rWif.

Here we evaluate W) with respect to the metric g in M. Rescaling to the
g"" metric, we find that

(37) (I)ga(Ta 7,0, )\)f = 7‘4WAf = Wr,n/\fa

where W, . is the linearized Willmore operator with respect to g"7:

1
(3~8) WT,T,Af = Lr,'rLr,'rf + iv:;r(Hf,rvr,Tf)

— OV (Hyr Ay (Ve £y ) + 172 ALy o f + Qo f-

Here we use the subscript , , to denote quantities evaluated with respect
to the metric g7 .

In the limit » — 0 the metric ¢g"™" converges to the Euclidean metric so
that in the limit we have

Woraf = Lo(Lo+2)f = (-A)(—A = 2)f.
The kernel of this operator is given by
K :=ker Wy, » = Span{l,z', 2%, 2°},

where the 2’ are the standard coordinate functions on S;. We split this
kernel into two parts:

(3.9) Ky :=Span{l} and K :=Span{xy,zs,x3}.

As in [15], the function space C*2(S;) splits as a direct sum into K and
its L2-orthogonal complement K. It is standard to verify that we have
the direct sum decomposition of the target with respect to the L?-scalar
product:

Co% = K + Wora(K*).
Define the L2-orthogonal projection maps

Py:C%3(8)) » Ky and Pr:C%3(S)) — K.

ANNALES DE L’INSTITUT FOURIER



SURFACES OF WILLMORE TYPE 1651

The maps Tp : Ky — R and T} : K; — R? identify Ky and K; with R and
R3 according to the basis given in equation (3.9). Moreover, for i € {0,1}
let P; = T; o P;. Denote by {ey, €2, e3} the standard basis of R3.

LEMMA 3.1. — We have

Po(®(r, 7,0, \)) = 8772 <>\ + % sc(c(T))> + 0@

1
+ Py (/ O, (r, T, tp, N dt)
0

and

131(<I>(r, T, 0, \)) = %ﬁvei Sc(e(7))es + O(r%)

1
+ Py (/ O, (r, T, t<p,)\)<pdt> .
0

Proof. — Start by writing
1
D(r, 7,0, A) = ®(r, 7,0, \) +/ O, (r, 7, tp, A dt.
0

By (3.3), for i € {0,1}
ﬁi(@(r7 T,O,)\)) = ﬁi(wr,/\(sl))a

Where W, 1(S1) is evaluated at the base point ¢(7). The right hand side
can be calculated term by term from the expansion of W, »(S1) given in
Proposition 2.1:

Po(W,A(S1)) = 812 <>\ + % sc(C(T))) +O(r%) and

Br(Woa(S1)) = %rwei Se(e(r))es + O(r).

Note that all terms that contain an odd number of z’-factors integrate
to zero. For the other terms we used that f s rixP = %’r&-p and a similar
expression for integrals involving four factors of components of x. a

LEMMA 3.2. — For every 7 € R? and every A € R we have that

0
®,,.(0,7,0,) = ar » Wyrx=0.
Proof. — For the proof, we have to calculate %‘r:O Wi 7. from its ex-
pression (3.8) taking into account its definition (3.4) and (3.5). Since we
compute %Wrm a» at r = 0 we see that all terms that are product of at
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least two quantities that vanish at (r,¢) = (0,0) do not contribute to the
derivative. In particular

B,
(310) o »

(IVHr P + 2007 (VHy 7) + AV Hyr, A )

F2H? | A, o2+ 2H, (A p Tyr) + rz)\Lm> —0.

From the proof of [15, Lemma 1.3], we quote equation (1.15) m T o gT,T —
0, its consequence %!7":0 A, . = 0, equation 117) %|r 0,
%’r:o Ric,, = 0, and assertion (1), that is 86 | o Lrr = 0. hese iden-

o

H,, =0 and ar A, = 0. From these

tities also imply that o

formulas we find that

9
or|,_o

lé]
W|r=0

1
(LT‘,TLT',T + 2HT,TAT,THT,T - 2H377—|A7",7—|2) =0

Since Ric,, = O(r?) as in (2.22) and V., Ric, - (Vrry Very Vrr) = O(r3)
by a similar argument, also

9
or|,_

. 1 .
(HT,TVT’,T RICT,T(VT,Ta Vpr oy VT,T) + iHE’T RICT‘,T(V, V)> =0.
To treat the final remaining terms in W, -  rewrite it to

SViH2 Vo f) = 2V5 (Hy A (9,0 £,)
 Hy (VHyr Vs f) — %H,%TAT 424, (VH, V. )
(3.11) +2H, (Vi A Vo )+ 2H, 1 (A V2 F)
- 7%HE7TAMf + 24, (VH, e Vo ) + 2H, (A, 1, V2 f)

+ 2Hr,‘rwr,‘r (v'r,’r f) .

In the last equality we used the Codazzi equation in the form —V*A =
%VH + w. By inspection we see that each term in this expression has
vanishing derivative in r-direction. Hence

0

— Wi =0
orl,._o A

as claimed. O
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Let ¢ be the unique solution of the PDE

4
3.12 Wo.rrpo = | —= Sc+4 Ric,, P4
AP 3 Pq

r=0
Note that the right hand side of this equation is an element of K+ and
hence ¢o € K+ is indeed uniquely defined.

LEMMA 3.3. — Let (M, g) be a three dimensional manifold and p € M
such that V Sc(p) = 0 and V2 Sc(p) is non-degenerate. For this base point
there exists 1o € (0,00), an open neighborhood U C C*2(S;) of ¢y, and
functions

A:[0,7m0) XU = R: (r,0) = A(r,9)
and
7:[0,70) x U = R3: (1, ) = 7(r, ©)
so that
(3.13) ﬁi (@(7‘,7’(7‘, ©), 20, A(r, <p))) =0 for i€{0,1},
(3.14) 7(0,p9) =0, and A0, pg) = —% Sc(p).

Proof. — Calculate:
1
O, (r, T, tr2cp, A) =®,(0,7,0,\) + r/ O, (s, 7T, strzgo, A)ds
0

1
—|—tr2/ B (s7, 7, 5170, N)p ds.
0

Moreover, we have
1 1,1

r/ O, (s, T, str2<p,)\)d5:r2/ / s@wrr(usr,r,ustrzw,)\) duds
0 0o Jo

1 1
+T3/ / st® o (usr, T, ustr?p, \)p duds
0o Jo
+r®,,.(0,7,0,N).
Hence

7°2<I>¢(r, T, tr o, A) = r2<1>¢(0,7', 0,\) + r3<I>W(0, 7,0, \)
1
+ 7“4/ t®o,(s7, 7, striop, Npds
0

11
+ 7t / / 5@ (ust, 7, ustr’p, \) duds + O(r®).
0o Jo
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By equation (3.7) we have ®,(0,7,0,\) = Wy, » and from Lemma 3.2 we
get ®.,,.(0,7,0,A) = 0. Therefore

Py (r2®,(r, 7,120, ) = O(rY) for i€ {0,1}.

It follows from Lemma 3.1 that the system (3.13) is equivalent to
Sc 25 ' 2 2 2
8m )\—i—? =—r""Py O, (r, 7, trep, N)pdt | +0(r") = O(r)
0
and

4 _ 1 1
gvei Sce; =rP; (/ / t0,, (s, 7, strip, \)pp ds dt)
o Jo

1 1 p1
+rPy (/ / / 5P (usr, T, ustrp, AN duds dt)
o Jo Jo

+0(r?)
= O(r).

By assumption V Sc(p) = 0. Hence, at r = 0, this system is satisfied for an
arbitrary ¢g € K=+, if A[,—o = —% Sc(p) and 7|,—o = 0.

The derivative with respect to A and 7 at r = 0 of the left hand side of
this system is given by the matrix

87 EVScl—o) _ (87 0

0 %VQ SC|T:0 o 0 %’“V2 SC|T:0 '
By assumption V2 Sc|,—o is non-degenerate. Hence, it follows from the
implicit function theorem that there exist functions A = A(r,¢) and 7 =

7(r, ) as claimed at least for (r,¢) in a neighborhood of (0,¢¢) € R x
Cz(S). 0

LEMMA 3.4. — Assume that (M,g), p, ¢o, ro, U, A and 7 are as in
Lemma 3.3. Then there exists r1 € (0,79] and a function

p:[0,m) = U:r— o(r)
such that
O(r, 7(r, o(r)), %0(r), A(r,0(r))) = 0 and  ¢(0) = gy.

In particular, for small enough r, we have constructed a surface of Will-
more type with Lagrange multiplier A(r, ¢(r)).
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Proof. — Consider the expansion

1
®(r, 7,720, \) = ®(r, 7,0, \) + 7"2/ (7, T, trip, \)dt
0
2
=72 (2)\ ~3 Sc+4 Ricp, x”xq> +O(r®) +1720,(0,7,0,\)p
1,1
+ r4/ / t®,, (s, T, strio, \)pp dt ds
o Jo
1 41 p1
+ 7“4/ / / 5Py (usr, T, ustr?p, N duds dt
o Jo Jo

11 1
+ 75 / / / st (usr, T, ustr? o, N)pp du ds dt,
o Jo Jo

where we used the fact that ®,,.(0,7,0,A) = 0 from Lemma 3.2.
Since ®,(0,7,0,A) = Wy, as in equation (3.7), A(0,¢0) = —3% Sc(p)
and

)

4
WO,T,)\()DO = (3 Sc +4 RiCpq l‘pl’q)
r=0

we conclude with the help of the implicit function theorem that, after

dividing the above equation by 72, there exists r; € (0,79] and solution
¢ :[0,71) = U as claimed. O

4. The foliation

In this section we show that the surfaces ¥, indeed are a foliation of
a pointed neighborhood of p € M. The method used is very close to the
arguments in [15, pp. 390-391]. We start with the following observation.

LEMMA 4.1. — The operator ®,,-(0,7,0,\) maps even functions to
even functions.

Proof. — Note that ®,.(0, 7,0, A) = %LZOWT}T,)\ where W, ; » is given
by the expression in equation (3.8). To prove the claim we check this ex-
pression term by term as in the proof of Lemma 3.2.

We start by quoting from [15, Lemma 1.3] that %L:OLT’T is an even
operator. Hence, the claim follows from the facts that %’r:anT is an
even function and in conjunction with equation (3.11) from the fact that

the operator
1 o
A1) [ —SH Arrf 42407 (VH, 7, Vi f)
+2H, (A, V2 ) + 2H, rwr o (Vrr f)
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maps even functions to even functions.
To show this, we quote from the proof of [15, Lemma 1.3] that the opera-

2 N 2 . 2
tor %| A, 7]r=0 is even and %‘7:0 Ricy r (Vpr, Vrr) TESD. %L:OM :

AT',T

r=0

are even functions. Note that [15, Equation (1. 17)] implies that 60722|r:0
is even, so that also dr2| OHTT and dr2| Ar,T are even.

Using these, it is easy to check that

82

(42) =5

<HT,TAT,THT,T + 2<v2 Hr T Ar ‘r> + 2Hr,7’<fzir,rv Tr,r>
r=0

. 2 11
- HT,TV’I‘,T R‘ICT‘,T(VT,T7 Vr.rs VT,T) + Hr,7—|A f

1
)

is even. For example consider (we omit the subscript ,, for clarity in the

notation:
0? 9? 0 0
82
+ Hy - 52 r:O (AH)

0
=i (25

2) (3
=0 or

82
TJH>+<m2

~4))

82
Hyo Ao r =— H
+ 11o,r Ao a2
0? 0?
- H(],'r (87‘2 o AT,T) HO,T + HO,TAO,T <ar2 —o H’l‘,‘l’) .

In the second and third equality we used from the proof of Lemma 3.2 that
% HT - = 0 and the fact that Hy ; is constant. The right hand side is

even, since Hy ; is constant and thus even, since 6r2| A, - and Ag ; map
even functions to even functions and since the product of even functions is
even. The calculation for the other terms in (4.2) is similar. To treat the
term H, .V, Ric, r(Vrr,Vp 7,V r) use that V, . Ric, (Vp 7, VpryVrr) =
Oo(r3).

For the remaining terms in @, note that the - fr o (Vi) is a first
order differential operator that vanishes on constant functions. Hence,

1 02 o2
19 VmeF—< (vam%vWHw>
2 87‘2 r=0 6T2 r=0
9 o 2
a.. T H T T\ 5. HrT =VU.
+‘<8T 7’:0v ’> o +VO’ (87’ r=0 ’) 0
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o)

) W|r:0 (VT,T) = HO,T and VO,THO,T =0

and since %‘r:O H, ;=0 as in Lemma 3.2. A similar computation yields

that 53722 T:OwTvT(VT,TH) = 0. We established that g—; —oQ@r,r is an even
function.
It remains to consider the expression in (4.1). Note that the first term is

even by reasoning as above. The second term satisfies

il (A, 50en) =00

This follows, since Hy ; is constant

o

To treat the third term, use /iO,T =0 and %| /iO,T = 0 to compute
62
o

r=0
32
o2

HT,T<A’Zir,Ta v%7-.f> = HO,T <

jiT,Ty vgﬂ-f> N

r=0 r=0

Note that %’rzo‘i“f is even and V§ _ maps even functions to even func-
tions so that this operator also has the desired property.

For the last term from (4.1) we compute using wg r = 0, %LZO wrr =0
d _ .
and 3r o H, ; = 0 that:
0? 0?
) H, rwrr(Vir =Hor | 55 rr | Vorf
Or2 o ,w,( ,f) 0, (37“2 r_()w)) O,f

Note that Vo, is the tangential gradient on S? and maps even functions
to odd vector fields. Furthermore, by equation (2.22) and the fact that
Vrr =z + O(r?) we have that

wy,r = r? Ricyry 2 + O(r?)

so that
82

2
or?|,_,

wr,r is an odd one form. Consequently the function

wrr = Ricgry @

2
and hence %’r:o
2 . . .
H07T(—§T2|T:0w,«,7)voﬁ f is even whenever f is even. This concludes the

proof. O

LEMMA 4.2. — For r € (0,r1) let 3, := S(r,7(r, o(r)), o(r)) be as in
Lemma 3.4. Then 7(r) = O(r?) as r — 0.

Proof. — It follows from the implicit function theorem that 7/(r) = O(r)
if and only if

(4.3)  Py(®,,(0,7,0,\)p0p0) =0 and Py (@, (0,7,0, ) = 0.

To establish the first identity, note that by the fact that equation (3.12)
has unique solutions and since Wy -y is invariant under the reflection at
the origin, it follows that ¢q is an even function.
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Furthermore, for every ¢ in a neighborhood of 0 the euclidean Willmore
operator ®(0, 7, tpg, A) evaluates to an even function. Hence also

2

(1)9090 (07 7,0, )‘)500900 = (97

t2 (P(O,T, t(po,)\)

t=0
is even. Since P; vanishes on even functions, the first claim from (4.3)
follows.

To prove the second identity, we note that by Lemma 4.1 the operator
®,,(0,7,0,A) maps even functions to even functions and the claim follows
in a similar manner. ]

This lemma implies in particular that we can reparameterize the solutions
that we found in Section 3 by their area.

COROLLARY 4.3. — Forr € (0,71) let ¥, := S(r,7(r, (1)), r%p(r)) be
as in Lemma 3.4. Consider the area of ¥, in (M, g) as a function of r:

a:(0,r)— (O,oo):Tb—>/ 1dpy.
P

Then there exists ro € (0,71] so that a is strictly increasing on (0,72). In
particular:

a(r) =4nr* + O(r*) and d'(r) = 87r + O(r?).

Proof. — Note that a extends as a smooth function to » = 0 so that
a(0) = 0 and hence the first claim follows from the second. We first note
that

a'(r) = _/z: g(ﬁ,X) dug,

where X is the variation vector-field along this family. Note that X is not
unique, whereas X is well defined. Recall that from Lemma 3.4 we have
that ¥, is an exponential normal graph over S, (7(r)) with height function
r3¢(r) such that ¢(r) — ¢ as r — 0. Furthermore, by Lemma 4.2 we have
that 7(r) = O(r?) as r — 0. This implies that

0
e Or,

where 7. = dg(7(r),- ). Furthermore, by the above and (2.8) we have that

X+ +0(r?)

2
Hs, = Hg (7(r)) + O(r®) = - +O(r),

as well as

Vs, = VS, (r(r)) + 0(7‘3).
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Also note that from (2.4) we have
/ Ldp, = 4mr? + O(r).
Sr(7(r))
This implies
a(r) = —/ g(ﬁ,X) dpg = 8mr + O(r). O
P

Due to Corollary 4.3 there exists ag € (0,00) and a map 7 : (0,a9) —
(0,72) such that [¥;(,)| = a. We slightly abuse notation by letting

(4.4) Y4 = Yraq) for ae(0,a0)

This finishes the existence part of the proof of Theorem 1.1. To complete
the proof, it remains to show the following:

PROPOSITION 4.4. — For r € (0,r1) let ¥, := S(r,7(r, (1)), ¢(r)) be
the surfaces from Lemma 3.4. Then there exist ro € (0,71] so that the
family {¥,},¢(o,r,) Is a foliation of a pointed neighborhood of p.

Proof. — Define the maps

U= exp;:[ €XPe(r(r))»
U(r,z) =V (r(z+ r2<p(r)(a:))) and
U(r, x)

We claim that there exists 7 € (0,7;] such that |¥(r,x)| # 0 every z € 52
and such that 3(r,-) : S — S? is a family of diffeomorphisms which can
be smoothly extended to r = 0 by the identity.

Indeed, this follows from the facts that

%ij = (d, V") (z +r2p(r)(x) +r(re(r)(@)),) + (a;:) (r(z + r20(r)(2)))
and 4
owr o 4 o7t

where we used Lemma 4.2 in the last equality. In combination

oV
5(0,1‘) =z.

Hence
U(r,z) =7z +0(?) as r—0.
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In particular, U(r,z) # 0 for r small enough and
T+ O(r)
B(T‘,l’) - |l’ + O(’I’)‘ .
This establishes the claim.

Let n(r,z) := |¥(r, 371(r,2))| and calculate

oy _ v (o 9 )} 2+00)
ar||<m*(%m<&ﬁ >>x+oun@+0”»
This yields

ol _y.

or r—0

Consequently 7 is strictly increasing for r small enough which shows that
all the surfaces are disjoint. |

5. Local Uniqueness

By inspecting the proof of Theorem 1.1 above and by the local uniqueness
of solutions obtained via the implicit function theorem, we obtain a local
uniqueness result for the ¥,. To state this, we use the notation introduced
at the beginning of Section 3.

COROLLARY 5.1. — Fix o € (0,1). Let (M,g) be a Riemannian 3-
manifold and p € M be a non-degenerate critical point of the scalar curva-
ture. Denote by ¢o € C°°(S?) the solution of (3.12) where Ric is evaluated
at p. Then there exist ro € (0,00), a neighorhood Q C C*%(S5?) of ¢g, a
neighborhood U C R? of the origin, and an open interval I C R such that
—3Sc(p) € I with the following properties:

Assume that ¥ C M is such that:

(1) ¥ = S(r,7,7%¢) up to reparameterization,
(2) On X we have that

AH + H|A]? + H Ric(v,v) = AH.

(3) (r,7,,A) € (0,10) x U x Q x I and Pi(p) =0 fori € {0,1}.
Then ¥ = X, where X, is as in equation (4.4) and such that || = |X,].

Note that if Q, C C*%(S?) is any bounded subset and ¢ € €, then
there exists a constant C' = C(€)) such that

W(S(r,7,1%p) — dmr| < Cr°.
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In [6] it was shown that there exists ¢ = (M, g) > 0 such that if ¥ is a
solution (1.2) with |¥| < € and W(X) < 47 + ¢ also satisfies

)\-i-:lsSc(p)‘ <Cr

for some constant C = C'(M, g). Hence, it follows that in the statement of
Corollary 5.1 the condition on A is in fact not needed.

COROLLARY 5.2. — There exist 1} € (0,00), a neighorhood Q'  C*%(S?)
of ¢g, a neighborhood U’ C R? of the origin with the following properties:
Assume that ¥ C M is such that:

(1) X = S(r,7,7%p) up to reparameterization,
(2) On X we have that

AH + H|A]? + H Ric(v,v) = AH.

(3) (r,7,0) € (0,79) x U x (2N K) and P;(¢) =0 fori € {0,1}.
Then ¥ = ¥, where %, is as in equation (4.4) and such that |X| = |X,].

Note that this uniqueness applies to individual solutions of (1.2) and not
to whole foliations. It is not difficult though, to prove a result similar to [15,
Section 2] to deal with the uniqueness of foliations centered at p based on
the a priori estimates on such surfaces in [5, 6, 9].
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