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Abstract

To model and design light propagation in disordered optical nanostructures and materials, any applicable simulation
technique has to cope with enormous computational challenges in a bearable time frame. To circumvent these, the
introduction of an artificial periodicity to the disordered particle structure allows to rely on computational techniques
that exploit periodic boundary conditions. Choosing a rather large periodicity promises to preserve randomness in form
of a close-range disorder but can introduce false interferences. So far, it remains open how the artificial periodicity
has to be chosen to minimize its detrimental influence. Here, we combine the superposition T-matrix scheme with
an Ewald sum formulation to account for light scattering in periodic particle arrangements that contain hundreds to
thousands of individual scatterers per unit cell. Simulations reveal that the periodicity’s influence cannot be minimized
by simply choosing one single period much longer than the excitation wavelength. The excitation of lattice induced
resonances prevents so. However, choosing a periodicity that does not sustain such detrimental features allows for
reliable predictions. With that, the presented approach is suitable to derive spectral information about wave-optical
phenomena in large, random particle arrangements with a spatial extend beyond those accessible with other full-wave
solvers.
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1. Introduction

With growing awareness of disorder in natural photonic
structures [1, 2, 3], a strong desire emerges to study, mimic
and design materials that can be used, e.g., to create struc-
tural colors [4, 5], manage light propagation in organic
light emitting devices [6, 7], improve light harvesting in
thin film solar cells [8, 9] or provide interesting properties
in form of metamaterials [10, 11].
The disparity of involved length scales, with features
on a nano-scale and device characteristics possibly on a
centimeter- or meter-scale, renders the quantitative de-
scription of the emerging phenomena extremely challeng-
ing. In this context, the superposition T-matrix scheme
[12, 13] enjoys great popularity as one of the most power-
ful tools for the description of wave-optical phenomena in
large particle configurations. Its computational effort does
not scale directly with the size of the simulation domain
but rather with the number and size of involved scatter-
ers. As the scattering of each individual nanoparticle is
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described semi-analytically, the approach can draw a ma-
jor advantage over the more established numerical simu-
lation techniques, like the finite element method (FEM)
or the finite-difference time-domain method (FDTD) that
have been utilized for extensive studies within this field
[14, 15].
Although the superposition T-matrix approach can han-
dle large, random particle arrangements comprising tens
of thousands of individual scatterers [16, 17], its complex-
ity of O(N2) or at least O(Nlog(N)) [18] scales with the
particle count and raises unavoidable challenges in terms
of computational resources and time.
When individual simulations start to tax our patience, pa-
rameter studies become unfeasible and the quantitative
design of disorder gets out of reach. In this context, it
can be of interest to approximate spatially extended ran-
dom particle arrangements by introducing a rather large
artificial periodicity. The general assumption is that the
random nature of the particle arrangement can be pre-
served thanks to the short-range disorder within one unit
cell, while the detrimental influence of the periodicity is
kept at a minimum by considering unit cells much larger
than the wavelength of interest, often called supercells. As
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Figure 1: Illustration of a random particle arrangement with an artificial two-dimensional periodicity of 3.9µm and a height of 10µm. With
a volume density of 7 % (v/v), the exemplary configuration consists of more than 2000 individual nanoparticles per unit cell.

a result, one can capitalize on computational tools that ex-
plicitly exploit the periodicity in their solution strategy to
Maxwell’s equations.
Seeking the optical response of small, disordered metal in-
clusions in dielectric host media, Lamb et al. [19] and
Liebsch et al. [20] extended effective medium approxima-
tions by mimicking disorder with a periodic, average scat-
tering response. Soon, early T-matrix formalisms emerged
utilizing the average T-matrix approximation [21] or the
coherent potential approximation [22, 23] to average the
scattering response of such a unit cell. Since then, T-
matrix schemes for the optical response of particle arrays
have been presented, e.g., by Stefanou et al. [24, 25] and
recently, by Beutel et al. [26] and Nečada et al. [27], uti-
lizing Kambe’s Ewald sum formulation for spherical vector
wave functions (SVWFs) [28, 29]. Besides the multipole
approach, comparable strategies on the basis of the dis-
crete dipole approximation (DDA) have been applied to
periodic particle arrangements [30, 31] allowing to investi-
gate optical properties of inhomogeneous media [32, 33].
In this contribution, we adapt the Ewald sum approach to
perform T-matrix simulations of light scattering by large,
three-dimensional unit cells of two-dimensional periodic-
ity, containing hundreds to thousands of disordered parti-
cles (illustrated in figure 1). In section 2, we summarize
the integration of Ewald’s method into the superposition
T-matrix scheme. To emphasize the use of the presented
approach, we compare simulations of a 2×2×2µm3 large
unit cell to the well-established FEM in section 3 and elab-
orate on the use of periodic boundary conditions to mimic
disorder. In section 4, we treat a specific example of wave-
length dependent reflection of light by 10µm thick porous
polymer layers. Such polymer matrices that incorporate
nano- to micro-sized air bubbles have received increasing
attention as a possible substitute of white pigments, such
as TiO2 nanoparticles. TiO2, widely used in plastic pack-
aging, coatings and paints, raises an increasing number

of concerns regarding material costs, eco-friendliness and
health issues [34]. In contrast, pigment-free polymer foams
present themselves as an inexpensive and easily recyclable
alternative for flexible, yet mechanically stable packaging
for food and cosmetics without drawbacks in white ap-
pearance [35].
Porous polymer structures can be formed by supercritical
CO2 foaming. In this process, the polymer is first satu-
rated with CO2 under constant pressure and temperature.
With increasing CO2 concentration, the polymer’s glass
transition temperature decreases and the polymer becomes
viscous. A sudden pressure drop causes a supersaturation
of CO2 in the polymer host and nucleation occurs. Under
these conditions, the CO2 is not soluble in the polymer
matrix anymore. It escapes into the nuclei that thus grow
into pores. Due to the thereby decreasing CO2 concen-
tration, the polymer’s glass transition temperature rises
again and the matrix solidifies [36]. Pore size and density
can be controlled by pressure and temperature.

2. T-matrix procedure

The superposition T-matrix method allows to describe
electromagnetic scattering in particle ensembles. To high-
light the integration of periodic boundary conditions, we
first summarize its general procedure. For comprehensive
descriptions please see, e.g., Refs. [37, 38].
In the picture of a multipole decomposition of waves, a
particle’s incoming and scattered time-harmonic electric
field can be expressed in regular and outgoing spherical

vector wave functions M
(1)
n (r) and M

(3)
n (r) (cf. Appendix

A),

E(r) = Ein(r) + Esca(r)

=
∑
n

anM(1)
n (r) + bnM(3)

n (r). (1)
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For a simpler notation, the multi index n subsumes a mul-
tipole’s degree l, order m and polarization τ , (lmτ) → n.
A particle’s T-matrix maps the amplitudes of the incoming
field to its scattered field

bn =
∑
n′

Tnn′an′ . (2)

This linear operator contains all information about the
scatterer and throughout this work we assume that each
particle’s T-matrix is precisely known. For spherical par-
ticles, the diagonal T-matrix is identical to the Mie coeffi-
cients and for more complex objects a variety of numerical
techniques are available [39, 40, 41].
In the presence of multiple scatterers, the incoming field
of particle S depends on the initial field and the scattered
fields of all other particles S′

aSn = aS,initn +
∑
S′

∑
n′

WSS′

nn′ b
S′

n′ . (3)

Inserting (3) into (2) yields a self-consistent set of linear
equations to account for multiple scattering

bSn −
∑
n′

TSnn′
∑
S′

∑
n′′

WSS′

n′n′′b
S′

n′′ =
∑
n′

TSnn′a
S,init
n′ . (4)

Neglecting indirect coupling, e.g. via layer interfaces, the
coupling operator W can be expressed as the transpose
of the translation addition operator for SVWFs (cf. eq.
(A.6))

WSS′

nn′ = An′n (rS − rS′) . (5)

2.1. Periodicity

Considering three-dimensional, periodic particle ar-
rangements in a two-dimensional Bravais lattice, we dis-
tinguish between the q-th particle Spq in unit cell p and
periodic particle collection Sq of all q-th particles (q = q′).
In collection Sq any particle displacement rSp′q − rS0q

=
n1a1 + n2a2 = Rp′ coincides with a linear combination of
the lattice vectors a1 and a2, with n1, n2 ∈ Z specifying
unit cell (n1, n2)→ p′.
Excited by a plane wave, the initial incoming field of par-
ticles in collection Sq resemble each other but exhibit a
phase shift

a
Sp′q,init
n = e

ikin||(rSp′q
−rS0q

)
aS0q,init
n = eikin||Rp′aS0q,init

n ,
(6)

based on the initial field’s in-plane wave vector kin|| and
the particles’ displacement. According to the Bloch the-
orem, the quasi-periodicity of the right-hand side of (6)
demands for the same quasi-periodicity in the solution of
(4). Hence, a particle collection’s scattered fields satisfy

b
Sp′q
n = eikin||Rp′ bS0q

n , (7)

reducing the number of unknowns to the scattered field
amplitudes of particles within one unit cell. Inserting (7)

into (4), with S = S0q and S′ = Sp′q, the linear set of
equations of particles in the arbitrary central unit cell (p =
0) reads

bS0q
n −

∑
n′

T
S0q

nn′

∑
p′

∑
q′

∑
n′′

W
S0qSp′q′

n′n′′ b
Sp′q′

n′′ =
∑
n′

T
S0q

nn′ a
S0q,init
n′ .

(8)
In contrast to the conventional superposition T-matrix
method, its central concern being particle-particle cou-
pling, the periodicity raises the question of how periodic
particle grids couple to each other.
Recalling the translation addition operator (eqs. (A.8) and
(A.9)), the infinite sum of particle-particle coupling in (8)
between all q-th particles in collection Sq can be written
as∑
p′

W
S0qSp′q
nn′ e

ikin||

(
rS

p′q
−rS0q

)

=
∑
p′ 6=0

An′n(−Rp′)e
ikin||Rp′

=

|l+l′|∑
L=|l−l′|

{
a5(l′,m′|l,m|L)

b5(l′,m′|l,m|L)

×
∑
p′ 6=0

h
(1)
L (k|Rp′ |)YLM (−Rp′)e

ikin||Rp′
τ = τ ′

τ 6= τ ′.

(9)

Here, h
(1)
l denotes the spherical Hankel function of first

kind, Ylm(θ, ϕ) the spherical harmonics and M = m′ −
m. Due to slow convergence of the inner sum in (9), its
numerical evaluation can be challenging. However, the
sum is identical to the structure coefficients DLM in low
energy electron diffraction theory [42]

DLM (Rp′) =
∑
p′ 6=0

h
(1)
L (k|Rp′ |)YLM (−Rp′)e

ikin||Rp′ . (10)

Making use of Ewald’s method, the evaluation of DLM can
be split in two equally fast converging sums, as derived by
Kambe [28, 29] in the case of a two dimensional lattice.
Explicit formulas for DLM can be found in Appendix B.

2.2. Scattered field

Due to the nature of infinite periodic lattices, the parti-
cles’ scattered field has an infinite number of source terms,
rendering the direct evaluation challenging. We start with
the scattered field of particle collection Sq as a sum of each

particle’s outgoing SVWFs M
(3)
n

ESq
sca(r) =

∑
p

∑
n

bSpq
n M(3)

n

(
r− rSpq

)
=
∑
p′

∑
n

bS0q
n eikin||Rp′M(3)

n (r− rS0q
−Rp′).

(11)
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Utilizing the SVWFs’ integral representation (A.5) we ob-
tain

ESq
sca(r) =

1

2π

∑
p′

∑
n

bS0q
n

2∑
j=1

∫
d2k||

kzk
eimα

×Bnj
(
±kz
k

)
eik
±(r−rS0q

)ei(kin||−k±)Rp′ ê±j .

(12)

Here, κ, α,±kz denote the cylindrical coordinates of wave
vector k±. Dependent on the relative position of r, the
plus and minus sign correspond to upwards (+) or down-
wards (−) propagating plane waves that have to be taken
into account.
Introducing the linear combination of reciprocal lattice
vectors b1 and b2, Gp̃ = m1b1 +m2b2, with m1, m2 ∈ Z
specifying unit cell (m1,m2) → p̃, and making use of the
Poisson summation formula∑

p′

ei(kin||−k±)Rp′ =
(2π)2

Auc

∑
p̃

δ(k± − kin|| + Gp̃), (13)

we find the scattered field of particle collection Sq written
as a sum of discrete plane waves

ESq
sca(r) =

2∑
j=1

∑
p̃

g±S0q,j
(κ, α)Φ±j (κ, α; r− rS0q

)

× δ(k± − kin|| + Gp̃) (14)

with amplitudes

g±S0q,j
(κ, α) =

2π

Auc

∑
n

bS0q
n

1

kzk
eimαBnj

(
±kz
k

)
. (15)

Auc denotes one unit cell’s base area and Φ± the upwards
or downwards oriented plane vector wave functions (cf.
eq. (A.1)). For practical reasons, the infinite sum in (14)
over scattered wave vectors k± = kin|| − Gp̃ has to be
truncated at a finite order of p̃ < p̃max. Note that the
reciprocal lattice vectors can be constructed from their
real space counterparts, b1 = 2πRπ/2a2/(a1 ·Rπ/2a2) and
b2 = 2πRπ/2a1/(a2 · Rπ/2a1) with rotation matrix Rα of
angle α. Hereby, the lattice vectors satisfy ai · bj = 2πδij
and Rp′ ·Gp̃ = 2πN for some integer N .

2.3. Scattered far-field

Besides the scattered near-field, the discrete sum (14) of
propagating (κ ≤ k) and evanescent (κ > k) plane waves
allows to determine far-field properties like the angle de-
pendent transmittance and reflectance.
The power per area each plane wave carries into z direction
reads

I±A =
dP

dA
=

k

2ωµ0
cosβ± |g±(κ, α)|2. (16)

ω denotes the angular frequency, µ0 the free space perme-
ability and β the polar angle of propagation. For upwards

propagating plane waves β+ = arcsin(κ/k) and for down-
wards propagating plane waves β− = π − arcsin(κ/k) .
The sum over all scattered, propagating plane waves yields
the total transmitted and reflected power per area of a pe-
riodic particle arrangement

I± =
k

2ωµ0

∑
q

2∑
j=1

∑
p̃

cosβ |g±S0q,j
(κ, α)|2

× δ(k± − kin|| + Gp̃), |k±| ≤ k. (17)

Since all particles in a unit cell share the same periodicity,
each particle collection scatters into the same discrete
plane waves. As a result, the far-field’s angular distri-
bution is not continuous. However, with growing unit
cell size the reciprocal lattice vectors decrease, resulting
in an increasing number of propagating plane waves. In
the limit of lattice vectors of infinite size, the scattered
far-field distribution becomes continuous.

2.4. Direct plane wave coupling

Comparable to nonspherical particles with overlapping
circumscribing spheres, the coupling between particle col-
lections Sq and Sq′ can be ev

Given that particle collections Sq and Sq′ can be sepa-
rated by a plane parallel to the xy plane

zS0q − zS0q′ = ∆zSqSq′ > rS0q − rS0q′ (18)

it can be advantageous to evaluate the particle-grid cou-
pling in terms of plane waves instead of using Ewald sum-
mation. Such a configuration is comparable to nonspher-
ical particles with overlapping circumscribing spheres, for
which a reformulation of the translation addition operator
in form of plane waves can be applied [43].
We start with a translation of the scattered field of particle
collection Sq′ (14) to the center of particle S0q

E
Sq′
sca (r) =

2π

Auc

∑
n′

b
S0q′

n′

2∑
j=1

∑
p̃

1

kzk
eim

′αBn′j

(
±kz
k

)
×Φ±j (κ, α; r− rS0q′ )δ(k

± − kin|| + Gp̃)

=
2π

Auc

∑
n′

b
S0q′

n′

2∑
j=1

∑
p̃

1

kzk
eim

′αBn′j

(
±kz
k

)
× e

ik±(rS0q
−rS

0q′
)
Φ±j (κ, α; r− rS0q

)

× δ(k± − kin|| + Gp̃). (19)

Now, a transformation into regular SVWFs (A.4)

E
Sq′
sca (r) =

8π

Auc

∑
n

∑
n′

b
S0q′

n′

2∑
j=1

∑
p̃

1

kzk
ei(m

′−m)α

×Bn′j
(
±kz
k

)
B†nj

(
±kz
k

)
e
ik±(rS0q

−rS
0q′

)

×M(1)
n (r− rS0q )δ(k± − kin|| + Gp̃) (20)
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yields the incoming field coefficients of particle S0q that
directly originate from the scattered field of particle col-
lection Sq′

a
S0qSq′
n =

∑
n′

W
S0qSq′

nn′ b
S0q′

n′ ,

=
8π

Auc

∑
n′

b
S0q′

n′

2∑
j=1

∑
p̃

1

kzk
ei(m

′−m)α

×Bn′j
(
±kz
k

)
B†nj

(
±kz
k

)
e
ik±(rS0q

−rS
0q′

)

× δ(k± − kin|| + Gp̃) (21)

and the coupling operator

W
S0qSq′

nn′ =
8π

Auc

2∑
j=1

∑
p̃

1

kzk
ei(m

′−m)α

×Bn′j
(
±kz
k

)
B†nj

(
±kz
k

)
e
ik±(rS0q

−rS
0q′

)

× δ(k± − kin|| + Gp̃). (22)

Please note that this alternative formulation of the cou-
pling operator between a grid of particles Sq′ and the cen-
tral unit cell’s particle S0q is in general only valid if an
infinite number of scattered wave vectors k± = kin|| −Gp̃

are taken into account. From a practical point of view, it
is recommended to be used only if ∆zSqSq′ � rS0q + rS0q′ .
Hereby, the number of evanescent waves that have to be
taken into account is strongly reduced.
Finally, we want to note that in a similar fashion to the
presented direct coupling operator, the layered mediated
particle-grid coupling can also be evaluated. Hereby, it
becomes feasible to study periodic particle arrangements
in a planar, layered environment.

3. Random, periodic particle arrangements

Recently, it has been shown that the superposition T-
matrix scheme in combination with an Ewald sum ap-
proach is suitable to describe light scattering in strictly
periodic particle arrangements [26, 27]. Here, we discuss
its use for the simulation of random particle arrangements.
First, we validate the approach by a comparison with an
FEM simulation. For this purpose, we consider the peri-
odic extent of a random, 2 × 2 × 2µm3 large ensemble of
pores with a 7 % (v/v) volume density, embedded in a loss-
less material of constant refractive index of n = 1.5, cor-
responding to poly(methyl methacrylate) (PMMA). The
pore radii follow a Gaussian distribution with a mean value
of 107 nm and a standard deviation of 9 nm. The periodic
particle arrangement is excited by an x-polarized plane
wave, propagating in negative z-direction. A graphical il-
lustration of one unit cell can be found as an inset in figure
2 (a).
With a volume of 8µm3, containing more than 100 individ-
ual scatterers, the example is chosen to pose a considerable
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Figure 2: (a) Wavelength dependent transmittance of an x-polarized
plane wave, exciting a periodic pore structure under normal inci-
dence. The cubic unit cell has a volume of 2 × 2 × 2µm3. Compari-
son between the periodic T-matrix scheme and the FEM. (b) Trans-
mittance averaged over five independent particle arrangements. (c)
L2-norm of the coupling operator between a single particle and its
own periodic repetition WS0qSq , for an infinite periodic grid (Ewald
sum) as well as finite sized grids (direct sum of the translation oper-
ator for SVWFs). In comparison, a pair of two particles with a 2µm
displacement.

challenge to the FEM. Figure 2 (a) shows the plane wave’s
wavelength dependent transmittance over the visible spec-
trum for both, the T-matrix simulations (blue) and the re-
sults obtained with the commercially available COMSOL
MULTIPHYSICS software (black) [44]. In this example
each particle’s T-matrix has been considered up to a max-
imal multipole degree and order lmax = mmax = 4. FEM
simulations have been performed with a minimal spatial
discretization of 0.6 nm. Overall, we obtain a very good
agreement between both techniques. A slight offset to-
wards shorter wavelengths indicates that in this part of the
spectrum, our FEM mesh does not sufficiently discretize
the simulation domain. However, the immense hardware
requirements related to these specific FEM simulations
prevent us from using an even finer mesh. For slightly
more coarse discretizations we observed larger offsets be-
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Figure 3: L2-norm of the coupling operator between particles (n = 2) in vacuum, excited by a plane wave (λ0 = 550 nm) that is propagating
perpendicular to the particle displacement. Comparison between two individual scatterers (translation addition operator for SVWFs) and an
infinite periodic lattice (Ewald sum) as a function of the displacement/periodicity.

tween both simulation techniques. Yet, the overall trend
remained identical.
Please note, that all 81 T-matrix simulations in figure 2
(a) have been performed on a regular work station within
a single day, which is comparable to the time that each
single FEM simulation occupied one node of the bwUni-
Cluster 2.0.
Comparing the observed wavelength dependency to the
almost linear trends that have been measured for compa-
rable porous polymer layers [45], it remains questionable
to which extent the observed quantities are influenced by
the specific particle arrangements and the artificial period-
icity. Therefore, we repeat the T-matrix simulations with
multiple random particle configurations, keeping the pe-
riodicity fixed at 2µm. An average of five independent
configurations can be seen in figure 2 (b). Its standard de-
viation is denoted by a blue corridor. Independent of the
individual random realization, the transmittance remains
strongly dependent on the excitation wavelength. Hereby
indicating that the wavelength dependent features do arise
from the chosen periodicity and not from the specific im-
plementation of the random structure.
To highlight this point, figure 2 (c) visualizes the period-
icity’s wavelength dependent influence on the particle-grid
coupling in form of the L2-norm of the coupling opera-
tor (eq. (9)) between an arbitrary central particle and
its own infinite periodic repetition. The coupling matrix
norm shows an ever increasing density of resonances to-
wards larger period-to-wavelength ratios. From a mathe-
matical point of view, these resonances arise from

Γ−1kin||+Gp̃
=
(√

k2 − (kin|| + Gp̃)2
)−1

(23)

in the long range contribution of the Ewald sum (cf.
(B.3)), which leads to a singularity whenever the wave
number coincides with the sum of the initial field’s
in-plane wave vector and the reciprocal lattice vector.
As a result, one observes a strongly increased coupling

between particles within one grid, but also to particles in
displaced grids (eqs. (B.6) and (B.7)). These artificial
singularities have to be avoided when using Ewald’s
method, as they constitute a clear artifact of the periodic
approximation of the otherwise aperiodic structure. How-
ever, the formation of resonances can already be observed
for finite sized particle grids (11 by 11 unit cells in red, 31
by 31 unit cells in green, evaluated by direct summation
of the individual particles’ contributions, cf. figure 2 (c)),
indicating that the resonant particle coupling does not
arise from a mathematical misfeature in the Ewald sum.
It can be explained by interference in an infinite periodic
grid without background absorption.
For now, we conclude that introducing an artificial
periodicity to model large, random particle arrangements
results in artificial resonances. And while the general as-
sumption is true that choosing a larger periodicity results
in weaker particle-grid coupling (cf. figure 3), it cannot be
chosen large enough to diminish any resonant behavior.
Therefore, it is not sufficient to simply choose the largest
period that can be handled in terms of computational
resources. Instead, we propose to chose a period that in
combination with the excitation wavelength and incident
angle results in non-resonant coupling between a particle
and a particle grid.
Considering the previously discussed example of a plane
wave impinging onto a porous polymer at a given incident
angle, this can be achieved by fixing the ratio between the
excitation wavelength and the artificial period to obtain a
detrimental, yet constant influence of the periodicity over
all wavelengths. The result can be seen in figure 4 (a) for
a constant period-wavelength-ratio P/λ of 9.65 (blue) in
comparison to a constant period P of 2µm (grey, identical
to figure 2 (b)). Figure 4 (b) displays the observed trans-
mittance for different period-wavelength-ratios of 5.5, 7.5
and 9.65. These ratios between the excitation wavelength
and the unit cell’s period are again somewhat arbitrary
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Figure 4: Average transmittance of TE- and TM-polarized plane
waves exciting periodic, 2µm thick porous polymer films. (a) Com-
parison between a constant period-wavelength-ratio P/λ = 9.65 (in a
homogeneous environment of n = 1.5) and a constant period of 2µm.
(b) Comparison between constant P/λ of 5.5, 7.5 and 9.65. The inset
shows a graphical representation of the wavelength dependent unit
cells for P/λ = 7.5 (smallest and largest).

but in clear distance to the neighboring singularities (see
also dotted red lines in figure 3).
It remains open to which extent a further increase of
the period-wavelength-ratio would lead to convergence of
any observable quantity, given that P/λ is chosen in a
clear distance to any neighboring singularity. However,
the results reveal only minor differences for period-
wavelength-ratios between 5.5 and 9.65. In addition,
the transmittance’ standard deviations, averaged over all
wavelengths, decrease from 0.74 % to 0.69 % and 0.45 %,
suggesting a decaying influence of the individual particle
arrangements for an increasing unit cell size.
All observed quantities have been averaged over ten
independent particle arrangements. Each is constructed
by sequentially populating a unit cell with random
particle positions until the desired volume fraction is
reached. To keep the period-wavelength-ratio constant,
each excitation wavelength requires a different unit cell
size. However, the particle positioning has been done only
for the largest unit cells needed. For shorter wavelengths,
the decreased periods have been realized by choosing
the respective subdomain as a unit cell. Hereby, it may
become necessary to remove particles from the unit cell
boundaries if the periodicity is disrupted by overlapping
particles. Inevitably, this leads to small particle density
fluctuations between individual simulations. Yet, it en-
sures that for similar wavelengths almost identical particle
arrangements are modeled. A graphical illustration of the
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Figure 5: Average reflectance of TE- and TM-polarized plane waves
by periodic, 10µm thick porous polymer films. Comparison between
three samples of different pore sizes and densities.

wavelength dependent unit cells is shown as an inset of
figure 4 (b).

4. Application example: Reflectance spectra of
porous network morphologies

Finally, we would like to illustrate the capabilities of the
presented approach by studying the wavelength dependent
reflectance of a plane wave by 10µm thick porous polymer
layers for three different pore sizes and densities. A graph-
ical illustration of such structures is shown in figure 1.
Especially the case of light propagation in thick, non-
absorbing particle arrangements renders an enormous
challenge for many simulation techniques. Due to the fi-
nite size of non-periodic configurations, a quantitative pre-
diction of, e.g., transmittance and reflectance can only be
made if the lateral extent measures a multitude of the hor-
izontal dimension. Otherwise it is to be expected that a
considerable amount of light escapes through the lateral
boundaries of the particle arrangement. Therefore, the
number of particles necessary for the non-periodic case
scales with the third power of the ensemble thickness. In
the periodic case, it only scales linearly with the thick-
ness, reducing the simulation time such that their numer-
ical treatment becomes feasible.
For our example, we choose pore sizes and densities that
are inspired by porous network morphologies obtained
from foamed micro PMMA spheres. To reproduce the
characteristic pore size distributions, we assume pore radii
that follow Gaussian distributions around 90 nm, 107 nm
and 133 nm with standard deviations of 7.8 nm, 8.9 nm
and 9.7 nm and form networks of 3 % (v/v), 7 % (v/v) and
12 % (v/v) pore density, respectively.
The reflectance of a plane wave under normal incidence
by these 10µm thick porous polymer layers is displayed in
figure 5. Here, the constant period-wavelength-ratio P/λ
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was set to 7.5. Each average has been taken over five indi-
vidual pore configurations and their standard deviations
are denoted by red corridors. Although we obtain the
typically observed, almost linear wavelength dependency
for all three films, stronger deviations between individ-
ual particle arrangements occur at lower wavelengths and
increasing particle sizes and densities. This indicates an
increased importance of the individual particle constella-
tions for samples with stronger scattering and underlining
the importance of sample averaging for such simulations.

5. Conclusions

We have shown that the superposition T-matrix scheme
in combination with an Ewald sum approach to account
for particle coupling in periodic particle arrangements is
a powerful tool to study light propagation in large, ran-
dom structures. Introducing such an artificial periodicity
can lead to resonant coupling between a single particle and
a particle’s periodic extent. Contrary to common expec-
tations, these resonances cannot be avoided by choosing
ever increasing periodicities. However, resonant particle
coupling only appears for specific combinations of the pe-
riodicity and the excitation’s wave number and incident
angle. Therefore, it is possible to perform parameter stud-
ies by avoiding any resonances.
The approach has been demonstrated by modeling light
propagation in porous polymer layers of 10µm thickness.
In this study, some unit cells contained more than 2000
individual scatterers.
Utilizing our modified T-matrix scheme, simulations of
electromagnetic scattering in large, random particle ar-
rangements can be performed for dielectric as well as metal
particles of various shapes.
For now, the approach is only available for plane wave ex-
citation but might be extended to periodic dipole arrays
by converting the dipoles’ periodic spherical waves into a
finite sum of propagating plane waves in the same fashion
it is done to evaluate the near-field of periodic scatterers.
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Appendix A. Wave functions

All T-matrix simulations have been performed on the
basis of SMUTHI [46], a python package that allows to
study ”scattering by multiple particles in thin-film sys-
tems”. We summarize the therein used definitions and
conventions necessary for section 2.
In the cylindrical coordinates κ, α,±kz of wave vector k±,
the plane vector wave functions read

Φ±j (κ, α; r) = eik
±rê±j . (A.1)

The plus and minus sign correspond to waves propagating
in positive and negative z direction, respectively. Denoted
by index j (TE = 1 and TM = 2), a plane wave’s polariza-
tion is defined by the unit vectors ê1 = êα of the azimuthal
and ê2 = êβ of the polar angle of k±.
The spherical vector wave functions read [38]

M
(ν)
lm1(r) =

1√
2l(l + 1)

∇×
[
rz

(ν)
l (kr)Ylm(θ, ϕ)

]
, (A.2)

M
(ν)
lm2(r) =

1

k
∇×M

(ν)
lm1(r), (A.3)

with the spherical coordinates θ, φ, r of position vector r.
In case of regular waves (ν = 1), the radial wave function

z
(ν)
l stands for the spherical Bessel functions, z

(1)
l = jl,

while outgoing waves (ν = 3) involve the spherical Hankel

function of first kind, z
(3)
l = h

(1)
l . The spherical harmonics

Ylm(θ, ϕ) = P
|m|
l (cos θ)eimϕ are based on the normalized

associated Legendre functions P
|m|
l . For simplicity, we

subsume the spherical waves multipole degree l, order m
and polarization τ in a single index n = (l,m, τ).

Appendix A.1. Transformations and translations

Plane waves can be expressed in terms of regular spher-
ical waves [47]

Φ±j (κ, α; r) = 4
∑
n

e−imαB†nj

(
±kz
k

)
M(1)

n (r), (A.4)

and outgoing spherical waves in plane waves

M(3)
n (r) =

1

2π

2∑
j=1

∫
d2k||

kzk
eimαBnj

(
±kz
k

)
Φ±j (κ, α; r)

(A.5)
for z ≷ 0.
An explicit formulation of the transformation operators B
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and B† can be found in [16].
While for plane waves a translation results in a simple
phase shift, the translation of SVWFs is accounted for by
the translation addition theorem [48]

M(3)
n (r + d) =

∑
n′

Ann′(d)M
(1)
n′ (r), |r| < |d| (A.6)

with

Ann′(d) = δττ ′Alml′m′(d) + (1− δττ ′)Blml′m′(d). (A.7)

The translation operator A(d) can be constructed via re-
currence formulas given in [13, 38] or based on the Wigner-
3j symbols [37, 38, 49]. In the latter case, the translation
operator reads [37]

Alml′m′(d) = ei(m−m
′)ϕd

|l+l′|∑
λ=|l−l′|

a5(l,m|l′,m′|λ)

× h(1)λ (kd)P
|m−m′|
λ (cos θd), (A.8)

or

Blml′m′(d) = ei(m−m
′)ϕd

|l+l′|∑
λ=|l−l′|

b5(l,m|l′,m′|λ)

× h(1)λ (kd)P
|m−m′|
λ (cos θd), (A.9)

with a5 and b5 being adjusted to the here used normaliza-
tion conventions. Their explicit formulation can be found
in [16].

Appendix B. Ewald sum

Derived by Kambe [28, 29] for the use in low energy
electron diffraction theory, the quantity DLM can be split
into two equally fast converging sums, one for the nearfield
interaction and one for long range contributions

D∗LM = D
(1)
LM +D

(2)
LM + δL0δM0D

(3)
00 . (B.1)

DLM can be used to evaluate the coupling between a sin-
gle particle and periodic particle arrangements. Recent
formulations of DLM for periodic T-matrix simulations
can be found in [26, 27]. For completeness, we summarize
formulas of DLM for various particle-grid constellations.
For this purpose, we stick to the nomenclature in [26].
But please note that a normalization factor is necessary to
match the definition of the SVWFs used throughout this
work.

DLM =
√

2π

{
(−1)−M

1
D∗LM

M > 0

M ≤ 0
(B.2)

For the coupling between a particle and its own periodic
grid, the long range contribution reads

D
(1)
LM =

iM

(2k)L

√
(2L+ 1)(L−M)!(L+M)!

Ak

∑
p̃

e
iMϕkin||+Gp̃

×

L−|M|
2∑

λ=0

(Γkin||+Gp̃
)2λ−1|kin|| + Gp̃|L−2λ

λ!(L+M2 − λ)!(L−M2 − λ)!

× Γ

(
1

2
− λ,−

Γ2
kin||+Gp̃

4η2

)
, (B.3)

and the short range contribution

D
(2)
LM = (−i)(−1)

L+M
2

√
(2L+ 1)(L−M)!(L+M)!

2L+1π(L−M2 )!(L+M2 )!

×
∑
p′ 6=0

eikin||Rp′ e
iMϕ−R

p′
1

k

(
2|Rp′ |
k

)L
×
∫ ∞
η2

uL−
1
2 e−|Rp′ |

2u+ k2

4u du. (B.4)

Note that for L+M odd, the Ewald sum vanishes. In case
of L = M = 0 , a central particle correction is necessary

D
(3)
00 =

1

4π
Γ

(
−1

2
,− k2

4η2

)
. (B.5)

ϕkin||+Gp̃
denotes the azimuthal angle of the linear

combination of the initial in-plane wave vector kin||
and the reciprocal lattice vector Gp̃ and Γkin||+Gp̃ =√
k2 − (kin|| + Gp̃)2 with positive complex square root

convention. Γ(·, ·) denotes the upper incomplete gamma
function and η the separation parameter between real and
reciprocal space summation.
If the coupling between a particle and another particle’s
periodic repetition is demanded, one has to distinguish
between particles within the same xy-plane (cz = 0) and
particles at different z positions [29]. In the former case
the long range contribution reads

D
(1)
LM =

iM

(2k)L

√
(2L+ 1)(L−M)!(L+M)!

Ak

×
∑
p̃

e−i(kin||+Gp̃)ce
iMϕkin||+Gp̃

×

L−|M|
2∑

λ=0

(Γkin||+Gp̃)2λ−1|kin|| + Gp̃|L−2λ

λ!(L+M2 − λ)!(L−M2 − λ)!

× Γ

(
1

2
− λ,−

Γ2
kin||+Gp̃

4η2

)
. (B.6)
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If cz 6= 0,

D
(1)
LM =

(−i)M

(−2)L

√
(2L+ 1)(L−M)!(L+M)!

Ak2

×
∑
p̃

e−i(kin||+Gp̃)ce
iMϕkin||+Gp̃

×
L−|M |∑
n=0

(
Γkin||+Gp̃

k

)2n−1

∆n

×
min(L−|M |,2n)∑

s=n

(−kcz)2n−s
(
|kin||+Gp̃|

k

)L−s
(2n− s)!(s− n)!

(
L+|M |−s

2

)
!
(
L−|M |−s

2

)
!
.

(B.7)

In both cases the short range contribution reads

D
(2)
LM = −i

√
2

π

∑
p′

eikin||Rp′ (k|Rp′ + c|)LY ∗LM (−Rp′ − c)

×
∫ ∞
η2

u2Le−
(k|R

p′+c|)2u2

2 + 1
2u2 du. (B.8)

Recursion formulas for the integral ∆n, as well as for the
integrals in eqs. (B.4) and (B.8) and the upper incomplete
gamma function are provided by Kambe [28, 29].
Please note that in the case of unit cells much larger than
the wavelength, the separation parameter η has to be cho-
sen with care. In contrast to the optimal choice for small
unit cells (η = π/Auc) [50, 51], one operates in a regime
beyond the so called high-frequency breakdown. Here, it is
necessary to regulate the exponential growth in the upper
incomplete gamma function to ensure convergence [27].
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