
Comprehensible and Robust

Knowledge Discovery from Small

Datasets

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Vadim Arzamasov

Tag der mündlichen Prüfung: 22 Juli 2020

Erster Gutachter: Prof. Dr.-Ing Klemens Böhm

Zweiter Gutachter: Prof. Dr. Oliver Grothe

Acknowledgements

I want to thank my supervisor, Professor Klemens Böhm, who gave me research freedom
and guidance. His continuous feedback on my research activities has helped to improve
significantly every piece of my work.
I want to thank my colleagues who had a lot of patience in talking about my research

problems, helping me overcome them. In particular, my thank goes to Georg Steinbuß,
Edouard Fouché, Yaroslav Akhremtsev, Michael Vollmer, Natalia Arzamasova, Adrian
Englhardt, Jens Willkomm, Holger Trittenbach, Pavel Obraztcov. I also want to thank
Patrick Jochem, who has put the first stone in the foundation of my research agenda.

I want to thank Bettina Wagner and Barbara Breitenstein for supporting me in dealing
with bureaucracy.

I want to thank my family and friends for their faith in me and support.

i

Abstract

Knowledge Discovery in Databases (KDD) targets extracting useful knowledge from data.
Data can represent a set of measurements from a real-world process or be a set of input-
output values of a simulation model. Two often conflicting requirements to the knowledge
acquired are: (1) summarize the data accurately and (2) be in a comprehensible form for a
human. Decision trees or subgroup discovery methods, the topic of this study, yield data
summaries in the form of hyper-rectangles, which are human-comprehensible.
To demonstrate the importance of comprehensible data models, we study Decentral

Smart Grid Control (DSGC) — a new system that implements demand response in electrical
grids without significant changes in the infrastructure. The conventional analysis of this
system performed so far was limited to considering identical participants and thus did not
reflect the reality sufficiently well. We run many simulations, with diverse input values,
apply decision trees to the resulting data, and provide new insights.
Decision trees allow describing the system behavior for all combinations of inputs.

Sometimes, one is interested not in partitioning the whole input space, but in isolating
large regions which lead to particular output — subgroups. The existing algorithms to
discover subgroups usually require big datasets to produce stable and accurate hyper-
rectangles. However, the data collection process is often costly. Our main contribution is
improving subgroup discovery from small datasets — with few observations.
Subgroup discovery in simulated data is called scenario discovery. A commonly used

algorithm for scenario discovery is PRIM (Patient Rule Induction Method). In this work,
we propose a new procedure, REDS (Rule Extraction for Discovering Scenarios). We train
an intermediate statistical model which generalizes fast and use it to create more data for
PRIM. We provide the statistical intuition behind this idea. Experiments show that this
method is much better than PRIM on its own. It reduces the number of simulation runs
necessary by 75% on average.

With simulated data, one has perfect knowledge on the input distribution — an assump-
tion of REDS. To make REDS applicable to measured data, we combined it with sampling
from an estimated joint probability distribution of attributes. We have evaluated the
resulting method in combination with various methods to generate data experimentally on
a broad range of datasets. We did so for PRIM and BestInterval — another representative
subgroup discovery method. In the majority of cases, our methodology enhanced the
quality of discovered subgroups.

iii

Zusammenfassung

Die Wissensentdeckung in Datenbanken (“Knowledge Discovery in Databases”, KDD)
zielt darauf ab, nützliches Wissen aus Daten zu extrahieren. Daten können eine Reihe
von Messungen aus einem realen Prozess repräsentieren oder eine Reihe von Eingabe-
Ausgabe-Werten eines Simulationsmodells. Zwei häufig widersprüchliche Anforderungen
an das erworbene Wissen sind, dass es (1) die Daten möglichst exakt zusammenfasst und
(2) in einer gut verständlichen Form vorliegt. Entscheidungsbäume (“Decision Trees”) und
Methoden zur Entdeckung von Untergruppen (“Subgroup Discovery”) liefern Wissenszu-
sammenfassungen in Form von Hyperrechtecken; diese gelten als gut verständlich.
Um die Bedeutung einer verständlichen Datenzusammenfassung zu demonstrieren,

erforschen wir Dezentrale intelligente Netzsteuerung — ein neues System, das die Bedarfs-
reaktion in Stromnetzen ohne wesentliche Änderungen in der Infrastruktur implementiert.
Die bisher durchgeführte konventionelle Analyse dieses Systems beschränkte sich auf
die Berücksichtigung identischer Teilnehmer und spiegelte daher die Realität nicht aus-
reichend gut wider. Wir führen viele Simulationen mit unterschiedlichen Eingabewerten
durch und wenden Entscheidungsbäume auf die resultierenden Daten an. Mit den daraus
resultierenden verständlichen Datenzusammenfassung konnten wir neue Erkenntnisse
zum Verhalten der Dezentrale intelligente Netzsteuerung gewinnen.

Entscheidungsbäume ermöglichen die Beschreibung des Systemverhaltens für alle Ein-
gabekombinationen. Manchmal ist man aber nicht daran interessiert, den gesamten Einga-
beraum zu partitionieren, sondern Bereiche zu finden, die zu bestimmten Ausgabe führen
(sog. Untergruppen). Die vorhandenen Algorithmen zum Erkennen von Untergruppen
erfordern normalerweise große Datenmengen, um eine stabile und genaue Ausgabe zu er-
zielen. Der Datenerfassungsprozess ist jedoch häufig kostspielig. Unser Hauptbeitrag ist die
Verbesserung der Untergruppenerkennung aus Datensätzen mit wenigen Beobachtungen.

Die Entdeckung von Untergruppen in simulierten Daten wird als Szenarioerkennung
bezeichnet. Ein häufig verwendeter Algorithmus für die Szenarioerkennung ist PRIM
(Patient Rule Induction Method). Wir schlagen REDS (Rule Extraction for Discovering
Scenarios) vor, ein neues Verfahren für die Szenarioerkennung. Für REDS, trainieren wir
zuerst ein statistisches Zwischenmodell und verwenden dieses, um eine große Menge
neuer Daten für PRIM zu erstellen. Die grundlegende statistische Intuition beschrieben wir
ebenfalls. Experimente zeigen, dass REDS viel besser funktioniert als PRIM für sich alleine:
Es reduziert die Anzahl der erforderlichen Simulationsläufe um 75% im Durchschnitt.

Mit simulierten Daten hat man perfekte Kenntnisse über die Eingangsverteilung — eine
Voraussetzung von REDS. Um REDS auf realen Messdaten anwendbar zu machen, haben
wir es mit Stichproben aus einer geschätzten multivariate Verteilung der Daten kombiniert.
Wir haben die resultierende Methode in Kombination mit verschiedenen Methoden zur Ge-
nerierung von Daten experimentell evaluiert. Wir haben dies für PRIM und BestInterval —
eine weitere repräsentative Methode zur Erkennung von Untergruppen — gemacht. In den
meisten Fällen hat unsere Methodik die Qualität der entdeckten Untergruppen erhöht.

v

Contents

Acknowledgements i

Abstract iii

Zusammenfassung v

1 Introduction 1

1.1 Comprehensible ML Models for Simulated Data 1
1.2 Comprehensible ML Models for Measured Data 2
1.3 Research Goal . 3
1.4 Contributions . 3
1.5 The Scope of the Work . 5
1.6 Notations . 5
1.7 Dissertation Outline . 6

2 Fundamentals and Related Work 9

2.1 Comprehensibility of ML Models . 9
2.1.1 Comprehensible ML Models, Measures of Comprehensibility . . 9
2.1.2 Explaining Complex Models . 10

2.2 ML Models for Data from Simulations . 10
2.2.1 ML Models for Data from Simulations of Electrical Systems . . . 11
2.2.2 Scenario Discovery . 11
2.2.3 PRIM Improvements for Scenario discovery 12

2.3 Subgroup Discovery . 12
2.3.1 Definition and Taxonomy . 12
2.3.2 Quality Measures . 14
2.3.3 Algorithms for Data with Numerical Attributes 15

2.4 Related Ideas . 18
2.4.1 Rule Extraction and Knowledge Distillation 19
2.4.2 Data Augmentation . 20
2.4.3 Semi-Supervised Learning (SSL) 21

3 Demonstration — DSGC Analysis 23

3.1 Problem Formulation . 23
3.2 Decentral Smart Grid Control (DSGC) . 25

3.2.1 The Model . 25
3.2.2 Model Assumptions and Open Questions 26

vii

Contents

3.3 Methodology . 29
3.3.1 Input Values . 29
3.3.2 Model and Experimental Design 30
3.3.3 Stability Analysis . 31

3.4 Experimental Results . 31
3.4.1 Rebound Effect . 32
3.4.2 Defining Values for Control Inputs 32

3.5 Conclusions . 33

4 Improving Scenario Discovery — REDS 35

4.1 Problem Formulation . 35
4.2 Proposed Method: REDS . 36

4.2.1 Statistical Intuition. 37
4.2.2 Discussion of the statistical derivations. 39
4.2.3 REDS and Active Learning . 39

4.3 Intuition behind REDS: Demonstration 39
4.3.1 Mean-Squared Error . 40
4.3.2 Comparing Scenarios . 41

4.4 Quality Metrics . 42
4.4.1 AUpC, precision, Interpretability 42
4.4.2 Consistency. 43

4.5 Experimental Setup . 44
4.5.1 Data Sources. 44
4.5.2 Hyperparameters. 45
4.5.3 Design of Experiments. 45

4.6 Results . 47
4.6.1 Performance across all Functions. 47
4.6.2 Experiments with DSGC . 49

4.7 Conclusions . 51

5 Improving Subgroup Discovery 55

5.1 REDS on Measured Data . 55
5.1.1 When REDS Does and Does Not Work 55
5.1.2 Small Experiment . 56

5.2 Extending REDS . 57
5.2.1 Intuition Behind REDS+ . 58

5.3 Experimental Setting . 58
5.3.1 Data Generators . 58
5.3.2 Metamodels . 61
5.3.3 Subgroup Discovery Algorithms 61
5.3.4 Datasets . 62
5.3.5 Quality Metrics . 64
5.3.6 Design of Experiments . 64

5.4 Results . 65
5.4.1 Experiments with PRIM . 65

viii

Contents

5.4.2 Experiments with BestIntervalBS 66
5.4.3 Comparing PRIM and BestIntervalBS 66

5.5 Conclusions . 67

6 Future Research Directions 75

6.1 Scenario Discovery and Subgroup Discovery 75
6.2 Automatic Feature Construction . 76
6.3 Mixed Attribute Types, Regression Setting 78

7 Conclusions 79

List of Figures 81

List of Tables 83

Bibliography 102

ix

1 Introduction

Machine Learning (ML) is an extensive subarea of artificial intelligence that studies the
methods of constructing algorithms capable of learning. ML models are widespread. They
are used in computer vision, materials science, machine translation, credit scoring, and
many other domains. Some machine learning models have a complex internal structure
(for instance, artificial neural nets or boosted trees); the others are human-comprehensible
(e.g., linear regression, decision trees, classification rules). Those with a more sophisticated
structure often offer better accuracy. Thus, the common belief is that there exists an
accuracy-comprehensibility trade-off [B+01, Gun16]1. Below, we explain when one prefers
comprehensible ML models. We divide the sources of data — input for ML models, — into
simulated and measured. The former is an output of simulations, also known as computer
experiments; the latter represents the set of measurements from physical processes. We
intentionally do not use the terms “synthetic” and “real-world” to avoid making the
impression that one type is less “real” than another. Both types are used widely for
decision making.

1.1 Comprehensible ML Models for Simulated Data

The behavior of many systems, such as electrical grids or climate systems, can be described
with differential or difference equations. The resulting model connects a set of input
values to the output and can be solved with computer experiments. Analyzing data
resulting from simulations has been of interest to the Knowledge Discovery in Databases
(KDD) community for a long time. Specifically, after performing simulation runs for
different combinations of input values, it is often worth to replace the simulation model
with a statistical or machine learning model, a so-called metamodel, sometimes referred
to as surrogate model, response surface model, replacement model [GCD+10] or model
emulator [ULHM15]. Several authors give different reasons for doing so, including

• optimization of the simulated system [Kle15, SPKA01, WS06, GCD+10],
• design space exploration [SPKA01, WS06, GCD+10],
• sensitivity analysis [Kle15, GCD+10],
• model approximation [WS06],
• understanding relationships [SPKA01],
• risk analysis [Kle15].

1Rudin [Rud19] argues that this trade-off is a myth resulting from a little attempt of ML practitioners in
finding useful features, which will allow a comprehensible model to achieve good accuracy. This concern
might be true to a certain extent, as we will discuss in Section 6.2

1

1 Introduction

a2

a1

(1)
a2

a1

(2)
a2

a1

(3)

Figure 1.1: Scenario discovery process.

Although the items of this list are not clearly separated and can overlap, one can dis-
tinguish between the goals of high accuracy (optimization) and of having metamodels
understandable for humans (design space exploration, risk analysis). One example task
of the latter group has recently become known under the name scenario discovery, as we
describe next.
The inputs of a simulation model can be classified into the ones which the user of the

model (scientist, engineer, policy maker) can set, so-called control variables, and the ones
reflecting uncertainty regarding specific conditions in which the modeled phenomena can
take place, so-called environmental variables [SWN03]. In the decision making literature,
a set of values of the control variables is referred to as alternative [HRZC15], policy, or
candidate strategy [BL10, SS83]; and the set of values of environmental variables is known
as state of the world [HRZC15, BL10], state of nature [SS83] or alternative future [BL10].
The term scenario has several definitions in this context. In the narrowest sense, it refers to
any single possible state of the world [HRZC15, TGLS16]. Sometimes scenario refers to a
set of states of the world where the policy fails to meet its goals [BL10, DHL+13]. According
to an even broader definition, a scenario is the regions of particular interest in the space of
environmental inputs [KC16, KJ16, IP16], for instance, where the output variable is above
or below some threshold or takes a certain value. We use this last definition in this paper.
Consequently, scenario discovery is the process of finding these interesting regions.
There are various degrees of uncertainty that one can associate with environmental

variables [WLK13], see also [ULHM15] for different sources of uncertainties. So-called
deep uncertainty occurs when their distributions are not known, or the users of a simulation
model do not agree on these distributions [HRZC15, BL10]. In this case, one typically
performs scenario discovery by

1. running several simulations for different combinations of environmental inputs
drawn from a uniform distribution;

2. labeling the outcomes of interest with 1, the rest with 0;
3. applying a machine learning algorithm to find scenarios.

The algorithm used in the last step usually finds regions in the form of hyperboxes. On
Figure 1.1 the plots correspond to three steps just described.

1.2 Comprehensible ML Models for Measured Data

Learning a comprehensible ML model for measured data is of particular importance for
high-stakes decision support, for instance, in criminal justice or health care [Rud19]. A user

2

1.3 Research Goal

of such a model can explain and validate its logic, thus trusts its recommendations more
and can ensure that there is no discrimination involved. This especially important than a
recommendation is controversial to the intuition of its operator. In some domains, like
credit scoring, providing explanations of decisions is legally enforced [Fre13].

Comprehensible models can be employed as a part of Explanatory Data Analysis [Tuk77]
to find associations and designing better features. They can also lead to the formulation of
new theories/hypotheses regarding the process which has generated data [Fre13].
Interpretable models can also be useful for identifying confounding variables. These

variables usually allow fitting a statistical model that provides accurate predictions when
applied to the data coming from the same population. However, the output of such models
is often useless, counterintuitive, and may be harmful, as we illustrate shortly. In the
example used in [RRM99, CLG+15, Lip18] an ML model has assigned the patients who
had pneumonia a lower risk of dying if they had asthma. This counterintuitive behavior
resulted from the fact that these patients were treated more aggressively. If one has used
the output of such anML model for decision making and stopped treating severely sick
patients properly, many of them could have died. Freitas [Fre13] provides another (perhaps,
hypothetical) example. An artificial neural net had poor performance when deployed
in the field since it was trained to recognize military objects on the dataset, which only
contained a picture of tanks taken on a sunny day. That is, the ANN learned to recognize
the colors of the sky. Similarly, in the example from [RSG16] an ANN recognizes husky
as a wolf because of the snow in the background of a picture. Interpretable, white-box
models make such inconsistencies apparent as opposed to complex, black-box models.

1.3 Research Goal

Many researchers agree that decision trees and subgroups — the main focus of this work, —
are often a human-comprehensible form of knowledge representation. Both decision
trees and subgroups are sets of hyperboxes (rules) in the data space. While this form of
representation is flexible, — not restricted to a specific kind of dependency in data, — the
algorithms to learn decision trees or discover subgroups require big datasets to produce
stable and accurate knowledge summaries. In many cases, datasets are not big enough,
since acquiring new examples is impossible (e.g., data for a rare disease) or comes at
high financial (e.g., experiments in drug discovery) or computational (e.g., simulations to
evaluate various shapes of an aeroplane wing) costs. The main target of this work is to
improve knowledge discovery in the form of rules from small datasets.

1.4 Contributions

We have demonstrated the advantage of applying comprehensible models to the datasets
resulting from simulations. To this end, we focused on Decentral Smart Grid Control
(DSGC) — a novel approach realizing demand response in electrical grids without a need
in a centralized IT infrastructure. The key idea of DSGC is to connect the electricity price
to the local frequency of an electrical grid. Simulations based on this system can be used to

3

1 Introduction

ensure the stability of the DSGC for different combinations of inputs values which describe
the behavior of participants. The original DSGC model is subject to various restrictions.
In particular, they include that participants of the grid are homogeneous, e.g., behave in
the same way. To get rid of this unrealistic assumption, we have simulated the system
for a variety of combinations of input values to figure out whether the system is stable
for each particular combination. Using the resulting dataset, we trained a decision tree.
This allowed us to reveal new insights regarding DSGC not known from previous studies.
For instance, we found that the system can be stable even if some participants adapt their
energy consumption to the price changes with a high delay.

Decision tree divides the space of inputs of a simulation model into regions leading
to a particular output. In some cases, one may not require to partition the whole space.
Instead, one may want a small set of scenarios which are large and pure, that is, are very
likely responsible for a particular outcome. This is known as subgroup discovery in the
KDD community. PRIM, a well-known subgroup discovery algorithm, is a state-of-the-
art method for scenario discovery. However, on small datasets, PRIM performs poorly,
producing essentially random subgroups. So we proposed method REDS (Rule Extraction
for Discovering Scenarios) which adds an intermediate step to the process as follows.
Instead of applying PRIM to the data resulting from simulations, we use this data to train
an accurate metamodel. We then use this metamodel as a replacement for the simulation
model to produce a significantly larger dataset inexpensively. We then use the resulting
data as input for PRIM. As one contribution, we provide a statistical intuition behind
REDS. In the experiments, we compare our REDS with the state-of-the-art techniques for
scenario discovery on a variety of test models as well as on the DSGC simulation model.
We find that REDS almost always outperforms conventional methods. For many test
models, the results obtained with REDS with 400 computer experiments are comparable
to the result obtained with conventional methods for 1600 simulations, meaning ≈ 75%
reduction in computational resources required for simulating the system. Moreover, in
contrast to PRIM, REDS can benefit from existing active learning techniques to bring down
the number of simulations needed to discover scenarios even further.

REDSworkswell for simulated data since one has control over the simulation process and
thus has perfect knowledge of the joint distribution 𝑝 (𝑥) of inputs 𝑥 . Having 𝑝 (𝑥) it is easy
to generate any number of input combinations. The metamodel can then cheaply provide
estimates 𝑓 𝑎𝑚 (𝑥) of the conditional probabilities 𝑓 (𝑥) = 𝑝 (𝑦 = 1|𝑥). With measured data,
one needs a procedure allowing to obtain a sample from 𝑝 (𝑥). We propose REDS+, a
generalization of REDS, to improve scenario discovery from datasets with unknown 𝑝 (𝑥).
We tested REDS+ in combination with various metamodels, methods to generate data,
and two subgroup discovery methods — PRIM and BestInterval, — experimentally on
a broad range of datasets. The results provide evidence that REDS+ improves subgroup
discovery on measured data.

To facilitate the adoption of our results, we publicly release our implementations,
experiments, and benchmark data via open-source platforms.

4

1.5 The Scope of the Work

1.5 The Scope of the Work

In this work we consider datasets

1. in which the property of interest can take two values (interesting/uninteresting or
0/1); this is a usual setting in scenario discovery domain and for many subgroup
discovery algorithms;

2. with real-valued attributes — the factors which have a potential influence on the
property of interest.

These restrictions define the domain, where our contributions are justified experimentally.
However, many ideas we have proposed can be generalized to more general settings (e.g.,
regression instead of classification or categorical and mixed attributes) straightforwardly,
as we will explain.

1.6 Notations

In the rest of the work, we use the following notations. A dataset 𝐷 is a 𝑁 × (𝑀 + 1) matrix

𝐷 =

©«
𝑥11 𝑥12 . . . 𝑥1𝑀 𝑦1
𝑥21 𝑥22 . . . 𝑥2𝑀 𝑦2
...

...
. . .

...
...

𝑥𝑁 1 𝑥𝑁 2 . . . 𝑥𝑁𝑀 𝑦𝑁

ª®®®®¬
The first 𝑀 columns are attributes 𝑎 𝑗 = (𝑥1 𝑗 , . . . , 𝑥𝑁 𝑗) and the last column is a target

variable 𝑦 = (𝑦1, . . . , 𝑦𝑁). We refer to the first𝑀 elements in each row 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑀)
as point; the whole row 𝑑𝑖 = (𝑥𝑖, 𝑦𝑖) = (𝑥𝑖1, . . . , 𝑥𝑖𝑀 , 𝑦𝑖) is an example.
For instance, if 𝐷 results from computer experiments, 𝑥𝑖 are the inputs’ values for a

simulation model and 𝑦𝑖 — respective output. In this case, the number of rows 𝑁 = |𝐷 | is
the number of simulation runs.
We define 𝑁 + =

∑𝑁
𝑖=1𝑦𝑖 . A hyperbox, also referred to as pattern, subgroup description

or body of a rule [Atz15, GR09, MNFK12], 𝐵 is a conjunction of intervals 𝐵 =
∏𝑀

𝑗=1 [𝑎𝑙𝑗 , 𝑎𝑟𝑗],
𝑎𝑙𝑗 ∈ R ∪ −∞, 𝑎𝑟𝑗 ∈ R ∪ +∞. Sometimes the intervals defining the box are open (𝑎𝑙𝑗 , 𝑎𝑟𝑗)
or half-open (𝑎𝑙𝑗 , 𝑎𝑟𝑗], — this will be clear from the context. A subgroup (pattern cover)
𝑆𝐵 ⊆ 𝐷 corresponding to a hyperbox 𝐵 is a set of examples from a dataset 𝐷 “inside” the
hyperbox. That is 𝑑𝑖 ∈ 𝑆𝐵 ⇐⇒ 𝑑𝑖 ∈ 𝐷 ∧ 𝑥𝑖 𝑗 ∈ [𝑎𝑙𝑗 , 𝑎𝑟𝑗],∀𝑗 . We say that the attribute 𝑎 𝑗
defines a subgroup 𝑆𝐵 if 𝑎𝑙𝑗 ≠ −∞ or 𝑎𝑟𝑗 ≠ +∞. The size of the subgroup 𝑆𝐵 is 𝑛 = |𝑆𝐵 |;
𝑛+ =

∑
𝑖:𝑑𝑖∈𝑆𝐵 𝑦𝑖 is the sum of values of the target variable in 𝑆𝐵 . We usually assume that

𝑦 ∈ {0, 1}𝑁 and call examples with 𝑦𝑖 = 1 interesting or positive and with 𝑦𝑖 = 0 — not

interesting or negative, hence the notations 𝑁 + and 𝑛+.
Further, let𝑈 𝑗 be the ordered set of unique values in the 𝑗-th column of𝐷 , 𝑗 ∈ 1, . . . , 𝑀 —

𝑈 𝑗 = {𝑢1 𝑗 , . . . , 𝑢𝑍 𝑗 𝑗 }: 𝑥𝑖 𝑗 ∈ 𝑈 𝑗 ∀𝑖 and ∀𝑖, 𝑘, 𝑖 < 𝑘 : 𝑢𝑖 𝑗 < 𝑢𝑘 𝑗 . In what follows, we sometimes
omit index 𝑖 and/or 𝑗 to simplify notations. For instance, we write 𝑎 to refer to an attribute,
𝑈 = {𝑢1, . . . , 𝑢𝑍 } — to its ordered unique values, 𝑥 — to a point.

5

1 Introduction

Symbol Interpretation

𝑃 source nominal power of generator/load
𝐼 moment of inertia
𝐾𝐷 friction coefficient
𝑃max capacity of the line
𝑡 time
𝛿 (𝑡) rotor angle (phase)
𝜔 grid reference frequency (e.g. 50 Hz)
𝜃 (𝑡) = 𝜔𝑡 − 𝛿 (𝑡), rotor angle relatve to reference frequency
𝑝 price
𝑐1 proportionality factor defining the price based on 𝜃 (𝑡)
𝑐 coefficient proportional to price elasticity
𝑃 (𝑝) ≈ 𝑃 𝑗 + 𝑐 𝑗 · (𝑝 𝑗 − 𝑝𝜔), power consumed/produced at price 𝑝
𝑝𝜔 electricity price when 𝑑𝜃 𝑗/𝑑𝑡 ≡ 0

𝑃 = (𝑃 source − 𝐾𝐷𝜔2)/𝐼 , mechanical power produced/consumed
𝜅 = 2𝐾𝐷/𝐼 , damping constant
𝐾 = 𝑃max/𝐼𝜔 , coupling strength, proportional to line capacity
𝛾 coefficient, proportional to price elasticity
𝜏 reaction time, the delay between a price change and adaptation to it
𝑇 averaging time, required to measure price signal

Table 1.1: DSGC-specific notations. We omit indexes of system participants

Table 1.2 summarizes the notations just described as well as the ones introduced later.
The last column of the table refers to a section containing the first mention of notation.
For the DSGC system, we use notations described in Section 4.2 and list them separately in
Table 1.1; the lower part contains the main notations and the upper part — auxiliary ones.

1.7 Dissertation Outline

Chapter 2 reviews related work and describes the existing subgroup discovery algorithms
we use in subsequent chapters. Chapter 3 features our case study, aiming at demonstrating
the utility of human-comprehensible ML models. Chapters 4–5 feature REDS and REDS+,
the approaches we developed for improving scenario discovery and subgroup discovery
from simulated and measured data correspondingly. Chapter 6 discusses possible future
research directions. Chapter 7 concludes.

6

1.7 Dissertation Outline

Symbol Interpretation Ref.

𝑎 𝑗 = (𝑥1 𝑗 , . . . , 𝑥𝑁 𝑗), the 𝑗-th attribute (column) of 𝐷 , 𝑗 ∈ {1, . . . , 𝑀} 1.6
𝑎 [ℎ] 𝑖-th dummy attribute for original attribute 𝑎 2.3.1
𝑎𝑙𝑗 ∈ R ∪ −∞, the left end of the interval in 𝑗-th attribute defining 𝐵 1.6
𝑎𝑟𝑗 ∈ R ∪ +∞, the right end of the interval in 𝑗-th attribute defining 𝐵 1.6
𝛼 “peeling” parameter of PRIM 2.3.3
𝐵 =

∏𝑀
𝑗=1 [𝑎𝑙𝑗 , 𝑎𝑟𝑗], a hyperbox (pattern, subgroup description) 1.6

B search space — a set of all possible subgroup descriptions which a
subgroup discovery algorithm can handle

2.3.1

𝛽 “pasting” parameter of PRIM 2.3.3
𝑑𝑖 = (𝑥𝑖, 𝑦𝑖) = (𝑥𝑖1, . . . , 𝑥𝑖𝑀 , 𝑦𝑖), an example — the 𝑖-th row of 𝐷 1.6
𝐷 𝑁 × (𝑀 + 1) matrix 1.6
𝐷val a dataset for validation 2.3.3
𝑓 (𝑥) R𝑀 → R: 𝑝 (𝑦 = 1|𝑥) 1.4
𝑓 𝑎𝑚 (𝑥) R𝑀 → R, approximation of 𝑓 (𝑥) estimated from data 𝐷 1.4
𝑘𝑚𝑎𝑥 maximal number of iteration of PRIM algorithm 2.3.3
𝐿 number of newly generated points with REDS/REDS+ algorithm 4.2
𝑚 the number of attributes defining subgroup 2.1
𝑀 number of attributes in 𝐷 1.6
minpts minimal size of subgroup found by PRIM 2.3.3
𝑛 |𝑆𝐵 |, the number of examples in 𝑆𝐵 1.6
𝑛+ =

∑
𝑖:𝑑𝑖∈𝑆𝐵 𝑦𝑖 1.6

𝑁 number of rows in 𝐷 1.6
𝑁 + =

∑𝑁
𝑖=1𝑦𝑖 1.6

𝑝 (𝑥) R𝑀 → [0, 1], probability density function of a random variable 𝑋 ,
so that 𝑥𝑖 in 𝐷 are realizations of 𝑋

1.4

𝑝 (𝑦 |𝑥) conditional probability density function of a target variable 𝑌 given
𝑋 , so that 𝑦𝑖 in 𝐷 are realizations of 𝑌

2.4.3

𝜙 quality measure of a subgroup 2.3.1
𝑞 number of attributes in a subset for PRIM algorithm with bumping 2.3.3
𝑄 number of iterations in PRIM algorithm with bumping 2.3.3
𝑆𝐵 ⊆ 𝐷 , a subgroup defined by a hyperbox 𝐵, i.e., a set of examples

from 𝐷 which are inside 𝐵
1.6

𝑈 𝑗 = {𝑢1 𝑗 , . . . , 𝑢𝑍 𝑗 𝑗 }, an set of unique values in the 𝑗-th column of 𝐷 ; if
applicable, sorted in ascending order

1.6

𝑉 = {𝑣1, . . . , 𝑣𝑧}, a set of values — split points for the attribute 𝑎 sorted
in ascending order

2.3.1

𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑀), a point — the first𝑀 elements in the 𝑖-th row 1.6
𝑦 = (𝑦1, . . . , 𝑦𝑁), the target variable — the (𝑀 + 1)-th column of 𝐷 1.6
𝑦𝑎𝑚𝑖 = 𝑓 𝑎𝑚 (𝑥𝑖) 4.2.1
𝑍 𝑗 number of unique values in the 𝑗-th column of 𝐷 1.6
bs the beam size 2.3.3

Table 1.2: Overview of general notations

7

2 Fundamentals and Related Work

This chapter describes jointly the methods we build upon and related ideas. In Section 2.1,
we discuss the comprehensibility of machine learning (ML) models. Section 2.2 describes
research related to analyzing simulated data with ML models. In Section 2.3, we take a
closer look at subgroup discovery methods which are the central part of this dissertation.
Finally, Section 2.4 features findings in other domains which inspired our ideas.

2.1 Comprehensibility of ML Models

Wefirst describewhichMLmodels are deemed human-comprehensible and how tomeasure
comprehensibility. An alternative to fitting an interpretable model to data is to fit a
sophisticated model and explain its behavior or individual predictions. This approach is
beyond the scope of the dissertation; we briefly describe it at the end of this section.

2.1.1 Comprehensible ML Models, Measures of Comprehensibility

Following [Rud19, GMR+19]1, we use the terms comprehensibility and interpretability

interchangeably throughout the document. The model which is complicated for a human to
interpret, i.e., not comprehensible, is a black-box or complex

2 model. Several studies suggest
that results produced by decision trees or classification rules are quite comprehensible
[Fre13, HDM+11, BSH+10], as compared to other data-mining methods. Ustun et al. [UR16]
argue that linear models, — scoring systems — are comprehensible. Additionally, oblique
rules [SL97] might also belong to this category, according to [HDM+11, PSLB15]3.

Assessing the comprehensibility of a model (by a human) requires experiments involving
humans. Its result might depend on a task (a dataset) at hand [Fre13] and background
of participants [HDM+11]. For instance, Pazzani et al. [PMS97] provide evidence that
experts find the rules more comprehensible if they comply with their prior knowledge.
Many researchers use proxies of interpretability, such as the number of rules produced by
the model or the number of attributes involved in defining a single rule. These criteria
are often negatively correlated. For example, the decision trees with “M-of-N” splitting
criterion [CS95] or oblique rulestend to use more attributes for each rule but produce
fewer rules on average [SL97]. Freitas [Fre13] warns against using the model size as
a proxy of interpretability and refers to the studies where users found larger models
to be more comprehensible than the smaller ones. Additionally, the number of rules

1Rudin [Rud19] also suggests two other synonyms — explainability and transparency

2We use this term in line with the literature [Lip18, Rud19, HDM+11]. However, the term simple model
sometimes has a different meaning than comprehensible model [VI19]

3The latter citation examines the standard rules in rotated space — essentially oblique rules.

9

2 Fundamentals and Related Work

might be small just because the rules do not cover all points in a dataset 𝐷 , i.e., not
exhaustive [ZJC03, HSBV08]. Comparing an exhaustive set of rules to a not exhaustive
one, measuring interpretability through the number of rules is not fair.

Rudin [Rud19] argues that there is no need to come up with a single comprehensibility
measure since the notion of interpretability is domain-specific similarly to the notion of
model performance or accuracy. The latter includes, for instance, accuracy, an area under
the receiver operating characteristic curve, F1-score and many others, e.g., a variety of
measures computed from a confusion matrix. This is in line with the recent research of
Lipton [Lip18] suggesting that “interpretability is not a monolithic concept”. The research
on interpretability and the approaches to measure it is ongoing. Therecent findings are
in [DVK17, Mil19].
In our work, we mainly focus on subgroup discovery algorithms. These algorithms

produce not exhaustive sets of rules. Thus, we measure comprehensibility through the
number of attributes involved in the rule definition𝑚 (search depth). Lower value of𝑚 is
preferable. This is in line with scenario discovery literature.

2.1.2 Explaining Complex Models

Instead of training an interpretable model, one can try to explain a complex model to
achieve comprehensibility. Black-box models are especially challenging to interpret when
they use more than three inputs. Indeed, according to [Dom12] “It’s even been said
that if people could see in high dimensions machine learning would not be necessary”.
The examples of complex models are neural networks, trees ensembles, support vector
machines. Guidotti et al. [GMR+19] provide a comprehensive and up-to-date review of the
methods for explaining these models. According to their taxonomy, one can distinguish
between model-specific (designed for a particular black-box model type) or model-agnostic
(generally applicable) explanatory techniques. One can also distinguish global (model)
from local (outcome) explanations. The latter do not allow to understand the whole logic
of a model but provide an explanation for the reasons of each particular prediction. This is
achieved for instance, through estimating “local” linear [RSG16] or rule-based [GMR+18]
model, providing examples and counter-examples [GMMP20], or by calculating a gradient
of a loss function [BSH+10].
The methods for global explanation usually rule extraction algorithms [HBV06]. We

review these methods in greater detail in Section 2.4.1 since they have inspired our work.
Rudin [Rud19] speaks in favour of inducing comprehensible models directly, instead of

extracting explanations from complex models.

2.2 ML Models for Data from Simulations

A significant part of this work addresses the problem of analyzing simulated data. Our use
case, Decentral Smart Grid Control (DSGC), is a novel idea of realizing demand response
in an electrical grid. We use simulations to define if the grid is stable for particular input
values of DSGC. Later in this document, we analyze the output of DSGC simulations with

10

2.2 ML Models for Data from Simulations

comprehensible ML models. That is, we perform scenario discovery. We further propose a
methodology to improve the quality of scenario discovery from limited data.
This section presents the respective related work. We first feature the research on

using ML models to analyze data from simulations of electrical systems — in Section 2.2.1.
Section 2.2.2 is an overview of scenario discovery literature. In the end, we describe
existing attempts to improve scenario discovery — competitors of our approach, REDS.

2.2.1 ML Models for Data from Simulations of Electrical Systems

Several studies are applying ML models to analyze the security/stability of power systems.
McCalley et al. [MWZ+97] employ a neural network to security problems within a power
system in California. System behaviour is studied in 1792 simulation runs. The resulting
boundary has been visualized in the form of so-called nomograms. The limitation of this
approach is that it considers two inputs at a time and hence does not explicitly support
exhaustive insights with more inputs. Jayasekara et al. [JA06] propose modelling a non-
linear security boundary by using features formed as monomials of the original input up
to a certain degree. They solve the problem of a large number of features with kernel
ridge regression. Two systems are simulated: the New England 39-bus system and a larger
470-bus system. Moulin et al. [MDSESM04] apply support vector machines and neural
networks to analyze the transient stability of a 2484-bus system. The data is generated
in 1242 simulation runs and contains 244 inputs. To reduce the number of inputs, a feature
selection mechanism is applied in some cases. This work concludes that a support vector
machine with no feature selection achieves a higher accuracy than a neural network with
feature selection. In [AR13], decision trees are used to study the transient stability of a
toy 9-bus system and of the 1696-bus Iran national grid. The authors then compare the
results to those obtained with ANN and SVM models. In all cases, the accuracy is about
99%, although it is not clear whether the out-of-sample data was used for testing. — All
these studies target accurate prediction, but not at a general view on the system.

2.2.2 Scenario Discovery

To discover scenarios, one usually induces a comprehensible ML model on the dataset re-
sulting from computer experiments. Although not using the term scenario discovery, similar
frameworks originated before: Pierreval [Pie92] use the GENREG algorithm, Yoshida and
Nakasuka [YN89] use oblique rules, and Berthold and Huber [BH99] propose a fuzzy rule
learning algorithm to analyze simulation outputs. Some authors, e.g. [LBB08, HHRK15,
ABJ18, KP13] use decision trees trained with the Classification and Regression Trees
(CART) algorithm [BFOS84]. Currently, Patient Rule Induction Method (PRIM) [FF99],
a subgroup discovery method, dominates in the scenario discovery domain, see [GRS16,
BL10, HRZC15, LGPB06, GL07, LBB08, HHRK15, KP13] and many others, cf. [GRS16].
Lempert et al. [LBB08] compare CART and PRIM and conclude that the latter is more

interactive and requires less post-processing effort. CART has a high variance [Bre96],
meaning that the boxes vary highly for different datasets produced when simulating
the same phenomenon, and it might include irrelevant attributes in the definition of the

11

2 Fundamentals and Related Work

boxes [Fre13]. This is undesirable according to [KC16, BL10] but also holds for PRIM to
some extent, as we will show.

Many listed algorithms target at partitioning the input space into regions and assigning
a class (interesting/uninteresting) to each of them. Accuracy is their main goal. Recall and
precision of individual hyperboxes are the primary target of PRIM and often are more
relevant in scenario discovery.

2.2.3 PRIM Improvements for Scenario discovery

Several improvements of PRIM for scenario discovery were recently proposed. Normally,
PRIM targets at maximizing the mean outcome value 𝑛+ within a hyperbox; here, the func-
tion “mean” is called peeling criterion. Kwakkel and Jaxa-Rozen [KJ16] study alternative
peeling criteria other than simple mean, also proposed in [FF99], and conclude that these
alternatives are beneficial with heterogeneous inputs. Kwakkel and Cunningham [KC16]
propose using a bagging procedure to increase the quality of PRIM. In fact, the authors use
bumping [HTF09], also proposed by Friedman and Fisher [FF99], combined with random
feature selection. Dalal et al. [DHL+13] combine PRIM with principal component analysis
to produce oblique rules (PCA-PRIM). Bryant and Lempert [BL10] complement PRIM with
a “quasi p-value” test to exclude insignificant attributes from the box definition.
We will explain PRIM with bumping [KC16] and original PRIM in Section 2.3.3. PCA-

PRIM [DHL+13] and different peeling criteria [KJ16] are orthogonal to our study.

2.3 Subgroup Discovery

PRIM algorithm mentioned above is one of the most known representatives of subgroup
discovery domain. The central part of our work is improving the quality of scenario discov-
ery from small datasets. We now provide a brief introduction in this domain (Section 2.3.1)
and describe existing quality measures (Section 2.3.2) and subgroup discovery algorithms
(Section 2.3.3) which we will further use with our approaches.

2.3.1 Definition and Taxonomy

One of the earliest definitions of the subgroup discovery task [Wro97] is the following.
Discover the subgroups of the population that are statistically “most interesting”, i.e., are
as large as possible and have the most unusual statistical (distributional) characteristics
with respect to the property of interest. Sometimes this definition is further specified, e.g.,
to explicitly include the number of subgroups or the length of their description [GR09].
To define a subgroup discovery algorithm, one should propose a search space, search

strategy and a quality measure, which will quantify (and often combine) the notions of
size and unusualness from the definition above.

Search Space. Given a dataset𝐷 , a search space [Atz15]B (also referred to as hypothesis
language [Wro97], pattern language [MNFK12] or description language [HCGdJ11]) is
a set of all possible subgroup descriptions which a subgroup discovery algorithm can

12

2.3 Subgroup Discovery

Original Dummy

𝑎 𝑎 [1] 𝑎 [2] 𝑎 [3] 𝑎 [4]

1 1 1 1 1
2 0 1 1 1
3 0 0 1 1
4 0 0 0 1
5 0 0 0 0

Original Dummy

𝑎 𝑎 [1] 𝑎 [2] 𝑎 [3] 𝑎 [4]

A 1 0 0 0
G 0 1 0 0
A 1 0 0 0
C 0 0 1 0
T 0 0 0 1

Table 2.1: Attributes 𝑎 [ℎ] created for a numeric (left) and a categorical attribute 𝑎 (right).

handle. One can distinguish subgroup discovery algorithms based on the type of acceptable
attributes. Some algorithms [AP06, GRW08] assume nominal-valued attributes; subgroup
definitions produced by them are conjunctions of conditions 𝑎 = 𝑢 ∈ 𝑈 (see Section 1.6
for notations). Other methods [FF99, MNFK12] can also include conditions like

𝑎 ∈ �̃� ⊆ 𝑈 . (2.1)

Additionally, somemethodsworkwith numeric attributes and include intervals in subgroup
definition [FF99, GR09, MNFK12], as we explained in Section 1.6. In our work, we focus
on the methods of this group. Consequently, we deal with the search space consisting of
boxes 𝐵 defined by a conjunction of intervals. We will discuss selected algorithms in more
detail in Section 2.3.3.

The distinction of algorithms based on the type of attributes is not as strict as it might
seem. To adapt methods dealing with nominal attributes to a numerical domain, one can
discretize them. There is a big variety of discretization methods [GLS+13, AKV19]. The
result of discretization procedure for the numeric attribute 𝑎 is the ordered set of unique
split points 𝑉 = {𝑣1, . . . , 𝑣𝑧}; 𝑎 is then replaced by a new nominal attribute with domain
{(−∞, 𝑣1], . . . , (𝑣𝑧, +∞)}. If𝑉 = 𝑈 , we call discretization exhaustive [GR09]4. If a subgroup
discovery algorithm does not allow condition like (2.1), even exhaustive discretization will
not produce as rich search space as many algorithms designed for numerical data. To see
this, observe that, e.g., intervals like (𝑣𝑖, 𝑣𝑖+2], 𝑖 ≤ 𝑧 − 2 do not belong to its search space.
To overcome this issue, Lavrac and Gamberger propose [LG04] a binarization procedure.
In short, the idea to replace each attribute 𝑎 with a set of attributes 𝑎 [ℎ] , each taking
values form {0, 1} so that each possible interval or a set of values can be selected by a
conjunction of equality conditions 𝑎 [ℎ] = 0 and/or 𝑎 [ℎ] = 1. The number of new binary
features is 𝑍 − 1 for numeric and ordinal and 𝑍 for nominal attribute 𝑎, where 𝑍 is the
number of unique values of 𝑎 in 𝐷 (see Section 1.6). Table 2.1 illustrates this. For instance,
𝑎 ∈ [2, 4] ⇐⇒ 𝑎 [1] = 0 ∧ 𝑎 [4] = 1 (left) or 𝑎 ∈ {𝐶,𝐺} ⇐⇒ 𝑎 [1] = 0 ∧ 𝑎 [4] = 0 (right).

Quality Measures. Given a dataset 𝐷 , a quality measure is a function: 𝜙 : B → R that
maps every subgroup description in the search space to a real number. This number reflects
the interestingness of subgroup 𝑆𝐵 . Various measures exist for binary, nominal and numeric

4Do not confuse with exhaustive search, introduced later.

13

2 Fundamentals and Related Work

target variables 𝑦. For instance, weighted relative accuracy, chi-squared, binomial test,
information gain [MNFK12], multi-class weighted relative accuracy, numeric weighted
relative accuracy, mean test, weighted Kullback–Leibler divergence, weighted Krimp
gain [vLK12], proper scoring rules [SKFK16] and many other [Atz15]. In Section 2.3.2, we
review some measures which we will use further.

Whenmore than one subgroup is required, one should access the joint quality of multiple
subgroups. The naive approach would be to return the demanded number of subgroups
which have the highest quality [GR09]. This, however, might result in a redundant
subgroup set — containing significantly overlapping subgroups. A covering scheme can
reduce redundancy. With sequential covering, the algorithm searches for a single best
subgroup description 𝐵 at each iteration. Then it removes the examples 𝑆𝐵 from 𝐷 and
proceeds with the next iteration until the required number of subgroups is obtained [FF99].
A weighted covering algorithm [LKFT04, GL02], modification of sequential covering,
downweights the examples from subgroups discovered in previous iterations instead of
removing them — this strategy allows subgroups to overlap.

Covering approaches requiremultiple runs of the algorithm. This can be computationally
expensive. Thus, several studies propose to include an explicit diversity measure in the
evaluation of the sets of subgroups (see e.g., [vLK12]), which return a set of diverse
subgroups after a single run.

Search Strategy. A search strategy is an algorithm to traverse the search space. For
the sake of simplicity assume that a single subgroup should be found — this excludes
diversity criterion from consideration. A naive search strategy would be to exhaustively

evaluate the complete search space and report the best subgroup. However, this strategy
usually is not computationally affordable due to the high search space cardinality, espe-
cially for datasets 𝐷 with high number𝑀 of numeric attributes discretized exhaustively.
Different pruning strategies were proposed to speed up the search, including optimistic
estimate pruning [GRW08, Wro97] or the strategies explicitly developed for numeric at-
tributes [GR09, MNFK12], see also [Atz15]. Pruning strategies do not affect the search
quality; they still return a globally best subgroup from the search space.
Usually, exhaustive search is too expensive even with the use of pruning. In this case,

two strategies are conceivable. First one can reduce the search space by defining minimal
subgroup size 𝑛 or maximal subgroup description size𝑚 (search depth) — the number
of attributes defining subgroup 𝑆𝐵 . Second, one can use a heuristic search strategy, for
instance, beam search [LKFT04, vLK12] or genetic algorithm [LRRV14]; see also [Atz15,
Hel16] for other examples.

2.3.2 Quality Measures

Quality measure 𝜙 of a subgroup 𝑆𝐵 usually depends on the size of the dataset 𝑁 = |𝐷 |,
the sum of the values of target vector 𝑦, 𝑁 +, and respective numbers for the subgroup 𝑆𝐵 ,
𝑛 and 𝑛+ (see Section 1.6). The Numeric Weighted Relative Accuracy (sometimes referred
to as impact [Web01]) measure is calculated as

14

2.3 Subgroup Discovery

This work [BL10] [FF99] [HCGdJ11] Formula

NWRacc − coverage WRAcc (2.2)
recall coverage/recall/sensitivity − sensitivity (2.3)
precision density/precision box mean confidence (2.3)
− support support coverage 𝑛/𝑁
− − − precision 𝑄𝑐 𝑛+ − 𝑐 · 𝑛−
− − − precision 𝑄𝑔 𝑛+/(𝑛− + 𝑔)
− − − support 𝑛+/𝑁

Table 2.2: Names of quality measures suggested by literature.

NWRAcc(𝐷, 𝑆𝐵) =
𝑛

𝑁

(
𝑛+

𝑛
− 𝑁 +

𝑁

)
(2.2)

When 𝑦 is binary, 𝑦 ∈ {0, 1}𝑁 , 𝑁 + and 𝑛+ are counts of interesting examples in 𝐷 and 𝑆𝐵 ,
respectively, and the measure is called Weighted Relative Accuracy (WRAcc).

One usually wants a subgroup to include many examples (be large) and have a high sum
𝑛+ (number of interesting examples, when 𝑦 is binary). This is equivalent to maximizing
recall and precision:

recall(𝐷, 𝑆𝐵) =
𝑛+

𝑁 + precision(𝐷, 𝑆𝐵) =
𝑛+

𝑛
(2.3)

We note, that confusion might arise since literature uses different names for the same
qualities often mixing them. Table 2.2 reveals some of these variations5. For instance, the
term “coverage” can stand for three different quantities.

Evaluation of SD Methods. There is no consensus among researches if it is correct to
measure the quality of a subgroup description on the same data as was used to discover
it. For instance, a cross-validation procedure is used in [SKFK16, CGdJ+11, KLZG05,
KLJ03, LRRV13], whereas [GR09, VGBS19, RRRA12, AP06, vLK12] most likely use the
same dataset. In this work, we always use independent test data to evaluate the quality of
subgroup descriptions.

2.3.3 Algorithms for Data with Numerical Attributes

Below we describe PRIM, its modification — PRIM with bumping, and BestInterval
subgroup discovery algorithms.

PRIM. The PRIM algorithm was initially proposed in [FF99]; [HTF09] (pp. 317–320)
contains a concise description. The algorithm works in two steps, called peeling and

5In this table, 𝑛− = 𝑛 − 𝑛+; 𝑐 , 𝑔 are some numbers.

15

2 Fundamentals and Related Work

Algorithm 1: PRIM.peel (peeling step)
Data: 𝐷 , 𝐷val, 𝛼 , minpts, 𝑘𝑚𝑎𝑥 — as described in the text.
Result: sequence of nested hyperboxes

1 𝑘 = 0;
2 𝐵0 =

∏𝑀
𝑗−1(𝑎𝑙𝑗 , 𝑎𝑟𝑗), 𝑎𝑙𝑗 = −∞, 𝑎𝑟𝑗 = +∞ ∀𝑗 ;

3 while |𝑆𝐵𝑘 | > minpts & |𝑆val
𝐵𝑘

| > minpts & 𝑘 < 𝑘max do
4 𝑚 = −1;
5 for 1 ≤ 𝑗 ≤ 𝑀 do
6 𝐷𝑟 = {𝑑𝑖 ∈ 𝑆𝐵𝑘 |𝑥𝑖 𝑗 ≤ 𝑡𝑟 }, choose 𝑡𝑟 so that |𝐷𝑟 | = (1 − 𝛼) · |𝑆𝐵𝑘 |;
7 𝐷𝑙 = {𝑑𝑖 ∈ 𝑆𝐵𝑘 |𝑥𝑖 𝑗 ≥ 𝑡𝑙 }, choose 𝑡𝑙 so that |𝐷𝑙 | = (1 − 𝛼) · |𝑆𝐵𝑘 |;
8 if avg({𝑦𝑖 |𝑑𝑖 ∈ 𝐷𝑟 }) > 𝑚 then
9 𝑚 = avg({𝑦𝑖 |𝑑𝑖 ∈ 𝐷𝑟 });

10 𝐵𝑘+1 = set(𝐵𝑘 , 𝑎𝑟𝑗 = 𝑡𝑟);
11 if avg({𝑦𝑖 |𝑑𝑖 ∈ 𝐷𝑙 }) > 𝑚 then
12 𝑚 = avg({𝑦𝑖 |𝑑𝑖 ∈ 𝐷𝑙 });
13 𝐵𝑘+1 = set(𝐵𝑘 , 𝑎𝑙𝑗 = 𝑡𝑙);

14 𝑘 = 𝑘 + 1;
15 𝑚val(𝑖) = avg({𝑦 𝑗 |𝑑 𝑗 ∈ 𝑆val𝐵𝑘

});
16 last = argmax𝑖 (𝑚val(𝑖));
17 return {𝐵0, . . . , 𝐵last}

pasting. We describe them separately. Algorithm 1 is the peeling step6. It starts with the
whole dataset 𝐷 and the 𝑀-dimensional box 𝐵0 =

∏𝑀
𝑗−1(−∞, +∞). Then it repeatedly

“peels out” 𝛼 points from the data with a hyperplane orthogonal to one dimension, so
that the mean value of 𝑦 of the remaining points is maximal (Lines 5–13), and it adjusts
the box so that it is a minimal bounding rectangle of these remaining points (Line 14).
Here 𝛼 is the peeling parameter [FF99] and denotes the share of points. This is done until
the stopping criterion is met. In our case, it is the minimum number of points minpts of
the train set 𝐷 or validation set 𝐷val contained in the box, or the number of iterations
𝑘𝑚𝑎𝑥 (Line 2). We introduced the latter condition to restrict the minimum relative size of a
scenario in our experiments. Finally, the hyperbox with the highest mean on 𝐷val (Line 16)
is returned together with all preceding boxes (Line 17). The rationale is to let a domain
expert choose the one which best suits their needs.

The pasting step (Algorithm 2) works similarly but in the opposite direction. It receives
the data 𝐷 , the initial box containing it — 𝐵0, the pasting parameter 𝛽 and the box to
be expanded — 𝐵. It repeatedly expands the box along any dimension so that the mean
value of 𝑦 of the points from 𝐷 inside the resulting box increases (Lines 8, 11). Let the
box be described with the inequalities 𝐵 =

∏𝑀
𝑗−1 [𝑎𝑙𝑗 , 𝑎𝑟𝑗], 𝑡 = 1, . . . , 𝐷 . The operation

6In different sources PRIM descriptions slightly vary. For instance, original paper [FF99] proposes to
use a validation set 𝐷val to select the last returned box. Hastie et al. [HTF09] propose to use cross-validation
but do not explain the particular procedure detailed enough.

16

2.3 Subgroup Discovery

Algorithm 2: PRIM.paste (pasting step)
Data: 𝐷 , 𝛽 , 𝐵 — as described in the text
Result: expanded hyperbox.

1 boxes = 𝐵;
2 while boxes <> {} do
3 𝐵 = sample.one.box.randomly(boxes);
4 𝑚 = avg({𝑦𝑖 |𝑑𝑖 ∈ 𝑆𝐵});
5 boxes = {};
6 for 1 ≤ 𝑗 ≤ 𝑀 do
7 𝐵𝑟 = expand(𝐵, 𝑎𝑟𝑗 , 𝛽);
8 if avg({𝑦𝑖 |𝐷𝑖 ∈ 𝑆𝐵𝑟 }) > 𝑚 then
9 boxes = append(boxes, 𝐵𝑟);

10 𝐵𝑙 = expand(𝐵, 𝑎𝑙𝑗 , 𝛽);
11 if avg({𝑦𝑖 |𝐷𝑖 ∈ 𝑆𝐵𝑙 }) > 𝑚 then
12 boxes = append(boxes, 𝐵𝑙);

13 return 𝐵

𝐵new = expand(𝐵, 𝜉, 𝛽) changes the value 𝜉 in the box description so that the volume of
𝐵new is greater than that of 𝑏𝑜𝑥 by 1 + 𝛽 . The algorithm stops when no further expansion
is possible (Line 2).

PRIM with Bumping. The PRIM algorithm with bumping [KC16] produces multiple
boxes by varying the dataset 𝐷 and returns only the ones not dominated by any other box
in terms of precision and recall (Section 2.3).

Definition 2.3.1 For a set of quality measures {𝜙1, . . . , 𝜙𝑛}, a box 𝑏 is dominated by a box

𝐵 if ∀𝑘 ∈ {1, . . . , 𝑛} : 𝜙𝑘 (𝑆𝑏) ≤ 𝜙𝑘 (𝑆𝐵) and ∃𝑘∗ : 𝜙𝑘∗ (𝑆𝑏) < 𝜙𝑘∗ (𝑆𝐵).

The PRIM algorithm with bumping works as follows.

1. Take a random bootstrap sample 𝐷bs from 𝐷 ;
2. take a random subset 𝐴 of 𝑞 attributes from {𝑎1, . . . , 𝑎𝑀 };
3. run Algorithm 1 with 𝐷 = 𝐷bs using attributes 𝐴;
4. repeat Steps (1)–(3) 𝑄 times;
5. return the hyperboxes not dominated on the validation set 𝐷val.

Algorithm 3 is a formalization of PRIM with bumping. We observe that the word
“bagging” used in [KC16] to describe this method is misleading. Since no averaging over
several models takes place, the original term bumping is correct [FF99, HTF09].

BestInterval. Mampaey et al. [MNFK12] propose a BestInterval7 Algorithm 4. It takes
a subgroup description 𝐵 and iteratively refines it considering one dimension at a time. In

7In our formalization we have changed originally half-open intervals to closed for consistency. This
makes no difference when discretization is exhaustive (𝑉 = 𝑈) as we assume in our work.

17

2 Fundamentals and Related Work

Algorithm 3: PRIM with bumping
Data: 𝐷 , 𝐷val, 𝛼 , minpts, 𝑞, 𝑄 — as described in the text
Result: sequence of hyperboxes

1 boxes = {};
2 for 1 < 𝑖 < 𝑄 do
3 𝐷bs = bootstrap sample from 𝐷 ;
4 𝐴 = {𝑎 𝑗1, . . . , 𝑎 𝑗𝑞 } — random subset of 𝑞 attributes;
5 𝐷bs

𝐴
= 𝐷bs with inputs in 𝐴;

6 boxes𝑖 = PRIM.peel(𝐷 = 𝐷bs

𝐴
, . . .);

7 boxes = append(boxes, boxes𝑖);
8 𝑏𝑜𝑥𝑒𝑠 = non.dominated(𝑏𝑜𝑥𝑒𝑠);
9 return boxes

contrast to PRIM, BestInterval returns the best refinement for a given attribute at each
iteration. That is, one can think about BestInterval as a greedy counterpart of PRIM.
For a given attribute 𝑎 the algorithm iterates over the sorted set of points 𝑉 = {𝑣1, . . . , 𝑣𝑧}
(Line 4), maintaining the best interval found so far (Line 12).

In short, BestInterval uses the following observation. Assume one has two subgroup
descriptions 𝐵1 and 𝐵2 different only in the range of the attribute 𝑎 — it is [𝑎𝑙1, 𝑎𝑟] for 𝐵1
and [𝑎𝑙2, 𝑎𝑟] for 𝐵2. Denote by �̃�1 and �̃�2 the hyperboxes which differ from 𝐵1 and 𝐵2 by
the upper bound of the same attribute. That is, the respective intervals are [𝑎𝑙1, 𝑎𝑟] for �̃�1
and [𝑎𝑙2, 𝑎𝑟] for �̃�2, where 𝑎𝑟 > 𝑎𝑙1, 𝑎𝑙2 . Then the following holds:

WRAcc(𝐷, 𝑆𝐵1) −WRAcc(𝐷, 𝑆𝐵2) = WRAcc(𝐷, 𝑆�̃�1) −WRAcc(𝐷, 𝑆�̃�2) .

The observation is based on the following property (Property 4 in [MNFK12]).

Property 2.3.1 WRAcc is an additive property, i.e., for any two hyperboxes 𝐵1 and 𝐵2 with

𝑆𝐵1 ∩ 𝑆𝐵2 = ∅, it holds that

WRAcc(𝐷, 𝑆𝐵1 ∪ 𝑆𝐵2) = WRAcc(𝐷, 𝑆𝐵1) +WRAcc(𝐷, 𝑆𝐵2)

To discover a subgroup, following Mampaey et al. [MNFK12], we use a beam-search
heuristic [FGL12] as Algorithm 5 describes. It iteratively refines the initial box

∏𝑀
𝑗=1(−∞,

+∞) with BestInterval algorithm. The parameter𝑚 regulates the search depth, i.e., the
number of iterations, equivalently, the maximal number of attributes describing subgroup
(Line 2). The beam size 𝑏𝑠 defines the number of subgroup descriptions kept at each
iteration (Line 6). The function Keep.Best(BSet, 𝑏𝑠) returns 𝑏𝑠 hyperboxes with maximal
WRAcc on 𝐷 from the set BSet.

2.4 Related Ideas

In this section, we present the ideas and findings in other domains which have inspired
ours. We explain the similarities and differences between them and our ideas. Section 2.4.1

18

2.4 Related Ideas

Algorithm 4: BestInterval
Data: 𝐷 , 𝐵, 𝑎, 𝑉 — as described in the text
Result: a refined hyperbox

1 𝐵𝑟𝑒𝑠 = set(𝐵, 𝑎𝑙 = −∞, 𝑎𝑟 = +∞);
2 WRAcc𝑚𝑎𝑥 = WRAcc(𝐷, 𝑆𝐵);
3 ℎ𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥 = −∞;
4 for 1 ≤ 𝑖 ≤ 𝑧 do
5 𝐵𝑖 = set(𝐵, 𝑎𝑙 = 𝑣𝑖, 𝑎𝑟 = +∞);
6 ℎ = WRAcc(𝐷, 𝑆𝐵𝑖);
7 if ℎ > ℎ𝑚𝑎𝑥 then
8 ℎ𝑚𝑎𝑥 = ℎ;
9 𝑣𝑚𝑎𝑥 = 𝑣𝑖

10 𝐵𝑖 = set(𝐵, 𝑎𝑙 = 𝑣𝑚𝑎𝑥 , 𝑎𝑟 = 𝑣𝑖);
11 if WRAcc(𝐷, 𝑆𝐵𝑖) > WRAcc𝑚𝑎𝑥 then
12 𝐵𝑟𝑒𝑠 = 𝐵𝑖 ;
13 WRAcc𝑚𝑎𝑥 = WRAcc(𝐷, 𝑆𝐵𝑖)

14 return 𝐵𝑟𝑒𝑠

describes the research where an intermediate statistical model is used to produce a new
dataset for training the final model. Section 2.4.2 presents alternative methods to enlarge
original data by creating artificial examples. Section 2.4.3 summarizes research related to
semi-supervised learning.

2.4.1 Rule Extraction and Knowledge Distillation

Huysmans et al. [HBV06] define the task of rule extraction as follows, “Given an opaque
predictive model and the data on which it was trained, produce a description of the pre-
dictive model’s hypothesis that is understandable yet closely approximates the predictive
model’s behavior”. A wide variety of rule extraction methods has been developed over the
past decades. For instance, Trepan [CS95], one of the most known methods, builds𝑚-of-𝑛
decision trees (DT) using an opaque model, an artificial neural network (ANN) originally,
as an oracle. The resulting tree was found to be more accurate than DT learned directly
from the data used for ANN training, on four datasets. The CMM algorithm [Dom97]
works similarly, with C4.5 rules instead of DT and an ensemble of C4.5 rules instead of
ANN. Fortuny and Martens [dFM15] in a similar study discovered that C4.5-rules and
Ripper rule learning algorithms had higher accuracy and comprehensibility when were
trained on the datasets augmented by the output of SVM, ANN and random forest rather
than using original train data alone.
Rule extraction can be treated as a subdomain of a larger area — model parroting

(Section 7.5 in [Set09]) or knowledge distillation [HVD15, XHLL19], where a small and
fast model is often used as a student to be faster than the teacher. One exemplary method
from this area is model compression [BCN06]. The target is to replace a large model,

19

2 Fundamentals and Related Work

Algorithm 5: BestIntervalBS
Data: 𝐷 , {𝑉𝑗 },𝑚, bs — as described in the text
Result: a hyperbox maximizingWRAcc

1 BSet =
∏𝑀

𝑗=1(−∞, +∞);
2 repeat m times
3 for 𝐵 ∈ BSet do
4 for 1 ≤ 𝑗 ≤ 𝑀 do
5 BSet = BSet ∪ BestInterval(𝐷, 𝐵, 𝑎 𝑗 ,𝑉𝑗)

6 BSet = Keep.Best(BSet, bs)
7 return Keep.Best(BSet, 1)

an ensemble, which is expensive to store and execute but generalizes well, with a much
“lighter” and faster model, an ANN, which needs a big labeled dataset to avoid overfitting.
The ensemble labels new training data for the ANN. The resulting ANN was more accurate
than the one learned from the initial small dataset. A similar methodology is used in [KS13]
for object recognition in a semi-supervised setting.
The ideas used above are alike to our idea. However, the distinction lies in the final

model to be trained. In the research mentioned, the final model is a “universal” learner, a
model which approximates any function with arbitrary accuracy given enough data. Thus,
it is natural that the performance of the final model eventually converges to the one of
an “intermediate” model. With subgroup discovery, the final model is a hyperbox, and
accuracy is no longer the target — WRAcc, recall and precision are of interest.

2.4.2 Data Augmentation

According to [Wu14], “data augmentation is a Markov chain Monte Carlo algorithm for
sampling from a Bayesian posterior distribution”. This definition has a poor relation to
the ideas developed in our work. However, data augmentation has recently acquired a
second meaning thanks to the rapid development of artificial neural networks8. ANN
can achieve excellent performance in various pattern recognition tasks, but often require
massive training datasets which are not always available. One can increase the size
of a dataset by joining it with examples from another available dataset of the similar
domain [GG15] or by creating new (synthetic) examples via applying label-preserving
transformations9 to existing (genuine) ones [CGK15]. For datasets consisting of images,
such transformations include zoom, rotation, distortion [BRH19]; for text data, words can

8Using the on-line reference for bibliographic information, DBLP [Ley02], one can observe this process
of a new meaning emergence. For instance, in 2005, all three entries containing “data augmentation” in their
titles use this term with the meaning described above; in 2013, five out of six entries assume this; in 2015,
already 11 out of 18 entries imply the second meaning; in the most recent years (20018–2020) hundreds of
papers having the term in their titles refer to expanding the training dataset.

9This approach can be traced back at least to 2003 [SSP03], but the use of the term “data augmentation”
to refer to this method became common only recently.

20

2.4 Related Ideas

be replaced by synonyms using embeddings models [WY15]; for speech data — masking a
specific frequency channel in the mel spectrogram [PCZ+19].

Ourmotivation is similar to one of the research just mentioned. However, for the datasets
we deal with — tables filled with numeric values, developing a set of label preserving
transformations is impossible. For example, observe that with image data augmentation,
adding noise most likely will not replace a cat with a dog on a picture. Oppositely, if the
dataset results from simulations of system stability, adding noise to inputs of the system
may change the stability label. Hence, the methods we use to increase the number of
training examples are different.

2.4.3 Semi-Supervised Learning (SSL)

In this work, we deal with the problem of the limited size of labeled data. In Section 5,
we focus on real-world (measured) data. There, we apply our method, REDS+, to a semi-
supervised problem. This is the case when a dataset contains many points, but only a few
of them are labeled. But even beyond semi-supervised setting, we see a certain similarity
between REDS/REDS+ and a group of semi-supervised methods called self-labeling tech-
niques. These methods refer to exploiting a supervised learning algorithm(s) to obtain
enlarged labeled dataset(s) using (most confident) predictions of these algorithms [TGH15].
After a brief definition of semi-supervised learning, we explain two variants of self-labeled
techniques — self-training10 and multi-view learning. We then discuss the similarities and
differences between these methods and our idea.

Semi-supervised learning refers to the use of both labeled and unlabeled data for train-
ing [Zhu05]. It takes an intermediate place between supervised and unsupervised learning.
Indeed, for instance, SSL with generative models can be treated as either classification
(supervised learning) with additional information on density or clustering (unsupervised
learning) with additional information about the class label of some points [CSZ06]. Ac-
cording to Seeger [See00], semi-supervised learning methods work only when 𝑝 (𝑥) and
𝑝 (𝑦 |𝑥) share parameters. In the rest of this section, we assume a classification task.

Self-training. Arguably, this is the earliest ([III65]) SSL method, also known as self-
learning, decision-directed learning [CSZ06], pseudo-labeling [Lee13, OOR+18], self-teaching
or bootstrapping [Zhu05]. With self-training, an ML model is first trained on a set of
labeled data. Then this classifier adds some [CSZ06, Zhu05, TGH15] (the most confident) or
all [Lee13]11 unlabeled points together with their predicted labels to the training (labeled)
data. After it, the classifier is retrained on the enlarged with its own predictions labeled
set, and the procedure is repeated. Variations of the procedure just described include, for
instance, adding noise [XHLL19].

Multi-view Learning. This method first trains multiple learners (e.g. decision trees,
support vector machines, etc.) with the same labeled data. Then these trained models

10Chapelle et al. [CSZ06] put equality sign between the terms self-labeling and self-training.
11Oliver et al. [OOR+18] have a different interpretation of this pseudo-labeling algorithm, assuming that

only the most confident labels are added.

21

2 Fundamentals and Related Work

teach each other using unlabeled data. A similar concept is co-training which instead of
different learners use different feature sets (views) conditionally independent given the
target variable. The concepts of multi-view learning and co-training are often confused in
the literature. For instance, Zhu [Zhu05] attributes “tri-training” [ZL05] to co-training,
whereas Triguero et al. [TGH15] — to multi-view learning.

Relation to Our Idea. Our idea behind REDS/REDS+ is similar to pseudo-labeling as
we create the pseudo-labels for a subgroup discovery algorithm using a machine learning
model but is different since (1) we use two different models and (2) our learning procedure
is not iterative. Our approaches are also similar to the multi-view learning in a sense that it
uses one ML model to teach another, but differ since this learning is directed, e.g. subgroup
discovery algorithm is never used to teach an ML model. In general, REDS/REDS+ differ
from SSL, since they do not make any assumption on the connection between 𝑝 (𝑥) and
𝑝 (𝑦 |𝑥). Finally, in a semi-supervised setting, REDS+ may also benefit from SSL methods
by using them to train an intermediate ML model, as we will explain.

22

3 Demonstration — DSGC Analysis

The content of this chapter is based on the following publication.

• Vadim Arzamasov, Klemens Böhm and Patrick Jochem. Towards concise models of
grid stability. In 2018 IEEE International Conference on Communications, Control, and

Computing Technologies for Smart Grids (SmartGridComm), pages 1–6, 2018.

We demonstrate the utility of human-comprehensible ML models for understanding the
behaviour of a simulated system. We do so by analyzing the data resulting from simulations
of Decentral Smart Grid Control — a novel approach for automatic balancing demand and
supply in electrical grids. As an additional contribution, we collect explicit and implicit
assumptions behind DSGC; this is the most complete list to the best of our knowledge.

Chapter Outline. Section 3.1 describes the research question. Section 3.2 lists the
assumptions behind the DSGC model. Section 3.3 describes our methodology. Section 3.4
features the results. Section 3.5 concludes.

3.1 Problem Formulation

Motivation. Electrical grids require a balance between electricity supply and demand
to be stable. Conventional systems achieve this balance through demand-driven electricity
production. For future grids with a high share of inflexible (i.e., renewable) energy sources
however, the concept of demand response is a promising solution. This implies changes
in electricity consumption in reaction to electricity price changes. There are different
ways to set the price and communicate it to consumers. Conventional approaches, like
local electricity auctions, might cause cybersecurity and privacy issues [LXL+12]. The
Decentral Smart Grid Control (DSGC) system, proposed recently [SMTW15], [SGA+16],
has received much attention. To avoid much of communication it ties the electricity price
to the grid frequency so that the price is available to all participants, i.e., all electricity
consumers and producers. By that, DSGC introduces real-time pricing, as opposed to, e.g.,
auctions, where electricity is traded at 15-minutes intervals.

Current models of DSGC come together with assumptions. Some assumptions facilitate
simulations of its stability in [SMTW15], [SGA+16], i.e., to infer whether the behaviour of
participants in response to price changes destabilizes the grid. To this end, the system is
described with differential equations. Following [Kle15], we refer to the variables of the
equations as inputs. The current approach to study stability consists of two steps:

1. Assign fixed values to some inputs across all equations and simulation runs.

23

3 Demonstration — DSGC Analysis

2. For the other inputs, draw values from a fixed distribution in each experiment (equal
across equations).

The result is a set of one-dimensional intervals describing the dependence of stability
on tabulated input values [SMTW15], [SGA+16]. For example, the inference from such
an analysis carried out in [SGA+16] could look as follows. (We omit some inputs and all
units to keep the example simple.)

If 𝑇𝑗 ≡ 𝑇 = 2 and 𝛾 𝑗 ≡ 𝛾 = 0.25 and 𝜏 𝑗 ≡ 𝜏 ∈ [0, 0.7] ∪ [2.2, 5], then the system is stable.

We see two shortcomings of this methodology. First, changing only one input value at a
time as in the example, with only input 𝜏 varying, leads to the consideration of only a few
values of the other inputs (𝑇 and 𝛾). This does not facilitate any estimation of interactions
among inputs [Kle15]. We refer to this problem as the fixed inputs issue. Second, the
assumption of equal input values is not realistic, especially when they are inherent to
system participants, e.g., private households, and cannot be regulated externally. Examples
of these inputs are price elasticities of energy consumers, i.e., their willingness to change
consumption in response to price changes, or the time they need to react to such a change.
We call this equality issue.

In this chapter, we demonstrate how scenario discovery can help to solve these issues.
We seek a way to analyze the DSGC system for many diverse input values, removing
those restrictive assumptions on input values. In other words, our objective is to create
metamodels. We want to keep these metamodels simple, hence the term “concise” in the
title of this article. — At the same time, we seek new insights regarding the behaviour of
the DSGC system.
To deal with the fixed inputs issue, one might allow simultaneous changes of several

input values in the simulations. This leads to the question in which form the results of
such an analysis should be presented so that they remain comprehensible. An example of
this representation for the system could be:

If𝑇𝑗 ≡ 𝑇 ∈ [2.5, 4] and 𝛾 𝑗 ≡ 𝛾 ∈ [0, 0.5] and 𝜏𝑖 ≡ 𝜏 ∈ [1, 3.7], then the system is stable.

The difference to the first example is that now all conditions are intervals.
A solution to the equality issue would be to allow input values to be different from each

other and to be drawn from some reasonable distribution. However, this is not trivial.
Think of a system described by 𝑁𝑒𝑞 equations, each having 𝑁𝑖𝑛 inputs, which already leads
to𝑀 = 𝑁𝑒𝑞 · 𝑁𝑖𝑛 degrees of freedom. This means that in general, there will be intervals for
all𝑀 inputs in the description of stability regions, as follows:

If 𝑇1 ∈ [2.5, 4] and 𝑇2 ∈ [1.7, 3] and . . . , and 𝜏3 ∈ [2.2, 4.1] and 𝜏4 ∈ [1, 3.7], then the

system is stable.

Clearly, comprehensibility suffers. The problem is more prominent with more inputs.

Contributions. To identify the current limitations of the DSGC, we systematically
collect the assumptions behind it. We have already described two, the fixed inputs and the
equality issue. But as we will show, there are more. To our knowledge, despite the rising

24

3.2 Decentral Smart Grid Control (DSGC)

popularity of this system, a respective comprehensive summary in the literature does not
exist.
To deal with the fixed inputs and equality issues, we investigate system stability for

different design points and apply a decision tree to the results. To deal with the many
inputs and to make the description of stability regions more understandable, we replace
the inputs of the system with aggregates, referred to as features. An example rule in the
feature space is:

If avg(𝑇𝑗) ∈ [2.5, 4] and min(𝛾 𝑗) < 0.25 and max(𝜏 𝑗) > 3, then the system is stable.

We demonstrate that the approach gives way to new insights into the simulated system.
For instance, we have learned that fast adaptation generally improves system stability.

3.2 Decentral Smart Grid Control (DSGC)

In this section, we first review the system under consideration proposed in [SMTW15],
including the derivation of the physical model and its economic superstructure. Next, we
systematically list assumptions and open issues regarding the DSGC. Some assumptions
are inherent to the origin of equations describing the system. One cannot remove the
premises without changing the equations. Examples are (3.5) and (3.8) below. The other
assumptions are ones made when analyzing the system with simulations. An example
is that some inputs have specific fixed values. In this study, we want to loosen these
restrictions by removing assumptions of the second type.

3.2.1 The Model

The DSGC system consists of two parts. The first, physical part describes the dynamics of
generators and loads based on the equations of motion [FNP08], [RSTW12]. The second
part is an economic superstructure binding the electricity price to the grid frequency,
proposed and studied in [SMTW15], [SGA+16].

Physical Model. Both generators and loads are modelled as rotating machines. Energy
conservation laws define the dynamics of a respective system as follows:

𝑃 source = 𝑃accumulated + 𝑃dissipated + 𝑃 transmitted (3.1)

That is, the power generated is accumulated in the rotational motion of the generator or
dissipated, or transmitted to the loads. Replacing terms in equation (3.1) with respective
equations yields:

𝑃 source𝑗 =
1
2
𝐼 𝑗
𝑑

𝑑𝑡

(
¤𝛿 𝑗
)2

+ 𝐾𝐷 𝑗
(
¤𝛿 𝑗
)2

−
∑︁
𝑘

𝑃max

jk
sin

(
𝛿𝑘 − 𝛿 𝑗

)
(3.2)

where 𝑗 is an index of the system participant (load or generator), 𝐼 is the moment of inertia,
𝐾𝐷 is a friction coefficient, 𝑃max

jk
is the capacity of the line connecting Participants 𝑗 and 𝑘 .

𝛿 𝑗 (𝑡) is a rotor angle (or phase). [SMTW15] then specifies:

𝛿 𝑗 (𝑡) = 𝜔𝑡 + 𝜃 𝑗 (𝑡) (3.3)

25

3 Demonstration — DSGC Analysis

where 𝜔 is a grid reference frequency (e.g., 50 Hz) and 𝜃 𝑗 (𝑡) is a rotor angle relative to it.
Finally, (3.3) is substituted in (3.2) to yield:

𝑑2𝜃 𝑗

𝑑𝑡2
= 𝑃 𝑗 − 𝜅 𝑗

𝑑𝜃 𝑗

𝑑𝑡
+

∑︁
𝑘

𝐾jk sin
(
𝜃𝑘 − 𝜃 𝑗

)
(3.4)

where we abbreviate

𝐾jk =
𝑃max

jk

𝐼 𝑗𝜔
, 𝜅 𝑗 =

2𝐾𝐷 𝑗
𝐼 𝑗

, 𝑃 𝑗 =
𝑃 source𝑗 − 𝐾𝐷 𝑗𝜔2

𝐼 𝑗𝜔
.

According to Filatrella et al. [FNP08], for the transition from (3.2) to (3.4) to be correct, the
following assumptions must hold:

𝑑𝜃 𝑗

𝑑𝑡
≪ 𝜔,

𝑑2𝜃 𝑗

𝑑𝑡2
≪ 2𝐾𝐷 𝑗𝜔/𝐼 𝑗 (3.5)

Economic superstructure. The idea of [SMTW15] is binding the electricity price to
the grid frequency, with some proportionality factor 𝑐1, and letting participants adjust
their production/consumption with price changes. The additional equations are:

𝑝 𝑗 = 𝑝𝜔 − 𝑐1 ·
∫ 𝑡

𝑡−𝑇𝑗

𝑑𝜃 𝑗

𝑑𝑡
(𝑡 − 𝜏 𝑗)𝑑𝑡 (3.6)

𝑃 𝑗 (𝑝𝑖) ≈ 𝑃 𝑗 + 𝑐 𝑗 · (𝑝 𝑗 − 𝑝𝜔) (3.7)

where 𝑝 𝑗 is the electricity price for the 𝑗-th participant, 𝑃 𝑗 is the power consumed/produced
at price 𝑝 𝑗 , 𝑐 𝑗 is a coefficient proportional to the price elasticity, 𝑝𝜔 is the electricity
price when 𝑑𝜃 𝑗/𝑑𝑡 ≡ 0, 𝜏 𝑗 is the reaction time, i.e., the time after which one adjusts
consumption/production to a price change, 𝑇𝑗 is so-called averaging time: The average
frequency during Period 𝑇𝑗 defines the price. It is assumed that:∑︁

𝑗

𝑃 𝑗 ≡ 0 (3.8)

The final equation describing the dynamics of the DSGC results from substituting 𝑃 𝑗 in
(3.4) with 𝑃 𝑗 from (3.7), where 𝑝 𝑗 is defined as in (3.6), and denoting 𝛾 𝑗 = 𝑐1 · 𝑐 𝑗 .

𝑑2𝜃 𝑗

𝑑𝑡2
= 𝑃 𝑗 − 𝜅 𝑗

𝑑𝜃 𝑗

𝑑𝑡
+

𝑁∑︁
𝑘=1

𝐾jk sin
(
𝜃𝑘 − 𝜃 𝑗

)
−
𝛾 𝑗

𝑇𝑗

(
𝜃 𝑗 (𝑡 − 𝜏 𝑗) − 𝜃 𝑗 (𝑡 − 𝜏 𝑗 −𝑇𝑗)

)
(3.9)

The bottom part of Table 1.1 summarizes the system inputs.

3.2.2 Model Assumptions and OpenQuestions

In addition to the assumptions in (3.5) and (3.8), we now list the implicit ones. We split the
assumptions into three parts, one related to the physical equations, one to the equations
describing the economic superstructure and one to the way the system has been studied
previously. Additionally, we identify two open questions regarding the system.

26

3.2 Decentral Smart Grid Control (DSGC)

P = ±1
α = 0.1
γ = 0.25
τ = 0.75
T = 0
K = 8

— Producer

— Consumer

(a) System structure

producer

consumer

0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Time t

Δ
P
ow
er

(b) System dynamics after perturbation

Figure 3.1: DSGC system gets destabilized after a perturbation due to overreaction of
participants resulting in resonance.

Assumptions behind the Physical Model.

1. Generators are modelled as rotating mass. However, the model is often motivated
(cf. [SMTW15], [FNP08], [RSTW12]) by assuming an increasing share of renewables,
some of which (PV or wind turbines) do not have any rotational inertia [UBA14].

2. Loads are modelled as rotating mass (synchronous motors)

a) According to [MWS+14], in power engineering “in many of the applications
. . . passive loads are considered instead of motors. . . ”. This is particularly true
for modelling households [KBL94].

b) According to [PTR95], [NM15], “Most of motor loads in the US are indeed
induction motors, not synchronous motors.”

3. The model completely neglects any so-called control, for instance, active control, as
stated in [FNP08].

4. The model assumes constant voltages and constant mechanical power. This limits its
validity to short time intervals of around 1s [SPFK13]. However, the model has been
explored to study system dynamics during tens of seconds [SMTW15], [SGA+16],
[FNP08]. The constant mechanical power also contradicts the intermittent character
of wind [Kam14] and solar power plants.

5. Treating variable values as constants in (3.9) implies constant moments of inertia
𝑀 𝑗 for each participant. However, the inertia in systems with a high penetration of
renewables has high variations [UBA14].

27

3 Demonstration — DSGC Analysis

Assumptions behind the Economic Superstructure.

1. Adapting the energy consumption to price change does not change the inertia of
the system nor the damping constant. This requires further elaboration on how
adaptation takes place. For example, if a consumer switches off some device in
response to a price change, this generally does have an effect on inertia and the
friction in the system.

2. The adaptation of consumption and production happens permanently. That is, load
or generation profiles smoothly oscillate with periods of a couple of seconds, see
Figure 3.1 or Figure 3 in [SMTW15]. Smooth consumption behaviour again raises
the question regarding the mechanism of its adjustment, see the previous Item.

3. Consumers do not learn from the past. This means that after a few oscillations of
the price (and grid frequency), the equilibrium level of production or consumption
becomes obvious. The better strategy than continuing to adapt to the current
price might be to consume or produce at that level. Additionally, resonances often
destabilize the system. This means that consumers use more energy when the price
is high and less when it is low. This is not rational. See Figure 3.1.

Assumptions Made for Analysis.

1. The values of inputs 𝑃 𝑗 , 𝛾 𝑗 and 𝐾jk are fixed.

2. The values of inputs are equal for all participants: 𝑋 𝑗 = 𝑋 , where 𝑋 𝑗 stands for any
input in (3.9), except for 𝑃 𝑗 , which must satisfy (3.8).

OpenQuestions.

1. The inventors of the model do not make any statement regarding the scale of model
validity. It is unclear to what extent the model is suitable to describe a large country-
wise or a small island grid. In other words, should every household be modelled as a
separate consumer, or can one consumer represent a bigger unit, e.g., a town?

2. When the reaction of the system to disturbance is analyzed, the dynamics of rotor
angles are different for each participant in the stabilization period after disturbance.
This means that the prices also are different; see (3.6) and Figure 3.2. Then it is
unclear whether the amount of money paid by consumers equals the income of
producers.

Equation (3.9) makes sense only if we think of it as a coarse-grained description of the
system. But then one must definitely consider a huge heterogeneity of parameters. Thus,
in what follows we remove assumptions from paragraph “Assumptions Made for Analysis”
and discuss the new insights from this generalization.

28

3.3 Methodology

P = ±1
α = 0.1
γ = 0.25
τ = 4
T = 0
K = 2

— Producer

— Consumer

6

5

43

2

1

(a) System structure

1 2 3 4 5 6

0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

1.5

Time t

Δ
P
ric
e

(b) System dynamics after perturbation

Figure 3.2: After perturbation, at eachmoment of time, price is different at various locations
in a DSGC system.

— Producer

— Consumer

Figure 3.3: System structure

3.3 Methodology

In this section, we first review which input values have been used for DSGC simulations
so far and justify our choice of input values, select the data mining model and say how
we convert inputs into features. We consider different notions of DSGC stability from
literature and select one for further usage.

3.3.1 Input Values

We simulate the four-node star electrical grid with centralized production (Fig. 3.3), studied
in [SGA+16] as well. A generator is in the center, and three consumers are connected to it.
DSGC system (3.9) contains six inputs in total. They must be initialized to launch the

simulations. The values used in the literature are in Table 3.1. We use the notation [𝑎, 𝑏] if
the input values are sampled from the interval and 𝑎, 𝑏 if only values 𝑎, 𝑏 are considered.

1Power consumed by each load (consumer). Power produced by producer is calculated according to (3.8)
2In our experiments below, we specify or choice of the upper bound for 𝜏 𝑗 and the range for 𝑇𝑗

29

3 Demonstration — DSGC Analysis

Input [SMTW15], [SGA+16], [RSTW12] [FNP08] Our choice

𝑃 𝑗
1 −1𝑠−2 −{1.5, 2, 2.5}𝑠−2 −[0.5, 2]𝑠−2

𝜅 𝑗 0.1𝑠−1 [0.1, 1]𝑠−1 0.1𝑠−1
𝐾jk {4, 8}𝑠−2 {5, 7, 8, 10, 12}𝑠−2 8𝑠−2
𝛾 𝑗 0.25𝑠−1 − [0.05, 1]𝑠−1
𝜏 𝑗

2 [0, 10]𝑠 − [0.5, {5, 10}]𝑠
𝑇𝑗 {0, 1, 2, 4}𝑠 − 2𝑠 or [0, 4]𝑠

Table 3.1: Ranges of input variables

According to (3.2)–(3.4), 𝐾 𝑗𝑘 = 𝐾 implies that 𝐼 𝑗 = 𝐼 , that is, equal moments of inertia for
all participants.
For our analysis, we change the values of some inputs and allow others to take values

from a defined range instead of a fixed value. To choose which inputs to vary, we classify
them as environmental or control, following [SWN03]. For control inputs, an engineer
or system designer can set the values. Here, averaging time 𝑇𝑗 , damping constant 𝜅 𝑗 , and
line capacities 𝐾jk are of this type. Environmental (noise) input values depend on the
specific user or environment at the time the item is used. Consumed power 𝑃 𝑗 or reaction
time 𝜏 𝑗 is environmental. The input 𝛾 𝑗 is of mixed type, since in 𝛾 𝑗 = 𝑐1 · 𝑐 𝑗 the term 𝑐1
(connecting price to grid frequency) is controllable, and 𝑐 𝑗 (promotional to price elasticity
of participant) is environmental. We fix the values of control inputs and allow the values
of the environmental inputs to vary. We also remove the assumption of indistinguishable
participants by choosing the input values for each of them distinctly. The nominal power
and coefficients 𝛾 𝑗 now take values from a range. We have chosen the range of 𝛾 𝑗 in line
with [Lij07]. Reaction times are no longer equal among participants. The last column of
Table 3.1 summarizes this.

3.3.2 Model and Experimental Design

Among other machine learning models, decision trees yield results in the form we target
at, exemplified in Section I. Earlier results [Fre13], [HDM+11] confirm that this form of
results is comprehensible. To learn decision trees we choose one of the most popular
algorithms, CART [BFOS84].
We have defined the ranges of input values and the model. The question arises for

which values exactly one should run experiments, i.e., which experimental design to use.
Although there is the opinion that one should choose the experimental design together
with the statistical model [SPKA01], [WS06], we are not aware of any proof of this being
superior for decision trees or classification rules. Intuitively, a space-filling design should
be reasonable. We stick to random LHS design [Ste87], [JMK12].

Since the system has symmetries, we hypothesize that a more concise representation of
simulation results is feasible based on input aggregates, i.e., features. To create features,
we take the minimum, maximum and mean values across all 𝑁 participants of each input,
e.g., min(𝜏 𝑗) for 𝑗 = 1, . . . , 𝑁 .

30

3.4 Experimental Results

3.3.3 Stability Analysis

There are several types of stability of a system [SGA+16]. We now briefly describe them
and list their advantages and limitations.

Stability against Single Perturbations Here one studies the ability of the system to
reach an equilibrium state after some perturbation. It can be specified in terms of power
when some loads require more power for a short time [FNP08]. This type of stability
analysis introduces many new degrees of freedom to the simulations:

• Which nodes of the grid to perturb?
• How exactly does the perturbation look like?
• How long should one observe a system after the perturbation to draw conclusions
on its stability?

Basin Stability To study basin stability [MHMK13], one specifies a range of possible
perturbations and simulates the system for a set of randomly sampled perturbations from
this range. Next, one may estimate the “basin volume” as the ratio of initial conditions
converging to a stable operation over the total number of initial conditions [SMTW15],
[SGA+16]. Basin stability is more general than stability against perturbation, inheriting
all limitations of the latter3.

Local (Linear) Stability Linear stability analysis explores dynamical stability around
the steady-state operation of the grid. It consists of finding roots of the characteristic
equation, written as:

det𝐴 = 0 (3.10)

𝐴 is a 2𝑁 × 2𝑁 matrix derived from equations of motion (3.9). The equation has infinitely
many solutions, but only a finite number of solutions can have a positive real part, and
they determine the instability of the system [SGA+16]. To find these roots, a numerical
optimization problem is solved. We will use local stability analysis since it is a necessary
requirement for all types of stability and does not bring additional degrees of freedom to
an already complex system.

3.4 Experimental Results

We now evaluate the usefulness of the proposed approach. To do so, we graph the results
of applying the CART algorithm to data from our simulations. This algorithm partitions
the input space into regions with higher or lower stability than on average. The paths
to the leaves of the decision tree produced by CART define the stable/unstable regions.

3We presume that the concept of basin stability is a re-discovery of so-called Starr’s domain crite-
rion [Sta63]. According to Herman et al. [HRZC15]: “In practice, this [domain criterion calculation, — author
note] is done by calculating the fraction of sampled states of the world in which a solution satisfies one
or more performance thresholds”. Schneller and Sphicas [SS83] further analyze this criterion and compare
with four alternative approaches.

31

3 Demonstration — DSGC Analysis

mint < 2.1

avgg < 0.5

avgt < 4.8

maxt >= 8

avgt < 3.3

avgg < 0.36

avgt < 6.2

avgg < 0.29

 >= 2.1

 >= 0.5

 >= 4.8

 < 8

 >= 3.3

 >= 0.36

 >= 6.2

 >= 0.29

stable stable stable unstable unstable stable stable unstable unstable

(a)

avgg < 0.53

bigt >= 1.5

avgt < 3.1

avgg < 0.4

avgt < 2.4

bigt >= 1.4

avgg < 0.67

 >= 0.53

 < 1.5

 >= 3.1

 >= 0.4

 >= 2.4

 < 1.4

 >= 0.67

stable

stable

unstable

unstable

stable

unstable

unstable

unstable

(b)

Figure 3.4: Decision trees on the data from simulations.

To avoid clutter in the plots, we slightly change the notation, replacing 𝛾 𝑗 with 𝑔 and 𝜏 𝑗
with 𝑡 . In the next subsections, we first explore the so-called rebound effect and then show
how one can use our approach to set the values for control inputs. At the end of each
subsection, we discuss new insights which previous analyses have not revealed.

3.4.1 Rebound Effect

In [SGA+16] the rebound effect has been discovered for a four-node system: For delays
𝜏 > 𝜏𝑐 (8𝑠 when 𝑇 = 2𝑠) the system always is unstable. We investigate whether this
effect persists if consumers are heterogeneous. We perform simulations for 10000 design
points with the input values specified in the last column of Table 3.1 where we choose
𝜏 𝑗 ∈ [0.5, 10]𝑠 and 𝑇𝑗 = 2𝑠 . Our space of values includes the ones explored in [SGA+16] as
a special case4.
Fig. 3.4a is an excerpt of the decision tree obtained. The path to the second leaf from

the left reads as follows: If min(𝜏 𝑗) < 2.1 and avg(𝛾 𝑗) ≥ 0.5 and avg(𝜏 𝑗) < 4.8 and
max(𝜏 𝑗) ≥ 8, then the system is stable. This means that, in a stable grid, a consumer may
have a reaction time higher than 𝜏𝑐 ≈ 8𝑠 as long as there is a consumer reacting quite
fast, and the average reaction time is moderate. Moreover, the presence of a consumer
reacting slowly has a positive effect on stability in this case. These results, stemming from
our consideration of heterogeneity of participants and discovered with our approach, are
new — they have not been insinuated in [SGA+16] in particular.

3.4.2 Defining Values for Control Inputs

According to [SGA+16], there is a trade-off between avoiding the rebound effect with
small values of 𝜏 𝑗 and increasing the basin stability with high values of 𝜏 𝑗 ; the suggested
value is 𝜏 ≈ 4. At the same time, higher values of averaging time 𝑇 have a positive effect

4The dataset is available from [DG17]: https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+
Stability+Simulated+Data+

32

https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+Simulated+Data+
https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+Simulated+Data+

3.5 Conclusions

on stability. We now check to what extent these conclusions hold for the system with
diverse participants and sketch a way how our proposed approach could help choosing
the values for control inputs. To do so, we allow one control input, 𝑇𝑗 , to vary. We assume
that 𝑇𝑗 = 𝑇 . This is a realistic assumption, since the averaging time can be inherent to the
frequency-measuring device, and a policymaker can define it. We simulate the system
for 10000 design points with the input values specified in the last column of Table 3.1
with 𝜏 𝑗 ∈ [0.5, 5]𝑠 and 𝑇 = [0, 4]𝑠 . As before, this includes the input values explored in
[SGA+16] as a special case. Fig. 3.4b graphs the tree. First, the analysis confirms that
high values of 𝑇 are good for stability. Specifically, the stable leaves of the tree only exist
for 𝑇 ≥ 1.4. This information can be used when designing the system, to, say, regulate
the averaging time, prohibiting values lower than 1.5. One can also see that all leaves
classified as stable imply that 𝑎𝑣𝑔(𝛾 𝑗) < 0.67. In principle, one could also regulate this by
adjusting the parameter connecting price to the grid frequency, 𝑐1, in (3.6). But then the
impact on demand response should be assessed. In other words, setting 𝑐1 = 0 leads to
perfect stability but completely cancels the effect of the economic superstructure.

Our results suggest that values of avg(𝜏 𝑗) smaller than 3.1 contribute to system stability.
For avg(𝜏 𝑗) ≥ 3.1, the stable region (the second leaf), occupies only a small share of
the design space. So 𝜏 ≈ 4 might not be a good value for a system with heterogeneous
consumers. We observe that power does not appear in any tree. We speculate that it only
has a small or even no impact on stability as long as the physical system is stable. So a
takeaway is that the view on the system is more differentiated with the use of decision
trees than in [SGA+16].

3.5 Conclusions

Decentral Smart Grid Control, the topic of this article, has been touted as a way to realize
demand response. We have collected the assumptions behind it systematically, some of
which are restrictive. In order to eliminate some assumptions, while at the same time
targeting at simple and insightful models, we have proposed the following:

• Simulate the system for diverse sets of input values. A simulation result has been an
inference on whether the system is stable for the specific input values.

• Create features from original inputs to reduce the number of degrees of freedom.
• Apply a decision-tree algorithm to the data resulting from all simulations.

This approach does reveal new insights regarding DSGC, not known from previous
studies. For example, we have learned that the system can be stable even if some partici-
pants adapt their energy consumption with a high delay, or fast adaptation is preferable
for stability under certain conditions.

33

4 Improving Scenario Discovery —

REDS

The content of this chapter is based on the following publication.

• Vadim Arzamasov and Klemens Böhm. 2021. REDS: Rule Extraction for Discovering
Scenarios. In Proceedings of the 2021 International Conference on Management of Data

(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, NewYork, NY, USA, 14
pages. https://doi.org/10.1145/3448016.3457301

Decision tree used in the previous chapter partitions the space formed by the inputs
of a simulation model into a set of hyperboxes. Often, one does not need to partition the
whole space and prefers to have a small number of hyperboxes (called scenarios), but
wants each of them to cover a significant share of the interesting examples, minimize the
coverage of uninteresting ones and not to restrict the inputs with little effect on the output.
The respective metrics are recall, precision (see Section 2.3.2 for formal definitions) and
interpretability [BL10]. Patient Rule Induction Method (PRIM) is a conventional approach
used to find such scenarios. In this Chapter we deal with the problem of improving scenario
discovery with PRIM from small datasets.

Chapter Outline. Section 4.1 introduces the research question. Section 4.2 introduces
our approach and justifies it from a statistical point of view. Section 4.3 supports our
statistical considerations with experiments. Sections 4.4 and 4.5 describe the quality metrics
used and the experimental setup. Section 4.6 features the results. Section 4.7 concludes.

4.1 Problem Formulation

Since simulations often are computationally expensive [WS06], one wants to obtain a good
scenario with few simulations. In this chapter, we address the problem of reducing the
number of simulation runs to obtain high-quality scenarios or, equivalently, increasing the
quality of scenarios discovered from a limited number of runs. As we will show, quality
increases slowly with the number of runs with PRIM. It starts from𝜙0 and approaches some
saturation level 𝜙𝑠 for a big dataset, forming a learning curve. On the other hand, some ML
models like random forest can learn a good approximation of a simulated model already
from a small dataset but hide their internal logic, i.e., humans cannot easily interpret it.
These ML models can be used to inexpensively label more data, which later serves as
input to the scenario-discovery method, making the learning curve more concave for small
datasets (Figure 4.1). Combining PRIM with a powerful ML model is our main innovation.

35

https://doi.org/10.1145/3448016.3457301

4 Improving Scenario Discovery — REDS

conventional

our goal

φs

φ0

quality

simulation runs (N)

Figure 4.1: Learning curves for scenario discovery tools.

Algorithm 6: Our method: REDS
Data: 𝐷 , 𝐷val, 𝛼 , 𝐵0, minpts, 𝐿, 𝐴𝑀 — described in the text
Result: sequence of nested hyperboxes

1 𝑓 𝑎𝑚 = train(𝐴𝑀,𝐷);
2 𝐷new = 𝐿 × (𝑀 + 1) matrix consisting of rows 𝑑new

𝑖
, 𝑖 ∈ {1, . . . , 𝐿};

3 for 1 < 𝑖 < 𝐿 do
4 𝑥𝑖 = new.point();
5 𝑦𝑖 = predict(𝑥𝑖, 𝑓 𝑎𝑚);
6 𝑑new

𝑘
= (𝑥𝑖, 𝑦𝑖);

7 boxes = PRIM.peel(𝐷 = 𝐷new, 𝐷𝑣𝑎𝑙 = 𝐷, . . .);
8 return boxes

Put differently, we propose a new scenario discovery process, REDS (Rule Extraction
for Discovering Scenarios), by introducing an intermediate step of estimating an accurate
metamodel and using it to obtain a larger dataset to learn an interpretable model. Learning
an interpretable model describing a more “complex” one is called rule extraction [HBV06].
We then come up with an analysis leading to the expectation that REDS works better
than conventional scenario-discovery approaches from a statistical point of view. We
compare our method to existing approaches with extensive experiments, using data from
simulations of the electrical grid and 32 benchmark functions used in the metamodeling
literature.1 REDS improves scenario discovery significantly. In contrast to PRIM, REDS can
benefit from existing active learning techniques to bring down the number of simulations
needed to discover scenarios even further, as we will explain.

4.2 Proposed Method: REDS

In this section we describe our method; from a statistical point of view we show why
original PRIM has difficulties in learning functional scenarios from small datasets, and
how our method, REDS, can overcome them. Then, we discuss the compatibility of REDS
with the existing active learning methods.

1The code required to reproduce our experiments and figures: https://github.com/Arzik1987/SDRE

36

https://github.com/Arzik1987/SDRE

4.2 Proposed Method: REDS

The novelty of REDS is the introduction of an intermediate step to train a metamodel
with low variance and generalization error (Algorithm 6). The proposed process consists
of the following steps.

1. Use 𝐷 to train an accurate metamodel 𝐴𝑀 (Line 1);
2. uniformly sample 𝐿 new points from the same area as 𝐷 (Lines 3–4);
3. label these points using the trained metamodel 𝑓 𝑎𝑚 to form a new dataset 𝐷new

(Lines 5–6);
4. run Algorithm 1 with 𝐷new instead of 𝐷 , and 𝐷 as 𝐷𝑣𝑎𝑙 .

In the rest of the paper, we use random forest [Bre01] as the intermediate metamodel,
since it performs well in various classification tasks [WAF16].

4.2.1 Statistical Intuition.

Let 𝑓 (𝑥) : R𝑀 → R denote the function described by the simulation model; 𝑓 (𝑥𝑖) = 𝑝 (𝑦𝑖 =
1|𝑥𝑖), where 𝑥𝑖 is a vector of inputs’ values and 𝑦𝑖 — respective model output. In each
iteration 𝑘 of the peeling stage, PRIM compresses the 𝐵𝑘 to obtain the box 𝐵𝑘+1. It chooses
𝐵𝑘+1 from candidate boxes — we name them 𝐵jk, 𝑗 = 1, . . . , 2𝑀 — so that the mean value
of 𝑓 in it is maximal. Equivalently, the mean value of 𝑓 in the box 𝑏jk = 𝐵𝑘 \ 𝐵jk which is
“peeled out” is minimal. In reality, 𝑓 is unknown, and its mean 𝜇jk in 𝑏jk is estimated from
the sample of points contained in 𝑏jk. A high error of this estimate may result in cutting
off the wrong box — the one which does not maximize the mean value of 𝑓 in 𝐵𝑘+1. That
is, our method will make fewer wrong cuts if its error in estimating 𝜇jk is smaller than
with the original method.

Let 𝑏 ∈ {𝑏jk}. The mean value of 𝑓 in 𝑏 is

𝜇 =

∫
𝑏
𝑓 (𝑥)𝑝 (𝑥) d𝑥∫
𝑏
𝑝 (𝑥) d𝑥

. (4.1)

Here 𝑝 (𝑥) stands for the pdf of the 𝑀-dimensional random variable 𝑋 denoting the
point in the input space. In the following analysis, we assume 𝑏 to be fixed. It contains
𝑛′ = 𝛼 · (1 − 𝛼)𝑘 · 𝑁 points labeled with 𝑦𝑖 , 𝑖 = 1, . . . , 𝑛′ by means of simulations. The
estimate of mean 𝜇 from the data then is

𝜇 =
1
𝑛′

𝑛′∑︁
𝑖=1

𝑦𝑖 (4.2)

The mean squared error (MSE) of this quantity is [FF99]

MSE𝑂 = E[𝜇 − 𝜇]2 = (𝜇 − E𝜇)2 + E[𝜇 − E𝜇]2 = [Bias(𝜇)]2 + Var(𝜇) (4.3)

Here the expectation is taken over all datasets 𝐷 with |𝐷 | = 𝑁 containing points i.i.d.
from 𝑝 (𝑥). Under deep uncertainty, one accepts the uniform distribution of model inputs,
i.e., 𝑝 (𝑥) = const, and samples 𝑥𝑖 i.i.d. from it. Assuming that there is no noise induced
by the simulation process, 𝜇 is an unbiased estimate of 𝜇. Remember that 𝑦𝑖 takes values

37

4 Improving Scenario Discovery — REDS

from {0, 1}. Thus, 𝑦𝑖 is a Bernoulli random variable with Pr(𝑦𝑖 = 1) = 𝜇 within the box 𝑏.
Written formally,

Bias(𝜇) = 0, Var(𝜇) = 𝜇 (1 − 𝜇)
𝑛′

= MSE𝑂 (4.4)

With our method, a function 𝑓 𝑎𝑚 learned with metamodel 𝐴𝑀 is used to label points.
Let 𝜇𝑎𝑚 be the mean value of 𝑓 𝑎𝑚 within 𝑏 and

𝜇𝑎𝑚 =
1
𝑙

𝑙∑︁
𝑖=1

𝑦𝑎𝑚𝑖 (4.5)

be its estimate where 𝑦𝑎𝑚𝑖 = 𝑓 𝑎𝑚 (𝑥𝑖), and 𝑙 ≈ 𝑛′ · 𝐿/𝑁 is the number of new points inside
𝑏; see Section 1.6 for an explanation of 𝐿.

Assume first that 𝑦𝑎𝑚𝑖 ∈ {0, 1}. Then Pr(𝑦𝑎𝑚𝑖 = 1) = 𝜇𝑎𝑚 (within the box 𝑏). In gen-
eral, 𝜇𝑎𝑚 ≠ 𝜇. For a fixed function 𝑓 𝑎𝑚 , analogously to (4.3)–(4.4), the bias-variance
decomposition of the mean squared error is

[Bias(𝜇𝑎𝑚)]2 = (𝜇 − 𝜇𝑎𝑚)2, Var(𝜇𝑎𝑚) = 𝜇𝑎𝑚 (1 − 𝜇𝑎𝑚)
𝑙

𝑙→∞−−−−→ 0 (4.6)

where the expectation was taken over all datasets 𝐷new (Algorithm 6, Line 2) that are
possible with our approach. The MSE with our method using metamodel AM for large 𝐿 is

MSEAM = E[𝜇 − 𝜇𝑎𝑚]2 (4.7)

where the expectation is taken over all feasible datasets 𝐷 as in (4.3), and all possible fits
𝑓 𝑎𝑚 of a given metamodel 𝐴𝑀 obtained on them.
Now we can compare the MSE𝑂 obtained with the original approach (4.4) with MSEAM

with our approach (4.7). Assuming that the best scenario is the one discovered with PRIM
knowing the true function 𝑓 , our method will perform superior if, for all possible boxes 𝑏,
E[𝜇 − 𝜇𝑎𝑚]2 < 𝜇 (1 − 𝜇)/𝑛′. Similarly, our method is likely to show better performance
than original PRIM if the above inequality holds for the majority of boxes. Note that
the left-hand side of the inequality implicitly depends on 𝑁 , as increasing the size of a
training set typically leads to higher accuracy of 𝑓 𝑎𝑚 and lower value of E[𝜇𝑎𝑚 − 𝜇]2. Now
consider the model 𝐴𝑀 which outputs class probability estimates instead of classes, i.e.,
𝑦𝑎𝑚𝑖 ∈ [0, 1]. Interestingly, in this case, our approach may outperform the original one
even when the size 𝐿 of the new dataset 𝐷new is comparable to the size 𝑁 of the initial
dataset 𝐷 . Specifically, the following holds.

Proposition 4.2.1 If 𝑛′ = 𝑙 ∧ 𝜇 = 𝜇𝑎𝑚 , then Var(𝜇𝑎𝑚) ≤ Var(𝜇)

Proof: Since 𝑛′ = 𝑙 , it is sufficient to show that

E[𝑦𝑎𝑚𝑖]2 − (E𝑦𝑎𝑚𝑖)2 = Var(𝑦𝑎𝑚𝑖) ≤ Var(𝑦𝑖) = 𝜇 (1 − 𝜇) (4.8)

Since E𝑦𝑎𝑚𝑖 = 𝜇, (4.8) ⇐⇒ E[𝑦𝑎𝑚𝑖]2 ≤ 𝜇. This is true as

E[𝑦𝑎𝑚𝑖]2 =
∫ 1

0
(𝑦𝑎𝑚𝑖)2𝑔(𝑦𝑎𝑚𝑖) d𝑦𝑎𝑚𝑖 ≤

∫ 1

0
𝑦𝑎𝑚𝑖 𝑔(𝑦𝑎𝑚𝑖) d𝑦𝑎𝑚𝑖 = 𝜇. (4.9)

38

4.3 Intuition behind REDS: Demonstration

Here 𝑔(𝑦𝑎𝑚𝑖) is the pdf of 𝑦𝑎𝑚𝑖 implied by the restriction of 𝑓 𝑎𝑚 to the box 𝑏. The latter
inequality holds since 𝑦𝑎𝑚𝑖 ∈ [0, 1] and 𝑔(𝑦𝑎𝑚𝑖) ≥ 0. □
However, the condition 𝜇 = 𝜇𝑎𝑚 of the above proposition does not hold for all possible
boxes 𝑏, unless 𝑓 ≡ 𝑓 𝑎𝑚 . We experiment with the performance of our approach in case
𝐿 = 𝑁 in Section 4.6.2.
Finally, when the simulation process is imperfect and introduces noise, in general,

Pr(𝑦𝑖 = 1) ≠ 𝜇. Consequently, Bias(𝜇) in (4.4) is no longer zero, and the analysis becomes
more sophisticated. We evaluate the influence of noise experimentally (Section 4.6.2).

4.2.2 Discussion of the statistical derivations.

To avoid restrictive assumptions on the true function 𝑓 , we made certain simplifications.
First, we assume that the box 𝑏 and the number of points it contains, 𝑛′, are fixed simulta-
neously, while the points in 𝐷 are sampled at random. In reality, only 𝑛′ is fixed at each
iteration, and the box boundary varies to include exactly 𝑛′ points (Algorithm 1, Lines 6–7).
Allowing the box boundary to vary with different realizations of 𝐷 would make MSE
estimates (4.4) and (4.6) incomparable. Second, one usually uses so-called space-filling
designs [SWN03] to form a dataset 𝐷 rather than “brute force” random sampling., e.g.,
Latin hypercube sampling [Kle15]. Generally, this would result in lower variance values
than estimated with (4.4) or (4.6). With these simplifications, our analysis explains the
experimental results sufficiently well. We further illustrate the intuition behind REDS
with the experiments in Section 4.3.

4.2.3 REDS and Active Learning

We propose REDS to decrease the number of simulations needed for learning scenarios,
i.e., to minimize the labeling effort. There exist techniques with a similar target, known
under the names active learning [Set09], adaptive sampling [GCD+10] or selective sam-
pling [BS19]. Active learning allows the learning algorithm to select the instances to be
labeled next iteratively. However, existing sampling techniques are not applicable to PRIM
in a straightforward manner. This is because they require some measure of uncertainty,
which is not apparent in the case of PRIM. This might be the reason why adaptive sampling
was only applied to increase the diversity of scenarios so far [IP16], not the quality of PRIM
results. REDS in turn is compatible with active learning. This is because several techniques
exist for random forests [BS19], support vector machines [TK01] and others [Set09] which
one may use as an intermediate metamodel in REDS.

4.3 Intuition behind REDS: Demonstration

We check the validity of our analysis in Section 4.2 and provide a synthetic example where
our method yields much better output than the original one. To this end, we use function
#3 from [DHL+13]. Here the label 𝑦 only depends on two inputs (attributes), 𝑎1 and 𝑎2, as
𝑦 = 1 if 𝑎1 > 0.6 and 𝑎2 > 0.8. In the end, 0.2% of the labels are inverted, imitating noise.
The support of the function is 𝑎 𝑗 ∈ [0, 1], 𝑗 = 1, . . . , 5.

39

4 Improving Scenario Discovery — REDS

0

10

20

30

0.0 0.1 0.2 0.3
de
ns
ity m̂

 m̂
am

Figure 4.2: The distributions of 𝜇 (dark) and 𝜇𝑎𝑚 (light)

4.3.1 Mean-Squared Error

We describe the general experimental setting and the results obtained in experiments.

MSE: experimental setting. In our experiment, we created independently 200 datasets
𝐷 of size 𝑁 = 400 labeled with the selected function. For each dataset 𝐷𝑖 , 𝑖 = 1, . . . , 200,
we trained one random forest model, 𝑓 𝑎𝑚𝑖 and let it label 100 datasets 𝐷new

ij
. For a fixed box

𝑏 we calculate MSEs:

MSE𝑂 =Var(𝜇) =
200∑︁
𝑖=1

(𝜇𝑖)2/200 −
(
200∑︁
𝑖=1

𝜇𝑖/200
)2
,

MSEAM =

200∑︁
𝑖=1

(
Bias(𝜇𝑎𝑚𝑖) + Var(𝜇𝑎𝑚𝑖)

)
Bias(𝜇𝑎𝑚𝑖) =𝜇gt −

100∑︁
𝑗=1

𝜇𝑎𝑚
ij
/100,

Var(𝜇𝑎𝑚𝑖) =
100∑︁
𝑗=1

(𝜇𝑎𝑚
ij
)2/100 −

(
100∑︁
𝑗=1

𝜇𝑎𝑚
ij
/100

)2
Here we use indexes 𝑖 for enumerating datasets 𝐷𝑖 and 𝑗 for indexing datasets 𝐷new

ij
, and

keep the other notations as in Section 4.2.1. We have also substituted 𝜇 in (4.6) with

𝜇gt =
𝑛+𝑔𝑡

𝑛𝑔𝑡

where 𝑛+𝑔𝑡 and 𝑛𝑔𝑡 are calculated (see Section 1.6) for a subgroup 𝑆gt
𝑏
defined on a large

dataset 𝐷gt of 106 points labeled with the selected function.

MSE: results We use random forest, which outputs probabilities, as a metamodel. We set
𝑁 = 400 and estimate the MSE of the 𝜇 estimate for box 𝑏 defined as 𝑎3 > 0.95 (𝛼 = 0.05).
The expected number of points in this box is𝑛 = 𝛼 ·𝑁 = 20, and 𝜇 ≈ (1−0.6) (1−0.8) = 0.08.
We neglected the noise in the last calculation. The variance of the original method,
calculated using (4.4), is 𝜎 = 0.08 · (1−0.08)/20 = 3.68 ·10−3. MSE𝑂 obtained in experiments
is 3.54 · 10−3 ≈ 𝜎 , whereas MSEAM are 2.9 · 10−3 and 0.19 · 10−3 for 𝐾 = 400 and 𝐾 = 105

40

4.3 Intuition behind REDS: Demonstration

respectively. That is, MSE𝑂 > MSEAM. This result holds for eight (for 𝐾 = 400) and nine
(for 𝐿 = 105) boxes out of ten candidates for cutting off at the first iteration of the peeling
step of PRIM. Figure 4.2 illustrates the experiment. It shows distributions of 𝜇 and 𝜇𝑎𝑚
(𝐿 = 105) for 𝑏; the dotted line is the true 𝜇.

MSE: additional experiments We conducted the experiments described above with
three more functions: #8 from [DHL+13], “linketal06simple” from [SB13] and “morris”
from R package “sensitivity”. In all experiments, we calculated MSEs of the mean estimates
of labels in 2 · 𝐷 boxes, considered as candidates for cutting off at the first iteration of
PRIM. When the metamodel is random forest, which outputs class labels, we have obtained
MSE𝑂 > MSEAM (when 𝐿 = 105) for the majority of boxes for the first two functions. This
is similar to the result described above. For function “morris” for all 2 ·𝑀 = 40 boxes the
relation was opposite: MSE𝑂 < MSEAM. However, as we will show (Tables 4.4–4.7), in this
case, our method is by far better than the original one.

Let us index these 40 boxes with 𝑟 . The detailed analysis reveals that 𝜇gt𝑟 for 𝑟 ∈ {8, 9, 10}
are significantly lower than for other values of 𝑟 . The share of cases, when min𝑟 𝜇𝑖𝑟 is
reached for some 𝑟 ∗ ∉ {8, 9, 10} is 26%. Whereas, the share of cases, when min𝑟 𝜇𝑎𝑚ijr is
reached for some 𝑟 ∗ ∉ {8, 9, 10} is only 0.3%. That is, despite greater MSE, our method
makes less irrelevant cutoffs. This is because, for each 𝑓 𝑎𝑚𝑖 , the bias does not change the
ranking of boxes by the mean value of labels of points they contain. All this might indicate,
that the mechanism we described in Section 4.2.1 is not the unique one responsible for
better performance of our approach.

4.3.2 Comparing Scenarios

For this study, we set 𝑁 = 100. Figure 4.3 graphs the result obtained with original PRIM
and with our method (solid thin lines). Four dimensions {𝑎1, . . . , 𝑎4} are presented. Dashed
thick lines represent the true scenario.

The top two plots show the 100 points obtained directly from function #3. White points
stand for 𝑦 = 0 and black ones for 𝑦 = 1. The plots reveal that PRIM makes mistakes by
cutting the box in the irrelevant space {𝑎3, 𝑎4}. It does so for the following reasons:

• There are nine true scenario examples (𝑦 = 1) — not enough to fill the range of
irrelevant attributes {𝑎3, 𝑎4}. So there are some areas near axes in these coordinates
with no scenario examples, for instance near the axis 𝑎4.

• One point, near the bottom of the left upper plot, is wrongly labeled with 𝑦 = 1
(noisy data). It prevents the algorithm from further restricting the box in this space
before all cuts in other dimensions leading to better results are made.

• The algorithm stops when the learned box contains minpts = 20 points. Since there
are only nine true scenario examples, this box contains at least 11 irrelevant ones.
In other words, the box is too big to describe the scenario properly but cannot be
further reduced due to a lack of points in 𝐷 .

41

4 Improving Scenario Discovery — REDS

a1

a2

PRIM

a3

a4

PRIM

a1

a2

REDS

a3

a4

REDS

a1

a2

PRIM

a3

a4

PRIM

a1

a2

REDS

a3

a4

REDS

Figure 4.3: The results obtained with original PRIM and with our proposed method on the
example dataset.

The bottom two plots graph the 1000 newly generated points labeled with random forest.
The color of points stands for their probability of belonging to scenario 𝑦 = 1, changing
from white (Pr(𝑦 = 1) = 0) to black (Pr(𝑦 = 1) = 1). Clearly, this new dataset allows PRIM
to learn a better scenario by overcoming the issues of the original dataset just described.

4.4 Quality Metrics

In this section, we describe the quality metrics we use to compare the different algorithms.
We assume that to estimate these metrics, one uses a separate data (large) set of points
𝐷 test labeled by the simulation model which does not overlap with 𝐷 and 𝐷val.

4.4.1 AUpC, precision, Interpretability

As described before, PRIM does not produce a single box. Instead, it outputs a sequence
of boxes from which a user can choose one, usually by compromising between precision
and recall (see Section 1.6) [BL10]. To exclude this subjective choice from our evaluation,
we compute the precision and recall for each box in the sequence. The resulting pairs of
values form a curve on the recall-precision plane — the peeling trajectory [BL10, FF99]. To
rank two algorithms, we compare their curves: 𝐴𝐵 and 𝐴𝐶 on Figure 4.4. If if the peeling

42

4.4 Quality Metrics

A A A

B B B

C

C

C

D
E

F

O

a) b) c)

recall

p
re
ci
si
o
n E

D

O

F

Figure 4.4: Mutual positions of two peeling trajectories

trajectories do not intersect, like in Plot a), the conclusion is clear: the algorithm, which
has yielded 𝐴𝐵 is better. When they cross each other, we propose to use the Area Under
the peeling Curve (AUpC) to quantify the quality. This is, we compare the areas covered
by figures 𝐴𝐵𝐸𝐹 and 𝐴𝐶𝐷𝐹 , as shown in Plots b) and c), a larger area corresponds to a
better algorithm.

Sometimes one wants to find scenarios as pure as possible, i.e. to maximize the precision
while allowing lower recall. Since the test data is not available in reality, this choice can
be made using validation data. This corresponds to choosing the last box returned by
Algorithm 1. Thus, we will also compare the precision of the last boxes produced by
different methods.

Interpretability is another quality metric often used in scenario discovery. A hyperbox
is already deemed an interpretable model output [Fre13, HDM+11]. However, one can
additionally compare scenarios by the number of dimensions restricted by the hyperboxes
defining them [BL10, KC16]. As with precision, we will make such a comparison with the
last boxes returned by each algorithm.

4.4.2 Consistency.

Different datasets produced by a simulation model can result in different scenarios dis-
covered. This reduces interpretability [FF99] since one looks for some hidden structure in
the model, rather than in the particular data produced by it. So we introduce the fourth
quality measure for scenarios — consistency.

Definition 4.4.1 For two datasets 𝐷1 and 𝐷2, |𝐷1 | = |𝐷2 | produced with the same model, let

𝐵1 and 𝐵2 be the scenario descriptions obtained with the same scenario discovery algorithm

SDA. Let 𝑉𝑜 be the volume of the overlap of these boxes and 𝑉𝑢 the one of the union of 𝐵1 and

𝐵2. The consistency of SDA is

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = E

[
𝑉𝑜

𝑉𝑢

]
When the definition of any box 𝐵1 or 𝐵2 includes unbounded intervals (𝑎𝑙𝑗 = −∞ or
𝑎𝑟𝑗 = +∞), consistency calculated with this definition would be either 0 or an indeterminate
form, i.e., not meaningful. To overcome this issue, we take advantage of our perfect
knowledge of pdf 𝑝 (𝑥) and replace infinities in the box definitions with minimal and
maximal values of the respective attribute as implied by the support of 𝑝 (𝑥).

43

4 Improving Scenario Discovery — REDS

Consistency is often used in the rule learning literature, but with different definitions.
For instance, [HBV06] defines it as the inherent randomness of the algorithm, not the one
resulting from the training data.

4.5 Experimental Setup

For our experiments, we use 32 benchmark functions, most of which are commonly used
in the metamodeling domain, and one simulation model, the decentral smart grid control
(DSGC). We describe these data sources and the methodology of the experiments.

4.5.1 Data Sources.

We have used different sources of functions. First, we have implemented functions 1–8 and
102 from [DHL+13] using the descriptions in that paper2. All these functions are “noisy”
with probability 0.2% of a false label.

The functions “morris” and “sobol” are implemented in the R package “sensitivity”3.
We also used the R implementations of the other functions from [SB13]; they are used to
test input variable screening and sensitivity analysis in simulations. We keep the original
names of the functions as provided by the implementation. We converted continuous
function output to binary by specifying the threshold thr, so that 𝑦 = 1 if the output is
below thr and 𝑦 = 0 otherwise; this is common in scenario discovery [BL10]. Next, we
simulate DSGC system (see Section 3.2.1) of a particular structure presented in Figure 4.5.
It is a “star”-like system, containing four consumers and one producer — in the center. We
fixed the values of some inputs and sampled the others from the given ranges uniformly
independently. See Table 4.1. In total, there are 12 inputs that vary: 𝛾 , 𝑇 and 𝜏 for each
electricity consumer. We also introduced the function “ellipse” as follows:

𝑦 =

15∑︁
𝑗=1
𝑤 𝑗 · (𝑎 𝑗 − 𝑐 𝑗)2

where

𝑤 ≈ {0.353, 0.434, 0.899, 0.373, 0.278, 0.164, 0.927, 0.769, 0.975, 0.606, 0, 0, 0, 0, 0},
𝑐 ≈ {0.975, 0.843, 0.772, 0.325, 0.805, 0.945, 0.221, 0.732, 0.289, 0.6, 0, 0, 0, 0, 0}

Table 4.2 lists all 33 functions used in our study. The columns contain the following
information. 𝑀 is the number of inputs. Infl ≤ 𝑀 is the number of “influential” inputs,
i.e., those affecting the output. The “reference” column contains the references to the
work using the respective function. A big share of functions we use is from [SB13]. The
threshold values are in column “thr”. The functions which already output 𝑦 ∈ {0, 1}, have
the values “na” (not applicable) in this column. Finally, the expected share of outcomes
𝑦 = 1 with uniform sampling o points from the input space is in column “share”.

2For functions 1, 3, 5–7, we obtained data similar to that presented in Figure 2 in [DHL+13], but for
functions 2, 4 and 8 the plots were different. With function 101, we did not get any examples labeled with
𝑦 = 1 and thus excluded it from our analysis.

3https://cran.r-project.org/web/packages/sensitivity/

44

https://cran.r-project.org/web/packages/sensitivity/

4.5 Experimental Setup

Table 4.1: Input values used for DSGC simulations
Input 𝑃 𝛼 𝐾 𝛾 𝜏 𝑇

Consumers −1 0.1 8 [0.05,1] [0.5,5] [1,4]
Producer 4 0 − −

— Producer

— Consumer

Figure 4.5: DSGC system structure

4.5.2 Hyperparameters.

The algorithms described above — original PRIM, PRIM with bumping and REDS — have
certain hyper-parameters in common. We set the peeling parameter to 𝛼 = 0.05, as it
is the most common choice in the literature [KC16]. We set the stopping criterion to
minpts = 20 so that minpts · 𝛼 = 1; and we set 𝑘𝑚𝑎𝑥 = 99 so that the minimal relative
volume of the scenario is at least (1−𝛼) (𝑘𝑚𝑎𝑥+1) = 0.6%. For all functions, we experimented
with datasets of sizes: 𝑁 = {400, 800, 1600}. For DSGC the sizes are 𝑁 = {200, 400, 800,
1200, 1600, 2000}. We consider two versions of the original PRIM: without pasting — “O”,
and with the pasting step — “O.p”. For “O.p”, the pasting parameter is 𝛽 = 0.01 and apply
the pasting step (Algorithm 2) to each box resulting from “O”. The hyper-parameter values
for PRIM with bumping were not stated in the respective paper [KC16]. We set the number
of iterations to 𝑄 = 50. We consider two variants of this algorithm which differ in the
number of attributes 𝑞 used in each iteration. “B” uses 𝑞 = ⌈

√
𝑀⌉ attributes, the common

value used in random forest for classification, where𝑀 is the number of attributes (see
Section 1.6); “B.all” uses all attributes, i.e., 𝑞 = 𝑀 . By default, we set the number of new
points generated and labeled with REDS to 𝐿 = 105, i.e., much larger than any 𝑁 used. As
mentioned, we use random forest as the “complex” metamodel in Algorithm 6. To set its
hyper-parameters, we use the default hyperparameter optimization procedure of package
“caret”4. Random forest can return class labels (0 or 1) or class probabilities for the new 𝐿

points, yielding two variants of REDS, “RF.l” and “RF.p”. Table 4.3 summarizes the above.

4.5.3 Design of Experiments.

To form the datasets 𝐷 = 𝐷val, Halton sequence [HS64] for DSGC simulations and Latin
hypercube sampling for the other functions. For each function, we generate the test data
𝐷 test containing 104 points. We run the experiment 50 times for each function and each
value of 𝑁 and average the values of AUpC, precision and interpretability. We compute

4http://topepo.github.io/caret/index.html

45

http://topepo.github.io/caret/index.html

4 Improving Scenario Discovery — REDS

Table 4.2: Functions for experimental study

function M Infl reference thr share (%)

1 5 2 [DHL+13] na 47.6
2 5 2 [DHL+13] na 25.7
3 5 2 [DHL+13] na 8.2
4 5 2 [DHL+13] na 18
5 5 2 [DHL+13] na 8
6 5 2 [DHL+13] na 8.1
7 5 2 [DHL+13] na 35
8 5 2 [DHL+13] na 10.9
102 15 9 [DHL+13] na 67.2
borehole 8 8 [SB13, AO01] 1000 30.9
dsgc 12 12 Section 4.5 na 53.7
ellipse 15 10 Section 4.5 0.8 22.5
hart3 3 3 [SB13] −1 33.5
hart4 4 4 [SB13, P+13] −0.5 30.1
hart6sc 6 6 [SB13, P+13] 1 22.6
ishigami 3 3 [SB13, IH90] 1 25.5
linketal06dec 10 8 [SB13, LBH+06] 0.15 25.3
linketal06simple 10 4 [SB13, LBH+06] 0.33 28.5
linketal06sin 10 2 [SB13, LBH+06] 0 27.2
loepetal13 10 7 [SB13, LWM13] 9 38.9
moon10hd 20 20 [SB13, Moo10] 0 42.1
moon10hdc1 20 5 [SB13, Moo10] 0 34.2
moon10low 3 3 [SB13, Moo10] 1.5 45.6
morretal06 30 10 [SB13, MMM06] −330 34.5
morris 20 20 [S+00] 20 30.1
oakoh04 15 15 [SB13, OO04] 10 24.9
otlcircuit 6 6 [SB13, BAS07] 4.5 22.5
piston 7 7 [SB13, BAS07] 0.4 36.8
soblev99 20 19 [SB13, SL99] 2000 41.3
sobol 8 8 [S+00] 0.7 39.2
welchetal92 20 18 [SB13, WBS+92] 0 35.6
willetal06 3 2 [SB13, WHG+06] −1 24.9
wingweight 10 10 [SB13, FSK08] 250 37.8

46

4.6 Results

Table 4.3: Experimental setting

B B.all O O.p RF.l/RF.p

𝛼 0.05
𝑁 = |𝐷 | {400, 800, 1600} ({200, 400, 800, 1200, 1600, 2000} — for DSGC)
minpts 20
𝛽 × × × 0.01 ×
𝑞 ⌈

√
𝑀⌉ 𝑀 × × ×

𝑄 50 × × ×
𝐿 × × × × 100000

consistency for each pair of last boxes from different runs and average the results, similarly
to the approach in [Dom97] to compute stability, a measure akin to consistency.

4.6 Results

We compare the performance of approaches across all functions and further experiment
with DSGC to study how the randomness of the sampling forming the dataset 𝐷 , the
values of 𝑁 and 𝐿, and the level of noise, influence the performance of the methods.

4.6.1 Performance across all Functions.

We present the results for the four metrics in a form which we now explain, taking AUpC
as an example. First, for each function and each value of 𝑁 = |𝐷 |, we averaged AUpC
values across 50 experiments. Figure 4.6 plots these averages; each box is based on the
33 functions under consideration. The average AUpC values over 50 experiments and 33
functions for each dataset size, 𝑁 , are in the row “avg” in Table 4.4. For a rather high
number of points, 𝑁 = 1600, the differences in these values between original PRIM and our
methods are low. But it remains high for particularly complex models, which often require
much time per simulation run — see the last row of the Table, presenting the results for
20-dimensional “morris” function. For each function, we also recorded which methods
performed best and second best. The counts of these numbers are in rows “#1” and “#2” in
Table 4.4, respectively. These results show that in general, our method (“RF.l” and “RF.p”)
outperforms the existing ones in terms of AUpC.
The results for precision are presented in Figure 4.7 and Table 4.5. Again, our method

performs well in most cases. The minimal precision achieved by it is much higher than
that of competing methods.
Figure 4.8 and Table 4.6 feature results regarding the number of restricted dimensions.

Smaller numbers, standing for higher interpretability, are better. The values for “B” are
slightly lower. However, the comparison with “B” is unfair, since the number of attributes
used in the box definition under “B” is “manually” restricted (𝑡 = ⌈

√
𝐷⌉) and usually does

not fall together with the number of inputs actually influencing the simulation result.

47

4 Improving Scenario Discovery — REDS

Table 4.4: AUpC, all functions

𝑁 B B.all O O.p RF.l RF.p

avg 42.8 42.4 41.3 41.2 48.7 49.1
400 # 1 1 0 0 0 8 24

2 0 1 0 0 24 8

avg 46.4 46.7 46.4 46.3 50 50.5
800 # 1 0 1 0 0 5 27

2 4 0 0 0 24 5

avg 48.3 49.3 49.1 49 50.8 51.2
1600 # 1 0 1 0 0 5 27

2 6 0 0 0 22 5

𝑚1600 avg 21.8 20.9 21 21 28.7 28.5

25

50

75

B B.all O O.p RF.l RF.p

A
U
pC

Figure 4.6: AUpC, all functions, 𝑁 = 400

Table 4.8: Number of irrelevant dimensions restricted

𝑁 B B.all O O.p RF.l RF.p

400 0.38 2.78 2.78 2.78 0.1 0.37
800 0.29 2.67 2.35 2.36 0.12 0.49
1600 0.28 2.59 2.18 2.19 0.1 0.71

More detailed results are that our method, “RF.l”, often approximates the number of
inputs affecting the output better than any competitor. To see this, we first selected
19 functions, where the number of influencing inputs Infl𝑖 (𝑖 = {1, . . . , 19}) is lower
than the total number of inputs 𝑀𝑖 (see Table 4.2). For each such function, we took the
difference between the number of dimensions restricted and Infl𝑖 . We then kept only
positive values — i.e., irrelevant dimensions are restricted — and averaged the results
across functions. See Table 4.8. Clearly, the “RF.l” variant is the leader, providing the
fewest irrelevant restrictions.
Finally, Figure 4.9 and Table 4.7 contain results regarding consistency. REDS again is

superior. The gap between it and competitors grows with the size of the dataset 𝑁 .
On average, the levels of AUpC, precision and consistency achieved for 𝑁 = 1600 with

conventional methods are comparable to those achieved with 𝑁 = 400 with REDS. That is,

48

4.6 Results

Table 4.5: Precision, all functions

𝑁 B B.all O O.p RF.l RF.p

avg 80.9 81.7 81.1 80.9 91.4 92.6
400 # 1 1 0 0 0 2 30

2 2 1 0 0 28 2

avg 86.3 87.1 87 86.9 93.9 95.2
800 # 1 0 1 0 0 1 31

2 6 0 0 0 26 1

avg 89.8 91.2 91.1 90.9 95.2 96.6
1600 # 1 0 1 0 0 1 31

2 10 0 0 0 22 1

𝑚1600 avg 70.3 67.9 69.3 69.2 87.5 92.4

50

60

70

80

90

100

B B.all O O.p RF.l RF.p

pr
ec
is
io
n

Figure 4.7: Precision, all functions, 𝑁 = 400

our approach can reduce the number of simulation runs by ≈ 75%. The reduction is even
more prominent for complex models with many inputs.

4.6.2 Experiments with DSGC

The Variance of the Results and Peeling Trajectories. Figure 4.10 plots quality
metrics for DSGC with 𝑁 = 400, obtained in 50 independent experiments with different
methods. One can see that REDS yields a significant improvement over the alternatives,
as measured with AUpC or precision. The method “B” restricts the smallest number of
dimensions, as this number is forced to be 𝑞 = ⌈

√
𝑀⌉ = 4. In the case of DSGC, this

restriction is too hard as more attributes do influence the simulation output. I.e., the actual
benefit in interpretability with “B” is arguable, while the other quality measures suffer.

Figure 4.11 plots the peeling trajectories for DSGC with 𝑁 = 400 for different methods
smoothed across 50 experiments. The curves produced with REDS dominate the ones
obtained with competitors — both precision and recall are higher.

Learning Curves. Figure 4.12 shows the learning curves (cf. Figure 4.1) for AUpC,
precision and consistency for DSGC. The horizontal axis is logarithmically scaled. AUpC
and precision values obtained using REDS are always greater than those of competing
methods. For small 𝑁 = |𝐷 |, consistency of REDS is a bit lower than that of the original

49

4 Improving Scenario Discovery — REDS

Table 4.6: Number of restricted dimensions

𝑁 B B.all O O.p RF.l RF.p

avg 3.3 7.72 7.71 7.71 3.63 4.24
400 # 1 15 0 0 0 20 3

2 9 0 0 0 13 7

avg 3.25 7.72 7.36 7.37 3.87 4.67
800 # 1 15 0 0 0 19 1

2 11 0 0 0 14 6

avg 3.22 7.57 7.14 7.14 3.99 5.04
1600 # 1 17 0 0 0 17 1

2 13 0 0 0 15 3

𝑚1600 avg 4.98 17.3 16.8 16.9 6.82 10.6

5

10

15

20

B B.all O O.p RF.l RF.p

re

st
ric

te
d

Figure 4.8: Number of restricted dimensions, all functions, 𝑁 = 400

PRIM. This is because the boxes produced by REDS tend to be smaller, resulting in smaller
areas of overlap. Generating boxes of very different size is not fair when comparing
consistency of the algorithms. Indeed, the most consistent algorithm is one doing nothing
but returning the box containing all data. This algorithm is clearly useless. However, with
the growth in 𝑁 , consistency of “RF.l” and “RF.p” grows, while consistency of the other
approaches does not for the dataset sizes we consider. For 𝑁 > 800, our approach is better.

Different Values of K. For these experiments, we set 𝑁 = 400 and experimented with
different values of the number of newly generated and labeled points 𝐿. Note that REDS
uses only 𝐿 newly generated and labeled points, ignoring the initial data. Figure 4.13 graphs
the results averaged across 50 runs. For both AUpC and precision, “RF.p” (when random
forest outputs probabilities) is better than “RF.l” (when labels {0, 1} are predicted) and stops
improving at 𝐿 ≈ 1600. For “RF.l” the precision continues to improve even for 𝐿 > 25000.
Observe that “RF.p” outperforms the other methods even when 200 = 𝐿 < 𝑁 = 400. That
is, 200 points labeled with probabilities learned with random forest let PRIM induce a
better scenario than 400 points labeled with {0, 1} with the original simulation model.
This result confirms our statistical analysis.

Different Noise Levels. Finally, we experiment with different levels of noise in the data.
We assume that the noise has the form of a random flip of the label value (0 → 1 or 1 → 0),

50

4.7 Conclusions

Table 4.7: Consistency, all functions

𝑁 B B.all O O.p RF.l RF.p

avg 42.3 41.5 42.6 43.3 53.3 51
400 # 1 1 0 0 2 19 11

2 3 0 3 2 10 15

avg 42 44.1 45.1 45.5 55.6 52.5
800 # 1 0 1 0 1 19 12

2 4 3 2 2 10 12

avg 41.7 46.1 47.2 47.6 58.5 53.8
1600 # 1 1 2 0 1 19 10

2 5 4 2 0 11 11

𝑚1600 avg 9.9 11.1 14.9 15.1 40.5 28.6

25

50

75

B B.all O O.p RF.l RF.p

co
ns
is
te
nc
y

Figure 4.9: Consistency, all functions, 𝑁 = 400

i.e., is independent of the model inputs {𝑎1, . . . , 𝑎𝑀 } and the true label 𝑦. The noise level
then reflects the share of points chosen at random for which the label is changed. Noise
level 0.5 implies completely random data with Pr(𝑦 = 1) = Pr(𝑦 = 0) = 0.5. Figure 4.14
contains the results for 𝑁 = 400 averaged across 50 runs. As expected, scenario quality
decreases with the level of noise. Our approach provides better results for any level we
experimented with, except for 0.5. For random data, when the noise level is 0.5, the AUpC
value is positive, and the precision (0.57–0.64) is greater than that on the entire test set
𝑑test (0.54). This is due to the best scenario being “inside” the initial box and thus even
cutting off any dimension at random results in the increased precision at first.

4.7 Conclusions

Simulations allow studying the behavior of complex systems. Scenario discovery is the
process of using simulations to gain interpretable insights regarding this behavior. PRIM is
a state-of-the-art method for scenario discovery. It isolates conditions for system behavior
of interest (e.g., system instability), in the form of a hyperbox, referred to as a scenario.
The disadvantage of this method, as we have shown, is that it requires relatively many
simulation runs, particularly in high dimensions, i.e., for systemswithmany input variables.
Since simulations are often computationally hard, this is prohibitive in many cases.

51

4 Improving Scenario Discovery — REDS

0.08

0.12

0.16

0.20

B B.all O O.p RF.l RF.p
A

U
pC

0.7

0.8

0.9

1.0

B B.all O O.p RF.l RF.p

pr
ec

is
io

n

5.0

7.5

10.0

B B.all O O.p RF.l RF.p

re

st
ric

te
d

0.08

0.12

0.16

0.20

B B.all O O.p RF.l RF.p
A

U
pC

0.7

0.8

0.9

1.0

B B.all O O.p RF.l RF.p

pr
ec

is
io

n

5.0

7.5

10.0

B B.all O O.p RF.l RF.p

re

st
ric

te
d

Figure 4.10: Quality metrics for DSGC for 𝑁 = 400

0.6

0.7

0.8

0.9

0.25 0.50 0.75 1.00

recall

pr
ec
is
io
n

B B.all O O.p RF.l RF.p

Figure 4.11: Peeling trajectories for DSGC for 𝑁 = 400

We have studied reducing the number of simulations needed to discover good scenarios.
Based on data produced with simulations, our method, REDS, first trains a powerful,
but a complex statistical model. This model then replaces the simulation model, to label
much more data for PRIM. We have justified the plausibility of our approach from a
statistical point of view as well as with exhaustive experiments. Experiments show that
our method is much better than existing ones. Specifically, it requires 75% fewer points
than a conventional one on average to produce scenarios of comparable quality.

Finally, we explained that, in contrast to PRIM, REDS is compatible with active learning,
which could further reduce the number of simulations.

52

4.7 Conclusions

0.12

0.15

0.18

200 400 800 1200 2000

A
U

pC

B B.all O O.p RF.l RF.p

0.7

0.8

0.9

200 400 800 1200 2000

pr
ec

is
io

n

0.1

0.2

0.3

0.4

200 400 800 1200 2000

N (number of points in D)

co
ns

is
te

nc
y

0.12

0.15

0.18

200 400 800 1200 2000

A
U

pC

B B.all O O.p RF.l RF.p

0.7

0.8

0.9

200 400 800 1200 2000

pr
ec

is
io

n

0.1

0.2

0.3

0.4

200 400 800 1200 2000

N (number of points in D)

co
ns

is
te

nc
y

Figure 4.12: Learning curves on DSGC data

0.12

0.14

0.16

0.18

200 400 800 1600 3200 6400 25000 1e+05

A
U

pC

B B.all O O.p RF.l RF.p

0.75

0.80

0.85

0.90

200 400 800 1600 3200 6400 25000 1e+05

L value

pr
ec

is
io

n

0.12

0.14

0.16

0.18

200 400 800 1600 3200 6400 25000 1e+05

A
U

pC

B B.all O O.p RF.l RF.p

0.75

0.80

0.85

0.90

200 400 800 1600 3200 6400 25000 1e+05

L value

pr
ec

is
io

n

Figure 4.13: DSGC: quality metrics in dependence on 𝐾

53

4 Improving Scenario Discovery — REDS

0.05

0.10

0.15

0.0 0.1 0.2 0.3 0.4 0.5

A
U
pC

B B.all O O.p RF.l RF.p

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5

noise

pr
ec
is
io
n

0.05

0.10

0.15

0.0 0.1 0.2 0.3 0.4 0.5

A
U
pC

B B.all O O.p RF.l RF.p

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5

noise

pr
ec
is
io
n

Figure 4.14: Quality metrics for DSGC in dependence on noise level for 𝑁 = 400

54

5 Improving Subgroup Discovery

In the previous chapter, we proposed an approach, REDS (Rule Extraction for Discovering
Scenarios) [AB21], to discover better subgroups (scenarios) from a limited amount of
simulated data, when a simulation process is computationally expensive. With measured
data, large labeled datasets are also often not available. Labeling additional data is either
impossible or associated with high costs, or requires considerable time which cannot be
reduced. Naturally, one wants to be able to find high-quality subgroups from small amounts
of measured data. As we will show, REDS often fails to solve this task. In this Chapter, we
propose REDS+, a method extending REDS methodology to work with measured data. We
evaluate REDS+ experimentally with two algorithms for subgroup discovery (SD) from
datasets with continuous attributes, PRIM and BestInterval; we found that REDS+ often
improves the quality of their results.

Chapter Outline. Section 5.1 explains why REDS is not directly applicable to measured
data. Section 5.2 introduces our approach, REDS+. Section 5.3 describes the experimental
setup. Section 5.4 features the results. Section 5.4 concludes.

5.1 REDS on Measured Data

In this section, we explain why REDS may perform poorly on measured data. We conduct
a small experiment to support our claim.

5.1.1 When REDS Does and Does Not Work

In our analysis in Section 4.2.1, 𝜇𝑎𝑚 (4.5) approximates 𝜇 (4.1). Let us define by 𝑝𝑔 (𝑥) the
probability distribution of points used to estimate 𝜇𝑎𝑚; we can write

𝜇𝑎𝑚 =
1
𝑙

𝑙∑︁
𝑖=1

𝑦𝑎𝑚𝑖
𝑙→∞−−−−→

∫
𝑏
𝑓 𝑎𝑚 (𝑥)𝑝𝑔 (𝑥) d𝑥∫
𝑏
𝑝𝑔 (𝑥) d𝑥

(5.1)

With REDS, we know the true distribution 𝑝 (𝑥) = 𝑐𝑜𝑛𝑠𝑡 and use 𝑝𝑔 (𝑥) = 𝑝 (𝑥); the only
source of bias in the estimate of 𝜇 is an imperfect approximation of 𝑓 (𝑥) by 𝑓 𝑎𝑚 . With
measured data, setting 𝑝𝑔 (𝑥) = 𝑐𝑜𝑛𝑠𝑡 may lead to an arbitrary high bias even if 𝑓 (𝑥) = 𝑓 𝑎𝑚

[Bias(𝜇𝑎𝑚)]2 = (𝜇 − 𝜇𝑎𝑚)2 =
(∫
𝑏
𝑓 (𝑥)𝑝 (𝑥) d𝑥∫
𝑏
𝑝 (𝑥) d𝑥

−
∫
𝑏

𝑓 𝑎𝑚 (𝑥) d𝑥
)2
.

Consequently, the quality of subgroups discovered with REDS can be low.

55

5 Improving Subgroup Discovery

0.00

0.05

0.10

0.15

O RF.d RF.ss RF.u

A
U
pC

Figure 5.1: DSGC: quality metrics in dependence on 𝐾

In one specific case, semi-supervised setting, we can assume that unlabeled points
form a representative sample from 𝑝 (𝑥), and REDS will improve the quality of discovered
subgroups. Specifically, we can label these points with 𝑓 𝑎𝑚 , add to the labeled data, and
use the resulting dataset as an input for a subgroup discovery method. We now provide
an example supporting the above considerations.

5.1.2 Small Experiment

We take the dataset “higgs” (see Table 5.1), name it 𝐷ℎ , set 𝑁 = 400, 𝐿 = 2500, and proceed
as follows.

1. create a dataset 𝐷𝑖 by selecting 𝑁 examples from 𝐷ℎ;
2. create a dataset 𝐷1 by selecting 𝐿 points from 𝐷ℎ , which are not in 𝐷𝑖 . 𝐷1 represents

the unlabeled pool in a semi-supervised setting;
3. create a dataset 𝐷2 by selecting 𝐿 points i.i.d. from the multidimensional uniform

distribution with the support defined by the ranges of attributes’ values in 𝐷𝑖 , as
REDS does;

4. train random forest classifier 𝑓 𝑎𝑚 on 𝐷𝑖 ;
5. create datasets 𝐷𝑑 = 𝐷𝑖 , 𝐷𝑠𝑠 = 𝐷𝑖 ∪𝐷1 and 𝐷𝑢 = 𝐷𝑖 ∪𝐷2 replacing target variable’s

values with the probabilities predicted by 𝑓 𝑎𝑚;
6. apply PRIM to 𝐷𝑖 , 𝐷𝑑 , 𝐷𝑠𝑠 , 𝐷𝑢 and call the outputs “O”, “RF.d”, “RF.ss” and “RF.u”

respectively;
7. calculate AUpC (see Section 4.4.1) of each output on 𝐷ℎ\𝐷𝑖 for “O”, “RF.d”,“RF.u”,

and on 𝐷ℎ\𝐷𝑠𝑠 for “RF.ss”;
8. repeat the above steps 30 times on different samples 𝐷𝑖 , 𝑖 = 1, . . . , 30, so that
𝐷𝑖 ∩ 𝐷 𝑗 = ∅, 𝑖 ≠ 𝑗 .

Figure 5.1 presents the results. One can see that the box for “RF.d” lies higher than the
one for “O”. I.e., relabeling points in 𝐷𝑖 with probabilities predicted by random forest has
improved the quality of PRIM output. This result improves further in a semi-supervised
setting (“RF.ss”). However, when the new points are sampled from a uniform distribu-
tion (“RF.u”), AUpC is significantly lower than for PRIM on original data 𝐷𝑖 (“O”). This
experiment shows the importance of 𝑝𝑔 (𝑥) being a good approximation of 𝑝 (𝑥).

56

5.2 Extending REDS

Algorithm 7: REDS+
Data: 𝐷 , 𝐷val, 𝛼 , 𝐵0, minpts, 𝐿, 𝐴𝑀 , 𝑆𝑀 , 𝐺 , 𝑆𝐷 — described in the text
Result: Output of the algorithm 𝑆𝐷

1 𝐷𝑠 = scale(𝐷, 𝑆𝑀);
2 𝑓 𝑎𝑚 = train(𝐴𝑀,𝐷);
3 𝑝𝑔 = train(𝐺, 𝐷);
4 𝐷add = new.points(𝐿, 𝑝𝑔) + zeros(𝐿);
5 𝐷′ = 𝐷𝑠 ∪ 𝐷𝑎𝑑𝑑 ;
6 for 1 < 𝑖 < (𝐿 + 𝑁) do
7 𝑦𝑎𝑑𝑑

𝑙
= predict(𝑥𝑎𝑑𝑑

𝑙
, 𝑓 𝑎𝑚);

8 𝐷𝑛𝑒𝑤 = scale.back(𝐷′, 𝑆𝑀);
9 res = SD(𝐷 = 𝐷new, . . .);

10 return res

5.2 Extending REDS

Algorithm 7 describes our proposed method, REDS+, to discover better subgroups from
measured data. In contrast to REDS, it uses a method 𝐺 (we call it data generator) to
approximate with 𝑝𝑔 (𝑥) the true multidimensional distribution 𝑝 (𝑥) of points in 𝐷 , and
then samples from 𝑝𝑔 (𝑥). We now describe the details.

First, REDS+ scales the attributes in 𝐷 with a scaling method 𝑆𝑀 to obtain 𝐷𝑠 (Line 1).
This is done since some metamodels 𝐴𝑀 data generators 𝐺 work better with scaled data.
It then fits a metamodel 𝑓 𝑎𝑚 and a data generator 𝑝𝑔 to data 𝐷𝑠 (Lines 2–3). Next, the
algorithm generates 𝐿 additional points using 𝑝𝑔, adds the target vector consisting of zeros
to them, and adds the resulting points to 𝐷𝑠 (Lines 4–5) to form 𝐷′. After this, REDS+
replaces the values of the target variable in 𝐷′ with predictions of 𝑓 𝑎𝑚 and scales the
data back to obtain 𝐷𝑛𝑒𝑤 (Lines 6–8). Finally, our method applies a subgroup discovery
algorithm 𝑆𝐷 to 𝐷𝑛𝑒𝑤 and returns its output (Lines 9–10).
The scaling method used in Line 1 could be, e.g., 𝑧-score scaling or scaling to a given

range. For instance, if we define 𝑎max

𝑗 = max𝑖 (𝑥𝑖 𝑗), 𝑎min

𝑗 = min𝑖 (𝑥𝑖 𝑗), scaling to the range
[0, 1] is

𝑥𝑠𝑖 𝑗 =
𝑥𝑖 𝑗 − 𝑎min

𝑗

𝑎max

𝑗
− 𝑎min

𝑗

,

and respective formula for scaling back is

𝑥𝑛𝑒𝑤𝑖 𝑗 = 𝑥𝑠𝑖 𝑗

(
𝑎max

𝑗 − 𝑎min

𝑗

)
+ 𝑎min

𝑗 .

When there exists a pool of unlabeled data, the quality of intermediate metamodel 𝑓 𝑎𝑚
might be further improved by using existing semi-supervised methods (see Section 2.4.3)
in the training procedure (Line 2). We now present the intuition behind REDS+.

57

5 Improving Subgroup Discovery

5.2.1 Intuition Behind REDS+

Our analysis in Chapter 4 suggests that REDSworks if the reduction in the variance of PRIM
due to a larger training set exceeds the bias of a metamodel𝐴𝑀 . As we explained above, it is
essential that the original and additionally generated points come from similar distributions.
The detailed analysis depends on a specific subgroup discovery method chosen for REDS+
and may not provide insights going beyond these qualitative considerations.

In other words, our key assumption is that the quality of the output of an SD algorithm
increases with the number of examples 𝑁 in the dataset and approaches some saturation
level. In our case, this level cannot be above one, since it is the maximal value of any
quality measure we use. We aim at making the learning curve (see Figure 4.1) steeper at the
beginning, by generating additional examples. If these examples are as good as the original
ones, that is, come from the same distribution, our goal is achieved naturally. REDS+ uses
a data generator 𝐺 to approximate 𝑝 (𝑥) with 𝑝𝑔; and a metamodel 𝐴𝑀 to approximate
𝑝 (𝑦 = 1|𝑥) = 𝑓 (𝑥) with 𝑓 𝑎𝑚 . If both 𝑝𝑔 and 𝑓 𝑎𝑚 are accurate, REDS+ will improve the
quality of subgroups found from small datasets. We will check this experimentally.

5.3 Experimental Setting

In this section, we describe our experimental setting. First, we introduce the key compo-
nents REDS+: data generators 𝐺 , metamodels 𝐴𝑀 , and subgroup discovery algorithms
𝑆𝐷 , which we will use in the experiments. We discuss how we chose the hyperparameter
values of these components and give a short name to each combination of a component
and its hyperparameter value(s), which we will use further on the plots. Then we list
the datasets and their sources and describe the configuration of experiments and quality
metrics.

5.3.1 Data Generators

Dummy. This generator does not generate additional points. Dummy generator com-
bined with a metamodel 𝐴𝑀 in REDS+ means that the points in 𝐷 are re-labeled with
𝑓 𝑎𝑚 , as is the case with “RF.d” in our experiment above. This generator does not have any
hyperparameters; we use a short name “d” to refer to it.

Uniform. This is our baseline generator. As in REDS, it samples points from a multivari-
ate uniform distribution with the support

∏𝑀
𝑗=1 [min𝑖 (𝑥𝑖 𝑗),max𝑖 (𝑥𝑖 𝑗)]. As we have demon-

strated above, augmenting the dataset with uniformly generated points may decrease the
quality of discovered subgroups. This generator does not have any hyperparameters; we
use a short name “unif” to refer to it.

Normal. This generator samples new points from a multivariate normal distribution
with the mean vector {𝜇1, . . . , 𝜇𝑀 } and covariance matrix diag(�̂�21 , . . . , �̂�2𝑀). Where

𝜇 𝑗 =
1
𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 𝑗 , �̂�2𝑗 =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(
𝑥𝑖 𝑗 − 𝜇 𝑗

)2 (5.2)

58

5.3 Experimental Setting

Algorithm 8:MUNGE
Data: 𝐷 , 𝐿, 𝑝𝑟 , 𝑙𝑣 — as described in the text
Result: a dataset 𝐷𝑎𝑑𝑑 of the size 𝐿 ×𝑀 , without target variable

1 𝐷𝑎𝑑𝑑 = ∅;
2 while |𝐷𝑎𝑑𝑑 | < 𝐿 do
3 𝐷′ = 𝐷 ;
4 foreach 𝑥′𝑖 ∈ 𝐷′ do
5 𝑥𝑘 ∈ 𝐷 = nearest neghbor (but not the same point) of 𝑥′𝑖 ;
6 foreach 𝑗 ∈ {1, . . . , 𝑀} do
7 with probability 𝑝𝑟 : 𝑥′𝑖 𝑗 = norm(𝑥𝑘 𝑗 , |𝑥′𝑖 𝑗 − 𝑥𝑘 𝑗 |/𝑙𝑣);

8 𝐷𝑎𝑑𝑑 = 𝐷𝑎𝑑𝑑 ∪ 𝐷′;
9 𝐷𝑎𝑑𝑑 = clean(𝐷𝑎𝑑𝑑 , 𝐷);

10 𝐷𝑎𝑑𝑑 = sample.rows(𝐷𝑎𝑑𝑑 , 𝐿);
11 return 𝐷𝑎𝑑𝑑

This generator does not have any hyperparameters, and we use a short name “norm” to
refer to it.

Gaussian Mixtures. A more flexible generation, which includes the normal as a partic-
ular case, is to sample points from a mixture of 𝐻 Gaussian distributions:

𝑋 ∼
𝐻∑︁
ℎ=1

𝜙ℎN(𝜇ℎ, Σ2
ℎ
),

𝐻∑︁
ℎ=1

𝜙ℎ = 1

The number of components 𝐻 , mean vector 𝜇ℎ , and covariance matrix Σ2
ℎ
for each com-

ponent are estimated from data. To prevent overfitting, one can decrease the number of
degrees of freedom by constraining covariance matrices to be all diagonal, shared between
components or scalar: Σ2

ℎ
= 𝜎2

ℎ
𝐼 , where 𝐼 is the identity matrix and 𝜎ℎ ∈ R.

The Gaussian mixtures (“gm”) model is estimated with the expectation-maximization
algorithm [DLR77]. We consider all available covariance types and numbers of components
from the set {1, . . . , 30}; we choose the optimal values via 5-fold cross-validation1

Kernel Density Estimate. Another possibility to generate points is to sample them
from a multivariate probability density estimated from data with a Gaussian kernel as

𝑝 (𝑥) = 1

𝑁𝜆1 · · · 𝜆𝑀 (2𝜋)
𝑀
2

𝑁∑︁
𝑖=1

𝑒
− 1

2
∑𝑀

𝑗=1

(
𝑥𝑖 𝑗−𝑥
𝜆𝑗

)2
.

A smoothing parameter 𝜆 𝑗 , 𝑗 = 1, . . . , 𝑀 is called bandwidth.

1McLachlan and Rathnayake [MR14] present other possibilities to optimize hyperparameters including,
widely used Bayesian information criterion [S+78]. We use cross-validation for consistency.

59

5 Improving Subgroup Discovery

c(−3, 3)

no
rm

al

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

c(−3, 3)

c(
3,

 −
3)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

c(−3, 3)

c(
3,

 −
3)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

do
nu

t

true distribution

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

c(
3,

 −
3)

local_var = 5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

c(
3,

 −
3)

local_var = 0.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Figure 5.2: Influence of local variance on MUNGE output.

In our experiments, we use the Gaussian kernel. We use 5-fold cross-validation to chose
the value of bandwidth from the set of 50 equidistant values {0.01, . . . , 0.5} (“kde.g”); we
also try Silverman’s [Sil86] rule of thumb (“kde.s”):

𝜆 𝑗 = �̂� 𝑗

[
4

(𝑀 + 2)𝑁

] 1
𝑀+4

, 𝑗 = 1, . . . , 𝑀,

where the attributes’ standard deviations �̂� 𝑗 are estimated as in (5.2).
We use the kernel density estimation and Gaussian mixtures model implementations

from scikit-learn [PVG+11] (version 0.22.2) python2 module.

MUNGE. This data generation technique is from [BCN06]. Its original description
suggests 𝐿 operations of nearest neighbor search at minimum; each search is in 𝑁 points
from 𝑀-dimensional space. The authors do not propose an efficient way of doing this
search; neither they provide the reason behind. Their description of MUNGE also does
not assume removing duplicated points from the generated data. Thus we present our
interpretation of the MUNGE (Algorithm 8); it searches nearest neighbors less frequently
than the original description suggests and generates only distinct points.
We have implemented the MUNGE generator ourselves. The original paper [BCN06]

does not provide a recommendation regarding the values of its hyperparameters, 𝑝𝑟 , and
𝑙𝑣 . In the algorithm implementation which we have found3, their default values are 0.5

2https://www.python.org/
3https://github.com/Prometheus77/munge/blob/master/R/munge.R

60

https://www.python.org/
https://github.com/Prometheus77/munge/blob/master/R/munge.R

5.3 Experimental Setting

and 5, respectively. However, we have experimentally found that the result with 𝑙𝑣 = 0.2
and 𝑝𝑟 = 0.5 looks more reasonable. In Figure 5.2, all plots contain 2000 points. MUNGE
was applied to a sample of 200 points from the distributions shown on the leftmost plots.
With 𝑙𝑣 = 5 (middle plots), the generated points tend to form too dense clusters.

So we use 𝑝 = 0.5 and 𝑙𝑣 = 0.2 (Figure 5.2, right plots; we call this generator “m0.2”) in
further experiments and also try 𝑙𝑣 = 1 (we use “m1” to refer to this instantiation). Still,
the optimal hyperparameter values might depend on the dataset size 𝑁 and the number
of attributes 𝑀 . But since this method is nonparametric, hyperparameter optimization
through, e.g., cross-validation, is not straightforwardly applicable.

5.3.2 Metamodels

Subgroup discovery algorithms scale super-linearly with an increase in the number of
examples as they require sorting the data, which is in 𝑂 (𝑁 log(𝑁)) [CLRS01]. In Chap-
ter 4, we have obtained that labeling with probabilities leads to a more rapid quality
improvement of discovered subgroups. Hence, in this chapter, we consider metamodels
that output probability estimates. In particular, we will experiment with random for-
est [Bre01], Gaussian processes classification [RW06], naive Bayes [HTF09] and support
vector machines [Bur98].

One needs to calibrate the output of SVM to obtain probabilities [P+99]. Next, while
naive Bayes predicts probabilities, this model is usually too confident in its predictions
(close to 0 or 1) due to the “naive” assumption on attributes’ mutual independence, given
the class variable [NC05]. Thus, we calibrate the output of both SVM and naive Bayes
with Platt Scaling [P+99] — a recommended technique for small sample sizes [NC05].

All metamodels are implemented in the scikit-learn python module. For Naive Bayes
(NB) and Gaussian process (GP) classifiers, we do not alter the hyperparameter values
suggested by their default implementation. According to scikit-learn documentation4,
a random forest (RF) classifier is most sensitive to two hyperparameters — the number
of trees and the number of randomly selected attributes to consider at each split. More
trees usually result in better quality, so we keep default value 100 for this hyperparameter.
We choose the optimal value of the number of randomly selected attributes from the set
{2,

√
𝑀,𝑀} via cross-validation. For support vectormachines (SVM), we choose the optimal

values of cost hyperparameter from the set {0.1, 1, 10, 100} and kernel hyperparameter
from the set {0.001, 0.01, 0.1, 1} using cross-validation. The exponentially growing value of
the increment in both sequences is in line with the existing recommendations [HCL+03].

5.3.3 Subgroup Discovery Algorithms

Many subgroup discovery (SD) algorithms were developed over the past decades. A
significant share of them performs an exhaustive search (see Section 2.3). However, such
methods can only cope with small datasets with a low number of continuous attributes,
despite using ingenious pruning strategies, see, e.g., [GR09]. Hence, we focus on the
methods exploiting heuristic search.

4https://scikit-learn.org/stable/modules/ensemble.html#forest

61

https://scikit-learn.org/stable/modules/ensemble.html#forest

5 Improving Subgroup Discovery

To this end, we select PRIM [FF99] and BestIntervalBS [MNFK12] algorithms, de-
scribed in Section 2.3. Their search heuristics are, in a certain sense, complementary —
“patient” in PRIM and “greedy” in BestInterval. Thus, it is interesting whether both can
benefit from the proposed methodology.

We use metamodels that label data with probabilities, whereas BestInterval algorithm
was proposed to optimize WRAcc measure, i.e., assumes a binary input. We now show
that it also optimizes NWRacc.

Proposition 5.3.1 The BestInterval algorithm [MNFK12] originally developed for WRAcc

quality measure can be used for NWRAcc measure without modification.

Proof: The BestInterval algorithm is based on the additive property of WRAcc (Prop-
erty 2.3.1). To show that it holds for 𝑁𝑊𝑅𝐴𝑐𝑐 , we simply repeat the derivation from
[MNFK12] using our more general notations. Specifically, we show that for any two hyper-
boxes 𝐵1 and 𝐵2 with 𝑆𝐵1∩𝑆𝐵2 = ∅, it holds thatNWRAcc(𝐷, 𝑆𝐵1∪𝑆𝐵2) = NWRAcc(𝐷, 𝑆𝐵1)+
NWRAcc(𝐷, 𝑆𝐵2). Referring to the quantities associated with 𝐵1 and 𝐵2 using respective
subscripts (1 and 2), we obtain

NWRAcc(𝐷, 𝑆𝐵1 ∪ 𝑆𝐵2) =
𝑛1 + 𝑛2
𝑁

(
𝑛+1 + 𝑛+2
𝑛1 + 𝑛2

− 𝑁 +

𝑁

)
=
𝑛+1 + 𝑛+2
𝑁

− (𝑛1 + 𝑛2)
𝑁 +

𝑁 2

=
𝑛1

𝑁

(
𝑛+1
𝑛1

− 𝑁 +

𝑁

)
+ 𝑛2
𝑁

(
𝑛+2
𝑛1

− 𝑁 +

𝑁

)
= NWRAcc(𝐷, 𝑆𝐵1) + NWRAcc(𝐷, 𝑆𝐵2)

□

Since the results from Chapter 4 indicate a low influence of the pasting step of PRIM,
we use only the peeling step in the following experiments. We set PRIM hyperparameters
to the same values as before, i.e., 𝛼 = 0.5 and minpts = 20; we also assume 𝐷 = 𝐷val.
For BestIntervalBS (“BI”), we set the beam size to 𝑏𝑠 = 1 and the maximal number of
attributes defining a subgroup to𝑚 = 20, since we do not experiment with datasets with
𝑀 ≥ 20 due to relatively high time complexity of the algorithm. We will additionally try
different values of 𝑏𝑠 in the particular experiment.

5.3.4 Datasets

We use 18 datasets to test our approach. We have selected sufficiently large ones to split
each into many non-overlapping small datasets in order to reduce random effects in or
experiments. Since many of the generators assume continuous attributes, we remove the
attributes having few (𝑍 < 20) unique values; we also remove irrelevant attributes, e.g.,
“ID”. From the resulting datasets, we remove rows with missing values. Table 5.1 lists the
datasets together with their characteristics and corresponding references. Here 𝑁 ∗ — the
number of examples after removing incomplete ones (i.e., with missing attributes’ values);
𝑀∗ — the number of attributes;𝑀 — the final number of attributes (after removing “discrete”
and irrelevant); “+” — the positive class; 𝑁 ∗+/𝑁 ∗ — the share of positive examples.

62

5.3 Experimental Setting

Name5 𝑁 ∗ 𝑀∗ 𝑀 + 𝑁 ∗+/𝑁 ∗ Reference

occupancy 20560 6 6 1 0.231 [DG17, CF16]
higgs 98050 28 7 1 0.529 [VvRBT13, BSW14]
htru 17898 8 8 1 0.092 [DG17, LSC+16]
shuttle 58000 9 9 1 0.786 [DG17]
avila 20867 10 10 A 0.411 [DG17, SMFdF18]
gamma-telescope 19020 10 10 g 0.648 [DG17]
eeg-eye-state 14980 14 14 1 0.551 [DG17]
credit cards 30000 24 14 1 0.221 [DG17, YL09]
higgs_o 98050 28 17 1 0.529 [VvRBT13, BSW14]
ring 7400 20 20 1 0.505 [OCO+17]
sylva 14395 108 20 1 0.062 [VvRBT13]
jm1 10880 21 21 true 0.193 [VvRBT13, SSM05]
stocks 96320 21 21 1 0.505 [VvRBT13]
sensorless 58509 48 48 1 0.091 [DG17]
bankruptcy 4885 64 64 1 0.022 [DG17, ZTT16]
gas 10310 128 128 1 0.191 [DG17, VVA+12]
clean2 6598 168 168 1 0.154 [OCO+17]
seizure 11500 178 178 1 0.2 [DG17, ALM+01]

Table 5.1: Datasets used for evaluation.

To make REDS+ applicable to datasets with mixed attribute types, one could use suitable
data generators. For instance, MUNGE can be extended to mixed attributes as in [BCN06].
Alternatively, one could only use the artificially enlarged dataset when considering con-
tinuous attributes and use the original small dataset for discrete ones. This approach is
similar to the one proposed in [GR09]. However, respective experiments are beyond the
scope of this work.

5occupancy — “Occupancy Detection”. We keep only time in the first attribute, “date” http://archive.
ics.uci.edu/ml/datasets/Occupancy+Detection+; higgs — “HIGGS”, only “high-level” features https:

//www.openml.org/d/4532; htru — “HTRU2” https://archive.ics.uci.edu/ml/datasets/HTRU2; shut-
tle — “Statlog (Shuttle)” http://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle); avila — https:

//archive.ics.uci.edu/ml/datasets/Avila; gamma-telescope — “MAGIC Gamma Telescope” https:

//archive.ics.uci.edu/ml/datasets/magic+gamma+telescope; eeg-eye-state — “EEG Eye State” http:

//archive.ics.uci.edu/ml/datasets/EEG+Eye+State; credit cards — “Default of credit card clients” https:
//archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients; higgs_o — only relevant “low-
level” features from “HIGGS”; sylva — “SYLVA” https://www.openml.org/d/1040; jm1 — “JM1/Software
defect prediction” https://www.openml.org/d/1053; stocks — “Encrypted Stock Market Data from Nu-
merai” https://www.openml.org/d/23517; sensorless — “Dataset for Sensorless Drive Diagnosis” http:

//archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis; bankruptcy — “Polish
companies bankruptcy data” (3-rd file) https://archive.ics.uci.edu/ml/datasets/Polish+companies+
bankruptcy+data; gas — “Gas Sensor Array Drift Dataset” https://archive.ics.uci.edu/ml/datasets/
Gas+Sensor+Array+Drift+Dataset; seizure — “Epileptic Seizure Recognition” https://archive.ics.uci.
edu/ml/datasets/Epileptic+Seizure+Recognition

63

http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://www.openml.org/d/4532
https://www.openml.org/d/4532
https://archive.ics.uci.edu/ml/datasets/HTRU2
http://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
https://archive.ics.uci.edu/ml/datasets/Avila
https://archive.ics.uci.edu/ml/datasets/Avila
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.openml.org/d/1040
https://www.openml.org/d/1053
https://www.openml.org/d/23517
http://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis
http://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis
https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data
https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data
https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset
https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition

5 Improving Subgroup Discovery

5.3.5 Quality Metrics

As in Chapter 4, we use AUpC and precision to measure the quality of subgroups produced
with PRIM. Since BestInterval is designed to optimize WRAcc, we take this measure to
evaluate the algorithm’s output. We also compare PRIM and BestInterval, which was
not done before to our knowledge. To this end, we compute WRAcc for the box 𝐵𝑅 in
PRIM output which has maximal NWRAcc on the dataset 𝐷 , see Algorithm 1. We do so
since one can show that PRIM maximizes NWRAcc up to a certain iteration. Specifically,
the following holds.

Proposition 5.3.2 Let 𝐵𝑤 ,𝑤 = 0, . . . ,𝑊 be the sequence of boxes produced by PRIM when

it is used with its default target function — mean value of points inside the box. Changing this

function to WRAcc (NWRacc) would result in the sequence of boxes 𝐵𝑟 , 𝑟 = 0, . . . , 𝑅, 𝑅 ≤𝑊
with (𝐵𝑤 = 𝐵𝑟 |𝑤 = 𝑟).

Proof: Repeating the reasoning from Section 4.2.1, on the𝑤-th iteration, PRIM selects
the next box 𝐵𝑤+1 with a maximal value of 𝑛+ = 𝑛+𝑤+1 for points inside it, from a set of
possible boxes 𝐵 𝑗𝑤 , all defining subgroups with the same number of points 𝑛. Assume, that
changing the target function to WRAcc (NWRAcc), would have resulted in the selection of
another box 𝐵𝑟+1 ≠ 𝐵𝑤+1, with 𝑛+ = 𝑛+𝑟+1 < 𝑛

+
𝑤+1. But this would mean that

WRAcc(𝐷, 𝑆𝐵𝑟+1) =
𝑛

𝑁

(
𝑛+𝑟+1
𝑛

− 𝑁 +

𝑁

)
<
𝑛

𝑁

(
𝑛+𝑤+1
𝑛

− 𝑁 +

𝑁

)
= WRAcc(𝐷, 𝑆𝐵𝑤+1),

which contradicts the selection criterion. □

5.3.6 Design of Experiments

Every single experiment in our evaluation consists of the following steps.

1. Split a dataset 𝐷𝑆 𝑗 into two parts 𝐷𝑖 : |𝐷𝑖 | = 𝑁 and 𝐷 test = 𝐷𝑆 𝑗\𝐷𝑖 ;
2. apply REDS+ to 𝐷𝑖 ;
3. evaluate quality on 𝐷𝑡𝑒𝑠𝑡 .

We repeat the above experiment for PRIM, all datasets DS 𝑗 (𝑗 = {1, . . . , 18}) from Table 5.1,
all data generators, and metamodels listed above. For each dataset, we experiment with
different sizes of 𝐷𝑖 : 𝑁 = {200, 400, 800, 1600}. To reduce the influence of random effects,
for each 𝑁 value, we do min{30, ⌊|𝐷𝑆𝑖 |/𝑁 ⌋} splits into 𝐷𝑖 and 𝐷 test, so that sets 𝐷𝑖 from
different splits do not overlap: 𝐷𝑖 ∩ 𝐷 𝑗 = ∅, 𝑖 ≠ 𝑗 . We experiment with BestIntervalBS
(BI) algorithm in the same way, but with a smaller variety of datasets, data generators, and
metamodels since the experiments take longer. To emulate a semi-supervised setting, we
remove random 2500 points from 𝐷𝑡𝑒𝑠𝑡 and use them as unlabeled data. For convenience,
we treat this data as produced by a data generator which we call “ss”.

For all generators, we set the number of newly generated points 𝐿 = 2500. We chose
this value since it is at least as large as 𝑁 but small enough for BestIntervalBS algorithm
so that the experiments take a reasonable time.

64

5.4 Results

We configure both scenario discovery algorithms to output a single subgroup description.
It allows us to apply the quality metrics straightforwardly without developing a methodol-
ogy to evaluate the quality of multiple subgroups. This configuration does not affect the
generality of our conclusions since both (and many other) subgroup discovery algorithms
follow covering procedure when searching multiple subgroups (see Section 2.3). That is,
they find subgroup descriptions one after another, removing corresponding examples from
train data.

5.4 Results

In this section, we resent the results from experiments with PRIM, followed by the ones
from experiments with BestIntervalBS. In the end, we compare these two scenario
discovery algorithms.

5.4.1 Experiments with PRIM

Figure 5.3 summarizes the outcome of experiments with PRIM for different sizes 𝑁 of 𝐷𝑖
and different quality metrics. Each cell in this heatmap plot corresponds to a combination
of a metamodel and a data generator. Its color reflects the improvement in percent in
median (taken over min{30, ⌊|𝐷𝑆 𝑗 |/𝑁 ⌋} experiments averaged over datasets 𝐷𝑆 𝑗 from
Table 5.1). Blue shadows stand for quality improvement, red — for the decrease. The results
are consistent across dataset sizes𝑁 and quality measures. The best performingmetamodel
is random forest, the worst one is naive Bayes. REDS+ with uniform data generation is
worse than just applying PRIM to 𝐷𝑖 , whereas REDS+ with generating from kernel density
estimates or Gaussian mixtures improves the quality of subgroups discovered by PRIM.
For more detailed insights, we visualize the results separately for each dataset.

Figures 5.4–5.5 provide such visualization for 𝑁 = 400 and 𝑁 = 1600, respectively, and
for 𝐴𝑈𝑝𝐶 quality measure. Each plot stands for a single dataset 𝐷𝑆 𝑗 ; we have shortened
some names but retained the datasets order the same as in Table 5.1. Each box is based on
min{30, ⌊|𝐷𝑆 𝑗 |/𝑁 ⌋} experiments; their number is given in brackets in the plot title. Box
color corresponds to the algorithm used. “O” means original algorithm (here, PRIM); differ-
ent REDS+ instantiations we abbreviate as “<metamodel>.<generator>” — e.g., “RF.kde.s”
stands for random forest metamodel used together with generation from kernel density
estimate with bandwidth chosen according to Silverman’s rule.
One can see that RF.kde.s (green boxes) often leads to a noticeable improvement in

AUpC compared to just PRIM (red boxes). REDS+ in semi-supervised setting — RF.ss
(purple boxes) — is usually as good or even better than RF.kde.s. For some datasets (shuttle,
avila, sylva clean2) RF.ss performs significantly worse than RF.kde.s. That is, generating
points from approximated distribution for these datasets turned out to be better than from
the true one. Relabeling existing points with estimated probabilities (RF.d, blue boxes) does
not result in consistent improvement of the PRIM output. All this confirms that generating
points from the distribution reflecting the true one well is an essential feature of REDS+.
In Figure 5.6, we present learning curves for PRIM and “RF.kde.s”. Horizontal axes are

logarithmically scaled. The lines are median values frommin{30, ⌊|𝐷𝑆 𝑗 |/𝑁 ⌋} experiments;

65

5 Improving Subgroup Discovery

the area between 25-th and 75-th percentiles is shaded. Only in six (out of 18 · 4 = 72)
cases, the median AUpC obtained with REDS+ is lower than that resulting from PRIM. For
instance, for bankruptcy dataset at 𝑁 = 1600. Observe, that PRIM’s AUpC at 𝑁 = 1600
is achieved with REDS+ at 𝑁 ≈ 200 for gamma-telescope and ring, at 𝑁 ≈ 400 for sylva,
sensorless, credit cards, i.e., for 4–8 times smaller number of points. Even better results
are for jm1, clean2, shuttle, and avila datasets.

5.4.2 Experiments with BestIntervalBS

The conclusions similar to PRIM and AUpC also apply to BestIntervalBS and WRAcc.
Figures 5.7–5.8 are analogous to Figures 5.4–5.5; Figure 5.10 presents the learning curves.
REDS+ with random forest in a semi-supervised setting (“RF.ss”) and with generating from
kernel density estimate (“RF.kde.s”) improves the result of BestIntervalBS. For avila and
credit cards datasets, “RF.kde.s” even beats “RF.ss”, i.e., it is better to generate artificial
points than to use existing unlabeled ones.
By adding points to 𝐷 , REDS+ increases the search space for BestIntervalBS. This

results in the longer time needed to discover subgroups, which rises with the growth of the
number of added points 𝐿. Since BestIntervalBS is heuristic, the part of space it searches
(consequently, the search time) can be controlled by the beam size hyperparameter 𝑏𝑠 .
Naturally, one may wonder if increasing 𝑏𝑠 is a viable alternative to REDS+ since both
come at the cost of additional computation complexity. To check this, we experiment
with “RF.kde.s” and BestIntervalBS with 𝑏𝑠 = 1 and different values of 𝐿 from one side,
and BestIntervalBS with different numbers of 𝑏𝑠 from another side. We do so with
the gamma-telescope dataset. Figure 5.9 presents the results. Each point is the median
value over 30 experiments on non-overlapping 𝐷𝑖 (see Section 5.3.6), error bars cover the
area between 25-th and 75-th percentiles. Changing 𝑏𝑠 did not allow BestIntervalBS to
achieve the performance of REDS+.

5.4.3 Comparing PRIM and BestIntervalBS

To compare PRIM with BestIntervalBS, we plot corresponding learning curves. PRIM
produces better subgroups than BestIntervalBS on shuttle and credit cards datasets; it is
worse than BestIntervalBS on avila and ring datasets. For the other datasets, the results
of these algorithms are comparable Figure 5.11. REDS+ with PRIM is superior to REDS+
with BestIntervalBS in the majority of cases, see Figure 5.12.

These results should be interpreted with care. In the proof of Proposition 5.3.2, we used
the assumption of equal sizes of candidate subgroups. However, for PRIM (Algorithm 1),
this might not be true if there are attributes with a specific value overrepresented (∃𝑢 ∈
R : |{𝑎 = 𝑢}|/𝑁 > 1/𝑁), which is the case for many datasets we use. Changing the target
function of PRIM from mean to WRAcc should result in a more fair comparison, but this
is beyond the scope of this work.

66

5.5 Conclusions

5.5 Conclusions

Subgroup discovery methods discover knowledge in a comprehensible form of hyperboxes.
However, they require many examples to produce a reliable output. With measured data,
large datasets are not often available due to considerable costs of the data collection
process. Two cases are possible. In a semi-supervised case, many unlabeled examples
(points) are available, and one can label them with a powerful ML model to artificially
increase the dataset size. This procedure is almost the same as the one implemented by
REDS in Chapter 4. In the second case, when no pool of unlabeled data exists, REDS can fail
to produce good results. This is because it generates new points from a multidimensional
uniform distribution, which can be a bad approximation of the one data comes from.
In this chapter, we have proposed REDS+, a generalization of REDS, for finding better

subgroups from small datasets. Instead of generating new points uniformly at random,
it generates unlabeled examples trying to resemble a distribution of points in the data.
REDS+ then joins these points with the genuine ones, labels them using an ML model
fitted to original data, and applies scenario discovery algorithm to the resulting dataset.
We have experimented with different approaches to generate new points, different

ML models, and two subgroup discovery algorithms. We have found that using REDS+
with random forest leads to better results than directly applying a scenario discovery
algorithm to labeled data both in the semi-supervised case and when no unlabeled data
available. In the latter case, REDS+ exhibits the best performance when new points are
generated from a kernel density estimate. For some datasets, our approach requires 4–8
times fewer examples than conventional scenario discovery process to find subgroups of
similar quality.

67

5 Improving Subgroup Discovery

d

gm

kde.g

kde.s

m0.2

m1

norm

ss

unif

ge
ne

ra
to

r

0 25 50 75

AUpC, PRIM, N=200

-20 0 20

N=400

-20 -10 0 10 20 30

N=800

-20 -10 0 10 20

N=1600

d

gm

kde.g

kde.s

m0.2

m1

norm

ss

unif

ge
ne

ra
to

r

-10 0 10 20

Precision, N=200

-15 -10 -5 0 5 10

N=400

-15 -10 -5 0 5

N=800

-15 -10 -5 0

N=1600

d

gm

kde.g

kde.s

m0.2

m1

norm

ss

unif

G
P

N
B

R
F

S
V

M

metamodel

ge
ne

ra
to

r

-20 0 20 40

WRAcc, N=200

G
P

N
B

R
F

S
V

M

metamodel

-20 0 20

N=400

G
P

N
B

R
F

S
V

M

metamodel

-40 -20 0 20

N=800

G
P

N
B

R
F

S
V

M

metamodel

-40 -20 0 20

N=1600

d

gm

kde.g

kde.s

m0.2

m1

norm

ss

unif

ge
ne

ra
to

r

0 25 50 75

AUpC, PRIM, N=200

-20 0 20

N=400

-20 -10 0 10 20 30

N=800

-20 -10 0 10 20

N=1600

d

gm

kde.g

kde.s

m0.2

m1

norm

ss

unif

ge
ne

ra
to

r

-10 0 10 20

Precision, N=200

-15 -10 -5 0 5 10

N=400

-15 -10 -5 0 5

N=800

-15 -10 -5 0

N=1600

d

gm

kde.g

kde.s

m0.2

m1

norm

ss

unif

G
P

N
B

R
F

S
V

M

metamodel

ge
ne

ra
to

r

-20 0 20 40

WRAcc, N=200

G
P

N
B

R
F

S
V

M

metamodel

-20 0 20

N=400

G
P

N
B

R
F

S
V

M

metamodel

-40 -20 0 20

N=800

G
P

N
B

R
F

S
V

M

metamodel

-40 -20 0 20

N=1600

Figure 5.3: Average (over datasets) improvement in median (taken over data splits) quality
of subgroups found by REDS+ with PRIM compared to just PRIM in percent.

68

5.5 Conclusions

70
71

72
73

74
75

A
U

pC
occ (30)

5
10

15
20

higgs (30)

60
65

70
75

80

htru (30)

19
.6

20
.0

20
.4

shuttle (30)

10
15

20
25

30

avila (30)

18
20

22
24

gt (30)
5

10
15

A
U

pC

eeg (30)

2.
5

5.
0

7.
5

10
.0

cc (30)

1
2

3
4

5

higgs_o (30)

35
40

45

ring (18)

20
40

60
80

sylva (30)

0
5

10
15

jm1 (27)

-0
.5

0.
0

0.
5

1.
0

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

A
U

pC

stocks (30)

20
40

60
80

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sensor (30)

0.
0

2.
5

5.
0

7.
5

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

bank (12)

60
65

70

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

gas (25)

20
40

60

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

clean2 (16)

15
20

25

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

seizure (28)

70
71

72
73

74
75

A
U

pC
occ (30)

5
10

15
20

higgs (30)

60
65

70
75

80

htru (30)

19
.6

20
.0

20
.4

shuttle (30)

10
15

20
25

30

avila (30)

18
20

22
24

gt (30)
5

10
15

A
U

pC

eeg (30)

2.
5

5.
0

7.
5

10
.0

cc (30)

1
2

3
4

5

higgs_o (30)

35
40

45

ring (18)

20
40

60
80

sylva (30)

0
5

10
15

jm1 (27)

-0
.5

0.
0

0.
5

1.
0

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

A
U

pC

stocks (30)

20
40

60
80

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sensor (30)

0.
0

2.
5

5.
0

7.
5

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

bank (12)

60
65

70

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

gas (25)

20
40

60

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

clean2 (16)

15
20

25

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

seizure (28)

Figure 5.4: AUpC. REDS+ with PRIM. N = 400.

66
68

70
72

74

A
U

pC

occ (12)

16
17

18
19

20

higgs (30)

78
79

80
81

htru (11)

20
.0

20
.4

20
.8

shuttle (30)

10
15

20
25

30

avila (13)

24
.0

24
.5

25
.0

25
.5

gt (11)

15
16

17
18

A
U

pC

eeg (9)

6
8

10

cc (18)

3
4

5
6

higgs_o (30)

43
44

45

ring (4)

70
75

80
85

sylva (8)

10
12

14
16

jm1 (6)

0.
0

0.
5

1.
0

1.
5

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

A
U

pC

stocks (30)

55
60

65
70

75
80

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sensor (30)

2
3

4
5

6

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

bank (3)

70
72

74

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

gas (6)

20
40

60

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

clean2 (4)

22
24

26

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

seizure (7)

66
68

70
72

74

A
U

pC

occ (12)

16
17

18
19

20

higgs (30)

78
79

80
81

htru (11)

20
.0

20
.4

20
.8

shuttle (30)

10
15

20
25

30

avila (13)

24
.0

24
.5

25
.0

25
.5

gt (11)

15
16

17
18

A
U

pC

eeg (9)

6
8

10

cc (18)

3
4

5
6

higgs_o (30)

43
44

45

ring (4)

70
75

80
85

sylva (8)

10
12

14
16

jm1 (6)

0.
0

0.
5

1.
0

1.
5

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

A
U

pC

stocks (30)

55
60

65
70

75
80

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sensor (30)

2
3

4
5

6

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

bank (3)

70
72

74

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

gas (6)

20
40

60

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

clean2 (4)

22
24

26

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

seizure (7)

Figure 5.5: AUpC. REDS+ with PRIM. N = 1600.

69

5 Improving Subgroup Discovery

71
72

73
74

A
U
pC

O
RF.kde.s

occ

10
.0

12
.5

15
.0

17
.5

higgs

50
60

70
80

htru

20
.0

20
.2

20
.4

20
.6

shuttle

10
15

20
25

30

A
U
pC

avila

20
25

gt

12
14

16

eeg

2
4

6
8

10

cc

2
3

4
5

A
U
pC

higgs_o

35
40

45

ring

20
40

60
80

sylva

8
12

jm1

0.
25

0.
50

0.
75

1.
00

A
U
pC

stocks

20
40

60
80

sensor

0
2

4
6

bank

50
55

60
65

70

gas

20
40

60

200 400 800 1600

N

A
U
pC

clean2

5
10

15
20

25

200 400 800 1600

N

seizure

71
72

73
74

A
U
pC

O
RF.kde.s

occ

10
.0

12
.5

15
.0

17
.5

higgs

50
60

70
80

htru

20
.0

20
.2

20
.4

20
.6

shuttle

10
15

20
25

30

A
U
pC

avila

20
25

gt

12
14

16

eeg

2
4

6
8

10

cc

2
3

4
5

A
U
pC

higgs_o

35
40

45

ring

20
40

60
80

sylva

8
12

jm1

0.
25

0.
50

0.
75

1.
00

A
U
pC

stocks

20
40

60
80

sensor

0
2

4
6

bank

50
55

60
65

70

gas

20
40

60

200 400 800 1600

N

A
U
pC

clean2

5
10

15
20

25

200 400 800 1600

N

seizure

Figure 5.6: AUpC. REDS+ with PRIM learning curves.

70

5.5 Conclusions

16
.4

16
.8

17
.2

W
R

A
cc

occ (30)

4
5

6
7

higgs (30)

5.
5

6.
0

6.
5

7.
0

htru (30)

10
12

14

shuttle (30)

3
5

7
9

11

avila (30)

9
10

11
12

gt (30)
3

4
5

6
7

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

W
R

A
cc

eeg (30)

0
1

2
3

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

cc (30)

0
1

2

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

higgs_o (30)

17
18

19
20

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

ring (18)

2
3

4
5

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sylva (30)

16
.4

16
.8

17
.2

W
R

A
cc

occ (30)

4
5

6
7

higgs (30)

5.
5

6.
0

6.
5

7.
0

htru (30)

10
12

14

shuttle (30)

3
5

7
9

11

avila (30)

9
10

11
12

gt (30)
3

4
5

6
7

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

W
R

A
cc

eeg (30)

0
1

2
3

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

cc (30)

0
1

2

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

higgs_o (30)

17
18

19
20

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

ring (18)

2
3

4
5

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sylva (30)

Figure 5.7: WRAcc. REDS+ with BestIntervalBS. N = 400.

17
.2

17
.4

W
R

A
cc

occ (12)

5
6

7

higgs (30)

6.
8

7.
0

7.
2

htru (11)

10
12

14

shuttle (30)

10
.0

10
.4

10
.8

11
.2

avila (13)

11
.6

12
.0

gt (11)

5
6

7

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

W
R

A
cc

eeg (9)

2.
0

2.
5

3.
0

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

cc (18)

1
2

3

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

higgs_o (30)

19
.8

20
.1

20
.4

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

ring (4)

4.
5

5.
0

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sylva (8)

17
.2

17
.4

W
R

A
cc

occ (12)

5
6

7

higgs (30)

6.
8

7.
0

7.
2

htru (11)

10
12

14

shuttle (30)

10
.0

10
.4

10
.8

11
.2

avila (13)

11
.6

12
.0

gt (11)

5
6

7

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

W
R

A
cc

eeg (9)

2.
0

2.
5

3.
0

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

cc (18)

1
2

3

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

higgs_o (30)

19
.8

20
.1

20
.4

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

ring (4)

4.
5

5.
0

O

R
F

.d

R
F

.k
de

.s

R
F

.s
s

sylva (8)

Figure 5.8: WRAcc. REDS+ with BestIntervalBS. N = 1600.

bs=
1

bs=
10

bs=
2

bs=
4

bs=
6

bs=
8

L=
0

L=
12
00

L=
16
00 L=
20
00

L=
25
00

L=
40
0

L=
80
0

0.104

0.108

0.112

0.116

200 400 600

time

W
R
A
cc

O

RF.kde.s

gamma-telescope

Figure 5.9: REDS+ with BestIntervalBS varying 𝐿 vs just BestIntervalBS varying 𝑏𝑠 .

71

5 Improving Subgroup Discovery

16
.4

16
.8

17
.2

W
R
A
cc

O
RF.kde.s

occ

4
5

6
7

higgs

5.
8

6.
2

6.
6

7.
0

htru

10
11

12
13

14
15

shuttle

6
7

8
9

10
11

W
R
A
cc

avila
10

11
gt

4
5

6
7

eeg

1
2

3

cc

0.
5
1.
0
1.
5
2.
0
2.
5

200 400 800 1600

N

W
R
A
cc

higgs_o

17
18

19
20

200 400 800 1600

N

ring
2

3
4

5

200 400 800 1600

N

sylva

16
.4

16
.8

17
.2

W
R
A
cc

O
RF.kde.s

occ

4
5

6
7

higgs

5.
8

6.
2

6.
6

7.
0

htru

10
11

12
13

14
15

shuttle

6
7

8
9

10
11

W
R
A
cc

avila
10

11
gt

4
5

6
7

eeg

1
2

3

cc

0.
5
1.
0
1.
5
2.
0
2.
5

200 400 800 1600

N

W
R
A
cc

higgs_o

17
18

19
20

200 400 800 1600

N

ring
2

3
4

5

200 400 800 1600

N

sylva

Figure 5.10: WRAcc. REDS+ with BestIntervalBS learning curves.

16
.4

16
.8

17
.2

W
R
A
cc

BI
PRIM

occ

4
5

6
7

higgs

5.
5

6.
0

6.
5

7.
0

htru

10
11

12
13

14
15

shuttle

4
6

8
10

W
R
A
cc

avila

9
10

11

gt

5
6

eeg

1
2

3

cc

0.
5

1.
0

1.
5

2.
0

200 400 800 1600

N

W
R
A
cc

higgs_o

17
18

19
20

200 400 800 1600

N

ring

2
3

4
5

200 400 800 1600

N

sylva

16
.4

16
.8

17
.2

W
R
A
cc

BI
PRIM

occ

4
5

6
7

higgs

5.
5

6.
0

6.
5

7.
0

htru

10
11

12
13

14
15

shuttle

4
6

8
10

W
R
A
cc

avila

9
10

11

gt

5
6

eeg

1
2

3

cc

0.
5

1.
0

1.
5

2.
0

200 400 800 1600

N

W
R
A
cc

higgs_o

17
18

19
20

200 400 800 1600

N

ring

2
3

4
5

200 400 800 1600

N

sylva

Figure 5.11: WRAcc. PRIM vs BestIntervalBS

72

5.5 Conclusions

16
.4

16
.8

17
.2

W
R
A
cc

BI
PRIM

occ

4
5

6
7

higgs

6.
0

6.
5

7.
0

htru

14
.6

14
.8

15
.0

15
.2

shuttle

7
8

9
10

11

W
R
A
cc

avila

10
.6

11
.0

11
.4

11
.8

gt

4
5

6
7

eeg

2.
0

2.
4

2.
8

3.
2

cc

0.
5

1.
0

1.
5

2.
0

2.
5

200 400 800 1600

N

W
R
A
cc

higgs_o

17
18

19
20

200 400 800 1600

N

ring

3.
5

4.
0

4.
5

5.
0

200 400 800 1600

N

sylva

16
.4

16
.8

17
.2

W
R
A
cc

BI
PRIM

occ

4
5

6
7

higgs

6.
0

6.
5

7.
0

htru

14
.6

14
.8

15
.0

15
.2

shuttle

7
8

9
10

11

W
R
A
cc

avila

10
.6

11
.0

11
.4

11
.8

gt

4
5

6
7

eeg

2.
0

2.
4

2.
8

3.
2

cc

0.
5

1.
0

1.
5

2.
0

2.
5

200 400 800 1600

N

W
R
A
cc

higgs_o

17
18

19
20

200 400 800 1600

N

ring

3.
5

4.
0

4.
5

5.
0

200 400 800 1600

N

sylva

Figure 5.12: WRAcc. REDS+ with PRIM vs REDS+ with BestIntervalBS. Metamodel —
“RF”, data generator — “kde.s”

73

6 Future Research Directions

6.1 Scenario Discovery and Subgroup Discovery

Scenario Discovery. PRIM is a notable representative of rule learning [FGL12] or,
more precisely, of supervised descriptive rule discovery, also known as subgroup discov-
ery [Atz15], contrast set mining, emerging pattern mining [NLW09] or informative data
summarization [VGBS19]. PRIM is a popular method for scenario discovery “because it
is highly interactive, presents multiple options for the choice of scenarios, and provides
visualizations that help users balance among the three measures of scenario quality: cov-
erage, density, and interpretability” [BL10]. However, to the best our knowledge, there
exists only a little research justifying the superiority of PRIM experimentally — Lempert
et al. [LBB08] compare CART and PRIM and conclude that the latter is more interactive
and requires less post-processing effort. An experimental comparison of the existing
supervised descriptive rule discovery algorithms to assess their suitability for scenario
discovery is an interesting research question. However, such a comparative study would
require much expert knowledge, in particular, to evaluate the usefulness of discovered
scenario. Additionally, this work first requires a comprehensive comparison study of
subgroup discovery methods.

Subgroup Discovery. At a high level, the taxonomy of subgroup discovery meth-
ods includes specifying search space, quality function(s), and search strategy. Existing
surveys [HCGdJ11, CGdJH14, Atz15] make use of these dimensions when put different
subgroup discovery methods together. To our knowledge, the latest and most exhaus-
tive study comparing SD techniques is [Hel16]. Still, it covers only six methods in the
experimental part, and many questions remain open.
First, Helal [Hel16] does not describe the experimental setting with enough details.

For instance, the exact procedure to discretize continuous attributes is not evident. From
what we can see, the author did not separate train and test data and did not use cross-
validation. That is, the conclusions were likely drawn from the same data which was used
to discover subgroups. Thus, there is no guarantee that the results will hold if one uses
the out-of-sample validation procedure.
Next, Helal [Hel16] does discretize numeric attributes. They also do fix the hyper-

parameters of different algorithms in experiments. As Herrera et al. [HCGdJ11] write
“. . . the discretization of the continuous variables and its influence in the results of the
subgroup discovery task is another open topic. It is unclear how the previous discretization
of continuous variables may affect the results of the subgroup discovery process or the
advantages of the subgroup discovery algorithms that use continuous variables without
any prior discretization”. We now take this concern one step further. As we explained in

75

6 Future Research Directions

0.00

0.02

0.04

0.06

200 400 800 1600 2500

N

W
R
A
cc

handcrafted

original

HIGGS

Figure 6.1: Performance of BestIntervalBS using original or handcrafted features.

Section 2.3, one can usually make the search space identical via binarization procedure and
that even continuous attributes are essentially always discretized — we call this exhaustive
discretization. Thus, the main distinction between different methods is whether they
perform exhaustive or heuristic search. The former requires considerable time but finds
the global optimum; the latter is faster but converge to local optimum. With more time, the
solution of heuristic-based methods can be improved via increasing the share of the search
space examined. This happens naturally with SD methods using evolutionary optimization
as a search strategy. Alternatively, one can increase this share, by using the beam-search
strategy (see Section 2.3) and controlling the beam size 𝑏𝑠 , like with BestIntervalBS.
Conversely, one can speed up the methods performing an exhaustive search by limiting
the search space. Typically, one can either limit the search depth, i.e., the maximal number
of restricted dimensions, or switch to more coarse-grained discretization.

All this implies that experimenting with fixed discretization and hyperparameters like
beam size or search depth is not very insightful. For instance, which strategy is (likely) the
best given a time limitation remains unknown. Thus, the questions raised in [HCGdJ11]
can be specified as follows. Given a time restriction, what is the best choice of discretization
granularity, beam size (if applicable), search depth, and other parameters (e.g., peeling
parameter 𝛼 in PRIM)? To what extent does a discretization technique [GLS+13] influence
the quality of a discovered subgroup? Are heuristic methods generally better than the
ones based on exhaustive search? How do the answers depend on the time limitation and
the dataset size?
Finally, it would be interesting to evaluate how the methodology proposed in this

dissertation affects the results of such study.

6.2 Automatic Feature Construction

Motivation. From our findings as well as from earlier research, it is evident that par-
ticular kind of data preprocessing — feature construction, — can improve the results of
comprehensible models. For instance, Dalal et al. [DHL+13] used PRIM in rotated space
resulting from applying principal component analysis (PCA-PRIM) and found that “PCA-
PRIM produces improvements averaging 37 percent [. . .] over PRIM alone”. We now
present similar results from our experience.

Example 6.2.1 HIGGS dataset [VvRBT13, BSW14] comes with 21 original (raw) attributes

and seven handcrafted features, derived as functions of the attributes. We apply BestInter-

76

6.2 Automatic Feature Construction

valBS separately to the dataset part including attributes and to the part including features.

We experiment in the same way as described in Chapter 5. Figure 6.1 shows the learning

curves. As before, shaded are the areas between 25-th and 75-th percentiles in the set of

outcomes from 30 experiments. The subgroups found using the handcrafted features have

several times higher WRAcc than the subgroups discovered with the original attributes. The

median number of restricted features is five, much less than the number of restricted attributes,

13; I.e., the subgroup descriptions are more comprehensible
1
.

Example 6.2.2 For one of the datasets used in Chapter 3
2
we trained the CART classifier

using (a) original attributes and (b) derived features as explained in that Chapter. The average

accuracies from 10-fold cross-validation are 0.799 ± 0.009 and 0.823 ± 0.01, and the number

of leaves in the resulting decision trees is 19 and 9, for (a) and (b) respectively.

We now briefly discuss the outcome of the latter example and formulate the research
question. CART is a decision tree algorithm. It can approximate the “true” (i.e., minimizing
given risk functional [Vap99]) decision boundary with arbitrary precision given enough
data. Consequently, with a large dataset, the accuracy of the decision tree fitted with
original attributes will be at least as good as that of the decision tree learned using the
features derived from those attributes. This is because features do not have any new
information which is not contained in the attributes. However, one hopes that in feature
space, the decision boundary is in some sense “simpler”, and a decision tree can adequately
capture it from a smaller number of examples and with a simples structure (i.e., fewer
leaves). This is the case in Example 6.2.2.

We have created the features using our knowledge of DSGC system symmetry. For an
electrical grid of arbitrary size and structure, feature construction is not straightforward.
This problem is not specific to our study. Hence, one wants to have an automatic feature
construction process that learns useful features from data. For instance, the description of
HIGGS dataset used in Example 6.2.1 states: “There is an interest in using deep learning
methods to obviate the need for physicists to develop such features manually”.

Definitions of Automatic Feature Construction. We briefly researched the literature
related to automatic feature generation and identified the following.

First, “feature construction” is a broad term. Often it refers to various transformations of
the space defined by attributes of data in a tabular form. Some feature constructionmethods
can also accept other forms of data representation like relational databases [CKG+11, KV15,
LTS+17] or a set of sequences like speech, music or natural language [BCV13].
Second, feature construction can be a separate process like in Examples 6.2.1–6.2.2;

or it can be a part of an ML algorithm. For instance, kernel methods implicitly map
the space of original attributes into a feature space implied by corresponding kernel
function [DL18], artificial neural nets automatically discover multiple levels of representa-
tion [SRK15, ZWD16]. Even subgroup discovery or decision tree algorithms considered

1Adopting the convention that the number of restricted dimensions reflects comprehensibility. See
Section 2.1 for the overview of research related to comprehensibility.

2Available from [DG17]: https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+
Simulated+Data+

77

https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+Simulated+Data+
https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+Simulated+Data+

6 Future Research Directions

in this dissertation can be treated as automatically constructing binary features from the
attributes 𝑎 𝑗 by finding inequalities 𝑎𝑙𝑗 < 𝑎 𝑗 or 𝑎𝑟𝑗 > 𝑎 𝑗 [GMP14, FGL12, MR02], or by
learning the conjunctions of these inequalities

∏𝑀
𝑗=1 [𝑎𝑙𝑗 , 𝑎𝑟𝑗] [PH90, MR02].

Finally, the notion “(automatic) feature construction” (used in e.g., [SB05, NZJ07, PS09,
Son09, FZP+10, NZA12, GMP14, TZX16]) has many synonyms: feature discovery [PH90,
DR12], (nonlinear) dimensionality reduction [RS00, BN03, NZJ07], feature generation
[MR02, CKG+11, KSS16, KMP17, DZOV18], data representation [BN03], attribute con-
struction [OSFN03], feature learning [AEP08, CNL11, LMS+18], representation learn-
ing [BCV13]3, feature extraction [SRK15], feature synthesis [KV15], feature engineer-
ing [KNS+16, KTSP16, LTS+17, NSK+17, KST18], identifying best low-dimensional descrip-
tor [OCA+18], manifold learning or distance metric learning [SRK15]. Related approaches
also include visualization of multidimensional data [TLZM16]. Moreover, various auto-
mated machine learning methods (e.g. [OM16, SL09]) include automatic feature construc-
tion component4.

Open Questions. It is interesting, which automatic feature construction methods can
be used to design better spaces for comprehensible ML models like decision trees and
subgroups. One expects that the model learned using the constructed features will have
higher quality (accuracy, WRAcc, etc.) but will remain comprehensible. I.e., the discovered
features should be simple functions of original attributes. Thus, many deep-learning-based
feature construction algorithms might not be suitable.

So far, a little work has been done towards a comparison of different automatic feature
construction methods that are not based on artificial neural nets. To the best of our
knowledge, the most recent and the broadest comparison is made in [KMP17] and covers
only four methods. The study does not consider comprehensibility, and the code for the
experiments was not made available.

6.3 Mixed Attribute Types, Regression Setting

In the dissertation, we have focused on the classification setting, i.e., binary target variable.
We further assumed that all attributes are numeric. The method REDS, which we developed
for simulated data, (Chapter 4) does not algorithmically exploit these assumptions. That is,
it can accept mixed attributes and numeric target. REDS+ developed in Chapter 5 can also
work with a numeric target when it is used with a suitable subgroup discovery method. It
does not support mixed attribute types directly; still, the adaptation to work with such
data is possible, as we explained in Section 5.3.4. However, the question of how good the
proposed methods work in the other settings and if they could be further improved by
taking the specifics of each particular setting into account remains open.

3According to [SRK15], “representation learning could refer to the entire literature of extracting features
from input data, however, in practice it is usually associated with extracting features via multi-layer neural
networks and is studied within neural network research community”

4This diversity of names often complicates the search of related work. For example, Katz et al. [KSS16]
have indicated only a single related research paper, which is arguable given the references to earlier literature
we just mentioned.

78

7 Conclusions

Comprehensible statistical models constitute an essential part of knowledge discovery
from databases. Decision trees and subgroups, the main focus of this work, are often a
human-comprehensible form of knowledge representation.
To show the utility of metamodels, we studied the model of a novel system, DSGC,

realizing demand response in electrical grids. We run many simulations for random
combinations inputs’ values, constructed features from these inputs and trained a decision
tree on the resulting dataset. This allowed us to obtain new insights, not known from
conventional analysis of DSGC done before. For example, we discover that the system can
be stable even if some participants adapt their energy consumption with a high delay, or
that fast adaptation is preferable for system stability. Additionally, we have collected a
comprehensive list of current assumptions and open questions behind DSGC.
Decision trees partition the entire input space into regions. Sometimes one does not

aim to achieve such partitioning. Instead, one may want to find areas, as large as possible,
but likely to be responsible for a particular outcome. Subgroup discovery methods are
better suitable for this purpose, but they require large datasets to produce a high-quality
outcome. However, large datasets often come at high computational (for simulated data)
or financial (for measured data) cost. We developed two approaches, REDS and its gener-
alization REDS+, which can find better subgroups from small datasets of simulated and
measured data respectively. We provided a statistical intuition behind our approaches;
in the experiments, they outperformed existing subgroup discovery methods. For some
datasets, REDS and REDS+ were able to discover subgroups of certain quality from more
than four times fewer examples than conventional algorithms.
In contrast to existing subgroup discovery algorithms, REDS is applicable to a semi-

supervised setting and is compatible with the existing active learning techniques.

79

List of Figures

1.1 Scenario discovery process. 2

3.1 DSGC system gets destabilized after a perturbation due to overreaction of
participants resulting in resonance. 27

3.2 After perturbation, at each moment of time, price is different at various
locations in a DSGC system. 29

3.3 System structure . 29
3.4 Decision trees on the data from simulations. 32

4.1 Learning curves for scenario discovery tools. 36
4.2 The distributions of 𝜇 (dark) and 𝜇𝑎𝑚 (light) 40
4.3 The results obtained with original PRIM and with our proposed method

on the example dataset. 42
4.4 Mutual positions of two peeling trajectories 43
4.5 DSGC system structure . 45
4.6 AUpC, all functions, 𝑁 = 400 . 48
4.7 Precision, all functions, 𝑁 = 400 . 49
4.8 Number of restricted dimensions, all functions, 𝑁 = 400 50
4.9 Consistency, all functions, 𝑁 = 400 . 51
4.10 Quality metrics for DSGC for 𝑁 = 400 . 52
4.11 Peeling trajectories for DSGC for 𝑁 = 400 52
4.12 Learning curves on DSGC data . 53
4.13 DSGC: quality metrics in dependence on 𝐾 53
4.14 Quality metrics for DSGC in dependence on noise level for 𝑁 = 400 . . . 54

5.1 DSGC: quality metrics in dependence on 𝐾 56
5.2 Influence of local variance on MUNGE output. 60
5.3 Average (over datasets) improvement in median (taken over data splits)

quality of subgroups found by REDS+ with PRIM compared to just PRIM
in percent. 68

5.4 AUpC. REDS+ with PRIM. N = 400. 69
5.5 AUpC. REDS+ with PRIM. N = 1600. 69
5.6 AUpC. REDS+ with PRIM learning curves. 70
5.7 WRAcc. REDS+ with BestIntervalBS. N = 400. 71
5.8 WRAcc. REDS+ with BestIntervalBS. N = 1600. 71
5.9 REDS+ with BestIntervalBS varying 𝐿 vs just BestIntervalBS varying 𝑏𝑠 . 71
5.10 WRAcc. REDS+ with BestIntervalBS learning curves. 72
5.11 WRAcc. PRIM vs BestIntervalBS . 72

81

List of Figures

5.12 WRAcc. REDS+ with PRIM vs REDS+ with BestIntervalBS. Metamodel —
“RF”, data generator — “kde.s” . 73

6.1 Performance of BestIntervalBS using original or handcrafted features. 76

82

List of Tables

1.1 DSGC-specific notations. We omit indexes of system participants 6
1.2 Overview of general notations . 7

2.1 Attributes 𝑎 [ℎ] created for a numeric (left) and a categorical attribute 𝑎
(right). 13

2.2 Names of quality measures suggested by literature. 15

3.1 Ranges of input variables . 30

4.1 Input values used for DSGC simulations 45
4.2 Functions for experimental study . 46
4.3 Experimental setting . 47
4.4 AUpC, all functions . 48
4.8 Number of irrelevant dimensions restricted 48
4.5 Precision, all functions . 49
4.6 Number of restricted dimensions . 50
4.7 Consistency, all functions . 51

5.1 Datasets used for evaluation. 63

83

Bibliography

[AB21] Vadim Arzamasov and Klemens Böhm. REDS: rule extraction for discover-
ing scenarios. In SIGMOD Conference, pages 115–128. ACM, 2021.

[ABJ18] Vadim Arzamasov, Klemens Böhm, and Patrick Jochem. Towards concise
models of grid stability. In 2018 IEEE International Conference on Communica-

tions, Control, and Computing Technologies for Smart Grids, SmartGridComm

2018, Aalborg, Denmark, October 29-31, 2018, pages 1–6, 2018.

[AEP08] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex
multi-task feature learning. Mach. Learn., 73(3):243–272, 2008.

[AKV19] Stamatios-Aggelos N. Alexandropoulos, Sotiris B. Kotsiantis, and Michael N.
Vrahatis. Data preprocessing in predictive data mining. Knowledge Eng.
Review, 34:e1, 2019.

[ALM+01] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke,
Peter David, and Christian E Elger. Indications of nonlinear deterministic
and finite-dimensional structures in time series of brain electrical activ-
ity: Dependence on recording region and brain state. Physical Review E,
64(6):061907, 2001.

[AO01] Jian An and Art B. Owen. Quasi-regression. J. Complex., 17(4):588–607,
2001.

[AP06] Martin Atzmüller and Frank Puppe. SD-Map — A fast algorithm for exhaus-
tive subgroup discovery. In Knowledge Discovery in Databases: PKDD 2006,

10th European Conference on Principles and Practice of Knowledge Discovery

in Databases, Berlin, Germany, September 18-22, 2006, Proceedings, pages
6–17, 2006.

[AR13] Turaj Amraee and Soheil Ranjbar. Transient instability prediction using
decision tree technique. IEEE Transactions on power systems, 28(3):3028–
3037, 2013.

[Atz15] Martin Atzmueller. Subgroup discovery. Wiley Interdiscip. Rev. Data Min.

Knowl. Discov., 5(1):35–49, 2015.

[B+01] Leo Breiman et al. Statistical modeling: The two cultures (with comments
and a rejoinder by the author). Statistical science, 16(3):199–231, 2001.

85

Bibliography

[BAS07] Einat Neumann Ben-Ari and David M Steinberg. Modeling data from
computer experiments: An empirical comparison of kriging with mars and
projection pursuit regression. Quality Engineering, 19(4):327–338, 2007.

[BCN06] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model
compression. In Proceedings of the Twelfth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA,

August 20-23, 2006, pages 535–541, 2006.

[BCV13] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell., 35(8):1798–1828, 2013.

[BFOS84] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[BH99] Michael R. Berthold and Klaus-Peter Huber. Constructing fuzzy graphs
from examples. Intell. Data Anal., 3(1):37–53, 1999.

[BL10] Benjamin P Bryant and Robert J Lempert. Thinking inside the box: a par-
ticipatory, computer-assisted approach to scenario discovery. Technological
Forecasting and Social Change, 77(1):34–49, 2010.

[BN03] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural Computation, 15(6):1373–1396,
2003.

[Bre96] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.

[Bre01] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[BRH19] Marcus D. Bloice, Peter M. Roth, and Andreas Holzinger. Biomedical image
augmentation using Augmentor. Bioinform., 35(21):4522–4524, 2019.

[BS19] Murad Badarna and Ilan Shimshoni. Selective sampling for trees and forests.
Neurocomputing, 358:93–108, 2019.

[BSH+10] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe,
Katja Hansen, and Klaus-Robert Müller. How to explain individual classifi-
cation decisions. J. Mach. Learn. Res., 11:1803–1831, 2010.

[BSW14] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic
particles in high-energy physics with deep learning. Nature communications,
5:4308, 2014.

[Bur98] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Min. Knowl. Discov., 2(2):121–167, 1998.

86

Bibliography

[CF16] Luis M Candanedo and Véronique Feldheim. Accurate occupancy detection
of an office room from light, temperature, humidity and CO2 measurements
using statistical learning models. Energy and Buildings, 112:28–39, 2016.

[CGdJ+11] Cristóbal J. Carmona, Pedro González, María José del Jesus, M. Navío-
Acosta, and L. Jiménez-Trevino. Evolutionary fuzzy rule extraction for
subgroup discovery in a psychiatric emergency department. Soft Comput.,
15(12):2435–2448, 2011.

[CGdJH14] Cristóbal J. Carmona, Pedro González, María José del Jesús, and Francisco
Herrera. Overview on evolutionary subgroup discovery: Analysis of the
suitability and potential of the search performed by evolutionary algorithms.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 4(2):87–103, 2014.

[CGK15] Xiaodong Cui, Vaibhava Goel, and Brian Kingsbury. Data augmentation
for deep convolutional neural network acoustic modeling. In 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP

2015, South Brisbane, Queensland, Australia, April 19-24, 2015, pages 4545–
4549, 2015.

[CKG+11] Weiwei Cheng, Gjergji Kasneci, Thore Graepel, David H. Stern, and Ralf
Herbrich. Automated feature generation from structured knowledge. In
Proceedings of the 20th ACM Conference on Information and Knowledge

Management, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011,
pages 1395–1404, 2011.

[CLG+15] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and
Noemie Elhadad. Intelligible models for healthcare: Predicting pneumonia
risk and hospital 30-day readmission. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

Sydney, NSW, Australia, August 10-13, 2015, pages 1721–1730, 2015.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition. The MIT Press and
McGraw-Hill Book Company, 2001.

[CNL11] Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer
networks in unsupervised feature learning. In Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics, AISTATS

2011, Fort Lauderdale, USA, April 11-13, 2011, pages 215–223, 2011.

[CS95] Mark W. Craven and Jude W. Shavlik. Extracting tree-structured represen-
tations of trained networks. In Advances in Neural Information Processing

Systems 8, NIPS, Denver, CO, USA, November 27-30, 1995, pages 24–30, 1995.

[CSZ06] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-

Supervised Learning. The MIT Press, 2006.

87

Bibliography

[dFM15] Enric Junqué de Fortuny and David Martens. Active learning-based peda-
gogical rule extraction. IEEE Trans. Neural Netw. Learning Syst., 26(11):2664–
2677, 2015.

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[DHL+13] Siddhartha R. Dalal, Bing Han, Robert J. Lempert, Amber Jaycocks, and An-
drew Hackbarth. Improving scenario discovery using orthogonal rotations.
Environ. Model. Softw., 48:49–64, 2013.

[DL18] Guozhu Dong and Huan Liu. Feature engineering for machine learning and

data analytics. CRC Press, 2018.

[DLR77] Arthur P Dempster, NanM Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22, 1977.

[Dom97] Pedro Domingos. Knowledge acquisition form examples vis multiple mod-
els. In Proceedings of the Fourteenth International Conference on Machine

Learning, pages 98–106. Morgan Kaufmann Publishers Inc., 1997.

[Dom12] Pedro M. Domingos. A few useful things to know about machine learning.
Commun. ACM, 55(10):78–87, 2012.

[DR12] Ofer Dor and Yoram Reich. Strengthening learning algorithms by feature
discovery. Inf. Sci., 189:176–190, 2012.

[DVK17] Finale Doshi-Velez and Been Kim. Towards a rigorous science of inter-
pretable machine learning. CoRR, abs/1702.08608, 2017.

[DZOV18] Jiayi Duan, Ziheng Zeng, Alina Oprea, and Shobha Vasudevan. Automated
generation and selection of interpretable features for enterprise security. In
IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, USA,

December 10-13, 2018, pages 1258–1265, 2018.

[FF99] Jerome H. Friedman and Nicholas I. Fisher. Bump hunting in high-
dimensional data. Statistics and Computing, 9(2):123–143, 1999.

[FGL12] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrac. Foundations of
Rule Learning. Cognitive Technologies. Springer, 2012.

[FNP08] Giovanni Filatrella, Arne Hejde Nielsen, and Niels Falsig Pedersen. Analysis
of a power grid using a Kuramoto-like model. The European Physical Journal
B, 61(4):485–491, 2008.

[Fre13] Alex Alves Freitas. Comprehensible classification models: a position paper.
SIGKDD Explorations, 15(1):1–10, 2013.

[FSK08] Alexander I. J. Forrester, Andras Sobester, and Andy J. Keane. Engineering
Design via Surrogate Modelling — A Practical Guide. Wiley, 2008.

88

Bibliography

[FZP+10] Wei Fan, Erheng Zhong, Jing Peng, Olivier Verscheure, Kun Zhang, Jiangtao
Ren, Rong Yan, and Qiang Yang. Generalized and heuristic-free feature
construction for improved accuracy. In Proceedings of the SIAM International

Conference on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus,

Ohio, USA, pages 629–640, 2010.

[GCD+10] Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, and Karel
Crombecq. A surrogate modeling and adaptive sampling toolbox for com-
puter based design. J. Mach. Learn. Res., 11:2051–2055, 2010.

[GG15] Jian Guo and Stephen Gould. Deep CNN ensemble with data augmentation
for object detection. CoRR, abs/1506.07224, 2015.

[GL02] Dragan Gamberger and Nada Lavrac. Expert-guided subgroup discovery:
Methodology and application. J. Artif. Intell. Res., 17:501–527, 2002.

[GL07] David G Groves and Robert J Lempert. A new analytic method for finding
policy-relevant scenarios. Global Environmental Change, 17(1):73–85, 2007.

[GLS+13] Salvador García, Julián Luengo, José Antonio Sáez, Victoria López, and
Francisco Herrera. A survey of discretization techniques: Taxonomy and
empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng.,
25(4):734–750, 2013.

[GMMP20] Riccardo Guidotti, Anna Monreale, Stan Matwin, and Dino Pedreschi. Black
box explanation by learning image exemplars in the latent feature space.
CoRR, abs/2002.03746, 2020.

[GMP14] David García, Antonio González Muñoz, and Raúl Pérez. A feature con-
struction approach for genetic iterative rule learning algorithm. J. Comput.

Syst. Sci., 80(1):101–117, 2014.

[GMR+18] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi,
Franco Turini, and Fosca Giannotti. Local rule-based explanations of black
box decision systems. CoRR, abs/1805.10820, 2018.

[GMR+19] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A survey of methods for explaining black
box models. ACM Comput. Surv., 51(5):93:1–93:42, 2019.

[GR09] Henrik Grosskreutz and Stefan Rüping. On subgroup discovery in numerical
domains. Data Min. Knowl. Discov., 19(2):210–226, 2009.

[GRS16] Céline Guivarch, Julie Rozenberg, and Vanessa Schweizer. The diversity of
socio-economic pathways and CO2 emissions scenarios: Insights from the
investigation of a scenarios database. Environ. Model. Softw., 80:336–353,
2016.

89

Bibliography

[GRW08] Henrik Grosskreutz, Stefan Rüping, and Stefan Wrobel. Tight optimistic
estimates for fast subgroup discovery. In Machine Learning and Knowledge

Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp,

Belgium, September 15-19, 2008, Proceedings, Part I, pages 440–456, 2008.

[Gun16] D Gunning. Explainable artificial intelligence (XAI) DARPA-BAA-16-53.
Defense Advanced Research Projects Agency, 2016.

[HBV06] Johan Huysmans, Bart Baesens, and Jan Vanthienen. Using rule extraction
to improve the comprehensibility of predictive models. Available at SSRN
961358, 2006.

[HCGdJ11] Francisco Herrera, Cristóbal J. Carmona, Pedro González, andMaría José del
Jesús. An overview on subgroup discovery: foundations and applications.
Knowl. Inf. Syst., 29(3):495–525, 2011.

[HCL+03] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide
to support vector classification, 2003.

[HDM+11] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and
Bart Baesens. An empirical evaluation of the comprehensibility of decision
table, tree and rule based predictive models. Decis. Support Syst., 51(1):141–
154, 2011.

[Hel16] Sumyea Helal. Subgroup discovery algorithms: A survey and empirical
evaluation. J. Comput. Sci. Technol., 31(3):561–576, 2016.

[HHRK15] David Hadka, Jonathan D. Herman, Patrick M. Reed, and Klaus Keller.
An open source framework for many-objective robust decision making.
Environ. Model. Softw., 74:114–129, 2015.

[HRZC15] Jonathan D Herman, Patrick M Reed, Harrison B Zeff, and Gregory W
Characklis. How should robustness be defined for water systems planning
under change? Journal of Water Resources Planning and Management,
141(10):04015012, 2015.

[HS64] J. H. Halton and G. B. Smith. Algorithm 247: Radical-inverse quasi-random
point sequence. Commun. ACM, 7(12):701–702, 1964.

[HSBV08] JohanHuysmans, Rudy Setiono, Bart Baesens, and Jan Vanthienen. Minerva:
Sequential covering for rule extraction. IEEE Trans. Systems, Man, and

Cybernetics, Part B, 38(2):299–309, 2008.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements

of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition.
Springer Series in Statistics. Springer, 2009.

[HVD15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowl-
edge in a neural network. CoRR, abs/1503.02531, 2015.

90

Bibliography

[IH90] Tsutomu Ishigami and Toshimitsu Homma. An importance quantification
technique in uncertainty analysis for computer models. In [1990] Proceed-

ings. First International Symposium on Uncertainty Modeling and Analysis,
pages 398–403. IEEE, 1990.

[III65] H. J. Scudder III. Probability of error of some adaptive pattern-recognition
machines. IEEE Trans. Inf. Theory, 11(3):363–371, 1965.

[IP16] Tushith Islam and Erik Pruyt. Scenario generation using adaptive sampling:
The case of resource scarcity. Environ. Model. Softw., 79:285–299, 2016.

[JA06] Bathiya Jayasekara and Udaya D Annakkage. Derivation of an accurate
polynomial representation of the transient stability boundary. IEEE trans-

actions on Power Systems, 21(4):1856–1863, 2006.

[JMK12] Rachel T Johnson, Douglas C Montgomery, and Kathryn S Kennedy. Hybrid
space-filling designs for computer experiments. In Frontiers in Statistical

Quality Control 10, pages 287–301. Springer, 2012.

[Kam14] Oliver Kamps. Characterizing the fluctuations of wind power production
by multi-time statistics. In Wind Energy-Impact of Turbulence, pages 67–72.
Springer, 2014.

[KBL94] Prabha Kundur, Neal J Balu, and Mark G Lauby. Power system stability and

control, volume 7. McGraw-hill New York, 1994.

[KC16] JH Kwakkel and SC Cunningham. Improving scenario discovery by bagging
random boxes. Technological Forecasting and Social Change, 111:124–134,
2016.

[KJ16] Jan H. Kwakkel and Marc Jaxa-Rozen. Improving scenario discovery for
handling heterogeneous uncertainties and multinomial classified outcomes.
Environ. Model. Softw., 79:311–321, 2016.

[Kle15] Jack PC Kleijnen. Design and Analysis of Simulation Experiments, volume
230. Springer, 2015.

[KLJ03] Branko Kavsek, Nada Lavrac, and Viktor Jovanoski. APRIORI-SD: Adapting
association rule learning to subgroup discovery. In Advances in Intelligent

Data Analysis V, 5th International Symposium on Intelligent Data Analysis,

IDA 2003, Berlin, Germany, August 28-30, 2003, Proceedings, pages 230–241,
2003.

[KLZG05] Petra Kralj, Nada Lavrac, Blaz Zupan, and Dragan Gamberger. Experimen-
tal comparison of three subgroup discovery algorithms: Analysing brain
ischemia data. Information Society, pages 220–223, 2005.

91

Bibliography

[KMP17] Ambika Kaul, Saket Maheshwary, and Vikram Pudi. AutoLearn — auto-
mated feature generation and selection. In 2017 IEEE International Confer-

ence on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21,

2017, pages 217–226, 2017.

[KNS+16] Udayan Khurana, Fatemeh Nargesian, Horst Samulowitz, Elias Khalil, and
Deepak Turaga. Automating feature engineering. Transformation, 10(10):10,
2016.

[KP13] Jan H Kwakkel and Erik Pruyt. Exploratory modeling and analysis, an
approach for model-based foresight under deep uncertainty. Technological
Forecasting and Social Change, 80(3):419–431, 2013.

[KS13] Miroslav Kobetski and Josephine Sullivan. Apprenticeship learning: Trans-
fer of knowledge via dataset augmentation. In Image Analysis, 18th Scandi-

navian Conference, SCIA 2013, Espoo, Finland, June 17-20, 2013. Proceedings,
pages 432–443, 2013.

[KSS16] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. ExploreKit: Automatic
feature generation and selection. In IEEE 16th International Conference on

Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain, pages
979–984, 2016.

[KST18] Udayan Khurana, Horst Samulowitz, and Deepak S. Turaga. Feature en-
gineering for predictive modeling using reinforcement learning. In Pro-

ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,

(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),

and the 8th AAAI Symposium on Educational Advances in Artificial Intel-

ligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages
3407–3414, 2018.

[KTSP16] Udayan Khurana, Deepak S. Turaga, Horst Samulowitz, and Srinivasan
Parthasrathy. Cognito: Automated feature engineering for supervised
learning. In IEEE International Conference on Data Mining Workshops, ICDM

Workshops 2016, December 12-15, 2016, Barcelona, Spain, pages 1304–1307,
2016.

[KV15] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis:
Towards automating data science endeavors. In 2015 IEEE International

Conference on Data Science and Advanced Analytics, DSAA 2015, Campus

des Cordeliers, Paris, France, October 19-21, 2015, pages 1–10, 2015.

[LBB08] Robert J Lempert, Benjamin P Bryant, and Steven C Bankes. Comparing
algorithms for scenario discovery. RAND, Santa Monica, CA, 2008.

[LBH+06] Crystal Linkletter, Derek Bingham, Nicolas W. Hengartner, David Higdon,
and KennyQ. Ye. Variable selection for gaussian process models in computer
experiments. Technometrics, 48(4):478–490, 2006.

92

Bibliography

[Lee13] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. InWorkshop on challenges in

representation learning, ICML, volume 3, page 2, 2013.

[Ley02] Michael Ley. The DBLP computer science bibliography: Evolution, research
issues, perspectives. In String Processing and Information Retrieval, 9th

International Symposium, SPIRE 2002, Lisbon, Portugal, September 11-13,

2002, Proceedings, pages 1–10, 2002.

[LG04] Nada Lavrac and Dragan Gamberger. Relevancy in constraint-based sub-
group discovery. In Constraint-Based Mining and Inductive Databases,

European Workshop on Inductive Databases and Constraint Based Mining,

Hinterzarten, Germany, March 11-13, 2004, Revised Selected Papers, pages
243–266, 2004.

[LGPB06] Robert J. Lempert, David G. Groves, Steven W. Popper, and Steve Bankes.
A general, analytic method for generating robust strategies and narrative
scenarios. Management Science, 52(4):514–528, 2006.

[Lij07] Mark G Lijesen. The real-time price elasticity of electricity. Energy eco-

nomics, 29(2):249–258, 2007.

[Lip18] Zachary C. Lipton. The mythos of model interpretability. Commun. ACM,
61(10):36–43, 2018.

[LKFT04] Nada Lavrac, Branko Kavsek, Peter A. Flach, and Ljupco Todorovski. Sub-
group discovery with CN2-SD. J. Mach. Learn. Res., 5:153–188, 2004.

[LMS+18] Hoang Thanh Lam, Tran Ngoc Minh, Mathieu Sinn, Beat Buesser, and
MartinWistuba. Learning features for relational data. CoRR, abs/1801.05372,
2018.

[LRRV13] José María Luna, José Raúl Romero, Cristóbal Romero, and Sebastián Ven-
tura. Discovering subgroups by means of genetic programming. In Genetic

Programming - 16th European Conference, EuroGP 2013, Vienna, Austria,

April 3-5, 2013. Proceedings, pages 121–132, 2013.

[LRRV14] José María Luna, José Raúl Romero, Cristóbal Romero, and Sebastián Ven-
tura. On the use of genetic programming for mining comprehensible rules
in subgroup discovery. IEEE Trans. Cybernetics, 44(12):2329–2341, 2014.

[LSC+16] Robert J Lyon, BW Stappers, Sally Cooper, JM Brooke, and JD Knowles. Fifty
years of pulsar candidate selection: From simple filters to a new principled
real-time classification approach. Monthly Notices of the Royal Astronomical

Society, 459(1):1104–1123, 2016.

[LTS+17] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen,
Tiep Mai, and Oznur Alkan. One button machine for automating feature
engineering in relational databases. CoRR, abs/1706.00327, 2017.

93

Bibliography

[LWM13] Jason L. Loeppky, Brian J. Williams, and Leslie M. Moore. Global sensitivity
analysis for mixture experiments. Technometrics, 55(1):68–78, 2013.

[LXL+12] Jing Liu, Yang Xiao, Shuhui Li, Wei Liang, and C. L. Philip Chen. Cyber
security and privacy issues in smart grids. IEEE Communications Surveys

and Tutorials, 14(4):981–997, 2012.

[MDSESM04] LSMoulin, APAlves Da Silva, MAEl-Sharkawi, and Robert JMarks. Support
vector machines for transient stability analysis of large-scale power systems.
IEEE Transactions on Power Systems, 19(2):818–825, 2004.

[MHMK13] Peter J Menck, Jobst Heitzig, Norbert Marwan, and Jürgen Kurths. How
basin stability complements the linear-stability paradigm. Nature physics,
9(2):89–92, 2013.

[Mil19] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artif. Intell., 267:1–38, 2019.

[MMM06] Max D Morris, Leslie M Moore, and Michael D McKay. Sampling plans
based on balanced incomplete block designs for evaluating the importance
of computer model inputs. Journal of Statistical Planning and Inference,
136(9):3203–3220, 2006.

[MNFK12] Michael Mampaey, Siegfried Nijssen, Ad Feelders, and Arno J. Knobbe.
Efficient algorithms for finding richer subgroup descriptions in numeric
and nominal data. In Mohammed Javeed Zaki, Arno Siebes, Jeffrey Xu
Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu, editors, 12th IEEE

International Conference on Data Mining, ICDM 2012, Brussels, Belgium,

December 10-13, 2012, pages 499–508. IEEE Computer Society, 2012.

[Moo10] Hyejung Moon. Design and analysis of computer experiments for screening

input variables. Ohio State University, 2010.

[MR02] Shaul Markovitch and Dan Rosenstein. Feature generation using general
constructor functions. Mach. Learn., 49(1):59–98, 2002.

[MR14] Geoffrey J. McLachlan and Suren I. Rathnayake. On the number of compo-
nents in a Gaussian mixture model. Wiley Interdiscip. Rev. Data Min. Knowl.

Discov., 4(5):341–355, 2014.

[MWS+14] Debsankha Manik, Dirk Witthaut, Benjamin Schäfer, Moritz Matthiae, An-
dreas Sorge, Martin Rohden, Eleni Katifori, and Marc Timme. Supply
networks: Instabilities without overload. The European Physical Journal

Special Topics, 223(12):2527–2547, 2014.

[MWZ+97] JD McCalley, Shimo Wang, Q-L Zhao, G-Z Zhou, RT Treinen, and AD Pa-
palexopoulos. Security boundary visualization for systems operation. IEEE
Transactions on Power Systems, 12(2):940–947, 1997.

94

Bibliography

[NC05] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities
with supervised learning. In Machine Learning, Proceedings of the Twenty-

Second International Conference (ICML 2005), Bonn, Germany, August 7-11,

2005, pages 625–632, 2005.

[NLW09] Petra Kralj Novak, Nada Lavrac, and Geoffrey I. Webb. Supervised descrip-
tive rule discovery: A unifying survey of contrast set, emerging pattern
and subgroup mining. J. Mach. Learn. Res., 10:377–403, 2009.

[NM15] Takashi Nishikawa and Adilson E Motter. Comparative analysis of ex-
isting models for power-grid synchronization. New Journal of Physics,
17(1):015012, 2015.

[NSK+17] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B. Khalil,
and Deepak S. Turaga. Learning feature engineering for classification. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
2529–2535, 2017.

[NZA12] Kourosh Neshatian, Mengjie Zhang, and Peter Andreae. A filter approach to
multiple feature construction for symbolic learning classifiers using genetic
programming. IEEE Trans. Evolutionary Computation, 16(5):645–661, 2012.

[NZJ07] Kourosh Neshatian, Mengjie Zhang, and Mark Johnston. Feature construc-
tion and dimension reduction using genetic programming. In AI 2007:

Advances in Artificial Intelligence, 20th Australian Joint Conference on Ar-

tificial Intelligence, Gold Coast, Australia, December 2-6, 2007, Proceedings,
pages 160–170, 2007.

[OCA+18] Runhai Ouyang, Stefano Curtarolo, Emre Ahmetcik, Matthias Scheffler, and
Luca M Ghiringhelli. SISSO: A compressed-sensing method for identifying
the best low-dimensional descriptor in an immensity of offered candidates.
Physical Review Materials, 2(8):083802, 2018.

[OCO+17] Randal S. Olson, William G. La Cava, Patryk Orzechowski, Ryan J. Ur-
banowicz, and Jason H. Moore. PMLB: a large benchmark suite for machine
learning evaluation and comparison. BioData Mining, 10(1):36:1–36:13,
2017.

[OM16] Randal S. Olson and Jason H. Moore. TPOT: A tree-based pipeline opti-
mization tool for automating machine learning. In Proceedings of the 2016

Workshop on Automatic Machine Learning, AutoML 2016, co-located with

33rd International Conference on Machine Learning (ICML 2016), New York

City, NY, USA, June 24, 2016, pages 66–74, 2016.

[OO04] Jeremy E Oakley and Anthony O’Hagan. Probabilistic sensitivity analysis
of complex models: A bayesian approach. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 66(3):751–769, 2004.

95

Bibliography

[OOR+18] Avital Oliver, Augustus Odena, Colin Raffel, Ekin Dogus Cubuk, and Ian J.
Goodfellow. Realistic evaluation of deep semi-supervised learning algo-
rithms. In Advances in Neural Information Processing Systems 31: Annual

Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8

December 2018, Montréal, Canada, pages 3239–3250, 2018.

[OSFN03] Fernando E. B. Otero, Monique M. S. Silva, Alex Alves Freitas, and Júlio C.
Nievola. Genetic programming for attribute construction in data mining.
In Genetic Programming, 6th European Conference, EuroGP 2003, Essex, UK,

April 14-16, 2003. Proceedings, pages 384–393, 2003.

[P+99] John Platt et al. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin

classifiers, 10(3):61–74, 1999.

[P+13] Victor Picheny et al. A benchmark of kriging-based infill criteria for noisy
optimization. Structural and Multidisciplinary Optimization, 48(3), 2013.

[PCZ+19] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D. Cubuk, and Quoc V. Le. SpecAugment: A simple data augmentation
method for automatic speech recognition. In Interspeech 2019, 20th Annual

Conference of the International Speech Communication Association, Graz,

Austria, 15-19 September 2019, pages 2613–2617, 2019.

[PH90] Giulia Pagallo and David Haussler. Boolean feature discovery in empirical
learning. Mach. Learn., 5:71–99, 1990.

[Pie92] Henri Pierreval. Rule-based simulation metamodels. European Journal of

Operational Research, 61(1-2):6–17, 1992.

[PMS97] M Pazzani, Subramani Mani, and WR Shankle. Comprehensible knowledge
discovery in databases. In Proceedings of the Nineteenth Annual Conference

of the Cognitive Science Society, pages 596–601, 1997.

[PS09] Selwyn Piramuthu and Riyaz T. Sikora. Iterative feature construction for
improving inductive learning algorithms. Expert Syst. Appl., 36(2):3401–
3406, 2009.

[PSLB15] Andrew M Parker, Sinduja V Srinivasan, Robert J Lempert, and Sandra H
Berry. Evaluating simulation-derived scenarios for effective decision sup-
port. Technological Forecasting and Social Change, 91:64–77, 2015.

[PTR95] WW Price, CW Taylor, and GJ Rogers. Standard load models for power flow
and dynamic performance simulation. IEEE Transactions on power systems,
10(CONF-940702-), 1995.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

96

Bibliography

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-
learn: Machine learning in Python. J. Mach. Learn. Res., 12:2825–2830,
2011.

[RRM99] Greg Ridgeway, Thomas Richardson, and David Madigan. Discussion on
the paper by Friedman and Fisher. Statistics and Computing, 9(2):150–152,
1999.

[RRRA12] Daniel Rodríguez, Roberto Ruiz, José C. Riquelme, and Jesús S. Aguilar-
Ruiz. Searching for rules to detect defective modules: A subgroup discovery
approach. Inf. Sci., 191:14–30, 2012.

[RS00] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction
by locally linear embedding. science, 290(5500):2323–2326, 2000.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I
trust you?": Explaining the predictions of any classifier. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1135–1144,
2016.

[RSTW12] Martin Rohden, Andreas Sorge, Marc Timme, and Dirk Witthaut. Self-
organized synchronization in decentralized power grids. Physical review
letters, 109(6):064101, 2012.

[Rud19] Cynthia Rudin. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature Machine

Intelligence, 1(5):206–215, 2019.

[RW06] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes

for machine learning. Adaptive computation and machine learning. MIT
Press, 2006.

[S+78] Gideon Schwarz et al. Estimating the dimension of a model. The annals of
statistics, 6(2):461–464, 1978.

[S+00] Andrea Saltelli et al. Sensitivity Analysis. 2000.

[SB05] Matthew Goble Smith and Larry Bull. Genetic programming with a genetic
algorithm for feature construction and selection. Genetic Programming and

Evolvable Machines, 6(3):265–281, 2005.

[SB13] S. Surjanovic and D. Bingham. Virtual library of simulation experiments:
Test functions and datasets, 2013.

[See00] Matthias Seeger. Learningwith labeled and unlabeled data (technical report).
Edinburgh University, 2000.

97

Bibliography

[Set09] Burr Settles. Active learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 2009.

[SGA+16] Benjamin Schäfer, Carsten Grabow, Sabine Auer, Jürgen Kurths, Dirk Wit-
thaut, and Marc Timme. Taming instabilities in power grid networks
by decentralized control. The European Physical Journal Special Topics,
225(3):569–582, 2016.

[Sil86] Bernard W. Silverman. Density Estimation for Statistics and Data Analysis.
Springer, 1986.

[SKFK16] Hao Song, Meelis Kull, Peter A. Flach, and Georgios Kalogridis. Subgroup
discovery with proper scoring rules. In Paolo Frasconi, Niels Landwehr,
Giuseppe Manco, and Jilles Vreeken, editors, Machine Learning and Knowl-

edge Discovery in Databases - European Conference, ECML PKDD 2016, Riva

del Garda, Italy, September 19-23, 2016, Proceedings, Part II, volume 9852 of
Lecture Notes in Computer Science, pages 492–510. Springer, 2016.

[SL97] Rudy Setiono and Huan Liu. NeuroLinear: From neural networks to oblique
decision rules. Neurocomputing, 17(1):1–24, 1997.

[SL99] IM Sobol and Yu L Levitan. On the use of variance reducing multipliers in
monte carlo computations of a global sensitivity index. Computer Physics

Communications, 117(1):52–61, 1999.

[SL09] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from
experimental data. science, 324(5923):81–85, 2009.

[SMFdF18] Claudio De Stefano, Marilena Maniaci, Francesco Fontanella, and Alessan-
dra Scotto di Freca. Reliable writer identification in medieval manuscripts
through page layout features: The "avila" bible case. Eng. Appl. Artif. Intell.,
72:99–110, 2018.

[SMTW15] Benjamin Schäfer, Moritz Matthiae, Marc Timme, and Dirk Witthaut. De-
central smart grid control. New journal of physics, 17(1):015002, 2015.

[Son09] Parikshit Sondhi. Feature construction methods: A survey. Technical report,
Univeristy of Illinois at Urbana Champaign, 2009.

[SPFK13] Katrin Schmietendorf, Joachim Peinke, Rudolf Friedrich, and Oliver Kamps.
Self-organized synchronization and voltage stability in networks of syn-
chronous machines. CoRR, abs/1307.2748, 2013.

[SPKA01] TimothyW. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen. Metamodels
for computer-based engineering design: Survey and recommendations. Eng.
Comput. (Lond.), 17(2):129–150, 2001.

98

Bibliography

[SRK15] Dmitry Storcheus, Afshin Rostamizadeh, and Sanjiv Kumar. A survey of
modern questions and challenges in feature extraction. In Proceedings of

the 1st Workshop on Feature Extraction: Modern Questions and Challenges,

FE 2015, co-located with the 29th Annual Conference on Neural Information

Processing Systems (NIPS 2015), Montreal, Canada, December 11-12, 2015,
pages 1–18, 2015.

[SS83] GO Schneller and GP Sphicas. Decision making under uncertainty: Starr’s
domain criterion. Theory and Decision, 15(4):321–336, 1983.

[SSM05] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering,
University of Ottawa, Canada, 2005.

[SSP03] Patrice Y. Simard, David Steinkraus, and John C. Platt. Best practices for
convolutional neural networks applied to visual document analysis. In
7th International Conference on Document Analysis and Recognition (ICDAR

2003), 2-Volume Set, 3-6 August 2003, Edinburgh, Scotland, UK, pages 958–962,
2003.

[Sta63] Martin Kenneth Starr. Product design and decision theory. Prentice-Hall,
1963.

[Ste87] Michael Stein. Large sample properties of simulations using latin hypercube
sampling. Technometrics, 29(2):143–151, 1987.

[SWN03] Thomas J. Santner, Brian J. Williams, and William I. Notz. The Design and

Analysis of Computer Experiments. Springer series in statistics. Springer,
2003.

[TGH15] Isaac Triguero, Salvador García, and Francisco Herrera. Self-labeled tech-
niques for semi-supervised learning: Taxonomy, software and empirical
study. Knowl. Inf. Syst., 42(2):245–284, 2015.

[TGLS16] Evelina Trutnevyte, Céline Guivarch, Robert Lempert, and Neil Strachan.
Reinvigorating the scenario technique to expand uncertainty consideration.
Climatic change, 135(3-4):373–379, 2016.

[TK01] Simon Tong and Daphne Koller. Support vector machine active learning
with applications to text classification. J. Mach. Learn. Res., 2:45–66, 2001.

[TLZM16] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-
scale and high-dimensional data. In Proceedings of the 25th International

Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11–15,

2016, pages 287–297, 2016.

[Tuk77] John W. Tukey. Exploratory data analysis. Addison-Wesley series in behav-
ioral science : quantitative methods. Addison-Wesley, 1977.

99

Bibliography

[TZX16] Binh Tran, Mengjie Zhang, and Bing Xue. Multiple feature construction in
classification on high-dimensional data using GP. In 2016 IEEE Symposium

Series on Computational Intelligence, SSCI 2016, Athens, Greece, December

6-9, 2016, pages 1–8, 2016.

[UBA14] Andreas Ulbig, Theodor S Borsche, and Göran Andersson. Impact of low
rotational inertia on power system stability and operation. IFAC Proceedings

Volumes, 47(3):7290–7297, 2014.

[ULHM15] Laura Uusitalo, Annukka Lehikoinen, Inari Helle, and Kai Myrberg. An
overview of methods to evaluate uncertainty of deterministic models in
decision support. Environ. Model. Softw., 63:24–31, 2015.

[UR16] Berk Ustun and Cynthia Rudin. Supersparse linear integer models for
optimized medical scoring systems. Machine Learning, 102(3):349–391,
2016.

[Vap99] Vladimir Vapnik. An overview of statistical learning theory. IEEE Trans.

Neural Networks, 10(5):988–999, 1999.

[VGBS19] Michael Vollmer, Lukasz Golab, Klemens Böhm, and Divesh Srivastava.
Informative summarization of numeric data. In Proceedings of the 31st

International Conference on Scientific and Statistical Database Management,

SSDBM 2019, Santa Cruz, CA, USA, July 23-25, 2019, pages 97–108, 2019.

[VI19] Vladimir Vapnik and Rauf Izmailov. Rethinking statistical learning theory:
learning using statistical invariants. Machine Learning, 108(3):381–423,
2019.

[vLK12] Matthijs van Leeuwen and Arno J. Knobbe. Diverse subgroup set discovery.
Data Min. Knowl. Discov., 25(2):208–242, 2012.

[VVA+12] Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A Ryan,
Margie L Homer, and Ramón Huerta. Chemical gas sensor drift com-
pensation using classifier ensembles. Sensors and Actuators B: Chemical,
166:320–329, 2012.

[VvRBT13] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luís Torgo. OpenML:
Networked science in machine learning. SIGKDD Explorations, 15(2):49–60,
2013.

[WAF16] Michael Wainberg, Babak Alipanahi, and Brendan J. Frey. Are random
forests truly the best classifiers? J. Mach. Learn. Res., 17:110:1–110:5, 2016.

[WBS+92] William J Welch, Robert J Buck, Jerome Sacks, Henry P Wynn, Toby J
Mitchell, and Max D Morris. Screening, predicting, and computer experi-
ments. Technometrics, 34(1):15–25, 1992.

100

Bibliography

[Web01] Geoffrey I. Webb. Discovering associations with numeric variables. In Pro-

ceedings of the seventh ACM SIGKDD international conference on Knowledge

discovery and data mining, San Francisco, CA, USA, August 26-29, 2001, pages
383–388, 2001.

[WHG+06] Brian Williams, Dave Higdon, Jim Gattiker, Leslie Moore, Michael McKay,
Sallie Keller-McNulty, et al. Combining experimental data and computer
simulations, with an application to flyer plate experiments. Bayesian Anal-

ysis, 1(4):765–792, 2006.

[WLK13] Warren E. Walker, Robert J. Lempert, and Jan H. Kwakkel. Deep Uncertainty,
pages 395–402. Springer US, Boston, MA, 2013.

[Wro97] Stefan Wrobel. An algorithm for multi-relational discovery of subgroups.
In Principles of Data Mining and Knowledge Discovery, First European Sym-

posium, PKDD ’97, Trondheim, Norway, June 24-27, 1997, Proceedings, pages
78–87, 1997.

[WS06] G Gary Wang and Songqing Shan. Review of metamodeling techniques in
support of engineering design optimization. In ASME 2006 international

design engineering technical conferences and computers and information in

engineering conference, pages 415–426. American Society of Mechanical
Engineers Digital Collection, 2006.

[Wu14] Ying Nian Wu. Data Augmentation, pages 165–166. Springer US, Boston,
MA, 2014.

[WY15] William Yang Wang and Diyi Yang. That’s so annoying!!!: A lexical and
frame-semantic embedding based data augmentation approach to auto-
matic categorization of annoying behaviors using #petpeeve tweets. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, pages 2557–2563, Lisbon, Portugal, September 2015. Association
for Computational Linguistics.

[XHLL19] Qizhe Xie, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. Self-
training with noisy student improves ImageNet classification. CoRR,
abs/1911.04252, 2019.

[YL09] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card clients.
Expert Syst. Appl., 36(2):2473–2480, 2009.

[YN89] Taketoshi Yoshida and Shinichi Nakasuka. A dynamic scheduling for flexible
manufacturing systems: hierarchical control and dispatching by heuristics.
In Proceedings of the 28th IEEE Conference on Decision and Control,, pages
846–852. IEEE, 1989.

101

Bibliography

[Zhu05] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report
1530, Computer Sciences, University of Wisconsin-Madison, 2005.

[ZJC03] Zhi-Hua Zhou, Yuan Jiang, and Shifu Chen. Extracting symbolic rules from
trained neural network ensembles. AI Commun., 16(1):3–15, 2003.

[ZL05] Zhi-Hua Zhou and Ming Li. Tri-training: Exploiting unlabeled data using
three classifiers. IEEE Trans. Knowl. Data Eng., 17(11):1529–1541, 2005.

[ZTT16] Maciej Zieba, Sebastian K. Tomczak, and Jakub M. Tomczak. Ensem-
ble boosted trees with synthetic features generation in application to
bankruptcy prediction. Expert Syst. Appl., 58:93–101, 2016.

[ZWD16] Guoqiang Zhong, Lina Wang, and Junyu Dong. An overview on data
representation learning: From traditional feature learning to recent deep
learning. CoRR, abs/1611.08331, 2016.

102

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Comprehensible ML Models for Simulated Data
	Comprehensible ML Models for Measured Data
	Research Goal
	Contributions
	The Scope of the Work
	Notations
	Dissertation Outline

	Fundamentals and Related Work
	Comprehensibility of ML Models
	Comprehensible ML Models, Measures of Comprehensibility
	Explaining Complex Models

	ML Models for Data from Simulations
	ML Models for Data from Simulations of Electrical Systems
	Scenario Discovery
	PRIM Improvements for Scenario discovery

	Subgroup Discovery
	Definition and Taxonomy
	Quality Measures
	Algorithms for Data with Numerical Attributes

	Related Ideas
	Rule Extraction and Knowledge Distillation
	Data Augmentation
	Semi-Supervised Learning (SSL)

	Demonstration — DSGC Analysis
	Problem Formulation
	Decentral Smart Grid Control (DSGC)
	The Model
	Model Assumptions and Open Questions

	Methodology
	Input Values
	Model and Experimental Design
	Stability Analysis

	Experimental Results
	Rebound Effect
	Defining Values for Control Inputs

	Conclusions

	Improving Scenario Discovery — REDS
	Problem Formulation
	Proposed Method: REDS
	Statistical Intuition.
	Discussion of the statistical derivations.
	REDS and Active Learning

	Intuition behind REDS: Demonstration
	Mean-Squared Error
	Comparing Scenarios

	Quality Metrics
	AUpC, precision, Interpretability
	Consistency.

	Experimental Setup
	Data Sources.
	Hyperparameters.
	Design of Experiments.

	Results
	Performance across all Functions.
	Experiments with DSGC

	Conclusions

	Improving Subgroup Discovery
	REDS on Measured Data
	When REDS Does and Does Not Work
	Small Experiment

	Extending REDS
	Intuition Behind REDS+

	Experimental Setting
	Data Generators
	Metamodels
	Subgroup Discovery Algorithms
	Datasets
	Quality Metrics
	Design of Experiments

	Results
	Experiments with PRIM
	Experiments with BestIntervalBS
	Comparing PRIM and BestIntervalBS

	Conclusions

	Future Research Directions
	Scenario Discovery and Subgroup Discovery
	Automatic Feature Construction
	Mixed Attribute Types, Regression Setting

	Conclusions
	List of Figures
	List of Tables
	Bibliography

