
Towards Correct Smart Contracts: A Case Study on Formal
Verification of Access Control

Jonas Schiffl

Karlsruhe Institute of Technology

Institute of Information Security and

Dependability (KASTEL)

jonas.schiffl@kit.edu

Matthias Grundmann

Karlsruhe Institute of Technology

Institute of Information Security and

Dependability (KASTEL)

matthias.grundmann@kit.edu

Marc Leinweber

Karlsruhe Institute of Technology

Institute of Information Security and

Dependability (KASTEL)

marc.leinweber@kit.edu

Oliver Stengele

Karlsruhe Institute of Technology

Institute of Information Security and

Dependability (KASTEL)

oliver.stengele@kit.edu

Sebastian Friebe

Karlsruhe Institute of Technology

Institute of Telematics

sebastian.friebe@kit.edu

Bernhard Beckert

Karlsruhe Institute of Technology

Institute of Information Security and

Dependability (KASTEL)

beckert@kit.edu

ABSTRACT

Ethereum is a platform for deploying smart contracts, which due to

their public nature and the financial value of the assets they manage

are attractive targets for attacks. With asset management as a main

task of smart contracts, access control aspects are naturally part

of the application itself, but also of the functions implemented in

a smart contract. Therefore, it is desirable to establish the correct-

ness of smart contracts and their access control on application and

single-function level through formal methods. However, there is no

established methodology of formalising and verifying correctness

properties of smart contracts. In this work, we make an attempt in

this direction on the basis of a case study. We choose an existing

smart contract application which aims to ascertain the integrity of

binary files distributed over the Internet by means of decentralised

identity management and access control. We formally specify and

verify correctness at the level of single functions as well as temporal

properties of the overall application. We demonstrate how to use

verified low-level correctness properties for showing correctness

at the higher level. In addition, we report on our experience with

existing verification tools.

ACM Reference Format:

Jonas Schiffl, Matthias Grundmann, Marc Leinweber, Oliver Stengele, Sebas-

tian Friebe, and Bernhard Beckert. 2021. Towards Correct Smart Contracts:

A Case Study on Formal Verification of Access Control. In Proceedings of
the 26th ACM Symposium on Access Control Models and Technologies (SAC-
MAT ’21), June 16–18, 2021, Virtual Event, Spain. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3450569.3463574

1 INTRODUCTION

Deployed smart contracts are programs that run on decentralised

platforms on which they manage resources and provide services.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’21, June 16–18, 2021, Virtual Event, Spain
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8365-3/21/06. . . $15.00

https://doi.org/10.1145/3450569.3463574

The most prominent smart contract platform at present is Ethereum.

Ethereum smart contracts are usually written in the Solidity pro-

gramming language. They manage Ether, Ethereum’s built-in cryp-

tocurrency, as well as other digital and a wide range of real-world

assets. Thus, smart contracts are per se access control applications

since they manage access to assets. This fact makes them a target of

attackers seeking financial gain [10]. Since every smart contract’s

byte code is publicly available on the Ethereum blockchain, any

vulnerability – either on the level of the entire application or on

underlying functions of a smart contract – is likely to be found

by some attacker. Furthermore, once deployed, Ethereum smart

contracts are immutable; the only way to fix programming errors

is to delete, correct, and redeploy the entire program.

As a consequence, it is necessary that smart contracts are correct

upon deployment, i.e., they work as intended by the developer and

cannot be exploited by an attacker. This requirement of correctness

is particularly important for security properties and correspond-

ing access control aspects. In order to ensure correctness, formal

methods should be used: correctness of a contract is expressed in

the form of formal specification and is proven to show that the

implementation indeed fulfils the specification. The use of formal

verification comprises addressing the following questions for each

smart contract application: What are the relevant functional and se-

curity properties? How can those properties be formally specified?

How can one prove that the application conforms to its specifi-

cation? A long-term goal and a “grand challenge” is to develop

a methodology for translating an intuitive phrasing of what the

application is intended to do into a formal language, and to then

prove that the implementation conforms to the formalisation. The

challenge lies in the fact that applications based on a collection of

smart contracts are ‘service-like programs’ without a deterministic

start-to-end program flow. Functions of a smart contract are called

by unknown, untrusted agents in an unknown order, so that the

overall system behaviour is best described as non-deterministic.

Function execution, however, is deterministic and atomic.

In this work-in-progress paper, we make an attempt towards the

ambitious goal of correct smart contracts, focusing on a specific

application. As case study, we choose Palinodia [11, 12], an appli-

cation aiming to enforce access control over the publication and

https://doi.org/10.1145/3450569.3463574
https://doi.org/10.1145/3450569.3463574

revocation of information concerning the integrity of executable bi-

nary files distributed over the Internet. Our contributions consist of

an analysis what kinds of properties are relevant for smart contract

correctness, a strategy for proving correctness on application-level

based on correctness on function-level, and an evaluation of the

applicability of available tools for formal analysis.

We proceed as follows: After reviewing related work on verifica-

tion of smart contracts and fundamental concepts of the Palinodia

application (Section 2 and Section 3), we start at the ‘bottom’ and

specify as well as verify the correctness of single Solidity functions

(Section 4). In particular, we develop a natural language specifica-

tion of each of Palinodia’s functions and translate them to a formal

specification language. Then, we verify the correctness of the im-

plementation using the solc-verify tool. In Section 5, we formulate

the application’s main functional and security properties. These

properties are not on the level of single functions, and cross the

boundary between the smart contracts of the application and the

client software: The crucial point of the application is whether a

user is able to validate the integrity and the correct endorsement of

a binary. We formalise this validation check by translating it into a

Solidity smart contract. From there, we reason about the implica-

tions of a program state where the validation returns positive for

correctness and security. Due to the non-deterministic agent be-

haviour, temporal verification methods are needed. We experiment

with using the VerX tool to formalise some temporal correctness

properties, but we have not yet been successful at using the tool

to prove them correct. However, we illustrate how to use the cor-

rectness properties verified at the single-function level to manually

prove correctness of the application’s main security property, and

give some thoughts on how to automate or formalise this process in

the future. Finally, in addition to formalising functional and security

properties of individual smart contracts, it can be useful to check

for application-independent correctness properties, e.g., vulnerabil-

ities or anti-patterns arising due to the idiosyncrasies of blockchain

networks or the Solidity programming language. Various tools exist

that aim to discover these kinds of vulnerabilities, usually through

automated static analysis. In Section 6, we describe our experience

with two tools of this category.

2 RELATEDWORK

Formal verification of smart contracts has been an active research

area. A recent overview [1] notes, however, that none of the sur-

veyed tools support application-specific annotations, and that none

of the tools is able to verify properties of interacting smart con-

tracts. While some such tools do exist, this is still an indication that

specification and verification of the overall correctness of smart

contract applications should be investigated further.

We are aware of only a few tools which allow user-defined spec-

ification. The solc-verify [2] tool allows specifying and verifying

function pre- and postconditions and invariants. We describe it in

more detail in Section 4.

The VerX tool [8] allows user-defined specification of temporal

properties, written in PastLTL. The complexity of function calls is

dealt with through predicate abstraction. We describe some initial

experiences with VerX in Section 5.3.

The K framework is a general approach for generating analysis

tools from an operational semantics of a language. KEVM [4], a

formal semantics of Ethereum for the K framework, has been devel-

oped to allow formal verification of Ethereum smart contracts on

the EVM byte code level. As a very general tool, KEVM in principle

allows the specification of functional as well as safety and secu-

rity properties. However, its generality comes with a trade-off in

specification complexity and performance of the automated proof

tools.

Most of the highly publicised exploits of smart contracts were

not due to application-specific properties, but due to errors like re-

entrancy or missing parameter sanitization. Generic vulnerabilities

of this kind have been compiled in the Smart Contract Weakness

Classification Registry
1
, which has become a benchmark suite for

static analysis tools.

Formal verification of correctness (“safety”) of access control

specifications dates back at least to the seminal work of Harrison

et al. in [3]. While the fundamental limits certainly apply to the

grand challenge and this work alike, formal verification of selected

systems or classes of systems can still be feasible. In this work, we

are particularly interested in formalising the properties of typical

smart contracts, and in checking whether existing tools are able to

verify them.

3 PALINODIA

Palinodia [11, 12] is the application we chose for our case study.

It can be used to establish unique identities for software and en-

force access control over these identities, including the publication

and revocation of integrity protecting information for individual

binaries. Broadly speaking, it codifies the relationship between

a Software Developer, who establishes and maintains a software

project, and a Software Maintainer, who is authorised by the De-

veloper to produce executable binaries from the software project.

Palinodia is comprised of three kinds of smart contracts as depicted

in Figure 1: A Software contract establishes a root identity for a

software product and is controlled by a Software Developer via an

Identity Management contract. It can store references to several

distinct Binary Hash Storage (BHS) contracts (representing differ-

ent intermediary identities of the software), each managed by a

different Maintainer. A Binary Hash Storage contract represents an
intermediary identity of a software product and is managed by a

Maintainer. Hashes of binaries (stored elsewhere) can be published,

representing an endorsement by the Maintainer. They can also

be revoked later. Each BHS contract is associated to one Software

contract and one Identity Management contract. Identity Manage-
ment contracts are used by Software Developer and Maintainer

alike to control who has access to the functions of the software and

BHS contracts respectively. In particular, individual Ethereum pub-

lic keys can be added to and removed from Identity Management

contracts to authorise or deauthorise them.

User clients can obtain contracts and their current state from

the Ethereum network in order to verify both the integrity and

endorsement of binaries they wish to use. To facilitate this, binaries

include a metadata manifest with the address of their respective

BHS contract. After obtaining the current state of the BHS contract,

1
https://swcregistry.io/

https://swcregistry.io/

Software
Contract

Binary Hash
Storage
Contract

Identity
Management
Contract

Software
Developer

Software
Maintainer

controls controls

represents represents

registers1 *

uses
*

1uses
*

1

Figure 1: Overview of Palinodia, consisting of two roles (blue

pills) and three kinds of smart contracts (coloured rectan-

gles) and their mutual relations. Source: [11]

which includes the published hash of the binary for comparison,

the user client proceeds to check whether the BHS contract is

endorsed by the Software contract it expects. The first time a user

obtains a binary, the address of its corresponding Software contract

is stored as a trust anchor. Any binary that links back to such a

stored Software contract through a BHS contract is trusted by the

user client.

Simply put, the Palinodia user client trusts data it reads from the

blockchain because it assumes that this data has been deposited

in the intended way by authorised agents. The goal of our formal

analysis is to formalise and prove correctness of this assumption.

4 SINGLE FUNCTION PROPERTIES

As a starting point for the formal analysis of the Palinodia appli-

cation, a natural language specification for each function of the

three smart contracts was developed in the form of pre- and post-

conditions. All preconditions are in one of two categories: (1) The

caller must have access rights to the function, and (2) checking

whether a storage variable is already set to a specific value. The

postconditions specify that a storage variable must not be modified

if the preconditions are not fulfilled.

This kind of specification is easily mapped to the requiremecha-

nism in Solidity. The require keyword takes a boolean condition. If
the condition is fulfilled, execution continues; if it is not, execution

is aborted and all changes to state are reverted.

4.1 Example Specification

The natural language specification of the changeRootOwner func-
tion was given in the following form:

Change Root Owner (Parameter: New Root Owner’s
public key) The current Root Owner can transfer this
role to a different public key.
Precondition: The caller is the current Root Owner.
Postcondition: The given public key is the new Root
Owner. The previous Root Owner loses their status.
Precondition: The caller is not the current Root Owner.
Postcondition: No state change.

We translate the natural language specification to annotations

for the solc-verify tool. The function’s source code, annotatedwith

a postcondition describing its desired effect, is given in Listing 1.

//@ postcondition root_owner = _newAddress;

function changeRootOwner(address _newAddress)

public returns(bool) {

require(msg.sender == root_owner ,

"Operation␣only␣allowed␣for␣Root␣Owner");

root_owner = _newAddress;

return true;
}

Listing 1: The changeRootOwner function

4.2 The solc-verify Tool

Functions specified in this way can be proven correct with solc-

verify [2]. solc-verify is a tool for formal verification of Ethereum

smart contracts on the Solidity level. Its annotation language al-

lows specifying contract-level invariants, function-level pre- and

postconditions, loop invariants, and frame conditions.

The require and assert statements in the Solidity source are

translated to pre- and postconditions, respectively. Annotations

can contain quantifiers, and bounded sum terms. Function postcon-

ditions can refer to the return value of the function and to the old
value of a state variable before the function was executed. modifies
clauses in the specification of a function express which part of the

state may be changed by the function.

The tool works by translating the source code and the annota-

tions to the Boogie intermediate language, generating verification

conditions which can be discharged by the z3 SMT solver. While

specification is supplied by the developer, verification is automatic.

4.3 Verification using solc-verify

After translating the natural language specification into solc-

verify’s annotation language, wewere able to verify the correctness

of almost all functions w.r.t. the specification.

Only in a few cases did specification or verification not work as

expected. One problem is String comparison: One function takes a

String parameter and uses it to replace a mapping entry. The post-

condition of the function would need to express equality between

the parameter and the mapping entry after execution of the method.

However, there is no method to directly compare Strings either in

Solidity or in the annotation language of solc-verify.

When specifying the frame of a function, i.e., what parts of

the state a function may change, solc-verify times out in some

instances when attempting to prove that only one element of a data

structure can be changed. For the proof to succeed, it is necessary

to allow the entire data structure to be changed.

Apart from these issues, using solc-verify is straightforward

and fast. The specification needs as much space as the source code.

Automatic verification of all 30 functions takes around 30 seconds.

4.4 Single Function Access Control

Much of the natural language specification for Palinodia concerns

access control. Access control failures also account for many criti-

cal vulnerabilities in deployed smart contracts (cf. [6, 7]). For this

reason, we highlight some general concepts for achieving correct

access control.

Palinodia’s built-in access control is role-based. There are three

different roles: Root Owner, Software Maintainer, and Software

contract RequireCheck {

function danger(uint256 i) public returns(bool) {

require (msg.sender == owner , "Caller␣is␣not␣owner");

doDangerousThings ();

}

}

Listing 2: Access control by requires clause

contract ModifierCheck {

modifier only_owner {

require (msg.sender == owner , "Caller␣is␣not␣owner");

_;

}

function danger(uint256 i)

public only_owner returns(bool) {

doDangerousThings ();

}

}

Listing 3: Access control by modifier

Developer. Each of these roles has an associated set of functions

which may be called by someone who has that role.

Checking whether the caller of a function has a certain role

is currently done in a requires clause in the beginning of each

function. For the Root Owner, the address of the caller is compared

to the Root Owner address stored in the contract. For the other roles,

calls to the Identity Management contract are made. The requires
clauses could be replaced by function modifiers, a Solidity concept

which is useful to replace recurring checks with a single keyword.

Listing 2 and Listing 3 show how access control can be implemented

via requires statement and function modifiers, respectively.

The only_owner modifier can be reused, reducing the amount

of code, and is more readable. It also simplifies the task of verify-

ing that access control happens correctly, because only 3 modifier

implementations (and their presence in the function header) have

to be checked (as opposed to a requires clause for every function).

In [9], there is an approach for automatically generating modi-

fiers and function stubs from an existing access control model of

the application which includes the roles and the functions which

each role is allowed to access. Furthermore, the report describes

how access to storage can be modelled and verified.

In conclusion, specifying and verifying the correctness of single

functions has worked well in our case study. Palinodia does not

contain any loops or recursion, which typically present a challenge

for verification tools. In the future, we will need to investigate the

performance of existing tools when dealing with these constructs

as well.

5 APPLICATION CORRECTNESS

While Section 4 dealt with the correctness of single functions, in

this section, we consider the correct and secure functioning of the

application as a whole.

5.1 Intuitive Security Property

The security of the application relates the smart contracts and the

validation a user performs in order to ensure that the piece of

software they downloaded has not been tampered with. It describes

what a user expects from the software and can be stated as follows:

Security: If the client’s validation check for a binary is positive,
then the binary is endorsed by the Software Developer who has been
chosen to be trusted on first use of this software.

We call this the security property of the application. Note that

we refer to the Software Developer as a person, which is a simpli-

fication. In Ethereum, persons are identified by addresses, which

are derived from a person’s public key that corresponds to their

private key. In Palinodia, there is a specific contract for identity

management, where each identity (e.g., a Software Developer or a

Software Maintainer) is bound to a public key. For better readability,

we abstract from this layer and we refer to these identities directly

as persons in the following.

The functional correctness property is very similar to the security

property, but in the other direction:

Functional Correctness: If a binary is endorsed by a Software
Developer who has been chosen to be trusted on first use of this soft-
ware, the client’s validation check for a binary is positive.

In the following, we will focus on verification of the security

property, as we consider it more critical property. We leave veri-

fication of the functional correctness property for our upcoming

work.

5.2 Formalising the Client Validation

In order to reason about the main properties, we need a better

grasp of the client-side validation. The client validation has the

following five parameters: local_sw is the address of the Software

contract where the user first downloaded the software. This value is

0 on first use when it is retrieved and stored. On every subsequent

validation, the stored value is used as input. local_hash stores

the hash of the downloaded binary that the user computed locally.

bhs represents the address of the BHS contract (included in the

metadata associated with the binary). hash_id is the ID where the

hash of the binary is stored (included in the metadata associated

with the binary). software_id represents the ID of the software

(included in the metadata associated with the binary).

From the BHS contract, the client retrieves the address of the

Software contract remote_sw. The client validation returns true if

(1) the hash of the downloaded binary as locally computed by

the client (local_hash) is published in the BHS contract

(bhs), and
(2) the Software contract (remote_sw) referenced by the BHS

contract (bhs) links back to (endorses) the BHS contract

(bhs), and
(3) the Software contract (remote_sw) is the correct one, i.e., it

matches the one stored locally by the client (local_sw).

In an attempt to capture the properties of the application state

which are relevant to the client validation, we encoded the process

of a client attempting to validate the integrity of a binary file as a

Solidity smart contract. The contract’s storage contains the names

and addresses of Software contracts which the client trusts. The

contract consists only of a single function validate(). The locally
computed hash and the needed addresses are modelled as parame-

ters to this function. Having specified the client validation in the

□(bhs_hash != 0

=> ^(Function == BHS.publishHash(string , uint256) &&

BHS.publishHash(string , uint256)[1] == bhs_hash)))

Listing 4: If bhs_hash (the hash value stored in the BHS

contract) is non-zero, then someone must have called

publishHash().

□(bhs_hash == 0

=> (□(bhs_hash == 0)

|| ^(Function == BHS.revokeHash(string) &&

BHS.revokeHash(string)[0] == bhs_hash)))

Listing 5: If bhs_hash is zero, then either it was always zero,

or someone must have called revokeHash().

same language as the smart contract is a basis for using a verifi-

cation tool that proves the security property because the security

property references the client’s validation check.

5.3 Temporal Formalisation

We now want to express a relationship between a state of the

application in which the client validation is positive, and the history

leading to this state. This suggests a temporal formalisation.

VerX [8] is a tool which operates on Solidity programs annotated

with temporal formulas. The annotations are written in Solidity

enriched with the past temporal logic (PLTL) operators □ (always),
^ (once) and • (previously). In the formalisation of correctness

properties in Listing 4 and Listing 5, we adopt this dialect. These

properties give a meaning to whether or not a hash value in the BHS

is 0: If it is not, then someone called the publishHash() function.
If it is 0, then it has either always been 0, or the revokeHash()
function was called with this value as a parameter.

The publishHash() and revokeHash() functions are access

controlled: they can only be called by addresses who have main-

tainer status in the associated project. In order to formalise the

entire security property, we would now need to express that an

address which is authorised to make the function call is either the

address which was trusted on the first download of the binary, or

was (transitively) endorsed by this address.

VerX’s specification formalism is expressive and intuitive. How-

ever, we are still experiencing practical issues with actually proving

the security property of the application w.r.t. the temporal speci-

fication. We are in contact with the VerX developers and hope to

resolve these issues.

Fortunately, we can provide a manual proof in the following

subsection.

5.4 Pen-and-Paper Proof of the Security

Property

Our goal is to automatically prove the application level security

property by relying on low-level proofs on single function level. To

get an impression of how such a proof is built and what assump-

tions and statements are required as input, we manually prove the

security property of the Palinodia application in this section. We

use the definition of the security property of the Palinodia applica-

tion from above and show that it is true using temporal reasoning

and properties verified at the single-function level. To introduce

notation for the proof, we repeat the security property here:

Security: If the client’s validation check for a binary 𝑏 is positive,
then the binary is endorsed by the Software Developer developer_sw
who has been chosen to be trusted on first use of this software.

To show this statement, we assume the first part (successful val-

idation of a binary) and deduce the second part (binary is endorsed

by a Software Developer). A binary is endorsed by a Software De-

veloper if it has previously been endorsed and has not been revoked.

According to Section 5.2, a positive verification result for a binary

𝑏 associated with a BHS contract bhs implies these statements:

(S1) The Software contract remote_sw associated with the given

BHS contract bhs has been added to the list of trusted Soft-

ware contracts.

(S2) The Software contract remote_sw endorses the given BHS

contract bhs.
(S3) The hash 𝐻 (𝑏) is registered with the BHS contract bhs and

has not been revoked.

We further need the following assumptions about the applica-

tion’s context:

(A1) A user who trusts a Software contract trusts the Root Owner

and the Software Developer associated with this Software

contract.

(A2) A Software Developer who endorses a BHS contract trusts

the Software Maintainer and Root Owner associated with

this BHS contract (i.e., these entities are allowed to publish

binaries for the software or grant this right to other entities).

(A3) Endorsement / Trust is transitive: If a Software Developer

endorses a Software Maintainer and a Software Maintainer

endorses a hash, then the Software Developer endorses the

hash.

From (S1) we see that the Software contract remote_sw is trusted.
We deduce using the assumption (A1) that the Software Developer

developer_sw and the Root Owner owner_sw associated with the

Software contract remote_sw are trusted. Using single function

verification (see Section 4), we can show that only the Software

Developer of a Software contract can add a BHS contract to their

Software contract and only the Root Owner can change the Software

Developer. Thus, a BHS contract associatedwith a Software contract

is endorsed by the Software contract’s Root Owner and by the

Software Developer associated with the Software contract. Because

of this and because the Software contract remote_sw endorses the

given BHS contract bhs, we conclude that the Software Developer
developer_sw endorses the BHS contract bhs.

By assumption (A2), we infer that the Software Maintainer

developer_bhs and the Root Owner owner_bhs associated with

the BHS contract bhs are trusted by the Software Developer

developer_sw, and that developer_sw endorses what the Soft-

ware Maintainer developer_bhs publishes. Using single function
verification (see Section 4), we can show that only the Software

Maintainer of a BHS contract can publish hashes and only the Root

Owner can change the Software Maintainer. Because the hash𝐻 (𝑏)
is registered with the BHS contract bhs (S3), 𝐻 (𝑏) must have been

published by the Software Maintainer developer_bhs (the spe-

cific Software Maintainer might have changed if the Root Owner

replaced the Software Maintainer). Being published by Software

Maintainer developer_bhs, the hash 𝐻 (𝑏) is endorsed by the Soft-

ware Developer developer_sw (A3). Assuming that𝐻 is a one-way

function, we deduce that the Software Developer developer_sw
endorses the binary 𝑏. □

While writing this proof, we noticed the requirement to explicitly

state the assumptions listed at the beginning of the proof. Although

they might be intuitive, they need to be made explicit for formal

proofs. For the future, we plan to use the insights from this manual

proof in an approach where we model our application in a more

powerful formalism, which allows high-level temporal specification

and proofs (e.g., TLA+ [5]). In order to use lower-level proofs in

that formalism, we will need to develop a methodology to integrate

or translate pre- and postconditions of smart contract functions

into it.

6 PRE-DEFINED ANTI-PATTERNS AND

VULNERABILITIES

Proving that a smart contract application conforms to a user-defined

specification is very complex. However, the most notorious attacks

on smart contracts did not happen due to application-specific errors,

but due to non-specific vulnerabilities, like neglecting parameter

sanitising, or allowing reentrancy. Many common vulnerabilities

have been identified, and a variety of tools has been developed to

statically analyse smart contracts as to whether they contain any

such weaknesses. Depending on the underlying methodology, such

static analysis tools can be much faster than tools which prove

arbitrary properties. Furthermore, they do not require the user to

write specification. We apply two such tools, Securify and Mythril,

to the Palinodia smart contracts in order to find out whether the

tools report any vulnerabilities.

Securify. Securify2 is a tool for static analysis and vulnerability

detection. It specifies a set of violation and compliance patterns (as

opposed to tools which only define violation patterns) and checks

whether a contract fulfils a pattern through building a dependency

graph from the byte code. For our application, the tool reports 107

violations, 18 of which are reported as “critical”. A further 15 viola-

tions are reported to be of “high” severity. The “critical” violations

are all of the type “Unrestricted write to storage”. Upon manual in-

spection, it turns out that in all cases the write is actually restricted

by a require statement invoking the identity management devel-

oped specifically for this project, making the flag a false positive.

The “high” severity warnings concern unhandled exceptions and

uninitialised state variables. Both warning types had no implication

for the safety of the Palinodia contracts.

Mythril. Mythril
3
is an open tool for vulnerability detection,

using symbolic execution and taint analysis. We run Mythril on

the three contracts, with no timeout. The tool reports two possible

assert violations and two possible integer underflows. Upon manual

inspection, all reported errors turn out to be false positives.

7 CONCLUSION AND OUTLOOK

Due to the public, decentralised nature of smart contracts deployed

on a platform like Ethereum, access control is a central theme of

2
https://github.com/eth-sri/securify2

3
https://github.com/ConsenSys/mythril

the application’s high-level security property as well as on the

single-function level. The case study provides insights on the grand

challenge of verifying the correctness of smart contract applica-

tions as follows. We successfully carried out a correctness proof

on application level where the more complex temporal high-level

properties are proven by using the correctness proofs from the

single-function level. However, the proof was done manually: In

our experience, applying existing tools for this task is far from easy.

We are planning to further investigate this. Furthermore, we are

planning an approach where we model a smart contract application

in a different formalism, where high-level temporal correctness

properties can be specified and proven more naturally. Specifica-

tion and proofs on the level of single functions must be translated

into this formalism in order to establish a connection between the

model and the implementation.

Non-interactive static analysis tools can be valuable for quickly

detecting possible security issues while developing smart contracts.

While in our case no errors were detected by using such tools, we

do not wish to generalise from a single case study.

We believe that our case study is a step towards getting access

control right in smart contracts, and hope that it will motivate

further research on modelling, specification, and verification of

smart contract access control.

ACKNOWLEDGMENTS

This work was supported by funding of the Helmholtz Association

(HGF) through the Competence Center for Applied Security Tech-

nology (KASTEL). We would like to thank Hannes Hartenstein,

Martina Zitterbart, and the anonymous reviewers for their valuable

feedback and comments.

REFERENCES

[1] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. 2021. A Survey

on Formal Verification for Solidity Smart Contracts (ACSW ’21). Association for

Computing Machinery, New York, NY, USA, Article 3.

[2] Akos Hajdu and Dejan Jovanovic. 2020. solc-verify: A Modular Verifier for

Solidity Smart Contracts. In Verified Software. Theories, Tools, and Experiments,
Supratik Chakraborty and Jorge A. Navas (Eds.). LNCS, Vol. 12301. Springer.

[3] Michael A Harrison, Walter L Ruzzo, and Jeffrey D Ullman. 1976. Protection in

Operating Systems. Commun. ACM 19, 8 (1976).

[4] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip

Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,

et al. 2018. KEVM: A Complete Formal Semantics of the Ethereum Virtual

Machine. In 2018 IEEE CSF. IEEE.
[5] Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Transactions on

Programming Languages and Systems (TOPLAS) 16, 3 (1994).
[6] Alexander Mense and Markus Flatscher. 2018. Security Vulnerabilities in

Ethereum Smart Contracts (iiWAS2018). Association for Computing Machin-

ery, New York, NY, USA.

[7] Daniel Perez and Benjamin Livshits. 2020. Smart Contract Vulnerabilities: Vul-

nerable Does Not Imply Exploited. arXiv:1902.06710 [cs] (Oct. 2020).
[8] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and

Martin Vechev. 2020. VerX: Safety Verification of Smart Contracts. In 2020 IEEE
Symposium on Security and Privacy (SP) (2020). IEEE.

[9] Frederik Reiche, Jonas Schiffl, Bernhard Beckert, Robert Heinrich, and Ralf Reuss-

ner. 2021. Modeling and Verifying Access Control for Ethereum Smart Contracts.
Technical Report 1000129607. KITopen.

[10] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. 2020. Smart Contract:

Attacks and Protections. IEEE Access 8 (2020).
[11] Oliver Stengele, Andreas Baumeister, Pascal Birnstill, and Hannes Hartenstein.

2019. Access Control for Binary Integrity Protection using Ethereum (SACMAT
’19). Association for Computing Machinery.

[12] Oliver Stengele, Jan Droll, and Hannes Hartenstein. 2020. Practical Trade-Offs

in Integrity Protection for Binaries via Ethereum. In Proceedings of the 21st
International Middleware Conference Demos and Posters.

https://github.com/eth-sri/securify2
https://github.com/ConsenSys/mythril

	Abstract
	1 Introduction
	2 Related Work
	3 Palinodia
	4 Single Function Properties
	4.1 Example Specification
	4.2 The solc-verify Tool
	4.3 Verification using solc-verify
	4.4 Single Function Access Control

	5 Application Correctness
	5.1 Intuitive Security Property
	5.2 Formalising the Client Validation
	5.3 Temporal Formalisation
	5.4 Pen-and-Paper Proof of the Security Property

	6 Pre-defined Anti-patterns and Vulnerabilities
	7 Conclusion and Outlook
	Acknowledgments
	References

