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Abstract

Time series forecasting is a crucial task in various fields of business and science.
There are two coexisting approaches to time series forecasting, which are statistical
methods and machine learning methods. Both come with different strengths and
limitations. Statistical methods such as the Holt-Winters’ Method or ARIMA have
been practiced for decades. They stand out due to their robustness and flexibility.
Furthermore, these methods work well when few data is available and can exploit
a priori knowledge. However, statistical methods assume linear relationships in the
data, which is not necessarily the case in real-world data, inhibiting forecasting
performance.
On the other hand, machine learning methods such as Multilayer Perceptrons or
Long Short-Term Memory Networks do not have the assumption of linearity and
have the exceptional advantage of universally approximating almost any function.
In addition to that, machine learning methods can exploit cross-series information to
enhance an individual forecast. Besides these strengths, machine learning methods
face several limitations in terms of data and computation requirements.

Hybrid methods promise to advance time series forecasting by combining the best
of statistical and machine learning methods. The fundamental idea is that the
combination compensates for the limitations of one approach with the strengths of
the other. This thesis shows that the combination of a Holt-Winters’ Method and
a Long Short-Term Memory Network is promising when the periodicity of a time
series can be precisely specified. The precise specification enables the Holt-Winters’
Method to simplify the forecasting task for the Long Short-Term Memory Network
and, consequently, facilitates the hybrid method to obtain accurate forecasts.

The research question to be answered is which characteristics of a time series deter-
mine the superiority of either statistical, machine learning, or hybrid approaches.
The result of the conducted experiment shows that this research question can not
be answered generally. Nevertheless, the results propose findings for specific fore-
casting methods. The Holt-Winters’ Method provides reliable forecasts when the
periodicity can be precisely determined. ARIMA, however, handles overlying sea-
sonalities better than the Holt-Winters’ Method due to its autoregressive approach.
Furthermore, the results suggest the hypothesis that machine learning methods have
difficulties extrapolating time series with trend. Finally, the Multilayer Perceptron
can conduct accurate forecasts for various time series despite its simplicity, and
the Long Short-Term Memory Network proves that it needs relevant datasets of
adequate length to conduct accurate forecasts.





CONTENTS iv

Contents

Acronyms vi

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4

3 Theoretical Foundations 5

3.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.2 Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . 9

3.2 Statistical Methods for Time Series Forecasting . . . . . . . . . . . . 13

3.2.1 Naive Approaches . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . 15

3.2.4 Holt-Winters’ Method . . . . . . . . . . . . . . . . . . . . . . 16

3.2.5 ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.6 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.7 Strengths and Limitations of Statistical Methods . . . . . . . 19

3.3 Machine Learning Methods for Time Series Forecasting . . . . . . . . 20

3.3.1 History and Foundations . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Feed Forward Neural Networks . . . . . . . . . . . . . . . . . 25

3.3.4 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 27

3.3.5 Further Neural Network Based Models . . . . . . . . . . . . . 30

3.3.6 Strengths and Limitations of Machine Learning Methods . . . 31

4 Hybrid Methods for Time Series Forecasting 34

4.1 Essentials of Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . 34



CONTENTS v

4.2 Relevant Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Slawek Smyl’s Hybrid Method . . . . . . . . . . . . . . . . . . . . . . 37

5 Experimental Setup 46

5.1 Course of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Identification and Clustering of Time Series . . . . . . . . . . . . . . 47

5.3 Forecasting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Evaluation of Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Results 61

6.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Critical Review 71

8 Conclusion and Outlook 73

A Appendix 75

A.1 Error Calculation in the M4 Competition . . . . . . . . . . . . . . . . 75

A.2 Dilated LSTM Stack Unfolded into Time . . . . . . . . . . . . . . . . 76

A.3 Experiment - Time Series Decomposition . . . . . . . . . . . . . . . . 77

A.4 Experiment - Autocorrelation Function . . . . . . . . . . . . . . . . . 82

A.5 Experiment - Results Augmented Dickey-Fuller Test . . . . . . . . . . 84

A.6 Experiment - Results Levene’s Test for Equal Variances . . . . . . . . 85

A.7 Experiment - Time Series First-Order Difference . . . . . . . . . . . . 87

A.8 Experiment - Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.9 Experiment - Standard Deviation of NN-based methods . . . . . . . . 97



ACRONYMS vi

Acronyms

ACF Autocorrelation Function
ADF Augmented Dickey-Fuller Test
AI Artificial Intelligence
ANN Artificial Neural Network
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ARIMAX Autoregressive Integrated Moving Average with ex-

planatory variables
ARMA Autoregressive Moving Average
CNN Convolutional Neural Network
DL Deep Learning
DSR Design Science Research
DWT Discrete Wavelet Transform
FFNN Feedforward Neural Network
GRU Gated Recurrent Unit
HW Holt-Winters’ Method
IOB Improvement over baseline
LSTM Long Short-Term Memory Network
MA Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
MIMO Multi-input multi-output
ML Machine Learning
MLP Multilayer Perceptron
MSE Mean Squared Error
NN Neural Network
NNAR Neural Network Autoregression
OWA Overall Weighted Average
ReLU Rectified Linear Unit
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SARIMA Seasonal Autoregressive Integrated Moving Average
SARIMAX Seasonal Autoregressive Integrated Moving Average

with explanatory variables
SES Simple Exponential Smoothing
SGD Stochastic Gradient Descent



ACRONYMS vii

sMAPE Symmetric Mean Absolute Percentage Error
STL Seasonal and Trend Decomposition using Loess
SVR Support Vector Regression
TDNN Time-delay Neural Network
TES Triple Exponential Smoothing



LIST OF FIGURES viii

List of Figures

1 Exemplary dataset split . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Walk-forward validation, reprinted from Hyndman and Athanasopou-
los (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Model of a perceptron, adapted from Nielsen (2015) . . . . . . . . . . 22

4 Step function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Rectified Linear Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Multilayer Perceptron architecture, adapted from Do et al. (2019) . . 25

8 Recurrent Neural Network folded and unfolded into time, reprinted
from LeCun et al. (2015) . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Long Short-Term Memory cell, adapted from Olah (2015) . . . . . . 28

10 Time-delay Neural Network architecture, reprinted from Do et al.
(2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Architecture of Slawek Smyl’s hybrid HW-LSTM model . . . . . . . . 39

12 Dilated LSTM stack: (1,2)-(4,8) Standard for quarterly time series,
adapted from Smyl (2020) . . . . . . . . . . . . . . . . . . . . . . . . 43

13 Course of investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

14 Airline Passengers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

15 Canadian Lynx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

16 Daily Minimum Temperatures Melbourne . . . . . . . . . . . . . . . 50

17 Daily Total Female Births California . . . . . . . . . . . . . . . . . . 50

18 GBP USD Daily Exchange Rate . . . . . . . . . . . . . . . . . . . . . 51

19 Industrial Production . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

20 Rossmann Store Sales . . . . . . . . . . . . . . . . . . . . . . . . . . 53

21 Sunspot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

22 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23 HW-LSTM forecast for Industrial Production . . . . . . . . . . . . . 62

24 ARIMA and LSTM forecast for Sunspot . . . . . . . . . . . . . . . . 63

25 Holt-Winters’ Method forecast for Airline Passengers . . . . . . . . . 65

26 MLP forecast for Canadian Lynx . . . . . . . . . . . . . . . . . . . . 65



LIST OF FIGURES ix

27 HW-LSTM forecast for Daily Total Female Births California . . . . . 66

28 ARIMA and MLP forecast for Rossmann Store Sales . . . . . . . . . 67

29 Dilated LSTM (1,2)-(4,8) Standard unfolded into time, adapted from
Redd et al. (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

30 Decomposition for each time series in the experiment . . . . . . . . . 81

31 Autocorrelation Function for each time series in the experiment . . . 83

32 First-order difference for each time series in the experiment . . . . . . 87

33 Forecasts for Airline Passengers . . . . . . . . . . . . . . . . . . . . . 88

34 Forecasts for Canadian Lynx . . . . . . . . . . . . . . . . . . . . . . . 89

35 Forecasts for Daily Minimum Temperatures Melbourne . . . . . . . . 90

36 Forecasts for Daily Total Female Births California . . . . . . . . . . . 91

37 Forecasts for GBP USD Daily Exchange Rate . . . . . . . . . . . . . 92

38 Forecasts for Industrial Production . . . . . . . . . . . . . . . . . . . 93

39 Forecasts for Random Walk . . . . . . . . . . . . . . . . . . . . . . . 94

40 Forecasts for Rossmann Store Sales . . . . . . . . . . . . . . . . . . . 95

41 Forecasts for Sunspot . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



LIST OF TABLES x

List of Tables

1 Cases of ARIMA models . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Strengths and limitations of statistical and machine learning methods 35

3 Number of M4 time series per data frequency and domain, reprinted
from Makridakis et al. (2020) . . . . . . . . . . . . . . . . . . . . . . 37

4 Overview of the RNN architecture, adapted from Smyl (2020) . . . . 42

5 Identified and clustered time series . . . . . . . . . . . . . . . . . . . 55

6 Overview of forecasting methods . . . . . . . . . . . . . . . . . . . . 55

7 Overview of forecasting horizons . . . . . . . . . . . . . . . . . . . . . 57

8 Results cluster stationary time series . . . . . . . . . . . . . . . . . . 61

9 Results cluster trend stationary time series . . . . . . . . . . . . . . . 62

10 Results cluster nonstationary time series . . . . . . . . . . . . . . . . 64

11 Overview of applied methods for time series decomposition . . . . . . 77

12 Results Augmented Dickey-Fuller Test . . . . . . . . . . . . . . . . . 84

13 Results Levene’s Test for equal variances . . . . . . . . . . . . . . . . 86

14 Standard deviation of the NN-based methods . . . . . . . . . . . . . 97



1 INTRODUCTION 1

1 Introduction

This master thesis is dedicated to time series forecasting. It elaborates on statistical,
machine learning, and hybrid approaches in this domain. Each of these approaches
has individual strengths and limitations, which are covered in this work. Further-
more, this thesis presents an experiment whose results aim to answer the research
question.

1.1 Motivation

The literature for time series forecasting distinguishes two elemental approaches to
time series forecasting: statistical methods and machine learning methods. These
two approaches coexist in the domain but are fundamentally different. Some au-
thors even describe a clash of cultures that divides the forecasting community be-
tween these two approaches (Breiman, 2001b). Each of these approaches has unique
strengths that established them in the various fields of applications for time series
forecasting. However, neither statistical nor machine learning methods are free from
limitations that inhibit excellent forecasting performance.

In the past, well-established statistical methods showed dominance over emerging
machine learning methods in forecasting competitions. While the machine learn-
ing approaches improved and delivered promising results, they still face significant
challenges in forecasting competitions (Makridakis et al., 2020).

Hybrid methods, which are a combination of statistical and machine learning meth-
ods, promise to unite the best of both worlds to advance time series forecasting.
The fundamental idea of hybrid methods is that the combination compensates for
the limitations of one approach with the strengths of the other.
The breakthrough was Slawek Smyl’s winning submission to a forecasting contest
known as the M4 Competition. In his proposed hybrid method, the author combined
statistical methods with machine learning elements to outperform every other sub-
mission (Smyl, 2020). With this achievement, the method caused a great stir among
forecasters and proved the potential of hybrid methods for time series forecasting
successfully.

The thesis is divided into eight chapters. This chapter introduces the subject and
the motivation for the thesis. Furthermore, it presents the research question and
applied research design. Chapter 2 presents the related work and investigates the
relevant literature for this subject. As there are essential definitions and theoretical
foundations that have to be introduced, Chapter 3 starts by giving an introduction
to time series before presenting the fundamental concepts of time series forecasting.
A selection of statistical and machine learning methods is presented in Chapter 3.2
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and Chapter 3.3. As their strengths and limitations are a core interest of this paper,
two respective subsections discuss them in more substantial detail.
From the background of the strengths and limitations of statistical and machine
learning methods, follow hybrid methods to overcome these shortcomings. Chapter
4 introduces the essentials of these hybrid methods and gives an overview of relevant
research conducted in this field. Slawek Smyl’s outstanding example of a hybrid
method is comprehensively discussed in Chapter 4.3.
Chapter 5 presents the experimental design that underlies this thesis’s course of the
investigation. For the experiment, a range of time series is identified and clustered
regarding their characteristics. These time series are used to conduct forecasts
with different forecasting methods from statistical, machine learning, and hybrid
approaches. Their forecasts are evaluated using different accuracy measures to gain
a better understanding of their performance. Furthermore, the chapter presents the
experiment’s implementation in Python.
The results of the experiment are used to find implications for the research question.
In that endeavor, Chapter 6 describes the observations made in the experiment and
elaborates on the implications. These implications are critically discussed in Chapter
7. Finally, this thesis closes with Chapter 8, which concludes the paper and outlines
future research in that domain.

1.2 Research Question

The results of the M4 Competition prove that hybrid methods can be a functional
and valuable tool for time series forecasting. The research question seeks to gener-
alize the findings of the M4 Competition in terms of the characteristics of a time
series and compares the hybrid methods against the two established cultures in time
series forecasting. Therefore, the research question of this thesis is as follows:

What are the characteristics of a time series that determine the superior-
ity of either statistical, machine learning, or hybrid forecasting methods?

This formulation gives rise to a broad view of time series forecasting. To find appro-
priate answers to this research question, a research design is necessary. Therefore,
the next section elaborates on the utilized research design for this thesis.
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1.3 Research Design

The research design is based on the Design Science Research (DSR) described by
Hevner (2007). This section presents its three cycles and their realization for this
thesis.

The three cycles are the relevance cycle, rigor cycle, and design cycle (Hevner,
2007). The relevance cycle raises the question of whether the design of the artifact
improves the environment and how this improvement can be measured. The rigor
cycle connects the design science activities with the knowledge base and investigates
the state of the art. Consequently, it seeks to answer the question if the artifact is
suitable to answer the research question. Finally, the design cycle iterates between
the core activities of building and evaluating the design artifacts.

The artifact of this thesis is the experimental design that is introduced in Chapter
5. It identifies a range of time series with distinguishing characteristics and applies
appropriate forecasting methods from different approaches. These forecasts are eval-
uated with meaningful accuracy measures. This setting complies with the relevance
cycle and allows for statements to answer the research question. The procedures
and techniques applied in the experiment are backed by state-of-art theory from the
knowledge base, just as required by the rigor cycle. Consequently, this experiment’s
design ensures that the thesis fulfills its purpose and finds an adequate answer to
the research question.
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2 Related Work

This chapter examines the related work and presents the existing research on the
topic. Furthermore, it describes the research gap this thesis is closing.

When reviewing the literature, it becomes evident that many authors describe the
difficulties in choosing the right forecasting method (Brockwell and Davis, 2016).
Apart from this, the no free lunch theorem applied to time series forecasting states
that no forecasting method is universally superior, and there does not exist a short-
cut to the choice of the most suitable forecasting method (Wolpert and Macready,
1997).
As early as in the 1970s, Reid (1972) pointed out that the performance of a forecast-
ing method changes according to the nature of the data. Concerning the research
question, the nature of the data is reflected in the characteristics of the time series.
The resulting matter is the algorithm selection problem, which was first described
by Rice (1976). Since then, several researchers have introduced rules for forecast-
ing based on these characteristics (Collopy and Armstrong, 1992; Adya et al., 2001;
Wang et al., 2009).
With the emergence of machine learning methods, the algorithm selection prob-
lem was relabelled and the term meta-learning was coined by Prudêncio and Lu-
dermir (2004). Over time, state-of-the-art expert systems were supplemented by
data-driven approaches (Wang et al., 2009). These data-driven approaches describe
frameworks that provide recommendations on which forecast method should be used
to generate forecasts. Thereby, some rely on techniques based on neural networks
(Talagala et al., 2018).

This thesis analyzes the characteristics of different time series to find implications for
the superiority of either statistical, machine learning, or hybrid forecasting methods.
Thereby, this thesis does not rely on a meta-learning approach but provides an
explainable procedure to the assessment of forecasting methods. The identified
research gap manifests in the fact that none of the existing literature considers
hybrid methods in their analysis. Hybrid methods promise a new approach to time
series forecasting and should be considered in every decision concerning algorithm
selection. Therefore, this thesis will conduct an experiment that allows for the
assessment of a range of time series and involves statistical, machine learning, as
well as hybrid methods in the investigation.

The following chapter introduces the theoretical foundations of time series and time
series forecasting. These foundations are necessary to gain a comprehensive under-
standing of the research question and the research gap.
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3 Theoretical Foundations

This chapter intends to give an understanding of the theoretical foundations which
this thesis is based upon. Starting with an introduction to time series, it elaborates
on statistical, machine learning, and hybrid approaches for time series forecasting
in the course of this chapter. Furthermore, it covers the topic of evaluation metrics.

3.1 Time Series

The following section gives an introduction to time series. It presents basic termi-
nology and covers time series forecasting.

3.1.1 Terminology

A time series is a sequence of historical measurements yt of an observable variable y

at equal time intervals (Bontempi et al., 2012). These intervals can be reflected, for
instance, in hours, days, weeks, or years. Examples of time series are diverse and
include the hours of sunshine in a day or a company’s daily stock prices. However,
irregularly spaced time series do exist but are not considered in this thesis.
A fundamental property of time series is that there is a relationship between its
observations. For example, the measured temperature yesterday influences the tem-
perature today. This relationship between lagged values of a time series is called
autocorrelation. It follows from this context, that past values can have predictive
potential. Time series which do not show any autocorrelation are called white noise
(Hyndman and Athanasopoulos, 2019).
Time series can be subdivided into linear and nonlinear time series. If each obser-
vation of a time series can be described as a linear combination of past values, the
time series is regarded as linear. Vice versa, if the combination is nonlinear, the
time series is considered nonlinear (Priestley, 1988).
Apart from linearity, time series can be classified in univariate or multivariate time
series (Harvey, 1993): a univariate time series is a sequence of one single observable
variable, for example, daily commuters on a particular road, whereas multivariate
time series relate to multiple observable variables. Accordingly, a multivariate time
series can describe the number of daily commuters on said road and further include
other observations such as weather conditions, temperature, or the day of the week.

A time series often contains various patterns. Therefore it is helpful to split a time
series into its components, each representing an underlying pattern category (Hyn-
dman and Athanasopoulos, 2019). The three main components are seasonality and
cyclicity, trend, and residuals.
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A seasonal component or seasonality is present when a time series is affected by sea-
sonal factors such as the month of a year or the day of the week. This phenomenon
is always of a fixed and known period and corresponds to calendar dates (Hyndman
and Athanasopoulos, 2019). There are many examples of seasonal behavior, one
being that the demand for ice cream is higher in the summer than in the winter.
Seasonality is to be distinguished from cyclicity. A cycle exists when the data shows
periodical changes that are typical of a longer duration than one year. Exemplary
fluctuations can be due to economic circumstances such as the business cycle (Hyn-
dman and Athanasopoulos, 2019).
The trend is defined by the existence of a long-term increase or decrease in the data,
whereby it does not necessarily have to be linear. It can take many forms, such
as an exponential trend. Neither does a trend have to be constant over time. It
can change its gradient and evolve from a positive to a negative trend (Hyndman
and Athanasopoulos, 2019). A practical example of a positive trend is the increased
demand for organic products, which was observed in the past years (Willer et al.,
2019). In practice, it is common to combine trend and cycle into a single trend-cycle
component, which will be regarded as trend for simplicity (Hyndman and Athana-
sopoulos, 2019).
When trend and seasonality are removed from a time series, there is a remaining
component, which will be referred to as residuals. This last component contains ran-
dom, irregular influences and is also known as noise (Brockwell and Davis, 2016).
The process of removing trend and seasonality is called detrending and deseasonal-
ization, respectively (Hyndman and Athanasopoulos, 2019).

The process of splitting a time series into its constituent parts is called time series
decomposition. An additive decomposition is represented by the formula

yt = St + Tt +Rt

with yt being the data, St the seasonal component, T t the trend component, and Rt

the residuals all observed at period t (Hyndman and Athanasopoulos, 2019). Alter-
natively, time series decomposition can be conducted as multiplicative decomposition,
which is described by the following formula (Hyndman and Athanasopoulos, 2019):

yt = St × Tt ×Rt

When choosing the appropriate method of decomposition, the additive decomposi-
tion is the method of choice if the magnitude of the seasonal fluctuations, or the
variation around the trend, does not vary with the level of the time series. On the
other hand, when the seasonal patterns, or the variation around the trend, appears
to be proportional to the level of the time series, a multiplicative approach is more
promising. The literature suggests that multiplicative decomposition is common
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among economic time series (Hyndman and Athanasopoulos, 2019).
Moving average methods are the basis of many decomposition methods. The un-
derlying principle is to average values around an observation, as it assumes that
observations nearby in time are likely to be close in value. By doing so, the moving
average eliminates some of the randomness in the data and smooths it (Hyndman
and Athanasopoulos, 2019).
The classical decomposition method, which dates back to the 1920s, builds upon
moving averages. While being easy to use, there are several problems with this
method. Firstly, it assumes that the seasonal component is not subject to change
and remains constant over time. While this might be a reasonable assumption for
some shorter time series, it does not necessarily apply especially for longer time
series. In addition to that, the method is not robust to unusual values, for instance
when the demand for air travel is disturbed by a strike or an industrial dispute.
Despite its disadvantages, the classical decomposition is still widely used (Hyndman
and Athanasopoulos, 2019).
Apart from the classical decomposition, there are several more advanced decompo-
sition methods such as X11 or SEATS decomposition with various advantages and
disadvantages in use (Dagum and Bianconcini, 2016). One particular versatile and
robust method is the Seasonal and Trend Decomposition using Loess or abbreviated
STL decomposition (Hyndman and Athanasopoulos, 2019). Loess is a technique
for estimating nonlinear relationships and is utilized in the method developed by
Cleveland et al. (1990). The advantages of STL decomposition include the handling
of any type of seasonality and allowing the seasonal component to change over time.
Furthermore, it can be robust to outliers, which will affect the remainder compo-
nent instead of the trend and seasonal component. On the downside, STL does not
handle trading day or calendar variation automatically and only facilitates additive
composition out of the box. Multiplicative decomposition can only be conducted by
taking logs of the data and then back transforming the components (Hyndman and
Athanasopoulos, 2019).

When analyzing observations over time it is important to take into account whether
the behavior changes over time. The concept of homoscedasticity is defined by
the variance of the disturbance term in each observation being constant. On the
contrary, heteroscedasticity is defined by the variance not being constant (Dougherty,
2011).
There are a variety of procedures to examine whether observations are of equal
variances. Levene’s Test for equal variances (Levene, 1960) or the Bartlett Test
(Snedecor and Cochran, 1989), for instance, are popular methods.
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Another important concept is stationarity. Weak stationarity requires the properties
of a time series to not depend on the point in time at which they are observed. This
means that the mean and the variance are not time-variant and remain constant.
Furthermore, this implies that time series that exhibit trend or seasonality are not
stationary (Hyndman and Athanasopoulos, 2019). Homoscedasticity, therefore, is a
necessary, but not sufficient criterion for stationarity. Apart from stationary time
series, there are trend stationary time series. In this case, the process has a station-
ary behavior around a trend (Shumway and Stoffer, 2017). When a time series is
following a strictly stationary process, or simpler is strict stationary, the observa-
tions have to be identically distributed (Brockwell and Davis, 2016). White noise
is a simple example of such a stationary process (Hyndman and Athanasopoulos,
2019).

To determine whether a time series follows a stationary process, unit root tests can
be applied. Unit root tests provide a way to examine whether a time series follows
a causal process or is a random walk. Random walks are characterized by the fact
the value of the time series at time t is the value of the series at time t − 1 plus a
completely random movement (Shumway and Stoffer, 2017).
The Augmented Dickey-Fuller Test (ADF) is suitable for the analysis of stationarity
and tests the null hypothesis that there exists a unit root with the alternative that
there is none. If a unit root is present the time series is not stationary (Harris,
1992).

After having ascertained that a time series is not stationary, there is a variety of
procedures to make it stationary. As some forecasting methods will only process sta-
tionary time series, these procedures occur regularly. Transformations such as log-
arithms can stabilize the variance of a time series (Hyndman and Athanasopoulos,
2019). Apart from that, differencing can be applied to stabilize the mean of a time
series by removing changes in the level of a time series. This is achieved by calculat-
ing the differences between consecutive observations. If the differenced data is still
not stationary, it is plausible to difference the data a second time. This is referred
to as second-order differencing and removes a quadratic trend (Yaffee and McGee,
2000). Furthermore, differences can be calculated between an observation and the
previous observation from the same season, for example in the case of monthly data
this year’s data for April and last year’s data for the same month. This procedure
is called seasonal differencing. Therefore, differencing can be a mechanism for re-
moving or reducing trend and seasonality (Hyndman and Athanasopoulos, 2019).
If a transformation was applied to a time series and the forecast was conducted on
the transformed values, the predictions have to be inverse transformed to get an
appropriate forecast.
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3.1.2 Time Series Forecasting

Time series analysis can be subdivided into description and exploration of time se-
ries (e.g., plots or relationships between variables), hypothesis testing (e.g., examine
global warming using recorded temperature data), and forecasting (Brockwell and
Davis, 2016). The latter will be the area of interest for this thesis.
The field of time series forecasting aims to estimate how the sequence of said ob-
servations will continue in the future. The analysis is conducted to understand the
underlying phenomenon of the observed data points and considers the historical
data (Bontempi et al., 2012). As Palit and Popovic (2006) state, forecasting values
of time series is critical in various fields of science and engineering, for instance,
economics, finance, or meteorology.

An early action in time series forecasting is the dataset split, in which the time series
is split into three separate sequences. These sequences are referred to as training
set, validation set, and test set. The literature suggests different ratios ranging from
60/20/20 for training, validation, and test set respectively to 98/1/1 depending on
various factors such as the forecasting task and the size of the dataset (Michelucci,
2018). The following data in Figure 1 represents monthly airline passengers and is
split in the respective datasets. The blue graph shows the training set with data
from January 1949 to December 1957, the green graph displays the validation set
containing observations from January 1958 to June 1959, and the test set, repre-
sented by the red graph, presents observations from July 1959 to December 1960.
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Figure 1: Exemplary dataset split
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The training set is used to estimate the model, whereas the validation set is applied
for hyperparameter tuning and comparing different model configurations. Finally,
the test set is utilized for estimating the error in the prediction (Barrow and Crone,
2016). Hyperparameters are parameters whose values have to be specified before ex-
ecuting a model and, therefore, are not determined by the model itself. The concept
hyperparameter tuning describes finding the best hyperparameters for maximizing a
chosen optimizing metric (Michelucci, 2018).
Both statistical methods and machine learning methods can incorporate hyperpa-
rameters. Examples for methods with hyperparameters are the Autoregressive Inte-
grated Moving Average or any neural network-based forecasting method, which will
be discussed in Section 3.2.5 and Section 3.3. When a method does not incorpo-
rate hyperparameters, the training set and validation set are combined into a single
training set.
The training set must consist only of observations before the observations in the
validation set. The same logic applies to the validation set, which shall only contain
observations after the training set and before the ones in the test set. This chrono-
logical split ensures that only information available at a particular moment in time
and no future observations are used in hyperparameter tuning or constructing the
forecast (Hyndman and Athanasopoulos, 2019).
Therefore, traditional cross-validation as described by Michelucci (2018) can not be
applied to time series. As Hu et al. (1999) state, a walk-forward approach has to be
followed instead. Figure 2 illustrates the series of training and test sets, in which the
blue observations represent the training sets, and the red observations the test sets.
The actual forecast accuracy is calculated by averaging over the test sets (Hyndman
and Athanasopoulos, 2019).

Figure 2: Walk-forward validation, reprinted from Hyndman and Athanasopoulos
(2019)
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As Januschowski et al. (2020) describe, forecasting is at its core an extrapolation
problem and the performance of a model is evaluated by using out-of-sample accu-
racy measures (Gneiting and Raftery, 2007; Hyndman and Koehler, 2006; Kolassa
and Schütz, 2007) or tests (Diebold and Mariano, 2002) rather than in-sample met-
rics. Forecast errors measuring forecast accuracy can be differentiated into scale-
dependent errors, for instance, Mean Absolute Error (MAE), Mean Squared Error
(MSE), or Root Mean Squared Error (RMSE) and percentage errors such as the
Mean Absolute Percentage Error (MAPE) (Hyndman and Athanasopoulos, 2019).
The following formulas mathematically define the MAE, MSE, and RMSE, where n

is the number of observations and ei is the difference between an observed value yt

and its forecast ŷt (Shcherbakov et al., 2013):

MAE =
1

n

n∑
i=1

|ei|

MSE =
1

n

n∑
i=1

e2i

RMSE =

√√√√ 1

n

n∑
i=1

e2i

with
et = yt − ŷt

In practice, the MAE is popular due to its ease of use and computability. The same
popularity applies to the RMSE, despite being more difficult to interpret (Hyndman
and Athanasopoulos, 2019). However, MSE and RMSE are not robust to outliers as
they penalize forecasts which considerably differ from the actual value (Shcherbakov
et al., 2013).
While percentage errors have the advantage of being unit-free, they have the disad-
vantage of being undefined if yt = 0 for any t in the period of interest, and having
a skewed distribution when yt is close to zero (Hyndman and Koehler, 2006). Addi-
tional caution is required as they assume the unit of measurement has a meaningful
zero. As only ratio scales have meaningful zeros, measuring forecast accuracy on
intervals scales, for instance, for temperature forecasts on Celsius scales, is not pos-
sible (Hyndman and Athanasopoulos, 2019). The MAPE is given by the following
formula (Shcherbakov et al., 2013):

MAPE =
1

n

n∑
i=1

100× |pi|

with precentage errors pi calculated based on

pt =
|et|
yt
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In practice, it is important to examine the purpose of which an error is considered.
The MAPE can be applied to compare the performance of a single model on different
datasets, whereas MAE, MSE, and RMSE are used when comparing competing
models on the same dataset (Hyndman and Athanasopoulos, 2019; Hyndman and
Koehler, 2006).

When a univariate time series Y is constituted of N observations over time, it can be
formally described as Y N = y1, ..., yN. Time series forecasting aims to either forecast
a single value yt+1 or a sequence of H future values yt+1, ..., yt+H at a chosen point
in time t. Consequently, a model that forecasts only a single future value is referred
to as a one-step forecasting model, whereas a model that performs forecasts for more
than one time step is called a multi-step forecasting model. The length of sequence
H is hereafter referred to as the forecasting horizon or short horizon.

The relevant literature describes a variety of H-step forecasting strategies, each of
which exhibits different advantages and disadvantages. Furthermore, these strategies
differ in various other aspects such as the number of models that have to be developed
and the computational time required. They can be applied for both, univariate and
multivariate time series (Taieb et al., 2012).
The recursive strategy uses a single model to predict a one-step-ahead future value
and uses the predicted values as input for predicting the next step with the same
model for the entire horizon (Bontempi et al., 2012). As Cheng et al. (2006) point
out, this strategy utilizes previous predictions and is therefore susceptible to error
accumulation, which means that errors that emerged in the past are propagated
into future predictions. Despite this shortcoming, the literature suggests that this
strategy can be applied successfully (Bontempi et al., 2012).
In the direct strategy, every step is predicted independently using a separate model,
which results in H models predicting H steps in the future (Bontempi et al., 2012).
Contrary to the recursive strategy, it is not exposed to error accumulation as it
does not use any approximated values to conduct the forecast. On the other hand,
occurring statistical dependencies between the predictions are neglected and the
strategy requires more comprehensive computational time (Bontempi et al., 2012).
As the name suggests, the DirRec strategy (Sorjamaa and Lendasse, 2006) is a
combination of the previous strategies. It conducts the forecasts with H models
for H steps and adds the previous predictions to the input vector (Bontempi et al.,
2012).
The strategies mentioned above share a common feature: the model maps data
from a multi-input to a single-output. This neglects the existence of stochastic
dependencies between future values, for instance, yt+k and yt+k+1. Therefore, it
biases the prediction accuracy. To solve this matter, multi-step forecasting models
follow a multiple output strategy to conduct forecasts as a vector of future values
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of the time series instead of a single value (Bontempi et al., 2012). The multi-input
multi-output strategy (MIMO) avoids the shortcomings of the direct and recursive
strategy, but reduces the model’s flexibility as every horizon is forecasted using the
same model structure (Taieb et al., 2009). As Taieb et al. (2012) states, the DIRMO
strategy, as a combination of direct and MIMO strategy, can offer a beneficial trade-
off between preserving a larger degree of the stochastic dependency between the
future vales and provides greater flexibility of the predictor.

As Hyndman and Athanasopoulos (2019) describe, a time series exhibits different
characteristics at the same time. From that follows that it is crucial to rely on a
forecasting method that is capable of dealing with these characteristics in an effective
manner.

3.2 Statistical Methods for Time Series Forecasting

The following chapter will elaborate on statistical methods for time series forecast-
ing. Starting with basic methods such as naive approaches, this chapter will discuss
more advanced methods like exponential smoothing and the related Holt-Winters’
Method. Moreover, it introduces ARIMA models and gives an example of recent
developments. An evaluation of the strengths and limitations of statistical methods
closes this chapter.

3.2.1 Naive Approaches

The naive approach is a procedure that assumes that today’s value will be the value
of tomorrow. Despite the method’s simple nature, it works remarkably well for many
economic and financial time series (Hyndman and Athanasopoulos, 2019). It sets
all forecasts ŷ for the time period t to t+h to be the value of the last observation yt.
The following formula defines the naive approach, where h denotes the forecasting
horizon (Hyndman and Athanasopoulos, 2019):

ŷt+h|t = yt

The seasonal naive approach is a variant of the naive approach and is useful for
highly seasonal data. It sets each forecast equal to the last observed value from the
same season of the previous year. For instance, in the case of monthly data, when
forecasting this year’s value for May, the value is set to the one from that month in
the previous year.

Naive approaches are simple but can be surprisingly effective. Often they are consid-
ered as baseline methods or benchmarks, which are used to compare other methods
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against. If a more advanced method can not obtain better results, it is not worth
considering.

3.2.2 Regression Models

The basic concept of regression models is that there is a relationship between the
forecast variable y and one or more predictor variables x. The forecast variable is
often referred to as the dependent variable whereas the predictor variable is referred
to as the independent variable (Hyndman and Athanasopoulos, 2019). A practical
example is the forecast of daily electricity demand y using temperature x1 and the
day of the week x2 as predictors.
In the simplest case, the Linear Regression model represents a linear relationship
between the forecast variable y and a single predictor variable x, where the coeffi-
cients β0 and β1 represent the intercept and the slope of the line respectively and
the random error εt denotes the deviation from the underlying straight-line model
(Hyndman and Athanasopoulos, 2019):

yt = β0 + β1xt + εt

Apart from the linear case, a regression can take more advanced forms such as
the Multiple Linear Regression taking into consideration more than one predic-
tor variable, or the Nonlinear Regression modeling nonlinear relationships utilizing
transformations like logarithms (Hyndman and Athanasopoulos, 2019).

The Linear Regression can be adjusted to forecast a univariate time series. In
the univariate case, the Linear Regression describes the relationship between the
observations of a forecast variable yt and their respective point in time xt. The
model is obtained by estimating the coefficients β̂0 and β̂1, and ignoring the error
in the regression equation. Finally, the prediction for a value ŷt is calculated by
considering the corresponding future point in time xt in the forecasting formula,
which is defined by:

ŷt = β̂0 + β̂1xt

As previously described in Section 3.1.2, to produce reasonable predictions only
information available at the moment of conducting the forecast is permitted to be
used to estimate the model’s coefficients. This ensures reliable ex-ante forecasts
(Hyndman and Athanasopoulos, 2019).
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3.2.3 Exponential Smoothing

Exponential smoothing was introduced in the middle of the 20th century (Brown,
1959; Winters, 1960; Holt, 2004) and laid the foundation of many forecasting meth-
ods. Forecasts conducted using exponential smoothing methods are weighted aver-
ages of past observations, with the weights declining exponentially as the observa-
tions are further in the past.

The simplest form of exponential smoothing methods is called Simple Exponential
Smoothing (SES) and is suitable for data with no visible trend or seasonality (Hyn-
dman and Athanasopoulos, 2019). A one-step-ahead forecast for t+1 is a weighted
average of all the observations from y1 to yT. The forecasting formula is therefore
defined by (Hyndman and Athanasopoulos, 2019)

ŷT+1|T = αyT + α (1− α) yT−1 + α (1− α)2 yT−2 + ...,

where α is the smoothing parameter with 0 < α ≤ 1. This smoothing parameter
controls the rate at which the weights decrease. If α is close to 0, more weight is
given to the observations from the more distant past. Contrary, if α is close to 1,
more weight is given to the most recent observations. If α = 1, the forecast gives all
the weight to the very last observation and the value is equal to the one obtained
by a naive forecast.

As the classification of Pegels (1969) shows, there are methods apart from the sim-
ple variant that additionally include trend components, or trend and seasonal com-
ponents. A method incorporating trend is known as Holt’s Linear Method. The
forecasting equation and the two involved smoothing equations lt for level and bt for
trend are defined as follows (Hyndman and Athanasopoulos, 2019):

ŷt+h|t = lt + hbt

lt = αyt + (1− α) (lt−1 + bt−1)

bt = β (lt − lt−1) + (1− β) bt−1

In this definition, lt is the estimate of the series’s level at time t while bt denotes an
estimate of the trend of the series at time t. The smoothing parameter α for the
level and the smoothing parameter β for the trend fall into an interval between zero
and one: 0 ≤ α, β ≤ 1.

Another method based on exponential smoothing and incorporating trend as well as
seasonality components, which meets with much approval in practice, is presented
in the next section.
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3.2.4 Holt-Winters’ Method

The origin of the Holt-Winters’ Method (HW) dates back to the 1950s when re-
searchers were working on a high accuracy and low-cost forecasting model for the
Office of Naval Research in the United States of America (Da Veiga et al., 2014).
The researchers showed that the method of the exponentially weighted moving aver-
age, which was very popular during that time, could be utilized not only to smooth
the level of a time series but furthermore smooth trend and seasonality (Holt, 2004).
As the model extends Holt’s Linear Method by incorporating seasonal components
and therefore having three smoothing equations, it is sometimes referred to as Triple
Exponential Smoothing (TES) (Siregar et al., 2017).

There exist two variations to this method, that differ regarding their seasonal com-
ponent. The additive method is used when the seasonal variations are approximately
constant through the series, whereas the multiplicative method is utilized when the
seasonal variations are changing proportionally to the level of the series (Hyndman
and Athanasopoulos, 2019). The Holt-Winters’ Additive Method is defined as follows
(Hyndman and Athanasopoulos, 2019)

ŷt+h|t = lt + hbt + st+h−m(k+1)

lt = α (yt − st−m) + (1− α) (lt−1 + bt−1)

bt = β (lt − lt−1) + (1− β) bt−1

st = γ (yt − lt−1 − bt−1) + (1− γ) st−m,

where k is the integer part of (h−1)
m

. Similar to Holt’s Linear Model this method
has smoothing equations for level lt and trend bt but additionally includes a third
smoothing equation for seasonality st. For the corresponding smoothing parameters
α, β, γ applies 0 ≤ α, β, γ ≤ 1. The variable m denotes the periodicity of the time
series, for instance, m = 4 for quarterly data, or m = 12 for monthly data. Having
to specify a value for the periodicity of the time series can be problematic if there
is no reliable estimate for it. On the other hand, it allows the practitioner to use a
priori knowledge in the model. The implications of this circumstance will be further
discussed in Chapter 3.2.7.
The second variant, Holt-Winters’ Multiplicative Method, is defined by the following
formula and uses the corresponding variables (Hyndman and Athanasopoulos, 2019):

ŷt+h|t = (lt + hbt) st+h−m(k+1)

lt = α
yt

st−m

+ (1− α) (lt−1 + bt−1)

bt = β (lt − lt−1) + (1− β) bt−1
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st = γ
yt

(lt−1 + bt−1)
+ (1− γ) st−m

Exponential smoothing methods and the related Holt-Winters’ Method are widely
used approaches for time series forecasting. Another complementary approach is
discussed in the following section.

3.2.5 ARIMA Models

As described in two previous chapters, exponential smoothing methods focus on
trend and seasonality, whereas the class of ARIMA models describes autocorrelations
in the data (Hyndman and Athanasopoulos, 2019). The acronym ARIMA stands
for Autoregressive Integrated Moving Average. To fully understand this model, this
section will first explain the essential components.

The basic idea of autoregressive models is that the current value yt of the series can
be explained as a function of p past values, xt-1, xt-2, ... , xt-p, where p determines the
number of steps into the past (Shumway and Stoffer, 2017). An autoregressive model
of order p, abbreviated as AR (p), can be defined as (Hyndman and Athanasopoulos,
2019; Shumway and Stoffer, 2017):

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt + c

The term εt describes an error term, whose variance will only change the scale of
the series but not the patterns, and φ1, φ2, ... , φp are parameters with φp 6= 0. The
variable c denotes a constant. This class of models has proven to be flexible at han-
dling a wide range of different time series patterns (Hyndman and Athanasopoulos,
2019).

The second component are moving average models, whose core principle is to use past
forecast errors εt in a model similar to regression (Hyndman and Athanasopoulos,
2019). A moving average model of order q, which is referred to as MA (q) model,
can be defined as following (Hyndman and Athanasopoulos, 2019; Shumway and
Stoffer, 2017):

yt = θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt + c

Similar to autoregressive models, c denotes a constant, and θ1, θ2, ..., θp are param-
eters with θp 6= 0. To avoid any misunderstanding, moving average models are not
to be confused with the moving average smoothing introduced in Section 3.1.1.

These two main components can be combined into an Autoregressive Moving Average
(ARMA) model. An ARMA (p, q) model, which depends on p past values and q of
its past values of error, can be defined as (Shumway and Stoffer, 2017; Gupta, 2018):

yt = φ1yt−1 + ...+ φpyt−p + θ1εt−1 + ...+ θqεt−q + εt + c,
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with εt describing an error term and φp, θq 6= 0. As Gupta (2018) states, ARMA
models can not be applied to non-stationary time series. To conduct forecasts on
non-stationary ARMA models have to be generalized.

This particular generalization is achieved by combining differencing to the ARMA
model and results in an ARIMA model. As presented in Section 3.1.1, differencing
is a method to make a time series stationary, and therefore making ARIMA models
applicable for non-stationary time series (Gupta, 2018). The ARIMA (p, d, q) model
can be defined as (Hyndman and Athanasopoulos, 2019):

y′t = φ1y
′
t−1 + ...+ φpy

′
t−p + θ1εt−1 + ...+ θqεt−q + εt + c

The differenced series is denoted by y′t and can be differenced more than once,
for instance, in a second-order differencing. Like the concepts introduced before,
p is the order of the autoregressive part, and q is the order of the moving average
part. The differencing is manifested in d, which denotes the degree of differencing
involved. The parameters p, d, and q are specified beforehand and, consequently,
are the ARIMA model’s hyperparameters.

Table 1 summarizes the connection of ARIMA models to the underlying concepts.
The number zero can be understood in a way, that this part of the model is neglected,
for instance, an ARIMA (p, 0, q) model is an ARMA (p, q) model as there is no
differencing involved.

ARIMA model equivalent

ARIMA(p,0,0) AR(p)
ARIMA(0,0,q) MA(q)
ARIMA(p,0,q) ARMA(p,q)

Table 1: Cases of ARIMA models

ARIMA models are valued for their forecasting accuracy and flexibility in repre-
senting different types of time series (Khandelwal et al., 2015). Apart from the
presented models, there are other variants and extensions described in the liter-
ature. Seasonal ARIMA models, abbreviated SARIMA, can model seasonal data
(Hyndman and Athanasopoulos, 2019), whereas ARIMAX models can incorporate
explanatory variables (Cools et al., 2009). Finally, SARIMAX models represent a
combination of the aforementioned models (Cools et al., 2009).
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3.2.6 Recent Developments

As mentioned previously in the introduction to this chapter, the foundation of sta-
tistical methods for time series forecasting was laid in the past century. This section
aims to give an example of recent developments in the area and shows that statistical
methods are far from being old news.

Prophet is open-source software released by the American social networking service
Facebook’s core data science team (Facebook Open Source, nd). Taylor and Letham
(2018) introduced its implementation, of which the authors state that it allows many
different users to forecast a large number and a variety of time series. It is used
within Facebook and is supposed to work best with time series that have strong
seasonal effects as it specifically handles public holidays (Facebook Open Source,
nd). The implementation of Prophet is based on the Stan platform, a platform for
statistical modeling and high-performance statistical computation (Stan, nd). In
scientific research, Prophet was already utilized (Borowik et al., 2018).

This confirms the opinion of many authors, that statistical methods are still highly
relevant. After introducing several methods in the previous sections, the next para-
graph will give an evaluation of statistical methods.

3.2.7 Strengths and Limitations of Statistical Methods

Statistical methods look back on a long history, as the forecasting domain has been
dominated by them from the 1960s on (Bontempi et al., 2012). This manifests in
their wide usage and approval of many forecasters.

The main reasons for that are that statistical methods are simple, flexible, and can
be used to model several phenomena (Domingos et al., 2019). Apart from that,
they work well when few data is available (Makridakis et al., 2018b). Furthermore,
some statistical methods can consider a priori knowledge. That circumstance gives
the forecaster the possibility to simplify the expected task for the model. In the
Holt-Winters’ Method, the periodicity of the time series is provided to the model.
Thus, the model does not have to estimate the periodicity itself. On the other hand,
this can lead to inaccurate forecasts if the information is unknown to the forecaster
or falsely specified.

Despite the well-known strengths of statistical methods, there have been some limi-
tations found in the literature, the main one being missing nonlinearity. As the pre-
sented statistical methods mostly assume linear relationships between past values,
they can not capture nonlinear patterns. From that follows that the approxima-
tion of linear models to complex real-world problems might not always be adequate
(Zhang, 2003). This inadequate approximation is confirmed by Domingos et al.
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(2019), who observe that real-world time series commonly present linear and non-
linear patterns at the same time.
Beyond this, these presented forecasting methods are mostly univariate and can
only handle one time series at a time. Consequently, they treat every time series
in an isolated manner. Therefore, potential similarities between related time series
are neglected, and no information is shared between the forecasts (Bandara et al.,
2019).

As this paragraph presented, statistical methods are powerful tools for time series
forecasting. In the recent past, another approach to forecasting methods has been
extensively studied and developed. These methods will be described in the following
chapter.

3.3 Machine Learning Methods for Time Series Forecasting

This chapter is dedicated to machine learning methods for time series forecasting.
It starts by outlining their history and foundations before introducing the principles
of Artificial Neural Networks. In the following, this chapter presents Feedforward
Neural Networks, Recurrent Neural Networks, and briefly examines further kinds of
networks. Finally, this chapter gives an evaluation of the strengths and limitations
of machine learning methods.

3.3.1 History and Foundations

Today, Artificial Intelligence (AI) is a growing field with various research topics and
practical applications. AI has gained remarkable prominence over the past decade,
driven by numerous applications such as in autonomous vehicles, speech and image
recognition, machine translation, or spectacularly beating a world chess champion
(Makridakis, 2017; Makridakis et al., 2018b).

Some AI systems can acquire their knowledge by extracting patterns from raw data
without being explicitly programmed (Goodfellow et al., 2016). This capability is
known as Machine Learning (ML). Contrary to traditional programming, which re-
lies on step-by-step coding instructions based on logic, if-then rules and decision
trees, AI-based systems are learning by trial and error and improving their perfor-
mance over time (Makridakis et al., 2018b). A subdiscipline of ML is known as Deep
Learning (DL) and deploys Artificial Neural Networks (ANN) that have several hid-
den layers (Goodfellow et al., 2016). Section 3.3.2 will discuss ANNs in detail.
Machine learning algorithms classify into supervised and unsupervised learning al-
gorithms, whereby supervised learning distinguishes further into classification and
regression (Friedman et al., 2001). A supervised learning task is characterized by
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learning a function that maps an input X, consisting of one or multiple so-called
features, to an output Y based on known input-output pairs. Supervised learning
requires labeled data, which means a set of examples illustrating the desired behav-
ior. For example, in an image recognition task that aims to recognize cats, labeled
images are used. These labeled images indicate whether the image depicts a cat.
In an unsupervised task, the model learns solely from data and does not rely on
labeled data (Goodfellow et al., 2016).

In the domain of time series forecasting, AI and particularly ML are extensively
researched as a considerable amount of published papers shows (Makridakis et al.,
2018b). The objective of ML-based methods is thereby the same as that of statistical
ones. Both aim to improve forecasting accuracy by minimizing a particular loss
function. The two approaches differ in how this minimization is performed: the
statistical methods described in Chapter 3.2 mostly apply linear algorithms, while
the ML methods presented in this chapter can use nonlinear ones.

Machine learning methods can not forecast time series without preprocessing the
data. The data has to be framed into a supervised learning setting (Brownlee, 2017).
Bontempi et al. (2012) propose an approach to model an input-output setting for
one-step forecasting, where the training set consists of a scalar output and a vectorial
input. The input is modeled as an [(N − n− 1)× n] input data matrix X and a
[(N − n− 1)× 1] output vector Y , representing a time series with N observations
and n previous values to be considered (Bontempi et al., 2012):

X =


y1 y2 ... yn

y2 y3 ... yn+1

... ... ... ...
yN−n yN−n+1 ... yN−1



Y =


yn+1

yn+2

...
yN


In order to perform an H-step forecast, the input data matrix is adapted to a
[(N − n− h)× n] matrix and the output vector becomes a [(N − n− h)× h] ma-
trix:

X =


y1 y2 ... yn

y2 y3 ... yn+1

... ... ... ...
yN−n−h yN−n−h+1 ... yN−h


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Y =


yn+1 yn+2 ... yn+h

yn+2 yn+3 ... yn+h+1

... ... ... ...
yN−h+1 yN−h+2 ... yN


With this supervised learning setting, machine learning algorithms can be used as a
one- or multi-step forecasting model. The following section will now introduce the
essentials of Artificial Neural Networks.

3.3.2 Artificial Neural Networks

Artificial Neural Networks are inspired by the human brain, which learns based on
experience (Nielsen, 2015). Research on a formal description of this learning pro-
cess dates back to the mid of the last century. McCulloch and Pitts (1943) first
described simplified neurons, which became the central element of today’s ANNs.
Later Rosenblatt (1958) developed another type of artificial neuron referred to as
perceptron, which was the first one to be implemented. As Figure 3 exhibits, per-
ceptrons take several binary inputs x1, x2, ..., xN, and produce a single binary
output. Each input is assigned a weight w1, w2, ..., wN, expressing the importance
of respective input to the output (Nielsen, 2015).

Figure 3: Model of a perceptron, adapted from Nielsen (2015)

As the output of a perceptron is binary, it can either take 0 or 1. A situation where
the output becomes 1 is referred to as activation (Goyal et al., 2018). The output is
determined if the weighted sum of the inputs

n∑
i=1

wixi is greater than some threshold

value. Instead of using a threshold value, it is common to use bias denoted by b

instead. The output of a perceptron is therefore defined as follows, with x denoting
a vector of inputs and w denoting a vector of weights (Nielsen, 2015; Goyal et al.,
2018):

output =

0, if w · x+ b ≤ 0

1, if w · x+ b > 0
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The learning process is realized during the training of the network, which adjusts
the weights of the inputs (Nielsen, 2015). As the activation function significantly
influences the learning process, it becomes of crucial importance to the model’s
learning performance (Ramachandran et al., 2017).

In the introduced example, the activation function takes the form of a step function,
as Figure 4 shows. Due to its abrupt nature, deploying such an activation function
results in a behavior that small changes in weight or bias can significantly affect the
output (Nielsen, 2015).
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Figure 4: Step function

This step function is a nonlinear activation function. A variety of further nonlinear
activation functions exist in the literature, and the following paragraphs present two
of them.

Sigmoid functions overcome the step function’s shortcoming of the binary output
and achieve the desired behavior, in that small changes in weights and bias cause
only a small change in output (Goyal et al., 2018). Thus, the sigmoid function allows
the output to take any value in an interval from 0 to 1. A perceptron utilizing a
sigmoid activation function is sometimes referred to as a sigmoid neuron (Nielsen,
2015). Sigmoid functions are defined by the following formula and have a smoother
shape, as Figure 5 depicts (Goyal et al., 2018):

σ(x) =
1

1 + e-(w·x + b)
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Figure 5: Sigmoid function

Thanks to its simplicity and effectiveness, the Rectified Linear Unit (ReLU) has
become the most widely used activation function (Ramachandran et al., 2017). The
ReLU is defined by the following formula, and Figure 6 illustrates its shape (Goyal
et al., 2018):

f(x) = max(0, x)
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Figure 6: Rectified Linear Unit

This section generally discussed the essentials of ANNs. However, different types
of neural networks (NNs) vary in architecture and usage (Goyal et al., 2018). The
following section will now introduce a particular type of neural network.
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3.3.3 Feed Forward Neural Networks

The previous section introduced the basic principles of neurons and perceptrons.
Unfortunately, a single neuron is not adequate to model complex, nonlinear rela-
tionships. Therefore, networks of neurons have to be used. These networks consist
of vertical stacks of neurons, which build up a layer, and connections between them.
Networks with several layers are referred to as Multilayer Perceptrons (MLP) or
Feedforward Neural Networks (FFNN). Figure 7 gives an overview of the MLP ar-
chitecture.

Figure 7: Multilayer Perceptron architecture, adapted from Do et al. (2019)

There are three basic types of layers. The first layer of the network is termed the
input layer and consists of input neurons, whereas the last layer is called the output
layer and consists of output neurons, respectively. The network depicted in Figure
7 has only one output neuron. The layers between the input and output layer are
referred to as hidden layers, as the neurons in these layers are neither input nor
output (Nielsen, 2015).
The density and type of connections between the layers of the network are referred
to as configuration (Goyal et al., 2018). As previously mentioned in Section 3.3.1,
MLPs belong to Deep Learning, as they can include several layers.
FFNNs carry their name as information flows through the network only in one
direction from the input to the output layer. There are no feedback connections in
which outputs of the model are fed backward. Consequently, this leads to the fact
that the network does not have any loops (Goodfellow et al., 2016; Nielsen, 2015).

In general, the learning process of neural networks consists of three steps: forward
propagation, backward propagation, and gradient descent (Goodfellow et al., 2016).
The consecutive execution of these steps is a training step, also referred to as iter-
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ation. An iteration over all samples in the training set is called an epoch (Nielsen,
2015). Forward propagation describes that the initial information provided by the
input x propagates through the hidden units at each layer and finally produces the
initial output y (Goodfellow et al., 2016).
As stated before, training drives the learning process forward. The goal of training
is to minimize a cost function or sometimes called a loss function C(w, b), which is
a function of weights w and biases b (Nielsen, 2015). A typical example of a loss
function is given by the MSE, which measures the loss from the target. In other
words, the deviation of the forecast from the actual values (Michelucci, 2018). The
backpropagation allows the loss information to flow backward through the network
to compute the gradient (Rumelhart et al., 1986).
In the third step of learning, gradient descent tries to obtain a minimum of the spec-
ified loss function. In practice, the initial weights and biases are randomly initialized
(Michelucci, 2018). A gradient ∇C is a vector, which components are the partial
derivatives of the cost function concerning the weight vector w. The change in the
cost function is used as a stopping criterion (Michelucci, 2018). The hyperparameter
learning rate η controls the step sizes during the gradient computations (Nielsen,
2015). Choosing the wrong learning rate can result in failing to find a minimum
(Michelucci, 2018).
As gradient descent is computationally slow, Stochastic Gradient Descent (SGD)
is often used to speed up the learning process. The underlying principle is that
∇C is computed only for a small sample of randomly chosen training inputs, which
is referred to as batch. Averaging over this sample gives a reasonable estimate of
the true ∇C while significantly reducing the time required (Nielsen, 2015). Apart
from the SGD, there are several more advanced modifications to the gradient de-
scent described in the literature, such as Momentum, RMSProp, or Adam. Mainly
Adam finds extensive use as it is considered faster and better than other methods
(Michelucci, 2018).

There is one particular analogy between machine learning and statistical methods,
specifically between NNs and AR models. As presented in Section 3.2.5, autore-
gressive models assume a linear function of past values to conduct a forecast. The
same lagged values of a time series are the input to a NN, which can approximate
a nonlinear function. Therefore, some authors describe this as a Neural Network
Autoregression or NNAR model (Hyndman and Athanasopoulos, 2018). It becomes
clear that an NNAR model taking p lagged values as input is equivalent to an
ARIMA (p, 0, 0) and an AR (p) model, respectively. However, the NN-based ap-
proach has the advantage of not having restrictions on the parameters to ensure
stationarity (Hyndman and Athanasopoulos, 2018).

Feedforward Neural Networks are applied to time series forecasting in various do-
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mains. Do et al. (2019) describe several successful implementations to traffic data,
even outperforming well-established methods such as ARIMA. This clearly shows
the enormous potential of FFNNs.

3.3.4 Recurrent Neural Networks

As described in the previous section, ANNs do not have any feedback connections.
This leads to the fact that each input is processed in an isolated manner. Con-
sequently, no information is exchanged between the input windows even though
they come from the same time series (Brownlee, 2017). Recurrent Neural Networks
(RNNs) are a promising approach to overcome this shortcoming.

RNNs are designed to process a sequence of values x1, ..., xN one element at a time
(Goodfellow et al., 2016). Thereby, the hidden units maintain a state vector that
implicitly contains historical information of past elements of the sequence resulting
in the fact that the current prediction ŷt not only depends on the current input xt

but also on previous inputs xt-1, ..., xt-N (LeCun et al., 2015).
Figure 8 visualizes the two elementary representations of RNNs. The variable x

denotes the input, h a hidden state, and ŷ the output in both models. At each
time step, the model processes the hidden state in addition to the input to an out-
put. W h stands for the weight matrix, which connects the hidden state from two
consecutive time steps. The weight matrices W x and W y connect the input to the
hidden state and the hidden state to the output, respectively. The representation on
the left-hand part of Figure 8 is referred to as folded model (Goodfellow et al., 2016).

Figure 8: Recurrent Neural Network folded and unfolded into time, reprinted from
LeCun et al. (2015)

As a time series is a sequential input, the RNN can be unfolded into time, which the
right-hand part of Figure 8 depicts. This representation illustrates that the output
ŷt is dependent on the input of the current period xt and the previous hidden state
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ht-1. Furthermore, it becomes apparent that the weight matrices are shared over
time (Goodfellow et al., 2016).

Although the training procedure of RNNs builds on the same three steps as FFNNs,
there is a difference in the backward propagation. As RNNs share their weights over
time, backpropagation is characterized as backpropagation through time (Werbos,
1990). However, the backpropagation through time can be problematic as it leads
to the unstable gradient problem (Nielsen, 2015). It causes the gradients to grow
exponentially or become very small in value, which is referred to as exploding gradient
and vanishing gradient, respectively. The consequences are unstable learning and
difficulties in learning long-term dependencies (LeCun et al., 2015; Bengio et al.,
1994).

Introduced by Hochreiter and Schmidhuber (1997), Long Short-Term Memory Net-
works (LSTMs) are an advancement to standard RNNs and are designed to overcome
the unstable gradient problem. The key innovation of LSTMs is the introduction
of a cell state, which easily lets unaltered information flow through the network.
Therefore, the cell state represents the long-term memory, while the hidden state is
the short-term memory. The LSTM can remove or add information to the cell state,
a process that is regulated by gates (Olah, 2015). This structure enables the LSTM
to potentially remember information for an extended time (Salehinejad et al., 2018).
Figure 9 gives an overview of an LSTM cell.

Figure 9: Long Short-Term Memory cell, adapted from Olah (2015)

LSTMs consist of repeating cells, which form a chain-like structure. The input at
time t is denoted by xt, the hidden state and cell state at time t with ht and ct,
respectively. The gates optionally let information through. This is achieved by the
sigmoid neural net layer σ and a pointwise multiplication operation. As described
in Section 3.3.2, the sigmoid function takes values from 0 to 1 and describes the
extent of information that is let through a gate. The closer the value to 0, the less
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information passes through the gate and vice versa (Olah, 2015).
The LSTM unit has three different gates: the forget gate, the input gate, and the
output gate. At first, the forget gate updates the previous cell state ct-1. This is
achieved by concatenating the current input xt to the previous hidden state ht-1 and
feeding it in the sigmoid neural net layer (Olah, 2015). Thereby, both inputs contain
short-term information. If there is a positive relationship with the cell state, the
LSTM will keep the information in the cell state (Gers et al., 2000).
The input gate decides what new information is going to be stored in the cell state.
Like the forget gate, it takes the current input xt and the previous hidden state
ht-1 and feeds them into a sigmoid layer and a tanh layer. Thereby, the tanh layer
can take values from −1 to 1. The sigmoid layer decides which values are going
to be updated while the tanh layer creates a vector of new candidate values that
potentially are added to the new cell state. These two components are concatenated
and added to the forget gate’s output to obtain the new cell state ct (Olah, 2015).
Finally, the output gate determines what information shall be added to the hidden
state and therefore stored in the long-term memory. The output gate takes the
updated cell state ct, the current input xt, and the previous hidden state ht-1. It
utilizes a sigmoid layer to decide which parts of xt and ht-1 are combined with ct

that was previously filtered by the tanh layer. The outcome of the output gate is
the updated hidden state ht, which is passed to the next time step along with the
updated cell state ct (Olah, 2015).

The immense potential of LSTMs in capturing long-term dependencies comes with
an increase in computational cost. The Gated Recurrent Unit (GRU) described by
Cho et al. (2014) simplifies the LSTM architecture by reducing the number of gates
and using only one memory representation instead of two. Consequently, this makes
the GRU computational less expensive (Cho et al., 2014).
Further modifications to traditional LSTMs are dilated LSTMs that use the hidden
state from previous but not necessarily last steps (Vezhnevets et al., 2017). This
allows the network to remember information from earlier time instances and results
in an improved long-term memory performance (Redd et al., 2019; Smyl, 2020).
Another modification are LSTMs with peephole connections which are described in
detail by Gers et al. (2000).
These modifications to the traditional LSTM have been extensively studied in the
literature. Unfortunately, as a detailed analysis of Greff et al. (2017) shows, these
modifications do not always necessarily result in a better performance.

The LSTM is not immune to a critical challenge all machine learning methods face:
the ability of a model to perform well on new, unseen inputs known as generalization.
There are several techniques to support machine learning methods in generalizing
well. They are called regularization methods (Goodfellow et al., 2016).
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One particular regularization method is known as dropout. Dropout was proposed by
Srivastava et al. (2014) as an inexpensive method to support a better generalization.
It mutes non-output neurons with a specified probability for the duration of an epoch
and reactivates them afterward. On the downside, this technique reduces the model’s
effective capacity and therefore requires an increase in model size (Goodfellow et al.,
2016).

3.3.5 Further Neural Network Based Models

Apart from the previously discussed machine learning models, there has been ex-
tensive research in the past on further models that are based on neural networks.
Do et al. (2019) describe in their work several different types of models. Time-delay
Neural Networks (TDNNs) and Convolutional Neural Networks (CNNs) are among
those and are presented in the following section.

Time-delay Neural Networks are defined as FFNNs in which delayed inputs or states
are utilized through the time-shifting approach. This allows the models to capture
the temporal dynamics of the time series. Figure 10 illustrates this time-shifting
approach. The neurons in the hidden layer receive not only the current input xt but
furthermore previous inputs such as xt-1 and xt-2. Apart from the depicted archi-
tecture, other layers of the model also allow for these delays (Do et al., 2019).

Figure 10: Time-delay Neural Network architecture, reprinted from Do et al. (2019)

TDNNs promise a simple way to represent correlations between past and present
values in a feedforward model. They are easier to train compared to the RNNs
described in the previous section. However, the fixed delays may not be suitable to
capture temporal dynamics that change their behavior over time (Do et al., 2019).
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Traditionally Convolutional Neural Networks have been successfully applied in the
field of computer vision and image classification tasks. In the recent past, there
have been promising applications to time series, for instance, in short-term traffic
forecasting (Do et al., 2019). CNNs are another type of FFNNs and are designed to
use minimal amounts of pre-processing compared to other deep architectures (Qiu
et al., 2014).
Apart from input and output layers, CNNs include hidden layers such as convolution
layers, pooling layers, or fully connected layers. The convolution layer convolves the
input features with different kernels or filters to produce the output features. A
pooling layer then subsamples the input either for further convolutional layers or
eventually via a fully connected layer to the output layer (Do et al., 2019). The use
of convolutions and filters suggests that this principle can have a positive influence
on the forecasting performance for time series.

3.3.6 Strengths and Limitations of Machine Learning Methods

After introducing the fundamental principles and concepts of machine learning meth-
ods in the previous sections, this section will discuss their strengths and limitations
in time series forecasting. ML-based methods have proven successful on several oc-
casions in the recent past. Bandara et al. (2019) describe the successful application
of Long Short-Term Memory Networks to sales demand forecasting in e-commerce.
In their work, LSTMs deliver competitive results even compared to state-of-the-art
statistical methods. Apart from demand forecasting, RNNs and CNNs have shown
to be promising in supply chain planning (Bandara et al., 2019). As shown by
Do et al. (2019), NN-based models furthermore are capable of forecasting highly
dynamic traffic data. Hewamalage et al. (2019) conclude that RNNs can directly
model seasonality, which makes deseasonalization redundant.

The major strength of machine learning methods is their flexible nonlinear modeling
capability as they are capable of universally approximating almost any function. The
model is adaptively formed based on the features presented from the data (Zhang,
2003). Thereby, ML algorithms identify complex nonlinear patterns and explore
unstructured relationships without hypothesizing them forehand. Hence, machine
learning methods are not limited by assumptions and allow the data to speak for
itself (Smyl, 2020).
Statistical methods come with the disadvantage of treating each time series sepa-
rately and forecast them in an isolated manner. For instance, in demand forecasting,
the effects of related products that show similar sales demand patterns are neglected
by the presented methods (Bandara et al., 2019). Exploiting this cross-series infor-
mation is referred to as cross-learning and got increased attention in the recent past.
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The basic principle is similar to the concept of transfer learning, where the transfer
of knowledge from an already successfully learned task transferred to a new task
achieves an improvement (Torrey and Shavlik, 2010). Cross-learning’s underlying
concept is that instead of exclusively developing one model for each time series in the
setting, a global model is developed by exploiting information from many time series
simultaneously (Hewamalage et al., 2019). Consequently, many series are utilized
for training a single model. However, more effort in the preprocessing is required to
learn properly across many time series (Smyl, 2020).

Data is a fundamental challenge for machine learning methods. As presented in
Section 3.3.1, time series have to be framed into a supervised learning setting. This
increases the data preprocessing requirements and reflects that none of the popular
ML algorithms were created for time series forecasting (Smyl, 2020). Furthermore,
the evidence that machine learning models struggle to generalize well from small
datasets is regarded as a limitation compared to statistical methods (Cerqueira
et al., 2019). While machine learning methods have the unique strength to uni-
versally approximate almost any function, they have to learn each relationship in
the time series tediously from the presented data. This effort is a shortcoming over
the statistical methods, where the incorporation of a priori knowledge simplifies
the forecasting task. Thus, NN-based models need large and appropriate data sets,
especially for deep architectures with numerous layers to ensure the accuracy of a
forecast (Do et al., 2019). If the characteristics of a time series have changed over
time, even a long time series may not contain enough relevant data to fit a complex
model (Hewamalage et al., 2019). As data availability is often limited and regres-
sors are not available in typical time series forecasting problems, the performance of
machine learning methods, therefore, tends to be below expectations (Makridakis
et al., 2018b).
As elaborated in the previous sections, NNs have many design parameters that can
be adapted, such as the configuration or the type of activation function. All of them
must be tuned to achieve the best performance for a particular dataset, which can
result in high tuning effort (Do et al., 2019). As an NN’s performance depends on
various factors, it can not be generalized that deep NNs are better than ones with
fewer layers, mainly because the amount of relevant data is of such crucial impor-
tance.
Furthermore, machine learning methods are criticized for their black-box nature,
which makes the explainability of the forecast results more difficult (Makridakis
et al., 2018b). Statistical methods provide a more straightforward and comprehen-
sible procedure (Hewamalage et al., 2019).
Finally, machine learning methods are computationally demanding, especially com-
pared to statistical methods (Makridakis et al., 2018b). Do et al. (2019) report that
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the training of deep NNs for large-scale traffic network can require several weeks. As
Makridakis et al. (2018b) state, in order to advance time series forecasting, machine
learning methods need to become more accurate, require less computational time,
and be less of a black-box.

The key message of this chapter is that machine learning methods can be useful
instruments for time series forecasting. Unfortunately, they bring several limitations
to the table that inhibit excellent performance. The following chapter seeks to find
a solution to these limitations and an improvement in forecasting accuracy.
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4 Hybrid Methods for Time Series Forecasting

So far, this thesis discussed two distinct approaches for time series forecasting. The
following chapter is devoted to a core topic of this work, which is the hybrid ap-
proach. First, an introduction to the topic is presented that defines terminology and
points out potential benefits. After a look at relevant research, it elaborates on a
successful example that attracted considerable attention.

4.1 Essentials of Hybrid Methods

Hybrid methods have to be distinguished from ensemble methods. Ensemble meth-
ods are simplistic combinations of forecasts. The forecast combination is defined
by

u =
N∑

m=1

wmu (m),

where u (m), m = 1, ..., N , are the N forecasts to be combined (Atiya, 2020). The
variable wm denotes a combination weight. The underlying principle is similar to risk
diversification, as the combination of forecasts conducted by several models hedges
against the resulting inaccuracy (Atiya, 2020). Furthermore, Krogh and Vedelsby
(1995) show that ensembling several regression systems significantly improves the
generalization of any regression system. The same concept finds use in other areas
such as Random Forests. Random Forests take the output of multiple decision trees
and consolidate their outputs into a single one (Breiman, 2001a).

In the forecasting context, hybrid methods are understood as a sophisticated com-
bination of statistical and machine learning methods that interact with each other.
This combination is a different approach than consolidating isolated forecasts and
separates hybrid methods from the ensemble methods.

As Chapters 3.2.7 and 3.3.6 demonstrated, statistical and machine learning methods
have distinctive strengths in time series forecasting. Unfortunately, neither of these
methods is flawless. Table 2 summarizes the strengths and limitations of both
approaches.
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Strengths Limitations

Statistical methods
+ Simplicity, comprehensibility
+ A priori knowledge
+ Effectiveness with limited data availability

- Assumption of linearity
- Missing cross-learning

Machine learning methods
+ No assumption of linearity
+ Universal approximation
+ Cross-learning

- Data requirements
- Computational effort

Table 2: Strengths and limitations of statistical and machine learning methods

The fundamental idea of hybrid methods is that the combination of statistical and
machine learning methods compensates for the limitations of one approach with the
strengths of the other. For instance, the effectiveness with limited data availability of
statistical methods can counteract the extensive data requirements of machine learn-
ing methods. Apart from that, the consideration of a priori knowledge can simplify
the expected forecasting task and decreases the computational effort. Furthermore,
hybrid methods can incorporate cross-learning, a capability that the presented sta-
tistical methods lack. Finally, the hybrid methods provide a solution for the dilemma
of the assumption of linearity. Real-world time series may be purely linear, purely
nonlinear, or often contain a combination of those two patterns (Panigrahi and Be-
hera, 2017). Although ANNs successfully overcome the drawback of ARIMA models
in nonlinear relationships, they have produced mixed results for purely linear time
series. Thus, neither ARIMA nor ANNs are solely sufficient to model a real-world
time series (Khandelwal et al., 2015). Consequently, hybrid methods promise to
combine the best of both worlds to advance time series forecasting.

Hybrid methods were studied intensively in past years, and a substantial number of
papers were published. The following section presents relevant research by discussing
selected models and demonstrates how the models realize the hybridization.

4.2 Relevant Research

Research on hybrid methods is not a novelty, as the work began already almost
twenty years ago. The basic idea was developed by Zhang (2003), who proposed a
hybridization of ARIMA and MLP. The underlying principle is that the MLP learns
the deviation of the ARIMA prediction from the actual value and seeks to adjust
it to obtain a more accurate result. This methodology is plausible because a time
series is composed of a linear autocorrelation structure and a nonlinear component,
which can be described as follows (Zhang, 2003):

yt = Lt +Nt

Lt thereby denotes the linear component, and N t denotes the nonlinear component.
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The ARIMA is fitted to capture the linear component, so consequently, the residuals
from the linear model account for the nonlinear relationship (Zhang, 2003). The
residuals et are computed by subtracting the ARIMA predictions L̂t from the actual
values yt (Zhang, 2003):

et = yt + L̂t

In the next step, the MLP takes the past residuals as input to learn a function
f(et-1, et-2, ..., et-n) that can be used to forecast the residuals. N̂ t denotes this pre-
diction. Finally, the hybrid forecast ŷt is obtained by adding the predictions of both
models (Zhang, 2003):

ŷt = L̂t + N̂t

Zhang (2003) shows that the hybrid forecast yields promising results. The ap-
plication to three real-world time series delivered considerably better forecasting
accuracies compared to the isolated models. However, as this model does not de-
ploy general diagnostic statistics for nonlinear relationships, it might still not be
adequate in modeling nonlinear relationships appropriately (Zhang, 2003).

Based on these foundations, several authors have proposed modifications and ex-
tensions to this model. Khandelwal et al. (2015) seek to tackle the lack of diagnos-
tic statistics for nonlinear relationships by deploying a Discrete Wavelet Transform
(DWT) to the ARIMA-MLP hybridization. The DWT separates the time series into
linear and nonlinear components. Then, the ARIMA is fitted to the linear part, and
forecasts are computed. After that, the MLP is fitted to the corresponding residuals
together with the nonlinear part provided by the DWT. Finally, the hybrid forecast
is obtained by adding these two forecasts (Khandelwal et al., 2015). The authors
show that their approach outperforms the standalone models as well as the former
model by Zhang (2003).
Domingos et al. (2019) also pick up the basic principle but focus on the way the lin-
ear and nonlinear predictions are joined. Therefore, they use a data-driven approach
and a machine learning model to generate the final output. The fundamental prin-
ciple is to find the most suitable function, which describes the relationship between
the forecast of the time series and the forecast of the residual series. Support Vector
Regression (SVR), another supervised method for nonlinear mappings, delivered the
most promising results (Domingos et al., 2019).

Another modification is to change the components that form the model. Panigrahi
and Behera (2017) already proposed a hybridization of exponential smoothing and
MLP, but the breakthrough was a model introduced by Smyl (2020). His combi-
nation of exponential smoothing and Long Short-Term Memory Networks caused
a great stir among forecasters. The next section is dedicated to his model and
discusses it in detail.



4 HYBRID METHODS FOR TIME SERIES FORECASTING 37

4.3 Slawek Smyl’s Hybrid Method

The presented model was the winning submission to the M4 Competition (Makri-
dakis et al., 2018a). Before discussing the model in detail, this section briefly de-
scribes the contest and its terms and conditions.

The M4 Competition is a forecasting contest and follows on from the three previous
M competitions. Their purpose is to learn from empirical evidence how forecasting
accuracy can be improved, and how these learnings advance the theory and practice
of forecasting (Makridakis et al., 2020).
The competitors developed and submitted models to forecast the M4 dataset. This
dataset consists of 100,000 individual time series from different domains, such as
microeconomic, financial, or demographic backgrounds. Apart from that, the time
series in the dataset show different time intervals between the successive observa-
tions. Hence, the data has both high-frequency data, like weekly, daily, hourly, and
low-frequency data, such as yearly, quarterly, monthly (Makridakis et al., 2020).
Table 3 shows the domains and respective frequencies and gives an overview of the
distribution of the M4 dataset.

Frequency Micro Industry Macro Finance Demographic Other Total
Yearly 6,538 3,716 3,903 6,519 1,088 1,236 23,000
Quarterly 6,020 4,637 5,315 5,305 1,858 865 24,000
Monthly 10,975 10,017 10,016 10,987 5,728 277 48,000
Weekly 112 6 41 164 24 12 359
Daily 1,476 422 127 1,559 10 633 4,227
Hourly 0 0 0 0 0 414 414
Total 25,121 18,798 19,402 24,534 8,708 3,437 100,000

Table 3: Number of M4 time series per data frequency and domain, reprinted from
Makridakis et al. (2020)

The performance of the forecasts is evaluated according to the Overall Weighted
Average (OWA) of two accuracy measures, Mean Absolute Scaled Error (MASE)
and the symmetric Mean Absolute Percentage Error (sMAPE). The respective cal-
culation is described in Appendix A.1.
The results of the M4 Competition showed some remarkable results. First, it con-
firmed that ensemble methods outperformed approaches relying solely on statistical
or machine learning methods. Especially ensembles of statistical methods were
among the top-performing solutions (Makridakis et al., 2020). Furthermore, the re-
sults supported the hypothesis that state-of-the-art machine learning methods do not
outperform statistical methods. The submitted pure ML-based methods delivered
a poor performance, with only one beating the seasonal naive baseline (Makridakis
et al., 2020). The surprising winner was Slawek Smyl, who provided a hybrid so-
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lution that outperformed all other methods (Makridakis et al., 2020). His success
demonstrates the enormous potential of hybrid methods for time series forecasting.

In his method, Slawek Smyl combines exponential smoothing and Recurrent Neural
Networks to a hybrid HW-LSTM model. An LSTM produces a trend forecast for
the exponential smoothing, which is a sightly modified Holt-Winters’ Method (Smyl,
2020).

In general, the method is a hybrid and hierarchical method. It is hybrid, as it joins
statistical with machine learning methods. The Holt-Winters’ Method handles the
seasonality of the time series, while the LSTM cares for the non-linearity and makes
use of cross-learning (Smyl, 2020).
Hierarchical describes the fact that the model has local and global parameters.
Thereby, local parameters reflect the behavior of a particular time series, whereas
global parameters relate to a broad set of time series (Smyl, 2020). Local constants
are, for instance, the smoothing coefficients of the HW or the initial seasonal com-
ponents. Apart from local constants, there are local states such as the level or
seasonal components. These local states reflect the behavior of a single time series,
but contrary to local constants, change over time. On the other hand, an example
of a global constant is the weights of the RNN, which are learned across a broad set
of time series (Smyl, 2020).

Apart from the exponential smoothing and Recurrent Neural Network, further ele-
ments complete the hybrid method. Figure 11 visualizes the architecture and con-
textualizes the method’s main four components.



4 HYBRID METHODS FOR TIME SERIES FORECASTING 39

Figure 11: Architecture of Slawek Smyl’s hybrid HW-LSTM model

First, the data points of the time series are fed into the component that deploys the
Holt-Winters’ Multiplicative Method, where each time series is handled differently
depending on its frequency. There are three types of models: non-seasonal models
for yearly and daily data, single seasonality models for monthly, quarterly, and
weekly data, and double seasonality models for hourly data (Smyl, 2020). The
corresponding formulas for each case are defined by (Smyl, 2020):

Non-seasonal model:
lt = αyt + (1− α) lt−1

Single seasonality model:
lt = α

yt
st

+ (1− α) lt−1

st+K = β
yt
lt

+ (1− β) st
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Double seasonality model:

lt = α
yt
stut

+ (1− α) lt−1

st+K = β
yt
ltut

+ (1− β) st

ut+L = γ
yt
ltst

+ (1− γ)ut

yt is the value of the time series at time t, whereas lt, st, and ut are the level,
seasonality, and second seasonality component, respectively. K denotes the number
of observations per seasonal period, for instance, 12 for monthly or 52 for weekly
data. Finally, L is the number of observations per second seasonal component in
hourly data, 168. For all models applies st, ut ≥ 0 and α, β, γ ∈ [0, 1]. The
smoothing coefficients are fitted by SGD. These formulas allow for the estimation of
the level and seasonality components for all points of the series and form a vector
of per-series parameters. This vector is processed in the second component (Smyl,
2020).

The second component is responsible for deseasonalization, adaptive normalization,
and squashing. It processes the input window and output window values, which are
fed to the RNN stack. To do so, it takes the vector of the per-series parameters
as input. The deseasonalization and adaptive normalization of the vector’s scalar
components are realized by the following formulas (Smyl, 2020):

Non-seasonal model:
xi =

yi
lt

Single seasonality model:
xi =

yi
ltsi

Double seasonality model:
xi =

yi
ltsiui

Thereby yi is the value of the time series in the input window at the point i, lt

the last value of the level of the input window, and si and ui are the seasonality
components at the time i.
The division of yi by the respective seasonality components deseasonalizes the data.
Therefore, only the trend component and the error remains in xi. By further dividing
yi by the last value of the input window, the data is normalized. Smyl (2020) points
out that this adaptive normalization yields two significant advantages. First, it
overcomes the shortcoming that when a series is globally normalized, some values
are ignored. For example, the parts of the series with small values will be neglected
for time series that change massively in value over their lifespan. Furthermore,
information on the trend’s strength is lost. For instance, two time series of the same
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length and similar shapes, but one developing from 100 to 110 and another from 100
to 200 look very similar after the normalization to an [0, 1] interval (Smyl, 2020).
The following rule determines the size of the input window: for seasonal series, it
should cover at least on seasonal period. For example, in the case of monthly data,
at least 12 past values are part of the input window. For non-seasonal series, the
size of the input window is based on the forecasting horizon. This rule results in the
input and output values being close to 1, regardless of the original amplitude of the
series or its history (Smyl, 2020).
The application of a squashing function completes this second component. The
function of choice is a logarithm. The logarithm prevents potential outliers from
having an overly disturbing effect on learning (Smyl, 2020). Furthermore, the hybrid
model will not forecast an actual value but the difference between consecutive values.
Thus, the overall formulas are defined as follows (Smyl, 2020):

Non-seasonal model:
xi = log

(
yi
lt

)
Single seasonality model:

xi = log

(
yi
ltsi

)
Double seasonality model:

xi = log

(
yi

ltsiui

)
In conclusion, the values of xi form Xi, which is a vector of normalized, deseasonal-
ized, and squashed values. This vector is the input for the RNN stack.

As previously mentioned, the RNN’s task is to forecast a trend that is most likely
non-linear (Smyl, 2020). The RNN architecture is built up of dilated LSTM-based
stacks. As stated in Section 3.3.4, dilated LSTMs endeavor to improve long-term
memory performance. The stacks are followed by a linear adapter layer, which
adapts the size of the state of the last layer to the size of the forecasting horizon
(Smyl, 2020).
The stacks are composed of several blocks. These blocks are a sequence of one to
four layers that belong to one of three types of dilated LSTMs. The three types
are a standard dilated LSTM (Chang et al., 2017), dilated LSTM with an attention
mechanism (Qin et al., 2017), and a special residual dilated LSTM (Kim et al.,
2017).
Table 4 gives an overview of the deployed RNN architecture and shows that a dif-
ferent stack is used for each frequency. The number of bracket pairs indicates the
number of blocks, whereas the quantity of numbers inside the bracket denotes the
number of individual layers. The value of the respective numbers shows the dilation
of the layer (Smyl, 2020). In the case of quarterly data, the architecture (1,2)-(4,8)
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Standard is used. Standard stands for the standard dilated LSTM while (1,2)-(4,8)
reflects two blocks. The two blocks each consist of two layers with dilation of 1 and
2, and 4 and 8, respectively. The last part of the entry indicates whether the RNN
stack applies the ensemble of specialists. This technique is presented in detail later
in this section.

Frequency Architecture

Yearly (1,6) Attentive, ensemble of specialists
Quarterly (1,2)-(4,8) Standard, simple ensemble
Monthly (1)-(3)-(6)-(12) Residual, simple ensemble
Weekly (1,52) Attentive, ensemble of specialists
Daily (1,3)-(7,14) Standard, ensemble of specialists
Hourly (1,4)-(24,168) Standard, ensemble of specialists

Table 4: Overview of the RNN architecture, adapted from Smyl (2020)

The dilation indicates the point in time whose hidden state is considered. In the
case of dilation of 2, the model takes the hidden state from t−2 as input and passes
its updated hidden state to t + 2. Smyl (2020) chooses the dilations consistent
with the seasonal periods of the frequency of the time series. For instance, for
monthly data, the dilations are 3, 6, and 12. These dilations reflect three possible
seasonality periods: one of three months, one of half a year, and a full-year seasonal
period. This procedure emphasizes the relevance of the lagged values and intends to
better support the RNN in learning the seasonal effects. Consequently, it creates an
artificial weighted average state that allows the RNN to focus on a particular group
of past states dynamically (Smyl, 2020).
Figure 12 shows exemplarily the structure of the RNN stack, which is used for
the quarterly time series. The solid grey box encloses one stack, while the dashed
grey box represents the respective blocks. The shortcut between the two blocks
is a Resnet-style shortcut and adds one block’s output to the next (Smyl, 2020).
Additionally, an alternative representation of this RNN stack is given in Appendix
A.2.
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Figure 12: Dilated LSTM stack: (1,2)-(4,8) Standard for quarterly time series,
adapted from Smyl (2020)

There is one last technique Smyl (2020) applies in the RNN stack: an ensemble of
specialists. This technique was presented a few years earlier (Smyl, 2017) and is part
of his winning submission to the M4 Competition.
The author states that when a dataset contains a large number of time series from
unknown sources, which is the case in the M4 Competition, the series can be grouped
into subsets. Consequently, individual models can be applied to these subsets, in-
stead of using a single model for the whole dataset, which leads to improved overall
forecasting accuracy (Smyl, 2020). With this context in mind, the fundamental idea
of the ensemble of specialists is to train several models concurrently and force them
to specialize in a subset of the series (Smyl, 2020).
To deploy an ensemble of specialists, M models are created first, and a subset of
the dataset (e.g., half of it) is randomly allocated to each model. A single train-
ing is then executed on the allocated dataset, and the in-sample performance of
each model is recorded. In the next step, the models are ranked in terms of their
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performance for each series in the dataset. Finally, each time series is allocated to
the top best N models. This procedure continues until the error on the validation
set is increasing. The final forecast for a particular time series is calculated by the
average of the forecasts conducted by the top N models (Smyl, 2020). Therefore,
this technique of clustering the time series in the dataset and mapping them to the
best performing models is an unsupervised learning task.
As Table 4 shows, the method does not apply the ensemble of specialists for ev-
ery frequency due to computational reasons. For monthly and quarterly data, the
method applies a simple ensemble (Smyl, 2020). Its underlying principle is boot-
strap aggregating or shortly termed bagging. Bagging might not be as sophisticated
as the ensemble of specialists but is still adequate to improve forecasting accuracy
(Breiman, 1996).

Finally, the method’s last component performs the reverse transformation, which
includes reseasonalization and denormalization and obtains the actual forecast. The
following formulas reverse transform the trend forecast from the RNN stack respec-
tive the frequency of time series (Smyl, 2020):

Non-seasonal model:
ŷt+1..t+h = exp (NN (x)× lt)

Single seasonality model:

ŷt+1..t+h = exp (NN (x)× lt × st+1..t+h)

Double seasonality model:

ŷt+1..t+h = exp (NN (x)× lt × st+1..t+h × ut+1..t+h)

NN (x) denotes the output vector of the RNN stack, whereas h is the forecasting
horizon and lt the last value of the input window. The exponential function reverse
transforms the squashing.

Slawek Smyl’s hybrid HW-LSTM method caused a sensation by winning the M4
Competition, and some researchers are confident that hybrid methods have a great
future (Makridakis et al., 2018a). After presenting the method in detail, the core
question that remains unanswered is why it works so well. The method applies
sophisticated deep learning techniques, but the Holt-Winters’ Method accounts for
a significant part of the work. A possible hypothesis is that the HW supports the
LSTM to play its strengths more effectively. The presented strengths of machine
learning methods, especially cross-learning and nonlinearity, result in an excellent
modeling power. However, this modeling power comes at the cost of requiring appro-
priate data. The HW could reduce the training effort by taking out the seasonality
and leaving the LSTM a more straightforward task, where the data requirements are
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mitigated. In addition to the research question, the following experimental design
seeks to find evidence to support this hypothesis and aims to evaluate the model’s
superior performance in the M4 Competition in another setting.
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5 Experimental Setup

The following chapter describes the design of the experimental setup. It starts by
exhibiting the overall process and then presents the considered time series with their
distinguishing characteristics. Furthermore, it elaborates on the utilized methods
and accuracy measures. This chapter closes with details on the experiment’s imple-
mentation.

5.1 Course of Investigation

The experiment’s objective is to consider various time series with different character-
istics in order to investigate the influence of these characteristics on the performance
of the forecasting method. The investigation is divided into three steps, which Fig-
ure 13 displays. The first step is to identify several time series with distinguishing
characteristics and find meaningful clusters. Then, individual forecasts are con-
ducted applying different methods. Apart from statistical and machine learning
approaches, the hybrid HW-LSTM method is used. Finally, the forecasts are eval-
uated with relevant error metrics to assess their performance on the different time
series.

Figure 13: Course of investigation

The goal of this course of the investigation is to evaluate the presented strengths
and limitations of both statistical and machine learning methods. Furthermore,
it enables the validation of the outstanding performance of the hybrid HW-LSTM
method in another setting and allows for the conclusion of the research question.
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5.2 Identification and Clustering of Time Series

This section describes the identification of relevant datasets and the clustering. As
the time series exhibit different characteristics, a detailed analysis of each is neces-
sary to understand the experiment’s input thoroughly.
The considered univariate time series are recognized in the literature and obtained
from freely available sources. This section analyzes the time series regarding the
following characteristics: stationarity, homogeneity of variance, trend, seasonality
and cycle, and the number of observations.

To analyze the stationarity of the eligible time series, the Augmented Dickey-Fuller
Test (ADF) is used. As set out in Section 3.1.1, it tests against the null hypothesis
of the presence of a unit root in the data. In the first run, the ADF investigates
whether the time series is stationary. When the result shows nonstationarity, the
time series is differenced, and the ADF is applied anew to discover if the time series
is trend stationary. If the second ADF reveals the presence of a unit root, the time
series is considered not stationary. Using differencing instead of detrending has the
advantage that no parameters need to be estimated in that operation and is reason-
able to coerce the data to be stationary (Shumway and Stoffer, 2017).
The Levene’s Test for equal variances reveals if a time series is homoscedastic or
heteroscedastic. As the test compares subsets of a time series in terms of their dis-
turbance term’s variance, the breakdown into the respective subsets influences the
test result. Therefore, the time series is split into two, three, four, five, and ten
subsets, and the results of each test are consolidated.
The experiment performs a decomposition and examines the time series in terms of
trend, seasonality and cycle, and residuals. As the applicability of the decomposition
methods depends on whether a multiplicative relationship underlies a time series,
two approaches are practiced. Whenever the Seasonal and Trend Decomposition
using Loess (STL decomposition) is applicable, it is the method of choice. However,
when a time series clearly shows multiplicative behavior, the STL decomposition
can not be applied, and a classical decomposition is executed. Apart from the de-
composition, the autocorrelation of a time series is analyzed via the Autocorrelation
Function (ACF). The ACF visualizes the autocorrelation and provides information
on the correlation between particular lagged values.

In total, nine real-world time series are identified as suitable and considered in the
experiment. The following paragraphs introduce these time series in detail and
show the results of the conducted tests. For the better readability of this section,
the illustrations of the decomposition are located in Appendix A.3 and the ACF
plots in Appendix A.4. Further details on the results of the ADF and the Levene-
Test, as well as the first-order difference, are included in Appendix A.5, Appendix
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A.6, and Appendix A.7, respectively.

The Airline Passengers dataset describes monthly passengers on an airline and con-
sists of 144 observations. The ADF indicates clearly that the time series does not
follow a stationary process. Furthermore, the Levene-Test shows heteroscedasticity.
As Figure 14 depicts, the amplitudes increase over time, which suggests a multiplica-
tive relationship. Therefore, a multiplicative classical decomposition is performed.
The results show a strong yearly seasonality and an almost linear, positive trend.
The ACF supports this, as the values show a strong positive correlation to the re-
spective value 12 months ago. The Airline Passengers dataset was acquired from
Kaggle (Kaggle, nda).
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Figure 14: Airline Passengers

The number of lynx trapped per year in the Mackenzie River District of North-West
Canada is the subject of the Canadian Lynx time series. The time series includes
data from 1821 to 1932 and therefore has 112 observations. Figure 15 depicts the
data and suggests a periodicity of approximately ten years. The ACF confirms
this hypothesis, as apart from the previous value, the value ten years ago shows a
significant positive correlation. The Canadian Lynx has been extensively studied in
the literature with a focus on nonlinear modeling (Zhang, 2003). In terms of trend
and residuals, the STL decomposition indicates no clear trend but little noise and
single outliers. Although the Levene-Test indicates homoscedasticity, the ADF result
is that the Canadian Lynx is a nonstationary time series. This is not a contradiction,
as homoscedasticity is a necessary, but not sufficient criterion for stationarity. The
data was obtained from GitHub (GitHub, nda).
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Figure 15: Canadian Lynx

The next time series is Daily Minimum Temperatures Melbourne. As the name sug-
gests, it describes the daily minimum temperature recorded in Melbourne, Australia.
It contains daily observations of ten years, ranging from January 1981 to December
1990. The time series is both heteroscedastic and nonstationary, as the pertinent
tests confirm. The ACF shows that Melbourne experiences the change of the sea-
sons, although the summer and winter months are reversed to the ones in Europe
due to the city’s location in the southern hemisphere. Hence, the time series has
a yearly seasonality. Apart from that, the ACF reveals a strong correlation to the
previous value. This strong correlation is explained by the fact that temperature
is inert and obeys the laws of physics. As extreme temperature drops are seldom,
today’s temperature has a significant influence on tomorrow’s temperature. The
analysis of the STL decomposition exhibits no clear trend but a moderate range
of residual values. Figure 16 presents the dataset that was acquired from Kaggle
(Kaggle, ndb).
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Figure 16: Daily Minimum Temperatures Melbourne

The Daily Total Female Births California dataset has 365 observations and repre-
sents the daily number of female births of 1959 in California, USA. The ADF and
Levene-Test indicate that the time series is nonstationary and homoscedastic. The
time series reveals a slight significant positive correlation to values from 7 and 21
days ago, suggesting a weak weekly seasonality. In terms of trend and residuals,
there is no distinct trend observable, and the STL decomposition shows a moderate
noise in the data as the residuals have a moderate range. Figure 17 depicts the
dataset which originates from Kaggle (Kaggle, ndc).
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Figure 17: Daily Total Female Births California
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A challenging task is the forecast of exchange rates as the observations rely on
various influencing factors. The GBP USD Daily Exchange Rate incorporates this
demanding task in the experiment with its numerous turning points. As Figure
18 shows, the dataset contains 5977 observations between January 1993 and May
2018, reflecting the daily exchange rate of the pound sterling (GBP) in currency
units per U.S. dollar (USD). While the dataset is heteroscedastic, the ADF on the
first-order difference in the time series reveals that the GBP USD Daily Exchange
Rate is trend stationary. The ACF shows a strong short-term correlation, and the
STL decomposition exhibits neither a clear trend nor seasonality. The dataset was
collected from Kaggle (Kaggle, ndd).
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Figure 18: GBP USD Daily Exchange Rate

The next time series measures the real output of all relevant electric and gas es-
tablishments in the United States and originates from the Federal Reserve Bank of
St. Louis (Board of Governors of the Federal Reserve System (US), nd). For better
readability, it is shortly referred to as Industrial Production, and it describes the
monthly industrial production index in which values are relative to a base unit and
are not seasonally adjusted. Figure 19 shows its 84 observations between January
2007 and December 2013. As the ADF result indicates stationarity, it is not surpris-
ing that the STL decomposition reveals neither trend nor seasonality. However, the
ACF suggests a strong negative correlation and a strong positive correlation between
lagged values, which indicates a cyclic behavior. As Hyndman and Athanasopoulos
(2019) state, time series with cyclic behavior without trend or seasonality can be
stationary. The authors argue that when the mean and the variance remain constant
over time respective to a significance level, the time series is stationary. Constant
mean and variance appear to be the case for the Industrial Production dataset, as
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the STL decomposition does not indicate an inconstant trend, and the Levene-Test
confirms constant variance by indicating homoscedasticity. Therefore, the result of
the ADF seems credible, and this time series is considered stationary.
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Figure 19: Industrial Production

The Rossmann Store Sales dataset originates from a Kaggle forecasting competition
(Kaggle, nde). The dataset includes the daily store turnover for 1,115 stores of the
German retail chain Rossmann. In the experiment, a single store is chosen, and its
sales from January 2013 until July 2015 are considered. Thereby the data is adjusted
by the days the store was closed, which is the case for Sundays and state holidays.
The Sundays were removed from the time series to avoid that the forecasting models
have to predict a value of zero. The values on weekday state holidays are imputed
by the mean of the same weekday one week before and after the holiday. After this
careful preprocessing, the time series has 808 observations.
The ADF indicates that the time series is not stationary, while the Levene-Test de-
livers mixed results. For the smaller sample sizes, the result indicates homoscedas-
ticity, but for larger sample sizes, the result is the opposite. As a higher number of
subsamples leads to the fact that the variance has to be equal for more subsets con-
currently, its result tips the scales and, therefore, Rossmann Store Sales is regarded
as heteroscedastic. Figure 20 reveals two peaks in the data that reflect the Christ-
mas business. As the time series is likely to underlie several influencing factors, the
STL decomposition has difficulties giving a precise picture of trend and seasonality.
In terms of residuals, however, it indicates a noisy behavior. For this time series, it
is worthwhile to analyze two ACF visualizations to consider short-term and long-
term relationships. Although, these analyses have to been seen in the light of the
removed values. The removed values cause the actual periods to appear shorter in
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the graphic than in reality. Thus for the long-term ACF, the positive correlation
of a particular value with values around three hundred days ago indicates a yearly
seasonality. The ACF for short-term relationships reveals further significant positive
correlations. All in all, this suggests multiple overlaying seasonalities and presents
a difficult task for the forecasting methods.
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Figure 20: Rossmann Store Sales

The Sunspot dataset describes the annual activity of spots visible on the sun and is
of practical importance to geophysicists, environmental scientists, and climatologists
(Hipel and McLeod, 1994). Figure 21 displays the 289 observations that range from
1700 to 1988. The data is regarded as nonlinear in the literature and used to
evaluate the effectiveness of nonlinear models (Zhang, 2003). While the time series
is heteroscedastic, the ADF on the first-order difference exhibits trend stationarity.
However, ACF indicates a cycle of approximately 11 years. Similar to Industrial
Production, this does not contradict the trend stationary process of the time series.
In terms of noise, the STL decomposition reveals a moderate level of noise in the
data. The time series is broadly used in the literature and was obtained from GitHub
(GitHub, ndb).
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Figure 21: Sunspot

Finally, the last time series considered in the experiment is a Random Walk with 1000
daily steps. Its objective is to confront the forecasting method with randomness that
can not be reasonably predicted. The Random Walk is constructed using a random
variable that determines whether 1 is added or subtracted to the current value of
the time series. Figure 22 shows the resulting course. Per definition, this Random
Walk is nonstationary (Hyndman and Athanasopoulos, 2019).
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Figure 22: Random Walk
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The presented analysis of the nine time series suggests the division into three clus-
ters: stationary, trend stationary, and nonstationary time series. Table 5 shows the
classification and reviews the characteristics of the time series elaborated in this
section.

Cluster Time series Frequency Length
Homogeneity

of variance
Trend

Seasonality/
Cyclicity

Residuals

Stationary Industrial Production Monthly 84 Homoscedastic None
Cycles of

approx. 6 months
Minimal

noise

Trend stationary
GBP USD Daily
Exchange Rate

Daily 5977 Heteroscedastic None None
Minimal

noise

Sunspot Yearly 289 Heteroscedastic None
Cycles of

approx. 11 years
Moderate

noise

Nonstationary

Airline Passengers Monthly 144 Heteroscedastic
Positive,

almost linear
Yearly

seasonality
Minimal

noise

Canadian Lynx Yearly 112 Homoscedastic None
Cycles of

approx. 10 years
Single

outliers
Daily Minimum
Temperatures Melbourne

Daily 3650 Heteroscedastic None
Yearly

seasonality
Moderate

noise
Daily Total Female
Births California

Daily 365 Homoscedastic None
Weekly

seasonality
Strong
noise

Rossmann Store Sales Daily 808 Heteroscedastic None
Multiple

seasonalities
Moderate

noise
Random Walk Daily 1000

Table 5: Identified and clustered time series

5.3 Forecasting Methods

This section describes the forecasting methods, which are the core of the experi-
ment. The experiment thereby includes statistical, machine learning, and hybrid
approaches as well as baseline methods. Table 6 gives an overview of the particular
forecasting methods.

Category Method

Baseline
Naive approach

Linear regression

Statistical methods
Holt-Winters’ Method

ARIMA

Machine learning methods
Multilayer Perceptron

Long Short-Term Memory Network

Hybrid methods Slawek Smyl’s HW-LSTM method

Table 6: Overview of forecasting methods
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First, two simple forecasting methods are used as a baseline to compare the other
methods against. As Section 3.2.1 describes, naive approaches are a useful tool in
that endeavor. For that reason, the first baseline is the naive approach that sets
all values to the last observation. As a second baseline method, a linear regression
model is used. It is characterized by its straightforward handling and provides an-
other reasonable baseline.
In terms of statistical methods, the experiment considers two well-established meth-
ods. It applies the Holt-Winters’ Method from the class of exponential smoothing
methods and the ARIMA class of autocorrelation models. Consequently, the exper-
iment uses two successful methods with different characteristics that have proven
their capabilities successfully in various contexts.
From the presented machine learning methods, the experiment includes a Multi-
layer Perceptron and a Long Short-Term Memory Network. The MLP represents an
entry-level method, while the LSTM has a more sophisticated architecture. Thus,
two methods of different complexity are considered and compared in the experiment.
Finally, Slawek Smyl’s hybrid HW-LSTM method represents the hybrid methods in
the experiment. The forecasting results of the hybrid approach allow for the exam-
ination of whether it can outperform its constituent parts or the isolated methods
can provide better results than their hybridization.

With this selection, the experiment covers a broad range of time series forecasting
methods. Nevertheless, a remark must be made on the comparability of the meth-
ods. These methods are per se different in their approach to time series forecasting.
For instance, some methods apply a recursive forecasting strategy while others de-
ploy a multi-input multi-output strategy. However, this experiment focuses not
on forecasting strategies but the comparison of forecasting methods. Hence, the
forecasting methods are used according to their respective nature. To make them
more comparable and the comparison fair for all methods involved, every method is
tuned to achieve the best forecasting performance. With this effort, each forecasting
method produces the best result it is capable of and shows its forecasting potential.
Therefore, it seems fair that this best potential is compared for the purpose of this
thesis’s experiment.

5.4 Evaluation of Forecasts

The experiment’s final step is to evaluate the predictions conducted by the forecast-
ing methods. Section 3.1.2 presented several accuracy measures with their respective
advantages and disadvantages.

In the experiment, two scale-dependent error metrics evaluate the performance of the
forecasting methods. The MAE assesses the forecasting method’s performance on a
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particular dataset. Its advantage is its interpretability, as the MAE allows for direct
statements about the accuracy of a method. However, as the experiment intends to
punish outliers and serious forecasting errors, the RMSE is the decisive error metric.
Despite being more challenging to interpret, the RMSE is widespread in practice and
is commonly used to compare the different methods on the same dataset. Therefore,
the methods are ranked according to the RMSE, and the relative improvement over
the best baseline is calculated.
Using the percentage error MAPE would be appreciated, as it is easy to interpret
the result. However, as stated in Section 3.1.2, the MAPE is not defined for yt = 0.
This missing definition is problematic as the values of some time series such as the
Daily Minimum Temperatures Melbourne can take the value 0 and exclude the use
of the MAPE. To use accuracy measures that apply to each time series, the MAE
and RMSE are the error metrics of choice for the experiment.

The evaluation of forecasts in the experiment follows the conditions of the M4 Com-
petition. As the M4 Competition setting does not intend a walk-forward validation,
it is not applied in the experiment. Thus, the error is calculated once for the entire
forecast.

5.5 Implementation

This chapter closes with an elaboration on the experiment’s implementation. First,
this section presents the requested forecasting horizons for each frequency. Then it
gives a general overview of the deployed technologies and finally elaborates on the
particular implementation of each forecasting method.

The experiment uses the same forecasting horizons as the M4 Competition. They
depend on the frequency of the time series, as Table 7 shows. These forecasting hori-
zons are determined based on the nature of the decision that each data frequency
is most likely to support within a company or organization. Yearly data typically
supports long-term decision making on a strategic level between one and five years
ahead. Monthly forecasts are frequent for budgeting purposes varying from a few
months to two years, and daily forecasts usually back operations at short-term levels
up to a few weeks ahead (Makridakis et al., 2020).

Frequency Yearly Monthly Daily

Forecasting Horizon 6 18 14

Table 7: Overview of forecasting horizons
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The entire project is implemented in Python 3.7 using well-established libraries such
as SciPy, statsmodels, and scikit-learn (SciPy 1.0 Contributors et al., 2020; Seabold
and Perktold, 2010; Pedregosa et al., 2011). The neural networks for the machine
learning methods are developed with Keras running on a Tensorflow backend (Chol-
let, 2015; Abadi et al., 2015). Finally, the implementation of the hybrid method
uses the open-source machine learning framework PyTorch (Paszke et al., 2019).

The naive approach’s implementation is straightforward. The forecast is set to be
the last known value, which is the last value of the validation set. For the linear
regression, the corresponding sci-kit learn module fits the regression parameters on
the training and validation set and then predicts the values for the test period.

The implementation of the Holt-Winters’ Method is accomplished with the desig-
nated statsmodels module. The Holt-Winters’ Additive Method is used for each time
series except for the Airline Passengers, which requires the Holt-Winters’ Multiplica-
tive Method. As the HW incorporates per se a recursive one-step-ahead forecasting
strategy, it is susceptible to error accumulation.
The implementation expects the specification of a seasonal component. This sea-
sonal component was obtained from the ACF, which considered the training and
validation set and indicated the lag to the value with the most significant correla-
tion. Thereby the last observation is omitted. In the case of the Airline Passengers,
the ACF would suggest a seasonal component of 2 because of the strong correla-
tion. As this contradicts the strong yearly seasonality, the seasonality overrules the
ACF, and the seasonal component is set to 12. This manual intervention provides
a practical example of a priori knowledge incorporated in the forecasting method.

Two libraries are in consideration for the implementation of the ARIMA. As PyFlux
requires an older version of Python (Taylor, nd), statsmodels is the library of choice.
The ARIMA can deploy both direct or recursive forecasting strategy. As the direct
strategy requires more preprocessing of the data and statsmodels does not natively
include it, the recursive forecasting strategy is implemented. As the ARIMA models
in the M competitions use a recursive strategy, this particular procedure is consid-
ered reasonable (Makridakis et al., 2018b).
ARIMA requires the specification of the parameters p, d, and q. In that endeavor, a
grid search hyperparameter tuning is performed on the training set to find the opti-
mal parameter combination. As the computation time increases with the more values
included, a trade-off between optimization and computing time is found. Hence, the
grid search considers only promising combinations of the hyperparameters. These
promising values reflect the behavior of the time series in terms of frequency, sea-
sonality, and cycles. In case of the strong yearly seasonality in the monthly Airline
Passengers dataset, the eligible values for the autoregressive and moving average
component are the interval from 0 to 12 and additionally 24. Thus, 24 months or
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in other words, two seasonal periods are used to fit the ARIMA hyperparameters.
In terms of differencing, the grid search considers the original time series and, ad-
ditionally, the first-order and second-order difference. The parameters are validated
for the MSE on the validation set, which has the same length as the test set. The
MSE is broadly used in practice and provides a reasonable measure. On the whole,
this approach ensures a reliable forecasting performance of the ARIMA.

The Multilayer Perceptron consists of three layers: an input layer, one hidden layer,
and one output layer. It uses a ReLu activation function, an Adam optimizer, and
an MSE loss function. This architecture of the MLP implies a multi-input multi-
output forecasting strategy.
The samples are framed according to the supervised learning setting described in
Section 3.3.1, and split into the respective sets. Thereby, the test set contains as
many observations as the input window and the forecasting horizon combined. For
instance, if the input window has six values and the requested forecasting horizon is
18 values, the test set holds 24 values. To ensure adequate data for the validation of
the NN training, the validation set contains twice as many observations as the test
set. Finally, the remainder of observations is used for training and is consequently
in the training set.
A grid search determines the size of the input window. In that endeavor, the NN is
trained on the training set and validated on the validation set. The performance of
different input windows is compared for the MSE, and the best input window size
is used to conduct the actual forecast. The eligible values tested in the grid search
draw from the characteristics of the time series, similar to the process described for
the hyperparameter tuning of the ARIMA. As the Industrial Production dataset has
too few observations, this process can not be applied to that time series. Instead,
the input window size is set to 3 concerning the ACF.

The Long Short-Term Memory Network’s underlying architecture consists of an in-
put layer, several hidden layers, and an output layer. It uses a ReLu activation
function, and the loss function is the MSE. The Keras Tuner performs the hyper-
parameter tuning and optimizes the number of hidden layers and neurons per layer.
Furthermore, it analyzes whether dropout layers are inserted. The optimizer asso-
ciated is Adam with learning rates of 0.01, 0.001, and 0.0001. These learning rates
are broadly used and ensure that the SGD finds a minimum. The estimation of
the input window size and sample split is carried out analogously to the MLP. Per
definition, the LSTM follows a recursive forecasting strategy.

Initially, Slawek Smyl’s hybrid HW-LSTM method is implemented in C++, making
it unavailable to the experiment’s Python pipeline. Redd et al. (2019) generalize
the method and provide a PyTorch implementation. The underlying concept of the
hybrid HW-LSTM method is the same in both implementations and follows a re-
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cursive forecasting strategy. The model incorporates cross-learning, as it uses the
M4 Competition dataset for the training of the LSTMs.
However, there are some modifications to the respective implementations. The main
one is the architecture of the LSTM. While Smyl (2020) deploys the stacked architec-
ture described in Section 4.3, Redd et al. (2019) utilize a dilated LSTM architecture
provided by Zalando Research (Zalando Research, nd). It uses similar dilations and
is suitable for use in the hybrid architecture, although it lacks the ensemble of spe-
cialists. This modification influences the computation time for the better, as Redd
et al. (2019) describe a tremendous decrease in required computation time.
The PyTorch implementation only provides accuracy measures out of the box.
Therefore, the code is extended for use in the experiment. An adjusted data loader
enables the consideration of further time series, and the training process was adapted
accordingly. Furthermore, the forecasts were extracted from the model and brought
to a comprehensible output format.

While the applied baseline and statistical methods provide a deterministic result, the
result of the NN-based methods is stochastic. This fluctuation is because the NNs
deploy training methods such as Stochastic Gradient Descent, Dropout Layers, and
Random Search that lead to unsteady results for the same input. The MLP, LSTM,
and HW-LSTM perform ten runs to overcome this shortcoming, and the average of
the runs determines the final forecast. The fluctuation of each forecasting method
is listed in Appendix A.9.
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6 Results

This chapter presents the result of the experiment. It is divided into two sections and
presents the observations and their implications. These implications reveal whether
the experiment confirms the potential of hybrid methods promised by the literature,
and evaluate the performance of the hybrid HW-LSTM method in another setting.
Finally, this chapter answers the research question.

6.1 Observations

The experiment’s outcome is the forecast of the applied methods on the identified
and clustered time series. This section analyzes the forecasts for each time series in-
dividually and is structured according to the identified clusters. It will solely include
selected plots to ensure a pleasant flow of reading. For completeness, Appendix A.8
includes every plot for each time series and forecasting method.

The first cluster of stationary time series included the Industrial Production dataset.
The performance of the forecasting methods is presented in Table 8. Apart from
the MAE and RMSE, the table exhibits the improvement over baseline (IOB). The
IOB relates the accuracy measured by the RMSE of a particular forecast to the best
baseline and is denoted in percent. The rank is based on the IOB and indicates the
performance compared to the other forecasting methods.

Time series Error Naive
Linear

Regression
HW ARIMA MLP LSTM HW-LSTM

Industrial
Production

MAE 7.373 7.450 2.021 2.791 3.901 10.001 3.093
RMSE 8.339 8.575 2.607 3.406 4.637 12.227 3.577
IOB + 68,75% + 59.16% + 44.39% - 46.62% + 57.11%
Rank 5 6 1 2 4 7 3

Table 8: Results cluster stationary time series

The accuracy measures show that HW, ARIMA, MLP, and HW-LSTM achieved
excellent performance on the stationary time series. Solely the LSTM is well behind
the others and is not able to surpass any baseline method.
The Industrial Production dataset provided a challenging task for the forecasting
methods as it only contains 84 observations. This small number of observations
certainly complicated the learning process for the NNs. This concern is reflected
in the results, as both statistical methods obtained better results than the machine
learning methods. HW and ARIMA achieved superior results and surpassed the
best baseline by 68.75% and 59.16%. The HW-LSTM method was close behind the
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ARIMA and delivered a reliable forecast that is depicted in Figure 23.
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Figure 23: HW-LSTM forecast for Industrial Production

The second cluster included the trend stationary time series GBP USD Daily Ex-
change Rate and Sunspot. Table 9 presents the results of the forecasting methods
for this cluster.

Time series Error Naive
Linear

Regression
HW ARIMA MLP LSTM HW-LSTM

GBP USD Daily
Exchange Rate

MAE 0.024 0.152 0.024 0.026 0.025 0.028 0.047
RMSE 0.029 0.154 0.029 0.031 0.031 0.034 0.055
IOB 0.00% - 6.90% - 6.90% - 17.24% - 89.66%
Rank 1 7 1 3 3 5 6

Sunspot

MAE 70.367 31.340 42.962 11.222 21.310 13.204 87.856
RMSE 76.599 35.332 45.985 15.473 29.988 23.609 94.101
IOB - 30.15% + 56.21% + 15.13% + 33.18% - 166.33%
Rank 6 4 5 1 3 2 7

Table 9: Results cluster trend stationary time series

The expectations for the GBP USD Daily Exchange Rate are low, as its prediction
is an almost impossible task. The results confirm this hypothesis, as none of the
forecasts was able the beat the naive approach. As stated in Section 3.2.1, naive
forecasts work surprisingly well in this domain.
The results of all forecasting methods were very close together, and only the HW
achieved a slightly better result. The plot shows that the HW imitated the naive
approach and nearly matched its predictions because the seasonal component was
set to 2. Despite the strong short-term autocorrelation that could favor ARIMA
and MLP, both could not perform well.
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The Sunspot dataset put HW and HW-LSTM before difficulties, as both were not
able to surpass the linear regression baseline. The MLP was able to beat the baseline,
but its performance stood short of the ARIMA and LSTM. The LSTM obtained a
promising result and surpassed the baseline by 33.18%. It is only outperformed
by the ARIMA that scored 56.21% above the baseline. Figure 24 visualizes both
forecasts for the Sunspot dataset.
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Figure 24: ARIMA and LSTM forecast for Sunspot

The time series Airline Passengers, Canadian Lynx, Daily Minimum Temperatures
Melbourne, Daily Total Female Births California, Rossmann Store Sales, and Ran-
dom Walk are nonstationary and consequently in the final cluster. The error metrics
for these time series are presented in Table 10.



6 RESULTS 64

Time series Error Naive
Linear

Regression
HW ARIMA MLP LSTM HW-LSTM

Airline Passengers

MAE 62.778 63.179 13.743 39.727 43.358 96.537 64.704
RMSE 74.878 83.737 15.500 51.055 53.676 120.201 74.657
IOB + 79.30% + 31.82% + 28.32% - 60.53% + 0.30%
Rank 5 6 1 2 3 7 4

Canadian Lynx

MAE 1,967.833 810.642 1,354.480 422.728 414.570 631.005 2,001.547
RMSE 2,019.303 927.960 1,366.429 499.116 477.867 742.795 2,136.074
IOB - 47.25% + 46.21% + 48.50% + 19.95% - 130.19%
Rank 6 4 5 2 1 3 7

Daily Minimum
Temperatures
Melbourne

MAE 1.157 2.866 1.174 1.191 1.346 1.618 2.346
RMSE 1.602 3.132 1.656 1.630 1.696 1.986 2.663
IOB - 3.37% - 1.75% - 5.87% - 23.97% - 66.23%
Rank 1 7 3 2 4 5 6

Daily Total Female
Births California

MAE 6.000 5.973 5.121 5.289 4.472 5.370 4.376
RMSE 8.009 6.563 6.496 6.598 4.877 6.451 5.574
IOB + 1.02% - 0.53% + 25.69% + 1.71% + 15.07%
Rank 7 5 4 6 1 3 2

Rossmann Store
Sales

MAE 605.357 576.044 596.973 392.495 283.678 566.477 787.563
RMSE 755.322 712.042 749.366 561.065 433.387 747.043 949.509
IOB - 5.24% + 21.20% + 39.13% - 4.92% - 33.35%
Rank 6 3 5 2 1 4 7

Random Walk

MAE 1.071 11.475 1.051 2.723 0.974 0.921 2.937
RMSE 1.389 11.521 1.349 3.031 1.195 1.157 3.317
IOB + 2.88% - 118.21% + 13.97% + 16.70% - 138.80%
Rank 4 7 3 5 2 1 6

Table 10: Results cluster nonstationary time series

The HW obtained a superior performance on the strongly seasonal Airline Passen-
gers dataset and outperformed all other methods. The predictions surpassed the
baseline by 79.30% and are depicted in Figure 25.
ARIMA and MLP achieved similar performances and improved the baseline by
31.82% and 28.32%, respectively. The HW-LSTM provided a mixed result and
beat the baseline by a narrow margin. The LSTM itself failed to conduct a reliable
forecast and obtained a result of 60.53% below the baseline.
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Figure 25: Holt-Winters’ Method forecast for Airline Passengers

In terms of the Canadian Lynx, two methods were almost on par. The MLP per-
formed best with 48.50% above baseline, closely followed by ARIMA with 46.21%.
The LSTM delivered promising results on the time series and beat the baseline by
19.95%. The HW and HW-LSTM failed to conduct a reasonable forecast and both
score below the baseline. Thereby the HW-LSTM misses the baseline by far. Figure
26 shows the MLP’s forecast for the Canadian Lynx time series.
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Figure 26: MLP forecast for Canadian Lynx
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The Daily Minimum Temperatures Melbourne dataset was another challenging fore-
casting task. This challenge resulted in the fact that none of the forecasting methods
conducted a reliable forecast, and consequently, all fell short of the baseline. Soley
the statistical methods and the MLP seemed to make something out of the yearly
seasonality and short-term autocorrelation, but the performance was still unsatis-
factory. The LSTM and HW-LSTM were far behind.
For the Daily Total Female Births California, the ARIMA and HW-LSTM stood
out by beating the baseline by 25.69% and 15.07%. While HW and LSTM were
barely above the performance of the baseline, ARIMA did not outperform the linear
regression. Figure 27 presents the forecast for the HW-LSTM method on the Daily
Total Female Births California dataset.
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Figure 27: HW-LSTM forecast for Daily Total Female Births California

Only two methods handled the overlaying seasonalities of the Rossmann Store Sales
dataset to satisfaction. Again ARIMA and MLP were close together and beat the
baseline by 21.20% and 39.13%. Figure 28 presents their performance as the two
most successful methods. LSTM and HW missed the baseline by a narrow margin
and did not seem to cope with the overlaying seasonalities. The HW-LSTM failed
to produce a reliable forecast and ranked in the last place.
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Figure 28: ARIMA and MLP forecast for Rossmann Store Sales

Finally, the Random Walk was the last time series in this analysis. It confronted
the methods with randomness, which is impossible to predict. When comparing the
accuracy measures, the machine learning methods achieved a better result on this
time series than the statistical and hybrid approaches. The LSTM provided the best
result surpassing the baseline by 16.70%, and the MLP ranked second with 13.97%
above the baseline. The ARIMA and HW-LSTM fell short of the baseline for the
Random Walk.

So far, this chapter presented the observations of this experiment. The next section
seeks to make sense of these observations and find implications for the research
question and the formulated hypotheses.

6.2 Implications

This section manifests the implications of the observations described in the previous
section. It elaborates on the research question, the formulated hypotheses, and
general findings.

First of all, the performance of the conducted forecast varied significantly between
the time series. There was not a single time series in the experiment where all fore-
casting methods surpassed the best baseline. In the case of the GBP USD Daily
Exchange Rate, all methods failed to conduct an accurate forecast. However, for
some time series such as Airline Passengers, Industrial Production, and Canadian
Lynx, most forecasting methods were able to produce reliable forecasts.
For the Random Walk, it is surprising that the machine learning methods obtained
a promising result above the baseline even though the naive forecast is the optimal
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per definition (Hyndman and Athanasopoulos, 2019). This achievement suggests
the hypothesis that the machine learning methods learned the process described
in Section 5.2 that generated the Random Walk, and approximated this particular
process successfully. Since the hypothesis is based on only a single time series, it has
yet to be confirmed by further investigations. However, this result has no bearing on
the general predictability of random walks whose underlying processes are random
and unpredictable. Much more, this example shows the variance of the forecasts
and the importance of critically checking the predictions.
The literature identifies the Canadian Lynx and Sunspot as nonlinear time series.
The machine learning methods performed well on both time series and can provide
an improvement to the baseline methods. Therefore, the result confirms the hy-
pothesis that machine learning methods provide reliable forecasts on nonlinear time
series. However, machine learning methods were not the only methods that obtained
accurate forecasts. In both cases, the ARIMA delivered a reliable forecasts as well.
As time series always inhibit a combination of characteristics, it can not be assumed
that nonlinearity is the only characteristic of these two time series. Therefore, no
conclusion can be drawn that either the nonlinearity or autocorrelation character-
istics of the time series favored the superior performance of the machine learning
methods or the ARIMA alone. It is more important to conclude that several fore-
casting methods with different approaches can obtain accurate forecasts on the same
time series due to the combination of characteristics.
If the challenging time series Daily Minimum Temperatures Melbourne and Random
Walk are neglected, the forecasts of the MLP were accurate on all other time series
except for the Airline Passengers. As Table 5 in Section 5.2 showed, this dataset is
the only time series that exhibits a trend in the nonstationary time series cluster.
Hence, two findings are evident in this cluster. First, the MLP performs well on
nonstationary time series without trend. Second, as a trend in a time series requires
the forecasting methods to extrapolate, this result supports the hypothesis that NN-
based methods such as the MLP have difficulties extrapolating. Consequently, the
forecasts on time series exhibiting trend are not reliable.

The research question to be answered is which characteristics of a time series de-
termine the superiority of either statistical, machine learning, or hybrid forecasting
approaches. Based on the obtained results, it is impossible to make a general assess-
ment and answer the research question conclusively. The characteristics underlying
each analyzed time series are so intertwined that no conclusion can be drawn which
category of forecasting methods will be superior. Therefore, it is impossible to as-
sess whether statistical, machine learning, or hybrid methods will have a superior
performance in the first place. However, when focusing on the particular methods
within the respective approaches, the experiment’s results allow for several conclu-
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sions which forecasting method promises a reliable forecast in a particular setting.

The results exhibit that the Holt-Winters’ Method promises reliable predictions
when the periodicity of a time series can be precisely specified. For the Airline
Passengers dataset, this resulted in a superior performance. However, the HW
faces difficulties when the periodicity can not be explicitly determined, or several
overlaying seasonalities are involved, which was the case for the Rossmann Store
Sales dataset. On this particular dataset, the HW was not able to provide a good
forecast. On the other hand, the ARIMA and MLP handled this time series very
well. This advantage could be due to their autoregressive approach to forecasting
that makes them less susceptible to overlaying seasonalities.
When comparing the two machine learning methods, it is evident that the LSTM
requires more input data than the MLP. Because of its sophisticated architecture,
the LSTM necessitates an appropriate dataset to support the learning process. For
the Industrial Production dataset, the length of the time series did not allow for an
elaborate estimation of the optimum input window beforehand, and so the forecast
was expectedly poor. The time series seems to be too short for the LSTM to
produce an accurate forecast. On the other hand, the data seems to be enough
to train the more simplistic MLP, which delivered a reliable prediction. These
conclusions confirm the hypothesis that statistical methods perform better than
machine learning methods when the available data is limited.

The performance of the hybrid HW-LSTM method was moderate. Although it
proved its forecasting capability in the M4 Competition, the results for the time
series considered in the experiment were mediocre. The results suggest the hypoth-
esis that the HW-LSTM is a solid all-rounder that delivers on average accurate
predictions when applied to many time series simultaneously but rarely produces
outstanding results on a single time series. As the number of considered time se-
ries in this experiment is small compared to the M4 Competition, this hypothesis
requires further investigation.
The hypothesis raised in Section 4.3 that the HW supports the LSTM to play its
strengths more effectively when hybridized to the HW-LSTM method can be mostly
confirmed. When neglecting the time series GBP USD Daily Exchange Rate, Daily
Minimum Temperatures Melbourne, and Random Walk that barely allow for a rea-
sonable forecast, the HW-LSTM obtained an accurate forecast, whenever the HW
obtained an accurate forecast. This concordance is the case for the Industrial Pro-
duction and the Airline Passengers dataset. Vice versa, when the HW was not able
to conduct an accurate forecast, for instance, for Canadian Lynx and Sunspot, the
forecast of the HW-LSTM was not accurate. Hence, a time series whose periodicity
can be precisely determined favors the Holt-Winters’ Method’s performance and,
consequently, the performance of the hybrid HW-LSTM method. Therefore, the ac-
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curacy of the HW on a particular time series can be an indicator of the HW-LSTM
method’s accuracy.
However, for the Daily Total Female Births California dataset, the HW-LSTM out-
performs the forecasts of its respective constituent parts. The fact that the NN-based
methods rank the first three places on this particular dataset provides evidence that
this time series might incorporate substantial nonlinearity. This nonlinearity fur-
thermore suggests that a nonlinear relationship in a time series might compensate
for the weak performance of the HW and still allow the HW-LSTM to conduct a
reliable forecast.

Like the result of any other experiment, the result of this experiment must be scru-
tinized. The next chapter puts the presented observations and implications into
context and provides a critical analysis.
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7 Critical Review

This chapter presents a critical review of the experiment’s results. Furthermore,
it elaborates on the compromises made in the course of the investigation and the
limitations of this thesis.

The results demonstrated that the hybrid HW-LSTM can not meet the high expecta-
tions and does not repeat the superior performance achieved at the M4 Competition.
This shortcoming could be due to the modifications made by Redd et al. (2019).
As the initial implementation by Smyl (2020) was not applicable in the experiment
due to its implementation in C++, the modified version was the only option to
investigate the HW-LSTM method.
The absence of the ensemble of specialists seems to inhibit the dilated LSTM stack’s
forecasting potential. Consequently, this led to a decrease in the efficiency of the
hybrid method. However, the HW-LSTM still provided an accurate performance in
some cases. Therefore the experiment still proves the concept of the hybrid method
when time series meet the specified prerequisites. A further investigation applying
additional time series should review this proof of concept in depth.

The selected time series were a core part of the experiment. The research for finding
these presented a notable challenge. As time series inhibit a combination of different
characteristics at the same time, only a few were identified suitable for the exper-
iment and potentially helpful to answer the research question. The quest finally
resulted in nine promising time series, which do not represent a large sample.
However, the approach of this thesis is to investigate real-world cases. Therefore,
explainable time series based on real-world circumstances were preferred over large
datasets such as the M4 Competition dataset. As described in Section 4.1, this
dataset contains 100,000 time series from different domains. Nevertheless, as no fur-
ther information is provided about the individual time series, the M4 Competition
dataset presents an anonymous dataset and is not consistent with the objectives of
this thesis.

The methods conducted a one-time multi-step forecast in the experiment to follow
the conditions of the M4 Competition. This setting did not intend a walk-forward
validation, and consequently, it was not applied in the experiment. However, the
walk-forward validation promises to ensure a more accurate error estimation that
could improve the assessment of the experiment’s result.

Finally, the choice of considered forecasting methods has to be critically reviewed.
The experiment includes the hybrid method, which is a core interest of this thesis,
and its constituent parts. Apart from those methods, the ARIMA represents another
statistical method following a different forecasting approach than the HW. In terms
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of machine learning methods, the MLP is chosen as a more straightforward method
than the LSTM. Although this is a reasonable selection with five different forecasting
methods, a variety of methods were not considered in the experiment. Additional
forecasting methods, such as SARIMA, TDNNs, or CNNs, could assess the research
question from a different perspective.
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8 Conclusion and Outlook

This master thesis examined time series forecasting from different points of view.
It sought answers to the clash of the two cultures and investigated whether hybrid
methods combine the best of both worlds to advance time series forecasting. In
its course, it reviewed related work and laid the theoretical foundations for this
thesis’s core subjects. It analyzed both statistical and machine learning methods
and elaborated on their respective strengths and limitations for the forecasting do-
main. Thereby the thesis emphasized that both approaches have properties that
can complement each other. The compensation of each other’s weaknesses is the
foundation upon which hybrid methods are built. This thesis investigated how this
sophisticated unification of statistical and machine learning is realized and provided
a detailed examination of Slawek Smyl’s hybrid HW-LSTM method.
The conducted experiment aimed to gain findings for the research question. How-
ever, it turned out that the research question can not be answered definitively. The
results did not allow for an assessment of which characteristics of a time series de-
termine the superiority of either statistical, machine learning, or hybrid forecasting
methods. Nevertheless, the results provided useful insights on the superiority of
specific methods in particular settings.

The artifact of this thesis is the experimental design implemented in Python. It
allows for the analysis of time series with different forecasting methods due to its
modular pipeline structure and enables the straightforward analysis of additional
time series in the future. Therefore, it yields a valuable contribution to time series
analysis.
Apart from further time series, many relevant related areas should be investigated in
the future and connected with the thesis. While these relevant areas would improve
the understanding of time series forecasting, they are well beyond the scope of this
thesis and could not be included in the paper. For instance, the analysis of nonlin-
earity in a time series is a relevant research topic. As Zhang (2003) states, there are
currently no general diagnostic statistics for nonlinear relationships available. The
ability to specify the composition of a time series precisely in terms of linear and
nonlinear parts would provide significant progress in understanding a time series
better. An enhanced understanding of a time series to be forecast provides excellent
potential for an advanced selection of the forecasting method.
Furthermore, meta-learning offers unique potential to advance time series forecast-
ing. It provides a framework for the identification of the most suitable forecasting
method. There have been promising approaches by Talagala et al. (2018), which
developed a framework for algorithm selection based time series features utilizing
neural networks.
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Apart from the forecasting method selection, the topic of uncertainty quantification
is of exceptional interest. Uncertainty quantification aims to obtain an assessment of
how sure an algorithm is in its prediction. As a mere prediction is ineffective without
an estimation of its reliability, this research area focuses on how especially machine
learning methods can give a reasonable estimate of their uncertainty. Considering
the criticized black-box nature of machine learning methods, this reasonable esti-
mate of uncertainty is significant progress in the explainability of machine learning
methods.

In the context of time series forecasting, the no free lunch theorem describes the
circumstance that none of the existing forecasting methods is universally better
than any other method. Each forecasting task has to be examined separately, and
the most suitable method has to be selected (Wolpert and Macready, 1997).
This thesis closes with a statement made by Bontempi (2020) that takes up this
theory. The author states that the top-performing method in a competition or any
data science contest is not necessarily the best one since there can not be a single
best method. These competitions assess the usefulness of various tools for solving a
specific problem. The fact that one specific tool fulfills the task better than others
reveals much more about the nature of the task than about the usefulness of the
same tool in a future task. For instance, using a fish knife is very useful for eating a
trout but might not be useful when pasta is on the menu (Bontempi, 2020). With
this in mind, the thesis shows that hybrid methods for time series forecasting do
not generally make statistical or machine learning methods obsolete, but can be a
valuable tool in the forecaster’s toolbox.
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A Appendix

A.1 Error Calculation in the M4 Competition

The formulas for symmetric Mean Absolute Percentage Error (sMAPE) and Mean
Absolute Scaled Error (MASE) are defined by (Makridakis et al., 2020):

sMAPE =
2

h

n+h∑
t=n+1

∣∣∣Yt − Ŷt

∣∣∣
|Yt|+

∣∣∣Ŷt

∣∣∣
MASE =

1

h

n+h∑
t=n+1

∣∣∣Yt − Ŷt

∣∣∣
1

n−m

n∑
t=m+1

∣∣∣Yt − Ŷt−m

∣∣∣ ,
with:

Yt = value of the time series at point t

Ŷt = estimated forecast
h = forecasting horizon
n = number of data points available in-sample
m = time interval between successive observations, e.g. 12 for monthly or 24 for

hourly

The Overall Weighted Average (OWA) is calculated as follows (M Open Forecasting
Center (MOFC), 2017):

• Divide sMAPE and MASE by the error of the seasonal naive benchmark to
obtain the relative sMAPE and relative MASE, respectively.

• Compute the OWA by averaging the relative sMAPE and relative MASE.

The OWA is therefore defined by:

OWA =
relative sMAPE + relative MASE

2
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A.2 Dilated LSTM Stack Unfolded into Time

This section aims to give another perspective on the dilated LSTM stack that Smyl
(2020) uses in the hybrid HW-LSTM method. The depicted architecture is the (1,2)-
(4,8) Standard architecture used for time series of quarterly frequency. In analogy
to Figure 8, Figure 29 is the unfolded representation of the folded model depicted
in Figure 11.
The solid arrows reflect the current time step t, while the dashed arrows indicate a
future time step. The black arrows allow the shortcut within a stack, and the blue
arrows represent the dilation.

Figure 29: Dilated LSTM (1,2)-(4,8) Standard unfolded into time, adapted from
Redd et al. (2019)
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A.3 Experiment - Time Series Decomposition

The decomposition of the time series is conducted with the statsmodels module for
classical decomposition and STL decomposition (Seabold and Perktold, 2010). The
output depicts four graphs ordered from top to bottom: observed time series, trend,
seasonal component, and residuals. In the case of additive decomposition, trend,
seasonal component and residuals are added to obtain the observed time series and
for multiplicative decomposition multiplied, respectively. Table 11 displays the used
decomposition method for each time series.

Time series Decomposition method

Airline Passengers Multiplicative Classical Decomposition
Canadian Lynx STL Decomposition
Daily Minimum Temperatures Melbourne STL Decomposition
Daily Total Female Births California STL Decomposition
GBP USD Daily Exchange Rate STL Decomposition
Industrial Production STL Decomposition
Rossmann Store Sales STL Decomposition
Sunspot STL Decomposition

Table 11: Overview of applied methods for time series decomposition
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(c) STL Decomposition Daily Minimum Temperatures Melbourne
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Figure 30: Decomposition for each time series in the experiment
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A.4 Experiment - Autocorrelation Function

The plot of the Autocorrelation Function (ACF) is conducted with the statsmodels
module (Seabold and Perktold, 2010). The output shows the lags on the horizontal
axis and the correlations on the vertical axis. The values outside the red area are
statistically significant, with significance level α = 0.05.
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Figure 31: Autocorrelation Function for each time series in the experiment



A APPENDIX 84

A.5 Experiment - Results Augmented Dickey-Fuller Test

The Augmented Dickey-Fuller Test (ADF) is performed with the designated statsmod-
els module (Seabold and Perktold, 2010). It tests the null hypothesis that there is a
unit root, with the alternative that there is none present. If the calculated p value
is below the significance level α = 0.05, the null hypothesis has to be rejected, and
the result confirms stationarity. Table 12 presents the ADF results for each time
series, not differenced, and in first-order difference.

Time series Differencing p value

Airline Passengers
none 0.386

first-order 0.296

Canadian Lynx
none 0.974

first-order 0.782

Daily Minimum Temperatures Melbourne
none 0.381

first-order 0.957

Daily Total Female Births California
none 0.953

first-order 0.999

GBP USD Daily Exchange Rate
none 0.485

first-order 1.126× 10−29

Industrial Production none 2.174× 10−4

Rossmann Store Sales
none 0.996

first-order 0.695

Sunspot
none 0.146

first-order 5.309× 10−20

Table 12: Results Augmented Dickey-Fuller Test
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A.6 Experiment - Results Levene’s Test for Equal Variances

The Levene-Test is conducted using the designated SciPy module (SciPy 1.0 Con-
tributors et al., 2020). It tests the null hypothesis that all input samples are from
populations with equal variances. If the calculated p value is below the significance
level α = 0.05, the null hypothesis has to be rejected, and the result indicates het-
eroscedasticity. Table 13 presents the Levene-Test results for each sample size and
time series.

Time series Sample size p value

Airline Passengers

2 1.624× 10−4

3 3.819× 10−5

4 2.418× 10−6

5 1.042× 10−5

10 3.153× 10−5

Canadian Lynx

2 0.650
3 0.502
4 0.896
5 0.400
10 0.227

Daily Minimum Temperatures Melbourne

2 1.879× 10−4

3 3.114× 10−6

4 2.665× 10−10

5 5.038× 10−8

10 1.152× 10−11

Daily Total Female Births California

2 0.356
3 0.086
4 0.425
5 0.532
10 0.611

GBP USD Daily Exchange Rate

2 1.509× 10−68

3 3.591× 10−168

4 6.230× 10−311

5 0.000
10 1.788× 10−189
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Time series Sample size p value

Industrial Production

2 0.895
3 0.209
4 0.649
5 0.303
10 0.868

Rossmann Store Sales

2 0.867
3 0.317
4 0.667
5 0.004
10 7.416× 10−10

Sunspot

2 0.036
3 0.033
4 0.001
5 5.051× 10−6

10 2.677× 10−5

Table 13: Results Levene’s Test for equal variances
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A.7 Experiment - Time Series First-Order Difference
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Figure 32: First-order difference for each time series in the experiment
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A.8 Experiment - Forecasts
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Figure 33: Forecasts for Airline Passengers



A APPENDIX 89

1927 1928 1929 1930 1931 1932

time

500

1000

1500

2000

2500

3000

ly
nx

Naive forecast for Canadian Lynx

Actuals
Forecast

1927 1928 1929 1930 1931 1932

time

600

800

1000

1200

1400

1600

1800

ly
nx

Linear Regression forecast for Canadian Lynx

Actuals
Forecast

1927 1928 1929 1930 1931 1932

time

−1000

−500

0

500

1000

1500

ly
nx

Holt-Winters’ Method forecast for Canadian Lynx

Actuals
Forecast

1927 1928 1929 1930 1931 1932

time

600

800

1000

1200

1400

1600

1800

2000

ly
nx

ARIMA forecast for Canadian Lynx
Actuals
Forecast

1927 1928 1929 1930 1931 1932

time

200

400

600

800

1000

1200

1400

1600

ly
nx

MLP forecast for Canadian Lynx

Actuals
Forecast

1927 1928 1929 1930 1931 1932

time

600

800

1000

1200

1400

1600

1800

2000

ly
nx

LSTM forecast for Canadian Lynx
Actuals
Forecast

1927 1928 1929 1930 1931 1932

time

500

1000

1500

2000

2500

3000

3500

ly
nx

HW-LSTM forecast for Canadian Lynx
Actuals
Forecast

Figure 34: Forecasts for Canadian Lynx
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Figure 35: Forecasts for Daily Minimum Temperatures Melbourne
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Figure 36: Forecasts for Daily Total Female Births California
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Figure 37: Forecasts for GBP USD Daily Exchange Rate
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Figure 38: Forecasts for Industrial Production
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Figure 39: Forecasts for Random Walk



A APPENDIX 95

2015-07-17
2015-07-19

2015-07-21
2015-07-23

2015-07-25
2015-07-27

2015-07-29
2015-07-31

time

3500

4000

4500

5000

5500

6000

sa
le

s

Naive forecast for Rossmann Store Sales
Actuals
Forecast

2015-07-17
2015-07-19

2015-07-21
2015-07-23

2015-07-25
2015-07-27

2015-07-29
2015-07-31

time

3500

4000

4500

5000

5500

6000

sa
le

s

Linear Regression forecast for Rossmann Store Sales
Actuals
Forecast

2015-07-17
2015-07-19

2015-07-21
2015-07-23

2015-07-25
2015-07-27

2015-07-29
2015-07-31

time

3500

4000

4500

5000

5500

6000

sa
le

s

Holt-Winters’ Method forecast for Rossmann Store Sales
Actuals
Forecast

2015-07-17
2015-07-19

2015-07-21
2015-07-23

2015-07-25
2015-07-27

2015-07-29
2015-07-31

time

3500

4000

4500

5000

5500

6000

sa
le

s

ARIMA forecast for Rossmann Store Sales
Actuals
Forecast

2015-07-17
2015-07-19

2015-07-21
2015-07-23

2015-07-25
2015-07-27

2015-07-29
2015-07-31

time

3500

4000

4500

5000

5500

6000

sa
le

s

MLP forecast for Rossmann Store Sales
Actuals
Forecast

2015-07-17
2015-07-19

2015-07-21
2015-07-23

2015-07-25
2015-07-27

2015-07-29
2015-07-31

time

3500

4000

4500

5000

5500

6000

sa
le

s

LSTM forecast for Rossmann Store Sales
Actuals
Forecast

2015-07-17
2015-07-19

2015-07-21
2015-07-23

2015-07-25
2015-07-27

2015-07-29
2015-07-31

time

3500

4000

4500

5000

5500

6000

sa
le

s

HW-LSTM forecast for Rossmann Store Sales
Actuals
Forecast

Figure 40: Forecasts for Rossmann Store Sales
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Figure 41: Forecasts for Sunspot
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A.9 Experiment - Standard Deviation of NN-based methods

As described in Section 5.5, the NN-based methods obtain unsteady results for the
same input. To give an overview of the fluctuation recorded in the ten runs, the
MAE and RMSE are calculated for each particular run. The entries in Table 14
denote a tuple, where the first value is the mean of the respective accuracy measure
for all runs, and the second value indicates the associated standard deviation.

Time series Error MLP LSTM HW-LSTM

Airline Passengers
MAE (43.493; 1.704) (104.354; 21.681) (64.704; 2.099)
RMSE (2,915.046; 174.685) (16,966.810; 5,899.571) (5,582.078; 330.279)

Canadian Lynx
MAE (426.395; 34.662) (670.907; 191.877) (2,001.547; 62.772)
RMSE (240,679.878; 35,189.392) (667,462.245; 332,607.335) (4,572,232.365; 407.395)

Daily Minimum
Temperatures Melbourne

MAE (1.397; 0.172) (1.623; 0.155) (2.350; 0.094)
RMSE (3.001; 0.509) (4.000; 0.522) (7.193; 0.544)

Daily Total Female
Births California

MAE (4.674; 0.440) (5.426; 0.214) (4.457; 0.186)
RMSE (29.102; 4.673) (42.570; 1.926) (31.870; 2.659)

GBP USD Daily
Exchange Rate

MAE (0.026; 0.002) (0.028; 0.001) (0.051; 0.010)
RMSE (0.001; 2.168× 10−19) (0.001; 2.168× 10−38) (0.004; 0.001)

Industrial Production
MAE (3.908; 0.112) (10.139; 0.666) (3.115; 0.475)
RMSE (21.705; 1.194) (154.432; 18.825) (13.337; 3.619)

Rossmann Store Sales
MAE (320.877; 36.044) (619.891; 76.350) (787.562; 29.709)
RMSE (222,278.103; 45,550.428) (625,041.353; 154,352.583) (912,591.675; 64,465.466)

Sunspot
MAE (21.310; 0.993) (15.915; 2.749) (87.855; 2.895)
RMSE (902.609; 50.683) (619.247; 131.593) (8,873.670; 511.965)

Random Walk
MAE (1.071; 0.279) (1.059; 0.152) (3.219; 0.901)
RMSE (1.783; 0.890) (1.724; 0.444) (18.190; 8.126)

Table 14: Standard deviation of the NN-based methods
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