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Abstract

Local energy markets (LEMs) are well suited to address the challenges of the European
energy transition movement. They incite investments in renewable energy sources
(RES), can improve the integration of RES into the energy system, and empower local
communities. However, as electricity is a low involvement good, residential households
have neither the expertise nor do they want to put in the time and effort to trade
themselves on their own on short-term LEMs. Thus, machine learning algorithms are
proposed to take over the bidding for households under realistic market information.
We simulate a LEM on a 15 min merit-order market mechanism and deploy
reinforcement learning as strategic learning for the agents. In a multi-agent simulation
of 100 households including PV, micro-cogeneration, and demand shifting appliances,
we show how participants in a LEM can achieve a self-sufficiency of up to 30% with
trading and 41,4% with trading and demand response (DR) through an installation of
only 5kWp PV panels in 45% of the households under affordable energy prices. A
sensitivity analysis shows how the results differ according to the share of renewable
generation and degree of demand flexibility.

Keywords: Agent-based simulation model, Bidding Strategies, Peer-to-peer trading,
Local Energy Market, Reinforcement Learning, Demand Response

Introduction

The recent development of emerging technologies in the power industry has led to a
paradigm shift in the frameworks and business models of the electricity retail market of
the future (Chen et al. 2018). In 2017, the investment in renewable energy sources (RES)
rose to 298 billion USD and it continues to increase with Europe having a share of 55
billion USD (International Energy Agency 2018). On May 2019, the European Commis-
sion (EC) has adopted the final files on Clean energy package for all Europeans which was
placed in late 2016. The clean energy package contains the adoption of two directives with
relevance to LEMs, including the Internal Electricity Market Directive (EU) 2019/944
which introduced the “Citizen Energy Community” and the Renewable Energy Directive
(EU) 2018/2001 which introduced the “Renewable Energy Community” (Caramizaru and
Uihlein 2020). These regulations describe the role of consumer participation in achieving
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the flexibility which is essential to accommodate the variable and distributed renewable
electricity generation in the electricity system .

The active engagement of end-users of electricity with the EC’s target to make electric-
ity 40% reduction in green house gas emissions by 2030 has paved the way for systematic
incorporation of decentralised RES into the electricity system, and local energy markets
(LEMs) provide a perfect platform for the entire ecosystem (Mendes et al. 2018). LEMs
are targeted towards establishing a balance between the local generation and consump-
tion which may facilitate a reduction in energy transmission, network congestion and
expedite proper inclusion of decentralised RES (Mengelkamp et al. 2018a).

A robust LEM can be established through a well organised market mechanism. So, trad-
ing in the LEM is a vibrant topic of interest among the research communities, industry
and policymakers (Mengelkamp et al. 2018a). The energy modelling community world-
wide is focused on developing new trading approaches to replicate the decision-making
process of the participants of the LEMs. The recent developments in the field of machine
learning are providing answers to this research topic. Chen and Su (2018a) and Pilz
and Al-Fagih (2017) have demonstrated the application of Q-learning and game theory
approaches towards the development of trading strategy for LEMs. In spite of that, there
is substantial research gap in this topic because very less literature is available developing
trading strategies of residential prosumers. So, through this paper, we bridge the gap by
demonstrating the application of reinforcement learning in building a trading strategy for
participants of a residential LEM facilitated by DR.

Definitions and related work
Machine learning is a subset of artificial intelligence in the field of computer science that
deals with certain algorithms and statistical models that machines use to perform a par-
ticular work through recognizing patterns and inferences instead of direct instructions
from the user (Bishop 2006; Koza et al. 1996).

There are three branches of machine learning (Silver 2015):

1. Supervised learning
2. Unsupervised learning

3. Reinforcement learning

Supervised learning approach or “learning with a teacher” is learning from a training
set of labelled examples provided by a knowledgeable external supervisor “a teacher” It
is called supervised because of the presence of the outcome variable to guide the learn-
ing process (Sutton and Barto 1998). In the unsupervised learning approach or “learning
without a teacher’; output data is given without any inputs. The goal is to discover inter-
esting structures, associations or patterns in the data (Hastie et al. 2009). Situated in
between supervised learning and unsupervised learning is the paradigm of reward (rein-
forcement) learning (RL). RL deals with learning in sequential decision-making problems
in which there is limited feedback (Kaelbling et al. 1996). In RL, there is no supervisor,
only a reward signal or a real number that tells the agent how good or bad was its action
(Panait and Luke 2005).

We want to build intelligent agents who initiate human behaviour while trading. So,
Modified Erev-Roth algorithm (Nicolaisen et al. 2001) under the reinforcement learning
is chosen as a method of learning for the agent-based LEM here in our case because it is
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the closest to the replication of the human decision-making process which is also estab-
lished by psychological research (Mengelkamp et al. 2018c). In addition, there has been
substantial research published on this topic and this particular algorithm is used mostly
as a learning strategy in agent-based simulations in the energy sector (Mengelkamp et
al. 2018c). So, using this algorithm will provide us a benchmark to test and analyse our
results in comparison to the existing work.

Reinforcement learning

Reinforcement learning refers to the development of certain strategies, which software
agents implement in order to learn how to maximize a certain cumulative reward through
trial and error interaction with a dynamic environment (Kaelbling et al. 1996). The appli-
cation of reinforcement learning for making financial decisions is demonstrated in Moody
and Saffell (2001) and Maringer and Ramtohul (2012). Shimokawa et al. (2009) demon-
strates the creation of an augmented learning model used to predict human behaviour
while performing a financial investment task. Reinforcement learning has found its spe-
cial application to optimize and automate the bidding strategies in different markets.
Bidding strategy optimization in electricity markets through reinforcement learning is
demonstrated in Wu and Guo (2004). A day ahead market model is empowered with
reinforcement learning to assess the market power for various participants under auction-
based energy pricing in Nanduri and Das (2007). Guo et al. (2009) have demonstrated
through a multi-agent based model, how reinforcement learning can be applied at the
appliance level for demand side management since only price-based constraints can neg-
atively impact the system stability. Similar work for demand side management through
binary control devices facilitated by reinforcement learning is done by Claessens et al.
(2012). Claessens et al. (2013) exhibits a multi-agent-based system for demand response
(DR) of a heterogeneous cluster of residential flexibility carriers. The results demonstrate
that reinforcement learning is effective in peak shaving and valley filling with a faster
convergence time.

Reinforcement learning in LEM
LEMs are defined as a group of electricity producers, prosumers and consumers who
share the decentralised electricity produced among each other through an established
trading mechanism in a closed geographical construct or a virtual community (Men-
gelkamp et al. 2018a). LEMs provide a powerful solution for energy decentralization
along with several other benefits like enhancing the financial benefits for the agents of
the community, ameliorating energy self-sufficiency of a community, or promoting local
renewable energy generation (Koirala et al. 2016; Mengelkamp et al. 2018b; Olivella-Rosell
et al. 2018). The application of reinforcement learning for microgrids through a multi-
agent model is showcased in Dimeas and Hatziargyriou (2010). The model demonstrates
the working of a microgrid in island mode operation. A similar approach for battery
scheduling through reinforcement learning is applied in Kuznetsova et al. (2013) for an
intelligent energy management system of a microgrid. The role of emerging brokers in a
LEM at the distribution level to facilitate peer-to-peer energy trading is demonstrated in
Chen and Su (2018a).

Automation of the bidding strategies relies on the structure of intelligent agents. Wei-
dlich and Veit (2008) have given a survey of different categories of intelligent agent
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strategies based on agent-based simulation models of wholesale electricity trading. The
article showcases that the Erev-Roth algorithm with its modification is being used by a
significant number of models. It is verified and established by further investigation in
Mengelkamp et al. (2018c) who concluded the various reasons for the adoption of Erev-
Roth learning mechanism over other intelligent agent strategies. The Erev-Roth algorithm
(Erev and Roth 1998) modified by Nicolaisen et al. (2001) is able to imitate human learn-
ing behaviour which is one of the most important reasons behind using this algorithm for
simulation of the learning behaviour of intelligent agents in energy markets. In this article
in “Pricing strategy” section, we have explained how reinforcement learning algorithm is
applied on a LEM to create the pricing strategy of the model.

Reinforcement learning application in LEM facilitated by DR

Demand side management (DSM) refers to all the measures taken on the energy con-
sumption side to improve the efficiency of consumption. There are various methods of
demand side management as analyzed in Palensky and Dietrich (2011) which includes
energy efficiency (EE), time-of-use tariff (TOU), demand response (DR) and spinning
reserve (SR). In this paper, we will discuss only DR. Albadi and El-Saadany (2008) have
defined DR as a collection of all measures taken to modify consumption patterns in
response to dynamic change in energy prices. It includes three major methods for load
mediation i.e. load shifting to future time at favorable energy pricing time periods,
local-generation, and load curtailment (Siano 2014). In this paper, we concentrate on
the first two methods of local generation and load shifting to future time periods.
In a real-world scenario, this demand shifting is realised through the use of smart
devices, intelligent energy management system and user behaviour (Mengelkamp et al.
2018a; Jensen et al. 2018). This paper assumes that enough smart devices are avail-
able to sustain flexibility bids on the market. We point out that many households are
currently not at this technological development stage, so that our paper and the sub-
sequent market model will currently apply firstly to pioneer households with adequate
flexibility providing smart devices. However, as the distribution of smart devices will
increase, the number of potential households with adequate flexibility means will increase
in time.

DR demonstrates several advantages, which include maximizing the efficiency of
renewable energy systems through load shifting from lower local generation times
to higher local generation times, and optimize the required peak power installation
of renewable energy systems through peak curtailment, which improves its cost-
effectiveness (Mengelkamp et al. 2018a). DR also reduces the consumption cost of
electricity through load shifting towards low energy price time periods (Albadi and EIl-
Saadany 2008; Pinson et al. 2014). However, DR also has certain disadvantages, which
hinders its full-scale application. One of the biggest barriers in DR application in Ger-
many is the regulation, which does not yet provide profitable platform for residential DR
applications in the current energy system of Germany (Mengelkamp et al. 2018a).

Mengelkamp et al. (2018a) have listed numerous applications of DR. The application
of smart grid information technology in empowering customers to participate in DR is
demonstrated by Shariatzadeh et al. (2015). However, no model and quantifying results
have been proposed to examine the efficiency of the mentioned strategy. Residential
DR pilot projects have been modelled and analyzed worldwide. The pilot project of 40
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Norwegian households with price-based DR is exhibited by Saele and Grande in Saele and
Grande (2011).

Although, there is abundant literature available for DR, still, the application of DR in
LEMs is explored by only a few researchers. Marzband et al. (2013) and Marzband et al.
(2014) evaluated an energy management system in an island mode operation of a phys-
ical microgrid. The paper proposes a strategy based on gravitation search algorithm to
solve the problem of DR. Mazidi et al. (2014) modeled the integrated scheduling of renew-
able generation and DR programs in a microgrid through forecasting of wind and solar
irradiation for the day ahead energy market.

Research gap

Chen and Su (2018b) and Chen and Su (2018a) have explored the application of mod-
ified Q-learning algorithm for defining the trading strategies in a LEM. However, the
results show that the modified Q-learning strategy proposed is only beneficial when the
strategy is applied for long term so that the algorithm has sufficient time to learn. Men-
gelkamp et al. (2018c¢) presented a modification of modified Erev-Roth algorithm, which
increases the self-consumption of the LEM by 15%. But the premise of either flexible gen-
eration or flexible DR was not investigated in the paper. Further, the increase of the size
of the generator also influences the trading behaviour and benefits of the LEM, which
is not explored in Mengelkamp et al. (2018a). Vazquez-Canteli and Nagy (2019) gives a
review of algorithms and model techniques involving single and multi-agents presented
by various researchers for application of reinforcement learning for DR. However, none
of these papers investigates the impact of DR on trading behaviour of the participants in
aLEM.

In this paper, we do not aim to present a better DR algorithm and examine its impact.
Rather, we implement an already established DR algorithm from Mengelkamp et al.
(2018a) and then represent the impact of changing level of DR on trading behaviour
and reinforcement learning of the participants in the LEM since there is negligible
literature which studies the impact of DR strategies on reinforcement learning of trad-
ing strategies. The target of the paper is to study three aspects. First to study the
impact of changing level of DR on learning and economic benefit of the participants
of the LEM. Second to determine the variation of parameters in the modified Erev-
Roth algorithm to determine different trading techniques for the participants. Third
to analyze the impact of increasing the share of RES in power generation on the
LEM. The paper tries to bridge the gap between the three aspects of peer-to-peer
trading, DR and reinforcement learning and its impact on each other to establish
a LEM which provides not only economic benefits and partial self-sufficiency to its
participants but also provide grid flexibility to the DSO and also curtails the capi-
tal expenditure of deploying electricity generators to meet the growing demand of the
electricity.

Methodology and model

The model we have used for the sensitivity analysis of DR in LEM is adapted from the
model used in Mengelkamp et al. (2018a). We have repeated the description of the model
here so that the readers does not have to switch papers to understand the working of the
model.
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Agent definition

A community of 100 residential households is represented in an agent-based model that
incorporate a LEM functioning on peer-to-peer trading through a short term 15 min
time-slot based merit order market mechanism. There are different kinds of households
as represented by the agents i.e. prosumers and consumers. Prosumer agents are those
agents who have their own electricity generation unit (e.g. PV or mCHP). Consumer
agents are those who do not have their own generation units and thus depend on trading
or the grid for their electricity supply. Apart from these agents, there is also the mar-
ket maker which is represented as market agent in the model that receives the bids and
offers from the household agents, matches the bids and offers according to the merit order
mechanism and then sends back the information about the successful bids and offers to
the corresponding agents.

Model description
The household agents send their bids and offers based on the pricing strategy for the next
15 min to the market agent. The market agent sorts the bids and offers in decreasing and
increasing order respectively to establish the demand and supply curves. These curves are
used for matching according to the merit order market mechanism. The intersection of
the demand and supply curve determines the market closing price (MCP) for that partic-
ular time-slot and all the trades accepted buy and sell their energy at this uniform price for
that time-slot. The information about the successful trades is sent back to the respective
agents and the pricing strategy is updated accordingly for the next 15 min time-slot.
Each household agent executes its pricing and DR strategy on an individual basis.
The pricing strategy of the agents is based on the modified Erev-Roth algorithm
(Erev and Rapoport 1998; Nicolaisen et al. 2001) and explained in detail in the
“Pricing strategy” section and the DR is explained in the “Demand shifting in DR” section.
In the model, the market clearance done by a trusted third party is not an agency, an
individual or a company. Rather, the innovation in the field of IoT makes this job easier
because in our model the processes explained can easily be taken care by a device which
can receive the bids and offers from different households, sort them out accordingly and
match them as per the merit order market model. In this regard, blockchain technology
can act as an added layer of security and trust for recording the transactions as explained
in an actual LEM established in Landau, Germany by Mengelkamp et al. (2018d). In this
paper, we have not investigated the application of blockchain in LEM.

Pricing strategy
The application of reinforcement learning is described through various literature in
“Reinforcement learning in LEM” section. In this section, we implemented the modified
Erev-Roth algorithm to develop the pricing strategy of the model. The pricing strategy is
aimed at increasing the individual economic benefit of the agents in the LEM. The min-
imum and maximum bid and ask prices are based on existing price components in the
German retail electricity market, which represent a natural alternative to trading on a
LEM.

A set of strategies S = {s1, 52, .5} for each individual agent i is set up which correspond
to the discreet bids (or offers) an agent will execute in the LEM. Initially, the agents have
no prior knowledge about the behaviour on the LEM except for the upper (%) and the
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lower (cf) limits of the trading window. S correspond to all the bids or offers between (%)
and (cf) with increment at discrete c€ level with one decimal point. Initially, at Zo, the

propensity g;s(¢) of all the strategies s for an agent i are equal and set by Eq. (1).

avg(I1;(Zo))

1
S| (1)

qis(to) = sca(o)
avg(I1;(%p)) is the profit earned by an individual agent i for the time-slot ¢y and sca(to)
is the scaling parameter. After the round of trading at time-slot £ among various agents,
the agents update their propensity for the next time-slot (¢ 4 1) to bid for the time-slot
(t + 2) through Eq. (2).

qist +1) = (1 — rec)qis(t) + MUF(,s, s, t). (2)

The recency effect of past events is determined by rec parameter (Erev and Rapoport
1998) and the modified update function (MUF) is given by Nicolaisen et al. (2001). It is
based on the chosen strategy s’ at time-slot ¢ which is given by Eq. (3).

;) (1 — exp), s=5

MUF(,s,s,t) = .
qis (t)%r N 7& s

3)

The exp parameter reduces the propensities of the not chosen strategies and also actu-
ate the weightage of the current strategy on the profit (Erev and Rapoport 1998). The
probability for a certain strategy s is then determined by Eq. (4).

qis(t + 1)

= (4)
Zs:sl qis(t + 1)

Initially at time £, the probabilities for all the strategies are equal and determined by
pis(to) = 1/|S|. After the first market clearance, when all the individual agents have cho-
sen their strategies randomly, the modified Erev-Roth algorithm comes into play and
determine the probabilities of the future bids and offers and gets updated according to
the success or failure of the chosen strategies.

Demand shifting in DR

The demand shifting is based on a strategy as presented in Mengelkamp et al. (2018a).
The demand profile of the individual agents I = {1,2,...,N} is forecasted perfectly for
the next 24 h at 15 min interval as D; = {d; s, d;z,, . . ., di s }. The maximum peak of the
forecasted demand is determined by the maximization function D;(d; ,4x) as Eq. (5).

Di(dimax) = max(Di(d;s)),t = to, t1, . . ., t9s. (5)

Then a parameter SDR is determined based on a perfect foresight as to how much
proportion of the maximum peak in a day can be shifted to a new time interval. The
assumption of perfect forecast to develop an LEM model based on reinforcement learn-
ing is taken from the support of the paper (Mengelkamp et al. 2018a). The SDR is defined
in the range of [0,1], where O represents the whole peak should be shifted and 1 repre-
sents no DR at all. The load shifting is applied to all those points of the load curves which
satisfies the Eq. (6).
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Di(dit) > Di(dimax) * SDR, t = to,t1, . .., tos. (6)

The expression D;hift (dit(j):] = 1,2, ..n, represents the intervals of the load curve which
satisfies the Eq. 6, where 7 is the number of peaks above the SDR limit, and the values of
hij .
Df lﬁ(di,t(,-)) are given by Eq. (7).

shift
Di

(i) = Di(dir()) — Di(dimax) * SDR, (7)
where £(j) = £(j1), £(j2), - . ., t(ju). The load intervals of a particular agent i which are above
the SDR is denoted by index j.

The minimum demand of the forecasted demand profile D;(d; ;) for 24 hours interval is
denoted by D;(d; min) and the time at which the minimum demand for a particular agent
takes place is denoted as t;in. The D;(d;imin) is calculated through the Eq. (8).

Di(dimin) = min(Dyz),t = to, t1, . . ., tos. (8)

The demand D?hiﬁ (d;s(j)) that is to be shifted as determined by Eq. (7) is then moved to
the time interval when demand is minimum D;(d; ,,,;,,) at the time interval ¢; ,,,;,, and added
to Di(dimin). This step generates a new demand profile D/f"(dy,, dy,, . . . , dty;). Once this
step is iterated for 96 times the final demand profile is set and denoted as D{l "al \ith the
goal of reducing the peak demand of the individual agents of the LEM. This modified
demand profile Dfl "al is sent back to the individual agents for trading in the LEM.

Key performance indicators (KPIs)
We have determined certain KPIs to analyse the technical and economic aspects of trad-
ing and DR facilitated with RL on the LEM and the physical grid on which the LEM is
embedded. The KPIs facilitate the analysis of our chosen regulatory scenarios and the
sensitivity analysis of the effect of change in the degree of DR and installed generation
capacity on the LEM.

The KPIs we apply are:

1. Degree of Local Sufficiency (DLS)
2. Market Closing Price (MCP)
3. Residual Peak Demand (RPD)

Mengelkamp et al. (2018a), de Oliveira e Silva and Hendrick (2017), and Long et al.
(2018) have used the DLS as one of the KPIs to evaluate the efficiency of the microgrid
model. Mengelkamp et al. (2018a), Zhou et al. (2020) and Chen and Bu (2019) have used
the MCP to determine the economic benefits and setup the constraints for their learn-
ing algorithm of their model. Mengelkamp et al. (2018a) and Marzband et al. (2013) have
utilised RPD to evaluate the optimum flexibility that can be offered by a LEM to a trans-
mission grid. Since, we wanted to explore the paradigm of efficiency, economic benefits
and flexibility offered by an LEM, we chose the above mentioned three KPIs for our study.
Apart from these KPIs, there are several other KPIs mentioned in existing literature,
however, it is out of the scope of our study.

The DLS is defined as the ratio of the total consumption of generated electricity which
includes the energy self-consumed sc;; or traded et;; among the agents i € / in the LEM
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doriginal

to the total aggregated original demand Zl Li=to Bit

The DLS is given by Eq. (9).

Scit + ety
DLS = Z Z ortgmal : ©)

i=1 t=ty tt

without any DR of the LEM.

The MCP helps to analyse the net profit the LEM gains from peer-to-peer trading, in
comparison to buying from the grid and selling to the grid. The MCP is defined as the
weighted average of the market clearing price that happens every 15 min over the year
and given by the Eq. (10).

N, T
Zi:l,tzto Mcpteti,t

N, T
i=1,t=ty

MCP =

(10)
etit

The RPD is defined as the aggregated residual annual peak demand of all the house-
hold agents after self consumption, trading energy and DR in the LEM. It determines the
maximum peak of demand for the LEM that has to be supplied by the grid. The RPD is
denoted by D;; and given by the Eq. (11).

N
D ic1 Disy — (scigy + etin);

N
Zi:l Dl',tl - (Sci,t1 + Eti,tl);

RPD = max (11)

N
Y im1 DiT — (scir + ety 7).

Set of scenarios

We distinguish our set of scenarios firstly concerning the regulatory context of Germany
and secondly by the degree of interaction among the agents. We have defined three types
of regulatory scenarios:

1. Public Network: virtual community on the (national) grid level
2. Microgrid: real community on a local perimeter
3. Favorable Regulation: idealised scenario

The regulatory scenarios determine the lower price limit (cf) of trading electricity in the
LEM. The virtual community on the national grid level takes into account the full regula-
tory cost of peer-to-peer trading, including (renewables) surcharges, taxes, and network
and concession fees. The Microgrid scenario is based on based on the regulatory concept
of a customer installation (Kundenanlage) in Germany, where a limited number of peers
can trade electricity among each other inside a local perimeter without paying grid fees
and electricity taxes. The Favorable Regulation is an idealised regulation where apart from
grid and electricity tax relaxation, the community is also exempted from the renewable
surcharges. The upper limit (c®) in this trading window is based on a reference tariff for
the 2018 retail grid electricity price. The lower limit (cf) of the trading window is based
on the feed-in tariff of PV and mCHP. Corresponding taxes and regulatory surcharges
are taken into account while calculating the limits of the trading window as adapted from
Mengelkamp et al. (2018a). The upper and lower limits of the trading window for various
scenarios are given in Table 1.

In the Public Network scenario, trading is not economic since the lower limit () of the
trading window is higher than the upper limit (c) of the trading window as can be seen
from Table 1. Trading is economically not beneficial because there are various surcharges
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Table 1 Upper and lower limit of the trading window (2018 prices in c€/kWh)

) G (ch)
Regulatory scenarios (c®)
PV CHP
Public Network 29.86 36.74 35.81
Microgrid 29.86 25.01 24.09
Favorable Regulation 29.86 16.83 15.90

and taxes that are levied on selling electricity through the national grid. The detailed price
description of various costs in the above mentioned regulatory scenarios can be found in
Mengelkamp et al. (2018a).

The second set of scenarios is based on the degree of technical interaction among the
different agents in the LEM. We have defined four types of scenarios which are :

Base Case

Trading

Trading & DR

Upper Bound (i.e Trading + DR + UL)

L

In the base case, there is no application of trading or DR among the household agents.
The trading scenario depicts the case when there is peer-to-peer trading among the agents
facilitated by RL.The trading & DR case incorporates DR of individual agents on top of
peer-to-peer trading. The upper bound case is a case of peer-to-peer trading supported
by DR but the bids of electricity are set to grid price i.e. all the electricity in the LEM are
asked at a price equal to the price the agents would have to pay while buying from the grid
i.e Upper limit of the trading window (c®). The interaction of agents is described in table
as given in Mengelkamp et al. (2018a).

Simulation setup

The set up of the market from “Methodology and model” section is implemented into an
agent-based model using the Anylogic software. The Main class of the model initiates all
other agents with prosumer and consumer population of agents along with the demand
and generation curves for each household agents and simulation time-slot is set at 15
min intervals for 1 year. The prosumer or consumer population of agents execute the
pricing strategy and the DR strategy, and the constructed bids and offers are sent to the
market clearing agent for clearance. Once the trades are matched through merit order
model, the information about successful trades are sent to the household population of
agents. A detailed setup of the simulation can be found in Mengelkamp et al. (2018a). The
implementation of the regulatory scenarios are actualized using the upper(c®) and lower
limit (cf) of the trading window as given in Table 1. The trading scenarios are as follows:

. Base: The pricing and the DR strategy is switched OFF in this case.

2. Trading: The pricing strategy is switched ON but the DR strategy is switched OFF
in this case.

3. Trading+DR: Both the pricing and the DR strategy is switched ON in this case.
Trading+DR+UL: Both the pricing and the DR strategy is switched ON here. In
addition, the excess electricity that is generated and sold in the LEM is bought at
grid price (%) to enforce the selling of all the local electricity generated in the LEM.
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The simulations are run for 1 year and an evaluation function reports the KPIs, that are

calculated to analyse the performance of the LEM.

Simulation results

Data origin

The PV data is obtained from a PV installation in the Southern part of Germany which
is recorded at 15 min time-slots for 1 year. The generation curves for the prosumer
households is then obtained from this curve using a 20% uniform distributed random-
ization function. The mCHP generation data is obtained from averaging multi-year data
of 9 mCHP installations (1 in Southern Germany, 1 in Alsace (France) and 7 in Fort-
ainbleau (France)) of 0,7-1 kWp installed electric power. The consumption profiles of
households are obtained from Unna (2002) and the curves are uniformly distributed as in
PV generation data to fit 1-5 person households.

Test runs

A set of 10 test runs in 15 min time-slots for 1 year is run for the model for every scenario.
The pricing strategy and the DR strategy is switched ON or OFF based on every case
and the pricing strategy is initialized with parameter values sca = 1,0, rec = 0,02, exp =
0,99 from Nicolaisen et al. (2001). The test runs are conducted on a standard laptop with
Processor Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz, 2701 Mhz, 2 Core(s), 4 Logical
Processor(s) along with 16.00 GB RAM. The simulation is executed in the Anylogic Uni-
versity Researcher Edition 8.5.1 software. One simulation run takes on an average 10 min
to complete 1 year in 35040 time-slots.

Sensitivity analysis

A sensitivity analysis of all the 12 scenarios is done on two metrics. In the first metric,
the PV peak power installation is increased from 5kWp to 25kWp in 5kWp intervals (i.e
5kWp, 10kWp, 15kWp, 20kWp, and 25kWp). The second metric that is chosen is the DR %
which has a range from 0% to 50% in 10% intervals (i.e. 0%, 10%, 20%, 30%, 40%, and 50%)
which corresponds to SDR of value (100%, 90%, 80%, 70%, 60%, and 50%) respectively.
This creates a matrix of 60 cases for each combination of scenarios which is used for
sensitivity analysis of the performance of the LEM that is analysed through the KPIs.

Evaluation

Evaluation of the modified Erev-Roth algorithm

In order to study the impact of the parameters of the modified Erev-Roth algorithm, we
made some tests and focused on the evolution of strategy in time, and on the gain gener-
ated from the energy trading compared to buying energy at the grid price. The evaluation
was done for the scenario of favorable regulation scenario with a fixed DR of 30%. In order,
to evaluate the algorithm, we defined certain performance indicators:

1. Average profit: the accumulated profit for a certain bid price
2. Strategy: the bid price associated to average profit
3. Gain from trading: the accumulated money saved from trading

We plotted these values for different values of rec (always for the same Household), for
1000 h. The value of exp is given in the paper from Nicolaisen et al. (2001), and is set
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to 0,99. For the rest of the paper, the following nomenclature is followed for the time ¢,
required by the algorithm to converge to a certain strategy:

1. Fast convergence: £, < 150 h
2. Moderate convergence: 150 h < £, < 500 hours
3. Slow convergence: £, > 500 h

The rate of convergence for various values of rec is demonstrated in Fig. 1. For rec = 0,01,
the strategy converges to a constant value between 500h and 1000h(slow convergence). It
can be seen that it converges to a “safe” value, because this bid price will be usually higher
than the MCP, so many bids will be accepted. As we increase rec, the time of convergence
slowly reduces along with the bid price. For rec = 0,0125, the strategies show moderate
convergence. Also, it converges to a lower value which is a bit riskier compared to the
strategy converged at rec = 0,01, but it is still sufficiently above the MCP. As we keep on
increasing the rec parameter at rec = 0,02, the strategy shows fast convergence. In this
case, the price at which the strategy converges is near to the annual average MCP which
poses a risk of choosing a wrong strategy if the MCP goes above the value of the converged
strategy. Above, rec = 0,02, the strategies tends to keep on converging at a much faster
pace. However, the converged strategy falls substantially below the annual average MCP
which may cause substantial risk of lower gains. To understand the development of gains
from converging strategies for various values of rec, the gain from trading was plotted
against time and demonstrated in Fig. 2.

The lower values of rec parameter correspond to long term strategies. The value of rec =
0.01 shows lower gains in the beginning but increases at a faster rate than other strategies.
As we increase the rec parameter to 0,015 and 0,0175, it can be observed that the gains
are better than other strategies for mid-term. This approach seems to be very good to mix
safety in long term and good income in short term. The rec parameter at 0,0175 seems to
be efficient and can satisfy an individual who is ready to take risks in order to have a big
and fast income. For rec = 0, 02, shows similar gains as that of rec at 0,015 in short term
but tends to fall bellow all other strategies in long term. From here, it can be concluded
that the rate of increase of this curve can be linked to the value of rec, and the rate is
higher for lower values of rec, but also riskier than the ones with higher values of rec.

Evaluation of the results of the model

The sensitivity analysis is performed on all the combinations of regulatory scenarios and
the scenarios based on interaction of agents. We intend to evaluate the impact of three
different regulatory scenarios on each KPI separately (i.e. DLS, MCP and RPD). The low-
est values of KPIs for Fig. 3 are marked in red colour and the highest values are marked
in blue colour and vice-versa for Fig. 5. The intermediate values are marked according to
their closeness to the two extreme values.

Figure 3 demonstrates the sensitivity analysis of the degree of local sufficiency of the
LEM. The application of DR has positive impacts on the DLS on all regulatory scenar-
ios. The public network scenario does not provide any window for trading. The increase
in DR% however increases the DLS by 19-29% by increasing the PV installation from
5-25kWp. The microgrid and the favourable regulation provide window for trading and
the performance of DLS is further increased through increase in DR%. However, in the
relative comparison of the Microgrid and the Favorable regulation scenarios where
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Fig. 1 Convergence of the learning strategy with change in rec parameter for a single household. Figure 1
refers to the convergence of the strategy to a single price point for different values of rec parameter for a
particular household. For rec = 0,01, the strategy demonstrates a slow convergence. As the rec is decreased to
0,0125, the strategy enters the moderate convergence timet.. Above rec = 0,02, the strategy enters the fast
convergence mode. It can be observed that the faster rate of convergence also drives the strategy to a lower
price point. As a result, the faster rate of convergence provides a better gain in the short term by settling
faster on a particular price but it also increases the risk of choosing a price which may be lower than the
average MCP which may lead to losses in the long term

trading and DR is implemented, it can be observed that the DLS increases by 20% in
Microgrid scenario and 15% in Favorable regulation scenario for 5kWp as we increase
DR% from 0% to 50%. The upper bound scenario demonstrates maximum level of DLS
for all the regulatory scenarios since these particular scenarios enforce maximum trad-
ing of electricity in the LEM. In the scenarios involving trading with DR, the agents do
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Fig. 2 Gain from trading with change in rec parameter for a single household. Figure 2 refers to the gains
obtained from trading for different values of the rec parameter. For rec = 0,01, the gain from trading starts a
bit lower than most of the other sets but the shape of the curve suggests that it increases at a faster rate with
time. For rec = 0,0125, we can see that it starts a bit higher than with the previous set of parameters, but gets
lower between 500h and 1000h. This is a short-term strategy, but we can see by comparing to the other
curves that it does not seem to be efficient, as it is almost always lower than most of the other curves. For rec
= 0,015, the gain starts at a high value. Moreover, it increases at a faster rate, and we can see that after 1500h
it is higher than any other curve. The gain obtained from rec=0,0175 seems to be highest for short term.
However, as time passes, it tends to slowly fall below the other curves. For rec = 0,02, the gain in the
beginning is roughly the same as rec = 0.015. However, for long term, it can be seen that the curve with this
set increases much slower than the other

not bid for all the energy, rather they bid intelligently as per the pricing strategy of indi-
vidual agents. The extension of trading window through regulatory scenarios does not
necessarily increase the DLS as observed in the similar cases where the purchase of local
generation is not enforced for corresponding cases of Microgrid and Favorable regula-
tion. The increase of PV installation and increase in percentage of SDR both have positive
impact on the DLS. In addition, as the regulatory barriers decrease which in turn broad-
ens the trading window, leads to an increase in the DLS. However, the maximum % of
DLS that can be achieved in a case similar to our LEM is about 81%.

de Oliveira e Silva and Hendrick (2017) provides the demonstration of self-sufficiency
of 25 Belgian households using Lithium-ion batteries. A self-sufficiency of 30% was
achieved using only PV installation of 5kWp. Above that, storage was used to achieve
a self-sufficiency of 80%. Long et al. (2018) described a model of a microgrid with 100
households out of which 40% of the households had their own PV generator along with
battery storage. A self-sufficiency of 33,7% was achieved with peer-to-peer trading with-
out any battery storage which increased up to 47,4% with the use of 16kWh of storage for
those prosumer households. In comparison, we achieved DLS of 22,1% with PV installa-
tion. We replaced the battery with DR and were able to reach up to 36,6%, an increase of
14,5% with 30% DR. A maximum of 48,6%, an increase of 26,5% was achieved with the
implementation of 50% DR.

Figure 4 displays the sensitivity analysis of the annual average MCP for all the com-
bination of scenarios. For the cases involving trading along with DR with or without
enforcement of the prices of local generation of PV at grid price (%) in the Microgrid
scenario, the trading happens almost near to the grid price (c®) because of a small trad-
ing window and all the bids are forced to be equal to grid prices. Increasing the DR% to
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DLS(%) Public Network Microgrid Favorable Regulation
PV(kW)->
DR(%)

Base | 0%
Trad.| 0%

10 | 15 | 20 10 | 15| 20 | 25| 5 | 10| 15| 20 | 25

Trad
+
DR

Trad.

Fig. 3 The Degree of Local Sufficiency of sensitivity analysis of all the scenarios. Figure 3 refers to the
sensitivity analysis of the degree of Local Sufficiency for all the combination of technical and regulatory
scenarios. The undesirable sensitivity i.e low DLS is denoted in red color, and as the DLS increases through
the heat map, the desirable DLS i.e a high DLS in demonstrated in green color with intermediate values
denoted with a color transition from red to green with increasing DLS. It can be observed that the DLS
increases with both increasing the local PV production and also by increasing the degree of DR. In the Public
Network scenarios without DR, the DLS increases by 6,1% from 22.1% to 28,2% as we increase the PV
installation from 5kWp to 25kWp because more energy generation leads to more self-consumption. The
implementation of trading in Favorable Regulation scenario provides a bigger window for trading which
leads to increase in consumption of electricity generated locally in the LEM, which in turn, increases the DLS
by 9,3% for 5kWp installation to 26,9% for 25kWp installation in comparison to the corresponding base case
scenarios. In the Microgrid scenario, the DLS increases by 19,1% for 5SkWp and 27,4% for 25kWp installation
and in Favorable regulation scenario, the DLS increases by 15,2% for 5SkWp and 24,1% for 25kWp as we
increase DR% from 0%-50%. For the cases where purchase of local generation is enforced, the Public
Network scenario shows the increment of DLS without trading to 41,2% for 5SkWp PV installation to 57,4% for
25kWp installation. The effect of trading can be visualized in case of the Microgrid scenario in combination
with Upper bound scenario where the DLS increases by 13% for 5kWp to 25,9% for 25kWp installation.
However, a further relation of regulations does not increase the DLS as can be observed in Favorable
regulation cases in comparison with the corresponding Microgrid cases

50% also does not have a significant impact on the MCP. For Favorable Regulation sce-
narios, however, there is a significant decrease of the MCP up to 3c¢€/kWh as we increase
the PV installation from 5kWp to 25kWp due to the presence of more offers of electricity,
which enables the intelligent agent strategy to lower the price of electricity in the LEM.
For the cases involving enforcement of prices of local generation of PV at ¢, the price
settles around 27¢€/kWh, thus decreasing the average price of electricity by 2c€/kWh
and it is not much affected by increase in PV power installation or increase in DR, which
showcases the fact that if the bids are fixed to the grid price to ensure maximum con-
sumption of locally generated electricity, the MCP decreases by a small margin but it is
not substantially affected by DR.

When comparing our results with existing literature, it is observed that Zhou et al.
(2020) explored the paradigm of user dominated DR and peer-to-peer trading on a local
energy market of 50 households. Here, a PV installation of 3,2 kWp was used for the sim-
ulation. With a penetration of 50% PV, which is similar to our case, an annual saving on
the cost of electricity provision of 17,7% was achieved with only peer-to-peer trading. The
increase in savings of the consumers through DR was not reported by Zhou et al. (2020).
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Fig. 4 The average Market closing price of sensitivity analysis of all the scenarios. Figure 4 refers to the
sensitivity analysis of the average Market Closing Price of the LEM. The cases involving Public Network
scenario is not demonstrated because no trading occurs with that regulatory scenario. Similarly, since no
trading is involved in the base case, it is also excluded. In the Microgrid scenario, it can be observed, that the
increase of PV power installation leads to decrease in the MCP because there is more energy offered in the
LEM, which tends to more successful trading, thus pulling down the average MCP of the LEM. This effect is
more prominent in the Favorable Regulation scenario since the trading window is broader, which allows the
reinforcement learning algorithm to bid more intelligently thus decreasing the price of electricity by
4c€/kWh in case of 5kWp PV installation to about 8c€/kWh in case of 25kWp PV installation from the grid
price (c©). For the cases involving trading with DR, in the Microgrid scenario, the trading happens almost near
to the grid price (c©). For Favorable Regulation scenario, the MCP decreases slightly with increase in DR% but
there is a significant decrease of up to 3c€/kWh as we increase the PV installation from 5kWp to 25kWp

Long et al. (2018) have reported similar findings for a microgrid with 100 households with
40% households equipped with PV panels and battery storage. An annual decrease of 30%
cost of electricity was reported for the community through peer-to-peer trading. Chen
and Bu (2019) has explored the self-learning prosumer behaviour of developing intelligent
agent strategies through deep reinforcement learning method in a LEM of 200 house-
holds. The average annual revenue saved through this method for the LEM with only
trading was reported as 33% saving with trading in LEM and 54% with trading and storage.
In comparison to our case, the average annual MCP in Microgrid scenario was reduced
by 0,7c¢€/kWh (2,3%) and by 4c€/kWh (13,4%) in the Favorable Regulation scenario for
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the consumers for a 5kWp PV installation on 45% of the households. Our intelligent agent
strategies managed to achieve annual average saving of 7,56c¢€/kWh (25,3%) with only
10% DR. As for prosumers, they made a profit with average annual MCP of 25,4c€/kWh
with trading instead of putting it in the grid and achieving a feed-in tariff 16,83c€/kWh
i.e. 51% annual increase in the revenue which is comparable to that of Chen and Bu (2019).
However, it must be noted that the results from Chen and Bu (2019) corresponds to the
regulations of United States of America but in our case, it corresponds to Germany. This
may have a difference in the trading window and may impact the results as well.

The annual RPD is demonstrated in Fig. 5. The effect of only DR without trading can be
observed for scenarios involving trading with DR in the Public Network scenario. A slight
increase of DR% by only 10% can decrease the RPD by 22-25% because demand shifting
can move the load to definite time-slots, because the DR strategy utilized for this model
is price-based and shift of load from evening to morning can have significant impact on
decreasing the RPD of the LEM. However, there are sudden peak surges for cases with DR
more than 30% because of excessive demand shifting leads to local maxima in the load
curves. This problem of sudden peaks is mitigated, when we move from Public Network
scenarios to Microgrid or Favorable Regulation scenarios which involves trading with DR.
Another interesting outlook is that the increase of trading window has negligible impact
on the RPD which can be observed by comparing the corresponding cases of trading with
DR in the Microgrid and Favorable Regulation scenarios.

RPD(kW) Public Network Microgrid Favorable Regulation
PV(kW)->
DR(%)
Base | 0%| 16,2| 16,0| 15,9 15,8 15,8/ 16,2| 16,0| 15,9| 15,8 15,8| 16,2| 16,0 15,9| 15,8| 15,8
Trad.| 0%| 16,2| 16,0| 15,9| 15,8 15,8| 16,2 16,0| 15,9| 15,8| 15,8| 16,2| 15,9| 15,7| 15,6| 15,5
10%| 12,1] 11,7| 11,9] 12,3| 12,2| 9,3| 9,3 9,3| 9,6/ 100/ 9,55 88| 88/ 87 88
Trad | 20%| 11,7| 13,7| 14,1| 15,4| 15,7| 8,9| 84| 85 84| 9,0 101 75| 7,7l 76| 9,5
+ |30%| 9,4 84| 9,0 95/ 94| 84| 81 81 85 94| 7,8 76 73| 9,3
DR | 40% 79 78| 84| 90| 85| 74 77| 72 93| 89
s0%| 11,2 11,4) 11,4 10,8/ 11,9] 79| 7,6] 7,7 10,1] 9,5 70| 7.9 81| 10,0 100
Trad.| 10%| 12,1| 11,7| 11,9] 12,3 12,2| 9,2 88| 85 85 95 88/ 85 83| 80
+ | 20%| 11,7| 13,7| 14,1 15,4| 15,7| 8,4 9,0/ 10,1| 74| 7,6 9,5
DR [30%| 94| 84| 9,0 95 94 83 7,7 7,6 9,2
+ | 40% 75 7,7 92| 87
UL |50%| 11,2| 11,4 11,4| 10,8| 11,9 8,8 7,5 80 9,9 9,9

5110|1520 | 25| 5 |10 | 15|20 | 25| 5 |10 | 15| 20| 25

Fig. 5 The sensitivity analysis of residual Annual peak demand of all the scenarios. Figure 5 refers to the
sensitivity analysis of Annual Residual Peak Demand of the LEM. The undesirable sensitivity i.e high RPD is
denoted in red color, and as the RPD decreases through the heat map, the desirable RPD i.e a low RPD is
demonstrated in green color with intermediate values denoted with a color transition from red to green with
decreasing RPD. In the base cases of Public Network scenario involving no DR, the increase of PV installation
from 5kWp to 25kWp decreases the RPD by 2,5% which demonstrates the fact that the most surges in
electricity demand occurs near or after sunset. A slight increase of DR% by only 10% can decrease the RPD by
22-25% in the trading with DR scenario in the Public Network scenario. However, if we keep increasing the
SDR there is decrease in the RPD up to a certain limit after which the RPD surges significantly if DR% is more
than 30% as too much peak shading and movement of load curves causes formation of local maxima which
leads to sudden peaks in the RPD. In the Microgrid scenario combined with trading and DR, the increase of
PV power installation does not impact the RPD much for lower percentage of DR. However, as we keep
increasing the percentage of DR, the RPD has significant drop of up to 35-42%. In the Favorable Regulation
scenario combined with trading and DR, there is negligible decrease in the RPD when compared to the
corresponding cases in the Microgrid scenario
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Discussion

The analysis of changing the rec parameter changes the behaviour of the model, and more
specifically the time of convergence of the bidding strategy. The time of convergence also
influences the evolution of the gain from trading. With the set of parameters that makes a
fast convergence strategy (t.<150h), gain is strong at the beginning. However, after thou-
sand hours, moderate converging strategies (150h<z#,<500h) seems to be more efficient,
as the gain increases faster. Slow converging strategies (£,>500h) seem to be interesting
on the very long term because the gain at the beginning is lower in comparison to other
strategies. It was also noticed that the strategy chosen with quick converging parameters
is often riskier than the parameter corresponding to slower convergence. This induces
a higher gain in the short term but can also be a loss making strategy if many bids are
rejected because it converged considerably below the MCP.

The sensitivity analysis of the combination of scenarios demonstrates how the DLS,
MCP and RPD changes with change in PV power generation and change in percentage of
peak shading in DR. The DLS can reach above 80% with increase in PV power installation.
A similar development of DLS can be observed with increasing the DR% and a substantial
gain of around 40-50% can be achieved even for PV installation of 5kWp. The range of
trading window has a significant impact on the average MCP of the LEM.

Our analysis shows that the introduction of LEM, if set up in a convenient way for
the participating agents, could prove to be a practical solution for maximization of local
value generation in an increasingly decentralised energy system based on renewable
energy sources. The microgrid scenario based on existing regulation in Germany provides
already a setting in which prosumer agents of a local energy community are economi-
cally incentivised to share their electricity with local peers and modify their consumption
pattern within a client installation. Our analysis shows that the induced change in
consumption behaviour has also positive side effects on the annual peaks at the network
connection point of the client installation. Under a favorable scenario, this effect is even
much stronger and could help to substantially reduce network congestion or compulsory
curtailments, or alternatively allow more decentralised energy resources on the same grid
infrastructure.

The combination of reinforcement learning for intelligent agent strategies for trading in
the LEM can contribute towards converging the modelling approaches to replicate human
behaviour. In addition, the ease of trading, that can be achieved with reinforcement learn-
ing have far deeper impacts in modifying existing trading approaches for administering
peer-to-peer trading in different setups.

However, there are certain limitations to this simulation model. First of all, the limita-
tion is related to data input. The household data is based on standard load curves, which
although randomized through error functions, still represent an averaged electricity con-
sumption over 15 min intervals, e.g. neglecting real existing power peaks at that level. If
real load curves are obtained, a further development of various KPIs can be performed
and the model can gravitate more towards reality. Also, a real load curve will provide
better opportunity for load shifting since real curves have more variability amongst each
other. The model helped us to test economic benefits of peer-to-peer trading in differ-
ent regulatory scenarios in Germany. We identify a lack of a robust regulatory framework
with clear economic advantages to explore the full potential of reinforcement learning in
intelligent agent strategies and DR in LEM.
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Another point to ponder upon is that we have tested one algorithm of reinforcement
learning after extensive literature research. However, different LEM may have different
requirements and technological and regulatory constraints. So this model is applicable
for scenarios which are related in their characteristics to the particular LEM represented
here and has not been proofed to be a best solution for all types of LEMs that may exist.

Conclusion and further research

The agent-based simulation model represented in this work demonstrates the applica-
tion of reinforcement learning for intelligent agent strategies for peer-to-peer trading in
a LEM. We have represented various regulatory scenarios and constraints with respect to
German electricity regulation and showcased the opportunity of implementation of LEM
in a real regulatory scenario. We have demonstrated the convergence of various strategies
with changing parameters of the modified Erev-Roth algorithm, thus giving the partici-
pants flexibility to choose between different strategies with different gains and penalties.
We have also demonstrated the application of DR to reduce dependency on the grid, pro-
vide economic benefit to individual agents and grid flexibility for a LEM. In addition, we
have presented a sensitivity analysis of the impact of increase of renewable resources and
more peak shading based on price sensitive DR in a LEM. To analyse the regulatory sce-
narios and provide a test bench for simulating different implications of LEM, we have set
different scenarios based on the level of interaction between agents in the simulation. It
is demonstrated that a degree of local sufficiency of more than 80% can be achieved with
increase of renewable and DR% as demonstrated in Fig. 3. Also, a significant economic
benefit for the LEM was achieved by decreasing the average price of electricity up to
8c€/kWh. The annual residual peak demand of electricity of the entire LEM was reduced
even with small load shifting through price-based DR.

Further research should be targeted towards technological and policy standards of dif-
ferent countries of Europe and world-wide to verify the application of the model for
different regulatory contexts. In this article a perfect forecast was assumed to simulate
different scenarios. However, in reality, the this may not be the case. So, the study of
deviation of consumption from forecasted demand and its impact on the reinforcement
learning strategy is an interesting paradigm that must be further investigated. Also, sig-
nificant research is developing towards Q-learning algorithms and deep reinforcement
learning for application in LEMs which should be further explored. The pricing strategy
of the model is based on reinforcement learning which targets to decrease the MCP in
times of high generation and increase the price during time intervals of high consumption.
However, the pricing strategy does not incorporate any price for congestion in the net-
work as high generation often leads to network congestion in real world scenario and this
point should be further investigated. In addition, our reinforcement learning approach is
focused purely on achieving economic benefits, whereas real world scenarios can have
broader inclusion of other benefits (i.e. achieve energy independence for communities,
provide substantial grid flexibility, increase of renewables in the total energy mix etc.). We
also recommend to include the non-economic objectives of LEMs in future research.
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