KIT | KIT-Bibliothek | Impressum | Datenschutz

Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part II: Visualization of the Turbulent Droplet Breakup

Mutsch, Benedikt; Preiss, Felix Johannes; Dagenbach, Teresa; Karbstein, Heike Petra; Kähler, Christian J.

Abstract (englisch):

Emulsion formation is of great interest in the chemical and food industry and droplet breakup is the key process. Droplet breakup in a quiet or laminar flow is well understood, however, actual in-dustrial processes are always in the turbulent flow regime, leading to more complex droplet breakup phenomena. Since high resolution optical measurements on microscopic scales are extremely dif-ficult to perform, many aspects of the turbulent droplet breakup are physically unclear. To over-come this problem, scaled experimental setups (with scaling factors of 5 and 50) are used in con-junction with an original scale setup for reference. In addition to the geometric scaling, other non-dimensional numbers such as the Reynolds number, the viscosity ratio and the density ratio were kept constant. The scaling allows observation of the phenomena on macroscopic scales, whereby the objective is to show that the scaling approach makes it possible to directly transfer the findings from the macro- to the micro-/original scale. In this paper, which follows Part I where the flow fields were compared and found to be similar, it is shown by breakup visualizations that the turbulent droplet breakup process is similar on all scales. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000134517
Veröffentlicht am 30.06.2021
Originalveröffentlichung
DOI: 10.3390/chemengineering5020031
Scopus
Zitationen: 13
Dimensions
Zitationen: 21
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Bio- und Lebensmitteltechnik (BLT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2305-7084
KITopen-ID: 1000134517
Erschienen in ChemEngineering
Verlag MDPI
Band 5
Heft 2
Seiten Art.-Nr.: 31
Projektinformation DFG, DFG EIN, SCHU 1417/11-1
Bemerkung zur Veröffentlichung This article belongs to the Special Issue Emulsion Process Design.
Vorab online veröffentlicht am 18.06.2021
Schlagwörter drop, deformation, breakup, visualization, emulsion, high-pressure-homogenization, orifice, scale up, turbulent regime
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page