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ABSTRACT: The crown-ether coordination compounds
ZnX2(18-crown-6), EuX2(18-crown-6) (X: Cl, Br, I), MnI2(18-
crown-6), Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and
Mn2I4(18-crown-6) are obtained by ionic-liquid-based synthesis.
Whereas MX2(18-crown-6) (M: Zn, Eu) show conventional
structural motives, Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2,
and Mn2I4(18-crown-6) exhibit unusual single MnX4 tetrahedra
coordinated to the crown-ether complex. Surprisingly, some
compounds show outstanding photoluminescence. Thus, rare
Zn2+-based luminescence is observed and unexpectedly efficient
for ZnI2(18-crown-6) with a quantum yield of 54%. Unprece-
dented quantum yields are also observed for Mn3I6(18-crown-6)2,
EuBr2(18-crown-6), and EuI2(18-crown-6) with values of 98, 72,
and 82%, respectively, which can be rationalized based on the specific structural features. Most remarkable, however, is Mn2I4(18-
crown-6). Its specific structural features with finite sensitizer−activator couples result in an extremely strong emission with an
outstanding quantum yield of 100%. Consistent with its structural features, moreover, anisotropic angle-dependent emission under
polarized light and nonlinear optical (NLO) effects occur, including second-harmonic generation (SHG). The title compounds and
their optical properties are characterized by single-crystal structure analysis, X-ray powder diffraction, chemical analysis, density
functional theory (DFT) calculations, and advanced spectroscopic methods.

1. INTRODUCTION

Crown ethers, discovered by Pedersen,1 are known as unique
ligands in regard of many aspects.2 Today, they are available
with different ring-opening diameters (e.g., 120−150 pm for
12-crown-4, 450−500 pm for 24-crown-8), and they can
contain different heteroatoms such as oxygen, sulfur, or
nitrogen as coordinating sites.2 In inorganic and metal−
organic chemistry, crown ethers are known to coordinate
almost all types of metal cations. Because of their strong
chelating effect and adaptable ring-openings, even alkali metal
cations can be strongly bound.2 Moreover, fascinating
compounds were realized with crown ethers as ligands,
including, for instance, alkali metal alkalides and electrides,3

phase-transfer reagents,4 or low-coordinated nitrogen com-
plexes.5 18-Crown-6 is perhaps the most widely applied crown
ether. Because of its ring-opening diameter (∼300 pm), 18-
crown-6 is especially known for optimal coordination of K+ (r:
138 pm).6

In contrast to the rich coordination chemistry, little is known
about the photoluminescence (PL) of crown-ether coordina-
tion compounds. PL was predominately reported for crown
ethers substituted with specific fluorescent dyes (anthracenes,

pyrenes, etc.).7 Such dye-substituted systems were widely
explored for sensing and analytical chemistry to detect the
presence of certain metal cations.7,8 Knowledge on metal-based
luminescence of crown-ether coordination compounds is rare
and has only been reported for complexes of Sm2+, Eu2+/3+, and
Tm2+ with low intensity and/or only at low temperatures (≤77
K).9

With this work, we could realize a great number of novel 18-
crown-6 coordinated metal halides by reacting the divalent
metal halides ZnX2, EuX2, and MnX2 (X: Cl, Br, I) with 18-
crown-6 in ionic liquids. Surprisingly, some of these crown-
ether compounds show unprecedented luminescence features,
including rare Zn2+-based luminescence, extremely efficient
emission with quantum yields up to 100%, and nonlinear
optical (NLO) effects.
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2. EXPERIMENTAL SECTION
Chemicals. All sample handling was performed with Schlenk

techniques under argon or in argon-filled gloveboxes (MBraun
Unilab, O2/H2O < 1 ppm). All reactions were performed by using
standard Schlenk techniques and glass ampules. All glassware was
evacuated three times (<10−3 mbar) prior to use, heated, and flushed
with argon to remove moisture.
General Synthesis. All title compounds were prepared by

reacting the respective metal halides MX2 (M: Zn, Eu, Mn; X: Cl,
Br, I) and 18-crown-6 in the ionic liquid ([(n-Bu)3MeN][N(Tf)2] or
[EMIm][NTf2]) at 80−150 °C for 3 weeks in sealed, argon-filled
glass ampules. In the case of the iodides, the addition of minor
amounts of the Lewis acid SnI4 promotes the growth of single crystals.
In alternative to the ionic-liquid-based synthesis, some title
compounds can be also obtained by direct reaction of MX2 and 18-
crown-6. Generally, the ionic liquid promotes the formation of single
crystals, whereas the direct synthesis results in microcrystalline
powder samples. More details can be found in the Supporting
Information.
Structure analysis based on single crystals and powder diffraction

with Rietveld refinement is described in detail in the Supporting
Information. Moreover, details related to infrared spectroscopy,
thermogravimetry, energy-dispersive X-ray spectroscopy, and ele-
mental analysis can be also found in the Supporting Information.
PL Spectroscopy. A Horiba Jobin Yvon Spex Fluorolog 3.2

spectrometer was used to obtain excitation and emission spectra of
powder samples. The spectrometer was equipped with a 450 W xenon
lamp and double grating excitation/emission monochromators as well
as a photomultiplier as detector.
The absolute PL quantum yield was determined according to ref

10. Briefly, the ratio of photons emitted and absorbed by a solid
sampleresulting in the quantum yieldwas measured by using an
integrating sphere. The method comprises measurements at two
sample positions inside the sphere (or at two different directions of
the excitation light beam as realized in the Fluorolog) with direct and
indirect illumination of the sample, which improves the accuracy.
Polarized emission measurements were performed with a setup

based on a WiTec CRM200 Raman microscope by using a linearly
polarized diode laser at 372 nm for excitation and a piezo-driven
linear polarizer placed in the emission-light beam to probe its
polarization. To avoid degradation in air, the sample was measured in
a gastight optical cell assembled in an argon glovebox.
Second harmonic generation (SHG) measurements were

performed with powder samples according to the Kurtz−Perry
method. An optical parametric oscillator pumped with 355 nm was
used to generate the fundamental pump waves between 960 and 1400
nm in steps of 20 nm. Second harmonic signals with wavelengths
between 480 and 700 nm were separated by using a short-pass filter
and detected by using a spectrometer. The setup is described in detail
in the Supporting Information.

3. RESULTS AND DISCUSSION

Synthesis and Structural Characterization. All title
compounds were prepared by heating the respective divalent
metal halide and the crown ether at mild temperature (80−150
°C) for 1−3 weeks in the ionic liquid (Figure 1). The ionic
liquid, on the one hand, supports the dissolution of the metal
halides and, on the other hand, serves as an inert solvent.11 In
regard to the optical properties, it is particularly important that
the solvent does not coordinate the dissolved metal cations
and that it does not form coordination compounds itself under
the selected conditions. Whereas the ionic-liquid-based
synthesis turned out to be optimal for crystal growth,
microcrystalline powder samples can be also prepared for
some compounds via direct reaction of MX2 and 18-crown-6
(Supporting Information).

The structures of all title compounds were determined by X-
ray structure analysis based on single crystals (Table 1, Tables
S1−S12, and Figures S1−S11). Structure, chemical composi-
tion, and purity were further confirmed by X-ray powder
diffraction analysis with Rietveld refinement as well as by
infrared spectroscopy, thermogravimetry, energy-dispersive X-
ray spectroscopy, and elemental analysis (Tables S13−S15 and
Figures S12−S17).
The structural features of the title compounds are primarily

influenced by the size of the cation in relation to the ring-
opening of 18-crown-6. The resulting coordination and
connectivity also have major impact on the PL properties
(Tables 1 and 2). In this regard, the comparison of all title
compounds is indicative for the special situation of some
crown-ether coordination compounds such as Mn2I4(18-
crown-6) (7). First of all, ZnX2(18-crown-6) and EuX2(18-
crown-6) (X: Cl, Br, I) show simple molecular arrangements
with the metal cation equatorially coordinated by the crown
ether and two halide atoms on the axial positions (Figure 2;
Figures S1−S3 and S8−S10). The Zn−X and Eu−X distances
are well in agreement with the respective binary metal halides
ZnX2 and EuX2 (Table S12). For Zn2+ as the smallest cation
(r: 74 pm),12 a noncentric coordination with three shorter and
three longer Zn−O distances is observed. This results in a
disordered location of Zn2+ over three equal positions for 1
and 2 (Figure 2a), which is still in accordance with the
rhomboedral lattice symmetry. The large Eu2+ (r: 117 pm),12

in contrast, shows ideal centric coordination of the cation
(Figure 2b) but partially with dislocation of the crown-ether
molecule (Figure S10).
In contrast to the conventional structures of the Zn2+- and

Eu2+-based compounds, structure and coordination of the
Mn2+ compounds are more complex (Figure 2). Mn3Cl6(18-
crown-6)2 and Mn3I6(18-crown-6)2 consist of [MnX(18-
crown-6)]+ cations and [MnX(18-crown-6)MnX4]

− anions
(Figure 2c; Figures S4 and S5). In the [MnX(18-crown-6)]+

cation, Mn2+ is coordinated by all six oxygen atoms of a
significantly bent crown-ether molecule and a single chlorine/
iodine atom. In the [MnX(18-crown-6)MnCl4]

− anion, Mn2+

is coordinated only by five oxygen atoms of 18-crown-6 as well
as by two chlorine or iodine atoms, one of them bridging to a
single MnX4 tetrahedron. Such coordination and structure
were also observed for Mn3Br6(18-crown-6)2.

13 MnI2(18-
crown-6) is comparable to the Zn2+/Eu2+-containing com-
pounds with the exception of only five oxygen atoms of 18-
crown-6 being coordinated to Mn2+ (Figure S6). The sixth
oxygen atom remains uncoordinated, which is of course
unusual for chelating ligands. Mn2I4(18-crown-6), finally,
contains Mn2+ coordinated by six oxygen atoms of a
significantly bent crown-ether molecule as well as by a bridging
iodine atom, which represents the corner of a MnI4
tetrahedron (Figure 2d and Figure S7). The observed different

Figure 1. Ionic-liquid-based synthesis of MX2/18-crown-6 com-
pounds with Mn3Cl6(18-crown-6)2 as example (photos show argon-
filled glass ampules after the reaction).
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structural features can be attributed to the mismatch between
the radius of Mn2+ (r: 83 pm) and the ring-opening of 18-
crown-6 (about 300 pm). Mn2+ is neither small enough to
clearly prefer off-center (3 + 3) coordination (like Zn2+) nor
large enough for central coordination (like Eu2+).
Although 18-crown-6 is a well-known ligand, coordination

compounds with Eu2+ 9c,d and especially with Mn2+ and Zn2+

are rare. Compounds such as [K(18-crown-6)]-
[Mn4(ThiaSO2)2F] (ThiaSO2 = p-tert-butylsulfonylcalix[4]-
arene), [K(18-crown-6)]4[(MnBr4)(TlBr4)2], or [H3O(18-
crown-6)]2[MnBr4] contain 18-crown-6, which, however,
coordinates K+ or H3O

+ instead of Mn2+.14 The coordination
of Zn2+ with 18-crown-6 typically includes H2O as additional
l igand (e.g. , [ZnCl(H2O)(18-crown-6)]2[Zn2Cl6] ,
[ZnCl2(H2O)(18-crown-6)]).

15 For compounds with OH-
containing ligands coordinated to the metal, PL is typically
excluded due to vibronic quenching. Because of the mismatch
of the ring-opening of 18-crown-6 and the size of the cation,
Zn2+ and Mn2+ were preferably coordinated by the smaller
crown ethers 15-crown-5 and 12-crown-4.9c,14c,15c,16c

Photoluminescence Features. Surprisingly, the 18-
crown-6 coordinated metal halides show outstanding lumines-
cence properties, which can be directly correlated to their
specific structural features (Figure 3, Table S16, and Figures
S18−S30). First of all, the emission of Zn2+ is unexpected
anyway (Figure 3a). Zn2+ is typically known as a “PL inactive”
host cation and widely used to establish Mn2+-driven emission
after partial exchange of Zn2+ by Mn2+ (e.g., Zn2SiO4:Mn2+

with 5 mol % Mn2+).17 Moreover, Zn2+ was reported to
influence the luminescence of aromatic ligands, but without
being involved in the luminescence process itself.19 Zn2+-
driven PL was reported rarely at low temperature and ascribed
to 3d104p0 → 3d94p1 or charge-transfer transitions.17 In
ZnX2(18-crown-6), 18-crown-6 can be considered as an
“innocent” ligand, which excludes the crown ether from
being the origin of the PL. This was also verified by SrI2(18-
crown-6) showing only negligible defect-related PL (Table 2;
Figures S11 and S30). Besides the surprising PL as such, the
efficient Zn2+-based PL of ZnI2(18-crown-6) (3) with a

Table 1. Comparison of the Crystallographic Data of All Title Compounds

lattice parameters

compound space group a (pm) b (pm) c (pm) β (deg)

ZnCl2(18-crown-6) (1) R3 1123.4(3) 1123.4(3) 1195.9(5)
ZnBr2(18-crown-6) (2) R3 1154.4(2) 1154.4(2) 1193.4(2)
ZnI2(18-crown-6) (3) Pnma 1607.2(5) 2803.1(1) 829.6(2)
Mn3Cl6(18-crown-6)2 (4) P21/c 1667.0(3) 1064.2(2) 2579.8(8) 124.6(1)
Mn3I6(18-crown-6)2 (5) P21/n 1710.2(3) 1125.2(2) 2274.8(5) 91.9(1)
MnI2(18-crown-6) (6) C2/c 1087.1(2) 1201.0(2) 2851.4(6) 94.4(1)
Mn2I4(18-crown-6) (7) P212121 1148.9(2) 1307.5(3) 1643.7(3)
EuCl2(18-crown-6) (8) R3 1155.2(2) 1155.2(2) 1199.7(2)
EuBr2(18-crown-6) (9) R3 1192.9(2) 1192.9(2) 1192.5(2)
EuI2(18-crown-6) (10) C2/m 1296.2(3) 1088.3(2) 802.8(2) 120.3(1)
SrI2(18-crown-6) (11) C2/m 1299.6(3) 1086.4(3) 805.0(2) 119.9(3)

Table 2. Comparison of the PL Features of All Title
Compounds

compound excitation λmax (nm)
emission λmax

(nm)
quantum
yielda (%)

ZnCl2(18-crown-6)
(1)

368, 445 535 22(4)

ZnBr2(18-crown-6)
(2)

370 470 <5

ZnI2(18-crown-6)
(3)

348 517 54(3)

Mn3Cl6(18-crown-
6)2 (4)

356, 407, 431, 444,
512

611 20(4)

Mn3I6(18-crown-
6)2 (5)

320, 450, 423, 509 605 98(3)

MnI2(18-crown-6)
(6)

327, 337, 368, 407,
423, 509

563 16(3)

Mn2I4(18-crown-6)
(7)

312, 346, 371, 474 605 100(3)

EuCl2(18-crown-6)
(8)

397 414 36(4)

EuBr2(18-crown-6)
(9)

398 415 72(3)

EuI2(18-crown-6)
(10)

370 414 82(3)

SrI2(18-crown-6)
(11)

398 477 <5

aQuantum yield measured at room temperature.

Figure 2. Exemplary structural features of MX2/18-crown-6
compounds: (a) ZnCl2(18-crown-6) (with disordered Zn2+); (b)
EuBr2(18-crown-6); (c) Mn3I6(18-crown-6)2 with [MnI(18-crown-
6)]+ cation and [Mn2I4(18-crown-6)]

− anion; (d) Mn2I4(18-crown-
6).
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quantum yield of 54% is even more remarkable and, to the best
of our knowledge, reported here for the first time.
To understand the nature of the Zn2+-based luminescence,

we have performed computational studies with density
functional theory (DFT) and time-dependent density func-
tional theory (TD-DFT) calculations on single molecules of
ZnX2(18-crown-6) (Supporting Information). It soon turned
out that the first singlet excited state for all three compounds
ZnX2(18-crown-6) (X: Cl, Br, I) is characterized by a charge-
transfer excitation from a halide np orbital (n = 3, 4, 5,
respectively) to the empty 4s orbital of the Zn2+ ion. It also
turned out that the molecule in its first singlet excited state
decomposes. Thus, the halide ion from which the excitation
had taken place (which after the excitation formally had
become a neutral halogen atom) moves away from the rest of
the molecule (Table S17 and Figures S31−S33). Such
photodecomposition was observed at various levels of TD-
DFT computations as well as at the coupled-cluster level in the
CC2 approximation. Because computations on the level of
individual molecules were not helpful, assemblies of molecules
were investigated that are arranged as in the respective crystal
structure (Supporting Information). As a result, the PL
observed for ZnX2(18-crown-6) in the solid state is due to
an excited state that can be characterized as a charge-transfer
state with an electron transferred from a halide np orbital to an
empty 4s orbital of the Zn2+ ion, where in the excited state the
Zn−X bond distance is larger by 20−30% compared to the
ground state (Figures S34−S39). This situation is exemplarily
illustrated for ZnCl2(18-crown-6) (1) showing the first singlet
excited state with the 3p orbital of the chlorine atom and the 4s
orbital of the zinc atom involved (Figure 4). In the singlet
excited state, the Zn−Cl bond is elongated by 29.5% compared
to the ground state.
Mn2+ and Eu2+ are known as some of the most efficient

luminescence centers at all if they are located in a suitable
coordinating environment.17 Thus, commercial lamp and
display phosphors such as Zn2SiO4:Mn2+, BaMgAl10O17:Eu

2+,
Mn2+, Sr3Si5N8:Eu

2+, and Sr[LiAl3N4]:Eu
2+ show bright PL

with quantum yields of 80−90%.17,18 The Eu2+- and Mn2+-

based crown-ether coordination compounds fortunately also
show bright PL and the characteristic d−d and f−d transitions
of Mn2+ and Eu2+, respectively (Figure 3b−d and Figures S23−
S29). Surprisingly, the quantum yields even outperform long-
optimized commercial phosphors. Thus, EuI2(18-crown-6)
(10), Mn3I6(18-crown-6)2 (5), and Mn2I4(18-crown-6) (7)
exhibit unprecedented quantum yields of 82, 98, and 100% at
ambient temperature (Table 2). Efficient PL processes and
bright emission at ambient temperature are also confirmed by
short decay times in the 0.1−1.0 μs range (Table S16).
The excellent PL performance can be directly correlated to

the structural situation, including the rigid coordination of
Mn2+ and Eu2+ by the crown ether, the large distance between
the luminescent centers, and the absence of high-energy
vibronic states (e.g., O−H). In particular, strongly bent 18-
crown-6 molecules as in compounds 4, 5, and 7 are obviously
most adequate in terms of rigid coordination. As a result,
nonemissive loss processes like concentration quenching or
thermal quenching are prevented. Vibronic relaxation
processes are lowest for heavy iodine, which is why the
iodides show the highest quantum yields. Especially Mn2I4(18-
crown-6) (7) has additional advantages with finite sensitizer−
activator couples and a defined short distance between the
Mn2+ pairs (Mn2+ ↔ Mn2+: 519(1) pm) and significantly
longer distances between different couples (>800 pm) (Figure
5a and Figure S40). Moreover, the noninversion symmetric
sites of the tetrahedral MnI1/2I3/1 sensitizer as well as of the
MnI1/2(18-crown-6) activator weaken the parity selection rule
and favor highly efficient PL processes (Table 2).

Nonlinear Optical Properties. With regard to the PL
properties, Mn2I4(18-crown-6) (7) is even more interesting
due to its polar, chiral space-group symmetry (P212121) (Table
1). From about 20 single crystals, however, all turned out to be
inversion twins with a ratio of the enantiomeric domains close
to 50:50 within the significance of the experiment (highest
deviation with 43±6 : 57±6), which indicates only a small
excess of one crystal enantiomer. Laser microscopy with

Figure 3. Excitation and emission spectra of selected MX2/18-crown-
6 compounds with photos of powders/crystals under excitation
(assignment of transitions according to ref 17b).

Figure 4. DFT calculation for ZnCl2(18-crown-6) (1) with an
assembly of 11 molecules showing the electronic excitation from a Cl
3p orbital (red/white: electron donor) to a Zn 4s orbital (blue/
yellow: electron acceptor).
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polarized light nevertheless shows a predominant linear
emission polarization perpendicular to the long axis of a single
crystal (crystallographic c-axis; Figure 5b,c and Figure S41).
The ratio of this component to that polarized parallel to the
long axis amounts to 2. This emission polarization was found
to be insensitive to the excitation geometry (with polarization
direction of the laser excitation beam either parallel or
perpendicular to the long crystal axis). Moreover, the polarized
emission intensity is well described by a cos2 Θ law, where Θ is
the rotation angle of the linear polarizer relative to the long
crystal axis (Figure 5c). This finding can be again attributed to
the specific structural features of Mn2I4(18-crown-6) (7) with
both well-separated sensitizer−activator couples and highly
anisotropic sites of sensitizer (MnI1/2I3/1 tetrahedron) and
activator (MnI1/2(18-crown-6)) (Figure 5a).17 In the crystal,
the MnI1/2(18-crown-6) emitters are oriented with the 18-
crown-6 units roughly perpendicular to the long crystal axis,
thus correlating with the emission anisotropy.
Upon excitation with laser light (960−1400 nm in steps of

20 nm), furthermore, Mn2I4(18-crown-6) (7) shows second
harmonic signals with wavelengths of 480−700 nm (Figure 6
and Figure S42). Similar to the quartz reference, emission at
half of the excitation wavelength is clearly visible. This
observation also points to incomplete inversion twinning and
a nonlinear optical effect that would be even significantly
stronger for enantiopure crystals. Moreover, it needs to be
noticed that SHG emission decreases below 580 nm due to
Mn2+-driven absorption (Figure 3c). Noteworthy, excitation of
7 at 960−1160 nm results in orange emission peaking at 605
nm due to SHG-driven excitation at 480−580 nm and the

efficient PL process. Such an effect is rare and could be
promising for optoelectronic applications.

4. CONCLUSIONS
In summary, the crown-ether coordination compounds
ZnX2(18-crown-6) and EuX2(18-crown-6) (X: Cl, Br, I) as
well as Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, MnI2(18-
crown-6), and Mn2I4(18-crown-6) were prepared by ionic-
liquid-based synthesis. The structural features of the title
compounds are primarily influenced by the size of the cation in
relation to the ring-opening of 18-crown-6 (about 300 pm). In
this regard, Mn2+ (r: 83 pm) is neither small enough to clearly
prefer off-center (3 + 3) coordination (like Zn2+, r: 74 pm) nor
large enough for central coordination (like Eu2+, r: 117 pm).
As a result, Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and
Mn2I4(18-crown-6) exhibit unusual single MnX4 tetrahedra
coordinated to the crown-ether complex.
The structural features of the crown-ether coordination

compounds also have major impact on the optical properties.
First of all, unexpected emission of all Zn2+-containing
compounds was observed and could be attributed by
computation to charge-transfer transition between the halide
np orbital and the zinc 4s orbital. Besides the surprising PL as
such, ZnI2(18-crown-6) shows a remarkable quantum yield of
54%, which is the highest value observed for Zn2+-based PL.
The Mn2+- and Eu2+-containing crown-ether coordination
compounds show bright PL with the characteristic d−d
(Mn2+) and f−d transitions (Eu2+). Surprisingly, the PL
efficiency of Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and
Mn2I4(18-crown-6) even outperform long-optimized commer-

Figure 5. Photoluminescence of Mn2I4(18-crown-6) (7) under
polarized light. (a) Scheme illustrating the PL process with the finite
sensitizer−activator couple. (b) Polarized emission spectra of single
crystal (scheme and bright-field image as an inset) excited at 372 nm
and recorded with the analyzer axis parallel and perpendicular to the
long crystal axis (yellow/red arrows indicate the polarization of the
excitation laser beam). (c) Emission intensity at 600 nm as a function
of the analyzer rotation angle, Θ (0° corresponds to parallel
orientation), with fit to cos2 Θ variation (dashed curve).

Figure 6. SHG measurement of powder samples: (a) Mn2I4(18-
crown-6) (7), (b) quartz as a noncentrosymmetric reference, and (c)
corundum as a centrosymmetric reference (data after subtraction of
cosmic background radiation).
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cial phosphors with unprecedented quantum yields of 82, 98,
and 100% at ambient temperature. This excellent PL
performance can be directly correlated to the structural
features of the respective compounds. Besides bright PL,
Mn2I4(18-crown-6) shows an anisotropic angle-dependent
emission under polarized light and a second-order nonlinear
optical effect, which can be again related to its structural
features with finite, noninversion symmetric sensitizer−
activator Mn2+−Mn2+ couples and the presence of a polar,
chiral space-group symmetry (P212121). Such optical proper-
ties with bright emission, quantum yields near unity, and NLO
effects (including polarized emission, SHG, and visible
emission via SHG-driven excitation) are surprising and
observed for the first time.
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