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Abstract

Knowledge Discovery in Databases (KDD) targets extracting useful knowledge from data.
Data can represent a set of measurements from a real-world process or be a set of input-
output values of a simulation model. Two often conflicting requirements to the knowledge
acquired are: (1) summarize the data accurately and (2) be in a comprehensible form for a
human. Decision trees or subgroup discovery methods, the topic of this study, yield data
summaries in the form of hyper-rectangles, which are human-comprehensible.

To demonstrate the importance of comprehensible data models, we study Decentral
Smart Grid Control (DSGC) — a new system that implements demand response in electrical
grids without significant changes in the infrastructure. The conventional analysis of this
system performed so far was limited to considering identical participants and thus did not
reflect the reality sufficiently well. We run many simulations, with diverse input values,
apply decision trees to the resulting data, and provide new insights.

Decision trees allow describing the system behavior for all combinations of inputs.
Sometimes, one is interested not in partitioning the whole input space, but in isolating
large regions which lead to particular output — subgroups. The existing algorithms to
discover subgroups usually require big datasets to produce stable and accurate hyper-
rectangles. However, the data collection process is often costly. Our main contribution is
improving subgroup discovery from small datasets — with few observations.

Subgroup discovery in simulated data is called scenario discovery. A commonly used
algorithm for scenario discovery is PRIM (Patient Rule Induction Method). In this work,
we propose a new procedure, REDS (Rule Extraction for Discovering Scenarios). We train
an intermediate statistical model which generalizes fast and use it to create more data for
PRIM. We provide the statistical intuition behind this idea. Experiments show that this
method is much better than PRIM on its own. It reduces the number of simulation runs
necessary by 75% on average.

With simulated data, one has perfect knowledge on the input distribution — an assump-
tion of REDS. To make REDS applicable to measured data, we combined it with sampling
from an estimated joint probability distribution of attributes. We have evaluated the
resulting method in combination with various methods to generate data experimentally on
a broad range of datasets. We did so for PRIM and BestInterval — another representative
subgroup discovery method. In the majority of cases, our methodology enhanced the
quality of discovered subgroups.
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Zusammenfassung

Die Wissensentdeckung in Datenbanken (“Knowledge Discovery in Databases”, KDD)
zielt darauf ab, niitzliches Wissen aus Daten zu extrahieren. Daten konnen eine Reihe
von Messungen aus einem realen Prozess reprasentieren oder eine Reihe von Eingabe-
Ausgabe-Werten eines Simulationsmodells. Zwei haufig widerspriichliche Anforderungen
an das erworbene Wissen sind, dass es (1) die Daten moglichst exakt zusammenfasst und
(2) in einer gut verstandlichen Form vorliegt. Entscheidungsbaume (“Decision Trees”) und
Methoden zur Entdeckung von Untergruppen (“Subgroup Discovery”) liefern Wissenszu-
sammenfassungen in Form von Hyperrechtecken; diese gelten als gut verstandlich.

Um die Bedeutung einer verstandlichen Datenzusammenfassung zu demonstrieren,
erforschen wir Dezentrale intelligente Netzsteuerung — ein neues System, das die Bedarfs-
reaktion in Stromnetzen ohne wesentliche Anderungen in der Infrastruktur implementiert.
Die bisher durchgefiihrte konventionelle Analyse dieses Systems beschrankte sich auf
die Beriicksichtigung identischer Teilnehmer und spiegelte daher die Realitét nicht aus-
reichend gut wider. Wir fithren viele Simulationen mit unterschiedlichen Eingabewerten
durch und wenden Entscheidungsbaume auf die resultierenden Daten an. Mit den daraus
resultierenden verstandlichen Datenzusammenfassung konnten wir neue Erkenntnisse
zum Verhalten der Dezentrale intelligente Netzsteuerung gewinnen.

Entscheidungsbaume erméglichen die Beschreibung des Systemverhaltens fiir alle Ein-
gabekombinationen. Manchmal ist man aber nicht daran interessiert, den gesamten Einga-
beraum zu partitionieren, sondern Bereiche zu finden, die zu bestimmten Ausgabe fithren
(sog. Untergruppen). Die vorhandenen Algorithmen zum Erkennen von Untergruppen
erfordern normalerweise grofie Datenmengen, um eine stabile und genaue Ausgabe zu er-
zielen. Der Datenerfassungsprozess ist jedoch haufig kostspielig. Unser Hauptbeitrag ist die
Verbesserung der Untergruppenerkennung aus Datensatzen mit wenigen Beobachtungen.

Die Entdeckung von Untergruppen in simulierten Daten wird als Szenarioerkennung
bezeichnet. Ein hiufig verwendeter Algorithmus fiir die Szenarioerkennung ist PRIM
(Patient Rule Induction Method). Wir schlagen REDS (Rule Extraction for Discovering
Scenarios) vor, ein neues Verfahren fiir die Szenarioerkennung. Fiir REDS, trainieren wir
zuerst ein statistisches Zwischenmodell und verwenden dieses, um eine grof3e Menge
neuer Daten fiir PRIM zu erstellen. Die grundlegende statistische Intuition beschrieben wir
ebenfalls. Experimente zeigen, dass REDS viel besser funktioniert als PRIM fiir sich alleine:
Es reduziert die Anzahl der erforderlichen Simulationsldufe um 75% im Durchschnitt.

Mit simulierten Daten hat man perfekte Kenntnisse tiber die Eingangsverteilung — eine
Voraussetzung von REDS. Um REDS auf realen Messdaten anwendbar zu machen, haben
wir es mit Stichproben aus einer geschétzten multivariate Verteilung der Daten kombiniert.
Wir haben die resultierende Methode in Kombination mit verschiedenen Methoden zur Ge-
nerierung von Daten experimentell evaluiert. Wir haben dies fiir PRIM und BestInterval —
eine weitere reprasentative Methode zur Erkennung von Untergruppen — gemacht. In den
meisten Fallen hat unsere Methodik die Qualitdt der entdeckten Untergruppen erhoht.
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1 Introduction

Machine Learning (ML) is an extensive subarea of artificial intelligence that studies the
methods of constructing algorithms capable of learning. ML models are widespread. They
are used in computer vision, materials science, machine translation, credit scoring, and
many other domains. Some machine learning models have a complex internal structure
(for instance, artificial neural nets or boosted trees); the others are human-comprehensible
(e.g., linear regression, decision trees, classification rules). Those with a more sophisticated
structure often offer better accuracy. Thus, the common belief is that there exists an
accuracy-comprehensibility trade-off [B¥01, Gun16]'. Below, we explain when one prefers
comprehensible ML models. We divide the sources of data — input for ML models, — into
simulated and measured. The former is an output of simulations, also known as computer
experiments; the latter represents the set of measurements from physical processes. We
intentionally do not use the terms “synthetic” and “real-world” to avoid making the
impression that one type is less “real” than another. Both types are used widely for
decision making.

1.1 Comprehensible ML Models for Simulated Data

The behavior of many systems, such as electrical grids or climate systems, can be described
with differential or difference equations. The resulting model connects a set of input
values to the output and can be solved with computer experiments. Analyzing data
resulting from simulations has been of interest to the Knowledge Discovery in Databases
(KDD) community for a long time. Specifically, after performing simulation runs for
different combinations of input values, it is often worth to replace the simulation model
with a statistical or machine learning model, a so-called metamodel, sometimes referred
to as surrogate model, response surface model, replacement model [GCD*10] or model
emulator [ULHM15]. Several authors give different reasons for doing so, including

« optimization of the simulated system [Kle15, SPKA01, WS06, GCD*10],
« design space exploration [SPKA01, WS06, GCD*10],

« sensitivity analysis [Kle15, GCD*10],

« model approximation [WS06],

« understanding relationships [SPKAO01],

« risk analysis [Kle15].

'Rudin [Rud19] argues that this trade-off is a myth resulting from a little attempt of ML practitioners in
finding useful features, which will allow a comprehensible model to achieve good accuracy. This concern
might be true to a certain extent, as we will discuss in Section 6.2
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Figure 1.1: Scenario discovery process.

Although the items of this list are not clearly separated and can overlap, one can dis-
tinguish between the goals of high accuracy (optimization) and of having metamodels
understandable for humans (design space exploration, risk analysis). One example task
of the latter group has recently become known under the name scenario discovery, as we
describe next.

The inputs of a simulation model can be classified into the ones which the user of the
model (scientist, engineer, policy maker) can set, so-called control variables, and the ones
reflecting uncertainty regarding specific conditions in which the modeled phenomena can
take place, so-called environmental variables [SWNO03]. In the decision making literature,
a set of values of the control variables is referred to as alternative [HRZC15], policy, or
candidate strategy [BL10, SS83]; and the set of values of environmental variables is known
as state of the world [HRZC15, BL10], state of nature [SS83] or alternative future [BL10].
The term scenario has several definitions in this context. In the narrowest sense, it refers to
any single possible state of the world [HRZC15, TGLS16]. Sometimes scenario refers to a
set of states of the world where the policy fails to meet its goals [BL10, DHL*13]. According
to an even broader definition, a scenario is the regions of particular interest in the space of
environmental inputs [KC16, KJ16, IP16], for instance, where the output variable is above
or below some threshold or takes a certain value. We use this last definition in this paper.
Consequently, scenario discovery is the process of finding these interesting regions.

There are various degrees of uncertainty that one can associate with environmental
variables [WLK13], see also [ULHM15] for different sources of uncertainties. So-called
deep uncertainty occurs when their distributions are not known, or the users of a simulation
model do not agree on these distributions [HRZC15, BL10]. In this case, one typically
performs scenario discovery by

1. running several simulations for different combinations of environmental inputs
drawn from a uniform distribution;

2. labeling the outcomes of interest with 1, the rest with 0;

3. applying a machine learning algorithm to find scenarios.

The algorithm used in the last step usually finds regions in the form of hyperboxes. On
Figure 1.1 the plots correspond to three steps just described.

1.2 Comprehensible ML Models for Measured Data

Learning a comprehensible ML model for measured data is of particular importance for
high-stakes decision support, for instance, in criminal justice or health care [Rud19]. A user
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of such a model can explain and validate its logic, thus trusts its recommendations more
and can ensure that there is no discrimination involved. This especially important than a
recommendation is controversial to the intuition of its operator. In some domains, like
credit scoring, providing explanations of decisions is legally enforced [Fre13].
Comprehensible models can be employed as a part of Explanatory Data Analysis [Tuk77]
to find associations and designing better features. They can also lead to the formulation of
new theories/hypotheses regarding the process which has generated data [Fre13].
Interpretable models can also be useful for identifying confounding variables. These
variables usually allow fitting a statistical model that provides accurate predictions when
applied to the data coming from the same population. However, the output of such models
is often useless, counterintuitive, and may be harmful, as we illustrate shortly. In the
example used in [RRM99, CLG*15, Lip18] an ML model has assigned the patients who
had pneumonia a lower risk of dying if they had asthma. This counterintuitive behavior
resulted from the fact that these patients were treated more aggressively. If one has used
the output of such anML model for decision making and stopped treating severely sick
patients properly, many of them could have died. Freitas [Fre13] provides another (perhaps,
hypothetical) example. An artificial neural net had poor performance when deployed
in the field since it was trained to recognize military objects on the dataset, which only
contained a picture of tanks taken on a sunny day. That is, the ANN learned to recognize
the colors of the sky. Similarly, in the example from [RSG16] an ANN recognizes husky
as a wolf because of the snow in the background of a picture. Interpretable, white-box
models make such inconsistencies apparent as opposed to complex, black-box models.

1.3 Research Goal

Many researchers agree that decision trees and subgroups — the main focus of this work, —
are often a human-comprehensible form of knowledge representation. Both decision
trees and subgroups are sets of hyperboxes (rules) in the data space. While this form of
representation is flexible, — not restricted to a specific kind of dependency in data, — the
algorithms to learn decision trees or discover subgroups require big datasets to produce
stable and accurate knowledge summaries. In many cases, datasets are not big enough,
since acquiring new examples is impossible (e.g., data for a rare disease) or comes at
high financial (e.g., experiments in drug discovery) or computational (e.g., simulations to
evaluate various shapes of an aeroplane wing) costs. The main target of this work is to
improve knowledge discovery in the form of rules from small datasets.

1.4 Contributions

We have demonstrated the advantage of applying comprehensible models to the datasets
resulting from simulations. To this end, we focused on Decentral Smart Grid Control
(DSGC) — a novel approach realizing demand response in electrical grids without a need
in a centralized IT infrastructure. The key idea of DSGC is to connect the electricity price
to the local frequency of an electrical grid. Simulations based on this system can be used to
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ensure the stability of the DSGC for different combinations of inputs values which describe
the behavior of participants. The original DSGC model is subject to various restrictions.
In particular, they include that participants of the grid are homogeneous, e.g., behave in
the same way. To get rid of this unrealistic assumption, we have simulated the system
for a variety of combinations of input values to figure out whether the system is stable
for each particular combination. Using the resulting dataset, we trained a decision tree.
This allowed us to reveal new insights regarding DSGC not known from previous studies.
For instance, we found that the system can be stable even if some participants adapt their
energy consumption to the price changes with a high delay.

Decision tree divides the space of inputs of a simulation model into regions leading
to a particular output. In some cases, one may not require to partition the whole space.
Instead, one may want a small set of scenarios which are large and pure, that is, are very
likely responsible for a particular outcome. This is known as subgroup discovery in the
KDD community. PRIM, a well-known subgroup discovery algorithm, is a state-of-the-
art method for scenario discovery. However, on small datasets, PRIM performs poorly,
producing essentially random subgroups. So we proposed method REDS (Rule Extraction
for Discovering Scenarios) which adds an intermediate step to the process as follows.
Instead of applying PRIM to the data resulting from simulations, we use this data to train
an accurate metamodel. We then use this metamodel as a replacement for the simulation
model to produce a significantly larger dataset inexpensively. We then use the resulting
data as input for PRIM. As one contribution, we provide a statistical intuition behind
REDS. In the experiments, we compare our REDS with the state-of-the-art techniques for
scenario discovery on a variety of test models as well as on the DSGC simulation model.
We find that REDS almost always outperforms conventional methods. For many test
models, the results obtained with REDS with 400 computer experiments are comparable
to the result obtained with conventional methods for 1600 simulations, meaning ~ 75%
reduction in computational resources required for simulating the system. Moreover, in
contrast to PRIM, REDS can benefit from existing active learning techniques to bring down
the number of simulations needed to discover scenarios even further.

REDS works well for simulated data since one has control over the simulation process and
thus has perfect knowledge of the joint distribution p(x) of inputs x. Having p(x) it is easy
to generate any number of input combinations. The metamodel can then cheaply provide
estimates f*"(x) of the conditional probabilities f(x) = p(y = 1|x). With measured data,
one needs a procedure allowing to obtain a sample from p(x). We propose REDS+, a
generalization of REDS, to improve scenario discovery from datasets with unknown p(x).
We tested REDS+ in combination with various metamodels, methods to generate data,
and two subgroup discovery methods — PRIM and BESTINTERVAL, — experimentally on
a broad range of datasets. The results provide evidence that REDS+ improves subgroup
discovery on measured data.

To facilitate the adoption of our results, we publicly release our implementations,
experiments, and benchmark data via open-source platforms.



1.5 The Scope of the Work

1.5 The Scope of the Work

In this work we consider datasets

1. in which the property of interest can take two values (interesting/uninteresting or
0/1); this is a usual setting in scenario discovery domain and for many subgroup
discovery algorithms;

2. with real-valued attributes — the factors which have a potential influence on the
property of interest.

These restrictions define the domain, where our contributions are justified experimentally.
However, many ideas we have proposed can be generalized to more general settings (e.g.,
regression instead of classification or categorical and mixed attributes) straightforwardly,
as we will explain.

1.6 Notations

In the rest of the work, we use the following notations. A dataset D is a N X (M + 1) matrix

X11 X12 ... XM Y1
X211 X222 ... XoM Y2
D= ) )
XN1 XN2 ... XNM UN
The first M columns are attributes aj = (xyj,...,xn;) and the last column is a target
variable y = (y1, ..., yn). We refer to the first M elements in each row x; = (X1, . .., Xip)
as point; the whole row d; = (x;, y;) = (X1, ..., Xip, Yi) is an example.

For instance, if D results from computer experiments, x; are the inputs’ values for a
simulation model and y; — respective output. In this case, the number of rows N = |D| is
the number of simulation runs.

We define N* = 3N 4. A hyperbox, also referred to as pattern, subgroup description
or body of a rule [Atz15, GR09, MNFK12], B is a conjunction of intervals B = H?’il [aé, a;],
5 € RU —o0, a; € R U +00. Sometimes the intervals defining the box are open (ai., a;)
or half-open (aﬁ., a;], — this will be clear from the context. A subgroup (pattern cover)
Sg C D corresponding to a hyperbox B is a set of examples from a dataset D “inside” the
hyperbox. Thatisd; € S3 & d; € DAx;; € [ai., a;],‘v’j. We say that the attribute a;

a

defines a subgroup Sg if aﬁ. # —oo or a; # +co. The size of the subgroup Sp is n = |SBl;
n* = 3 4es; Ui is the sum of values of the target variable in Sg. We usually assume that
y € {0,1}" and call examples with y; = 1 interesting or positive and with y; = 0 — not
interesting or negative, hence the notations N* and n*.

Further, let U; be the ordered set of unique values in the j-th columnof D, j € 1,...,M —

Ui =A{uj,..., uzjj}: x;j € UjViand Vi, k,i < k : u;; < ug;. In what follows, we sometimes
omit index i and/or j to simplify notations. For instance, we write a to refer to an attribute,
U ={w,...,uz} — toits ordered unique values, x — to a point.
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Symbol Interpretation

psouree nominal power of generator/load

I moment of inertia

Kp friction coefficient

pmax capacity of the line

t time

o(t) rotor angle (phase)

® grid reference frequency (e.g. 50 Hz)

0(t) = wt — §(t), rotor angle relatve to reference frequency
p price

1 proportionality factor defining the price based on 6(t)
c coefficient proportional to price elasticity

P(p) ~ Pj+cj- (pj — pn), power consumed/produced at price p
Do electricity price when d0;/dt = 0

P = (P%o"re¢ — Kpw?) /I, mechanical power produced/consumed

K = 2Kp/I, damping constant

K = P™%*/]w, coupling strength, proportional to line capacity

Y coefficient, proportional to price elasticity

T reaction time, the delay between a price change and adaptation to it
T averaging time, required to measure price signal

Table 1.1: DSGC-specific notations. We omit indexes of system participants

Table 1.2 summarizes the notations just described as well as the ones introduced later.
The last column of the table refers to a section containing the first mention of notation.
For the DSGC system, we use notations described in Section 4.2 and list them separately in
Table 1.1; the lower part contains the main notations and the upper part — auxiliary ones.

1.7 Dissertation Qutline

Chapter 2 reviews related work and describes the existing subgroup discovery algorithms
we use in subsequent chapters. Chapter 3 features our case study, aiming at demonstrating
the utility of human-comprehensible ML models. Chapters 4-5 feature REDS and REDS+,
the approaches we developed for improving scenario discovery and subgroup discovery
from simulated and measured data correspondingly. Chapter 6 discusses possible future
research directions. Chapter 7 concludes.



1.7 Dissertation Outline

Symbol Interpretation Ref.
aj = (x1j,...,xnj), the j-th attribute (column) of D, j € {1,..., M} 1.6
alhl i-th dummy attribute for original attribute a 2.3.1
€ R U —oo, the left end of the interval in j-th attribute defining B 1.6
€ R U +oo, the right end of the interval in j-th attribute defining B 1.6
“peeling” parameter of PRIM 233
= H?il [aﬂ., a’], a hyperbox (pattern, subgroup description) 1.6

search space — a set of all possible subgroup descriptions whicha 2.3.1
subgroup discovery algorithm can handle

SCO&™ B WRAN
Q

“pasting” parameter of PRIM 233

= (x5, yi) = (Xi1, - - > Xin» Yi), an example — the i-th row of D 1.6

N X (M + 1) matrix 1.6

a dataset for validation 233
f(x) RM — R: p(y = 1]x) 14
fem(x) RM — R, approximation of f(x) estimated from data D 1.4
kmax maximal number of iteration of PRIM algorithm 233
L number of newly generated points with REDS/REDS+ algorithm 4.2
m the number of attributes defining subgroup 2.1
M number of attributes in D 1.6
minpts ~ minimal size of subgroup found by PRIM 233
n |Sg|, the number of examples in Sg 1.6
n* = Didiesy Yi L6
N number of rows in D 1.6
N* = >N y; 1.6
p(x) RM — [0, 1], probability density function of a random variable X, 1.4

so that x; in D are realizations of X
p(ylx)  conditional probability density function of a target variable Y given 2.4.3
X, so that y; in D are realizations of Y

o) quality measure of a subgroup 2.3.1

q number of attributes in a subset for PRIM algorithm with bumping 2.3.3

Q number of iterations in PRIM algorithm with bumping 233

SB C D, a subgroup defined by a hyperbox B, i.e., a set of examples 1.6
from D which are inside B

Uj ={uj, ..., uzjj}, an set of unique values in the j-th column of D; if 1.6
applicable, sorted in ascending order

Vv = {v1,...,0;}, a set of values — split points for the attribute a sorted 2.3.1
in ascending order

X = (Xi1, ..., Xim), @ point — the first M elements in the i-th row 1.6

y = (y1, ..., YN), the target variable — the (M + 1)-th column of D 1.6

ym = 9 (x;) 4.2.1

Z; number of unique values in the j-th column of D 1.6

bs the beam size 233

Table 1.2: Overview of general notations






2 Fundamentals and Related Work

This chapter describes jointly the methods we build upon and related ideas. In Section 2.1,
we discuss the comprehensibility of machine learning (ML) models. Section 2.2 describes
research related to analyzing simulated data with ML models. In Section 2.3, we take a
closer look at subgroup discovery methods which are the central part of this dissertation.
Finally, Section 2.4 features findings in other domains which inspired our ideas.

2.1 Comprehensibility of ML Models

We first describe which ML models are deemed human-comprehensible and how to measure
comprehensibility. An alternative to fitting an interpretable model to data is to fit a
sophisticated model and explain its behavior or individual predictions. This approach is
beyond the scope of the dissertation; we briefly describe it at the end of this section.

2.1.1 Comprehensible ML Models, Measures of Comprehensibility

Following [Rud19, GMR*19]!, we use the terms comprehensibility and interpretability
interchangeably throughout the document. The model which is complicated for a human to
interpret, i.e., not comprehensible, is a black-box or complex® model. Several studies suggest
that results produced by decision trees or classification rules are quite comprehensible
[Fre13, HDM*11, BSH*10], as compared to other data-mining methods. Ustun et al. [UR16]
argue that linear models, — scoring systems — are comprehensible. Additionally, oblique
rules [SL97] might also belong to this category, according to [HDM*11, PSLB15]°.
Assessing the comprehensibility of a model (by a human) requires experiments involving
humans. Its result might depend on a task (a dataset) at hand [Fre13] and background
of participants [HDM*11]. For instance, Pazzani et al. [PMS97] provide evidence that
experts find the rules more comprehensible if they comply with their prior knowledge.
Many researchers use proxies of interpretability, such as the number of rules produced by
the model or the number of attributes involved in defining a single rule. These criteria
are often negatively correlated. For example, the decision trees with “M-of-N” splitting
criterion [CS95] or oblique rulestend to use more attributes for each rule but produce
fewer rules on average [SL97]. Freitas [Fre13] warns against using the model size as
a proxy of interpretability and refers to the studies where users found larger models
to be more comprehensible than the smaller ones. Additionally, the number of rules

'Rudin [Rud19] also suggests two other synonyms — explainability and transparency

ZWe use this term in line with the literature [Lip18, Rud19, HDM*11]. However, the term simple model
sometimes has a different meaning than comprehensible model [VI19]

3The latter citation examines the standard rules in rotated space — essentially oblique rules.
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might be small just because the rules do not cover all points in a dataset D, i.e., not
exhaustive [ZJC03, HSBV08]. Comparing an exhaustive set of rules to a not exhaustive
one, measuring interpretability through the number of rules is not fair.

Rudin [Rud19] argues that there is no need to come up with a single comprehensibility
measure since the notion of interpretability is domain-specific similarly to the notion of
model performance or accuracy. The latter includes, for instance, accuracy, an area under
the receiver operating characteristic curve, F1-score and many others, e.g., a variety of
measures computed from a confusion matrix. This is in line with the recent research of
Lipton [Lip18] suggesting that “interpretability is not a monolithic concept”. The research
on interpretability and the approaches to measure it is ongoing. Therecent findings are
in [DVK17, Mil19].

In our work, we mainly focus on subgroup discovery algorithms. These algorithms
produce not exhaustive sets of rules. Thus, we measure comprehensibility through the
number of attributes involved in the rule definition m (search depth). Lower value of m is
preferable. This is in line with scenario discovery literature.

2.1.2 Explaining Complex Models

Instead of training an interpretable model, one can try to explain a complex model to
achieve comprehensibility. Black-box models are especially challenging to interpret when
they use more than three inputs. Indeed, according to [Dom12] “It’s even been said
that if people could see in high dimensions machine learning would not be necessary”.
The examples of complex models are neural networks, trees ensembles, support vector
machines. Guidotti et al. [GMR*19] provide a comprehensive and up-to-date review of the
methods for explaining these models. According to their taxonomy, one can distinguish
between model-specific (designed for a particular black-box model type) or model-agnostic
(generally applicable) explanatory techniques. One can also distinguish global (model)
from local (outcome) explanations. The latter do not allow to understand the whole logic
of a model but provide an explanation for the reasons of each particular prediction. This is
achieved for instance, through estimating “local” linear [RSG16] or rule-based [GMR*18]
model, providing examples and counter-examples [GMMP20], or by calculating a gradient
of a loss function [BSH*10].

The methods for global explanation usually rule extraction algorithms [HBV06]. We
review these methods in greater detail in Section 2.4.1 since they have inspired our work.

Rudin [Rud19] speaks in favour of inducing comprehensible models directly, instead of
extracting explanations from complex models.

2.2 ML Models for Data from Simulations

A significant part of this work addresses the problem of analyzing simulated data. Our use
case, Decentral Smart Grid Control (DSGC), is a novel idea of realizing demand response
in an electrical grid. We use simulations to define if the grid is stable for particular input
values of DSGC. Later in this document, we analyze the output of DSGC simulations with
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2.2 ML Models for Data from Simulations

comprehensible ML models. That is, we perform scenario discovery. We further propose a
methodology to improve the quality of scenario discovery from limited data.

This section presents the respective related work. We first feature the research on
using ML models to analyze data from simulations of electrical systems — in Section 2.2.1.
Section 2.2.2 is an overview of scenario discovery literature. In the end, we describe
existing attempts to improve scenario discovery — competitors of our approach, REDS.

2.2.1 ML Models for Data from Simulations of Electrical Systems

Several studies are applying ML models to analyze the security/stability of power systems.
McCalley et al. [MWZ*97] employ a neural network to security problems within a power
system in California. System behaviour is studied in 1792 simulation runs. The resulting
boundary has been visualized in the form of so-called nomograms. The limitation of this
approach is that it considers two inputs at a time and hence does not explicitly support
exhaustive insights with more inputs. Jayasekara et al. [JA06] propose modelling a non-
linear security boundary by using features formed as monomials of the original input up
to a certain degree. They solve the problem of a large number of features with kernel
ridge regression. Two systems are simulated: the New England 39-bus system and a larger
470-bus system. Moulin et al. [MDSESM04] apply support vector machines and neural
networks to analyze the transient stability of a 2484-bus system. The data is generated
in 1242 simulation runs and contains 244 inputs. To reduce the number of inputs, a feature
selection mechanism is applied in some cases. This work concludes that a support vector
machine with no feature selection achieves a higher accuracy than a neural network with
feature selection. In [AR13], decision trees are used to study the transient stability of a
toy 9-bus system and of the 1696-bus Iran national grid. The authors then compare the
results to those obtained with ANN and SVM models. In all cases, the accuracy is about
99%, although it is not clear whether the out-of-sample data was used for testing. — All
these studies target accurate prediction, but not at a general view on the system.

2.2.2 Scenario Discovery

To discover scenarios, one usually induces a comprehensible ML model on the dataset re-
sulting from computer experiments. Although not using the term scenario discovery, similar
frameworks originated before: Pierreval [Pie92] use the GENREG algorithm, Yoshida and
Nakasuka [YN89] use oblique rules, and Berthold and Huber [BH99] propose a fuzzy rule
learning algorithm to analyze simulation outputs. Some authors, e.g. [LBB08, HHRK15,
ABJ18, KP13] use decision trees trained with the Classification and Regression Trees
(CART) algorithm [BFOS84]. Currently, Patient Rule Induction Method (PRIM) [FF99],
a subgroup discovery method, dominates in the scenario discovery domain, see [GRS16,
BL10, HRZC15, LGPB06, GL07, LBB08, HHRK15, KP13] and many others, cf. [GRS16].
Lempert et al. [LBB08] compare CART and PRIM and conclude that the latter is more
interactive and requires less post-processing effort. CART has a high variance [Bre96],
meaning that the boxes vary highly for different datasets produced when simulating
the same phenomenon, and it might include irrelevant attributes in the definition of the
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boxes [Fre13]. This is undesirable according to [KC16, BL10] but also holds for PRIM to
some extent, as we will show.

Many listed algorithms target at partitioning the input space into regions and assigning
a class (interesting/uninteresting) to each of them. Accuracy is their main goal. Recall and
precision of individual hyperboxes are the primary target of PRIM and often are more
relevant in scenario discovery.

2.2.3 PRIM Improvements for Scenario discovery

Several improvements of PRIM for scenario discovery were recently proposed. Normally,
PRIM targets at maximizing the mean outcome value n* within a hyperbox; here, the func-
tion “mean” is called peeling criterion. Kwakkel and Jaxa-Rozen [KJ16] study alternative
peeling criteria other than simple mean, also proposed in [FF99], and conclude that these
alternatives are beneficial with heterogeneous inputs. Kwakkel and Cunningham [KC16]
propose using a bagging procedure to increase the quality of PRIM. In fact, the authors use
bumping [HTF09], also proposed by Friedman and Fisher [FF99], combined with random
feature selection. Dalal et al. [DHL*13] combine PRIM with principal component analysis
to produce oblique rules (PCA-PRIM). Bryant and Lempert [BL10] complement PRIM with
a “quasi p-value” test to exclude insignificant attributes from the box definition.

We will explain PRIM with bumping [KC16] and original PRIM in Section 2.3.3. PCA-
PRIM [DHL*13] and different peeling criteria [KJ16] are orthogonal to our study.

2.3 Subgroup Discovery

PRIM algorithm mentioned above is one of the most known representatives of subgroup
discovery domain. The central part of our work is improving the quality of scenario discov-
ery from small datasets. We now provide a brief introduction in this domain (Section 2.3.1)
and describe existing quality measures (Section 2.3.2) and subgroup discovery algorithms
(Section 2.3.3) which we will further use with our approaches.

2.3.1 Definition and Taxonomy

One of the earliest definitions of the subgroup discovery task [Wro97] is the following.
Discover the subgroups of the population that are statistically “most interesting”, i.e., are
as large as possible and have the most unusual statistical (distributional) characteristics
with respect to the property of interest. Sometimes this definition is further specified, e.g.,
to explicitly include the number of subgroups or the length of their description [GR09].

To define a subgroup discovery algorithm, one should propose a search space, search
strategy and a quality measure, which will quantify (and often combine) the notions of
size and unusualness from the definition above.

Search Space. Given a dataset D, a search space [Atz15] B (also referred to as hypothesis
language [Wro97], pattern language [MNFK12] or description language [HCGdJ11]) is
a set of all possible subgroup descriptions which a subgroup discovery algorithm can
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Table 2.1: Attributes al?! created for a numeric (left) and a categorical attribute a (right).

handle. One can distinguish subgroup discovery algorithms based on the type of acceptable
attributes. Some algorithms [AP06, GRW08] assume nominal-valued attributes; subgroup
definitions produced by them are conjunctions of conditions a = u € U (see Section 1.6
for notations). Other methods [FF99, MNFK12] can also include conditions like

acUcCU. (2.1)

Additionally, some methods work with numeric attributes and include intervals in subgroup
definition [FF99, GR09, MNFK12], as we explained in Section 1.6. In our work, we focus
on the methods of this group. Consequently, we deal with the search space consisting of
boxes B defined by a conjunction of intervals. We will discuss selected algorithms in more
detail in Section 2.3.3.

The distinction of algorithms based on the type of attributes is not as strict as it might
seem. To adapt methods dealing with nominal attributes to a numerical domain, one can
discretize them. There is a big variety of discretization methods [GLS*13, AKV19]. The
result of discretization procedure for the numeric attribute a is the ordered set of unique
split points V = {vy, ...,0,}; a is then replaced by a new nominal attribute with domain
{(=00,01], ..., (v;,4+00)}. If V = U, we call discretization exhaustive [GR09]*. If a subgroup
discovery algorithm does not allow condition like (2.1), even exhaustive discretization will
not produce as rich search space as many algorithms designed for numerical data. To see
this, observe that, e.g., intervals like (v;, v;42], i < z — 2 do not belong to its search space.
To overcome this issue, Lavrac and Gamberger propose [LG04] a binarization procedure.
In short, the idea to replace each attribute a with a set of attributes al"l each taking
values form {0, 1} so that each possible interval or a set of values can be selected by a
conjunction of equality conditions al”! = 0 and/or al"l = 1. The number of new binary
features is Z — 1 for numeric and ordinal and Z for nominal attribute a, where Z is the
number of unique values of a in D (see Section 1.6). Table 2.1 illustrates this. For instance,
ac (24 = a"=0ra¥ =1(eft)orac {C,G} & all =0Aal* =0 (right).

Quality Measures. Given a dataset D, a quality measure is a function: ¢ : 8 — R that
maps every subgroup description in the search space to a real number. This number reflects
the interestingness of subgroup Sg. Various measures exist for binary, nominal and numeric

4Do not confuse with exhaustive search, introduced later.

13



2 Fundamentals and Related Work

target variables y. For instance, weighted relative accuracy, chi-squared, binomial test,
information gain [MNFK12], multi-class weighted relative accuracy, numeric weighted
relative accuracy, mean test, weighted Kullback-Leibler divergence, weighted Krimp
gain [VLK12], proper scoring rules [SKFK16] and many other [Atz15]. In Section 2.3.2, we
review some measures which we will use further.

When more than one subgroup is required, one should access the joint quality of multiple
subgroups. The naive approach would be to return the demanded number of subgroups
which have the highest quality [GR09]. This, however, might result in a redundant
subgroup set — containing significantly overlapping subgroups. A covering scheme can
reduce redundancy. With sequential covering, the algorithm searches for a single best
subgroup description B at each iteration. Then it removes the examples Sp from D and
proceeds with the next iteration until the required number of subgroups is obtained [FF99].
A weighted covering algorithm [LKFT04, GL02], modification of sequential covering,
downweights the examples from subgroups discovered in previous iterations instead of
removing them — this strategy allows subgroups to overlap.

Covering approaches require multiple runs of the algorithm. This can be computationally
expensive. Thus, several studies propose to include an explicit diversity measure in the
evaluation of the sets of subgroups (see e.g., [VLK12]), which return a set of diverse
subgroups after a single run.

Search Strategy. A search strategy is an algorithm to traverse the search space. For
the sake of simplicity assume that a single subgroup should be found — this excludes
diversity criterion from consideration. A naive search strategy would be to exhaustively
evaluate the complete search space and report the best subgroup. However, this strategy
usually is not computationally affordable due to the high search space cardinality, espe-
cially for datasets D with high number M of numeric attributes discretized exhaustively.
Different pruning strategies were proposed to speed up the search, including optimistic
estimate pruning [GRW08, Wro97] or the strategies explicitly developed for numeric at-
tributes [GR09, MNFK12], see also [Atz15]. Pruning strategies do not affect the search
quality; they still return a globally best subgroup from the search space.

Usually, exhaustive search is too expensive even with the use of pruning. In this case,
two strategies are conceivable. First one can reduce the search space by defining minimal
subgroup size n or maximal subgroup description size m (search depth) — the number
of attributes defining subgroup Sgz. Second, one can use a heuristic search strategy, for
instance, beam search [LKFT04, vLK12] or genetic algorithm [LRRV14]; see also [Atz15,
Hel16] for other examples.

2.3.2 Quality Measures

Quality measure ¢ of a subgroup Sp usually depends on the size of the dataset N = |D|,
the sum of the values of target vector y, N*, and respective numbers for the subgroup Sg,
n and n* (see Section 1.6). The Numeric Weighted Relative Accuracy (sometimes referred
to as impact [Web01]) measure is calculated as
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This work [BL10] [FF99] [HCGdJ11]  Formula
NWRacc - coverage WRAcc (2.2)
recall coverage/recall/sensitivity — sensitivity (2.3)
precision  density/precision box mean confidence  (2.3)
- support support coverage n/N

- - - precision Q. n*—c-n”
- - - precision Q, n*/(n” +g)
- - - support n*/N

Table 2.2: Names of quality measures suggested by literature.

NWRAce(D. 55) = [ - N (2.2)
ce(D,Sp) = —|— - — :
B=N\{n N

When y is binary, y € {0, 1}N, N* and n* are counts of interesting examples in D and Sg,
respectively, and the measure is called Weighted Relative Accuracy (WRAcc).

One usually wants a subgroup to include many examples (be large) and have a high sum
n* (number of interesting examples, when y is binary). This is equivalent to maximizing
recall and precision:

+ +

recall(D, Sg) = % precision(D, Sp) = % (2.3)

We note, that confusion might arise since literature uses different names for the same
qualities often mixing them. Table 2.2 reveals some of these variations®. For instance, the
term “coverage” can stand for three different quantities.

Evaluation of SD Methods. There is no consensus among researches if it is correct to
measure the quality of a subgroup description on the same data as was used to discover
it. For instance, a cross-validation procedure is used in [SKFK16, CGdJ*11, KLZGO5,
KLJ03, LRRV13], whereas [GR09, VGBS19, RRRA12, AP06, vLK12] most likely use the
same dataset. In this work, we always use independent test data to evaluate the quality of
subgroup descriptions.

2.3.3 Algorithms for Data with Numerical Attributes
Below we describe PRIM, its modification — PRIM with bumping, and BESTINTERVAL

subgroup discovery algorithms.

PRIM. The PRIM algorithm was initially proposed in [FF99]; [HTF09] (pp. 317-320)
contains a concise description. The algorithm works in two steps, called peeling and

5In this table, n~ = n — n*;c, g are some numbers.
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Algorithm 1: PRIM.peel (peeling step)

Data: D, DV «, minpts, kmqx — as described in the text.
Result: sequence of nested hyperboxes

1 k=0;

2 By = ]—[?{l(aﬂ, a), ai. =—00, g} =+00 V;

3 while |Sp | > minpts & |S§Zl| > minpts & k < kg do

4 m=—1;

5 for1<j<Mdo

6 D, = {d; € Sp,|xij < t,}, choose t, so that |[D,| = (1 - a) - |Sg,|;
7 Dy = {d; € Sp,|xij > t;}, choose t; so that |D;| = (1 - a) - |Sp,[;
8 if avg({y;|d; € D,}) > m then

) m = avg({yild; € D,});

10 By+1 = set(Bg, a; =t);

11 if avg({y;|d; € D;}) > m then

12 m = avg({y;|d; € Di});

13 By+1 = set(Bg, ai. =1);

14 k=k+1;

15| m™(i) = avg({y;ld; € S5});

16 last = arg max; (m"(i));
17 return {B,y, ..., B}

pasting. We describe them separately. Algorithm 1 is the peeling step®. It starts with the
whole dataset D and the M-dimensional box By = H?{ (=00, +00). Then it repeatedly
“peels out” « points from the data with a hyperplane orthogonal to one dimension, so
that the mean value of y of the remaining points is maximal (Lines 5-13), and it adjusts
the box so that it is a minimal bounding rectangle of these remaining points (Line 14).
Here « is the peeling parameter [FF99] and denotes the share of points. This is done until
the stopping criterion is met. In our case, it is the minimum number of points minpts of
the train set D or validation set D% contained in the box, or the number of iterations
kmax (Line 2). We introduced the latter condition to restrict the minimum relative size of a
scenario in our experiments. Finally, the hyperbox with the highest mean on D" (Line 16)
is returned together with all preceding boxes (Line 17). The rationale is to let a domain
expert choose the one which best suits their needs.

The pasting step (Algorithm 2) works similarly but in the opposite direction. It receives
the data D, the initial box containing it — By, the pasting parameter  and the box to
be expanded — B. It repeatedly expands the box along any dimension so that the mean
value of y of the points from D inside the resulting box increases (Lines 8, 11). Let the

box be described with the inequalities B = j-w_l[aﬂ., a;], t = 1,...,D. The operation

®In different sources PRIM descriptions slightly vary. For instance, original paper [FF99] proposes to
use a validation set D*% to select the last returned box. Hastie et al. [HTF09] propose to use cross-validation
but do not explain the particular procedure detailed enough.
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Algorithm 2: PRIM.paste (pasting step)
Data: D, 5, B — as described in the text
Result: expanded hyperbox.

1 boxes = B;

2 while boxes <> {} do

3 B = sample.one.box.randomly ( boxes);
4 | m=avg({yild; € Sp});

5 boxes = {};

6 for1<j<Mdo

7 B, = expand(B, a;, B);

8 if avg({yi|D; € Sp.}) > m then
9 L boxes = append(boxes, B,);
10 B; = expand(B, aﬂ., B);

11 if avg({yi|D; € Sp,}) > m then
12 L boxes = append(boxes, B));

13 return B

Bhew = expand(B, &, f) changes the value ¢ in the box description so that the volume of
Bew is greater than that of box by 1 + . The algorithm stops when no further expansion
is possible (Line 2).

PRIM with Bumping. The PRIM algorithm with bumping [KC16] produces multiple
boxes by varying the dataset D and returns only the ones not dominated by any other box
in terms of precision and recall (Section 2.3).

Definition 2.3.1 For a set of quality measures {¢y, ..., $n}, a box b is dominated by a box
BifVk € {1,...,n} : $x(Sp) < ¢ (Sp) and 3k : $+(Sp) < P+ (Sp).

The PRIM algorithm with bumping works as follows.

Take a random bootstrap sample D% from D;

take a random subset A of q attributes from {ay, ..., am};

run Algorithm 1 with D = D using attributes A;

repeat Steps (1)—(3) Q times;

return the hyperboxes not dominated on the validation set D%,

A e

Algorithm 3 is a formalization of PRIM with bumping. We observe that the word
“bagging” used in [KC16] to describe this method is misleading. Since no averaging over
several models takes place, the original term bumping is correct [FF99, HTF09].

Bestinterval. Mampaey et al. [MNFK12] propose a BESTINTERvVAL’ Algorithm 4. It takes
a subgroup description B and iteratively refines it considering one dimension at a time. In

"In our formalization we have changed originally half-open intervals to closed for consistency. This
makes no difference when discretization is exhaustive (V = U) as we assume in our work.
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Algorithm 3: PRIM with bumping

Data: D, DV «, minpts, q, Q — as described in the text
Result: sequence of hyperboxes

1 boxes = {};

2 forl1<i<Qdo

3 DY = bootstrap sample from D;

4 A=A{aj,..., ajq} — random subset of g attributes;

5 Dzs = D" with inputs in A;

6 boxes; = PRIM.peel(D = fo, cl)s

7 boxes = append(boxes, boxes;);

8 boxes = non.dominated(boxes);
9 return boxes

contrast to PRIM, BESTINTERVAL returns the best refinement for a given attribute at each
iteration. That is, one can think about BESTINTERVAL as a greedy counterpart of PRIM.
For a given attribute a the algorithm iterates over the sorted set of points V = {vy,...,0,}
(Line 4), maintaining the best interval found so far (Line 12).

In short, BESTINTERVAL uses the following observation. Assume one has two subgroup
descriptions By and B, different only in the range of the attribute a — it is [ab, a"] for B;
and [alz, a"] for B,. Denote by B, and B, the hyperboxes which differ from B; and B, by
the upper bound of the same attribute. That is, the respective intervals are [a", @] for B;
and [alz, a"] for Bz, where @ > a%, a2. Then the following holds:

WRAcc(D, Sp,) — WRAce(D, Sp,) = WRAce(D, S ) — WRAce(D, Sg ).
The observation is based on the following property (Property 4 in [MNFK12]).

Property 2.3.1 WRAcc is an additive property, i.e., for any two hyperboxes B; and B, with
S, N Sp, = 0, it holds that

I’VRACC(D, SB1 U SBz) = WACC(D, SBl) + WCC(D, SBZ)

To discover a subgroup, following Mampaey et al. [MNFK12], we use a beam-search
heuristic [FGL12] as Algorithm 5 describes. It iteratively refines the initial box ]_[jw: 1 (=00,
+00) with BESTINTERVAL algorithm. The parameter m regulates the search depth, i.e., the
number of iterations, equivalently, the maximal number of attributes describing subgroup
(Line 2). The beam size bs defines the number of subgroup descriptions kept at each
iteration (Line 6). The function Keep.Best(BSet, bs) returns bs hyperboxes with maximal
WRACcc on D from the set BSet.

2.4 Related Ideas

In this section, we present the ideas and findings in other domains which have inspired
ours. We explain the similarities and differences between them and our ideas. Section 2.4.1
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Algorithm 4: BestInterval
Data: D, B, a, V — as described in the text
Result: a refined hyperbox

1 B,es = set(B, al = —c0,d" = +00);

2 WRAcChar = WRAcce(D, Sp);

3 Nmax = Umax = —©9;

s for1<i<zdo

5 B; = set(B,d' = v;, a" = +00);

6 h = WRAcc(D, Sg,);

7 if h > hy,. then

8

9

hmax = h;
Omax = Uj
10 B; = set(B, d' = vmax, a” = 0;);
11 if WRAcc(D, Sg;,) > WRAcCpqx then

12 Byes = Bi;
13 WRACCax = WRAcc(D, Sp,)

14 return B,

describes the research where an intermediate statistical model is used to produce a new
dataset for training the final model. Section 2.4.2 presents alternative methods to enlarge
original data by creating artificial examples. Section 2.4.3 summarizes research related to
semi-supervised learning.

2.4.1 Rule Extraction and Knowledge Distillation

Huysmans et al. [HBV06] define the task of rule extraction as follows, “Given an opaque
predictive model and the data on which it was trained, produce a description of the pre-
dictive model’s hypothesis that is understandable yet closely approximates the predictive
model’s behavior”. A wide variety of rule extraction methods has been developed over the
past decades. For instance, TREPAN [CS95], one of the most known methods, builds m-of-n
decision trees (DT) using an opaque model, an artificial neural network (ANN) originally,
as an oracle. The resulting tree was found to be more accurate than DT learned directly
from the data used for ANN training, on four datasets. The CMM algorithm [Dom97]
works similarly, with C4.5 rules instead of DT and an ensemble of C4.5 rules instead of
ANN. Fortuny and Martens [dFM15] in a similar study discovered that C4.5-rules and
Ripper rule learning algorithms had higher accuracy and comprehensibility when were
trained on the datasets augmented by the output of SVM, ANN and random forest rather
than using original train data alone.

Rule extraction can be treated as a subdomain of a larger area — model parroting
(Section 7.5 in [Set09]) or knowledge distillation [HVD15, XHLL19], where a small and
fast model is often used as a student to be faster than the teacher. One exemplary method
from this area is model compression [BCN06]. The target is to replace a large model,
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Algorithm 5: BestIntervalBS
Data: D, {V;}, m, bs — as described in the text
Result: a hyperbox maximizing WRAcc

1 BSet = []}L, (—00, +00);

2 repeat m times

3 for B € BSet do

4 L for1 < j<Mdo

5 L BSet = BSet U BestInterval(D, B, a;, V;)

6 BSet = Keep.Best(BSet, bs)
7 return Keep.Best(BSet, 1)

an ensemble, which is expensive to store and execute but generalizes well, with a much
“lighter” and faster model, an ANN, which needs a big labeled dataset to avoid overfitting.
The ensemble labels new training data for the ANN. The resulting ANN was more accurate
than the one learned from the initial small dataset. A similar methodology is used in [KS13]
for object recognition in a semi-supervised setting.

The ideas used above are alike to our idea. However, the distinction lies in the final
model to be trained. In the research mentioned, the final model is a “universal” learner, a
model which approximates any function with arbitrary accuracy given enough data. Thus,
it is natural that the performance of the final model eventually converges to the one of
an “intermediate” model. With subgroup discovery, the final model is a hyperbox, and
accuracy is no longer the target — WRAcc, recall and precision are of interest.

2.4.2 Data Augmentation

According to [Wu14], “data augmentation is a Markov chain Monte Carlo algorithm for
sampling from a Bayesian posterior distribution”. This definition has a poor relation to
the ideas developed in our work. However, data augmentation has recently acquired a
second meaning thanks to the rapid development of artificial neural networks®. ANN
can achieve excellent performance in various pattern recognition tasks, but often require
massive training datasets which are not always available. One can increase the size
of a dataset by joining it with examples from another available dataset of the similar
domain [GG15] or by creating new (synthetic) examples via applying label-preserving
transformations’ to existing (genuine) ones [CGK15]. For datasets consisting of images,
such transformations include zoom, rotation, distortion [BRH19]; for text data, words can

8Using the on-line reference for bibliographic information, DBLP [Ley02], one can observe this process
of a new meaning emergence. For instance, in 2005, all three entries containing “data augmentation” in their
titles use this term with the meaning described above; in 2013, five out of six entries assume this; in 2015,
already 11 out of 18 entries imply the second meaning; in the most recent years (20018-2020) hundreds of
papers having the term in their titles refer to expanding the training dataset.

This approach can be traced back at least to 2003 [SSP03], but the use of the term “data augmentation”
to refer to this method became common only recently.
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be replaced by synonyms using embeddings models [WY15]; for speech data — masking a
specific frequency channel in the mel spectrogram [PCZ*19].

Our motivation is similar to one of the research just mentioned. However, for the datasets
we deal with — tables filled with numeric values, developing a set of label preserving
transformations is impossible. For example, observe that with image data augmentation,
adding noise most likely will not replace a cat with a dog on a picture. Oppositely, if the
dataset results from simulations of system stability, adding noise to inputs of the system
may change the stability label. Hence, the methods we use to increase the number of
training examples are different.

2.4.3 Semi-Supervised Learning (SSL)

In this work, we deal with the problem of the limited size of labeled data. In Section 5,
we focus on real-world (measured) data. There, we apply our method, REDS+, to a semi-
supervised problem. This is the case when a dataset contains many points, but only a few
of them are labeled. But even beyond semi-supervised setting, we see a certain similarity
between REDS/REDS+ and a group of semi-supervised methods called self-labeling tech-
niques. These methods refer to exploiting a supervised learning algorithm(s) to obtain
enlarged labeled dataset(s) using (most confident) predictions of these algorithms [TGH15].
After a brief definition of semi-supervised learning, we explain two variants of self-labeled
techniques — self-training!® and multi-view learning. We then discuss the similarities and
differences between these methods and our idea.

Semi-supervised learning refers to the use of both labeled and unlabeled data for train-
ing [Zhu05]. It takes an intermediate place between supervised and unsupervised learning.
Indeed, for instance, SSL with generative models can be treated as either classification
(supervised learning) with additional information on density or clustering (unsupervised
learning) with additional information about the class label of some points [CSZ06]. Ac-
cording to Seeger [See00], semi-supervised learning methods work only when p(x) and
p(y|x) share parameters. In the rest of this section, we assume a classification task.

Self-training. Arguably, this is the earliest ([III65]) SSL method, also known as self-
learning, decision-directed learning [CSZ06], pseudo-labeling [Lee13, OOR*18], self-teaching
or bootstrapping [Zhu05]. With self-training, an ML model is first trained on a set of
labeled data. Then this classifier adds some [CSZ06, Zhu05, TGH15] (the most confident) or
all [Lee13]!! unlabeled points together with their predicted labels to the training (labeled)
data. After it, the classifier is retrained on the enlarged with its own predictions labeled
set, and the procedure is repeated. Variations of the procedure just described include, for
instance, adding noise [ XHLL19].

Multi-view Learning. This method first trains multiple learners (e.g. decision trees,
support vector machines, etc.) with the same labeled data. Then these trained models

OChapelle et al. [CSZ06] put equality sign between the terms self-labeling and self-training.
Qliver et al. [OOR*18] have a different interpretation of this pseudo-labeling algorithm, assuming that
only the most confident labels are added.
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teach each other using unlabeled data. A similar concept is co-training which instead of
different learners use different feature sets (views) conditionally independent given the
target variable. The concepts of multi-view learning and co-training are often confused in
the literature. For instance, Zhu [Zhu05] attributes “tri-training” [ZL05] to co-training,
whereas Triguero et al. [TGH15] — to multi-view learning.

Relation to Our Idea. Our idea behind REDS/REDS+ is similar to pseudo-labeling as
we create the pseudo-labels for a subgroup discovery algorithm using a machine learning
model but is different since (1) we use two different models and (2) our learning procedure
is not iterative. Our approaches are also similar to the multi-view learning in a sense that it
uses one ML model to teach another, but differ since this learning is directed, e.g. subgroup
discovery algorithm is never used to teach an ML model. In general, REDS/REDS+ differ
from SSL, since they do not make any assumption on the connection between p(x) and
p(y|x). Finally, in a semi-supervised setting, REDS+ may also benefit from SSL methods
by using them to train an intermediate ML model, as we will explain.
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The content of this chapter is based on the following publication.

e Vadim Arzamasov, Klemens B6hm and Patrick Jochem. Towards concise models of
grid stability. In 2018 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), pages 1-6, 2018.

We demonstrate the utility of human-comprehensible ML models for understanding the
behaviour of a simulated system. We do so by analyzing the data resulting from simulations
of Decentral Smart Grid Control — a novel approach for automatic balancing demand and
supply in electrical grids. As an additional contribution, we collect explicit and implicit
assumptions behind DSGC; this is the most complete list to the best of our knowledge.

Chapter Outline. Section 3.1 describes the research question. Section 3.2 lists the
assumptions behind the DSGC model. Section 3.3 describes our methodology. Section 3.4
features the results. Section 3.5 concludes.

3.1 Problem Formulation

Motivation. Electrical grids require a balance between electricity supply and demand
to be stable. Conventional systems achieve this balance through demand-driven electricity
production. For future grids with a high share of inflexible (i.e., renewable) energy sources
however, the concept of demand response is a promising solution. This implies changes
in electricity consumption in reaction to electricity price changes. There are different
ways to set the price and communicate it to consumers. Conventional approaches, like
local electricity auctions, might cause cybersecurity and privacy issues [LXL*12]. The
Decentral Smart Grid Control (DSGC) system, proposed recently [SMTW15], [SGA*16],
has received much attention. To avoid much of communication it ties the electricity price
to the grid frequency so that the price is available to all participants, i.e., all electricity
consumers and producers. By that, DSGC introduces real-time pricing, as opposed to, e.g.,
auctions, where electricity is traded at 15-minutes intervals.

Current models of DSGC come together with assumptions. Some assumptions facilitate
simulations of its stability in [SMTW15], [SGA*16], i.e., to infer whether the behaviour of
participants in response to price changes destabilizes the grid. To this end, the system is
described with differential equations. Following [Kle15], we refer to the variables of the
equations as inputs. The current approach to study stability consists of two steps:

1. Assign fixed values to some inputs across all equations and simulation runs.
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2. For the other inputs, draw values from a fixed distribution in each experiment (equal
across equations).

The result is a set of one-dimensional intervals describing the dependence of stability
on tabulated input values [SMTW15], [SGA*16]. For example, the inference from such
an analysis carried out in [SGA*16] could look as follows. (We omit some inputs and all
units to keep the example simple.)

IfTi=T=2andy;=y=0.25andt; =7 € [0,0.7] U [2.2,5], then the system is stable.

We see two shortcomings of this methodology. First, changing only one input value at a
time as in the example, with only input 7 varying, leads to the consideration of only a few
values of the other inputs (T and y). This does not facilitate any estimation of interactions
among inputs [Kle15]. We refer to this problem as the fixed inputs issue. Second, the
assumption of equal input values is not realistic, especially when they are inherent to
system participants, e.g., private households, and cannot be regulated externally. Examples
of these inputs are price elasticities of energy consumers, i.e., their willingness to change
consumption in response to price changes, or the time they need to react to such a change.
We call this equality issue.

In this chapter, we demonstrate how scenario discovery can help to solve these issues.
We seek a way to analyze the DSGC system for many diverse input values, removing
those restrictive assumptions on input values. In other words, our objective is to create
metamodels. We want to keep these metamodels simple, hence the term “concise” in the
title of this article. — At the same time, we seek new insights regarding the behaviour of
the DSGC system.

To deal with the fixed inputs issue, one might allow simultaneous changes of several
input values in the simulations. This leads to the question in which form the results of
such an analysis should be presented so that they remain comprehensible. An example of
this representation for the system could be:

IfT; =T € [2.5,4] andy; =y € [0,0.5] and 7; = 7 € [1,3.7], then the system is stable.

The difference to the first example is that now all conditions are intervals.

A solution to the equality issue would be to allow input values to be different from each
other and to be drawn from some reasonable distribution. However, this is not trivial.
Think of a system described by N,, equations, each having N;j, inputs, which already leads
to M = Neg - Ni, degrees of freedom. This means that in general, there will be intervals for
all M inputs in the description of stability regions, as follows:

IfTy € [2.5,4] and T, € [1.7,3] and ..., and 735 € [2.2,4.1] and 4 € [1,3.7], then the
system is stable.

Clearly, comprehensibility suffers. The problem is more prominent with more inputs.

Contributions. To identify the current limitations of the DSGC, we systematically
collect the assumptions behind it. We have already described two, the fixed inputs and the
equality issue. But as we will show, there are more. To our knowledge, despite the rising
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popularity of this system, a respective comprehensive summary in the literature does not
exist.

To deal with the fixed inputs and equality issues, we investigate system stability for
different design points and apply a decision tree to the results. To deal with the many
inputs and to make the description of stability regions more understandable, we replace
the inputs of the system with aggregates, referred to as features. An example rule in the
feature space is:

If avg(T;) € [2.5,4] and min(y;) < 0.25 and max(7;) > 3, then the system is stable.

We demonstrate that the approach gives way to new insights into the simulated system.
For instance, we have learned that fast adaptation generally improves system stability.

3.2 Decentral Smart Grid Control (DSGC)

In this section, we first review the system under consideration proposed in [SMTW15],
including the derivation of the physical model and its economic superstructure. Next, we
systematically list assumptions and open issues regarding the DSGC. Some assumptions
are inherent to the origin of equations describing the system. One cannot remove the
premises without changing the equations. Examples are (3.5) and (3.8) below. The other
assumptions are ones made when analyzing the system with simulations. An example
is that some inputs have specific fixed values. In this study, we want to loosen these
restrictions by removing assumptions of the second type.

3.2.1 The Model

The DSGC system consists of two parts. The first, physical part describes the dynamics of
generators and loads based on the equations of motion [FNP08], [RSTW12]. The second
part is an economic superstructure binding the electricity price to the grid frequency,
proposed and studied in [SMTW15], [SGA™16].

Physical Model. Both generators and loads are modelled as rotating machines. Energy
conservation laws define the dynamics of a respective system as follows:

PSOHVC@

Paccumulated + Pdissipated+Ptransmitted (3‘1)

That is, the power generated is accumulated in the rotational motion of the generator or
dissipated, or transmitted to the loads. Replacing terms in equation (3.1) with respective
equations yields:

Py = %Ij% (51')2 +Kp; (81)2 - Z PR sin (8 - ;) (3.2)
k

where j is an index of the system participant (load or generator), I is the moment of inertia,
Kp is a friction coefficient, Pj'zax is the capacity of the line connecting Participants j and k.
;(t) is a rotor angle (or phase). [SMTW15] then specifies:

5j(t) = wt +0;(t) (3.3)
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where w is a grid reference frequency (e.g., 50 Hz) and 0;(¢) is a rotor angle relative to it.
Finally, (3.3) is substituted in (3.2) to yield:

d20, do

j .
- :Pj—ij+ZKjksm (6 - 0) (3.4)
k
where we abbreviate
2
KVk _ Pjr;:ax o 2KDj - P;ource _ KDj@
) Ija) ’ J Ij ’ J Ija)

According to Filatrella et al. [FNP08], for the transition from (3.2) to (3.4) to be correct, the
following assumptions must hold:
do; d*0;

— < w,
dt dt?

< ZKDJ'O)/I]' (3-5)
Economic superstructure. The idea of [SMTW15] is binding the electricity price to
the grid frequency, with some proportionality factor ¢y, and letting participants adjust
their production/consumption with price changes. The additional equations are:

tdp
pi=po-cr [ Sl-n (36)
t—Tj
pj(Pi) ~Pj+cj-(pj—po) (3.7)

where p; is the electricity price for the j-th participant, l3j is the power consumed/produced
at price pj, c; is a coefficient proportional to the price elasticity, p,, is the electricity
price when d0;/dt = 0, 7; is the reaction time, ie., the time after which one adjusts
consumption/production to a price change, T; is so-called averaging time: The average
frequency during Period T; defines the price. It is assumed that:

Z Pi=0 (3.8)
J

The final equation describing the dynamics of the DSGC results from substituting P; in
(3.4) with P; from (3.7), where p; is defined as in (3.6), and denoting y; = ¢ - c;.

d*9 o < . Yj
_dt2 :PJ—KJE+ZKjksm(9k—9j)—f(ej(t—rj)—ﬁj(t—rj—ffj)) (3.9)
k=1 J

The bottom part of Table 1.1 summarizes the system inputs.

3.2.2 Model Assumptions and Open Questions

In addition to the assumptions in (3.5) and (3.8), we now list the implicit ones. We split the
assumptions into three parts, one related to the physical equations, one to the equations
describing the economic superstructure and one to the way the system has been studied
previously. Additionally, we identify two open questions regarding the system.
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(a) System structure (b) System dynamics after perturbation

Figure 3.1: DSGC system gets destabilized after a perturbation due to overreaction of

participants resulting in resonance.

Assumptions behind the Physical Model.

1.

Generators are modelled as rotating mass. However, the model is often motivated
(cf. [SMTW15], [ENP08], [RSTW12]) by assuming an increasing share of renewables,
some of which (PV or wind turbines) do not have any rotational inertia [UBA14].

. Loads are modelled as rotating mass (synchronous motors)

a) According to [MWS*14], in power engineering “in many of the applications
..passive loads are considered instead of motors...”. This is particularly true
for modelling households [KBL94].

b) According to [PTR95], [NM15], “Most of motor loads in the US are indeed
induction motors, not synchronous motors.”

The model completely neglects any so-called control, for instance, active control, as
stated in [FNP08].

The model assumes constant voltages and constant mechanical power. This limits its
validity to short time intervals of around 1s [SPFK13]. However, the model has been
explored to study system dynamics during tens of seconds [SMTW15], [SGA*16],
[FNP08]. The constant mechanical power also contradicts the intermittent character
of wind [Kam14] and solar power plants.

Treating variable values as constants in (3.9) implies constant moments of inertia
M; for each participant. However, the inertia in systems with a high penetration of
renewables has high variations [UBA14].
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Assumptions behind the Economic Superstructure.

1. Adapting the energy consumption to price change does not change the inertia of
the system nor the damping constant. This requires further elaboration on how
adaptation takes place. For example, if a consumer switches off some device in
response to a price change, this generally does have an effect on inertia and the
friction in the system.

2. The adaptation of consumption and production happens permanently. That is, load
or generation profiles smoothly oscillate with periods of a couple of seconds, see
Figure 3.1 or Figure 3 in [SMTW15]. Smooth consumption behaviour again raises
the question regarding the mechanism of its adjustment, see the previous Item.

3. Consumers do not learn from the past. This means that after a few oscillations of
the price (and grid frequency), the equilibrium level of production or consumption
becomes obvious. The better strategy than continuing to adapt to the current
price might be to consume or produce at that level. Additionally, resonances often
destabilize the system. This means that consumers use more energy when the price
is high and less when it is low. This is not rational. See Figure 3.1.

Assumptions Made for Analysis.
1. The values of inputs P;, y; and Kj; are fixed.

2. The values of inputs are equal for all participants: X; = X, where X; stands for any
input in (3.9), except for P;, which must satisfy (3.8).

Open Questions.

1. The inventors of the model do not make any statement regarding the scale of model
validity. It is unclear to what extent the model is suitable to describe a large country-
wise or a small island grid. In other words, should every household be modelled as a
separate consumer, or can one consumer represent a bigger unit, e.g., a town?

2. When the reaction of the system to disturbance is analyzed, the dynamics of rotor
angles are different for each participant in the stabilization period after disturbance.
This means that the prices also are different; see (3.6) and Figure 3.2. Then it is
unclear whether the amount of money paid by consumers equals the income of
producers.

Equation (3.9) makes sense only if we think of it as a coarse-grained description of the
system. But then one must definitely consider a huge heterogeneity of parameters. Thus,
in what follows we remove assumptions from paragraph “Assumptions Made for Analysis”
and discuss the new insights from this generalization.
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Figure 3.2: After perturbation, at each moment of time, price is different at various locations
in a DSGC system.
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Figure 3.3: System structure

3.3 Methodology

In this section, we first review which input values have been used for DSGC simulations
so far and justify our choice of input values, select the data mining model and say how
we convert inputs into features. We consider different notions of DSGC stability from
literature and select one for further usage.

3.3.1 Input Values

We simulate the four-node star electrical grid with centralized production (Fig. 3.3), studied
in [SGA*16] as well. A generator is in the center, and three consumers are connected to it.

DSGC system (3.9) contains six inputs in total. They must be initialized to launch the
simulations. The values used in the literature are in Table 3.1. We use the notation [a, b] if
the input values are sampled from the interval and a, b if only values a, b are considered.

'Power consumed by each load (consumer). Power produced by producer is calculated according to (3.8)
’In our experiments below, we specify or choice of the upper bound for 7; and the range for T;
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Input [SMTW15], [SGA*16], [RSTW12] [FNP08] Our choice
p;t —1s72 —{1.5,2,2.5}s72  —[0.5,2]s7?
Kj 0.1s71 [0.1,1]s7! 0.1s71

Kjk {4,8}s72 {5,7,8,10,12}s7% 8572

Yj 0.25s7! - [0.05,1]s7!
72 [0,10]s - [0.5,{5,10}]s
T; {0,1,2,4}s - 2s or [0,4]s

Table 3.1: Ranges of input variables

According to (3.2)-(3.4), Kjx = K implies that I; = I, that is, equal moments of inertia for
all participants.

For our analysis, we change the values of some inputs and allow others to take values
from a defined range instead of a fixed value. To choose which inputs to vary, we classify
them as environmental or control, following [SWNO03]. For control inputs, an engineer
or system designer can set the values. Here, averaging time T;, damping constant «;, and
line capacities Kj are of this type. Environmental (noise) input values depend on the
specific user or environment at the time the item is used. Consumed power P; or reaction
time 7; is environmental. The input y; is of mixed type, since in y; = ¢; - ¢; the term ¢;
(connecting price to grid frequency) is controllable, and c; (promotional to price elasticity
of participant) is environmental. We fix the values of control inputs and allow the values
of the environmental inputs to vary. We also remove the assumption of indistinguishable
participants by choosing the input values for each of them distinctly. The nominal power
and coefficients y; now take values from a range. We have chosen the range of y; in line
with [Lij07]. Reaction times are no longer equal among participants. The last column of
Table 3.1 summarizes this.

3.3.2 Model and Experimental Design

Among other machine learning models, decision trees yield results in the form we target
at, exemplified in Section I. Earlier results [Fre13], [HDM™*11] confirm that this form of
results is comprehensible. To learn decision trees we choose one of the most popular
algorithms, CART [BFOS84].

We have defined the ranges of input values and the model. The question arises for
which values exactly one should run experiments, i.e., which experimental design to use.
Although there is the opinion that one should choose the experimental design together
with the statistical model [SPKA01], [WS06], we are not aware of any proof of this being
superior for decision trees or classification rules. Intuitively, a space-filling design should
be reasonable. We stick to random LHS design [Ste87], [JMK12].

Since the system has symmetries, we hypothesize that a more concise representation of
simulation results is feasible based on input aggregates, i.e., features. To create features,
we take the minimum, maximum and mean values across all N participants of each input,
e.g., min(rj) for j =1,...,N.
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3.3.3 Stability Analysis

There are several types of stability of a system [SGA*16]. We now briefly describe them
and list their advantages and limitations.

Stability against Single Perturbations Here one studies the ability of the system to
reach an equilibrium state after some perturbation. It can be specified in terms of power
when some loads require more power for a short time [FNP08]. This type of stability
analysis introduces many new degrees of freedom to the simulations:

« Which nodes of the grid to perturb?

« How exactly does the perturbation look like?

« How long should one observe a system after the perturbation to draw conclusions
on its stability?

Basin Stability To study basin stability [MHMK13], one specifies a range of possible
perturbations and simulates the system for a set of randomly sampled perturbations from
this range. Next, one may estimate the “basin volume” as the ratio of initial conditions
converging to a stable operation over the total number of initial conditions [SMTW15],
[SGA*16]. Basin stability is more general than stability against perturbation, inheriting
all limitations of the latter>.

Local (Linear) Stability Linear stability analysis explores dynamical stability around
the steady-state operation of the grid. It consists of finding roots of the characteristic
equation, written as:

detA=0 (3.10)

Ais a 2N X 2N matrix derived from equations of motion (3.9). The equation has infinitely
many solutions, but only a finite number of solutions can have a positive real part, and
they determine the instability of the system [SGA*16]. To find these roots, a numerical
optimization problem is solved. We will use local stability analysis since it is a necessary
requirement for all types of stability and does not bring additional degrees of freedom to
an already complex system.

3.4 Experimental Results

We now evaluate the usefulness of the proposed approach. To do so, we graph the results
of applying the CART algorithm to data from our simulations. This algorithm partitions
the input space into regions with higher or lower stability than on average. The paths
to the leaves of the decision tree produced by CART define the stable/unstable regions.

3We presume that the concept of basin stability is a re-discovery of so-called Starr’s domain crite-
rion [Sta63]. According to Herman et al. [HRZC15]: “In practice, this [domain criterion calculation, — author
note] is done by calculating the fraction of sampled states of the world in which a solution satisfies one
or more performance thresholds”. Schneller and Sphicas [SS83] further analyze this criterion and compare
with four alternative approaches.
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Figure 3.4: Decision trees on the data from simulations.

To avoid clutter in the plots, we slightly change the notation, replacing y; with g and 7;
with t. In the next subsections, we first explore the so-called rebound effect and then show
how one can use our approach to set the values for control inputs. At the end of each
subsection, we discuss new insights which previous analyses have not revealed.

3.4.1 Rebound Effect

In [SGA™16] the rebound effect has been discovered for a four-node system: For delays
T > 7. (8s when T = 2s) the system always is unstable. We investigate whether this
effect persists if consumers are heterogeneous. We perform simulations for 10000 design
points with the input values specified in the last column of Table 3.1 where we choose

€ [0.5,10]s and T; = 2s. Our space of values includes the ones explored in [SGA*16] as
a special case?.

Fig. 3.4a is an excerpt of the decision tree obtained. The path to the second leaf from
the left reads as follows: If min(z;) < 2.1 and avg(y;) > 0.5 and avg(r;) < 4.8 and
max(7;) > 8, then the system is stable. This means that, in a stable grid, a consumer may
have a reaction time higher than 7, = 8s as long as there is a consumer reacting quite
fast, and the average reaction time is moderate. Moreover, the presence of a consumer
reacting slowly has a positive effect on stability in this case. These results, stemming from
our consideration of heterogeneity of participants and discovered with our approach, are
new — they have not been insinuated in [SGA*16] in particular.

3.4.2 Defining Values for Control Inputs

According to [SGA*16], there is a trade-off between avoiding the rebound effect with
small values of 7; and increasing the basin stability with high values of 7;; the suggested
value is 7 ~ 4. At the same time, higher values of averaging time T have a positive effect

“The dataset is available from [DG17]: https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+
Stability+Simulated+Data+
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3.5 Conclusions

on stability. We now check to what extent these conclusions hold for the system with
diverse participants and sketch a way how our proposed approach could help choosing
the values for control inputs. To do so, we allow one control input, T}, to vary. We assume
that T; = T. This is a realistic assumption, since the averaging time can be inherent to the
frequency-measuring device, and a policymaker can define it. We simulate the system
for 10000 design points with the input values specified in the last column of Table 3.1
with 7; € [0.5,5]s and T = [0, 4]s. As before, this includes the input values explored in
[SGA*16] as a special case. Fig. 3.4b graphs the tree. First, the analysis confirms that
high values of T are good for stability. Specifically, the stable leaves of the tree only exist
for T > 1.4. This information can be used when designing the system, to, say, regulate
the averaging time, prohibiting values lower than 1.5. One can also see that all leaves
classified as stable imply that avg(y;) < 0.67. In principle, one could also regulate this by
adjusting the parameter connecting price to the grid frequency, ci, in (3.6). But then the
impact on demand response should be assessed. In other words, setting c; = 0 leads to
perfect stability but completely cancels the effect of the economic superstructure.

Our results suggest that values of avg(7;) smaller than 3.1 contribute to system stability.
For avg(r;) > 3.1, the stable region (the second leaf), occupies only a small share of
the design space. So 7 ~ 4 might not be a good value for a system with heterogeneous
consumers. We observe that power does not appear in any tree. We speculate that it only
has a small or even no impact on stability as long as the physical system is stable. So a
takeaway is that the view on the system is more differentiated with the use of decision
trees than in [SGA*16].

3.5 Conclusions

Decentral Smart Grid Control, the topic of this article, has been touted as a way to realize
demand response. We have collected the assumptions behind it systematically, some of
which are restrictive. In order to eliminate some assumptions, while at the same time
targeting at simple and insightful models, we have proposed the following:

« Simulate the system for diverse sets of input values. A simulation result has been an
inference on whether the system is stable for the specific input values.

« Create features from original inputs to reduce the number of degrees of freedom.

« Apply a decision-tree algorithm to the data resulting from all simulations.

This approach does reveal new insights regarding DSGC, not known from previous
studies. For example, we have learned that the system can be stable even if some partici-
pants adapt their energy consumption with a high delay, or fast adaptation is preferable
for stability under certain conditions.
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4 Improving Scenario Discovery —
REDS

The content of this chapter is based on the following publication.

+ Vadim Arzamasov and Klemens Béhm. 2021. REDS: Rule Extraction for Discovering
Scenarios. In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, NewYork, NY, USA, 14
pages. https://doi.org/10.1145/3448016.3457301

Decision tree used in the previous chapter partitions the space formed by the inputs
of a simulation model into a set of hyperboxes. Often, one does not need to partition the
whole space and prefers to have a small number of hyperboxes (called scenarios), but
wants each of them to cover a significant share of the interesting examples, minimize the
coverage of uninteresting ones and not to restrict the inputs with little effect on the output.
The respective metrics are recall, precision (see Section 2.3.2 for formal definitions) and
interpretability [BL10]. Patient Rule Induction Method (PRIM) is a conventional approach
used to find such scenarios. In this Chapter we deal with the problem of improving scenario
discovery with PRIM from small datasets.

Chapter Outline. Section 4.1 introduces the research question. Section 4.2 introduces
our approach and justifies it from a statistical point of view. Section 4.3 supports our
statistical considerations with experiments. Sections 4.4 and 4.5 describe the quality metrics
used and the experimental setup. Section 4.6 features the results. Section 4.7 concludes.

4.1 Problem Formulation

Since simulations often are computationally expensive [WS06], one wants to obtain a good
scenario with few simulations. In this chapter, we address the problem of reducing the
number of simulation runs to obtain high-quality scenarios or, equivalently, increasing the
quality of scenarios discovered from a limited number of runs. As we will show, quality
increases slowly with the number of runs with PRIM. It starts from ¢y and approaches some
saturation level ¢ for a big dataset, forming a learning curve. On the other hand, some ML
models like random forest can learn a good approximation of a simulated model already
from a small dataset but hide their internal logic, i.e., humans cannot easily interpret it.
These ML models can be used to inexpensively label more data, which later serves as
input to the scenario-discovery method, making the learning curve more concave for small
datasets (Figure 4.1). Combining PRIM with a powerful ML model is our main innovation.
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Figure 4.1: Learning curves for scenario discovery tools.

Algorithm 6: Our method: REDS

Data: D, DV «, By, minpts, L, AM — described in the text
Result: sequence of nested hyperboxes

1 f%" = train(AM, D);

2 D" =L x (M + 1) matrix consisting of rows d["**,i € {1,...,L};

3 for1<i<Ldo

4 x; = new.point();

5 y; = predict(x;, f*");

6 dlzlew = (xl-, yi);

7 boxes = PRIM.peel(D = D", DUl =p, ... );

8 return boxes

Put differently, we propose a new scenario discovery process, REDS (Rule Extraction
for Discovering Scenarios), by introducing an intermediate step of estimating an accurate
metamodel and using it to obtain a larger dataset to learn an interpretable model. Learning
an interpretable model describing a more “complex” one is called rule extraction [HBV06].
We then come up with an analysis leading to the expectation that REDS works better
than conventional scenario-discovery approaches from a statistical point of view. We
compare our method to existing approaches with extensive experiments, using data from
simulations of the electrical grid and 32 benchmark functions used in the metamodeling
literature.! REDS improves scenario discovery significantly. In contrast to PRIM, REDS can
benefit from existing active learning techniques to bring down the number of simulations
needed to discover scenarios even further, as we will explain.

4.2 Proposed Method: REDS

In this section we describe our method; from a statistical point of view we show why
original PRIM has difficulties in learning functional scenarios from small datasets, and
how our method, REDS, can overcome them. Then, we discuss the compatibility of REDS
with the existing active learning methods.

The code required to reproduce our experiments and figures: https://github.com/Arzik1987/SDRE
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4.2 Proposed Method: REDS

The novelty of REDS is the introduction of an intermediate step to train a metamodel
with low variance and generalization error (Algorithm 6). The proposed process consists
of the following steps.

1. Use D to train an accurate metamodel AM (Line 1);

2. uniformly sample L new points from the same area as D (Lines 3-4);

3. label these points using the trained metamodel f*" to form a new dataset D"
(Lines 5-6);

4. run Algorithm 1 with D"®" instead of D, and D as DUl

In the rest of the paper, we use random forest [Bre01] as the intermediate metamodel,
since it performs well in various classification tasks [WAF16].

4.2.1 Statistical Intuition.

Let f(x) : RM — R denote the function described by the simulation model; f(x;) = p(y; =
1|x;), where x; is a vector of inputs’ values and y; — respective model output. In each
iteration k of the peeling stage, PRIM compresses the By to obtain the box Bj,;. It chooses
Bi41 from candidate boxes — we name them By, j = 1,...,2M — so that the mean value
of f in it is maximal. Equivalently, the mean value of f in the box bjx = By \ Bjx which is
“peeled out” is minimal. In reality, f is unknown, and its mean yj in by is estimated from
the sample of points contained in bj. A high error of this estimate may result in cutting
off the wrong box — the one which does not maximize the mean value of f in By,;. That
is, our method will make fewer wrong cuts if its error in estimating pj is smaller than
with the original method.
Let b € {bjx}. The mean value of f in b is

[ fGp() dx

Jyp(x) dx
Here p(x) stands for the pdf of the M-dimensional random variable X denoting the
point in the input space. In the following analysis, we assume b to be fixed. It contains

n=a-(1- a)k - N points labeled with y;, i = 1,...,n" by means of simulations. The
estimate of mean y from the data then is

p=— (42)

i=1

(4.1)

The mean squared error (MSE) of this quantity is [FF99]
MSEp = E[u — i]* = (u - Bi)? + B[ i — EA)? = [Bias(1)]* + Var(j) (4.3)

Here the expectation is taken over all datasets D with |D| = N containing points i.i.d.
from p(x). Under deep uncertainty, one accepts the uniform distribution of model inputs,
i.e., p(x) = const, and samples x’ ii.d. from it. Assuming that there is no noise induced
by the simulation process, /I is an unbiased estimate of p. Remember that y; takes values
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from {0, 1}. Thus, y; is a Bernoulli random variable with Pr(y; = 1) = p within the box b.
Written formally,
(1-p)

Bias() =0, Var(i) = ~—* = MSE, (4.4)
n

’

With our method, a function f*" learned with metamodel AM is used to label points.
Let p™ be the mean value of f*™ within b and

[/

wam 1

A= § Y (4.5)
i=1

be its estimate where y™ = f*"(x'), and [ ~ n’ - L/N is the number of new points inside
b; see Section 1.6 for an explanation of L.

Assume first that y/™ € {0,1}. Then Pr(y/™ = 1) = p®" (within the box b). In gen-
eral, ™ # p. For a fixed function f*™, analogously to (4.3)—(4.4), the bias-variance
decomposition of the mean squared error is

ﬂam(l _ uam) |00
[

where the expectation was taken over all datasets D" (Algorithm 6, Line 2) that are
possible with our approach. The MSE with our method using metamodel AM for large L is

[Bias(a*™)]? = (u — p™™)?,  Var(p®") = 0 (4.6)

MSEap = B[y — p®™]? (4.7)

where the expectation is taken over all feasible datasets D as in (4.3), and all possible fits
[ of a given metamodel AM obtained on them.

Now we can compare the MSE( obtained with the original approach (4.4) with MSE sy
with our approach (4.7). Assuming that the best scenario is the one discovered with PRIM
knowing the true function f, our method will perform superior if, for all possible boxes b,
E[p — p™]? < p(1 — p)/n’. Similarly, our method is likely to show better performance
than original PRIM if the above inequality holds for the majority of boxes. Note that
the left-hand side of the inequality implicitly depends on N, as increasing the size of a
training set typically leads to higher accuracy of f*™ and lower value of E[u®" — u]?. Now
consider the model AM which outputs class probability estimates instead of classes, i.e.,
y{™ € [0, 1]. Interestingly, in this case, our approach may outperform the original one
even when the size L of the new dataset D" is comparable to the size N of the initial
dataset D. Specifically, the following holds.

Proposition 4.2.1 Ifn’ =1 A p = p*", then Var(g*") < Var(ji)

Proof: Since n’ =1, it is sufficient to show that

E[y{"]* — (By{™)?* = Var(y{™) < Var(y;) = p(1 - p) (4.8)

Since Ey™™ =y, (4.8) < E[y*"]* < p. This is true as

1 1
B[y = / (™) g(y™) dyim < / Y g(y™) dy™ = g (49)
0 0
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Here g(y/™) is the pdf of y/™ implied by the restriction of f*" to the box b. The latter
inequality holds since y{™ € [0, 1] and g(y{™) > 0. m|
However, the condition y = " of the above proposition does not hold for all possible
boxes b, unless f = f*". We experiment with the performance of our approach in case
L = N in Section 4.6.2.

Finally, when the simulation process is imperfect and introduces noise, in general,
Pr(y; = 1) # p. Consequently, Bias(/) in (4.4) is no longer zero, and the analysis becomes
more sophisticated. We evaluate the influence of noise experimentally (Section 4.6.2).

4.2.2 Discussion of the statistical derivations.

To avoid restrictive assumptions on the true function f, we made certain simplifications.
First, we assume that the box b and the number of points it contains, n’, are fixed simulta-
neously, while the points in D are sampled at random. In reality, only n’ is fixed at each
iteration, and the box boundary varies to include exactly n’ points (Algorithm 1, Lines 6-7).
Allowing the box boundary to vary with different realizations of D would make MSE
estimates (4.4) and (4.6) incomparable. Second, one usually uses so-called space-filling
designs [SWNO3] to form a dataset D rather than “brute force” random sampling., e.g.,
Latin hypercube sampling [Kle15]. Generally, this would result in lower variance values
than estimated with (4.4) or (4.6). With these simplifications, our analysis explains the
experimental results sufficiently well. We further illustrate the intuition behind REDS
with the experiments in Section 4.3.

4.2.3 REDS and Active Learning

We propose REDS to decrease the number of simulations needed for learning scenarios,
i.e., to minimize the labeling effort. There exist techniques with a similar target, known
under the names active learning [Set09], adaptive sampling [GCD*10] or selective sam-
pling [BS19]. Active learning allows the learning algorithm to select the instances to be
labeled next iteratively. However, existing sampling techniques are not applicable to PRIM
in a straightforward manner. This is because they require some measure of uncertainty,
which is not apparent in the case of PRIM. This might be the reason why adaptive sampling
was only applied to increase the diversity of scenarios so far [IP16], not the quality of PRIM
results. REDS in turn is compatible with active learning. This is because several techniques
exist for random forests [BS19], support vector machines [TK01] and others [Set09] which
one may use as an intermediate metamodel in REDS.

4.3 Intuition behind REDS: Demonstration

We check the validity of our analysis in Section 4.2 and provide a synthetic example where
our method yields much better output than the original one. To this end, we use function
#3 from [DHL*13]. Here the label y only depends on two inputs (attributes), a; and ay, as
y=1if a; > 0.6 and a; > 0.8. In the end, 0.2% of the labels are inverted, imitating noise.
The support of the functionis a; € [0,1], j=1,...,5.
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Figure 4.2: The distributions of /i (dark) and ™ (light)

4.3.1 Mean-Squared Error

We describe the general experimental setting and the results obtained in experiments.

MSE: experimental setting. In our experiment, we created independently 200 datasets
D of size N = 400 labeled with the selected function. For each dataset D;, i = 1,. .., 200,
we trained one random forest model, f;*" and let it label 100 datasets D;’.ew. For a fixed box
b we calculate MSEs:

200 200 2
MSEq =Var(ji) = Z(p,.)z/zoo — (Z ,zi/zoo) ,
i=1 i=1
200

MSE 0 = Z (Bias(A%™) + Var(%™))
i=1

100
Bias(ji{™) =gtz — . fi3™/100,

j=1
100 100 2
Var(f™) = " (™) /100 - ﬁ?}-’”/loo)
j=1 j=1

Here we use indexes i for enumerating datasets D; and j for indexing datasets D?jew, and
keep the other notations as in Section 4.2.1. We have also substituted y in (4.6) with

+
g ot
T’lgt
where n;’t and ny; are calculated (see Section 1.6) for a subgroup SIft defined on a large

dataset D8' of 10° points labeled with the selected function.

MSE: results We use random forest, which outputs probabilities, as a metamodel. We set
N =400 and estimate the MSE of the p estimate for box b defined as as > 0.95 (a = 0.05).
The expected number of points in this boxisn = «-N = 20,and p = (1-0.6)(1-0.8) = 0.08.
We neglected the noise in the last calculation. The variance of the original method,
calculated using (4.4), is 0 = 0.08-(1-0.08)/20 = 3.68-107>. MSE, obtained in experiments
is 3.54 - 1073 ~ o, whereas MSE are 2.9 - 1073 and 0.19 - 1073 for K = 400 and K = 10°
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respectively. That is, MSEp > MSE 4. This result holds for eight (for K = 400) and nine
(for L = 10°) boxes out of ten candidates for cutting off at the first iteration of the peeling
step of PRIM. Figure 4.2 illustrates the experiment. It shows distributions of /i and %™
(L = 10°) for b; the dotted line is the true p.

MSE: additional experiments We conducted the experiments described above with
three more functions: #8 from [DHL*13], “linketal06simple” from [SB13] and “morris”
from R package “sensitivity”. In all experiments, we calculated MSEs of the mean estimates
of labels in 2 - D boxes, considered as candidates for cutting off at the first iteration of
PRIM. When the metamodel is random forest, which outputs class labels, we have obtained
MSEo > MSE ) (When L = 10°) for the majority of boxes for the first two functions. This
is similar to the result described above. For function “morris” for all 2 - M = 40 boxes the
relation was opposite: MSEp < MSE4). However, as we will show (Tables 4.4-4.7), in this
case, our method is by far better than the original one.

Let us index these 40 boxes with r. The detailed analysis reveals that ,uft forr € {8,9,10}
are significantly lower than for other values of r. The share of cases, when min, fi;, is
reached for some r* ¢ {8,9,10} is 26%. Whereas, the share of cases, when min, ﬁg’r" is
reached for some r* ¢ {8,9,10} is only 0.3%. That is, despite greater MSE, our method
makes less irrelevant cutoffs. This is because, for each f*", the bias does not change the
ranking of boxes by the mean value of labels of points they contain. All this might indicate,
that the mechanism we described in Section 4.2.1 is not the unique one responsible for
better performance of our approach.

4.3.2 Comparing Scenarios

For this study, we set N = 100. Figure 4.3 graphs the result obtained with original PRIM
and with our method (solid thin lines). Four dimensions {ay, ..., a4} are presented. Dashed
thick lines represent the true scenario.

The top two plots show the 100 points obtained directly from function #3. White points
stand for y = 0 and black ones for y = 1. The plots reveal that PRIM makes mistakes by
cutting the box in the irrelevant space {as, as}. It does so for the following reasons:

« There are nine true scenario examples (y = 1) — not enough to fill the range of
irrelevant attributes {as, as}. So there are some areas near axes in these coordinates
with no scenario examples, for instance near the axis ay.

+ One point, near the bottom of the left upper plot, is wrongly labeled with y = 1
(noisy data). It prevents the algorithm from further restricting the box in this space
before all cuts in other dimensions leading to better results are made.

+ The algorithm stops when the learned box contains minpts = 20 points. Since there
are only nine true scenario examples, this box contains at least 11 irrelevant ones.
In other words, the box is too big to describe the scenario properly but cannot be
further reduced due to a lack of points in D.
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Figure 4.3: The results obtained with original PRIM and with our proposed method on the
example dataset.

The bottom two plots graph the 1000 newly generated points labeled with random forest.
The color of points stands for their probability of belonging to scenario y = 1, changing
from white (Pr(y = 1) = 0) to black (Pr(y = 1) = 1). Clearly, this new dataset allows PRIM
to learn a better scenario by overcoming the issues of the original dataset just described.

4.4 Quality Metrics

In this section, we describe the quality metrics we use to compare the different algorithms.
We assume that to estimate these metrics, one uses a separate data (large) set of points
D' labeled by the simulation model which does not overlap with D and D%,

4.4.1 AUpC, precision, Interpretability

As described before, PRIM does not produce a single box. Instead, it outputs a sequence
of boxes from which a user can choose one, usually by compromising between precision
and recall (see Section 1.6) [BL10]. To exclude this subjective choice from our evaluation,
we compute the precision and recall for each box in the sequence. The resulting pairs of
values form a curve on the recall-precision plane — the peeling trajectory [BL10, FF99]. To
rank two algorithms, we compare their curves: AB and AC on Figure 4.4. If if the peeling
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Figure 4.4: Mutual positions of two peeling trajectories

trajectories do not intersect, like in Plot a), the conclusion is clear: the algorithm, which
has yielded AB is better. When they cross each other, we propose to use the Area Under
the peeling Curve (AUpC) to quantify the quality. This is, we compare the areas covered
by figures ABEF and ACDF, as shown in Plots b) and c), a larger area corresponds to a
better algorithm.

Sometimes one wants to find scenarios as pure as possible, i.e. to maximize the precision
while allowing lower recall. Since the test data is not available in reality, this choice can
be made using validation data. This corresponds to choosing the last box returned by
Algorithm 1. Thus, we will also compare the precision of the last boxes produced by
different methods.

Interpretability is another quality metric often used in scenario discovery. A hyperbox
is already deemed an interpretable model output [Fre13, HDM*11]. However, one can
additionally compare scenarios by the number of dimensions restricted by the hyperboxes
defining them [BL10, KC16]. As with precision, we will make such a comparison with the
last boxes returned by each algorithm.

4.4.2 Consistency.

Different datasets produced by a simulation model can result in different scenarios dis-
covered. This reduces interpretability [FF99] since one looks for some hidden structure in
the model, rather than in the particular data produced by it. So we introduce the fourth
quality measure for scenarios — consistency.

Definition 4.4.1 For two datasets Dy and Dy, |D1| = |D;| produced with the same model, let
By and B, be the scenario descriptions obtained with the same scenario discovery algorithm
SDA. Let V, be the volume of the overlap of these boxes and V,, the one of the union of B; and
B,. The consistency of SDA is

%
consistency = E [VO]
u

When the definition of any box B; or B, includes unbounded intervals (ai. = —o0 or
a’; = +00), consistency calculated with this definition would be either 0 or an indeterminate
form, i.e., not meaningful. To overcome this issue, we take advantage of our perfect
knowledge of pdf p(x) and replace infinities in the box definitions with minimal and
maximal values of the respective attribute as implied by the support of p(x).
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Consistency is often used in the rule learning literature, but with different definitions.
For instance, [HBV06] defines it as the inherent randomness of the algorithm, not the one
resulting from the training data.

4.5 Experimental Setup

For our experiments, we use 32 benchmark functions, most of which are commonly used
in the metamodeling domain, and one simulation model, the decentral smart grid control
(DSGC). We describe these data sources and the methodology of the experiments.

4.5.1 Data Sources.

We have used different sources of functions. First, we have implemented functions 1-8 and
102 from [DHL*13] using the descriptions in that paper?. All these functions are “noisy”
with probability 0.2% of a false label.

The functions “morris” and “sobol” are implemented in the R package “sensitivity
We also used the R implementations of the other functions from [SB13]; they are used to
test input variable screening and sensitivity analysis in simulations. We keep the original
names of the functions as provided by the implementation. We converted continuous
function output to binary by specifying the threshold thr, so that y = 1 if the output is
below thr and y = 0 otherwise; this is common in scenario discovery [BL10]. Next, we
simulate DSGC system (see Section 3.2.1) of a particular structure presented in Figure 4.5.
It is a “star”-like system, containing four consumers and one producer — in the center. We
fixed the values of some inputs and sampled the others from the given ranges uniformly
independently. See Table 4.1. In total, there are 12 inputs that vary: y, T and 7 for each
electricity consumer. We also introduced the function “ellipse” as follows:

15
y= > wi-(a—cp)
=1

»3

where

w = {0.353, 0.434, 0.899, 0.373, 0.278, 0.164, 0.927, 0.769, 0.975, 0.606, 0, 0, 0, 0, 0},
¢ ~ {0.975,0.843,0.772,0.325,0.805, 0.945, 0.221, 0.732, 0.289, 0.6, 0,0, 0,0, 0}

Table 4.2 lists all 33 functions used in our study. The columns contain the following
information. M is the number of inputs. Infl < M is the number of “influential” inputs,
i.e., those affecting the output. The “reference” column contains the references to the
work using the respective function. A big share of functions we use is from [SB13]. The
threshold values are in column “thr”. The functions which already output y € {0, 1}, have
the values “na” (not applicable) in this column. Finally, the expected share of outcomes
y = 1 with uniform sampling o points from the input space is in column “share”.

%For functions 1, 3, 5-7, we obtained data similar to that presented in Figure 2 in [DHL*13], but for
functions 2, 4 and 8 the plots were different. With function 101, we did not get any examples labeled with
y = 1 and thus excluded it from our analysis.

3h‘ctps ://cran.r-project.org/web/packages/sensitivity/
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4.5 Experimental Setup

Table 4.1: Input values used for DSGC simulations

Input P a K Y T T
Consumers —1 01 8 [0.05,1] [0.5,5] [1,4]
Producer 4 ) 0 - -

Q — Producer

O — Consumer

Figure 4.5: DSGC system structure

4.5.2 Hyperparameters.

The algorithms described above — original PRIM, PRIM with bumping and REDS — have
certain hyper-parameters in common. We set the peeling parameter to « = 0.05, as it
is the most common choice in the literature [KC16]. We set the stopping criterion to
minpts = 20 so that minpts - « = 1; and we set kpgr = 99 so that the minimal relative
volume of the scenario is at least (1 — ) ¥met1) = 0.6%. For all functions, we experimented
with datasets of sizes: N = {400, 800, 1600}. For DSGC the sizes are N = {200, 400, 800,
1200, 1600, 2000}. We consider two versions of the original PRIM: without pasting — “O”,
and with the pasting step — “O.p”. For “O.p”, the pasting parameter is f = 0.01 and apply
the pasting step (Algorithm 2) to each box resulting from “O”. The hyper-parameter values
for PRIM with bumping were not stated in the respective paper [KC16]. We set the number
of iterations to Q = 50. We consider two variants of this algorithm which differ in the
number of attributes q used in each iteration. “B” uses ¢ = [VM] attributes, the common
value used in random forest for classification, where M is the number of attributes (see
Section 1.6); “B.all” uses all attributes, i.e., ¢ = M. By default, we set the number of new
points generated and labeled with REDS to L = 10°, i.e., much larger than any N used. As
mentioned, we use random forest as the “complex” metamodel in Algorithm 6. To set its
hyper-parameters, we use the default hyperparameter optimization procedure of package
“caret”®. Random forest can return class labels (0 or 1) or class probabilities for the new L
points, yielding two variants of REDS, “RF.I” and “RF.p”. Table 4.3 summarizes the above.

4.5.3 Design of Experiments.

To form the datasets D = D%, Halton sequence [HS64] for DSGC simulations and Latin
hypercube sampling for the other functions. For each function, we generate the test data
D' containing 10 points. We run the experiment 50 times for each function and each
value of N and average the values of AUpC, precision and interpretability. We compute

4h‘ctp://topepo.gi‘chub .io/caret/index.html
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Table 4.2: Functions for experimental study

function M Infl reference thr  share (%)
1 5 2  [DHL*13] na 476
2 5 2 [DHL*13] na 25.7
3 5 2 [DHL*13] na 8.2
4 5 2 [DHL*13] na 18
5 5 2  [DHL*13] na 8

6 5 2  [DHL*13] na 8.1
7 5 2  [DHL*13] na 35

8 5 2 [DHL*13] na 109
102 15 9 [DHL*13] na  67.2
borehole 8 8 [SB13, AO01] 1000 30.9
dsgc 12 12 Section 4.5 na 53.7
ellipse 15 10  Section 4.5 0.8 2255
hart3 3 3 [SB13] -1 335
hart4 4 4  [SB13,P*13] ~0.5 30.1
hartésc 6 6 [SB13, P*13] 1 22.6
ishigami 3 3 [SB13, IH90] 1 25.5
linketal06dec 10 8 [SB13, LBH*06] 0.15 25.3
linketal06simple 10 4 [SB13, LBH*06] 0.33  28.5
linketal06sin 10 2 [SB13, LBH*06] 0 27.2
loepetal13 10 7 [SB13, LWM13] 9 38.9
moon10hd 20 20 [SB13, Mo010] 0 42.1
moon10hdc1 20 5 [SB13, Moo10] 0 34.2
moonlOlow 3 3 [SB13, Moo010] 1.5 45.6
morretal06 30 10 [SB13, MMMO06] —330 34.5
morris 20 20 [S*00] 20 30.1
oakoh04 15 15 [SB13, 0004] 10 24.9
otlcircuit 6 6 [SB13, BAS07] 4.5 22.5
piston 7 7 [SB13, BAS07] 0.4 36.8
soblev99 20 19 [SB13, SL99] 2000 41.3
sobol 8 8  [ST00] 07  39.2
welchetal92 20 18 [SB13, WBS*92] 0 35.6
willetal06 3 2 [SB13, WHG'06] -1 249
wingweight 10 10  [SB13,FSK08] 250 37.8
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Table 4.3: Experimental setting

| B |Ball|O| O.p | RFE.I/RF.p
a 0.05
N = |D| | {400,800, 1600} ({200, 400, 800, 1200, 1600, 2000} — for DSGC)
minpts 20
I X X X | 0.01 X
q [VM]| M | x| x X
Q 50 X | X X
L X | x |x| x 100000

consistency for each pair of last boxes from different runs and average the results, similarly
to the approach in [Dom97] to compute stability, a measure akin to consistency.

4.6 Results

We compare the performance of approaches across all functions and further experiment
with DSGC to study how the randomness of the sampling forming the dataset D, the
values of N and L, and the level of noise, influence the performance of the methods.

4.6.1 Performance across all Functions.

We present the results for the four metrics in a form which we now explain, taking AUpC
as an example. First, for each function and each value of N = |D|, we averaged AUpC
values across 50 experiments. Figure 4.6 plots these averages; each box is based on the
33 functions under consideration. The average AUpC values over 50 experiments and 33
functions for each dataset size, N, are in the row “avg” in Table 4.4. For a rather high
number of points, N = 1600, the differences in these values between original PRIM and our
methods are low. But it remains high for particularly complex models, which often require
much time per simulation run — see the last row of the Table, presenting the results for
20-dimensional “morris” function. For each function, we also recorded which methods
performed best and second best. The counts of these numbers are in rows “#1” and “#2” in
Table 4.4, respectively. These results show that in general, our method (“RF.1” and “RF.p”)
outperforms the existing ones in terms of AUpC.

The results for precision are presented in Figure 4.7 and Table 4.5. Again, our method
performs well in most cases. The minimal precision achieved by it is much higher than
that of competing methods.

Figure 4.8 and Table 4.6 feature results regarding the number of restricted dimensions.
Smaller numbers, standing for higher interpretability, are better. The values for “B” are
slightly lower. However, the comparison with “B” is unfair, since the number of attributes
used in the box definition under “B” is “manually” restricted (t = [VD]) and usually does
not fall together with the number of inputs actually influencing the simulation result.
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Table 4.4: AUpC, all functions

N /B Ball|O Op |RFl RFp
avg | 42.8 424 | 413 412|487 491
400 #1 |1 0 0o 0 [8 24
#2 |0 1 0 0 |24 8
avg | 464 467 | 464 463[50 505
800 #1 |0 1 o o0 |5 27
#2 |4 0 0 0 |24 5
avg | 483 49.3 [ 491 49 |508 51.2
1600 #1 |0 1 o o0 |5 27
#2 |6 0 0o 0 |22 5

migeo avg | 21.8 209 |21 21 |287 285

75 |

50

AUpC

25
l 1
B B.all o) O.p RFI  RFp

Figure 4.6: AUpC, all functions, N = 400

Table 4.8: Number of irrelevant dimensions restricted
N |B Ball|O O.p |RFl RFp

400 | 038 278 | 278 2.78 | 0.1 0.37
800 | 0.29 267 | 235 236|012 0.49
1600 | 0.28 2.59 | 2.18 2.19 | 0.1 0.71

More detailed results are that our method, “RF.I”, often approximates the number of
inputs affecting the output better than any competitor. To see this, we first selected
19 functions, where the number of influencing inputs Infl, (i = {1,...,19}) is lower
than the total number of inputs M; (see Table 4.2). For each such function, we took the
difference between the number of dimensions restricted and Infl,. We then kept only
positive values — i.e., irrelevant dimensions are restricted — and averaged the results
across functions. See Table 4.8. Clearly, the “RF.]” variant is the leader, providing the
fewest irrelevant restrictions.

Finally, Figure 4.9 and Table 4.7 contain results regarding consistency. REDS again is
superior. The gap between it and competitors grows with the size of the dataset N.

On average, the levels of AUpC, precision and consistency achieved for N = 1600 with
conventional methods are comparable to those achieved with N = 400 with REDS. That is,
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Table 4.5: Precision, all functions

N /B Ball| O Op |RFl RFp
avg | 80.9 817 | 811 809|914 926
400 #1 |1 0 0o 0 |2 30
#2 |2 1 0 0 |28 2
avg | 863 87.1 |87 869|939 952
800 #1 |0 1 o 0 |1 31
#2 16 0 0 0 |26 1
avg | 89.8 91.2 | 911 90.9 [ 952 96.6
1600 #1 |0 1 o o |1 31
#2 /10 0 0 0 |22 1

migo avg | 703 67.9 | 693 69.2 | 87.5 924

100

! |
: =
80
70
60
50 [ ] [ ]
Oop RFI RFp

B B.all (@)

precision

Figure 4.7: Precision, all functions, N = 400

our approach can reduce the number of simulation runs by ~ 75%. The reduction is even
more prominent for complex models with many inputs.

4.6.2 Experiments with DSGC

The Variance of the Results and Peeling Trajectories. Figure 4.10 plots quality
metrics for DSGC with N = 400, obtained in 50 independent experiments with different
methods. One can see that REDS yields a significant improvement over the alternatives,
as measured with AUpC or precision. The method “B” restricts the smallest number of
dimensions, as this number is forced to be g = [\/M'l = 4. In the case of DSGC, this
restriction is too hard as more attributes do influence the simulation output. Le., the actual
benefit in interpretability with “B” is arguable, while the other quality measures suffer.

Figure 4.11 plots the peeling trajectories for DSGC with N = 400 for different methods
smoothed across 50 experiments. The curves produced with REDS dominate the ones
obtained with competitors — both precision and recall are higher.

Learning Curves. Figure 4.12 shows the learning curves (cf. Figure 4.1) for AUpC,
precision and consistency for DSGC. The horizontal axis is logarithmically scaled. AUpC
and precision values obtained using REDS are always greater than those of competing
methods. For small N = |D|, consistency of REDS is a bit lower than that of the original
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Table 4.6: Number of restricted dimensions

N /B Ball|O Op |RFl RFp
avg |33 772 | 771 771|363 424
400 #1 |15 0 o 0 |2 3
#2190 o 0 |13 7
avg | 325 7.72 | 736 737|387 467
800 #1 |15 0 o 0 |19 1
#2 |11 0 0 0 14 6
avg | 322 757 | 714 714|399 504
1600 #1 |17 0 o 0 |17 1
#2 |13 0 o o0 |15 3

migeo avg | 498 17.3 | 168 169 | 6.82 10.6

20

©

D 15

°

—

2 10 ° 8
(0]

—

* 5 n == ==

B B.all o) 0.p RF.I  RF.p

Figure 4.8: Number of restricted dimensions, all functions, N = 400

PRIM. This is because the boxes produced by REDS tend to be smaller, resulting in smaller
areas of overlap. Generating boxes of very different size is not fair when comparing
consistency of the algorithms. Indeed, the most consistent algorithm is one doing nothing
but returning the box containing all data. This algorithm is clearly useless. However, with
the growth in N, consistency of “RF.1” and “RF.p” grows, while consistency of the other
approaches does not for the dataset sizes we consider. For N > 800, our approach is better.

Different Values of K. For these experiments, we set N = 400 and experimented with
different values of the number of newly generated and labeled points L. Note that REDS
uses only L newly generated and labeled points, ignoring the initial data. Figure 4.13 graphs
the results averaged across 50 runs. For both AUpC and precision, “RF.p” (when random
forest outputs probabilities) is better than “RF.I” (when labels {0, 1} are predicted) and stops
improving at L ~ 1600. For “RE.1” the precision continues to improve even for L > 25000.
Observe that “RF.p” outperforms the other methods even when 200 = L < N = 400. That
is, 200 points labeled with probabilities learned with random forest let PRIM induce a
better scenario than 400 points labeled with {0, 1} with the original simulation model.
This result confirms our statistical analysis.

Different Noise Levels. Finally, we experiment with different levels of noise in the data.
We assume that the noise has the form of a random flip of the label value (0 — 1 or 1 — 0),
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Table 4.7: Consistency, all functions

N /B Ball| O Op |RFl RFp
avg | 423 415 | 426 433533 51
400 #1 |1 0 0o 2 |19 11
#2130 3 2 |10 15
avg | 42 441 [ 451 455556 525
300 #1 |0 1 0 1 19 12
#2 | 4 3 2 2 10 12
avg | 41.7 461 | 472 476|585 538
1600 #1 |1 2 0o 1 [19 10
#2 |5 4 2 0 |11 1

Mmoo avg | 9.9 111 | 149 151|405 286

~
[¢)]

a
o

consistency
N
(6)]

B B.all o) op RFI  RFp

Figure 4.9: Consistency, all functions, N = 400

i.e., is independent of the model inputs {a;, ..., ay} and the true label y. The noise level
then reflects the share of points chosen at random for which the label is changed. Noise
level 0.5 implies completely random data with Pr(y = 1) = Pr(y = 0) = 0.5. Figure 4.14
contains the results for N = 400 averaged across 50 runs. As expected, scenario quality
decreases with the level of noise. Our approach provides better results for any level we
experimented with, except for 0.5. For random data, when the noise level is 0.5, the AUpC
value is positive, and the precision (0.57-0.64) is greater than that on the entire test set
diest (0.54). This is due to the best scenario being “inside” the initial box and thus even
cutting off any dimension at random results in the increased precision at first.

4.7 Conclusions

Simulations allow studying the behavior of complex systems. Scenario discovery is the
process of using simulations to gain interpretable insights regarding this behavior. PRIM is
a state-of-the-art method for scenario discovery. It isolates conditions for system behavior
of interest (e.g., system instability), in the form of a hyperbox, referred to as a scenario.
The disadvantage of this method, as we have shown, is that it requires relatively many
simulation runs, particularly in high dimensions, i.e., for systems with many input variables.
Since simulations are often computationally hard, this is prohibitive in many cases.
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Figure 4.10: Quality metrics for DSGC for N = 400
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Figure 4.11: Peeling trajectories for DSGC for N = 400

We have studied reducing the number of simulations needed to discover good scenarios.
Based on data produced with simulations, our method, REDS, first trains a powerful,
but a complex statistical model. This model then replaces the simulation model, to label
much more data for PRIM. We have justified the plausibility of our approach from a
statistical point of view as well as with exhaustive experiments. Experiments show that
our method is much better than existing ones. Specifically, it requires 75% fewer points
than a conventional one on average to produce scenarios of comparable quality.

Finally, we explained that, in contrast to PRIM, REDS is compatible with active learning,
which could further reduce the number of simulations.

52



4.7 Conclusions

200 400 800 1200 2000
S 0.9
7]
§ 0.8
o
0.7
200 400 800 1200 2000
o4l T e
e e
803 et -
17 el el el - -
‘» 0.2
&
g 0.1
200 400 800 1200 2000

N (number of points in D)

Figure 4.12: Learning curves on DSGC data
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Figure 4.13: DSGC: quality metrics in dependence on K
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Figure 4.14: Quality metrics for DSGC in dependence on noise level for N = 400
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5 Improving Subgroup Discovery

In the previous chapter, we proposed an approach, REDS (Rule Extraction for Discovering
Scenarios) [AB21], to discover better subgroups (scenarios) from a limited amount of
simulated data, when a simulation process is computationally expensive. With measured
data, large labeled datasets are also often not available. Labeling additional data is either
impossible or associated with high costs, or requires considerable time which cannot be
reduced. Naturally, one wants to be able to find high-quality subgroups from small amounts
of measured data. As we will show, REDS often fails to solve this task. In this Chapter, we
propose REDS+, a method extending REDS methodology to work with measured data. We
evaluate REDS+ experimentally with two algorithms for subgroup discovery (SD) from
datasets with continuous attributes, PRIM and BESTINTERVAL; we found that REDS+ often
improves the quality of their results.

Chapter Outline. Section 5.1 explains why REDS is not directly applicable to measured
data. Section 5.2 introduces our approach, REDS+. Section 5.3 describes the experimental
setup. Section 5.4 features the results. Section 5.4 concludes.

5.1 REDS on Measured Data

In this section, we explain why REDS may perform poorly on measured data. We conduct
a small experiment to support our claim.

5.1.1 When REDS Does and Does Not Work

In our analysis in Section 4.2.1, 1" (4.5) approximates p (4.1). Let us define by p9(x) the
probability distribution of points used to estimate ji%"; we can write

I am dx
! Z e f 0P () -

/b p9(x)dx

With REDS, we know the true distribution p(x) = const and use p?(x) = p(x); the only
source of bias in the estimate of y is an imperfect approximation of f(x) by f*". With
measured data, setting p9(x) = const may lead to an arbitrary high bias even if f(x) = f*"

/f(x)p(x)dx
am _amy2 _ | Jb am
[Bias(2*™)1* = (u — p*™) ( [ p(x)dx /f (X)dx :

Consequently, the quality of subgroups discovered with REDS can be low.
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Figure 5.1: DSGC: quality metrics in dependence on K

In one specific case, semi-supervised setting, we can assume that unlabeled points
form a representative sample from p(x), and REDS will improve the quality of discovered
subgroups. Specifically, we can label these points with f*", add to the labeled data, and
use the resulting dataset as an input for a subgroup discovery method. We now provide
an example supporting the above considerations.

5.1.2 Small Experiment

We take the dataset “higgs” (see Table 5.1), name it D" set N = 400, L = 2500, and proceed
as follows.

1. create a dataset D' by selecting N' examples from D";

2. create a dataset D! by selecting L points from D", which are not in D'. D' represents
the unlabeled pool in a semi-supervised setting;

3. create a dataset D? by selecting L points i.i.d. from the multidimensional uniform
distribution with the support defined by the ranges of attributes’ values in D', as
REDS does;

4. train random forest classifier f*™ on Dk

5. create datasets D? = D', D = D' U D' and D* = D' U D? replacing target variable’s
values with the probabilities predicted by f*™;

6. apply PRIM to D', D4, D, D* and call the outputs “O”, “RF.d”, “RF.ss” and “RF.u”
respectively;

7. calculate AUpC (see Section 4.4.1) of each output on DM D; for “O”, “RE.d”RF.u”,
and on Dh\Dss for “RF.ss”;

8. repeat the above steps 30 times on different samples D’, i = 1,...,30, so that
DiNDI=0,i# ]

Figure 5.1 presents the results. One can see that the box for “RF.d” lies higher than the
one for “O”. Le., relabeling points in D' with probabilities predicted by random forest has
improved the quality of PRIM output. This result improves further in a semi-supervised
setting (“RF.ss”). However, when the new points are sampled from a uniform distribu-
tion (“RF.u”), AUpC is significantly lower than for PRIM on original data D' (“O”). This
experiment shows the importance of pJ(x) being a good approximation of p(x).
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5.2 Extending REDS

Algorithm 7: REDS+

Data: D, DV «, By, minpts, L, AM, SM, G, SD — described in the text
Result: Output of the algorithm SD

1 D* = scale(D, SM);

2 f9" = train(AM, D);

pY = train(G, D);

4+ D% = new.points(L, p9) + zeros(L);

5 D' = D° U D4,

6 forl1<i< (L+N)do

7 L yfdd = predict(xl“dd, fm;

s D" = scale.back(D’, SM);
o res=SD(D =D",...);
10 return res

w

5.2 Extending REDS

Algorithm 7 describes our proposed method, REDS+, to discover better subgroups from
measured data. In contrast to REDS, it uses a method G (we call it data generator) to
approximate with p?(x) the true multidimensional distribution p(x) of points in D, and
then samples from p9(x). We now describe the details.

First, REDS+ scales the attributes in D with a scaling method SM to obtain D® (Line 1).
This is done since some metamodels AM data generators G work better with scaled data.
It then fits a metamodel f*" and a data generator p? to data D* (Lines 2-3). Next, the
algorithm generates L additional points using p9, adds the target vector consisting of zeros
to them, and adds the resulting points to D* (Lines 4-5) to form D’. After this, REDS+
replaces the values of the target variable in D’ with predictions of f*™ and scales the
data back to obtain D" (Lines 6-8). Finally, our method applies a subgroup discovery
algorithm SD to D™ and returns its output (Lines 9-10).

The scaling method used in Line 1 could be, e.g., z-score scaling or scaling to a given

range. For instance, if we define aj'.””x = max; (x;;), a;’”” = min; (x;;), scaling to the range
[0,1] is
min
X,‘j — a].
=7
1j aqmax _ amin’
j j

and respective formula for scaling back is

new _ _S max _ min min
xij —xij(aj aJ )+a .

When there exists a pool of unlabeled data, the quality of intermediate metamodel f*™
might be further improved by using existing semi-supervised methods (see Section 2.4.3)
in the training procedure (Line 2). We now present the intuition behind REDS+.
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5.2.1 Intuition Behind REDS+

Our analysis in Chapter 4 suggests that REDS works if the reduction in the variance of PRIM
due to a larger training set exceeds the bias of a metamodel AM. As we explained above, it is
essential that the original and additionally generated points come from similar distributions.
The detailed analysis depends on a specific subgroup discovery method chosen for REDS+
and may not provide insights going beyond these qualitative considerations.

In other words, our key assumption is that the quality of the output of an SD algorithm
increases with the number of examples N in the dataset and approaches some saturation
level. In our case, this level cannot be above one, since it is the maximal value of any
quality measure we use. We aim at making the learning curve (see Figure 4.1) steeper at the
beginning, by generating additional examples. If these examples are as good as the original
ones, that is, come from the same distribution, our goal is achieved naturally. REDS+ uses
a data generator G to approximate p(x) with pY; and a metamodel AM to approximate
p(y = 1|x) = f(x) with f*". If both pJ and f*™ are accurate, REDS+ will improve the
quality of subgroups found from small datasets. We will check this experimentally.

5.3 Experimental Setting

In this section, we describe our experimental setting. First, we introduce the key compo-
nents REDS+: data generators G, metamodels AM, and subgroup discovery algorithms
SD, which we will use in the experiments. We discuss how we chose the hyperparameter
values of these components and give a short name to each combination of a component
and its hyperparameter value(s), which we will use further on the plots. Then we list
the datasets and their sources and describe the configuration of experiments and quality
metrics.

5.3.1 Data Generators

Dummy. This generator does not generate additional points. Dummy generator com-
bined with a metamodel AM in REDS+ means that the points in D are re-labeled with
f", as is the case with “RF.d” in our experiment above. This generator does not have any
hyperparameters; we use a short name “d” to refer to it.

Uniform. This is our baseline generator. As in REDS, it samples points from a multivari-
ate uniform distribution with the support ]—[?il [min; (x;;), max;(x;;)]. As we have demon-
strated above, augmenting the dataset with uniformly generated points may decrease the
quality of discovered subgroups. This generator does not have any hyperparameters; we
use a short name “unif” to refer to it.

Normal. This generator samples new points from a multivariate normal distribution

with the mean vector {fi, ..., iy} and covariance matrix diag(é‘f, e 6']%4). Where
L& ;X
P ~2 2
Fi=x E Xijs i = N1 E (xij = 1) (5.2)
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Algorithm 8: MUNGE

Data: D, L, pr, lv — as described in the text
Result: a dataset D% of the size L X M, without target variable

1 Dadd =0:

2 while |D%| < L do

3 D’ =D;

4 foreach x/ € D’ do

5 X € D = nearest neghbor (but not the same point) of x;;
6 foreach j € {1,...,M} do

7 L with probability pr : xlfj = norm(xy;, |xlfj - xijl/1v);
3 Dadd — Dadd upD

° | D% = clean(D*?, D);

10 D% = sample.rows(D L);

11 return D%

This generator does not have any hyperparameters, and we use a short name “norm” to
refer to it.

Gaussian Mixtures. A more flexible generation, which includes the normal as a partic-
ular case, is to sample points from a mixture of H Gaussian distributions:

H H
X ~ hZ SN (i, 32), hZ =1
=1 =1

The number of components H, mean vector p, and covariance matrix th for each com-
ponent are estimated from data. To prevent overfitting, one can decrease the number of
degrees of freedom by constraining covariance matrices to be all diagonal, shared between
components or scalar: X7 = o71, where I is the identity matrix and o}, € R.

The Gaussian mixtures (“gm”) model is estimated with the expectation-maximization
algorithm [DLR77]. We consider all available covariance types and numbers of components
from the set {1,...,30}; we choose the optimal values via 5-fold cross-validation!

Kernel Density Estimate. Another possibility to generate points is to sample them
from a multivariate probability density estimated from data with a Gaussian kernel as

N o\ 2
1 _lyM (Xij7X
p(x) = M § e 22]21( Aj ) .
NAy - Ay (2m) 2 3

A smoothing parameter A;, j = 1,..., M is called bandwidth.

!McLachlan and Rathnayake [MR14] present other possibilities to optimize hyperparameters including,
widely used Bayesian information criterion [S*78]. We use cross-validation for consistency.
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normal

donut

true distribution local var=5 local var =0.2

Figure 5.2: Influence of local variance on MUNGE output.

In our experiments, we use the Gaussian kernel. We use 5-fold cross-validation to chose
the value of bandwidth from the set of 50 equidistant values {0.01,...,0.5} (*kde.g”); we
also try Silverman’s [Sil86] rule of thumb (“kde.s”):

4

4= | N

¥
|7 mm

where the attributes’ standard deviations 6; are estimated as in (5.2).
We use the kernel density estimation and Gaussian mixtures model implementations
from scikit-learn [PVG*11] (version 0.22.2) python? module.

MUNGE. This data generation technique is from [BCNO06]. Its original description
suggests L operations of nearest neighbor search at minimum; each search is in N points
from M-dimensional space. The authors do not propose an efficient way of doing this
search; neither they provide the reason behind. Their description of MUNGE also does
not assume removing duplicated points from the generated data. Thus we present our
interpretation of the MUNGE (Algorithm 8); it searches nearest neighbors less frequently
than the original description suggests and generates only distinct points.

We have implemented the MUNGE generator ourselves. The original paper [BCNO06]
does not provide a recommendation regarding the values of its hyperparameters, pr, and
lv. In the algorithm implementation which we have found?, their default values are 0.5

thtps ://www.python.org/
3https: //github.com/Prometheus77/munge/blob/master/R/munge.R
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5.3 Experimental Setting

and 5, respectively. However, we have experimentally found that the result with lv = 0.2
and pr = 0.5 looks more reasonable. In Figure 5.2, all plots contain 2000 points. MUNGE
was applied to a sample of 200 points from the distributions shown on the leftmost plots.
With lv = 5 (middle plots), the generated points tend to form too dense clusters.

So we use p = 0.5 and lv = 0.2 (Figure 5.2, right plots; we call this generator “m0.2”) in
further experiments and also try [v = 1 (we use “m1” to refer to this instantiation). Still,
the optimal hyperparameter values might depend on the dataset size N and the number
of attributes M. But since this method is nonparametric, hyperparameter optimization
through, e.g., cross-validation, is not straightforwardly applicable.

5.3.2 Metamodels

Subgroup discovery algorithms scale super-linearly with an increase in the number of
examples as they require sorting the data, which is in O(N log(N)) [CLRS01]. In Chap-
ter 4, we have obtained that labeling with probabilities leads to a more rapid quality
improvement of discovered subgroups. Hence, in this chapter, we consider metamodels
that output probability estimates. In particular, we will experiment with random for-
est [Bre01], Gaussian processes classification [RW06], naive Bayes [HTF09] and support
vector machines [Bur98].

One needs to calibrate the output of SVM to obtain probabilities [P*99]. Next, while
naive Bayes predicts probabilities, this model is usually too confident in its predictions
(close to 0 or 1) due to the “naive” assumption on attributes’ mutual independence, given
the class variable [NC05]. Thus, we calibrate the output of both SVM and naive Bayes
with Platt Scaling [P*99] — a recommended technique for small sample sizes [NCO05].

All metamodels are implemented in the scikit-learn python module. For Naive Bayes
(NB) and Gaussian process (GP) classifiers, we do not alter the hyperparameter values
suggested by their default implementation. According to scikit-learn documentation®,
a random forest (RF) classifier is most sensitive to two hyperparameters — the number
of trees and the number of randomly selected attributes to consider at each split. More
trees usually result in better quality, so we keep default value 100 for this hyperparameter.
We choose the optimal value of the number of randomly selected attributes from the set
{2, VM, M} via cross-validation. For support vector machines (SVM), we choose the optimal
values of cost hyperparameter from the set {0.1,1, 10,100} and kernel hyperparameter
from the set {0.001,0.01, 0.1, 1} using cross-validation. The exponentially growing value of
the increment in both sequences is in line with the existing recommendations [HCL*03].

5.3.3 Subgroup Discovery Algorithms

Many subgroup discovery (SD) algorithms were developed over the past decades. A
significant share of them performs an exhaustive search (see Section 2.3). However, such
methods can only cope with small datasets with a low number of continuous attributes,
despite using ingenious pruning strategies, see, e.g., [GR09]. Hence, we focus on the
methods exploiting heuristic search.

“https://scikit-learn. org/stable/modules/ensemble.html#forest
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To this end, we select PRIM [FF99] and BESTINTERVALBS [MNFK12] algorithms, de-
scribed in Section 2.3. Their search heuristics are, in a certain sense, complementary —
“patient” in PRIM and “greedy” in BESTINTERVAL. Thus, it is interesting whether both can
benefit from the proposed methodology.

We use metamodels that label data with probabilities, whereas BESTINTERVAL algorithm
was proposed to optimize WRAcc measure, i.e., assumes a binary input. We now show
that it also optimizes NWRacc.

Proposition 5.3.1 The BESTINTERVAL algorithm [MNFK12] originally developed for WRAcc
quality measure can be used for NWRAcc measure without modification.

Proof: The BESTINTERVAL algorithm is based on the additive property of WRAcc (Prop-
erty 2.3.1). To show that it holds for NWRAcc, we simply repeat the derivation from
[MNFK12] using our more general notations. Specifically, we show that for any two hyper-
boxes B; and B; with Sg, NS, = 0, it holds that NWRAcc(D, Sg, USg,) = NWRAcc(D, Sg,)+
NWRAcc(D, Sp,). Referring to the quantities associated with B; and B, using respective
subscripts (1 and 2), we obtain

ni+n, (ny+n; N*\ nj+n; N+
NWRAce(D, Sg, U Sp,) = -—= —(n+n) —
ce(D, S, B,) N (m +n, N N (n1 +n2) NZ

m nj Nt L ny Nt

“"N\my NJ] N\m N

= NWRAcc(D, Sg,) + NWRAcc(D, Sg,)

O

Since the results from Chapter 4 indicate a low influence of the pasting step of PRIM,
we use only the peeling step in the following experiments. We set PRIM hyperparameters
to the same values as before, i.e., @ = 0.5 and minpts = 20; we also assume D = DV,
For BESTINTERVALBS (“BI”), we set the beam size to bs = 1 and the maximal number of
attributes defining a subgroup to m = 20, since we do not experiment with datasets with
M > 20 due to relatively high time complexity of the algorithm. We will additionally try
different values of bs in the particular experiment.

5.3.4 Datasets

We use 18 datasets to test our approach. We have selected sufficiently large ones to split
each into many non-overlapping small datasets in order to reduce random effects in or
experiments. Since many of the generators assume continuous attributes, we remove the
attributes having few (Z < 20) unique values; we also remove irrelevant attributes, e.g.,
“ID”. From the resulting datasets, we remove rows with missing values. Table 5.1 lists the
datasets together with their characteristics and corresponding references. Here N* — the
number of examples after removing incomplete ones (i.e., with missing attributes’ values);
M* — the number of attributes; M — the final number of attributes (after removing “discrete”

«©

and irrelevant); “+” — the positive class; N**/N* — the share of positive examples.
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Name’ N* M M+ N**/N* Reference
occupancy 20560 6 6 1 0.231 [DG17, CF16]
higgs 98050 28 7 1 0.529 [VWRBT13, BSW14]
htru 17898 8 8 1  0.092  [DG17,LSC*16]
shuttle 58000 9 9 1 0.786 [DG17]

avila 20867 10 10 A 0.411 [DG17, SMFdF138]
gamma-telescope 19020 10 10 g 0.648 [DG17]
eeg-eye-state 14980 14 14 1 0.551 [DG17]

credit cards 30000 24 14 1 0.221 [DG17, YL09]
higgs o 98050 28 17 1 0.529 [VWRBT13, BSW14]
ring 7400 20 20 1 0505  [OCO*17]

sylva 14395 108 20 1 0.062 [VWRBT13]

jm1 10880 21 21  true 0.193 [VWVRBT13, SSMO05]
stocks 96320 21 21 1 0.505 [VWRBT13]
sensorless 58509 48 48 1 0.091 [DG17]
bankruptcy 4885 64 64 1 0.022 [DG17, ZTT16]

gas 10310 128 128 1 0.191 [DG17, VVA*12]
clean2 6598 168 168 1 0.154 [OCO*17]

seizure 11500 178 178 1 0.2 [DG17, ALM*01]

Table 5.1: Datasets used for evaluation.

To make REDS+ applicable to datasets with mixed attribute types, one could use suitable
data generators. For instance, MUNGE can be extended to mixed attributes as in [BCNO06].
Alternatively, one could only use the artificially enlarged dataset when considering con-
tinuous attributes and use the original small dataset for discrete ones. This approach is
similar to the one proposed in [GR09]. However, respective experiments are beyond the
scope of this work.

Soccupancy — “Occupancy Detection”. We keep only time in the first attribute, “date” http://archive.

ics.uci.edu/ml/datasets/Occupancy+Detection+; higgs — “HIGGS”, only “high-level” features https:
//www.openml.org/d/4532; htru — “HTRU2” https://archive.ics.uci.edu/ml/datasets/HTRU2; shut-
tle — “Statlog (Shuttle)” http://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle); avila — https:
//archive.ics.uci.edu/ml/datasets/Avila; gamma-telescope — “MAGIC Gamma Telescope” https:
//archive.ics.uci.edu/ml/datasets/magic+gamma+telescope; eeg-eye-state — “EEG Eye State” http:
//archive.ics.uci.edu/ml/datasets/EEG+Eye+State; credit cards — “Default of credit card clients” https:
//archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients; higgs_o — only relevant “low-
level” features from “HIGGS”; sylva — “SYLVA” https://www.openml.org/d/1040; jm1 — “JM1/Software
defect prediction” https://www.openml.org/d/1053; stocks — “Encrypted Stock Market Data from Nu-
merai” https://www.openml.org/d/23517; sensorless — “Dataset for Sensorless Drive Diagnosis” http:
//archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis; bankruptcy — “Polish
companies bankruptcy data” (3-rd file) https://archive.ics.uci.edu/ml/datasets/Polish+companies+
bankruptcy+data; gas — “Gas Sensor Array Drift Dataset” https://archive.ics.uci.edu/ml/datasets/
Gas+Sensor+Array+Drift+Dataset; seizure — “Epileptic Seizure Recognition” https://archive.ics.uci.
edu/ml/datasets/Epileptic+Seizure+Recognition
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5.3.5 Quality Metrics

As in Chapter 4, we use AUpC and precision to measure the quality of subgroups produced
with PRIM. Since BESTINTERVAL is designed to optimize WRAcc, we take this measure to
evaluate the algorithm’s output. We also compare PRIM and BESTINTERVAL, which was
not done before to our knowledge. To this end, we compute WRAcc for the box By in
PRIM output which has maximal NWRAcc on the dataset D, see Algorithm 1. We do so
since one can show that PRIM maximizes NWRAcc up to a certain iteration. Specifically,
the following holds.

Proposition 5.3.2 Let B,,, w = 0,..., W be the sequence of boxes produced by PRIM when
it is used with its default target function — mean value of points inside the box. Changing this
function to WRAcc (NWRacc) would result in the sequence of boxes B,,r =0,...,R, R< W
with (B,, = B,|w =r).

Proof: Repeating the reasoning from Section 4.2.1, on the w-th iteration, PRIM selects
the next box B,,;; with a maximal value of n* = n; 41 for points inside it, from a set of
possible boxes Bj,,, all defining subgroups with the same number of points n. Assume, that

changing the target function to WRAcc (NWRAcc), would have resulted in the selection of

another box Br41 # By41, with n™ = n', | < n! . But this would mean that
+ + + +
ni(n N ni(n N
WRAce(D, Sg,,,) = — |2 - —| < — [ — — | = WRAce(D, Sp,,,,)
N N N n N
which contradicts the selection criterion. mi

5.3.6 Design of Experiments
Every single experiment in our evaluation consists of the following steps.

1. Split a dataset DS/ into two parts D; : |[D;| = N and D" = DS/\D;;
2. apply REDS+ to D;;
3. evaluate quality on D¢,

We repeat the above experiment for PRIM, all datasets DS (j = {1,..., 18}) from Table 5.1,
all data generators, and metamodels listed above. For each dataset, we experiment with
different sizes of D': N = {200, 400, 800, 1600}. To reduce the influence of random effects,
for each N value, we do min{30, | |DS’|/N]} splits into D' and D!, so that sets D’ from
different splits do not overlap: D' N D’/ = 0, i # j. We experiment with BESTINTERVALBS
(BI) algorithm in the same way, but with a smaller variety of datasets, data generators, and
metamodels since the experiments take longer. To emulate a semi-supervised setting, we
remove random 2500 points from D'**** and use them as unlabeled data. For convenience,
we treat this data as produced by a data generator which we call “ss”.

For all generators, we set the number of newly generated points L = 2500. We chose
this value since it is at least as large as N but small enough for BESTINTERVALBS algorithm
so that the experiments take a reasonable time.
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We configure both scenario discovery algorithms to output a single subgroup description.
It allows us to apply the quality metrics straightforwardly without developing a methodol-
ogy to evaluate the quality of multiple subgroups. This configuration does not affect the
generality of our conclusions since both (and many other) subgroup discovery algorithms
follow covering procedure when searching multiple subgroups (see Section 2.3). That is,
they find subgroup descriptions one after another, removing corresponding examples from
train data.

5.4 Results

In this section, we resent the results from experiments with PRIM, followed by the ones
from experiments with BESTINTERVALBS. In the end, we compare these two scenario
discovery algorithms.

5.4.1 Experiments with PRIM

Figure 5.3 summarizes the outcome of experiments with PRIM for different sizes N of D'
and different quality metrics. Each cell in this heatmap plot corresponds to a combination
of a metamodel and a data generator. Its color reflects the improvement in percent in
median (taken over min{30, | [DS/|/N|} experiments averaged over datasets DS’ from
Table 5.1). Blue shadows stand for quality improvement, red — for the decrease. The results
are consistent across dataset sizes N and quality measures. The best performing metamodel
is random forest, the worst one is naive Bayes. REDS+ with uniform data generation is
worse than just applying PRIM to D, whereas REDS+ with generating from kernel density
estimates or Gaussian mixtures improves the quality of subgroups discovered by PRIM.
For more detailed insights, we visualize the results separately for each dataset.

Figures 5.4-5.5 provide such visualization for N = 400 and N = 1600, respectively, and
for AUpC quality measure. Each plot stands for a single dataset DS’; we have shortened
some names but retained the datasets order the same as in Table 5.1. Each box is based on
min{30, | |[DS/|/N|} experiments; their number is given in brackets in the plot title. Box
color corresponds to the algorithm used. “O” means original algorithm (here, PRIM); differ-
ent REDS+ instantiations we abbreviate as “<metamodel>.<generator>" — e.g., “RF.kde.s”
stands for random forest metamodel used together with generation from kernel density
estimate with bandwidth chosen according to Silverman’s rule.

One can see that RF.kde.s (green boxes) often leads to a noticeable improvement in
AUpC compared to just PRIM (red boxes). REDS+ in semi-supervised setting — RF.ss
(purple boxes) — is usually as good or even better than RF.kde.s. For some datasets (shuttle,
avila, sylva clean2) RF.ss performs significantly worse than RF.kde.s. That is, generating
points from approximated distribution for these datasets turned out to be better than from
the true one. Relabeling existing points with estimated probabilities (RF.d, blue boxes) does
not result in consistent improvement of the PRIM output. All this confirms that generating
points from the distribution reflecting the true one well is an essential feature of REDS+.

In Figure 5.6, we present learning curves for PRIM and “RF.kde.s”. Horizontal axes are
logarithmically scaled. The lines are median values from min{30, | [DS/|/N |} experiments;
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the area between 25-th and 75-th percentiles is shaded. Only in six (out of 18 - 4 = 72)
cases, the median AUpC obtained with REDS+ is lower than that resulting from PRIM. For
instance, for bankruptcy dataset at N = 1600. Observe, that PRIM’s AUpC at N = 1600
is achieved with REDS+ at N ~ 200 for gamma-telescope and ring, at N = 400 for sylva,
sensorless, credit cards, i.e., for 4-8 times smaller number of points. Even better results
are for jm1, clean2, shuttle, and avila datasets.

5.4.2 Experiments with BESTINTERVALBS

The conclusions similar to PRIM and AUpC also apply to BESTINTERVALBS and WRAcc.
Figures 5.7-5.8 are analogous to Figures 5.4-5.5; Figure 5.10 presents the learning curves.
REDS+ with random forest in a semi-supervised setting (“RF.ss”) and with generating from
kernel density estimate (“RF.kde.s”) improves the result of BESTINTERVALBS. For avila and
credit cards datasets, “RF.kde.s” even beats “RF.ss”, i.e., it is better to generate artificial
points than to use existing unlabeled ones.

By adding points to D, REDS+ increases the search space for BESTINTERVALBS. This
results in the longer time needed to discover subgroups, which rises with the growth of the
number of added points L. Since BESTINTERVALBS is heuristic, the part of space it searches
(consequently, the search time) can be controlled by the beam size hyperparameter bs.
Naturally, one may wonder if increasing bs is a viable alternative to REDS+ since both
come at the cost of additional computation complexity. To check this, we experiment
with “RF.kde.s” and BESTINTERVALBS with bs = 1 and different values of L from one side,
and BESTINTERVALBS with different numbers of bs from another side. We do so with
the gamma-telescope dataset. Figure 5.9 presents the results. Each point is the median
value over 30 experiments on non-overlapping D’ (see Section 5.3.6), error bars cover the
area between 25-th and 75-th percentiles. Changing bs did not allow BESTINTERVALBS to
achieve the performance of REDS+.

5.4.3 Comparing PRIM and BESTINTERVALBS

To compare PRIM with BESTINTERVALBS, we plot corresponding learning curves. PRIM
produces better subgroups than BESTINTERVALBS on shuttle and credit cards datasets; it is
worse than BESTINTERVALBS on avila and ring datasets. For the other datasets, the results
of these algorithms are comparable Figure 5.11. REDS+ with PRIM is superior to REDS+
with BESTINTERVALBS in the majority of cases, see Figure 5.12.

These results should be interpreted with care. In the proof of Proposition 5.3.2, we used
the assumption of equal sizes of candidate subgroups. However, for PRIM (Algorithm 1),
this might not be true if there are attributes with a specific value overrepresented (Ju €
R :|{a =u}|/N > 1/N), which is the case for many datasets we use. Changing the target
function of PRIM from mean to WRAcc should result in a more fair comparison, but this
is beyond the scope of this work.
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5.5 Conclusions

Subgroup discovery methods discover knowledge in a comprehensible form of hyperboxes.
However, they require many examples to produce a reliable output. With measured data,
large datasets are not often available due to considerable costs of the data collection
process. Two cases are possible. In a semi-supervised case, many unlabeled examples
(points) are available, and one can label them with a powerful ML model to artificially
increase the dataset size. This procedure is almost the same as the one implemented by
REDS in Chapter 4. In the second case, when no pool of unlabeled data exists, REDS can fail
to produce good results. This is because it generates new points from a multidimensional
uniform distribution, which can be a bad approximation of the one data comes from.

In this chapter, we have proposed REDS+, a generalization of REDS, for finding better
subgroups from small datasets. Instead of generating new points uniformly at random,
it generates unlabeled examples trying to resemble a distribution of points in the data.
REDS+ then joins these points with the genuine ones, labels them using an ML model
fitted to original data, and applies scenario discovery algorithm to the resulting dataset.

We have experimented with different approaches to generate new points, different
ML models, and two subgroup discovery algorithms. We have found that using REDS+
with random forest leads to better results than directly applying a scenario discovery
algorithm to labeled data both in the semi-supervised case and when no unlabeled data
available. In the latter case, REDS+ exhibits the best performance when new points are
generated from a kernel density estimate. For some datasets, our approach requires 4-8
times fewer examples than conventional scenario discovery process to find subgroups of
similar quality.
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Figure 5.3: Average (over datasets) improvement in median (taken over data splits) quality
of subgroups found by REDS+ with PRIM compared to just PRIM in percent.
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6 Future Research Directions

6.1 Scenario Discovery and Subgroup Discovery

Scenario Discovery. PRIM is a notable representative of rule learning [FGL12] or,
more precisely, of supervised descriptive rule discovery, also known as subgroup discov-
ery [Atz15], contrast set mining, emerging pattern mining [NLW09] or informative data
summarization [VGBS19]. PRIM is a popular method for scenario discovery “because it
is highly interactive, presents multiple options for the choice of scenarios, and provides
visualizations that help users balance among the three measures of scenario quality: cov-
erage, density, and interpretability” [BL10]. However, to the best our knowledge, there
exists only a little research justifying the superiority of PRIM experimentally — Lempert
et al. [LBB08] compare CART and PRIM and conclude that the latter is more interactive
and requires less post-processing effort. An experimental comparison of the existing
supervised descriptive rule discovery algorithms to assess their suitability for scenario
discovery is an interesting research question. However, such a comparative study would
require much expert knowledge, in particular, to evaluate the usefulness of discovered
scenario. Additionally, this work first requires a comprehensive comparison study of
subgroup discovery methods.

Subgroup Discovery. At a high level, the taxonomy of subgroup discovery meth-
ods includes specifying search space, quality function(s), and search strategy. Existing
surveys [HCGdJ11, CGdJH14, Atz15] make use of these dimensions when put different
subgroup discovery methods together. To our knowledge, the latest and most exhaus-
tive study comparing SD techniques is [Hel16]. Still, it covers only six methods in the
experimental part, and many questions remain open.

First, Helal [Hel16] does not describe the experimental setting with enough details.
For instance, the exact procedure to discretize continuous attributes is not evident. From
what we can see, the author did not separate train and test data and did not use cross-
validation. That is, the conclusions were likely drawn from the same data which was used
to discover subgroups. Thus, there is no guarantee that the results will hold if one uses
the out-of-sample validation procedure.

Next, Helal [Hel16] does discretize numeric attributes. They also do fix the hyper-
parameters of different algorithms in experiments. As Herrera et al. [HCGdJ11] write
“...the discretization of the continuous variables and its influence in the results of the
subgroup discovery task is another open topic. It is unclear how the previous discretization
of continuous variables may affect the results of the subgroup discovery process or the
advantages of the subgroup discovery algorithms that use continuous variables without
any prior discretization”. We now take this concern one step further. As we explained in
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Figure 6.1: Performance of BESTINTERVALBS using original or handcrafted features.

Section 2.3, one can usually make the search space identical via binarization procedure and
that even continuous attributes are essentially always discretized — we call this exhaustive
discretization. Thus, the main distinction between different methods is whether they
perform exhaustive or heuristic search. The former requires considerable time but finds
the global optimum; the latter is faster but converge to local optimum. With more time, the
solution of heuristic-based methods can be improved via increasing the share of the search
space examined. This happens naturally with SD methods using evolutionary optimization
as a search strategy. Alternatively, one can increase this share, by using the beam-search
strategy (see Section 2.3) and controlling the beam size bs, like with BESTINTERVALBS.
Conversely, one can speed up the methods performing an exhaustive search by limiting
the search space. Typically, one can either limit the search depth, i.e., the maximal number
of restricted dimensions, or switch to more coarse-grained discretization.

All this implies that experimenting with fixed discretization and hyperparameters like
beam size or search depth is not very insightful. For instance, which strategy is (likely) the
best given a time limitation remains unknown. Thus, the questions raised in [HCGdJ11]
can be specified as follows. Given a time restriction, what is the best choice of discretization
granularity, beam size (if applicable), search depth, and other parameters (e.g., peeling
parameter o in PRIM)? To what extent does a discretization technique [GLS*13] influence
the quality of a discovered subgroup? Are heuristic methods generally better than the
ones based on exhaustive search? How do the answers depend on the time limitation and
the dataset size?

Finally, it would be interesting to evaluate how the methodology proposed in this
dissertation affects the results of such study.

6.2 Automatic Feature Construction

Motivation. From our findings as well as from earlier research, it is evident that par-
ticular kind of data preprocessing — feature construction, — can improve the results of
comprehensible models. For instance, Dalal et al. [DHL*13] used PRIM in rotated space
resulting from applying principal component analysis (PCA-PRIM) and found that “PCA-
PRIM produces improvements averaging 37 percent [...] over PRIM alone”. We now
present similar results from our experience.

Example 6.2.1 HIGGS dataset [VvRBT13, BSW14] comes with 21 original (raw) attributes
and seven handcrafted features, derived as functions of the attributes. We apply BESTINTER-
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6.2 Automatic Feature Construction

VALBS separately to the dataset part including attributes and to the part including features.
We experiment in the same way as described in Chapter 5. Figure 6.1 shows the learning
curves. As before, shaded are the areas between 25-th and 75-th percentiles in the set of
outcomes from 30 experiments. The subgroups found using the handcrafted features have
several times higher WRAcc than the subgroups discovered with the original attributes. The
median number of restricted features is five, much less than the number of restricted attributes,
13; Le., the subgroup descriptions are more comprehensible’.

Example 6.2.2 For one of the datasets used in Chapter 3° we trained the CART classifier
using (a) original attributes and (b) derived features as explained in that Chapter. The average
accuracies from 10-fold cross-validation are 0.799 + 0.009 and 0.823 + 0.01, and the number
of leaves in the resulting decision trees is 19 and 9, for (a) and (b) respectively.

We now briefly discuss the outcome of the latter example and formulate the research
question. CART is a decision tree algorithm. It can approximate the “true” (i.e., minimizing
given risk functional [Vap99]) decision boundary with arbitrary precision given enough
data. Consequently, with a large dataset, the accuracy of the decision tree fitted with
original attributes will be at least as good as that of the decision tree learned using the
features derived from those attributes. This is because features do not have any new
information which is not contained in the attributes. However, one hopes that in feature
space, the decision boundary is in some sense “simpler”, and a decision tree can adequately
capture it from a smaller number of examples and with a simples structure (i.e., fewer
leaves). This is the case in Example 6.2.2.

We have created the features using our knowledge of DSGC system symmetry. For an
electrical grid of arbitrary size and structure, feature construction is not straightforward.
This problem is not specific to our study. Hence, one wants to have an automatic feature
construction process that learns useful features from data. For instance, the description of
HIGGS dataset used in Example 6.2.1 states: “There is an interest in using deep learning
methods to obviate the need for physicists to develop such features manually”.

Definitions of Automatic Feature Construction. We briefly researched the literature
related to automatic feature generation and identified the following.

First, “feature construction” is a broad term. Often it refers to various transformations of
the space defined by attributes of data in a tabular form. Some feature construction methods
can also accept other forms of data representation like relational databases [CKG*11, KV 15,
LTS*17] or a set of sequences like speech, music or natural language [BCV13].

Second, feature construction can be a separate process like in Examples 6.2.1-6.2.2;
or it can be a part of an ML algorithm. For instance, kernel methods implicitly map
the space of original attributes into a feature space implied by corresponding kernel
function [DL18], artificial neural nets automatically discover multiple levels of representa-
tion [SRK15, ZWD16]. Even subgroup discovery or decision tree algorithms considered

! Adopting the convention that the number of restricted dimensions reflects comprehensibility. See
Section 2.1 for the overview of research related to comprehensibility.

2 Available from [DG17]: https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+
Simulated+Data+
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in this dissertation can be treated as automatically constructing binary features from the

attributes a; by finding inequalities aﬁ. < aj or a} > a; [GMP14, FGL12, MR02], or by

learning the conjunctions of these inequalities Hﬁ-‘il [ai., a;] [PH90, MRO2].

Finally, the notion “(automatic) feature construction” (used in e.g., [SB05, NZJ07, PS09,
Son09, FZP*10, NZA12, GMP14, TZX16]) has many synonyms: feature discovery [PH90,
DR12], (nonlinear) dimensionality reduction [RS00, BN03, NZJ07], feature generation
[MR02, CKG*11, KSS16, KMP17, DZOV18], data representation [BN03], attribute con-
struction [OSFNO03], feature learning [AEP08, CNL11, LMS*18], representation learn-
ing [BCV13]?, feature extraction [SRK15], feature synthesis [KV15], feature engineer-
ing [KNS*16, KTSP16, LTS*17, NSK*17, KST18], identifying best low-dimensional descrip-
tor [OCA™*18], manifold learning or distance metric learning [SRK15]. Related approaches
also include visualization of multidimensional data [TLZM16]. Moreover, various auto-
mated machine learning methods (e.g. [OM16, SL09]) include automatic feature construc-
tion component?.

Open Questions. It is interesting, which automatic feature construction methods can
be used to design better spaces for comprehensible ML models like decision trees and
subgroups. One expects that the model learned using the constructed features will have
higher quality (accuracy, WRAcc, etc.) but will remain comprehensible. Le., the discovered
features should be simple functions of original attributes. Thus, many deep-learning-based
feature construction algorithms might not be suitable.

So far, a little work has been done towards a comparison of different automatic feature
construction methods that are not based on artificial neural nets. To the best of our
knowledge, the most recent and the broadest comparison is made in [KMP17] and covers
only four methods. The study does not consider comprehensibility, and the code for the
experiments was not made available.

6.3 Mixed Attribute Types, Regression Setting

In the dissertation, we have focused on the classification setting, i.e., binary target variable.
We further assumed that all attributes are numeric. The method REDS, which we developed
for simulated data, (Chapter 4) does not algorithmically exploit these assumptions. That is,
it can accept mixed attributes and numeric target. REDS+ developed in Chapter 5 can also
work with a numeric target when it is used with a suitable subgroup discovery method. It
does not support mixed attribute types directly; still, the adaptation to work with such
data is possible, as we explained in Section 5.3.4. However, the question of how good the
proposed methods work in the other settings and if they could be further improved by
taking the specifics of each particular setting into account remains open.

3 According to [SRK15], “representation learning could refer to the entire literature of extracting features
from input data, however, in practice it is usually associated with extracting features via multi-layer neural
networks and is studied within neural network research community”

4This diversity of names often complicates the search of related work. For example, Katz et al. [KSS16]
have indicated only a single related research paper, which is arguable given the references to earlier literature
we just mentioned.
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7 Conclusions

Comprehensible statistical models constitute an essential part of knowledge discovery
from databases. Decision trees and subgroups, the main focus of this work, are often a
human-comprehensible form of knowledge representation.

To show the utility of metamodels, we studied the model of a novel system, DSGC,
realizing demand response in electrical grids. We run many simulations for random
combinations inputs’ values, constructed features from these inputs and trained a decision
tree on the resulting dataset. This allowed us to obtain new insights, not known from
conventional analysis of DSGC done before. For example, we discover that the system can
be stable even if some participants adapt their energy consumption with a high delay, or
that fast adaptation is preferable for system stability. Additionally, we have collected a
comprehensive list of current assumptions and open questions behind DSGC.

Decision trees partition the entire input space into regions. Sometimes one does not
aim to achieve such partitioning. Instead, one may want to find areas, as large as possible,
but likely to be responsible for a particular outcome. Subgroup discovery methods are
better suitable for this purpose, but they require large datasets to produce a high-quality
outcome. However, large datasets often come at high computational (for simulated data)
or financial (for measured data) cost. We developed two approaches, REDS and its gener-
alization REDS+, which can find better subgroups from small datasets of simulated and
measured data respectively. We provided a statistical intuition behind our approaches;
in the experiments, they outperformed existing subgroup discovery methods. For some
datasets, REDS and REDS+ were able to discover subgroups of certain quality from more
than four times fewer examples than conventional algorithms.

In contrast to existing subgroup discovery algorithms, REDS is applicable to a semi-
supervised setting and is compatible with the existing active learning techniques.
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