
mytoken - OpenID Connect Tokens for
Long-term Authorization

Master’s Thesis of

Gabriel Zachmann

at the Department of Informatics

Steinbuch Centre for Computing (SCC)

Reviewer: Prof. Dr. Achim Streit

Second reviewer: Prof. Dr. Bernhard Neumair

Advisor: Dr. Marcus Hardt

02. December 2020 – 05. May 2021

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Remchingen, 28. April 2021

. .

(Gabriel Zachmann)

Abstract

OpenID Connect is an important key component of many modern Authentication and

Authorization Infrastructures. It is mostly used within web browsers, but command line

and API usages see rising adoption. From this emerges the need for good command line

tooling. In previous work we developed a local tool for managing OpenID Connect access

tokens on the command line. However, this tool is less suitable if access tokens need to

be used over extended periods of time from multiple hosts. This need arises especially

with compute jobs which typically do not run on the user’s computer. In scenarios in

which compute jobs need to authenticate via OpenID Connect access tokens to load and

store data or to access other resources, the short lifetime of OpenID Connect access tokens

may pose a problem. It is very common that compute jobs run longer than the lifetime

of a single access token. Current mechanisms provided by OpenID Connect and existing

software tools do not address this problem su�ciently.

In this thesis we designed and implemented a token service called mytoken that ad-

dresses this problem by providing a mechanism to provide fresh OpenID Connect access

tokens over an extended period of time. The mytoken service introduces a new token type

called mytoken. These mytokens can be used for easily obtaining access tokens on any

internet-connected device via the mytoken server. Mytokens can be transferred easily to

other devices. Mytokens may be used instead of OpenID Connect access tokens to start

compute jobs. They then can be used by job submission systems as well as from inside

running compute jobs to obtain as many access tokens as speci�ed in the mytoken. For a

�ne grained balance between security and usefulness, we have implemented capabilities
and restrictions. These can be used to restrict each mytoken so that it has exactly the

power it needs, and to limit the impact if stolen. Restrictions allow limiting the usage of

a mytoken to a set of time spans, to certain locations (countries as well as ip addresses

or subnets), in the number of usages, and the scopes and audiences of access tokens that

can be obtained. By using multiple restriction clauses, a single mytoken can be used even

in complex use cases that demand di�erent privileges over time. A typical example for

this is job submission, where initially privileges for starting a job and reading input data

are required. Throughout the run-time of a job, usually no privileges are required. At the

end of the job output data needs to be written. Using the introduced restrictions, a single

mytoken can be used for all of these steps, while in each step only the required privileges

are active, which reduces the attack surface greatly, and thereby poses a promising solution

for long running jobs.

i

Zusammenfassung

OpenID Connect ist eine wichtige Schlüsselkomponente in vielen modernen Authenti�-

zierungs- und Autorisierungsinfrastrukturen. Es wird hauptsächlich in Webbrowsern ver-

wendet, aber auch die Verwendung auf der Kommandozeile und in APIs �ndet immer mehr

Verbreitung. Daraus ergibt sich der Bedarf für gute Kommandozeilen-Werkzeuge. In einer

früheren Arbeit haben wir ein Werkzeug für die Verwaltung von OpenID Connect Access

Tokens auf der Kommandozeile entwickelt. Dieses Werkzeug ist jedoch weniger geeignet,

wenn Access Tokens über längere Zeiträume auf mehreren Rechnern verwendet werden

müssen. Diese Notwendigkeit ergibt sich insbesondere bei Rechenjobs, die typischerweise

nicht auf dem Computer des Benutzers laufen. In Szenarien, in denen Rechenjobs sich über

OpenID Connect Access Tokens authenti�zieren müssen, um Daten zu laden und zu speichern

oder um auf andere Ressourcen zuzugreifen, führt die kurze Gültigkeitsdauer von OpenID

Connect Access Tokens zu Problemen. Es ist üblich, dass Rechenjobs wesentlich länger dauern

als ein einzelner Access Token gültig ist. Die aktuellen Mechanismen, die OpenID Connect

bietet, und bestehende Software-Werkzeuge lösen dieses Problem nicht zufriedenstellend.

In dieser Arbeit haben wir einen Token-Dienst - genannt Mytoken - entworfen und im-

plementiert, der dieses Problem löst, indem ein Mechanismus bereitgestellt wird, der es

ermöglicht gültige OpenID Connect Access Tokens über einen längeren Zeitraum abzurufen.

Mit so genannten Mytokens können Access Tokens auf jedem mit dem Internet verbundenen

Gerät einfach über den Mytoken-Server abgerufen werden. Mytokens könnten anstelle von

OpenID Connect Access Tokens verwendet werden, um Rechenjobs zu starten. Sie können

dann sowohl von Job-Submission-Systemen als auch von laufenden Rechenjobs verwendet

werden, um so viele Access Tokens abzurufen, wie es durch den Mytoken erlaubt ist. Um

ein gutes Gleichgewicht zwischen Sicherheit und Benutzbarkeit zu erreichen, haben wir so

genannte Capabilities und Restrictions implementiert. Diese können verwendet werden, um

Mytokens so einzuschränken, dass jeder genau die benötigten Rechte hat, und um gleichzeitig

die Auswirkungen eines Diebstahls zu begrenzen. Mit Restrictions kann die Verwendung

eines Mytokens auf eine oder mehrere Zeitspannen, auf bestimmte Standorte (Länder sowie

IP-Adressen oder Subnetze), und in der Anzahl der Nutzungen beschränkt werden. Außerdem

kann festgelegt werden, dass Access Tokens, die mit dem Mytoken abgerufen werden, nur

bestimmte Scopes und Audiences haben können. Durch die Verwendung mehrerer so ge-

nannter Restriction Clauses kann ein einziger Mytoken auch in komplexen Anwendungsfällen

verwendet werden, in denen zu unterschiedlichen Zeiten unterschiedliche Berechtigungen

benötigt werden. Ein typisches Beispiel hierfür ist das Starten von Rechenjobs. Hierbei werden

zu Beginn Berechtigungen zum Starten eines Jobs und zum Lesen von Eingabedaten benötigt;

am Ende müssen die Ausgabedaten geschrieben werden. Mit den Restrictions kann hierfür ein

einziger Mytoken verwendet werden, wobei in jedem Schritt nur die benötigten Privilegien

nutzbar sind, wodurch die Angri�s�äche stark reduziert wird. Somit stellen Mytokens eine

vielversprechende Lösung für lang laufende Jobs dar.

iii

Acknowledgment

First and foremost, I would like to thank God for giving me the opportunity, knowledge,

and ability to complete my thesis. I’m thankful for all his blessings.

Furthermore, I want to thank my supervisor Marcus Hardt for his feedback, guidance,

and advice throughout this thesis and my whole study. I would also like to thank him for

the trust and appreciation he has placed in me and the freedom and �exibility this has

given me. In addition, I also want to thank my other colleagues for their advice throughout

my work time at KIT.

I also want to thank my wife for always being at my side and motivating me to sit down

and write on the thesis. I appreciate her and my family’s support throughout this thesis

and my whole study.

v

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1

1.2. Goal . 2

1.3. Structure of the Thesis . 2

2. State of the Art 5
2.1. Foundations . 5

2.1.1. Authentication and Authorization Infrastructures 5

2.1.2. X.509 Certi�cates . 7

2.1.3. SAML . 7

2.1.4. OAuth 2.0 . 8

2.1.5. OpenID Connect . 8

2.2. OpenID Connect . 8

2.2.1. General Terminology . 9

2.2.2. Tokens . 9

2.2.3. Important Authorization Flows 13

2.2.4. Auxiliary Flows and Endpoints 17

2.2.5. Mechanisms to Solve the Long-running Jobs Problem 19

2.3. Related Work . 21

2.3.1. EGI FedCloud . 22

2.3.2. oidc-agent . 22

2.3.3. htgettoken . 23

3. Design 25
3.1. Requirements . 25

3.2. Concepts . 26

3.2.1. Mytokens . 26

3.2.2. Capabilities . 28

3.2.3. Restrictions . 29

3.3. Endpoints and Operations . 32

3.3.1. Con�guration Endpoint . 32

3.3.2. Mytoken Endpoint . 32

3.3.3. Access Token Endpoint . 35

3.3.4. Transfer Endpoint . 35

vii

Contents

3.3.5. Revocation Endpoint . 35

3.3.6. Tokeninfo Endpoint . 35

4. Implementation 37
4.1. Encryption of OpenID Connect Tokens 37

4.2. High Availability . 42

4.3. Command Line Client . 44

4.3.1. Storing Mytokens . 44

4.3.2. Obtaining Mytokens . 45

4.3.3. Obtaining Access Tokens . 45

5. Evaluation 47
5.1. Ful�llment of Requirements . 47

5.2. Comparison with Related Work . 49

6. Conclusion 55
6.1. Summary . 55

6.2. Future Work . 56

Bibliography 59

A. Appendix 63

viii

List of Figures

2.1. Component layers of the AARC Blueprint Architecture [34] 6

2.2. Example consent screen . 11

2.3. Visualization of the Authorization Code Flow 14

2.4. Visualization of the Device Code Flow . 15

2.5. Visualization of the Refresh Flow and Token Exchange Flow 15

2.6. Use case for Token Exchange [6] . 16

4.1. Storing an encrypted refresh token with multiple linked mytokens 40

4.2. Storing encrypted refresh tokens with mytokens, short tokens, and polling

codes . 41

4.3. Storage of hashed secrets in the database 42

4.4. High availability setups with dedicated backends for each frontend and

frontends connect to all backends . 43

5.1. Comparison of the response time distributions of curl, mytoken, oidc-
agent, and htgettoken . 51

A.1. Benchmark of di�erent Go web frameworks [22] 65

ix

List of Listings

3.1. Example restriction clause . 31

3.2. A restriction with multiple restriction clauses 36

A.1. Example response from the userinfo endpoint 63

A.2. Example response from the mytoken con�guration endpoint 64

xi

Acronyms

AAI Authentication and Authorization Infrastructure. i, 1, 2, 5, 7, 8, 22

AARC Authentication and Authorisation for Research Collaborations. 6, 7

API Application Programming Interface. i, iii, 44

AS Authorization Server. 9

CA Certi�cate Authority. 7

DFN Deutsches Forschungsnetz. 8

EGI European Grid Infrastructure. 8, 17, 21, 22, 24, 47, 48

EOSC European Open Science Cloud. 1

HBP Human Brain Project. 1

HIFIS Helmholtz Federated IT Services. 1, 8

HMAC Hash-based MAC. 41

HPC High Performance Computing. 8, 27

https HyperText Transfer Protocol Secure. 8, 13, 28

IdP Identity Provider. 1, 7, 8

JSON JavaScript Object Notation. 8, 18, 27, 30, 45, 57, 58

JWT JSON Web Token. 11, 12, 26–29, 33, 35, 39–41, 57

KIT Karlsruhe Institute of Technology. 5, 22, 49

MAC Message Authentication Code. 41

NHS National Health Service. 8

OIDC OpenID Connect. i, 1, 2, 5, 6, 8–15, 17–24, 27–29, 32–35, 37, 38, 41, 44, 47, 50, 52–56

OP OpenID Provider. 1, 9–14, 16–23, 25, 27, 32, 33, 38, 39, 45, 47, 48, 50, 52–56

xiii

Acronyms

PKI Public Key Infrastructure. 7

PR Protected Resource. 9, 10, 17, 19

RP Relying Party. 9, 17

SAML Security Assertion Markup Language. 6–8

SCC Steinbuch Centre for Computing. 5, 47

SP Service Provider. 7, 8

ssh Secure Shell. 23, 27, 53

SSO Single Sign-On. 7

TLS Transport Layer Security. 7

URL Uniform Resource Locator. 13, 14, 26, 27, 32, 33, 42, 53

UUID Universally Unique Identi�er. 27

WLCG Worldwide LHC Computing Grid. 1, 5, 7, 8, 48, 50, 51, 53, 54

XML Extensible Markup Language. 7

xiv

1. Introduction

OpenID Connect (OIDC) has become a widely used protocol in modern Authentication

and Authorization Infrastructures (AAIs). Many social Identity Providers (IdPs) and

enterprises like Google, Apple, Microsoft, Telecom, or IBM build on OIDC [24, 43]. Also

in the national and international research environment many projects, such as Helmholtz

Federated IT Services (HIFIS), the Human Brain Project (HBP), or the European Open

Science Cloud (EOSC), use OIDC [45]. Even the Worldwide LHC Computing Grid (WLCG)

which was built on X.509 certi�cates is moving to token-based authorization [44]. This

wide adaption of OIDC shows the importance of the protocol. But this wide adaption also

demands good tooling.

While the usage of OIDC on the web is user-friendly, handling access tokens within

non-web use cases still does not come up to its full potential. In a previous work we

developed a local service named oidc-agent [47, 48] that enables users to manage OIDC

tokens on the command line. While this was an important step, it did not solve what we

call the long-running-jobs problem, on which we elaborate in the following.

1.1. Motivation

OIDC access tokens are Bearer tokens [42, 26, 29] which means that they can be passed

around and any entity in possession of the token can use it to get access to a protected

resource. Among other reasons this is why access tokens are short-lived. Their lifetime is

usually in the range of minutes to a few hours, e.g. the default for many OpenID Providers

(OPs) in the academic world is one hour. While a short lifetime is strongly desirable from

a security perspective, it also reduces the usability. It is unquestionable that there are use

cases where an entity needs to be able to access a resource over a longer period than the

lifetime of an access token. OIDC’s mechanism to refresh access tokens with a Refresh
Token after the access token expired solves this problem in many cases, but not in all of

them. Also, other mechanisms that could mitigate the problem are insu�cient or not

implemented. We will discuss them in subsection 2.2.5.

A good example for a use case where access tokens are required to function over a

longer period of time and current mechanism are insu�cient are long-running compute

jobs: We assume that researchers can start compute jobs on a compute cluster with an

OIDC access token and that other resources can also be accessed through OIDC. A typical

compute job can be divided into three steps:

1. Load data.

2. Do computation on the data.

1

1. Introduction

3. Store the results.

We assume that data is loaded in the beginning of the compute job. In order to load the

data from the storage server an access token is required. The same is true for writing back

the results after the computation is done. While it is quite possible that the job requires

loading additional data and write back partial results in between, the problem becomes

clear once output data is written back: Such computations will often run for several hours

and even days, and will almost always take longer than the lifetime of an access token.

While loading the data at the beginning with the access token used to start the compute

job might be possible, writing back the result at the end will most-likely not work, because

the access token expired in-between. It is also possible, that the job has been queued and

the access token is already expired when the job starts. The long-running-jobs problem

requires either a token that can be easily refreshed or a token that is valid long enough.

However, current mechanisms provided by OIDC and current provider implementations

satisfy neither of these options as argued in subsection 2.2.5.

1.2. Goal

The goal of this thesis was to develop a solution for the long-running-jobs problem. A

token service should be developed, through which users can easily obtain access tokens on

any of their machines, including long running compute jobs. This implies that an access

token can be obtained with a single token-like string alone.

The service should overcome the shortages of OIDC access tokens, in particular the

constraint that the lifetime of an access token cannot be freely chosen by a user. With this

service the user should have full control over the issued tokens.

After developing a design the service should be implemented, as well as a basic command

line client that can be used to easily obtain access tokens.

1.3. Structure of the Thesis

This thesis is subdivided into several chapters: State of the art in chapter 2, design aspects

in chapter 3, implementation aspects in chapter 4, an evaluation in chapter 5, and �nally

the conclusion in chapter 6. In particular, the individual chapters present the following:

chapter 2 introduces foundations for this work and includes an overview over AAIs and

commonly used protocols. We will also present OIDC more detailed and argue

why mechanism provided by OIDC are not suitable to solve the long-running-jobs-

problem. We then introduce related software tools that could be used.

chapter 3 de�nes the requirements for the service that should be developed and introduces

the important concepts of the mytoken service. These are mytokens, capabilities,

and restrictions. We also describe the di�erent endpoints of the service.

chapter 4 focuses on di�erent implementation aspects. We cover the encryption of refresh

tokens, support for high availability, and introduce the command line client.

2

1.3. Structure of the Thesis

chapter 5 evaluates the developed mytoken service against the previously de�ned require-

ments and related software.

chapter 6 closes the thesis with a summary and an outlook on possible future work.

3

2. State of the Art

In this chapter we discuss the foundations of current Authentication and Authorization

Infrastructures (AAIs). We present a general overview of modern federated AAIs and

shortly describe some protocols that are commonly used. We then focus on OpenID

Connect, the lifetime-problem of OpenID Connect (OIDC) access tokens in the context of

long running compute jobs, and how it could be solved with mechanisms provided by the

OIDC protocol. In the end we introduce related software that provides OIDC access tokens

to users on the command line and that also could be used to solve the long-running-jobs

problem.

2.1. Foundations

This work aims at extending the lifetime of OIDC access tokens. In this section we describe

the foundations for this work: Authentication and Authorization Infrastructures and

commonly used technologies.

2.1.1. Authentication and Authorization Infrastructures

Research nowadays is commonly not done by a single researcher, but multiple researchers

working together. Often, research involves multiple institutions from di�erent countries

and also interdisciplinary research is common [37]. The EU research and innovation

program Horizon 2020 [11] provided nearly €80 billion funding over a period of seven years

(2014-2020). The follow-up program Horizon Europe [10] will increase the budget to around

€95 billion for 2021-2027. Also researchers of the Karlsruhe Institute of Technology (KIT)

and Steinbuch Centre for Computing (SCC) are involved in multiple EU-funded projects,

like EGI-ACE [23], EOSC-hub [20], or EOSC-synergy [21]. In these projects researchers not

only collaborate, but their goal is to empower researchers to collaborate. Another great

example of research collaboration is CERN [8] and the Worldwide LHC Computing Grid

(WLCG) [9].

All of this shows how important collaboration in research is. However, collaboration also

requires the right infrastructures. One part being access control through Authentication

and Authorization Infrastructures. The AAI-basis for collaboration between universities

in the state of Baden-Württemberg is bwIDM [31]. It enables researches and students of

the di�erent universities to access IT services, such as bwUniCluster or bwSync&Share,

on universities throughout the state in a consistent and secure way.

While Authentication and Authorization are often perceived as one step from a user’s

perspective, these are separate actions:

5

2. State of the Art

De�nition 1 (Authentication). Authentication is the act of validating that a user is whom

they claim to be.

De�nition 2 (Authorization). Authorization is the act of giving a user permission to

access resources or perform actions.

The Authentication and Authorisation for Research Collaborations (AARC) project

[40] proposed a blueprint architecture [34] for research collaborations. This blueprint

architecture is visualized in Figure 2.1. It de�nes �ves layers of components:

Figure 2.1.: Component layers of the AARC Blueprint Architecture [34]

User Identity The user identity layer contains services that handle identi�cation and

authentication of users. Commonly, authentication services are Security Assertion

Markup Language (SAML)-, OIDC-, or OAuth2-providers, but also certi�cation

authorities.

Community Attribute Services The community attribute services layer holds services that

provide user information (attributes). This information is added on top of any

information that might be provided by the identity provider from the user identity

layer.

6

2.1. Foundations

Access Protocol Translation Di�erent end services might require di�erent authentication

technologies. The access protocol translation layer addresses this need by introducing

a token translation service that can translate between di�erent technologies. This

layer also contains an SP-IdP-Proxy as a single integration point between identity

providers from the user identity layer and service providers from the end services

layer. For the identity providers the proxy acts as a service provider, while for service

providers it acts as an identity provider.

Authorization The authorization layer contains components that handle the authorization

decision, i.e. they control the access to service providers.

End Services The end services layer contains Service Providers (SPs) a user wants to use.

The access to these services is usually protected and di�erent services might use

di�erent technologies.

The AARC blueprint architecture is a general AAI architecture that does not enforce

usage of certain protocols. It can be used with di�erent protocols and it should have become

clear that the infrastructure can contain service providers that use di�erent protocols for

authorization. Therefore, we will shortly introduce important authorization mechanisms

in the following sections.

2.1.2. X.509 Certificates

X.509 [12] certi�cates are a way to authenticate using public key cryptography. In a Public

Key Infrastructure (PKI) each entity has a key pair consisting of a public and private key.

For authentication, an entity can create a signature with its private key. Anyone with

access to the public key can verify the signature. It is obvious that the private key must

be kept secret while the public key is publicly available. In a PKI Certi�cate Authorities

(CAs) are trusted entities that issue certi�cates to entities and provide assurance about the

entity identi�ed in a certi�cate.

X.509 certi�cates are used with TLS in the internet to ensure a secure connection to a

web server. But it is also possible to use client certi�cates to authenticate clients. This has

been used by WLCG for 20 years [7, 2].

2.1.3. SAML

The Security Assertion Markup Language (SAML) [36] is an Extensible Markup Language

(XML)-based standard to transfer identity data between Identity Providers (IdPs) and

Service Providers (SPs). The identity data is sent as a SAML assertion. This is an XML

document signed by the IdP that typically contains attributes about the user. SAML allows

Single Sign-On (SSO), i.e. a user can use one set of credentials to log in to multiple services.

To enable SSO, services and IdPs need a "trust"-relationship. This trust is established

through an identity federation. An identity federation is de�ned as “a group of Identity

and Service Providers that sign up to an agreed set of policies for exchanging information

about users and resources to enable access to and use of the resources” [18]. Thereby,

a federation can consist of multiple sub-federations, e.g. bwIDM is a sub-federation of

7

2. State of the Art

the German research and education federation DFN-AAI. DFN-AAI [14] is a SAML

federation operated by DFN that enables users from research and education institutions in

Germany to access protected resources, such as HPC systems. DFN-AAI also participates

in eduGAIN [17] - an inter-federation service that connects identity federations around the

world. With eduGAIN nearly 27 millions students, researchers, and educators from over

2800 IdPs can access more than 2000 SPs through a single trusted identity at their home IdP.

These numbers show the importance of SAML in today’s research and education AAIs. In

2015 Ping Identity stated [39] that “SAML holds the dominant position in terms of industry

acceptance for federated identity deployments”. However, as previously mentioned there

is also a rising trend of AAIs building on OIDC. And while it is clear that SAML is an

important technology in many AAIs today, from our experience, SAML is used less than

OIDC in new software. Also, SAML was designed to be used within web browsers and it

is less suited for usage with native applications. Native applications are non-web browser

applications, such as desktop, commandline, or mobile applications.

2.1.4. OAuth 2.0

The OAuth 2.0 (also called OAuth 2, OAuth2, or just OAuth) authorization framework

[26] provides mechanism to give access to resources or services, similar as it is possible

with SAML. To do so, OAuth uses tokens, namely access tokens and refresh tokens. We will

elaborate on these in subsection 2.2.2. The communication uses JSON over https. Unlike

SAML, OAuth also supports mobile and native applications.

2.1.5. OpenID Connect

OIDC [42] is an authentication protocol building on top of OAuth 2.0. OIDC extends

OAuth with new functionality, mainly related to authentication. It introduces ID tokens

that encode information about the user as well as metadata about the authentication,

and also adds the userinfo endpoint which can be queried by applications to obtain user

attributes. Based on these attributes SPs can implement more sophisticated authorization

policies, e.g. group-based authorization.

2.2. OpenID Connect

From the introduced protocols OIDC is the most recent and modern protocol. It is widely

used in modern AAIs. We already mentioned in the introduction that many social identity

providers and enterprises (e.g. Google, Microsoft, IBM) build on OIDC. We also mentioned

national and international projects and organizations (e.g. EGI, NHS, HIFIS) widely using

OIDC in their infrastructures and WLCG moving to token-based authorization. Therefore,

we strongly believe that OIDC will remain to be a key technology in modern AAIs for the

foreseeable future. For this reason and because this work is heavily connected to OIDC

we describe it more detailed in the following. Without claiming completeness we give

an overview of OIDC that focuses, but is not limited, on the parts that are particularly

relevant for the work of this thesis. Since OIDC and OAuth 2 are strongly related much of

8

2.2. OpenID Connect

the following is also applicable to OAuth 2. Indeed, the mytoken service, developed as

part of this thesis, can also be used with OAuth 2 providers with no or little adaption.

In the following sections, we cover general terminology (subsection 2.2.1), the di�erent

token types (subsection 2.2.2), and di�erent OIDC �ows (subsection 2.2.3 and subsec-

tion 2.2.4). In the end of this section we check how the long-running-jobs problem may be

solved with mechanisms provided by OIDC (subsection 2.2.5).

2.2.1. General Terminology

In this section we cover some general terminology which is often used with OIDC. We

focus on the di�erent roles / entities. The di�erent tokens and terms related to them are

described in the next section (subsection 2.2.2).

OIDC Provider An identity provider that supports OIDC is called OIDC provider or OpenID

Provider (OP). This is the service where the user has an account.

OIDC Client Applications that want to obtain tokens from the OP must register themselves

as a client with the OP. The client registration (subsection 2.2.4.1) will result in a

client con�guration including client credentials. The term "OIDC client" often refers

to this con�guration / credentials, but is also used to refer to the application / service

which is a client to the OP.

Relying Party An OAuth 2 client application using OIDC is referred to as Relying Party

(RP). Commonly it is also just called OIDC client.

Protected Resource The term Protected Resource (PR) can refer to a resource server (such

as a cloud storage) or to a single resource on a server (such as a �le). In both cases

the resource should not be freely accessible but protected using OIDC.

Authorization Server OAuth 2 de�nes the term Authorization Server (AS) for the server

that issues the tokens after a user successfully authenticated. In OIDC this is the OP.

Resource Owner The resource owner is an entity that is capable of granting access to a

PR. This is often the user.

2.2.2. Tokens

As previously noted, OIDC is based on a set of di�erent tokens. In this section we describe

these token types and how each is commonly used. All of these tokens are issued by the

OP.

2.2.2.1. Access Tokens

Access tokens (commonly abbreviated AT) are the most commonly used tokens in OIDC

and OAuth 2. They are short lived credentials used to access PRs. Access tokens are so

called Bearer tokens [29], i.e. they can be passed around and whoever presents the token

9

2. State of the Art

will be authorized (if the token is valid); there is no other authentication performed. While

this brings security risks, because an attacker that can obtain an access token may use it,

it is very practical for legitimate use cases. This is always the case when a resource server

has to contact other protected resources in order to ful�ll the request. We will see such an

example later in subsection 2.2.3.4. However, the bearer property is also useful in simpler

cases where a PR uses the presented access token to obtain user attributes like group

membership from the userinfo endpoint (see subsection 2.2.4.3) to decide whether access

should be granted or not. The risk of a stolen access token is mitigated by the limited

lifetime of access tokens, so that an attacker who can take possession of a token can use it

only for a limited time. Usually access tokens are valid for minutes up to a few hours.

Scope All issued access tokens have a scope. This scope is a single string of space

delimited values. The scope of a token describes what can be accessed with the token,

or more generally what can be done with an access token. Clients can specify the scope

values wanted for an access token when requesting the token. In the authorization �ows

(see subsection 2.2.3) the user will be presented with a consent screen where they authorize

the application to get the requested tokens. The scope values of the access token are also

present in this consent screen. This allows the user to see what information are released to

the application and they can allow or deny this access. On some OPs the user also might

be able to change (i.e. deselect) scopes. An example of such a consent screen that displays

the requested scopes is given in Figure 2.2.

OAuth 2 does not de�ne speci�c scope values. This is left to the OPs. Generally, it is

also possible that clients can de�ne their own scope values. This allows that a PR like a

cloud storage service could only accept access tokens with a scope value of storage.read
for reading the storage and a scope value of storage.write for writing to the storage.

Unlike OAuth 2, OIDC de�nes some special scope values: The openid scope value must

be included in authorization requests to actually be an OIDC request. OIDC also de�nes the

special scope offline_access that is used to request refresh tokens (see subsection 2.2.2.2

and subsection 2.2.3.3). Furthermore, OIDC de�nes the following scope values with

regard to released user information. These scope values can be used to request the user

information claims in an ID token (subsection 2.2.2.3) and returned from the userinfo

endpoint (subsection 2.2.4.3).

profile Gives access to basic pro�le information. Among others the possible claims include

information about the user’s names, preferred username, pro�le picture, gender,

birthday, and locale.

email Gives access to the user’s email address and a claim stating if it was veri�ed or not.

address Gives access to the user’s physical address.

phone Gives access to the user’s phone number and a claim stating if it was veri�ed or

not.

Audiences Audience is a mechanism to restrict where an access token can be used. The

concept is rather simple, but not speci�ed by OIDC in detail. Indeed, the speci�cation

10

2.2. OpenID Connect

Figure 2.2.: Consent screen of the INDIGO IAM OP [5] for an authorization request

[42] only mentions audience restriction of access tokens very brie�y under "Security

Considerations" to mitigate the risk that an access token may be used else where than

intended. While the OIDC speci�cation does leave audience restriction very open, the

idea becomes clear from the brief description: An access token includes an identi�er for

the resource where it is intended to be used and the resource veri�es that it’s identi�er is

included in the audiences of the presented token.

While the OIDC speci�cation only has that one small paragraph about audience re-

stricted access tokens, it does not omit audience restriction completely. The audience

restriction is speci�ed for ID tokens (subsection 2.2.2.3) and other objects that are repre-

sented as a JSON Web Token (JWT). The JWT speci�cation [28] de�nes the aud claim

used to specify the audience(s) of a token as a standard claim for JWTs. So OIDC mandates

the audience claim in ID tokens, but not in access tokens, because the latter are de�ned as

opaque. However, because the concept of audience is de�ned by [28] and therefore should

be known to entities handling JWTs, protected resources should be able to implement

audience restrictions.

In practice audience restricted access tokens are currently not widely used with OIDC

and one problem is that the OIDC speci�cation does not describe how clients can request

access tokens with speci�c audiences. The lacking support of audience restrictions may

be due to the missing speci�cation on how to request such restrictions. However, there is

a recent draft [3] for using JWTs with OAuth 2 that describes how to request audience

11

2. State of the Art

restriction for such tokens. We hope that when this draft becomes an RFC OPs, it �nds

adaption and audience restrictions of OIDC access token will �nally be more widely used.

2.2.2.2. Refresh Tokens

As already stated, access tokens are short-lived and will eventually expire. However, there

are many valid use cases where clients need to access resources over a longer period

than the lifetime of a single access token; one example is the long-running-jobs problem.

Whenever such an extended access is needed, multiple access tokens must be used, which

implies that the client needs to be able to obtain fresh access tokens. The simplest approach

would be to let the user perform the authorization �ow again. However, this is often

not possible because the user is not present anymore. Even when it would be possible,

prompting users every hour to log-in again (at the OP) is obviously not user-friendly.

Refresh tokens (commonly abbreviated RTs) are used to obtain new access tokens after

the initial (or previous) expired. This can be done by a client using the refresh �ow

(subsection 2.2.3.3). The refresh token is a much longer lived token that can be valid

forever, i.e. it does not expire at all. However, security policies can limit the lifetime of

such long-lived credentials, so that OPs might limit the lifetime in practice. However, the

lifetime is usually still in the range of months to a few years and therefore can be used to

extend the lifetime of access tokens over a long period of time.

Generally, from a security-perspective it is undesirable to have such a long-living

credential without any restrictions. Otherwise, access tokens could just be long-lived.

Therefore, refresh tokens are restricted in two ways:

First, refresh tokens are not automatically issued to clients; a client must request a refresh

token explicitly. This is usually
1

done trough the offline_access scope. Additionally, the

user will be informed about this request and has to give their consent (as it is the case for

all requested information). An example for such a consent screen that also includes the

offline_access scope was already given in Figure 2.2.

Second, unlike access tokens, refresh tokens cannot be passed around, because each

refresh token is bound to the client that requested it. This means that a stolen refresh

token cannot be used without the client credentials. Nevertheless, it is important that

clients handle refresh tokens with care and store them securely.

2.2.2.3. ID Tokens

The ID token was introduced with OIDC and is not known in OAuth 2. In OIDC a client

receives an ID token along with the access token after an authorization �ow. The ID

token is a JSON Web Token (JWT) that encodes information about the user. The client can

decode the signed JWT and use the user information, e.g. for personalizing the webpage

with the user’s name, but also to obtain the user’s email or physical address. The content

of the ID token is generally limited by the requested scopes, but the application can limit

it further by requesting only the needed claims.

1
Google instead uses the access_type=offline request parameter.

12

2.2. OpenID Connect

2.2.3. Important Authorization Flows

OIDC speci�es several so called Auhtorization Flows for obtaining the introduced tokens.

In the following we describe the most important of these �ows. All of the following �ows

have the goal to obtain an access token (the token exchange �ow (subsection 2.2.3.4) can

also be used to obtain other tokens, but we will focus on access tokens). However, only the

�rst two (authorization code �ow (subsection 2.2.3.1) and device �ow (subsection 2.2.3.2))

require user interaction. One could say that these �ows start with "nothing", i.e. a client

does not already have some sort of credentials for the user, and therefore require the user

to log-in with the OP. The other two �ows (refresh �ow (subsection 2.2.3.3) and token

exchange �ow (subsection 2.2.3.4)) do not involve the user, i.e. they can be done by the

client without the user, but require an already existing credential for that user.

2.2.3.1. Authorization Code Flow

The authorization code �ow is considered the standard OIDC/OAuth 2 �ow. It certainly

is the default �ow on the web and therefore, also the most used and best supported

authorization �ow.

We want to note that the user does not give credentials to the application (the OIDC

client), but only logs-in with the OP. This is true for most authorization �ows and not

only for the authorization code �ow, but we want to stress this important property at this

point.

When a user starts the �ow the client will construct an authorization URL and redirect

the user to it. This will redirect the user to the OP. There the user has to log-in. The

OP displays a consent screen (see Figure 2.2) that details the released information. The

user can then decline the request or approve it. After approval the OP makes an https

redirect to an endpoint of the application (which was registered beforehand). This redirect

will also contain an authorization code. This code is the name-giving component of this

�ow. The application uses the authorization code to exchange it into an access token and

possibly also a refresh token. With OIDC the application will also receive an ID token.

The authorization code �ow is visualized in Figure 2.3.

2.2.3.2. Device Code Flow

While the authorization code �ow works �ne on the web, it is less suitable for native

applications. The device code �ow [13] is an authorization �ow specially for input-

constrained devices and devices without a web browser (but with an internet connection).

An example for an input constrained device is a TV, that might have a web browser, but

it usually does not have a keyboard and using the remote to navigate on an on-screen-

keyboard to enter a (long and complicated) password is intricately. Therefore, the device

�ow supports these devices, by letting a user log-in through another device.

The device code �ow is started on the primary, constrained device. The application

receives a user code, device code, and an authorization URL from the OP. The device code

is only for the application; it is used for polling the OP for the issued tokens. The user

code and authorization URL are presented to the user. An application can visualize the

13

2. State of the Art

Figure 2.3.: Visualization of the Authorization Code Flow

information by simply printing it on screen, or by rendering it as a QR code, so that the

URL can easily be opened with a smartphone, for example.

The user opens the authorization URL on another device, the smartpohne, in our example.

This device should now have a web browser and better input capabilities. The user logs-in

with the OP, enters the user code, and authorizes the application in the consent screen.

The user no longer needs the second device and can now return to the primary one.

As stated above, the application started polling the OP for the tokens, in the meantime.

Until the user approves the request on the second device the application does not receive

any tokens from the OP; instead it receives a message indicating that the authorization is

still pending (if the user declines the request, the OP answers with an appropriate message).

Eventually the user authorized the application and the application receives an access token

and possibly a refresh token as well as an ID token in case of OIDC from the OP. The

device code �ow is visualized in Figure 2.4.

2.2.3.3. Refresh Flow

We already referred to the refresh �ow when explaining refresh tokens. As stated, the

refresh �ow is a rather simple �ow to obtain a fresh access token from a refresh token. Due

to the short lifetime of access tokens, applications need a way to obtain new access tokens

after one expired. We already explained that applications can obtain refresh tokens with

the previously explained �ows by including the offline_access scope in the request. In the

refresh �ow this refresh token is presented to the OP in order to obtain a new access token

without the user having to be present. This simple �ow is also visualized in Figure 2.5a.

14

2.2. OpenID Connect

Figure 2.4.: Visualization of the Device Code Flow

(a) Visualization of the Refresh Flow (b) Visualization of the Token Exchange Flow

Figure 2.5.: Visualization of the Refresh Flow and Token Exchange Flow

2.2.3.4. Token Exchange Flow

The token exchange �ow [30] can be used to exchange one token for another. The principle

of the �ow is visualized in Figure 2.5b. When comparing this �gure with the one for the

refresh �ow, they look very similar. However, this is only the case because Figure 2.5b

is simpli�ed and omits other paramters and variations of the �ow. In reality the token

exchange �ow is much more complex, �exible, and also powerful.

In the following we motivate the token exchange �ow. Assume the following scenario,

which is visualized in Figure 2.6: A user * uses a client � which needs to access the

protected resource '1. � therefore uses an access token C1 of * to act on their behalf. This

is the normal OAuth 2 / OIDC use case.

However, it might be that resource '1 must access another resource '2 in order to ful�ll

the request. Because the access token C1 that was presented by � to '1 is a bearer token

and can be passed around, '1 could use this token to access '2. Usually, this succeeds and

is not a problem. However, there are situations, where there still is an issue:

15

2. State of the Art

Figure 2.6.: Use case for Token Exchange [6]

a) '2 needs additional / other scopes than '1

b) The access token C1 is audience restricted

In both situations the token C1 cannot to be used by '1 to access '2. In a) because the

required scopes are missing, in b) because the token is only meant to be used at '1 and '2
therefore should not accept this token. In theory, both cases can be easily solved if� sends

an access token that includes all the needed scopes and audiences. However, in practice

this might not be feasible, because it would require � to know which resources '1 will

access and which scopes are required. This additional information is unknown to � .

However, the token exchange �ow allows to exchange one token for another. In partic-

ular it allows to exchange an access token with some scopes B1 and the audiences 01 for

another token with scopes B2 and audiences 02 without the need that B1 ⊇ B2 and 01 ⊇ 02.
In our example this allows � to send the access token C1 with only the scopes and

audience needed for '1. '1 then can exchange the token C1 for C2 with '2 as audience and

the correct scopes, and then use C2 with '2.

It can be seen that token exchange is a powerful tool in such use cases. However, it

also becomes clear that this power comes with risks. The token exchange �ow presented

allows a client to work around the scope and audience mechanism that were introduced

for good reasons. At this point we want to make clear, that token exchange can also be

used to exchange an access token for a refresh token. This also does have its legitimate

use case, but brings some risks, because it allows turning any valid access token into a

refresh token, which renders the limited lifetime of the access token e�ectively useless

(for an attacker that is able to perform token exchange). We also want to point out, that

all of this is done without user interaction and without notice of the user.

Therefore, we recommend that OPs should make sure that only trusted clients are

allowed to use the token exchange �ow
2
, and even then should implement mechanisms

to restrict this further, e.g. a client could be allowed to obtain only access tokens (no

refresh tokens) and only with certain scopes and audiences
3
. This way, the client can still

2
This is currently the state of the art for OPs that implement token exchange.

3
We are unaware of any OP that already implements such a feature.

16

2.2. OpenID Connect

use token exchange for legitimate cases, but it is not possible to exchange any severely

restricted access token for a basically unrestricted token.

2.2.4. Auxiliary Flows and Endpoints

In the following we present some additional �ows, namely client registration and token

revocation, as well as the userinfo endpoint.

2.2.4.1. Client Registration

A client has to register itself with the OP. As part of the registration process it receives its

client credentials which must be used as authorization in most requests to the OP. Any

application that wants to receive tokens directly from the OP needs client credentials and

therefore must register an OIDC client. A PR that only receives access tokens as part of a

request and does not obtain tokens directly from the OP may not have to register a client.

However, this depends on the authorization policy that is in place, the information needed

to evaluate the authorization rule, and where this information can be obtained. The last

part refers to the set of endpoints of an OP which o�er di�erent pieces of information.

If a PR needs to access information that is not available from the token itself or from

the userinfo endpoint (subsection 2.2.4.3), but only from other endpoints (e.g. the token

introspection endpoint), the RP must be authorized and therefore needs to register itself

with the OP. In such a case some OPs might allow a resource to register itself as a PR

and not as a client, while other OPs do not make this distinction. In the following we

will focus on client registration, however, the information also applies to registering a PR,

respectively.

There are two options for a client to register itself with the OP: registration through a

web interface and dynamic client registration. An OP might support only one of these, or

both. The OP could also support none of these and do the registration out-of-band, e.g.

via email; however, for a production OP this is generally not feasible.

Registration through a Web Interface Registering a client through a web interface feels

natural for many users
4

and generally is much more user-friendly than dynamic client

registration. The user interface can help with the registration process and give useful

background information.

In practice the complexity of the web interfaces of the di�erent OPs varies. Some

OPs have a rather clean interface with less options while others need a more complex

interface because they o�er more con�guration options. Google
5
, for example, o�ers very

limited con�guration options, while the INDIGO IAM
6

instances o�er much more options,

like choosing grant types (i.e. the available authorization �ows) or the cryptographic

algorithms used for di�erent operations, like token signing. EGI Check-in
7

even supports

4
Note, that users in this case are usually administrators, so that this statement is somewhat put into

perspective.

5https://accounts.google.com/
6
There are multiple instances for di�erent community deployed, e.g. https://wlcg.cloud.cnaf.infn.it/

7https://aai.egi.eu/oidc/

17

https://accounts.google.com/
https://wlcg.cloud.cnaf.infn.it/
https://aai.egi.eu/oidc/

2. State of the Art

con�guring di�erent properties of the issued tokens, like the lifetime for each of the

di�erent token types and whether refresh tokens are rotated after usage or not.

All web interfaces we are aware o�, require an authenticated user; so in terms of dynamic

client registration which will be explained in the next paragraph, this is a protected client

registration.

Depending on the OP’s policy a client might be immediately registered and activated or

not. Some OPs may require approval of client registration requests by an administrator or

they require that a policy document is �lled in.

Dynamic Client Registration While the registration via a web interface generally feels

more user-friendly, it is not suitable to register clients dynamically, i.e. non-interactively.

With the dynamic client registration [41] applications can register themselves as a client

without human intervention. (This is only true for the registration itself as it is performed

by the client application; if the registration has to be approved on the OP side by an

administrator or an additional policy document has to be �lled in, human interaction is

still required.)

To register a client the application sends the requested client con�guration as a JSON

document to the OP’s registration endpoint. The OP processes the request and upon

success sends back an updated client con�guration, which includes the client credentials.

It usually also includes a registration access token that can be used to update or delete the

client.

For applications this �ow is much more suited than registration via a web interface. The

application can use a prede�ned client con�guration (and adapt it, if necessary) to send it

to the registration endpoint.

Dynamic client registration can be open or protected. Open dynamic client registration

does not require any authorization, i.e. anyone can send a client con�guration to register a

client. This can be useful for applications that register themselves dynamically as a client,

because they do not need any additional information; however, often security policies do

not allow this form of client registration.

Protected dynamic client registration on the other hand does require some sort of

authorization. The exact means of that authorization are not speci�ed clearly. But it will

involve an initial access token that is provisioned out-of-band. This initial access token

could be a dedicated token that can only be used to register one or multiple clients, but it

could also be a normal user access token. The client registration can then still be limited

to certain users / users of a certain group.

2.2.4.2. Token Revocation

The revocation of tokens [32] is an important security feature. Because of their long

lifetime it is strongly recommended to make refresh tokens revocable, so that users can

revoke a refresh token when it gets stolen. The RFC specifying token revocation [32] is an

additional speci�cation (not included in the OIDC core) and the OP might not implement

it. When implemented, it mandates that refresh token must be revocable and that access

tokens also should be revocable.

18

2.2. OpenID Connect

2.2.4.3. Userinfo Endpoint

The concept of the userinfo endpoint is simple: It is an endpoint of the OP where user

information can be obtained. It is actually a PR and requests to it must include an access

token for authorization. Then the userinfo endpoint responses with information about the

user associated with the presented token. The information returned depends on the request

and the scopes of the token. We detailed scopes de�ned by OIDC for the userinfo endpoint

and which information they give access to in section 2.2.2.1. An example response can be

seen in Listing A.1.

2.2.5. Mechanisms to Solve the Long-running Jobs Problem

OIDC provides some mechanisms which can be used to overcome the lifetime limitation

of access tokens. In the following we describe how to extend the lifetime of access tokens

with only OIDC mechanisms and note why these mechanisms lack usability.

2.2.5.1. Refresh Tokens

Refresh tokens are the obvious way to extend the lifetime of access tokens. In the following

we shortly recap the most important properties:

A client can obtain a refresh token when the user performs one of the authorization

�ows and the client includes the offline_access scope. By its nature the refresh token is

long-lived and potentially does not expire at all. Therefore, it is a powerful token. Unlike

access tokens, refresh tokens should not be passed to other entities but are only meant for

the client that requested them. In order to enforce this, but also to limit the risk of a stolen

refresh token, refresh tokens are bound to the client to which they were issued. When a

client wants to use a refresh token it must authenticate using its client credentials.

These properties make refresh tokens less useful for the long-running-jobs problem.

Di�erent approaches to use refresh tokens with the long-running-jobs problem are possible.

In the following we will describe two and their limitations:

Start Job with a Refresh Token Instead of using an OIDC access token as authorization to

start a compute job, a refresh token is used. This allows to exchange the refresh token into

an access token whenever an access token is needed. However, since refresh tokens are

bound to the client they where issued to, one does not only have to pass the refresh token

but also the client credentials. It is easily doable to encode all the needed information into

a single token string.

One must consider that a user now needs access to a registered OIDC client. Again

there are two possible solutions: Multiple users can share a client or each user has its own

client.

If multiple users share a client (i.e. they all know the client credentials), this strongly

increases the risk that a stolen refresh token can be abused. Letting multiple users share a

client in order to be able to pass refresh tokens around defeats the purpose why refresh

tokens are restricted to one client.

19

2. State of the Art

If each user has its own client, it must be registered. If the OP supports dynamic client

registration [41] (section 2.2.4.1) this can be easily done. If the OP does not support

dynamic client registration the client has to be registered manually by the user, which is

never ideal and even less if it is an average user without any detailed knowledge about

OIDC.

No matter how the user has access to a registered client, after the job �nished, the used

refresh token should no longer be valid. Most likely the user does not have control over

the lifetime of the refresh token (see subsection 2.2.5.3 for a variant where the user can

control the lifetime of OIDC tokens) which means that the token will still be valid for a

long time (up to in�nity) after the compute job ends. Therefore, the refresh token should

be revoked after the job ends. However, this means that each time a compute job is started

the user needs a new refresh token. Because refresh tokens can only be obtained through

an authorization �ow
8

this requires true user interaction, i.e. the user has to login at the

OP which cannot be done completely on the command line. Furthermore, this approach

will most likely not be compatible with security policies of existing infrastructures.

Start Job with Authorization Flow Another way to use refresh tokens within a long run-

ning job is to use a central client for all users. This means that this client is con�dential and

none of the users knows its credentials. This approach is right inline with how applications

usually handle refresh tokens. Indeed, the user never sees the refresh token and it is only

known to the job submission service (the OIDC client in this case). This means that the

user does not authorize job submission with a token, but directly with the authorization

�ow, e.g. the device �ow. Similar to the previous approach a user has to do an authorization

�ow for each started job. Apart from that this approach is a clean solution to the problem.

However, it requires substantial adaption of the job submission service, in particular it

must implement a mechanism allowing jobs to always obtain a valid access token.

2.2.5.2. Token Exchange

The token exchange �ow [30] (subsection 2.2.3.4) can be used to exchange one token into

another. It is even possible to exchange a token into a higher privileged token. Among

others it is possible to exchange any access token into a refresh token which then can be

used to obtain additional access tokens. While this can be used to solve the long-running-

jobs problem there are still some caveats. Both the token exchange �ow and the refresh

�ow require a registered OIDC client. However, in this approach it is not an option to

have a client per user, so the fact that there is need for a registered client is not an issue.

Rather, the problem is that the client needs a special permission in order to perform the

token exchange �ow. Because the token exchange �ow is very powerful it is important

that OPs are cautious with enabling the token exchange �ow for clients. However, we can

assume that it is not a problem to register a client with the OP for this speci�c use case.

8
The exception is token exchange on which we comment in subsection 2.2.5.2.

20

2.3. Related Work

The main problem with this solution is the lack of support by the OPs. While there

are OPs that support the token exchange �ow (INDIGO IAM, EGI Check-in), it is still not

widely supported.

Similar to the job submission service with a client that only does the refresh �ow, a

service that additionally does token exchange also needs signi�cant adaption as well as a

way to provide access tokens to the computing jobs.

2.2.5.3. Dynamic Client Configuration

This approach requires each user to have it own registered OIDC client. However, because

dynamic client registration is used this should be transparent to the user. If an OP sup-

ports dynamic client registration that can also be used to adapt the client settings after

registration and the OP allows a client to set the lifetime of access tokens for this client,

these can be combined to create access tokens with a user-de�ned lifetime. The idea is the

following:

1. Dynamically register a client.

2. User performs once an initial authorization �ow to obtain a refresh token.

3. User requests an access token with lifetime C1.

4. The client adapts its settings, i.e. it sets the lifetime of access tokens issued to it to C1.

5. The client performs a refresh �ow with the refresh token obtained in step 2. The OP

will issue an access token with the lifetime C1.

Steps 1− 2 only have do be done once per user. Afterward steps 3− 5 can be done as often

desired.

Each time the user requests an access token with a speci�c lifetime the client’s settings

are adapted to be in line with that request. While this adds an overhead (it adds an

additional request, which doubles the number of requests), it is most likely negligible. The

bigger problem is that setting the lifetime of access tokens for a client is a feature that

is barely supported by OPs. At the time of writing we are only aware of one OP (EGI

Check-in) that does support this feature.

At this point we want to note, that it would be desirable to directly request access tokens

with a speci�c lifetime from the OP. This would elegantly solve the long-running-jobs

problem because then one can request an access token that is just valid long enough for

the job to complete. However, to our knowledge there is no OP implementing this feature.

Furthermore, it is also a security sensitive topic, since access tokens are easy to use (and

can be passed around) without any other restrictions.

2.3. Related Work

While there are mechanisms provided by OIDC to extend the lifetime of access tokens,

they are all not suitable to solve the long-running-jobs problem, mainly because of a lack

21

2. State of the Art

of OP-support, user-friendliness, or substantial adaption e�ort. In this section we look at

three tools that can be used to obtain access tokens on the command line and could also

be used to solve the long-running-jobs problem.

2.3.1. EGI FedCloud

A solution of the long-running-jobs problem was needed for development on the EGI

Federated Cloud. For this, the EGI-AAI provided a simple web service [19], to which the

user logs-in via EGI Check-in, so that a refresh token using the authorization code �ow is

obtained. Then the web page displays the refresh token, the client credentials, and a curl
command to the user. The curl command can be used on any machine to obtain access

tokens. It includes the refresh token as well as the client credentials which are needed for

the refresh �ow. The command looks like the following:

curl -X POST -u 'f33e824a-078d-497b-b700-25b0df7fc5b7':'B80vPK0LVbYuvwRj0 c
Aexs8y0rKgk5XHwYRRq3BCr33ejj33385bzDVcPmSTUkqA2QjMiwWKJDT c
xvOou7yVV8EA' -d
'client_id=f33e824a-078d-497b-b700-25b0df7fc5b7&client_secret=B80vPK0L c
VbYuvwRj0Aexs8y0rKgk5XHwYRRq3BCr33ejj33385bzDVcPmSTUkqA2Qj c
MiwWKJDTxvOou7yVV8EA&grant_type=refresh_token&refresh_token= c
<refresh_token>&scope=openid%20email%20profile'
'https://aai.egi.eu/oidc/token' | python -m json.tool;

↩→

↩→

↩→

↩→

↩→

↩→

↩→

We replaced the refresh token with a placeholder in the above command, but did not

replace the client credentials, because they are the same for all users. Consequently, they

are not kept con�dential. However, client credentials must be kept con�dential according

to the speci�ction
9
. The same is true for refresh tokens. This becomes even more important

when the client credentials are public.

As indicated, this simple web service enables users to use the displayed curl command

on any device to obtain access tokens. However, the long command is not user-friendly,

especially if a user wants to change the requested scopes. Furthermore, the command

contains sensitive information. On a shared system this information can be leaked through

the bash history or through a ps call. An attacker then can use the stolen refresh token

together with the client credentials to obtain access tokens and ultimately impersonate

the user.

In summary, the simple service provided for EGI FedCloud, enables users to obtain

access tokens through a curl command. However, the user experience is mediocre and,

most importantly, the service has several severe security �aws and therefore will be

removed soon, after our intervention.

2.3.2. oidc-agent

The oidc-agent [47, 48] was developed at KIT and is a tool for obtaining OIDC access

tokens on the command line. This goal is very similar to the one of this thesis. However,

9
Unless it is a public client, in which case most OPs (including EGI Check-in) do not issue a client secret at

all. Because this client has a client secret, it is not a public client.

22

2.3. Related Work

it has one big drawback: it is not a central service and is therefore much less suited to

obtain access tokens from multiple machines.

The oidc-agent is a tool-suite that consists of multiple components:

oidc-agent runs as a daemon and handles all communication with the OP. It caches and

refreshes access tokens when needed. Other applications can always obtain a valid

access token from the agent.

oidc-gen is used to create account con�guration �les. These �les contain the OIDC client

credentials and a refresh token. The �le is stored in an encrypted way on the user’s

system’s disk.

oidc-add can load and unload the account con�guration to the oidc-agent. It is only

possible to obtain access tokens for loaded accounts, but it is also possible to load

an account con�guration on-the-�y, meaning that it does not have to be loaded

beforehand with oidc-add.

oidc-token can be used to obtain an access token from the agent. The token can then

be copied to use it elsewhere or the call to oidc-token can directly be integrated in

another program call.

liboidc-agent The project also provides libraries for the C, Go, and Python programming

languages. These allows developers to integrate their applications with the agent

and obtain access tokens directly from the agent.

oidc-agent was speci�cally developed as a local service that runs on the user’s machine.

While this gives the user full control over their data, it also has some disadvantages:

Client Registration As stated in subsection 2.1.5 client registration support greatly di�ers

between OPs. For OPs where users must register their own client manually them-self,

the client registration can be an obstacle.

Other machines Usually a user installs the agent on their machine where all account

con�gurations are stored. But, obtaining access tokens from multiple machines is -

generally - out of scope. oidc-agent has support for agent forwarding with ssh [46],

but this is limited and not enough in many use cases and our requirements.

While oidc-agent o�ers the needed functionality on one local system, it is not suitable

as a tool for obtaining access tokens easily on any machine. When creating an account

con�guration it is possible to restrict the scope and audience values, but it is not possible

to restrict the lifetime. The account con�guration is essentially an OIDC refresh token

with the used client credentials and therefore, has the same lifetime as the refresh token.

2.3.3. htgettoken

The htgettoken [16, 15] tool was developed at FermiLab and is a central token service

similar to the envisioned mytoken service. htgettoken builds around the well established

23

2. State of the Art

secret managment software vault by Hashicorp [27]. The project provides RPM packages

to extend and con�gure a vault server with the required plugins and currently unmerged

pull requests. Also a commandline client called htgettoken is provided. This client com-

municates with the vault server and can be used to obtain OIDC access tokens.

The htgettoken tool obtains access tokens through vault by authenticating with a vault

token. If htgettoken cannot �nd a vault token, it tries to retrieve a vault token using

Kerberos authentication, and if that does not succeed, an OIDC �ow is started. At the end

of the authorization �ow the vault server obtains the refresh token, stores it, and returns a

vault token. The integration with Kerberos was important for htgettoken and brings good

usability for these users.

The ideas for htgettoken and the mytoken service were developed in parallel. htget-
token builds on extending well-established software while mytoken starts with a new

implementation to be more �exible and not constrained by existing software. While at the

beginning of the project it seemed like htgettoken would not support requesting access

tokens with speci�c scopes and audience values, this is the case and htgettoken supports

these features. It is also possible to con�gure the lifetime of the vault token.

By default htgettoken stores the vault token without any encryption on the user’s

machine under /tmp/vt_u\$uid. It is also possible to print the vault token to another

�le or to stdout. If a vault token with a lifetime greater than one million seconds (ca. 11.5

days) is requested, this token cannot be stored in a regular �le, but can only be printed to

�les under /dev, e.g. stdout. This behavior re�ects policies, stating that user credentials

should not be stored without encryption for a longer time period.

As just indicated, htgettoken stores the vault token unencrypted on the user’s machine.

While Kerberos users can use faster-expiring vault tokens and obtain new vault tokens

through Kerberos in a user-friendly way, this is not possible for users without Kerberos.

We see three options for non-Kerberos users:

• Use vault tokens with a rather short lifetime (much shorter than the maximum), so

that the security risk of an unencrypted vault token is acceptable. However, this

requires the user to log in often through OIDC which lowers usability signi�cantly.

• Use vault tokens with a rather long lifetime, so that the number of re-authentications

through OIDC can be limited. However, this increases the risk that a vault token can

be misused.

• Store vault tokens in an encrypted way, so that the security risk is minimized.

This is certainly the preferred way, but it requires that users manage the encryp-

tion/decryption of vault tokens in some way, which reduces usability.

We will compare the mytoken service we developed to htgettoken and oidc-agent in

section 5.2. We do not consider EGI FedCloud any further because of its security �aws.

24

3. Design

In this chapter we present the design of the mytoken service we developed. After pre-

senting the requirements, we describe the key concepts and endpoints of the mytoken

service.

3.1. Requirements

In this section we describe the requirements for the mytoken service that should be

developed.

The two main requirements are:

Command line usage The primary use case involves the command line. It should be easy

to obtain access tokens on the command line. The clear focus is on command line

usage; a web-interface for the mytoken service would be nice to have, but is optional

and out of scope of this thesis.

Machine independence It should be easy to obtain access tokens on any machine, for

example on a remote server or from a compute job.

These two requirements describe the basic idea behind the mytoken service: It should be

easy to obtain access tokens on the command line from any machine. Additionally, the

following requirements should be ful�lled by the mytoken service:

Security It is clear that this service is a security-sensitive application and attention should

be put on this topic.

Provider support The service should be a general service that can support di�erent

OpenID Providers (OPs). This means that it should not be a service speci�cally

tailored to work with one OP, but a service that works with any compliant OP.

Multiple providers per instance In addition to the previous point, a single instance of

mytoken should be able to support multiple OPs.

Configurability The service should be con�gurable by both administrators and users:

Deployment Administrators should be able to con�gure their deployed instance

according to their needs. In particular administrators are free to enable and

disable certain features and set security and privacy options according to their

policy.

User Users should be under full control of their tokens and how to create them.

25

3. Design

User-friendliness The service should be easy to use. This includes:

• Easy-to-use and clear interfaces

• Sensible default settings

Extensibility The service should be easily extensible, in particular it should be possible to

support additional ways to obtain tokens from the service.

Performance While performance is not a major factor, the mytoken service should still

be capable of handling a fair amount of tra�c.

High Availability While it was not a requirement to fully implement high availability, the

need for high availability should be considered and the service should be designed

in a way that it can easily support high availability.

Permissive open source license All source code should be publicly available under a per-

missive open source license.

Self-hostable Communities should be enabled to host their own instance of the service.

This also includes the relevant documentation.

3.2. Concepts

The central challenge that mytoken addresses is to provide a way to solve the long-running-

jobs problem in a way that security and usability both can be modeled in a sensible way.

The following concepts, especially the restrictions, are central for how mytoken addresses

security and usability.

3.2.1. Mytokens

From the requirements (section 3.1) it becomes clear that a user should be able to obtain

access tokens with a single token-like string. This is due to the prerequisite that users

should easily obtain access tokens from any machine. We call this single token-like string

a Mytoken and it is the central element of the mytoken service.

The mytoken is a new token type we introduce with the mytoken service. It is only

relevant to the mytoken service, i.e. it is only issued by mytoken instances and can only

be used there.

The mytoken is a signed JSON Web Token (JWT) that encodes the following attributes:

iss The URL of the entity that issued this token, i.e. the URL of the mytoken instance.

sub A string uniquely
1

identifying the entity this token is issued to, i.e. the subject of the

token. The subject string is de�ned as <oidc_sub>@<oidc_iss>.

exp The UNIX time stamp when this token expires. If the token does not expire exp is 0.

Mytoken computes the value from the restrictions attribute.

1
Unique within a mytoken instance.

26

3.2. Concepts

nbf The UNIX time stamp when this token can be used for the �rst time. Mytoken

computes the value from the restrictions attribute. A token can never be used before

it was issued (iat).

iat The UNIX time stamp when this token was issued.

jti A random and unique identi�er for this token. Mytoken uses Universally Unique

Identi�ers (UUIDs) for this purpose.

seq_no A sequence number. This is currently unused, but can be used in future work

(section 6.2) for rotating mytokens.

aud A URL identifying the audience of this token, i.e. where the token is indented to be

used. This is the URL of the mytoken instance.

oidc_sub The subject (sub) claim that is returned from the OP about the user for whom

this token is created.

oidc_iss The issuer URL (iss) of the OP from whom access tokens should be obtained.

restrictions A JSON array of restrictions (see subsection 3.2.3) for this token.

capabilities A JSON array of capabilities (see subsection 3.2.2) for this token.

subtoken_capabilities A JSON array of capabilities (see subsection 3.2.2). If set, other

mytokens created from this mytoken can only have these capabilities. (If not set

other mytokens created from this mytoken can only have the same capabilities as

the original token.)

Since a mytoken is a signed JWT that encodes all of this information, it is self-contained

and can be veri�ed with only the token. This means that any entity can check the content

of the token and see what they can do with this exact token while a mytoken instance

can verify that a mytoken can be used for a certain action. However, for full veri�cation

mytoken still needs to access the database to check that the token has not been revoked

and to verify some of the restrictions (i.e. how often the token was used previously).

While a self-contained mytoken can be useful for both users and the mytoken service,

the payload of the token is substantial. If multiple restriction clauses (see subsection 3.2.3)

are used, mytokens can become quite long. The length of a mytoken can be a problem

when it should be used at places where the input length is constrained. Web servers for

example commonly limit the size of request headers they accept. The apache and nginx
web servers for example have a header request limit of 8 KB by default [1, 35]. Of course

this can be adjusted, so it is possible for web servers to accept less (or more) bytes. However,

usually the request header limit of web servers is not a problem, but there might be cases

where a problem can arise from the limit. A much more relevant problem are input �elds

that have a much smaller limit, like password �elds. One can think of di�erent scenarios

where a token should be passed via a password �eld. For example there are e�orts in the

EOSC-synergy project to integrate HPC resources with OpenID Connect (OIDC) by using

OIDC tokens with ssh [4]. Such a token would be passed as a password. In this scenario a

27

3. Design

token larger than 1 KB is a much bigger problem than with https requests. Furthermore,

there might be other use cases with much bigger input constrained, i.e. allowing much

less characters.

As stated, the length of a mytoken is directly proportional to its payload, but the token

length also depends on the signature length which in turn depends on the signature

algorithm. An RSA based signature using a 4096 bit key, also has a signature length of 4096

bit, which equals 512 bytes without any encoding. However, mytoken supports di�erent

signature algorithms. But even for elliptic-curve based signature algorithms that produce

rather short signatures, the total length of a mytoken can easily exceed 1024 bytes.

Therefore, we decided to have di�erent token types for mytokens. Normally a mytoken

is a signed JWT which is quite large. But a mytoken can also be returned either as a short
token or as a transfer code.

Short Tokens A short token behaves exactly like a normal mytoken. It can be used

everywhere where a JWT mytoken can be used. For all matters, a short token is the same

as a normal mytoken. However, the only di�erence is that a short token is not a signed

JWT but an opaque random string that is much shorter. The length of a short token can

be con�gured by the administrator of the mytoken instance and defaults to 64 characters.

Internally a short token is mapped to a JWT mytoken.

Transfer Codes A transfer code is an even shorter string (default 8 characters) that can

be used to transfer a mytoken from one machine to another or at places that have input

constrains, so that even a short mytoken would be too long. A transfer code cannot be

used in the same way as a normal mytoken or a short mytoken. It can only be used for

exchange into a mytoken. The transfer code is a one-time code, i.e. it can only be used

once, and is only valid for a limited amount of time (default is 5 minutes). For example it

can be used to transfer a mytoken that was created on one machine to another machine

when other ways of transferring (e.g. copy-pasting) are not suitable. Because the transfer

code is so short it can easily be typed without the need to copy it.

In mytoken we introduced the mytoken as the only new token (with the three inter-

nal types that we just described), but this token can be used for di�erent actions using

capabilities which we explain in the next section.

3.2.2. Capabilities

Mytoken capabilities are similar to OIDC scopes because they de�ne what can be done

with a token. Therefore, capabilities restrict the power of a mytoken. This is true, because

only well de�ned actions related to capabilities can be done with that token. However, the

capabilities do not restrict the token in the same sense as the restrictions, this becomes

clear when looking at the default behavior: A mytoken without any restrictions de�ned is

unrestricted and can be used "as normal". A mytoken without any capabilities de�ned is

useless because it cannot be used for any action (all actions require some sort of capability).

28

3.2. Concepts

We want to point out that - because it does not make sense - there is actually no way to

obtain a mytoken without a capability.

In the following we list the de�ned capabilities and the related actions:

AT This capability allows to obtain an OIDC access token from the mytoken access token

endpoint. Since the primary focus of the mytoken service is to provide access tokens

to applications this is the standard action. Therefore, the AT capability is the default

value when a user does not request speci�c capabilities.

create_mytoken This capability allows the creation of new mytokens from an existing

mytoken. This allows users to have long living mytoken with that capability that

can be used to create additional more restricted mytokens that then can be passed to

other applications when they need to obtain access tokens.

tokeninfo_introspect This capability allows querying the mytoken tokeninfo endpoint

for basic information about the token. This information includes the validity of the

token, the information encoded in the token itself, as well as some usage information,

i.e. if the token has restrictions regarding the number of usages, information how

often it was already used are included. Obtaining the information encoded in the JWT

mytoken from the tokeninfo endpoint can be useful when an application only holds

a short token instead of a JWT and therefore cannot decode the token itself. This

capability is a very basic capability and should generally be included in mytokens.

tokeninfo_history This capability allows querying the mytoken tokeninfo endpoint for

the event history of the mytoken. The event history includes entries such as token

creation or when the token was used to obtain an access token.

tokeninfo_tree This capability allows querying the mytoken tokeninfo endpoint for a

list of mytokens that were created from the presented mytoken. More precisely it

returns a tree of subtokens.

list_mytokens This capability allows querying the mytoken tokeninfo endpoint for a list

of all mytokens of the user. This capability should only be used for a token if there

are good reasons. However, we want to point out that the list of mytokens returned

for the list_mytokens and also for the tokeninfo_tree actions does not contain any

actual mytoken, only meta-information about the tokens, e.g. the name of a token.

Rather, it is the case that it is impossible for the mytoken service to return the actual

mytokens, because it does not store them (see section 4.1).

3.2.3. Restrictions

In section 2.2 we motivated the property of refresh tokens being bound to a speci�c client

so that they cannot be passed around, reducing the risk that a stolen refresh token could

be used by an attacker. From the requirements it becomes clear that the mytoken service

should provide a refresh token like token that can be used to obtain access tokens, but

contrary to refresh tokens can be passed around. We already mentioned that we called

these tokens mytokens in our service. However, if mytokens are just "refresh tokens

29

3. Design

that can be passed around", we work around that security property of refresh tokens and

render it useless. Therefore, it is fundamentally important that mytokens can be restricted

properly to meet security requirements on the one hand, but also usability requirements

on the other hand. We decided to give users the possibility to restrict their mytokens in

di�erent ways, combining all of them in what we call restrictions.

We stated that the long-running-jobs problem could be easily solved by letting clients

request access tokens with a certain lifetime. We like that approach and decided to o�er that

possibility with mytokens. So one dimension in which users can freely restrict mytokens

is time. But mytokens can also be restricted with regards to usage location and number of

usages, all under the full control of the user.

As stated in subsection 3.2.1 each mytoken has a restrictions property. This property

describes the restrictions of that mytoken. It is a JSON array containing none, one, or

multiple restriction clauses. A restriction clause is a JSON object that can have any number

and combination of the following restriction properties:

nbf The mytoken cannot be used before this time. nbf and exp de�ne the time-span within

which the token can be used.

exp The mytoken cannot be used after this time. nbf and exp de�ne the time-span within

which the token can be used.

scope Access tokens obtained through this mytoken can only have these scopes.

audience Access tokens obtained through this mytoken can only be used at these audi-

ences.

ip This mytoken can only be used from these ip addresses. It is possible to use single ip

addresses or subnet addresses. When requesting a mytoken the special value this
can be used and will be replaced automatically with the requester’s ip address.

geoip_allow Mytoken uses an ip geo-location database to locate the country from which

the request was sent and only allow it if the country is included in this allow list.

geoip_disallow Mytoken uses an ip geo-location database to locate the country from

which the request was sent and reject it if the country is included in this disallow

list.

usages_AT Restricts how often this mytoken can be used to obtain an access token.

usages_other Restricts how often this mytoken can be used for actions other than obtain-

ing an access token.

As stated, a restriction clause can include any number and combination of these prop-

erties. A restriction clause will only match (i.e. the operation is allowed) if all of the

properties inside the clause match. Logically speaking, the elements inside a restriction

clause are ANDed. On the other side all restriction clauses of a mytoken are ORed, i.e. if

one restriction clause matches, the operation is allowed. As stated earlier, the exp and nbf

30

3.2. Concepts

attributes of a mytoken are computed from its restrictions. For nbf the earliest nbf value

of all restriction clauses is used, for exp the latest exp value, respectively. If there is at

least one restriction clause that does not include a nbf value, the mytoken must be usable

as soon as issued, so nbf for the mytoken is set to iat. Similar, a mytoken does not expire,

if it has at least one restriction clause without an exp value.

{
"exp": 1620216000,
"geoip_allow": ["de"],
"scope": "openid profile",
"usages_AT": 1

}

Listing 3.1: Example restriction clause

A possible restriction clause can be seen in Listing 3.1. With this clause the mytoken

can only be used a single time to request an access token with the openid profile scope,

only before 2021-05-05 14:00, and only from locations within Germany. Please note that in

this example the number of access token requests is limited (only a single request), but the

number of other requests is not limited, since the usages_other property is not used. To

disallow other usages one has to include

"usages_other": 0,

in the restriction clause.

By combing multiple restriction clauses, users can create complex, but �exible restric-

tions. The restriction displayed in Listing 3.2 has three restriction clauses and the associated

mytoken can be used if any of these clauses matches. Therefore, it can be used in any of

these three cases:

a) From 2021-05-30 14:00 until 2021-05-31 14:00, from the ip 142.42.42.42 and the subnet

142.142.142.0/24, to obtain a single access token with the submit-job scope and the

https://hpc.example.com audience.

b) From 2021-05-30 14:00 until 2021-05-31 14:00, from the subnet 142.142.142.0/24, to

obtain a single access token with the storage.read scope and the https://storage.
example.com audience.

c) From 2021-06-02 14:00 until 2021-06-05 14:00, from the subnet 142.142.142.0/24, to

obtain multiple access tokens with the storage.write scope and the https://storage.
example.com audience.

If a user knows that a compute job will be started within the �rst day and that it will run

for three to six days, a mytoken with that restriction could easily be used when starting

the job. Restriction clause a) allows the user to submit the compute job; the necessary

access token can be obtained from the user’s machine (142.42.42.42) or from within the

31

https://hpc.example.com
https://storage.example.com
https://storage.example.com
https://storage.example.com
https://storage.example.com

3. Design

job submission system (142.142.142.0/24). Then, when the job starts, it can obtain an

access token to download some data; this is allowed by restriction b). Restriction c) allows

to write back the results between three and six days later.

Our �exible restriction approach gives users full control over their mytokens. They can

adjust the restrictions exactly to their needs and create complex, tailored solutions, like

described in the example. This allows them to restrict the mytoken as much as possible,

thereby reducing risks of token abuse, while still allowing operations relevant for the

legitimate use.

On the other hand, less advanced users do not have to use the full potential of the

restrictions. They still can use one basic restriction clause that can be easily constructed,

but already gives substantial security bene�ts.

3.3. Endpoints and Operations

In this section we describe the endpoints of the designed mytoken service.

3.3.1. Configuration Endpoint

In OIDC each OP has a con�guration endpoint. The URL of this endpoint is constructed by

appending /.well-known/openid-configuration to the issuer url. This endpoint returns

metadata for that OP, e.g. which scope values are supported, but also the URLs of all the

other endpoints; therefore, it is useful for discovery.

In a similar fashion, we designed a con�guration endpoint for the mytoken service. The

URL of this endpoint is constructed by appending /.well-known/mytoken-configuration to

the instance’s issuer url. The mytoken con�guration endpoint returns similar information

as the OIDC con�guration endpoint, however, it is adapted for the mytoken service.

Information returned from this endpoint includes URLs for all the other endpoints as

well as information about the supported features, OPs, and operations that can be done.

Generally, the con�guration endpoint helps clients to discover the other endpoints and

available features on the mytoken instance. An example of a mytoken con�guration

endpoint response can be seen in Listing A.2.

3.3.2. Mytoken Endpoint

Propapbly the two most important endpoints of mytoken are the mytoken endpoint and

the access token endpoint (subsection 3.3.3). The access token endpoint (next section) is

properly the most used endpoint. The mytoken endpoint which we present now, on the

other hand is the most versatile endpoint, because it can be used in many di�erent ways.

As the name indicates the mytoken endpoint is used to obtain a mytoken token from

the mytoken server. This is true for all (successful) requests to the mytoken endpoint.

However, as stated, there is some �exibility. This �exibility comes for the request as well

as the response.

The �nal successful response always contains a mytoken. However, in subsection 3.2.1

we introduced the di�erent representations of a mytoken, which all can be requested

32

3.3. Endpoints and Operations

from the mytoken endpoint. Hence, the service will return the token either as a JWT (the

default), as a short token, or as a transfer code.

On the request side there is more �exibility, because there are di�erent ways to obtain a

mytoken, which all require some sort of authorization. However, there are multiple ways

for this authorization. In accordance with OIDC we called this "ways of authorization"

grant types. In the following we describe these grant types and how they are used:

OIDC Flow The basic grant type is using an OIDC �ow. Each user has to do this at least

once, because it is the only way
2

for the mytoken service to obtain the required refresh

token from the OP. A request with this grant type does not immediately receive a mytoken,

because the OIDC �ow has to be done �rst. Generally, the mytoken service �rst returns a

URL that can be used to start the OIDC �ow.

When the application that started this �ow is a native application, i.e. not a web service,

it also receives a polling code. Mytoken implements a �ow that is similar to the OIDC

device �ow. This means that the returned polling code can be used by the native application

to poll the mytoken service for the mytoken token and eventually receive it. For services

on the web this is not required and they will receive the mytoken directly after the last

redirect of the authorization code �ow (subsection 2.2.3.1).

The OIDC �ow grant type only supports the authorization code �ow, because we

believe that this is enough. Through the use of polling codes we implemented a way that

behaves similar to the device �ow for native applications to obtain mytokens also for the

authorization code �ow. Therefore, the device �ow which is supported by less OPs is not

needed. However, we designed it in way that it can be easily extended with other OIDC

�ows, should there be demand.

Polling Code Native applications can obtain a polling code when initiating the autho-

rization code �ow. This �rst request does not return the mytoken, but only the URL to

start the OIDC �ow and a polling code for the application. Using this code the application

can poll the mytoken endpoint. Similar to the device �ow, the mytoken service returns a

message indicating that authorization is still pending while this is the case. When mytoken

receives a refresh token from the OP after the authorization code �ow was completed and

the mytoken token was created, the next polling request will receive the mytoken.

Transfer Code Transfer codes returned from the mytoken endpoint or transfer endpoint

(subsection 3.3.4) can be exchanged into a mytoken. A request using the transfer code

grant type is very simple, because it simply exchanges the transfer code for the associated

stored mytoken.

Mytoken With the mytoken grant type, a mytoken token with the create_mytoken
capability can be used to create a new mytoken. This is useful, because it allows users to

easily create multiple mytokens, so that a mytoken can be created and passed to another

2
In a possible future extension mytoken could also use the token exchange �ow to obtain a refresh token

from a presented access token. However, we decided to not implement this at the moment, because

many OPs do not support token exchange and we want mytoken to be as general as possible.

33

3. Design

application, e.g. to submit a compute job, but it does not require the user to do an OIDC

�ow again.

Mytokens created from another mytoken cannot be more powerful than the mytoken

they were created from. This is an important security property, so that token privileges

cannot be escalated. On the contrary, it is possible to restrict a mytoken further. This

allows users to have a rather powerful "master" token from which they can create other

more restricted mytokens that can then be passed to other applications or machines.

Finally, when a mytoken " is created, it is possible to specify a set of capabilities as

subtoken_capabilities. Any mytoken created from " can only have capabilities that are

included in this set.

Consider the following mytoken "? :

{
"capabilities": ["create_mytoken"],
"subtoken_capabilities": ["AT", "tokeninfo_introspect"],
"restrictions": [
{
"usages_AT": 5

}
],

}

This token "? can create other mytokens with the AT and tokeninfo_introspect capa-

bilities. It can create tokens with these capabilities even tough the token "? itself does

not have them, because they are listed as subtoken_capabilities. Note also that "? has a

restriction that restricts the number of access tokens that can be obtained to 5. However,

because "? does not have the AT capability it is not possible at all to obtain an access

token with "? itself. This restriction is still reasonable, because the mytokens created

from "? will inherit it. Using this pattern, a user can create a token "? that can be used to

create mytokens which can only be used �ve times for obtaining access tokens. If multiple

mytokens are created from "? , each one can obtain up to �ve access tokens.

Of course it is also possible to specify additional restrictions for the newly created

mytoken. The following restriction would be accepted by the mytoken service for a

mytoken created from "? :

{
"usages_AT": 1,
"scope": "openid profile email"

}

However, a restriction that contains only the part with the scope and does not include any

restriction for usages_AT would not be accepted by the mytoken service, because the

requested restriction is not tighter than the restriction of "? . The restriction is not tighter,

because "? is restricted with usages_AT while this is not the case for the requested

restriction. In this simple example it would be possible to combine the restrictions of

"? with the requested restrictions and merge them together, but generally this is not

34

3.3. Endpoints and Operations

possible, especially when there are multiple restriction clauses. Therefore, mytoken does

no automatic merging, but will either use the original restriction or fail with an error
3
.

3.3.3. Access Token Endpoint

The access token endpoint returns an OIDC access token when a valid mytoken is presented.

The mytoken service checks the mytoken and uses the associated refresh token to obtain

a new access token which is then returned to the client. The "refreshing" of access tokens

via a mytoken is quite similar to refreshing via a refresh token.

It is possible to request access tokens with speci�c scopes and audiences from the access

token endpoint. However, naturally the requested scopes and audiences must be permitted

by the used mytoken.

3.3.4. Transfer Endpoint

We already mentioned, that one can obtain a transfer code from the mytoken endpoint

instead of the created mytoken. This can be useful if one wants to create a new mytoken

on one machine, but needs to use it on another; then the user can directly obtain a transfer

code for that token and use that code on the other machine to obtain the actual mytoken.

There are also cases where users may want to transfer an already existing mytoken.

This can be done using the transfer endpoint. A request to it must contain the token that

should be transferred. The mytoken service then creates a transfer code for the token,

stores the token in an encrypted way, and returns the transfer code. To obtain the token

(on the other machine) the transfer code can be exchanged at the mytoken endpoint.

3.3.5. Revocation Endpoint

Long-lived credentials such as refresh tokens and mytokens must be revocable. For this,

the mytoken service provides a revocation endpoint where any token issued by the service

can be revoked. Mytokens can be sent as JWTs or as short tokens - since short tokens

can be used just like JWT mytokens. After sending a token to the revocation endpoint,

it will be revoked and cannot be used anymore. When revoking a mytoken that was

used to create other mytokens (subtokens), it is possible to only revoke the send token

or to additionally revoke all subtokens (recursively). Even though transfer codes are not

long-lived and have a very limited lifetime, these are also revocable.

3.3.6. Tokeninfo Endpoint

The tokeninfo endpoint can be used to obtain various information about a mytoken. The

endpoint supports di�erent actions, each requiring its own capability. We already described

these actions when we introduced the available capabilities in subsection 3.2.2.

3
The default is to use the original restriction, but one can request that an error should be returned instead.

35

3. Design

[
{

"nbf": 1622376000,
"exp": 1622462400,
"scope": "submit-job",
"audience": [

"https://hpc.example.com"
],
"ip": [

"142.42.42.42",
"142.142.142.0/24"

],
"usages_AT": 1,
"usages_other": 0

},
{

"nbf": 1622376000,
"exp": 1622462400,
"scope": "storage.read",
"audience": [

"https://storage.example.com"
],
"ip": [

"142.142.142.0/24"
],
"usages_AT": 1,
"usages_other": 0

},
{

"nbf": 1622635200,
"exp": 1622894400,
"scope": "storage-write",
"audience": [

"https://storage.example.com"
],
"ip": [

"142.142.142.0/24"
],
"usages_other": 0

}
]

Listing 3.2: A restriction with multiple restriction clauses

36

4. Implementation

In this chapter we describe some important and interesting aspects of the implementation

of the mytoken service. Please note that we only cover some aspects of the implementa-

tion in this chapter, but everything described in the previous chapter was implemented

accordingly.

The full implementation of the mytoken server can be found at https://github.com/
oidc-mytoken/server and the command line client at https://github.com/oidc-mytoken/
client.

We implemented both the server as well as the command line client using the Go
programming language [25]. Go has great concurrency- and cross-platform-support. This

enables us to easily provide our software for multiple platforms. This is especially useful

for the client, since it needs to run on large variety of operating systems. The server

builds on the fiber web framework
1

which o�ers good tooling and great performance. A

performance benchmark has been added in Figure A.1.

4.1. Encryption of OpenID Connect Tokens

One important implementation aspect is the encryption of OpenID Connect (OIDC) tokens,

especially refresh tokens. The central design decision regarding token encryption was

to store refresh tokens in a way that they can only be accessed when needed and when

appropriately authorized. This means that the refresh tokens need to be stored in an

encrypted way in the database and that they can only be decrypted on the user’s demand.

This adds an additional layer of security. Even if an attacker gets full access to the database,

the stored tokens cannot be abused, because they cannot be decrypted. In particular

even administrators are not able to decrypt the stored refresh tokens. If an administrator

could do this, they could use the refresh token together with the client credentials and

impersonate any user. Therefore, the encryption of refresh tokens is a security measure

against outside and insider attacks. However, mytoken still must be able to decrypt the

refresh token, when a user requests a new access token to ful�ll the request.

Implementing this feature had big impacts on the whole implementation and some

design decisions. Therefore, we detail the used concepts and implications in the following.

From the previous description of this feature we can formulate two requirements:

• Decryption must not be possible with full access to the database.

• Decryption must be possible on user’s request.

1https://gofiber.io/

37

https://github.com/oidc-mytoken/server
https://github.com/oidc-mytoken/server
https://github.com/oidc-mytoken/client
https://github.com/oidc-mytoken/client
https://gofiber.io/

4. Implementation

From these two requirements it becomes clear that only the user’s request allows de-

cryption, i.e. the user must provide the necessary information for decryption. Also, this

information must not be stored in the database.

Since the �ow to obtain access tokens from a mytoken server is very simple, the only

suitable piece of information is the mytoken itself. The straightforward approach would

be to use the mytoken directly as the decryption key
2
. This means that the refresh token

' is encrypted with the mytoken " when it is obtained and the mytoken is created. We

denote the encryption of a token) with an encryption key as � (),). The encrypted

refresh token '2 := � (',") is stored in the database (linked to the mytoken "), but the

actual mytoken " is not stored (only its metadata, such as the token id). On access token

requests the mytoken server uses the mytoken from the request to decrypt the encrypted

refresh token and uses that to obtain an access token.

While this approach is simple and clean, it is not suitable in our case: When a mytoken

"? is created through an OIDC �ow the server receives a refresh token '. This refresh

token is linked to the created mytoken "? and is required for obtaining access tokens. If a

new mytoken "= is created from the mytoken "? , "= still needs a linked refresh token

to be able to obtain access tokens later. Because no OIDC �ow is performed, the refresh

token cannot be obtained from the OpenID Provider (OP)
3
. Therefore, the new mytoken

"= must use the same refresh token ' as its parent "? . Linking the refresh token ' to "=

can be implemented in two ways:

Link by reference This means that "= is linked to '2,? := � (',"?) - an encryption of '

that was created with "? . Therefore, "= cannot be used to obtain access tokens

when it is linked to '2,? because '2,? cannot be decrypted with "=. Consequently,

this approach is infeasible.

Link by value This means that '2,? is temporarily decrypted using "? in order to create

"= . '2,? will not be changed and remains stored in the database linked to "? . The

decrypted refresh token ' is then also encrypted using "= and stored linked to "= .

Consequently, there are two ciphertexts of ' stored in the database: '2,? := � (',"?)
and '2,= := � (',"=). This allows that both tokens "? and "= can be used to obtain

access tokens; both can decrypt their own ciphertext of the refresh token '.

While this works perfectly �ne for everything presented so far, it still is not perfect.

This implementation has a problem when the refresh token changes. While this may not

yet be commonly observed, the speci�cation allows it. Furthermore, OPs are encouraged

by security researches to implement token rotation, i.e. each refresh token can only be

used once and the response contains a new refresh token. If an OP implements token

2
Actually it is not directly used as the decryption key. It is more used as a decryption "password" from

which the actual key is derived. However, we omit this detail here and in the following and refer to it

directly as the encryption / decryption key for better readability.

3
With token exchange the mytoken server could obtain a new refresh token for the new mytoken, so that

each mytoken has a dedicated refresh token linked. This would solve the in the following introduced

update-problem, but would introduce a similar problem when doing a recursive mytoken revocation.

Furthermore, token exchange is not widely supported and we do not wan to require it for this basic

feature.

38

4.1. Encryption of OpenID Connect Tokens

rotation or a refresh token changes for other reasons, the above explained implementation

of refresh token encryption is not su�cient. Since "? and "= both use the same refresh

token ', the ciphertexts must be updated for both when ' changes. However, while it is

possible to discover that there are other copies of the same refresh token stored (to do so,

one would additionally store a hash value of the refresh token), there is no way to update

the other copies correctly
4
. (By correctly we mean that they can be decrypted with the

mytoken they are linked to.)

To also support this case where an encrypted refresh token changes, a di�erent im-

plementation strategy is required. We therefore adapted the strategy, described above,

slightly by combining it with the link-by-reference approach:

Using dedicated encryption keys Only one ciphertext '2 of a refresh token ' is stored

in the database. This copy is linked to all mytokens that use it ("? and "= in the

above example). The refresh token ' is encrypted with a dedicated encryption key

created by the mytoken server, therefore '2 := � (',). The encryption key is then

encrypted with the mytoken (for each linked mytoken). This means that when "? is

created, the refresh token ' is obtained from the OP, it is encrypted with a freshly

created encryption key , the encryption key is encrypted with the mytoken "? ,

and the ciphertexts '2 := � (',) and 2,? := � (,"?) are stored in the database.

When the mytoken"= is created, the encrypted refresh token '2 is not needed. Only

 2,? is decrypted using "? , which gives that is then encrypted with "=. At the

end 2,? remains stored unchanged and 2,= is stored linked to "= .

This allows that both tokens "? and "= can decrypt their copy of the encryption key

and then decrypt the refresh token when needed. Also, if the refresh token changes, it can

be easily updated by any of the linked mytokens. A mytoken " just updates the refresh

token cipher '2 := � (',) using the encryption key which is shared by all mytokens

linked to the same refresh token. This approach is visualized in Figure 4.1.

When mytoken creates a short token (subsection 3.2.1) it uses a JSON Web Token (JWT)

mytoken internally and maps it to a random string - the short mytoken. This allows

mytoken to handle short and long mytokens in just the same way. When a short mytoken

is used the mytoken server just has to get the linked JWT mytoken from the database.

Therefore, mytoken still uses the JWT mytoken as an encryption key. However, because of

this fact, the JWT cannot be stored in plaintext in the database. Therefore, the short token

(is used to encrypt the long mytoken as "2 := � (", (). This is visualized in Figure 4.2a.

When a native client application initiates the authorization code �ow to obtain a myto-

ken, it cannot obtain the mytoken directly. For web applications this is di�erent; these

receive the mytoken at the end of an http redirect. Since we cannot redirect to a native

application, these receive the mytoken through polling. For this purpose the application

receives a polling code from the mytoken server when it starts the �ow. As there will be

some time gap between the creation of the mytoken and the time when the application

4
Assuming symmetric encryption. Asymmetric cryptography would be a solution for this particular

problem, but is generally not suitable.

39

4. Implementation

Figure 4.1.: Storing an encrypted refresh token with multiple linked mytokens

successfully polls, the mytoken must be stored. Since the mytoken is used as an encryption

key it cannot be stored in plaintext. This is analog to the previous case with a short token.

Using the same straightforward approach, the mytoken server uses the polling code % to

encrypt the mytoken " , so that "2 := � (", %) can be stored in the database. This is also

visualized in Figure 4.2b.

The last case is only secure
5
, if the polling code is not stored in the database, in which

case it could easily be used to decrypt the linked mytoken and allow access to the linked

refresh token.

In a similar fashion, we also must ensure that the data stored in the database is not

enough to re-create the JWT mytoken. If all data encoded in the JWT are stored in the

database, an administrator with access to the private key used for signing the mytokens

could easily create any mytoken from the stored data.

We solve both problems using the same technique. The root of the problem is that

mytoken needs a reference from one piece of information to another (i.e. the mytoken

id must be linked to the other token properties), but at the same time the information

cannot be stored as it is, because that would allow decrypting sensitive information. We

can elegantly solve these problems by using a cryptographic hash function. Instead of

storing the original data (e.g. the token id) mytoken only stores a hash value of it. This

5
By secure we mean that it ful�lls our requirement that no one with full database access can decrypt

refresh tokens.

40

4.1. Encryption of OpenID Connect Tokens

(a) Storing an encrypted refresh token with a

linked JWT mytoken and a linked short my-

token

(b) Storing an encrypted refresh token with a

linked JWT mytoken and a linked polling

code

Figure 4.2.: Storing encrypted refresh tokens with mytokens, short tokens, and polling

codes

way it is impossible
6

to recreate the original value from the hash value, i.e. to obtain the

decryption key. But when the user presents the original data (e.g. the mytoken JWT with

the encoded id) that can be used to obtain the hash value and match it to the stored data.

Mytoken uses these technique multiple times; as stated it is used for polling codes as well

as mytoken ids. When it comes to polling codes, mytoken also stores other information

that must be linked to the polling code (e.g. the OIDC state). The same implications apply

here, so that mytoken only stores a hash value of the state value. However, the state

and polling code must be linked in a way that the polling code can be created from the

state. This is necessary, because the mytoken is created after the code exchange step of

the authorization code �ow, at this time the mytoken server does not have access to the

polling code to encrypt the mytoken. However, if the polling code can be created from the

state (which mytoken has access to on code exchange) this problem can be solved.

Since mytoken already stores the hash of the state in the database, this value cannot

be used as the polling code. So instead another way to create the polling code from the

state value must be used. There are multiple ways to do so, we decided to create the

polling code as a Message Authentication Code (MAC) from the state, in particular we use

a Hash-based MAC (HMAC). Figure 4.3 visualizes the storage of the hashed values in the

database and how all of these values are linked.

The encryption of refresh tokens in a way that not even administrators can decrypt them

is a nice and desirable feature. But, it also should have become clear, that this seemingly

6
To be more precise: For a cryptographic hash function � and a probabilistic polynomial time adversary

A, the probability Pr[- ′← A(� (-), 1:) : � (-) = � (- ′)] that A breaks the pre-image resistance of

� is negligible.

41

4. Implementation

Figure 4.3.: Storage of hashed secrets in the database

easy to implement feature is more complex than it seems to be and the implementation

impacts other features such as short tokens, polling codes, and token revocation.

4.2. High Availability

We designed and implemented the mytoken service in a way that it can support high

availability. In the following we refer to the mytoken service as frontend and the database

as backend. It is possible to deploy multiple frontends with the same con�guration on

di�erent machines. If they connect to the same database (and use the same con�guration,

e.g. issuer URL), users can connect to any frontend instance. Every frontend instance is

perceived as the same mytoken instance from a user perspective. Each frontend instance

may fail at any time without an e�ect on the other frontends. No state is held in the

frontend instances, only in the database. As long as there is at least one frontend instance

available, the service as a whole is operational.

It is also possible to deploy multiple backends. However, the frontend does not handle

synchronization, this must be done by the backends. Mytoken expects that it can read and

write to any backend. One can deploy mytoken with multiple frontends each connecting

to one backend node (Figure 4.4a) or to multiple backends (Figure 4.4b). If a frontend

42

4.2. High Availability

has multiple backend nodes con�gured it will cycle through them when accessing the

database. If a backend node fails (Figure 4.4d), the frontend does no longer consider it

in the round-robin until it comes back. The frontend is able to handle failed backend

nodes and will try to reconnect to a failed node until it comes back. If a frontend is only

connected to one backend and that backend fails (Figure 4.4c), the frontend can no longer

operate as expected. A load balancer should then exclude this frontend node from load

balancing; however, additional logic is required, to discover this case.

(a) High availability setup with one backend

per frontend

(b) High availability setup with multiple back-

ends per frontend

(c) Backend failure in a high availability setup

with one backend per frontend

(d) Backend failure in a high availability setup

with multiple backends per frontend

Figure 4.4.: High availability setups with dedicated backends for each frontend and fron-

tends connect to all backends

However, we recommend running mytoken not with dedicated backends per frontend,

but connecting each frontend to all backend nodes. This way each backend and frontend

might fail independently and the service is still operational if at least one frontend and

one backend are up.

As already stated the mytoken frontends expect that they can write to any backend

node and that the database handles replication. Such a multi-master replication is provided

by the Galera Cluster[38] for MySQL7
and MariaDB8

. We veri�ed that mytoken works

with the Galera Cluster and MariaDB. We found both, independent frontends as well as

independent backends, working as expected.

7https://www.mysql.com/
8https://mariadb.com/

43

https://www.mysql.com/
https://mariadb.com/

4. Implementation

4.3. Command Line Client

We implemented a command line client which is also called mytoken. The client can be

used to easily obtain mytokens and access tokens from a mytoken server. The mytoken

client can also manage the obtained mytokens.

In the following we shortly cover the most important features of the mytoken client by

describing the three most used commands.

4.3.1. Storing Mytokens

Using the MT store command, the mytoken client obtains a mytoken and stores it in an

encrypted way. Mytokens obtained with the MT store command are managed by the

client and not displayed to the user. Users can con�gure the encryption of mytokens: They

can either use a GPG-key to encrypt the token using the user’s gpg-agent9
, or alternatively,

a password may be used to encrypt the token with AES256.

A mytoken can be obtained from an existing token or by performing an OIDC authoriza-

tion �ow. If a mytoken is used to generate a new one, it can be passed via the command

line (not recommended), stdin, a �le, or an environment variable; it is also possible to use

a mytoken managed by the client. The examples in subsection 4.3.2 and subsection 4.3.3

use a passed and already stored mytoken, respectively. The following example command

line starts an OIDC �ow to obtain a mytoken. The new mytoken is encrypted and stored,

associated with the name "master".

mytoken MT store --oidc --usages-at=5 --ip=this --exp=+1d master

The mytoken stored with this command can then be easily used with the mytoken client.

The example for obtaining access tokens will cover this.

It can be seen from the above command line that restrictions for the mytoken can be

passed via command line options. In this example the number of times that an access

token can be obtained is restricted. Furthermore, it can only be used from the same ip

address where it was requested, and it expires after one day. The command line options

that take a time value accept the following date speci�cations:

Numeric UNIX Timestamp This is the way in which mytoken handles the date values on

the Application Programming Interface (API). However, for users this is mostly not

suitable.

Absolute Time Passing the time as a formatted string (e.g. "2021-05-05 14:00") is much

more user-friendly than passing it as a UNIX timestamp. This way can be used if the

token should expire at (or not be usable before) a given point in time.

Relative Time A relative time value must be pre�xed with "+", e.g. "+1d6h30m". This is

probably the most useful method, since it allows users to create tokens that are valid

for a given time, rather than valid until a given time. It is also the most useful method

for usage in scripts.

9
https://gnupg.org/

44

4.3. Command Line Client

4.3.2. Obtaining Mytokens

The MT command is used to obtain a mytoken. Here, by "obtaining" we denote obtaining

a mytoken from the mytoken server and returning it to the user. The obtained mytoken

will not be managed by the mytoken client.

The following command line obtains a mytoken from an existing mytoken that was

previously stored in a �le (by the user).

mytoken MT --MT-file=/tmp/mt --restrictions=/tmp/restrictions
--token-type=short↩→

In the above command the mytoken is requested as a short mytoken using the --token-
type option. In the example in the previous section, speci�c command line arguments,

such as --exp or --usages-at have been used to specify restrictions for the mytoken. In

the above example, the --restrictions option is used. This requires users to specify their

restrictions as JSON which allows more complexity. The JSON restriction can then be

either passed directly to the option, or via a �le as it is the case in this example.

By default, the returned mytoken is simply displayed to the user, but it is also possible

to write it to a �le. But it then is still not encrypted; it is the user’s responsibility to

handle mytokens securely, if they are only returned and not stored / managed by the client

application.

4.3.3. Obtaining Access Tokens

Obtaining access tokens from the command line is obviously an important feature of the

mytoken client. If a user has con�gured a default OP and a default mytoken for that OP,

obtaining an access token using these parameters is as easy as:

mytoken AT

A more complex example is:

mytoken AT -i wlcg -t master -s openid -s profile --aud="https://example.com"

Both of the just presented commands use a mytoken stored and managed by the client. In

the �rst example the default token for the default OP is used. In the second example the

OP (wlcg) and mytoken (master) are explicitly passed, as well as the scopes and audiences

for the access token that should be obtained.

The obtained access token is printed out to the terminal by default, but it can also be

saved in an environment variable or �le.

45

5. Evaluation

In this chapter we evaluate the developed mytoken service and command line client against

the requirements and other related software.

5.1. Fulfillment of Requirements

In this section we revisit the requirements from section 3.1 and evaluate if and to which

extend mytoken ful�lls these.

The two main requirements were:

Command line usage The mytoken client interacts with the mytoken server and enables

users to easily obtain mytokens as well as OpenID Connect (OIDC) access tokens on

the command line. Furthermore, the implementation of a device �ow like �ow using

polling codes enables usage of the mytoken client on any (command-line capable)

device, since the authorization can be done on another device. A web-interface for

the mytoken service was out of scope of the thesis. Mytoken has a web-interface

which o�ers similar features as the command line client. This web interface is not

part of the thesis and was developed at the Steinbuch Centre for Computing (SCC).

Machine independence Mytokens can be used on any machine to obtain access tokens

and can be easily transferred from one machine to another.

The other requirements were:

Security When developing mytoken, security was prime goal. Mytoken uses approved

algorithms like AES256, SHA512, and ES512 from Go’s standard cryptographic

library. We also implemented the encryption of the stored refresh tokens in a way

that they cannot be decrypted without access to the linked mytoken (section 4.1).

Provider support Mytoken was developed to support a wide range of OpenID Providers

(OPs). We decided to build on core OIDC features like the authorization code �ow

and refresh �ow and not rely on more advanced but not widely supported features

like token exchange. However, the restriction of access tokens with an audience is

only supported for OPs that implement this feature. We tested the mytoken service

with multiple OPs, among these INDIGO IAM
1
, EGI Check-in

2
, KIT

3
, HIFIS

4
, and

Google
5
.

1https://wlcg.cloud.cnaf.infn.it/
2https://aai-dev.egi.eu/oidc/
3https://oidc.scc.kit.edu/auth/realms/kit
4https://login.helmholtz.de/oauth2
5https://accounts.google.com/

47

https://wlcg.cloud.cnaf.infn.it/
https://aai-dev.egi.eu/oidc/
https://oidc.scc.kit.edu/auth/realms/kit
https://login.helmholtz.de/oauth2
https://accounts.google.com/

5. Evaluation

Multiple providers per instance A single instance of mytoken can support multiple OPs.

The demonstration instance of mytoken
6

currently supports EGI Check-in and an

INDIGO IAM instance for WLCG.

Configurability Both users and administrators can con�gure there side:

Deployment Administrators can con�gure the deployed instance according to their

needs. In particular administrators are free to enable and disable certain features,

like short tokens or transfer codes. They can also set security and privacy

options according to their policy; this includes for example the length of codes

and short tokens or the signature algorithm used for token signing.

User When a user creates a mytoken they have a lot of control over it: The user can

freely choose capabilities and the restrictions of the mytoken. The restrictions

are a powerful tool to balance the power of individual mytokens. In addition

users can con�gure their mytoken client with sensible defaults according to

their needs.

User-friendliness Mytoken o�ers an easy installation and an extensive documentation for

getting started. This requirement especially focuses on the following two additional

points:

Clear interface The command line interface is as clean as possible while supporting

the relevant command line options. Through the use of sensible defaults a lot

of options can be omitted, so that the commands can become very slim.

Sensible defaults We use sensible defaults also on the server side, where this is

applicable (e.g. using the AT capability as default for mytokens). However,

this part of the requirement applies much more to the client application: The

mytoken client has sensible defaults for various options (e.g. capabilities), which

allows omitting these options most of the time. While the defaults are suitable

for most users, users can freely change them if they have other needs.

Extensibility We designed the mytoken service in a way that it can be easily extended.

For example the restrictions are designed such that it is easy to add other dimensions

in which mytokens can be restricted. It is also possible to add additional ways to

obtain mytokens from the service. Additional possible extensions are discussed in

section 6.2.

Performance Mytoken uses the fiber web framework, which o�ers good performance.

The performance evaluation shown in Figure 5.1 indicates a similar performance

also for mytoken. Performance will be further discussed in section 5.2)

High Availability As we have shown in section 4.2, multiple instances of mytoken can be

used with a Galera database cluster to support high availability.

Permissive open source license Mytoken (server and client) is released under the MIT

license, which is one of the most permissive open source licenses.

6https://mytoken.data.kit.edu

48

https://mytoken.data.kit.edu

5.2. Comparison with Related Work

Self-hostable Mytoken can be hosted by others. The demonstration instance hosted by

KIT is only for demonstration purposes. To help communities host their own instance,

we provide a setup tool and extensive documentation, that both help with an easy

setup as described by the deployment guide
7
.

All in all, it can be said that the developed mytoken service ful�lls all the requirements

identi�ed in section 3.1.

5.2. Comparison with Related Work

In this section we evaluate mytoken with the two related software projects that we

introduced in section 2.3: oidc-agent and htgettoken.

Distribution / Availability The Mytoken client bene�ts from the cross-platform support

of the Go language, so that it is available for a wide range of architectures and op-

erating systems. On Linux, debian- and RPM-based distributions bene�t from pack-

aged versions which o�er the easiest installation. For other systems (including Win-

dows and MacOS) compiled binaries are provided. Debian packages are available at

http://repo.data.kit.edu and all client release artifacts can be downloaded from https:
//github.com/oidc-mytoken/client/releases.

oidc-agent is available as an RPM and debian package. Special focus has been put on the

packaging for debian-based distributions so that various versions of debian and ubuntu are

supported. There are current e�orts to include oidc-agent in the o�cial debian package

repository. It is already available on the arch linux user repository and on gentoo linux. A

MacOS version is available via homebrew.

htgettoken as a packaged version is currently only available as an rpm package. How-

ever, since the htgettoken client is a python script it should also be usable on other systems

when the necessary libraries are installed.

Library support The mytoken project includes a Go library. This library is used by the

mytoken command line client, but it can also be used by other applications to obtain

tokens from a mytoken server.

oidc-agent provides libraries for C, Go, and Python. A number of clients already use

one of these libraries to interact with an oidc-agent.

htgettoken does not provide any library for other applications. However, it should be

possible to utilize the python source code.

7https://mytoken-docs.data.kit.edu/server/intro/

49

http://repo.data.kit.edu
https://github.com/oidc-mytoken/client/releases
https://github.com/oidc-mytoken/client/releases
https://mytoken-docs.data.kit.edu/server/intro/

5. Evaluation

Performance We tested obtaining access tokens with all three applications against the

INDIGO IAM instance for WLCG
8
. This is the only OP supported by htgettoken we have

access to. However, this instance sometimes responded unusually slow. We therefore

eliminated some outliers from the collected data which clearly came from such delayed

responses. The distribution of the response times over 83 remaining data points for all of

the three applications can be seen in Figure 5.1. The graph also shows the response time

distribution for a curl command that obtains an access token directly from the OP using

the refresh �ow.

We expected oidc-agent to be the fastest implementation (excluding the curl command),

due to the performance of the C language and the minimal overhead compared to a pure

OIDC refresh �ow. When a refresh token is already loaded in the agent (as it was the case

with our test) the overhead added by oidc-agent is minimal and the local agent directly

contacts the OP. Both other applications �rst connect to their server part which then

connects to the OP.

It can be seen that the oidc-agent response times are indeed the lowest of the three

applications and are very similar to the ones achieved with the curl command. However,

while the applications can be ranked where oidc-agent is the fastest, then mytoken, and

htgettoken last, the di�erences between the three applications are only small. Considering

the large deviations within each application’s response times (which are likely caused by

network and OP latency), the performance di�erences between them are not signi�cant.

We therefore infer that the overhead added by the network requests to the mytoken and

htgettoken vault servers as well as the overhead of the processing done at their servers

(including decryption) is negligible compared to the network request to the OP and its

processing.

While there is no clear performance winner between the three applications, even tough

oidc-agent is generally a bit faster, the reverse is also true: None of the applications has

signi�cant performance �aws.

Server Security mytoken was not built using any existing secret manager and therefore

has to implement the handling of secrets such as refresh tokens. We did not implement any

cryptographic algorithms ourselves, but relied on existing libraries. Go o�ers an extensive

standard library that also implements cryptographic algorithms. For the encryption of

refresh tokens mytoken uses AES256 from the Go standard library. Also refresh tokens

are encrypted such that they cannot be decrypted without the linked mytoken, even if full

access to the database (as described in section 4.1) is gained.

For oidc-agent the server security is less crucial, because all data is stored only on the

user’s machine and not on a remote server. This means that no other person has access to

the data; granted that access to the user’s machine is well controlled. However, oidc-agent
still stores its con�guration in an encrypted way. For encryption the popular and well

maintained libsodium9
library and the XSALSA20 algorithm is used.

8https://wlcg.cloud.cnaf.infn.it/
9https://github.com/jedisct1/libsodium

50

https://wlcg.cloud.cnaf.infn.it/
https://github.com/jedisct1/libsodium

5.2. Comparison with Related Work

curl oidc-agent mytoken htgettoken
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

re
sp

o
n

se
ti

m
e

[s
]

Response time distributions for different applications obtaining an access token

Figure 5.1.: Comparison of the response time distributions of curl, mytoken, oidc-agent,
and htgettoken when obtaining an access token for the INDIGO IAM instance

for WLCG

htgettoken uses the popular secret management service vault to store refresh tokens

and to handle the access to them. Vault is written in Go and uses the same cryptographic

libraries as mytoken and also uses AES256 [33].

Client Token-Management The mytoken command line client can be used to manage

the obtained mytokens. If mytokens are managed by the client they are stored in an

encrypted way on the user’s local disk. Two modes for encryption are supported: Using

gpg for encryption through the user’s gpg-agent or using AES256 with a user provided

password. Mytoken additionally supports returning mytokens without storing them in

which case the user is responsible to handle them securely. This mode is intended to be

used with less-privileged mytokens that eventually expire, so they can be passed to other

applications, e.g. to submit a compute job.

For oidc-agent this point is not applicable, since no special token is created that must

be handled by the client. The account con�guration �le, which among other information

contains the refresh token, is encrypted as described in Server Security (section 5.2).

51

5. Evaluation

The htgettoken client stores the vault token in an unencrypted way. However, its

lifetime is limited to 11.5 days due to infrastructure security policies.

Documentation mytoken provides documentation as part of the client’s help output, but

also has an extensive online documentation
10

that explains the principles such as mytokens

and restrictions. It also includes a walk-through for client usage, and provides an example

con�guration �le with explanatory comments.

oidc-agent provides helpful information in the help outputs of the di�erent tools, which

all also have a man page, and there is an extensive documentation available
11

.

htgettoken provides a help output and a man page. No additional documentation page

is available.

Token Restrictions mytoken o�ers the restrictions mechanism for users to restrict their

mytokens freely. Mytokens can be restricted in their lifetime (both starting and expiration),

as well as scope and audience restrictions, restrictions where they can be used (ip, geo ip),

and in the number of usages.

oidc-agent o�ers to set the scopes and audiences of a refresh token and also the same for

the access tokens. Because there is no other special token type involved other restrictions

are not used.

htgettoken o�ers setting the scopes and audiences, as well as the lifetime of a vault

token.

Usability for Obtaining Access Tokens This aspect focuses on the usability to obtain access

tokens, other features are ignored, if not relevant to obtaining access tokens. With all

applications users have to do some additional setup, which will always involve an OIDC

authorization �ow. This is required by the nature of OIDC. In this aspect all three applica-

tions are similarly user-friendly. However, oidc-agent might be a bit more complicated

depending on the OPs, if no preregistered client can be used. In the following we focus on

the usability of the command to obtain access tokens.

mytoken can be used very easily to obtain access tokens if a mytoken was already

obtained. Since the lifetime of a mytoken can be freely chosen by the user and additional

mytokens can be created from an existing one, users usually have to do the initial OIDC

�ow only once. When obtaining an access token special scope and audience values can be

easily requested using command line options. To request multiple values the option has to

be passed multiple times. An example command is the following:

mytoken AT -s openid -s profile -s storage.read
--aud="https://storage.example.com"↩→

10https://mytoken-docs.data.kit.edu/
11https://indigo-dc.gitbook.io/oidc-agent/

52

https://mytoken-docs.data.kit.edu/
https://indigo-dc.gitbook.io/oidc-agent/

5.2. Comparison with Related Work

If the token was encrypted using a password, the password has to be entered every time

the token is used, i.e. also every time when an access token is requested. However, this

is not required if the mytoken was encrypted through the gpg-agent or if a mytoken is

directly passed.

oidc-agent can be used with oidc-token in a very similar way to mytoken when it comes

to passing scope and audience values, as can be seen from the following example:

oidc-token wlcg -s openid -s profile -s storage.read
--aud="https://storage.example.com"↩→

A user has to provide either the issuer URL (then the default account con�guration for

that issuer is used) or a short name identifying the used account con�guration �le. Also,

the used account con�guration must be loaded in the agent in order to be able to obtain an

access token. However, on desktop systems, i.e. systems with a graphical user interface,

it is possible to automatically load an account con�guration when required and it is not

already loaded. Usually, an account has to be loaded only once after the agent was started,

for example it must be loaded again after a system reboot; however, this is a fairly small

burden. While oidc-agent o�ers support for agent forwarding through ssh so that a local

oidc-agent can be accessed from the remote server, this is only limited and not enough for

all use cases. It is also possible to copy an account con�guration to another machine and

use it there, however, this is also not suitable in all cases, e.g. on a shared system.

The htgettoken command for obtaining an access token with speci�c scope and audience

values is:

htgettoken -a vault.example.com --scope="openid profile storage.read"
--audience="https://storage.example.com" -o /dev/stdout↩→

The URL of the vault server passed with the -a option, can also be set with an environment

variable. To be more precise, the environment variable HTGETTOKENOPTS can be

used to set options that should be included with all htgettoken calls. Unlike mytoken and

oidc-agent, htgettoken takes multiple values with a single occurrence of the --scope and

--audience options. We think that both approaches are equally usable. However, while

multiple audiences can be passed as a space separated list, multiple scope values are passed

as a comma separated list. This is inconsistent within the application. Furthermore, OIDC

scopes are usually passed as a space separated list when passed as a single value. However,

while htgettoken states that multiple scope values should be passed as a comma separated

list, it is actually possible to pass them as a space separated list (as shown in the command

above). We assume that a comma separated list will be split by htgettoken while a space

separated list will not. However, since in OIDC scopes are passed as a space separated

list to the OP, the space separated list of scopes passed to htgettoken does also work (but

might be perceived as a single scope by htgettoken). The option -o /dev/stdout tells

htgettoken to print the access token to the terminal, by default it is stored in a �le located

under /tmp (where other WLCG tools expect it).

As argued in subsection 2.3.3, storing vault tokens without encryption can lead to

usability problems. From a security perspective tokens that are stored without encryption

53

5. Evaluation

should be as short-lived as possible. In practice this is a security-usability trade-o�, where a

shorter lifetime requires users to re-authenticate at the OP. While htgettoken has support

for Kerberos integrated which can be used to easily obtain a new vault token without

re-authenticating through OIDC, this is obviously not possible for non-Kerberos users.

Summary While oidc-agent o�ers good usability and nice features as a local agent, it is

less suitable when access tokens need to be obtained from multiple machines, especially

in the context of long running compute jobs.

htgettoken can also be easily used on the command line and o�ers integration with

Kerberos. However, it was speci�cally developed for the WLCG community, their require-

ments, and policies. This means that it is less usable for other communities with other

requirements. The biggest drawback in our opinion is that vault tokens are stored without

encryption. This forces users to handle encryption themselves or use short-lived vault

tokens. The latter forces users without Kerberos to re-authenticate fairly frequently.

mytoken ful�lls all requirements of the project, in particular it can easily be used on

multiple machines to obtain access tokens on the command line. Mytoken tokens can be

copied for usage on another machine, just like vault tokens for htgettoken. In addition,

mytoken o�ers transferring a mytoken with a transfer code, in case copy-paste is not

suitable. The mytoken command line client o�ers good usability on the command line

and handles the management of mytokens. This enables users to easily create multiple

mytokens, each restricted to the particular use case. Mytoken’s restrictions mechanism

allows users to restrict their mytokens in a very �exible manner. Restrictions give users

much more �exibility and freedom as it would be possible with OIDC tokens or htgettoken
vault tokens. Users can easily create a mytoken for a particular compute job that will only

be valid for the relevant time and o�ers obtaining access tokens with only the relevant

scope and audience values. It is even possible to use a single mytoken to obtain access

tokens with di�erent scopes and audiences at di�erent points in time, which allows

modeling the complex requirements of long compute jobs.

54

6. Conclusion

In this chapter we give a summary over the work done throughout this thesis and present

the future work that can be done to extend the mytoken service.

6.1. Summary

The goal of this thesis was to implement a solution for the long-running-jobs problem:

When compute jobs are started with OpenID Connect (OIDC) access tokens but run for a

long time, the access token used to start the job will eventually expire. Consequently, it

cannot be used at the end of the job to store the results (and also not in between to access

OIDC resources). Since it is not possible to request access tokens with an extensive lifetime

from OpenID Providers (OPs), access tokens must be refreshed in between. Existing

mechanisms o�ered by the OIDC protocol are insu�cient. Also, existing software did not

fully satisfy our requirements. We therefore designed and developed a central token service

called mytoken that introduces the new token type "mytoken" which can be used across

multiple machines to obtain OIDC access tokens. As part of this thesis we implemented

the server as well as a command line client.

The mytoken service solves the long-running-jobs problem through mytokens. These

mytokens can be used to obtain additional access tokens, similarly to OIDC refresh tokens.

However, unlike refresh tokens, mytokens can be easily passed around, so that they can

be used on di�erent machines. To balance the security with usefulness we introduced the

concepts of capabilities and restrictions, which both can be controlled by the user so they

can create mytokens that are capable of doing exactly what is required without opening

room for possible attacks more than necessary. Capabilities describe what a mytoken can

be used for, e.g. to obtain access tokens, while restrictions are used to restrict a mytoken

as much as possible. The di�erent dimensions include:

Time When the mytoken can be used for the �rst and last time.

Location From which ip addresses / networks, but also countries, the mytoken can be

used.

OIDC The scopes and audiences that access tokens obtained from the mytoken may have.

Number of Usages How often a mytoken can be used.

Multiple restriction clauses may be used to allow multiple "usage settings", e.g. to obtain

an access token with one set of scopes at the beginning of a compute job and another set

of scopes at the end of the job. The combination of easy mytoken creation from an existing

token and the power of restrictions allows users to create mytokens often and as precise

55

6. Conclusion

as required. A restricted mytoken can be passed to other applications without worrying

that it might be misused, because it can be restricted to only allow speci�ed operations.

This makes the mytoken service a useful tool for token based scenarios in which security

and longer-term authorization are required.

We published the mytoken server
1

and client
2

under the MIT license. A demonstration

instance
3

is available for testing the service. Packages for multiple operating systems are

available for a self-hosted operation by communities that require it.

6.2. Future Work

The developed mytoken service and client are fully usable, but currently do not use their

full potential. Di�erent extensions are possible and we want to describe some possible

future work.

Extending Grant Types for Mytoken Endpoint Currently, there are two ways for obtaining

mytokens from the server: either using the authorization code �ow or from an existing

mytoken. While the former is required to be done at least once, it will be used less. The

latter is likely to be the main way for obtaining additional mytokens. However, we already

designed mytoken so that additional ways for obtaining mytokens can be implemented.

These ways are called grant types. In the following we describe three additional grant

types that can be implemented.

Kerberos While we do not see Kerberos integration in our use cases, there are communities

which heavily use Kerberos. These communities can greatly bene�t from a Kerberos

grant type that can be used to obtain mytokens. The challenge for this grant type

will be to implement it in a way that the encryption of refresh tokens as described in

section 4.1 is still retained.

Access Token An access token grant type could be used to obtain a mytoken from an OIDC

access token. Since the server then only has the access token and no additional

information, it cannot access an encrypted refresh token
4
; therefore, this grant type

would need to perform a token exchange �ow to obtain a refresh token from the OP

which then can be linked to the new mytoken. This grant type would enable users

to obtain an initial mytoken (root of a mytoken subtoken tree) without performing

an OIDC �ow. Because an attacker must not be able to use any access token it can

get its hand on to obtain a valid mytoken from it, this grant type must be explicitly

enabled by the user and only accept access token that are meant to be used with the

mytoken server, i.e. they must have the mytoken server listed as a valid audience.

It would also be possible to require a speci�c scope for such an access token, e.g.

create_mytoken.

1https://github.com/oidc-mytoken/server/releases
2https://github.com/oidc-mytoken/client/releases
3https://mytoken.data.kit.edu
4
At least not if the refresh token is encrypted with the desired property from section 4.1

56

https://github.com/oidc-mytoken/server/releases
https://github.com/oidc-mytoken/client/releases
https://mytoken.data.kit.edu

6.2. Future Work

Private Key JWT With this grant type users can upload a cryptographic public key and

use the private key to do cryptographic operations as authentication. This way

they prove their identity by proving the possession of the private key. One popular

approach for this is that the user signs its request. This could be done by using the

JSON request as the payload for a JSON Web Token (JWT) and instead of the JSON

request the signed JWT is sent. However, this approach will hardly work with the

encryption of refresh tokens we already referred to in the other two grant types.

The problem is that this only authenticates the user, i.e. the mytoken server can

be con�dent that it is actually the right user that sends the request, but the request

does not give the server any information that can be used to decrypt the refresh

token (at least no information that is not already known by the server). However,

a similar approach can be used with encryption instead of signing. This approach

would include a challenge-response-protocol where the client solves a challenge

from the server to prove the possession of the private key. Such a protocol can then

be used for decrypting the stored refresh token. Furthermore, the grant type can be

designed so that the client does not learn the refresh token and that a transcript of

the communication cannot be used for replay attacks.

We envision that these grant types must be explicitly enabled by the user. For some of

these, this is a requirement, because additional information must be provided by the user

to enable them (i.e. account linking for Kerberos, uploading the public key for private key

JWT). So that users can enable additional grant types and con�gure them, an additional

endpoint is needed. We would call such an endpoint user settings endpoint and it can be

used to adapt all sorts of user settings, like enabling additional grants, but it could also be

used to set restriction and capability defaults per user.

Rotating Mytokens To mitigate the risk of stolen mytokens it would be possible to im-

plement rotating mytokens. This feature would work similar to rotating refresh tokens.

Each mytoken can only be used once, and whenever a mytoken is used the current one is

invalidated and instead a new mytoken is created and returned along with the response.

This feature could be enabled by users on a per token base, so that it is possible to create

some mytokens with rotation and some without. This is useful because a mytoken might

be passed to an application that cannot handle the rotation. We also envision that the

rotation can be controlled separately for access token requests and for other requests.

Templates and Profiles for the Mytoken Client The mytoken client does currently not have

a default value for restrictions. This is mainly because it is di�cult to set a default that

is suitable for all users. However, it is clearly desirable to have a sensible default value

instead of returning unrestricted mytokens by default. To achieve this, templates could be

used. Another motivation for templates (and pro�les) is the fact that restrictions, despite

their �exibility, can also become quite complex and that this complexity might not be

appropriate for all users. To still enable these users to use the full power of restrictions

without much con�guration e�ort templates can be used. The last aspect of motivating

templates is that they can reduce the length of a mytoken command, so that commands

become cleaner.

57

6. Conclusion

We envision templates to be prede�ned restrictions that live as JSON in a �le. These

templates can then easily be used by referencing their name. This approach enables

communities to provide templates to users, so that they can install the templates and just

use it without much e�ort. We envision that there are two locations where templates are

stored: a system wide location like /etc/mytoken/capabilities.d/ and a user wide one

like ~/.config/mytoken/capabilities.d/. This enables the easy distribution of templates,

but also allows users to overwrite templates easily and to write their own templates.

With the template approach we envision that a mytoken with an expiration restriction

of one day could be requested with any of the following commands:

mytoken MT --exp=+1d # using the special command line options
mytoken MT --restrictions='{"exp":"+1d"}' # using json
mytoken MT --restrictions=/tmp/restriction # using json in a file
mytoken MT --restrictions=@one-day # using the 'one-day' template

The same template mechanism could then also be used with capabilities. Then capabili-

ties and restrictions can be combined in a pro�le. Pro�les could be a simple combination

of capabilities and restrictions (which can be speci�ed directly or use a template in the

pro�le �le). This would allow communities to not only provide templates but also pro�les

to their users, so they only have to provide the pro�le name and do not need to care about

capabilities or restrictions.

Standardization To be useful, the mechanisms introduced with mytoken must be well

documented, thoroughly discussed, and published. The �rst step for achieving this has

be done with this thesis. One possible way to continue this work is a standardization

document, for example as an RFC.

58

Bibliography

[1] Apache. core - Apache HTTP Server Version 2.4. 2020. url: http://httpd.apache.org/
docs/2.4/mod/core.html#limitrequestfieldsize (visited on 02/13/2021).

[2] GÉANT Association. Worldwide LHC Computing Grid - AARC. 2017. url: https:
//aarc-project.eu/aarc-in-action/wlcg/ (visited on 04/15/2021).

[3] Vittorio Bertocci. JSONWeb Token (JWT) Pro�le for OAuth 2.0 Access Tokens. Internet-

Draft draft-ietf-oauth-access-token-jwt-12. IETF Secretariat, Mar. 2021. url: http:
//www.ietf.org/internet-drafts/draft-ietf-oauth-access-token-jwt-12.txt.

[4] Isabel Campos, Diana Gudu, and Marcus Hardt. “HPC AAI Integration”. EGI Con-

ference 2020. Nov. 2020. url: http://marcus.hardt-it.de/pam_ssh/.

[5] Andrea Ceccanti. INDIGO IAM for wlcg. 2021. url: https://wlcg.cloud.cnaf.infn.it/.

[6] Andrea Ceccanti. OAuth Token exchange support - iam. 2018. url: https://indigo-
dc.gitbook.io/iam/user-guide/oauth_token_exchange (visited on 03/29/2021).

[7] CERN. Certi�cates | WLCG. url: https://wlcg.web.cern.ch/certificates (visited on

04/15/2021).

[8] CERN. Home | CERN. 2021. url: https://home.cern/ (visited on 02/03/2021).

[9] CERN. Welcome | Worldwide LHC Computing Grid. 2021. url: https://wlcg-public.
web.cern.ch/ (visited on 02/03/2021).

[10] European Commission. Horizon Europe | European Commission. 2021. url: https:
//ec.europa.eu/info/horizon-europe_en (visited on 02/03/2021).

[11] European Commission. What is Horizon 2020? | Horizon 2020. 2017. url: https :
//ec.europa.eu/programmes/horizon2020/en/what-horizon-2020 (visited on

02/03/2021).

[12] D. Cooper et al. Internet X.509 Public Key Infrastructure Certi�cate and Certi�cate
Revocation List (CRL) Pro�le. RFC 5280. RFC Editor, May 2008. url: http://www.rfc-
editor.org/rfc/rfc5280.txt.

[13] W. Denniss et al. OAuth 2.0 Device Authorization Grant. RFC 8628. RFC Editor, Aug.

2019.

[14] DFN. DFN-AAI. 2019. url: https://www.dfn.de/dienstleistungen/dfnaai/ (visited

on 04/21/2021).

[15] Dave Dykstra, Mine Altunay, and Jeny Teheran. “Secure Command Line Solution

for Token-based Authentication”. May 2021. url: https://github.com/fermitools/
htgettoken/files/6063416/CHEP21_Paper_Htgettoken.pdf .

59

http://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfieldsize
http://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfieldsize
https://aarc-project.eu/aarc-in-action/wlcg/
https://aarc-project.eu/aarc-in-action/wlcg/
http://www.ietf.org/internet-drafts/draft-ietf-oauth-access-token-jwt-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-access-token-jwt-12.txt
http://marcus.hardt-it.de/pam_ssh/
https://wlcg.cloud.cnaf.infn.it/
https://indigo-dc.gitbook.io/iam/user-guide/oauth_token_exchange
https://indigo-dc.gitbook.io/iam/user-guide/oauth_token_exchange
https://wlcg.web.cern.ch/certificates
https://home.cern/
https://wlcg-public.web.cern.ch/
https://wlcg-public.web.cern.ch/
https://ec.europa.eu/info/horizon-europe_en
https://ec.europa.eu/info/horizon-europe_en
https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020
https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.dfn.de/dienstleistungen/dfnaai/
https://github.com/fermitools/htgettoken/files/6063416/CHEP21_Paper_Htgettoken.pdf
https://github.com/fermitools/htgettoken/files/6063416/CHEP21_Paper_Htgettoken.pdf

Bibliography

[16] David Dykstra. fermitools/htgettoken: Gets OIDC authentication tokens for High
Throughput Computing via a Hashicorp vault server. 2020. url: https://github.
com/fermitools/htgettoken.

[17] eduGAIN. eduGAIN - enabling wordwide access. url: https://edugain.org/ (visited

on 04/21/2021).

[18] eduGAIN. Key concepts - eduGAIN. url: https://edugain.org/about-edugain/key-
concepts/ (visited on 04/21/2021).

[19] EGI Foundation. EGI FedCloud. 2021. url: https://aai.egi.eu/fedcloud/index.php
(visited on 04/16/2021).

[20] EOSC-hub. EOSCHub. 2020.url: https://www.eosc-hub.eu/ (visited on 02/03/2021).

[21] EOSC-synergy. EOSC synergy - Building capacity, developing capacity. 2020. url:

https://www.eosc-synergy.eu/ (visited on 02/03/2021).

[22] Fiber. Fiber. 2021. url: https://gofiber.io/ (visited on 04/07/2021).

[23] EGI Foundation. EGI | EGI-ACE: Advanced Computing for EOSC. 2020. url: https:
//www.egi.eu/projects/egi-ace/ (visited on 02/03/2021).

[24] OpenID Foundation. Certi�ed OpenID Connect Implementations | OpenID. 2021. url:

https://openid.net/developers/certified/ (visited on 04/06/2021).

[25] Go Supported by Google. The Go Programming Language. url: https://golang.org/
(visited on 04/20/2021).

[26] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. RFC Editor, Oct. 2012.

url: http://www.rfc-editor.org/rfc/rfc6749.txt.

[27] HarshiCorp. Vault by HashiCorp. 2021. url: https://www.vaultproject.io/ (visited

on 03/05/2021).

[28] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519. http://
www.rfc-editor.org/rfc/rfc7519.txt. RFC Editor, May 2015. url: http://www.rfc-
editor.org/rfc/rfc7519.txt.

[29] M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token Usage.
RFC 6750. RFC Editor, Oct. 2012. url: http://www.rfc-editor.org/rfc/rfc6750.txt.

[30] M. Jones et al. OAuth 2.0 Token Exchange. RFC 8693. RFC Editor, Jan. 2020.

[31] Karlsruhe Institute of Technology. bwIDM - Über bwIDM. url: https://www.bwidm.
de/ (visited on 04/16/2021).

[32] T. Lodderstedt, S. Dronia, and M. Scurtescu. OAuth 2.0 Token Revocation. RFC 7009.

RFC Editor, Aug. 2013.

[33] Andy Manoske. How does vault encrypt data? 2018. url: https://www.hashicorp.
com/resources/how-does-vault-encrypt-data (visited on 04/15/2021).

[34] AARC Community members and AppInt members. AARC Blueprint Architecture
2019 (AARC-G045). Nov. 2019. doi: 10.5281/zenodo.3672785. url: https://doi.org/
10.5281/zenodo.3672785.

60

https://github.com/fermitools/htgettoken
https://github.com/fermitools/htgettoken
https://edugain.org/
https://edugain.org/about-edugain/key-concepts/
https://edugain.org/about-edugain/key-concepts/
https://aai.egi.eu/fedcloud/index.php
https://www.eosc-hub.eu/
https://www.eosc-synergy.eu/
https://gofiber.io/
https://www.egi.eu/projects/egi-ace/
https://www.egi.eu/projects/egi-ace/
https://openid.net/developers/certified/
https://golang.org/
http://www.rfc-editor.org/rfc/rfc6749.txt
https://www.vaultproject.io/
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc6750.txt
https://www.bwidm.de/
https://www.bwidm.de/
https://www.hashicorp.com/resources/how-does-vault-encrypt-data
https://www.hashicorp.com/resources/how-does-vault-encrypt-data
https://doi.org/10.5281/zenodo.3672785
https://doi.org/10.5281/zenodo.3672785
https://doi.org/10.5281/zenodo.3672785

[35] NGINX. Module ngxℎCC?2>A4<>3D;4 . 2020. url: http://nginx.org/en/docs/http/
ngx_http_ core_module . html# large_ client_header_buffers (visited on

02/13/2021).

[36] OASIS. Security Assertion Markup Language (SAML) V2.0 Technical Overview. Tech.

rep. May 2008. url: http://docs.oasis-open.org/security/saml/Post2.0/sstc-
saml-tech-overview-2.0.html.

[37] Keisuke Okamura. “Interdisciplinarity revisited: evidence for research impact and

dynamism”. In: Palgrave Communications 5.1 (Nov. 2019), p. 141. issn: 2055-1045. doi:

10.1057/s41599-019-0352-4. url: https://doi.org/10.1057/s41599-019-0352-4.

[38] Codership Oy. Products | Gerla Cluster for MySQL. 2019. url: https://galeracluster.
com/products/ (visited on 03/09/2021).

[39] Ping Identity. SAML 2.0: How It Works. 2015. url: https://www.pingidentity.com/
en/resources/client-library/articles/saml.html (visited on 04/21/2021).

[40] AARC project. AARC. 2017. url: https://aarc-project.eu/ (visited on 02/03/2021).

[41] N. Sakimura, J. Bradley, and M. Jones. OpenID Connect Dynamic Client Registration
1.0 incorporating errata set 1. Tech. rep. Nov. 2014. url: https://openid.net/specs/
openid-connect-core-1_0.html.

[42] N. Sakimura et al. OpenID Connect Core 1.0 incorporating errata set 1. Tech. rep. Nov.

2014. url: https://openid.net/specs/openid-connect-core-1_0.html.

[43] Nat Sakimura. Apple Successfully Implements OpenID Connect with Sign In with
Apple | OpenID. 2021. url: https://openid.net/2019/09/30/apple-successfully-
implements-openid-connect-with-sign-in-with-apple/ (visited on 04/06/2021).

[44] Hannah Short et al. WLCG Authorisation; from X.509 to Tokens. Tech. rep. Nov. 2019.

url: https://indico.cern.ch/event/773049/contributions/3473383/.

[45] Klaas Wierenga et al. EOSC Authentication and Authorization Infrastructure (AAI) :
Report from the EOSC Executive Board Working Group (WG) Architecture AAI Task
Force (TF). 46.21.02; LK 01. European Commission (EU), Jan. 2021. 24 pp. isbn: 978-

92-76-28113-9. doi: 10.2777/8702.

[46] Gabriel Zachmann. Agent forwarding - oidc-agent. 2020. url: https://indigo-dc.
gitbook.io/oidc-agent/configuration/forwarding.

[47] Gabriel Zachmann. indigo-dc/oidc-agent: oidc-agent for managing OpenID Connect
tokens on the command line. 2020. url: https://github.com/indigo-dc/oidc-agent.

[48] Gabriel Zachmann. “OIDC-Agent: Managing OpenID Connect Tokens on the Com-

mand Line”. In: SKILL 2018 - Studierendenkonferenz Informatik. Ed. by Michael Becker.

Bonn: Gesellschaft für Informatik e.V., 2018, pp. 11–21.

61

http://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers
http://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://doi.org/10.1057/s41599-019-0352-4
https://doi.org/10.1057/s41599-019-0352-4
https://galeracluster.com/products/
https://galeracluster.com/products/
https://www.pingidentity.com/en/resources/client-library/articles/saml.html
https://www.pingidentity.com/en/resources/client-library/articles/saml.html
https://aarc-project.eu/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/2019/09/30/apple-successfully-implements-openid-connect-with-sign-in-with-apple/
https://openid.net/2019/09/30/apple-successfully-implements-openid-connect-with-sign-in-with-apple/
https://indico.cern.ch/event/773049/contributions/3473383/
https://doi.org/10.2777/8702
https://indigo-dc.gitbook.io/oidc-agent/configuration/forwarding
https://indigo-dc.gitbook.io/oidc-agent/configuration/forwarding
https://github.com/indigo-dc/oidc-agent

A. Appendix

OIDC Userinfo Response

{
"fieldOfStudyText": "Informatik",
"sub": "c759d997-24c9-43a3-bb27-a0ce47bc4e03",
"address": {},
"email": "example@student.kit.edu",
"displayName": "Zachmann, Gabriel",
"givenName": "Gabriel",
"preferred_username": "example",
"given_name": "Gabriel",
"eduperson_principal_name": "example@student.kit.edu",
"eduperson_entitlement": [],
"upn": "example@student.kit.edu",
"name": "Gabriel Zachmann",
"eduperson_scoped_affiliation": [
"member@kit.edu",
"student@kit.edu"

],
"sn": "Zachmann",
"family_name": "Zachmann"

}

Listing A.1: Example response from the userinfo endpoint

63

A. Appendix

Mytoken Example Responses

{
"issuer": "https://mytoken.data.kit.edu/",
"access_token_endpoint": "https://mytoken.data.kit.edu/api/v0/token/access",
"mytoken_endpoint": "https://mytoken.data.kit.edu/api/v0/token/my",
"tokeninfo_endpoint": "https://mytoken.data.kit.edu/api/v0/tokeninfo",
"revocation_endpoint": "https://mytoken.data.kit.edu/api/v0/token/revoke",
"token_transfer_endpoint": "https://mytoken.data.kit.edu/api/v0/token/transfer",
"jwks_uri": "https://mytoken.data.kit.edu/jwks",
"providers_supported": [{

"issuer": "https://wlcg.cloud.cnaf.infn.it/",
"scopes_supported": [
"openid", "profile", "email", "storage.create:/", "storage.read:/",
"storage.modify:/", "wlcg", "wlcg.groups",
"eduperson_scoped_affiliation", "eduperson_entitlement"

]
}, {
"issuer": "https://aai-dev.egi.eu/oidc/",
"scopes_supported": [
"openid", "profile", "email", "eduperson_entitlement",
"eduperson_scoped_affiliation", "eduperson_unique_id",
"cert_entitlement", "orcid", "ssh_public_key"

]
}],

"token_signing_alg_value": "ES512",
"tokeninfo_endpoint_actions_supported": [
"introspect", "event_history", "subtoken_tree", "list_mytokens"

],
"access_token_endpoint_grant_types_supported": ["mytoken"],
"mytoken_endpoint_grant_types_supported": [
"oidc_flow", "mytoken", "transfer_code", "polling_code"

],
"mytoken_endpoint_oidc_flows_supported": ["authorization_code"],
"response_types_supported": [
"token", "short_token", "transfer_code"

],
"service_documentation": "https://mytoken-docs.data.kit.edu/",
"version": "0.2.0"

}

Listing A.2: Example response from the mytoken con�guration endpoint

64

Fiber Benchmark

Figure A.1.: Benchmark of di�erent Go web frameworks [22]

65

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Goal
	Structure of the Thesis

	State of the Art
	Foundations
	Authentication and Authorization Infrastructures
	X.509 Certificates
	SAML
	OAuth 2.0
	OpenID Connect

	OpenID Connect
	General Terminology
	Tokens
	Important Authorization Flows
	Auxiliary Flows and Endpoints
	Mechanisms to Solve the Long-running Jobs Problem

	Related Work
	EGI FedCloud
	oidc-agent
	htgettoken

	Design
	Requirements
	Concepts
	Mytokens
	Capabilities
	Restrictions

	Endpoints and Operations
	Configuration Endpoint
	Mytoken Endpoint
	Access Token Endpoint
	Transfer Endpoint
	Revocation Endpoint
	Tokeninfo Endpoint

	Implementation
	Encryption of OpenID Connect Tokens
	High Availability
	Command Line Client
	Storing Mytokens
	Obtaining Mytokens
	Obtaining Access Tokens

	Evaluation
	Fulfillment of Requirements
	Comparison with Related Work

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix

