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LOCAL FOLIATION OF MANIFOLDS BY SURFACES
OF WILLMORE TYPE

by Tobias LAMM, Jan METZGER & Felix SCHULZE (*)

Abstract. — We show the existence of a local foliation of a three dimensional
Riemannian manifold by critical points of the Willmore functional subject to a
small area constraint around non-degenerate critical points of the scalar curvature.
This adapts a method developed by Rugang Ye to construct foliations by surfaces
of constant mean curvature.
Résumé. — Nour prouvons l’existence d’un feuilletage local d’une variété riema-

nienne de dimension trois autour des points critiques de la courbure scalaire par les
points critiques non dégénérés de la fonctionnelle de Willmore sous la contrainte
d’aire petite. On adapte une méthode développée par Rugang Ye pour construire
un feuilletage par des surfaces à courbure moyenne constante.

1. Introduction

In this paper we consider the Willmore functional

F(Σ) = 1
4

∫
Σ
H2 dµ

for surfaces Σ immersed in a 3-dimensional Riemannian manifold (M, g).
Here H = λ1 + λ2 denotes the sum of the principal curvatures of Σ.
More precisely, we consider the variational problem

(1.1) inf{F(Σ) | Σ ↪→M with |Σ| = a}
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where a ∈ (0,∞) is a (small) prescribed constant and |Σ| denotes the area
of Σ with respect to the induced metric.
The Euler–Lagrange equation for this variational problem is

(1.2) ∆H +H|
◦
A|2 +H Ric(ν, ν) = λH.

Here ∆ denotes the Laplace–Beltrami operator on Σ,
◦
A is the trace free

part of the second fundamental form A of Σ and Ric(ν, ν) is the Ricci-
curvature of (M, g) in direction of the normal ν to Σ. Note that the left
hand side is two times the first variation of F and the right hand side of
this expression is a Lagrange-parameter λ ∈ R multiplied with the first
variation of the area functional.
In previous papers the first two authors have shown that if (M, g) is

compact then there exists a small a0 ∈ (0,∞) depending only on (M, g)
such that the infimum in (1.1) is attained for all a ∈ (0, a0) on smooth
surfaces Σa [6]. See [1] and [14] for alternative proofs and [11] for a recent
parabolic approach. Existence and multiplicity results of Willmore surfaces
in Riemannian manifolds have been studied previously in a perturbative
setting in [12], [13] where the functionals F and the L2-norm of

◦
A are

considered without a constraint.
For a→ 0 the surfaces Σa converge to critical points of the scalar curva-

ture [5, 6, 9]. A similar result has been obtained previously for small isoperi-
metric surfaces by Druet [2]. This was later generalized by Laurain [8] to
surfaces with constant mean curvature.
It is natural to ask about the precise structure of this family when a

tends to zero. A similar situation was considered by Ye [15] for surfaces of
constant mean curvature, which are critical for the isoperimetric problem,
that is to minimize area subject to prescribed enclosed volume. He proves
that given a non-degenerate critical point p of the scalar curvature one
can find a pointed neighborhood U̇ = U \ {p} which is foliated by hyper-
surfaces of constant mean curvature. That is U̇ =

⋃
H∈(H0,∞) ΣH where

ΣH has constant mean curvature H. For H → ∞ these surfaces become
spherical and approach geodesic spheres Sr(p) with radius r ≈ 2

H . Ye uses
an implicit function argument to show that the ΣH can be constructed as
graphs over Sr(0). The main difficulty is that the operator linearizing the
mean curvature has an approximate kernel corresponding to translations.
This approximate kernel can be dealt with by allowing a translation of the
Sr(0) and using the non-degeneracy of the second derivative of the scalar
curvature. Our result in this paper is to adapt the method of Ye to the case
of the Willmore functional. More precisely, we get the following result:

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.1. — Let (M, g) be a smooth Riemannian manifold and let
p ∈M be such that ∇ Sc(p) = 0 and such that ∇2 Sc(p) is non-degenerate.
Then there exists a0 ∈ (0,∞), a neighborhood U of p and for each a ∈
(0, a0) a spherical surface Σa which satisfies (1.2) for some λ ∈ R and
|Σa| = a. The Σa are mutually disjoint and

⋃
(0,a0) Σa = U \ {p}.

More detailed information on the structure of this foliation can be found
in Section 3 where the implicit function argument is carried out. In particu-
lar, we refer to Corollary 5.2 for some comments about the local uniqueness
of the Σa.

The paper is organized as follows: In Section 2 we calculate the expan-
sion of the Willmore functional on small geodesic spheres to set up the
argument. In Section 3 we use the implicit function theorem to solve the
equation in a very similar manner to Ye. First we solve the equation in
the kernel of the linearized operator using the non-degeneracy condition on
the scalar curvature and by a generic implicit function argument we solve
perpendicular to the kernel. Proposition 4.4 in Section 4 establishes that
the Σa indeed form a foliation as claimed. Finally in Section 5 we prove a
local uniqueness reslut for the Σa as solutions to (1.2).

Remarks. — During the preparation of this manuscript, the authors
learned that Norihisa Ikoma, Andrea Malchiodi and Andrea Mondino [4]
have an independent proof of Theorem 1.1.

2. The Willmore operator on geodesic spheres

In this section we compute the basic geometric quantities and the Will-
more operator of small geodesic spheres. We consider a setup similar as
in [15], i.e. we consider a point p ∈ M3 and an orthonormal basis {ej}3j=1
of TpM which we use to identify TpM with R3. Furthermore, we consider
the map

φ : R3 ⊃ Bρp(0)→M : x 7→ expp(xiei),

where ρp > 0 is the injectivity radius of p. Let g̃ be the pulled back metric
of M via φ, with 〈 · , · 〉 denoting the euclidean metric on R3. We consider
the map Ψσ : R3 → R3 : x 7→ σx and denote g := σ−2Ψ∗σ g̃.

We now compute the second fundamental form of Sρ(0) ⊂ TpM for
0 < ρ < σ−1ρp. The normal to Sρ w.r.t. g is given by x/|x|, and working
w.l.o.g. at the north pole, i.e. ei for i = 1, 2 are tangent vectors and e3 is
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parallel to the normal, we obtain

hij = g
(
ei,∇ejν

)
= g

(
ei,∇ej

xl

|x|
el

)
= g

(
ei,

(
δjl

ρ
− xlxj

ρ3

)
el

)
+ xl

ρ
g
(
ei,Γkjlek

)
= 1
ρ

(
gij −

xlxj

ρ2 gil + xlΓkjlgik
)
.

This yields since xl = 0 for l = 1, 2

(2.1) hij = 1
ρ

(
δij + xlΓilj

)
.

Furthermore, we have

0 = g
(
ν, p⊥ν (ei)

)
= xk

ρ
gki −

xi

ρ
,

where p⊥ν ( · ) = e− 〈ei, ν〉ν is the orthogonal projection onto the subspace
perpendicular to ν. This gives

(2.2) δim = ∂

∂xm
(
xkgki

)
= gmi + xk

∂

∂xm
gki,

which we can use to compute

xlΓilj = 1
2g

ik

(
xl

∂

∂xl
gjk + xl

∂

∂xj
glk − xl

∂

∂xk
glj

)
= 1

2g
ik

(
xl

∂

∂xl
gjk + δjk − gjk − δkj + gkj

)
= 1

2g
ikxl

∂

∂xl
gjk.

(2.3)

We denote partial derivatives with a semicolon, instead of a comma for
covariant derivatives. From [10] and the definition of g we have the formula

(2.4) gij(x) = gij(0) + σ2

3 Ripqj x
pxq + σ3

6 Ripqj,r x
pxqxr

+ σ4
(

1
20 Ripqj,rs + 2

45 Ripqt Rjrst

)
xpxqxrxs +O(σ5|x|5),

where the curvature terms are all corresponding to g and are evaluated at
0. Since

∂

∂xm
gij = −givgjw ∂

∂xm
gvw

ANNALES DE L’INSTITUT FOURIER
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and differentiating further (using that the first derivatives of gij vanish at
0) we obtain:

(2.5) gij(x) = gij(0)− σ2

3 Ri j
pq x

pxq − σ3

6 Ri j
pq,r x

pxqxr +O(σ4|x|4).

Combining (2.4) and (2.5), we see
1
2g

ikxl
∂

∂xl
gjk = 1

2g
ik ∂

∂s
(gkj(sx))

∣∣∣
s=1

= gik

(
σ2

3 Rkpqj x
pxq + σ3

4 Rkpqj,r x
pxqxr

+ σ4
(

1
10 Rkpqj,rs + 4

45 Rkpqt Rjrst

)
xpxqxrxs

+O(σ5|x|5)
)

= 1
3σ

2 Ri
pqj x

pxq + 1
4σ

3 Ri
pqj,r x

pxqxr

+ σ4
(

1
10 Ri

pqj,rs−
1
45 Ri

pqt Rjrst

)
xpxqxrxs

+O(σ5|x|5).

(2.6)

Combining this with (2.1) and (2.3), we can thus write

ρ · hij = δij + 1
2g

ikxl
∂

∂xl
gji = exp(aij)

where exp here is the exponential map on matrices and

aij := 1
3σ

2 Ri
pqj x

pxq + 1
4σ

3 Ri
pqj,r x

pxqxr

+ σ4
(

1
10 Ri

pqj,rs−
7
90 Ri

pqt Rjrst

)
xpxqxrxs +O(σ5|x|5).

This yields

det3

(
δij + 1

2g
ikxl

∂

∂xl
gjk

)
= exp(tr(aij))

= 1− 1
3σ

2 Rpq x
pxq − 1

4σ
3 Rpq,r x

pxqxr

+ σ4
(
− 1

10 Rpq,rs−
7
90 Rk

pqtRkrst+
1
18 RpqRrs

)
xpxqxrxs+O(σ5|x|5).

Note that for the Gauss curvature we have from (2.1)

KSρ = 1
ρ2 det2

(
δij + 1

2g
ikxl

∂

∂xl
gjk

)
= 1
ρ2 det3

(
δij + r

2g
ik ∂

∂r
gkj

)
,

TOME 70 (2020), FASCICULE 4
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since ∂
∂rgk3 = 0 ∀ k = 1, 2, 3. Combining this with the above computation,

this yields

KSρ(x)

= 1
ρ2

(
1− 1

3σ
2 Ricpq xpxq −

1
4σ

3 Ricpq,r xpxqxr

− σ4
(

Ricpq,rs
10 + 7

90 Rk
pqt Rkrst −

Ricpq Ricrs
18

)
xpxqxrxs

)
+ ρ−2O(σ5|x|5).

(2.7)

Combining (2.1), (2.3) and (2.6) we get for the mean curvature, using
Ricpq = −Ri

pqi,

HSρ = 1
ρ

tr2

(
δij + 1

2g
ikxl

∂

∂xl
gjk

)
= 1
ρ

(
2 + tr3

(
1
2g

ikxl
∂

∂xl
gji

))
= 1
ρ

(
2− 1

3σ
2 Ricpq xpxq −

1
4σ

3 Ricpq,r xpxqxr

− σ4
(

1
10 Ricpq,rs + 1

45 Ri
pqt Rirst

)
xpxqxrxs

)
+ ρ−1O(σ5|x|5).

(2.8)

For the norm squared of the traceless second fundamental form, we have
|

◦
A|2 = 1

2 (H2 − 4K), which yields

(2.9) |
◦
A|2 = ρ−2σ4

(
1
9 Ri t

pq Rirst−
1
18 Ricpq Ricrs

)
xpxqxrxs

+ ρ−2O(σ5|x|5)

We now aim to compute the laplacian of H on S1. Using formula (3.2)
in [3], we have

∆S1H = ∆gH̃ −Hess(H̃)(ν, ν) + g(∇H̃, ~H)

= ∆gH̃ −Hess(H̃)(x, x)−Hxi ∂H̃
∂xi

,
(2.10)

where ~H = −Hν is the mean curvature vector of S1, and H̃ is any extension
of H. We have

(2.11) ∆gH̃ = gij
∂2H̃

∂xi∂xj
− gijΓkij

∂H̃

∂xk
.

ANNALES DE L’INSTITUT FOURIER
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From (2.4) and (2.5) we get

gijΓkij = 1
2g

ijgkl
(

∂

∂xi
glj + ∂

∂xj
gil −

∂

∂xl
gij

)
= gklgij

∂

∂xi
glj −

1
2g

klgij
∂

∂xl
gij

=
(
gklτ +O(σ2)

) (
gijτ +O(σ2)

)
×
(
σ2

3 (Rlipj + Rlpij)xp +O(σ3)
)

− 1
2
(
gklτ +O(σ2)

) (
gijτ +O(σ2)

)
×
(
σ2

3 (Rilpj + Riplj)xp +O(σ3)
)

= 2
3σ

2 Rickp xp +O(σ3).

(2.12)

We choose an extension of the mean curvature H on S1 via

H̃ := ρHSρ .

Combining this with (2.8) and (2.12), this yields

(2.13) − gijΓkij
∂H̃

∂xk
= 4

9σ
4 Ric k

p Rickq xpxq +O(σ5).

Similarly, using (2.5) and (2.8) we obtain

gij
∂2H̃

∂xi∂xj
=
(
gij − σ2

3 Ri j
pq xpxq +O(σ3)

)
·
(
− 2

3σ
2 Ricij −

σ3

2 (Ricij,p +2 Ricip,j)xp

− σ4
(

1
5 Ricij,pq +2

5 Ricip,jq +2
5 Ricip,qj +1

5 Ricpq,ij

+ 4
45 Rs t

ij Rspqt + 8
45 Rs t

ip Rsjqt

)
xpxq +O(σ5)

)
= −2

3σ
2 Sc−σ3 Sc,p xp

− σ4
(

3
5 Sc,pq +1

5(∆ Ric)pq + 2
5 Ric s

p Ricsq

+ 4
45 Ricst Rspqt + 8

45 Rsi t
p Rsiqt

)
xpxq +O(σ5),

(2.14)

TOME 70 (2020), FASCICULE 4
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where we used that, due to the sign convention on the curvature tensor
(Ricij = −Rt

ijt) and the second contracted Bianchi identity 2 Ricti,t =
Sc,i, we have

Ricip,qj = Ricip,jq + R s
qj i Ricsp +R s

qj p Ricsi

and thus

gij Ricip,qj = 1
2 Sc,pq + Ric s

q Ricsp + R is
q p Ricsi .

This yields, using (2.11) with (2.13) and (2.14) that

(2.15) ∆gH̃ = −2
3σ

2 Sc−σ3 Sc,p xp

− σ4
(

3
5 Sc,pq +1

5(∆ Ric)pq −
2
45 Ric s

p Ricsq

+ 4
45 Ricst Rspqt + 8

45 Rsi t
p Rsiqt

)
xpxq +O(σ5).

Furthermore, using (2.8) we see

(2.16) − ∂H̃

∂xi∂xj
xixj = 2

3σ
2 Ricpq xpxq + 3

2σ
3 Ricpq,r xpxqxr

+ σ4
(

6
5 Ricpq,rs +12

45 Ri
pqt Rirst

)
xpxqxrxs +O(σ5)

and combining (2.3) with (2.6) and (2.8)

xixjΓkij
∂H̃

∂xk
= 1

2g
klxsxj

∂

∂xs
gjl

∂H̃

∂xk

= −2
9σ

4 Rk
pqr Ricks xpxqxsxr +O(σ5) = O(σ5),

(2.17)

since Rk
pqr Ricks xpxqxrxs = 0 by symmetry considerations. Combining

(2.16) and (2.17), this yields

−Hess(H̃)(x, x) = − ∂H̃

∂xi∂xj
xixj + xixjΓkij

∂H̃

∂xk

= 2
3σ

2 Ricpq xpxq + 3
2σ

3 Ricpq,r xpxqxr

+ σ4
(

6
5 Ricpq,rs +12

45 Ri
pqt Rirst

)
xpxqxrxs

+O(σ5).

(2.18)

ANNALES DE L’INSTITUT FOURIER
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By (2.8) we have

−Hxi ∂H̃
∂xi

= 4
3σ

2 Ricpq xpxq + 3
2σ

3 Ricpq,r xpxqxr(2.19)

+σ4
(

4
5 Ricpq,rs + 8

45 Ri t
pq Rirst−

2
9 Ricpq Ricrs

)
xpxqxrxs+O(σ5)

Combining (2.10) with (2.15), (2.18) and (2.19) we arrive at

∆S1H = ∆gH̃ −Hess(H̃)(x, x)−Hxi ∂H̃
∂xi

= −2
3σ

2 Sc +2σ2 Ricpq xpxq

− σ3(Sc,p xp − 3 Ricpq,r xpxqxr)

− σ4
(

3
5 Sc,pq +1

5∆ Ricpq −
2
45 Ric k

p Rickq

+ 4
45 Rickl Rkpql +

8
45 Rkl m

p Rklqm

)
xpxq

+σ4
(
2 Ricpq,rs+4

9 Rk l
pq Rkrsl−

2
9 Ricpq Ricrs

)
xpxqxrxs

+O(σ5)

(2.20)

We now aim to compute the area constrained Willmore equation on S1,
that is for λ ∈ R the quantity

(2.21) Wσ,λ := ∆S1H +H|
◦
A|2 +H Ric(ν, ν) + σ2λH.

To deal with the Ricci term we do a Taylor expansion in normal coordinates
on the original manifold around p. We get for the Ricci curvature of g̃ that

Ricpq(x) = Ricpq(0) + Ricpq;r(0)xr + 1
2 Ricpq;rs(0)xrxs +O(|x|3) .

Rescaling as before via the map Ψσ, we obtain for the Ricci curvature of g

(2.22) Ricpq(x) = σ2 Ricpq +σ3 Ricpq;r xr + σ4

2 Ricpq;rs xrxs +O(σ5|x|3).

Recall that we denote partial derivatives with a semicolon, instead of a
comma for covariant derivatives. Since the Christoffel symbols and deriva-
tives thereof are of order at least σ2 we see that we have on S1:

Ric(ν, ν) = σ2xpxq
(

Ricpq +σRicpq,r xr + σ2

2 Ricpq,rs xrxs
)

+O(σ5)

TOME 70 (2020), FASCICULE 4
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and thus, combining this with (2.8)

(2.23) H Ric(ν, ν) = 2σ2 Ricpq xpxq + 2σ3 Ricpq,r xpxqxr

+ σ4
(

Ricpq,rs−
1
3 Ricpq Ricrs

)
xpxqxrxs +O(σ5).

Combining this with (2.20), (2.8) and (2.9) we arrive at the following propo-
sition, where we replace the radius ρ by r.

Proposition 2.1. — Let p ∈M3 and {ej}3j=1 be an orthonormal basis
of TpM , via which TpM can be identified with R3. Furthermore, we consider
the map

φ : R3 ⊃ Bρp(0)→M : x 7→ expp(xiei),
where ρp > 0 is the injectivity radius of p. Let g̃ be the pulled back metric
of M via φ, and consider the map Ψr : R3 → R3 : x 7→ rx and the rescaled
metric g := r−2Ψ∗r g̃. Then for 0 < r < ρp one has the following expansion
of the area constrained Willmore equation (2.21) on S1:

Wr,λ(S1) = 2r2
(
λ− Sc

3 + 2 Ricpq xpxq
)
− r3 (Sc,p xp + 5 Ricpq,s xpxqxs)

− r4
(
λ

3 Ricpq +3
5 Sc,pq +1

5∆ Ricpq −
2
45 Ric k

p Rickq

+ 4
45 Rickl Rkpql +

8
45 Rkl m

p Rklqm

)
xpxq

+ r4
(

3 Ricpq,st +2
3 Rk l

pq Rkstl−
2
3 Ricpq Ricst

)
xpxqxsxt

+O(r5).

3. The equation

In this section we prove Theorem 1.1 via the implicit function theorem.
We consider a setup similar to Ye [15]. Let (M, g) be given with injectivity
radius ρ > 0. Fix a base point p ∈ M and an orthonormal frame {ej}3j=1
for Tp(M). Consider the map:

c : R3 ⊃ Bρ(0)→M : τ 7→ expp(τ),

where expp : TpM →M denotes the exponential map of M at p. Let eτj be
the parallel transports of the ej to c(τ) along the geodesic t 7→ c(tτ)|t∈[0,1].
Define the map

Fτ : R3 ⊃ Bρ(0)→M : x 7→ expc(τ)(xieτi ).

ANNALES DE L’INSTITUT FOURIER
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Let Ω1 := {ϕ ∈ C4, 1
2 (S1) | ‖ϕ‖

C4, 1
2 (S1)

< 1} and for ϕ ∈ Ω1 let Sϕ :=
{(1 + ϕ(x))x | x ∈ S1}. For τ ∈ Bρ ⊂ R3 and r ∈ (0, ρ/2) let S(r, τ, ϕ) =
Fτ (Ψr(Sϕ)) where Ψr denotes scaling by r as in Section 2. Define

Φ̃ : (0, ρ/2)×Bρ(0)× Ω1 × R→ C
1
2 (S1) : (r, τ, ϕ, λ) 7→ Φ̃(r, τ, ϕ, λ)

where Φ̃(r, τ, ϕ, λ) is the function

(3.1) ∆H +H|
◦
A|2 +H Ric(ν, ν) + λH

evaluated on S(r, τ, ϕ) with respect to the metric g and pulled back to S1
via the parameterization x 7→ Fτ (Ψr((1 + ϕ(x))x)).
Our goal is to find r0 ∈ (0, ρ/2) and a map

(0, r0)→ Bρ × Ω1 × R : r 7→ (τ̃(r), ϕ̃(r), λ̃(r))

so that
Φ̃(r, τ̃(r), ϕ̃(r), λ̃(r)) = 0.

Then for all r ∈ (0, r0) the surfaces Σr := S(r, τ̃(r), ϕ̃(r)) solve the equation

∆H +H|
◦
A|2 +H Ric(ν, ν) + λ̃(r)H = 0

as claimed. Up to reparameterization, the family (Σr)r∈(0,r0) is the family
of solutions as in Theorem 1.1, see Corollary 4.3 for details.
An equivalent way to define Φ̃(r, τ, ϕ, λ) is to evaluate the operator (3.1)

on Sϕ with respect to the metric g̃r,τ := (φτ ◦Ψr)∗g. To get a uniform scale
in r, we consider instead the rescaled metric gr,τ := r−2g̃r,τ and define the
rescaled function Φ(r, τ, ϕ, λ) to be the operator

(3.2) ∆r,τHr,τ +Hr,τ |
◦
Ar,τ |2 +Hr,τ Ricr,τ (ν, ν) + r2λHr,τ

evaluated on Sϕ with respect to gr,τ and pulled back to S1 via the pa-
rameterization x 7→ (1 + ϕ(x))x of Sϕ. From the scaling of the geometric
quantities, we get

Φ(r, τ, ϕ, λ) = r3Φ̃(r, τ, ϕ, λ).
By definition

(3.3) Φ(r, τ, 0, λ) =Wr,λ(S1),

whereWr,λ(S1) is from Proposition 2.1 and the geometric quantities in the
expression forWr,λ(S1) are evaluated at c(τ). Note that after shifting by τ ,
the metric g in Proposition 2.1 corresponds to the metric gr,τ here.

The linearization of the Willmore operator Φ̃ is denoted by Wλ. It was
calculated in [7, Section 3]. For a variation of an arbitrary surface Σ with
normal speed f it is given by

(3.4) Wλf = LLf + 1
2∇

?(H2∇f)− 2∇?(H
◦
A(∇f, · )) + λLf + fQ,
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where ∇? = −div, L = −∆− |A|2 − Ric(ν, ν), and

(3.5)
Q = |∇H|2 + 2ω(∇H) +H∆H + 2〈∇2H,

◦
A〉+ 2H2|

◦
A|2

+ 2H〈
◦
A, T 〉 −H∇Ric(ν, ν, ν)− 1

2H
2|A|2 + 1

2H
2 Ric(ν, ν).

Here ω = Ric(ν, · )T is the tangential projection of the 1-form Ric(ν, · ) to Σ
and T = R( · , ν, ν, · ). All the geometric quantities inWλ are evaluated on Σ
with respect to the corresponding ambient geometry. For given f ∈ C4(S1)
the family t 7→ S(r, τ, tf) is a normal variation of S(r, τ, 0) with normal
speed rf , so that

(3.6) Φ̃ϕ(r, τ, 0, λ)f = rWλf.

Here we evaluate Wλ with respect to the metric g in M . Rescaling to the
gr,τ metric, we find that

(3.7) Φϕ(r, τ, 0, λ)f = r4Wλf = Wr,τ,λf,

where Wr,τ,λ is the linearized Willmore operator with respect to gr,τ :

(3.8) Wr,τ,λf = Lr,τLr,τf + 1
2∇

?
r,τ (H2

r,τ∇r,τf)

− 2∇?r,τ (Hr,τ

◦
Ar,τ (∇r,τf, · ) + r2λLr,τf +Qr,τf.

Here we use the subscript r,τ to denote quantities evaluated with respect
to the metric gr,τ .
In the limit r → 0 the metric gr,τ converges to the Euclidean metric so

that in the limit we have

W0,τ,λf = L0(L0 + 2)f = (−∆)(−∆− 2)f.

The kernel of this operator is given by

K := kerW0,τ,λ = Span{1, x1, x2, x3},

where the xi are the standard coordinate functions on S1. We split this
kernel into two parts:

(3.9) K0 := Span{1} and K1 := Span{x1, x2, x3}.

As in [15], the function space C4, 1
2 (S1) splits as a direct sum into K and

its L2-orthogonal complement K⊥. It is standard to verify that we have
the direct sum decomposition of the target with respect to the L2-scalar
product:

C0, 1
2 = K +W0,τ,λ(K⊥).

Define the L2-orthogonal projection maps

P0 : C0, 1
2 (S1)→ K0 and P1 : C0, 1

2 (S1)→ K1.
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The maps T0 : K0 → R and T1 : K1 → R3 identify K0 and K1 with R and
R3 according to the basis given in equation (3.9). Moreover, for i ∈ {0, 1}
let P̃ i = Ti ◦ Pi. Denote by {e1, e2, e3} the standard basis of R3.

Lemma 3.1. — We have

P̃ 0(Φ(r, τ, ϕ, λ)) = 8πr2
(
λ+ 1

3 Sc(c(τ))
)

+O(r4)

+ P̃ 0

(∫ 1

0
Φϕ(r, τ, tϕ, λ)ϕdt

)
and

P̃ 1(Φ(r, τ, ϕ, λ)) = 4π
3 r3∇ei Sc(c(τ))ei +O(r5)

+ P̃ 1

(∫ 1

0
Φϕ(r, τ, tϕ, λ)ϕdt

)
.

Proof. — Start by writing

Φ(r, τ, ϕ, λ) = Φ(r, τ, 0, λ) +
∫ 1

0
Φϕ(r, τ, tϕ, λ)ϕdt.

By (3.3), for i ∈ {0, 1}

P̃ i(Φ(r, τ, 0, λ)) = P̃ i(Wr,λ(S1)),

Where Wr,λ(S1) is evaluated at the base point c(τ). The right hand side
can be calculated term by term from the expansion of Wr,λ(S1) given in
Proposition 2.1:

P̃ 0(Wr,λ(S1)) = 8πr2
(
λ+ 1

3 Sc(c(τ))
)

+O(r4) and

P̃ 1(Wr,λ(S1)) = 4π
3 r3∇ei Sc(c(τ))ei +O(r5).

Note that all terms that contain an odd number of xi-factors integrate
to zero. For the other terms we used that

∫
S1
xixp = 4π

3 δip and a similar
expression for integrals involving four factors of components of x. �

Lemma 3.2. — For every τ ∈ R3 and every λ ∈ R we have that

Φϕr(0, τ, 0, λ) = ∂

∂r

∣∣∣∣
r=0

Wr,τ,λ = 0.

Proof. — For the proof, we have to calculate ∂
∂r

∣∣
r=0Wr,τ,λ from its ex-

pression (3.8) taking into account its definition (3.4) and (3.5). Since we
compute ∂

∂rWr,τ,λ at r = 0 we see that all terms that are product of at
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least two quantities that vanish at (r, ϕ) = (0, 0) do not contribute to the
derivative. In particular

(3.10) ∂

∂r

∣∣∣∣
r=0

(
|∇Hr,τ |2 + 2ωr,τ (∇Hr,τ ) + 2〈∇2Hr,τ ,

◦
Ar,τ 〉

+2H2
r,τ |

◦
Ar,τ |2 + 2Hr,τ 〈

◦
Ar,τ , Tr,τ 〉+ r2λLr,τ

)
= 0.

From the proof of [15, Lemma 1.3], we quote equation (1.15) ∂
∂r

∣∣
r=0 g

r,τ =
0, its consequence ∂

∂r

∣∣
r=0 ∆r,τ = 0, equation (1.17) ∂

∂r

∣∣
r=0Ar,τ = 0,

∂
∂r

∣∣
r=0 Ricr,τ = 0, and assertion (1), that is ∂

∂r

∣∣
r=0 Lr,τ = 0. These iden-

tities also imply that ∂
∂r

∣∣
r=0Hr,τ = 0 and ∂

∂r

∣∣
r=0

◦
Ar,τ = 0. From these

formulas we find that

∂

∂r

∣∣∣∣
r=0

(
Lr,τLr,τ + 2Hr,τ∆r,τHr,τ −

1
2H

2
r,τ |Ar,τ |2

)
= 0.

Since Ricr,τ = O(r2) as in (2.22) and ∇r,τ Ricr,τ (νr,τ , νr,τ , νr,τ ) = O(r3)
by a similar argument, also

∂

∂r

∣∣∣∣
r=0

(
−Hr,τ∇r,τ Ricr,τ (νr,τ , νr,τ , νr,τ ) + 1

2H
2
r,τ Ricr,τ (ν, ν)

)
= 0.

To treat the final remaining terms in Wr,τ,λ rewrite it to

1
2∇
∗
r,τ (H2

r,τ∇r,τf)− 2∇∗r,τ (Hr,τ

◦
Ar,τ (∇r,τf, · ))

= −Hr,τ 〈∇Hr,τ ,∇r,τf〉 −
1
2H

2
r,τ∆r,τf + 2

◦
Ar,τ (∇Hr,τ ,∇r,τf)

+ 2Hr,τ 〈∇∗r,τ
◦
Ar,τ ,∇r,τf〉+ 2Hr,τ 〈

◦
Ar,τ ,∇2

r,τf〉

= −1
2H

2
r,τ∆r,τf + 2

◦
Ar,τ (∇Hr,τ ,∇r,τf) + 2Hr,τ 〈

◦
Ar,τ ,∇2

r,τf〉

+ 2Hr,τωr,τ (∇r,τf).

(3.11)

In the last equality we used the Codazzi equation in the form −∇∗
◦
A =

1
2∇H + ω. By inspection we see that each term in this expression has
vanishing derivative in r-direction. Hence

∂

∂r

∣∣∣∣
r=0

Wr,τ,λf = 0

as claimed. �
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Let ϕ0 be the unique solution of the PDE

(3.12) W0,τ,λϕ0 =
(
−4

3 Sc +4 Ricpq xpxq
)∣∣∣∣

r=0
.

Note that the right hand side of this equation is an element of K⊥ and
hence ϕ0 ∈ K⊥ is indeed uniquely defined.

Lemma 3.3. — Let (M, g) be a three dimensional manifold and p ∈M
such that ∇Sc(p) = 0 and ∇2 Sc(p) is non-degenerate. For this base point
there exists r0 ∈ (0,∞), an open neighborhood U ⊂ C4, 1

2 (S1) of ϕ0, and
functions

λ : [0, r0)× U → R : (r, ϕ) 7→ λ(r, ϕ)

and
τ : [0, r0)× U → R3 : (r, ϕ) 7→ τ(r, ϕ)

so that

P̃ i
(
Φ(r, τ(r, ϕ), r2ϕ, λ(r, ϕ))

)
= 0 for i ∈ {0, 1},(3.13)

τ(0, ϕ0) = 0, and λ(0, ϕ0) = −1
3 Sc(p).(3.14)

Proof. — Calculate:

Φϕ(r, τ, tr2ϕ, λ) = Φϕ(0, τ, 0, λ) + r

∫ 1

0
Φϕr(sr, τ, str2ϕ, λ) ds

+ tr2
∫ 1

0
Φϕϕ(sr, τ, str2ϕ, λ)ϕds.

Moreover, we have

r

∫ 1

0
Φϕr(sr, τ, str2ϕ, λ) ds = r2

∫ 1

0

∫ 1

0
sΦϕrr(usr, τ, ustr2ϕ, λ) duds

+r3
∫ 1

0

∫ 1

0
stΦϕϕr(usr, τ, ustr2ϕ, λ)ϕduds

+ rΦϕr(0, τ, 0, λ).

Hence

r2Φϕ(r, τ, tr2ϕ, λ) = r2Φϕ(0, τ, 0, λ) + r3Φϕr(0, τ, 0, λ)

+ r4
∫ 1

0
tΦϕϕ(sr, τ, str2ϕ, λ)ϕds

+ r4
∫ 1

0

∫ 1

0
sΦϕrr(usr, τ, ustr2ϕ, λ) duds+O(r5).
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By equation (3.7) we have Φϕ(0, τ, 0, λ) = W0,τ,λ and from Lemma 3.2 we
get Φϕr(0, τ, 0, λ) = 0. Therefore

P̃ i
(
r2Φϕ(r, τ, tr2ϕ, λ)

)
= O(r4) for i ∈ {0, 1}.

It follows from Lemma 3.1 that the system (3.13) is equivalent to

8π
(
λ+ Sc

3

)
= −r−2P̃ 0

(∫ 1

0
Φϕ(r, τ, tr2ϕ, λ)ϕdt

)
+O(r2) = O(r2)

and

4π
3 ∇ei Sc ei = rP̃ 1

(∫ 1

0

∫ 1

0
tΦϕϕ(sr, τ, str2ϕ, λ)ϕϕdsdt

)
+ rP̃ 1

(∫ 1

0

∫ 1

0

∫ 1

0
sΦϕrr(usr, τ, ustr2ϕ, λ)ϕdudsdt

)
+O(r2)

= O(r).

By assumption ∇ Sc(p) = 0. Hence, at r = 0, this system is satisfied for an
arbitrary ϕ0 ∈ K⊥, if λ|r=0 = − 1

3 Sc(p) and τ |r=0 = 0.
The derivative with respect to λ and τ at r = 0 of the left hand side of

this system is given by the matrix(
8π 8π

3 ∇ Sc |r=0
0 4π

3 ∇
2 Sc |r=0

)
=
(

8π 0
0 4π

3 ∇
2 Sc |r=0

)
.

By assumption ∇2 Sc |r=0 is non-degenerate. Hence, it follows from the
implicit function theorem that there exist functions λ = λ(r, ϕ) and τ =
τ(r, ϕ) as claimed at least for (r, ϕ) in a neighborhood of (0, ϕ0) ∈ R ×
C

1
2 (S1). �

Lemma 3.4. — Assume that (M, g), p, φ0, r0, U , λ and τ are as in
Lemma 3.3. Then there exists r1 ∈ (0, r0] and a function

ϕ : [0, r1)→ U : r 7→ ϕ(r)

such that

Φ(r, τ(r, ϕ(r)), r2ϕ(r), λ(r, ϕ(r))) = 0 and ϕ(0) = ϕ0.

In particular, for small enough r, we have constructed a surface of Will-
more type with Lagrange multiplier λ(r, ϕ(r)).
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Proof. — Consider the expansion

Φ(r, τ, r2ϕ, λ) = Φ(r, τ, 0, λ) + r2
∫ 1

0
Φϕ(r, τ, tr2ϕ, λ) dt

= r2
(

2λ− 2
3 Sc +4 Ricpq xpxq

)
+O(r3) + r2Φϕ(0, τ, 0, λ)ϕ

+ r4
∫ 1

0

∫ 1

0
tΦϕϕ(sr, τ, str2ϕ, λ)ϕϕdtds

+ r4
∫ 1

0

∫ 1

0

∫ 1

0
sΦϕrr(usr, τ, ustr2ϕ, λ)ϕdudsdt

+ r5
∫ 1

0

∫ 1

0

∫ 1

0
stΦϕϕr(usr, τ, ustr2ϕ, λ)ϕϕdudsdt,

where we used the fact that Φϕr(0, τ, 0, λ) = 0 from Lemma 3.2.
Since Φϕ(0, τ, 0, λ) = W0,τ,λ as in equation (3.7), λ(0, ϕ0) = − 1

3 Sc(p)
and

W0,τ,λϕ0 =
(
−4

3 Sc +4 Ricpq xpxq
)∣∣∣∣

r=0
,

we conclude with the help of the implicit function theorem that, after
dividing the above equation by r2, there exists r1 ∈ (0, r0] and solution
ϕ : [0, r1)→ U as claimed. �

4. The foliation

In this section we show that the surfaces Σr indeed are a foliation of
a pointed neighborhood of p ∈ M . The method used is very close to the
arguments in [15, pp. 390–391]. We start with the following observation.

Lemma 4.1. — The operator Φϕrr(0, τ, 0, λ) maps even functions to
even functions.

Proof. — Note that Φϕrr(0, τ, 0, λ) = ∂2

∂r2

∣∣
r=0Wr,τ,λ whereWr,τ,λ is given

by the expression in equation (3.8). To prove the claim we check this ex-
pression term by term as in the proof of Lemma 3.2.
We start by quoting from [15, Lemma 1.3] that ∂2

∂r2

∣∣
r=0Lr,τ is an even

operator. Hence, the claim follows from the facts that ∂2

∂r2

∣∣
r=0Qr,τ is an

even function and in conjunction with equation (3.11) from the fact that
the operator

(4.1) f 7→ −1
2H

2
r,τ∆r,τf + 2

◦
Ar,τ (∇Hr,τ ,∇r,τf)

+ 2Hr,τ 〈
◦
Ar,τ ,∇2

r,τf〉+ 2Hr,τωr,τ (∇r,τf)
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maps even functions to even functions.
To show this, we quote from the proof of [15, Lemma 1.3] that the opera-

tor ∂2

∂r2

∣∣
r=0∆r,τ |r=0 is even and ∂2

∂r2

∣∣
r=0 Ricr,τ (νr,τ , νr,τ ) resp. ∂2

∂r2

∣∣
r=0|Ar,τ |

2

are even functions. Note that [15, Equation (1.17)] implies that ∂2

∂r2

∣∣
r=0Ar,τ

is even, so that also ∂2

∂r2

∣∣
r=0Hr,τ and ∂2

∂r2

∣∣
r=0

◦
Ar,τ are even.

Using these, it is easy to check that

(4.2) ∂2

∂r2

∣∣∣∣
r=0

(
Hr,τ∆r,τHr,τ + 2〈∇2

r,τHr,τ ,
◦
Ar,τ 〉+ 2Hr,τ 〈

◦
Ar,τ , Tr,τ 〉

−Hr,τ∇r,τ Ricr,τ (νr,τ , νr,τ , νr,τ ) +H2
r,τ |

◦
Ar,τ |2

+1
2H

2
r,τ Ricr,τ (νr,τ , νr,τ )

)
is even. For example consider (we omit the subscript r,τ for clarity in the
notation:
∂2

∂r2

∣∣∣∣
r=0
H∆H =

(
∂2

∂r2

∣∣∣∣
r=0

H

)
∆H0,τ +

((
∂

∂r
H

)(
∂

∂r
∆H

))
|r=0

+H0,τ
∂2

∂r2

∣∣∣∣
r=0

(∆H)

= H0,τ

(
2
(
∂

∂r

∣∣∣∣
r=0

∆
)(

∂

∂r

∣∣∣∣
r=0

H

)
+
(
∂2

∂r2

∣∣∣∣
r=0

∆
)
H

)
+H0,τ∆0,τ

∂2

∂r2

∣∣∣∣
r=0

H

= H0,τ

(
∂2

∂r2

∣∣∣∣
r=0

∆r,τ

)
H0,τ +H0,τ∆0,τ

(
∂2

∂r2

∣∣∣∣
r=0

Hr,τ

)
.

In the second and third equality we used from the proof of Lemma 3.2 that
∂
∂r

∣∣
r=0Hr,τ = 0 and the fact that H0,τ is constant. The right hand side is

even, since H0,τ is constant and thus even, since ∂2

∂r2

∣∣
r=0∆r,τ and ∆0,τ map

even functions to even functions and since the product of even functions is
even. The calculation for the other terms in (4.2) is similar. To treat the
term Hr,τ∇r,τ Ricr,τ (νr,τ , νr,τ , νr,τ ) use that ∇r,τ Ricr,τ (νr,τ , νr,τ , νr,τ ) =
O(r3).

For the remaining terms in Qr,τ note that the ∂
∂r

∣∣
r=0 (∇r,τ ) is a first

order differential operator that vanishes on constant functions. Hence,
1
2
∂2

∂r2

∣∣∣∣
r=0
|∇r,τHr,τ |2 =

〈
∂2

∂r2

∣∣∣∣
r=0

(∇r,τHr,τ ) ,∇0,τH0,τ

〉
+
∣∣∣∣( ∂

∂r

∣∣∣∣
r=0
∇r,τ

)
H0,τ +∇0,τ

(
∂

∂r

∣∣∣∣
r=0

Hr,τ

)∣∣∣∣2= 0.

ANNALES DE L’INSTITUT FOURIER



SURFACES OF WILLMORE TYPE 1657

This follows, sinceH0,τ is constant, ∂
∂r

∣∣
r=0 (∇r,τ ) = H0,τ and∇0,τH0,τ = 0

and since ∂
∂r

∣∣
r=0Hr,τ = 0 as in Lemma 3.2. A similar computation yields

that ∂2

∂r2

∣∣
r=0ωr,τ (∇r,τH) = 0. We established that ∂2

∂r2

∣∣
r=0Qr,τ is an even

function.
It remains to consider the expression in (4.1). Note that the first term is

even by reasoning as above. The second term satisfies
∂2

∂r2

∣∣∣∣
r=0

( ◦
Ar,τ (∇Hr,τ ,∇r,τf)

)
= 0.

To treat the third term, use
◦
A0,τ = 0 and ∂

∂r

∣∣
r=0

◦
A0,τ = 0 to compute

∂2

∂r2

∣∣∣∣
r=0

Hr,τ 〈
◦
Ar,τ ,∇2

r,τf〉 = H0,τ

〈
∂2

∂r2

∣∣∣∣
r=0

◦
Ar,τ ,∇2

0,τf

〉
.

Note that ∂2

∂r2

∣∣
r=0

◦
Ar,τ is even and ∇2

0,τ maps even functions to even func-
tions so that this operator also has the desired property.
For the last term from (4.1) we compute using ω0,τ = 0, ∂

∂r

∣∣
r=0 ωr,τ = 0

and ∂
∂r

∣∣
r=0Hr,τ = 0 that:

∂2

∂r2

∣∣∣∣
r=0

Hr,τωr,τ (∇r,τf) = H0,τ

(
∂2

∂r2

∣∣∣∣
r=0

ωr,τ

)
∇0,τf.

Note that ∇0,τ is the tangential gradient on S2 and maps even functions
to odd vector fields. Furthermore, by equation (2.22) and the fact that
νr,τ = x+O(r2) we have that

ωr,τ = r2 Ricc(τ) x+O(r3)

so that
∂2

∂r2

∣∣∣∣
r=0

ωr,τ = Ricc(τ) x

and hence ∂2

∂r2

∣∣
r=0ωr,τ is an odd one form. Consequently the function

H0,τ
(
∂2

∂r2

∣∣
r=0ωr,τ

)
∇0,τf is even whenever f is even. This concludes the

proof. �

Lemma 4.2. — For r ∈ (0, r1) let Σr := S(r, τ(r, ϕ(r)), ϕ(r)) be as in
Lemma 3.4. Then τ(r) = O(r2) as r → 0.

Proof. — It follows from the implicit function theorem that τ ′(r) = O(r)
if and only if

(4.3) P̃ 1(Φϕϕ(0, τ, 0, λ)ϕ0ϕ0) = 0 and P̃ 1(Φϕrr(0, τ, 0, λ)ϕ0) = 0.

To establish the first identity, note that by the fact that equation (3.12)
has unique solutions and since W0,τ,λ is invariant under the reflection at
the origin, it follows that ϕ0 is an even function.
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Furthermore, for every t in a neighborhood of 0 the euclidean Willmore
operator Φ(0, τ, tϕ0, λ) evaluates to an even function. Hence also

Φϕϕ(0, τ, 0, λ)ϕ0ϕ0 = ∂2

∂t2

∣∣∣∣
t=0

Φ(0, τ, tϕ0, λ)

is even. Since P̃ 1 vanishes on even functions, the first claim from (4.3)
follows.
To prove the second identity, we note that by Lemma 4.1 the operator

Φϕrr(0, τ, 0, λ) maps even functions to even functions and the claim follows
in a similar manner. �

This lemma implies in particular that we can reparameterize the solutions
that we found in Section 3 by their area.

Corollary 4.3. — For r ∈ (0, r1) let Σr := S(r, τ(r, ϕ(r)), r2ϕ(r)) be
as in Lemma 3.4. Consider the area of Σr in (M, g) as a function of r:

a : (0, r1)→ (0,∞) : r 7→
∫

Σr
1 dµg.

Then there exists r2 ∈ (0, r1] so that a is strictly increasing on (0, r2). In
particular:

a(r) = 4πr2 +O(r4) and a′(r) = 8πr +O(r3).

Proof. — Note that a extends as a smooth function to r = 0 so that
a(0) = 0 and hence the first claim follows from the second. We first note
that

a′(r) = −
∫

Σr
g( ~H,X) dµg,

where X is the variation vector-field along this family. Note that X is not
unique, whereas X⊥ is well defined. Recall that from Lemma 3.4 we have
that Σr is an exponential normal graph over Sr(τ(r)) with height function
r3ϕ(r) such that ϕ(r)→ ϕ0 as r → 0. Furthermore, by Lemma 4.2 we have
that τ(r) = O(r2) as r → 0. This implies that

X⊥
∣∣
Σr

= ∂

∂rτ
+O(r2)

where rτ = dg(τ(r), · ). Furthermore, by the above and (2.8) we have that

HΣr = HSr(τ(r)) +O(r2) = 2
r

+O(r),

as well as
νΣr = νSr(τ(r)) +O(r3).
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Also note that from (2.4) we have∫
Sr(τ(r))

1 dµg = 4πr2 +O(r4).

This implies

a′(r) = −
∫

Σr
g( ~H,X) dµg = 8πr +O(r3). �

Due to Corollary 4.3 there exists a0 ∈ (0,∞) and a map r̃ : (0, a0) →
(0, r2) such that |Σr̃(a)| = a. We slightly abuse notation by letting

(4.4) Σa := Σr̃(a) for a ∈ (0, a0)

This finishes the existence part of the proof of Theorem 1.1. To complete
the proof, it remains to show the following:

Proposition 4.4. — For r ∈ (0, r1) let Σr := S(r, τ(r, ϕ(r)), ϕ(r)) be
the surfaces from Lemma 3.4. Then there exist r2 ∈ (0, r1] so that the
family {Σr}r∈(0,r1) is a foliation of a pointed neighborhood of p.

Proof. — Define the maps

Ψr := exp−1
p expc(τ(r)),

Ψ(r, x) := Ψr(r(x+ r2ϕ(r)(x))) and

β(r, x) := Ψ(r, x)
|Ψ(r, x)| .

We claim that there exists r̃ ∈ (0, r1] such that |Ψ(r, x)| 6= 0 every x ∈ S2

and such that β(r, · ) : S2 → S2 is a family of diffeomorphisms which can
be smoothly extended to r = 0 by the identity.

Indeed, this follows from the facts that

∂Ψ
∂r

= (dxΨr)
(
x+ r2ϕ(r)(x)+r(r2ϕ(r)(x))r

)
+
(
∂Ψr

∂r

)(
r(x+ r2ϕ(r)(x))

)
and

∂Ψr

∂r

∣∣∣∣
r=0

= ∂

∂τ i

(
exp−1

p expc(τ(r))

)∣∣∣∣
τ=0
· ∂τ

i

∂r

∣∣∣∣
r=0

= 0

where we used Lemma 4.2 in the last equality. In combination
∂Ψ
∂r

(0, x) = x.

Hence
Ψ(r, x) = rx+O(r2) as r → 0.
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In particular, Ψ(r, x) 6= 0 for r small enough and

β(r, x) = x+O(r)
|x+O(r)| .

This establishes the claim.
Let η(r, x) := |Ψ(r, β−1(r, x))| and calculate

∂η

∂r
= Ψ
|Ψ|

(
∂Ψ
∂r

+ (dxΨ)
(
∂

∂r
β−1

))
= x+O(r)
|x+O(r)| (x+O(r)).

This yields
∂η

∂r

∣∣∣∣
r=0

= 1.

Consequently η is strictly increasing for r small enough which shows that
all the surfaces are disjoint. �

5. Local Uniqueness

By inspecting the proof of Theorem 1.1 above and by the local uniqueness
of solutions obtained via the implicit function theorem, we obtain a local
uniqueness result for the Σa. To state this, we use the notation introduced
at the beginning of Section 3.

Corollary 5.1. — Fix α ∈ (0, 1). Let (M, g) be a Riemannian 3-
manifold and p ∈M be a non-degenerate critical point of the scalar curva-
ture. Denote by ϕ0 ∈ C∞(S2) the solution of (3.12) where Ric is evaluated
at p. Then there exist r0 ∈ (0,∞), a neigborhood Ω ⊂ C4,α(S2) of ϕ0, a
neighborhood U ⊂ R3 of the origin, and an open interval I ⊂ R such that
− 1

3 Sc(p) ∈ I with the following properties:
Assume that Σ ⊂M is such that:
(1) Σ = S(r, τ, r2ϕ) up to reparameterization,
(2) On Σ we have that

∆H +H|
◦
A|2 +H Ric(ν, ν) = λH.

(3) (r, τ, ϕ, λ) ∈ (0, r0)× U × Ω× I and Pi(ϕ) = 0 for i ∈ {0, 1}.
Then Σ = Σa where Σa is as in equation (4.4) and such that |Σ| = |Σa|.

Note that if Ωb ⊂ C4,α(S2) is any bounded subset and ϕ ∈ Ωb, then
there exists a constant C = C(Ωb) such that∣∣W(S(r, τ, r2ϕ)− 4π

∣∣ 6 Cr2.
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In [6] it was shown that there exists ε = ε(M, g) > 0 such that if Σ is a
solution (1.2) with |Σ| < ε and W(Σ) 6 4π + ε also satisfies∣∣∣∣λ+ 1

3 Sc(p)
∣∣∣∣ 6 Cr

for some constant C = C(M, g). Hence, it follows that in the statement of
Corollary 5.1 the condition on λ is in fact not needed.

Corollary 5.2. — There exist r′0 ∈ (0,∞), a neigborhood Ω′⊂C4,α(S2)
of ϕ0, a neighborhood U ′ ⊂ R3 of the origin with the following properties:
Assume that Σ ⊂M is such that:
(1) Σ = S(r, τ, r2ϕ) up to reparameterization,
(2) On Σ we have that

∆H +H|
◦
A|2 +H Ric(ν, ν) = λH.

(3) (r, τ, ϕ) ∈ (0, r0)× U × (Ω ∩K) and Pi(ϕ) = 0 for i ∈ {0, 1}.
Then Σ = Σa where Σa is as in equation (4.4) and such that |Σ| = |Σa|.

Note that this uniqueness applies to individual solutions of (1.2) and not
to whole foliations. It is not difficult though, to prove a result similar to [15,
Section 2] to deal with the uniqueness of foliations centered at p based on
the a priori estimates on such surfaces in [5, 6, 9].
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