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ABSTRACT
Distributed energy technologies introduce new volatility to the
edges of low voltage grids and increase the importance of short-
term forecasting of electric loads at a granular level. To address this
issue, first probabilistic forecastingmodels for residential loads have
been developed in recent years. However, knowledge is lacking
about how well these models perform for households with differ-
ent endowments of distributed energy technologies. Therefore, we
first create a new semi-synthetic data set which contains not only
conventional residential loads, but net loads of 40 households differ-
entiated regarding heating type (electric space heating, no electric
space heating), and rooftop solar installation (solar, no solar). Sec-
ond, we develop a novel probabilistic forecasting model based on
Gated Recurrent Units that uses data from weather forecasts and
calendar variables as external features. We apply the developed
model, and three benchmarks, to the new data set and find that
the GRU model outperforms the other models for households with
electric heating, with solar, and with both technologies, but not for
households without distributed energy technologies.

CCS CONCEPTS
• Computing methodologies → Neural networks.
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1 INTRODUCTION
In electricity systems with increasing numbers of distributed en-
ergy technologies (DETs), appropriate short-term forecasting of
loads at a granular level gains importance [36, 39]. Probabilistic
load forecasting models for household loads provide more infor-
mation about future uncertainties than point forecasts [39], but
have been focused on ’conventional’ residential loads, and have
largely neglected the influence of distributed energy technologies.
Therefore, this study makes the following contributions. First, we
develop a new semi-synthetic residential data set which contains
the net load profiles of 40 households, differentiated by heating
type (electric space heating, no electric space heating), and rooftop
solar installation (solar, no solar). This unique data set allows us
to analyze how well probabilistic forecasting models perform over
various types of households with DETs. Second, we present a prob-
abilistic forecasting model based on Gated Recurrent Units (GRU)
that includes data from weather forecasts and calendar variables
as external features. We compare this model to three benchmark
models, one of them a recently proposed model based on Long
Short-term Memory (LSTM) networks [40]. Our work thus sheds
light on the so-far neglected role of DETs in residential probabilistic
load forecasting, proposes a new forecasting model that is com-
pared to state-of-the-art benchmark models, and provides a new
benchmark data set for future research in this area.

2 RELATEDWORK
Unlike point forecasting which outputs a single predicted value at
each time step, probabilistic forecasting makes it possible to express
the uncertainty in a prediction, which is a crucial component for
optimal decision making [15]. For electrical load, probabilistic fore-
casting generates a distribution of the future load, thus capturing
characteristics of a load profile’s volatility. As suggested by Hong
and Fan [21], probabilistic load forecasts can be conducted in terms
of quantile forecasting, interval forecasting and density forecasting.
In recent years, there has been growing interest in probabilistic
load forecasting on city level or system level. A structured overview
of probabilistic load forecasting studies is provided in Table 3 in
the appendix. The overview shows that studies have investigated a
wide range of new methods, including kernel methods [4], neural
networks [9, 13, 35, 38, 40], Gaussian process [32, 34, 35], additive

1Code and data are available at https://github.com/FVS-energy/prob_forecasting
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quantile regression [33], and ensemble models [2, 29]. However,
most studies have applied these methods to regular households’
loads. Regarding household loads influenced by DETs, Van der Meer
et al. [35] address probabilistic forecasting of net loads of houses
with rooftop solar. They propose a dynamic Gaussian Process that
produces sharper prediction intervals at significant lower compu-
tational effort than the provided benchmarks. However, there is a
trade-off with the ability to capture sharp peaks. The authors also
find that indirectly forecasting net demand (i.e. through forecasting
both demand and own generation) leads to wider prediction inter-
vals with higher coverage probability. In a following work, Van der
Meer et al. [34] find that net load forecasts have improved sharp-
ness and reliability of prediction intervals, when several households
are aggregated. This hints at the specific challenges of individual
load forecasting. However, neither of the two studies addresses
individual net load forecasts for households without solar or with
other technologies. Besides probabilistic households load forecast-
ing, studies have developed specialized probabilistic forecasts for
flexibilities of electric vehicles [24], or rooftop solar generation [1],
but without integrating these into residential load forecasts.

In summary, past research has focused on the development of
models for household loads, or specific single technologies. An
important gap prevails regarding probabilistic load forecasting for
consumers with different types of distributed energy technologies
that are about to "disrupt the traditional load profiles" [39].

3 METHODOLOGY
This section introduces the structure of the proposed forecasting
model. Additionally, it describes benchmark methods, the selected
loss metric, hyperparameter tuning, and cross-validation.

3.1 Long Short-Term Memory Networks and
Gated Recurrent Units

Unlike traditional neural networks, which learn the relationships
of inputs and outputs based on provided training data for every
instance, recurrent neural networks (RNNs) are able to learn depen-
dencies within sequential input data such as time series. However,
conventional RNNs can practically only learn short-term depen-
dencies due to the problem of vanishing gradients.

As a remedy, Long Short-Term Memory networks have been
developed, which are able to learn long-term dependencies [14, 19].
There are three gates in an LSTM unit, which control the flow of
information in the network. However, LSTMs can suffer from slow
training since parameters for three gates have to be estimated.

Therefore, two-gate based Gated Recurrent Units (GRUs) have
been developed. Compared to LSTMs, GRUs have one less parame-
ter that needs to be estimated. In other contexts, GRUs have shown
similar performance as LSTMs, with shorter computational times
[8, 27]. Therefore, in this paper, we present a probabilistic forecast-
ing model based on quantile forecasts with GRUs.

3.2 Network structure
The quantile GRU model (QGRU) includes four steps. A visual
representation is displayed in the appendix in Figure 2. The first
step takes historical load data as input. 𝑡 refers to the predicted time
step. 𝑛𝑖 is the number of input steps, i.e. the length of the input

time series. 𝑛𝑜 denotes the number of output steps, defining the
prediction horizon. The previous load profile goes through two GRU
layers and one dense layer. This layer passes on the last hidden state
ℎ𝑡 . In the second step, the calendar data, i.e. the features weekday
and time of day, are one-hot encoded. In the third step, weather
data is introduced. Each variable, i.e. temperature, wind speed, and
relative humidity, is normalized. The fourth step concatenates the
output of the three previous steps. Then, the resulting input vector
is passed through two fully-connected dense layers, which finally
generate five quantile forecasts.

3.3 Pinball loss for quantile forecasting
Pinball loss is an established evaluation metric for probabilistic
forecasts in the energy sector. It is used as the single deciding error
measure in the Global Energy Forecasting Competition [22], as well
as in studies on probabilistic household load forecasting [9, 40].
Pinball loss evaluates the forecasts of each quantile individually,
as formulated by Equation 1. The core idea of the pinball loss is
the asymmetric penalization of forecast errors, depending on the
quantile. If a forecasted quantile value is smaller than the actual
observation, this will be penalized stronger for higher quantiles, as
the quantile loss is the product of the quantile and the absolute error.
The proposed QGRU model (and all benchmark models) predict
five values at each time step for 𝑞 ∈ [10%, 25%, 50%, 75%, 90%]. The
aim of the training process is to minimize the average pinball loss
of all five quantiles, as formulated by Equation 2.

𝐿𝑞,𝑡 (𝑦𝑡 , 𝑦𝑞𝑡 ) =
{

(1 − 𝑞) (𝑦𝑞𝑡 − 𝑦𝑡 ), 𝑦
𝑞
𝑡 ≥ 𝑦𝑡

𝑞(𝑦𝑡 − 𝑦
𝑞
𝑡 ), 𝑦

𝑞
𝑡 < 𝑦𝑡

(1)

𝑦𝑡 : real observation at time step 𝑡
𝑦
𝑞
𝑡 : the 𝑞th quantile forecast at time step 𝑡

𝑚𝑖𝑛𝐿 =
∑
𝑞

𝑇∑
𝑡=1

𝐿𝑞,𝑡 , 𝑞 ∈ [10%, 25%, 50%, 75%, 90%] (2)

3.4 Benchmarks
To adequately evaluate the performance of the proposed model,
we compare it to three other quantile load forecasting models. The
first benchmark is a quantile LSTM (QLSTM) model. It has the
same network structure as the QGRU model, but employs LSTM
layers instead of GRU layers. The second benchmark is a quantile
regression neural network (QREGNN) model with four dense layers.
Both QLSTM and QREGNN take the same input features as the
QGRU. We use these two benchmarks to evaluate the QGRU’s
performance against other models using the same input data. The
third benchmark is a quantile LSTM model without weather input
features (QLSTM_noWeather). It corresponds to themodel proposed
by Wang et al. [40]. We use it to measure how the weather features
affect forecast loss and to provide an established benchmark. For
all three benchmark models, hyperparameter tuning and cross-
validation is performed, to allow for an adequate comparison.

3.5 Hyperparameter tuning
Since there are individual models for each household, hyperparam-
eter tuning is done for each model individually. For QGRU, QLSTM,
and QLSTM_noWeather, we tune the learning rate, the number of



units in the recurrent layers and the number of units in the dense
layers. For the QREGNN, we tune the learning rate and the number
of units in the dense layers. The tested values are shown in Table 1.

Table 1: Values of Hyperparameters

Hyperparameter Values

Learning rate 0.001, 0.01, 0.1
Number of units in recurrent layers 4, 8, 12
Number of units in dense layers 10, 30, 50

3.6 Cross-validation
Due to the time series character and the limited time range of the
data (one year), a two-fold rolling window approach is conducted
to cross-validate the models. First, we train, validate and test our
models only on the first 80% of data, i.e. with a train-validation-test
split of 40-20-20. Second, we expand the training window, resulting
in a 60-20-20 split. For the final evaluation, we average the test
losses from step one and two. Rolling window cross-validation is a
common approach in energy forecasting [25, 35]. It improves the
generalisation of our findings, amongst others because it better
captures any seasonality effects.

4 DATA
This section introduces the data pre-processing steps and the final
input data set for the load forecasting task.

4.1 Load data
The residential electricity load data was collected by Common-
wealth Edison (ComEd), a large electric utility in the US [10]. The
data set contains anonymous smart meter data of residential cus-
tomers in and around the city of Chicago for the year of 2016. Each
smart meter provides half-hourly load data, which leads to 16,128
observations for every household. For each customer ID, the deliv-
ery service class is stated, which describes the housing type (single
family homes and multi family homes), as well as the heating type
(electric space heating and no electric space heating). For more
information and other applications of the original data set, we refer
to [7, 37]. For our purpose, we focus on households in single family
homes. From those, we randomly draw ten customers with electric
space heating and ten without electric space heating.

4.2 Solar data
For solar data, we use the Python tool pvlib [20]. Following the
approach from [5, 6], we simulate power generation from rooftop
solar systems based on given weather and irradiation data from
2016. We simulate PV systems with three different azimuths of 135
(south-east), 180 (south), and 225 (south-west) degrees. Each solar
system is sized to a capacity of 6.9 kW, following [12]. We randomly
assign an azimuth to each household. The assigned solar generation
curve is subtracted from the load curve, resulting in the net load2.
2Our approach assumes that households with rooftop solar do not change their elec-
tricity consumption behavior, e.g. to specifically use self-generated electricity. This is
motivated by the fact that they have no financial incentive to do so under the prevailing
flat tariff net metering regulation scheme.

Finally, the data set comprises the net load data for 40 households,
i.e. for ten households without electric space heating or solar (Figure
3a in the appendix), for ten households with electric space heating,
but no solar (Figure 3b), for ten households without electric space
heating, but solar (Figure 3c), and for ten households with both
electric space heating and solar (Figure 3d).

4.3 Weather data
When using external input features for forecasting, it should be en-
sured that only data is used that in reality would be available at the
time of forecasting [36]. It has been shown that the errors inherent
in weather forecasts increase load forecast errors on system level
[3]. Therefore, we acquire historical weather forecast data for 2016.

The US ”National Oceanic and Atmospheric Institute” provides
historical weather forecasts with a sufficiently long history via
the Climate Forecast System Version 2 [31]. There, forecasts for
more than 50 variables are stored in six hour intervals. We select
air temperature, specific humidity and wind speed, since they are
the most frequently used weather variables for load forecasting
[11] and have a large influence on thermal comfort [18], which
presumably play a crucial role for the load forecasts of households
with electric heating. The data sets are provided via a HTTPS file
server [30]. From this server, the data can be downloaded in the
Grib2 format and transformed for use in the forecasting task with
the Python Package cfgrib. The grid node with the closest spatial
proximity to the smart meter area is selected (42.05◦, -87.2◦). Last,
we interpolate the data to hourly values using a cubic regression
spline as proposed by Hyndman and Fan [26].

4.4 Calendar data
Electricity consumption patterns on public holidays are usually
different from normal days [17]. Past studies have either simply
considered all public holidays as weekends [28] or used more so-
phisticated rules to label public holidays and surrounding days [23].
We follow the latter approach and re-label special days accordingly.

4.5 Final input data set
Since other data is given at hourly intervals, the smart meter data
sets are aggregated from a half-hourly to an hourly resolution,
resulting in 24 observations per day. The final data set for the case
study contains three categorical variables (Customer ID, DET set-
up, Date), and six input variables for the forecast (Hourly net load,
Weekday, Time of day, Hourly temperature forecast, Hourly wind
speed forecast, Hourly relative humidity forecast).

5 CASE STUDY
For the case study, we forecast the one-hour ahead net load. For
each of the 40 households, an individual model is trained.We use the
last 336 hours (i.e. two weeks) of net load as lagged input features.
The proposed models are implemented in Python, using Keras. The
models are run on a GPU on Google Colaboratory [16].

To provide a detailed insight into the performance of the models,
Figure 1 shows a scatter plot of each household’s average pinball
loss under QGRU, compared to the benchmark models. The line
y=x represents the performance of the QGRU. All points under this
line indicate a case in which the QGRU outperforms the respective



Table 2: Average Pinball loss [kWh] of tested methods for different customer types

QGRU QLSTM QREGNN QLSTM_noWeather Average

Household 0.1989 0.2019 0.2373 0.1902 0.2070
Household with heating 0.2060 0.2116 0.2602 0.2061 0.2211
Household with solar 0.1366 0.1386 0.1367 0.1387 0.1376
Household with heating and solar 0.1347 0.1394 0.1564 0.1509 0.1453

benchmark model. 67.5% of points are under the line, demonstrating
the overall superior performance of the proposed QGRU model.
More specifically, the QGRU model outperforms the QLSTM in
60.0%, the QREGNN in 72.5%, and the QLSTM_noWeather in 70.0%
of cases.

Figure 1: Comparison of pinball loss between QGRU and
benchmark models for all customers

In Table 2, we present the performance of the proposed QGRU
and the three benchmarks methods, averaged across customers.
The proposed QGRU achieves the lowest pinball losses overall.
It achieves the lowest loss for three of the four customer groups,
namely households with electric heating, households with solar, and
households with both technologies. Only in the case of households
without any technology, the benchmark QLSTM model without
additional weather input data (as proposed by Wang et al. [40]) out-
performs the QGRU on average. Our results thus confirm the good
performance of this model on standard households, but also show
that it is outperformed by the QGRU model for households with
energy technologies. This underlines the importance of tailoring
forecasting models to the specific case.

All models show the highest average loss for households with
electric heating. This might be due to the higher total load of those
households. Figure 4 in the appendix shows the average pinball
loss versus the annual net consumption for each households. It
shows that households in the data set with electric heating have
exceptionally high loads. Although differences among models exist,
all models show a very high pinball loss for at least one customer
from the set of households with heating. This finding might indicate
that for the tested models, a training set of less than one year which

only includes one heating period is inadequate for learning the
households’ heating behavior, which is important to consider in
the development of future models.

All models achieve the lowest pinball loss on the net load profiles
of households with solar generation. Notably, this finding seems
to hold independent of these households’ total annual net loads,
as Figure 4 shows. This is surprising and indicates that the fore-
casting models are able to adequately capture the periodicity of net
loads that include solar generation. This notion is supported by the
comparison of households with no technology and of households
with both solar and heating. These groups have similar mean net
consumption, but pinball losses are lower for the latter.

Since no literature on probabilistic forecasts of net loads with
DET influence exist, we cannot yet benchmark our results against
literature. However, we compare our results for households without
DETs to Wang et al. [40] who also use a pinball loss guided LSTM
without weather data. We find that the QLSTM_noWeather model
in our case study achieves an average pinball loss about twice as
high as in the case study in [40]: 0.2019, compared to 0.0963. We
assume this difference is due to the higher number of data points
per customer in the data set used in [40]: 26,000 data points per
customer, compared to 8,783 in our data set. This indicates the
positive effect of more training data on forecasting performance.

Future work could enhance our approach by including other
distributed energy technologies, such as electric vehicles, and resi-
dential batteries. Besides, it can utilize the forecasts by integrating
them into the operation of home energy management systems. For
this, the code and data published with this study can be used.

6 CONCLUSION
In this paper, we argue that increasing adoption of distributed en-
ergy technologies will affect the quality of existing forecasting
tools for individual households’ net loads. We present a pinball loss
guided GRUmodel that produces quantile forecasts of net loads. We
develop a new, semi-synthetic residential net load data set that in-
cludes standard customers without distributed energy technologies
as well as customers with electric heating, rooftop solar, and both
technologies. We apply the proposed model and three benchmark
models to this data set. We find that the proposed quantile GRU
model outperforms the benchmark models for customers with dis-
tributed energy technologies, independent of technology. However,
the quantile GRU model is outperformed for the group of standard
households by a quantile LSTM model that ignores weather data.
All models perform best for households with own solar generation,
and worst for households with electric heating. We thus provide
first fundamental insights for probabilistic forecasting of household
loads under the influence of distributed energy technologies.
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Table 3: Overview of Probabilistic Individual Load Forecasting Literature

Study Main method(s) Input
features

Data Evaluation
metric

Load
scenarios

This study GRU, LSTM net load,
calendar,
weather

1 year at
1 h resolution

Average pinball loss Household (HH),
HH with solar,
HH with heating,
HH with solar +
heating

Munkhammar et al. 2021 Markov-chain mixture
distribution model

load 3 years at
30 min resolution

Reliability MAE, PINAW,
normalized CRPS

HH

Afrasiabi et al. 2020 Ensemble of CNNs,
GRU, MDN

load,
weather

1 year at
30 min resolution

RMSE, MAPE, CRPS,
CE

HH

Zhang et al. 2020 Ensemble of GRU,
GBRT, RF, LightGBM

load,
calendar

1.5 years at
30 min resolution

CRPS HH

Elvers et al. 2019 CNN load,
calendar,
weather

2 years at
15-60 min resolution

Pinball loss HH

Wang et al. 2019 LSTM load,
calendar

1.5 years at
30 min resolution

Average pinball loss HH

Shepero et al. 2018 Gaussian process,
log-normal process

load,
calendar

3 years at
30 min resolution

MAE, RMSE, PINAW,
PICP

HH

Van der Meer et al. 2018a Static + dynamic
Gaussian Process

net load 3 years at
30 min resolution

MAE, MAPE, NRMSE,
PICP, PINAW, NCRPS

HH with solar

Van der Meer et al. 2018b Dynamic Gaussian
Process, Quantile
regression

net load 3 years at
30 min resolution

PICP, PINAW, NCRPS HH with solar

Vossen et al. 2018 MDN, Softmax
Regression Networks

load,
calendar

three different
data sets

CRPS HH

Gan et al. 2017 LSTM load 500 d at
30 min resolution

Average quantile score HH

Taieb et al. 2016 Boosting additive
quantile estimation

load 1.5 years at
30 min resolution

CRPS HH

Arora and Taylor 2016 Conditional kernel
density estimation

load 8 mo at
30 min resolution

CRPS, unconditional
coverage

HH

CE: Cross-entropy, CNN: Convolutional neural network, GBRT: Gradient boosting regression tree, RF: random forest, LGBM: Light gradient boosting machine, CPRS: Continuous Ranked Probability Score, MAE: Mean average error, MAPE:
Mean average percentage error, MDN: Mixed density networks, NRMSE: Normalized root mean square error, PICP: Prediction interval coverage probability, PINAW: Prediction interval normalized average width, NCRPS: Normalized continuous
ranked probability score, RMSE: Root mean square error
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Figure 2: Network structure of the QGRU forecasting model

(a) HH with no technology

(b) HH with el. heating

(c) HH with solar

(d) HH with el. heating and solar

Figure 3: Average daily net load curves of the ten households
in each group



(a) QGRU (b) QLSTM

(c) QREGNN (d) QLSTM_noWeather

Figure 4: Net load and pinball loss
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