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1. Abstract 

Since the beginning, supramolecular chemistry has received increasing attention due to the wide 

range of possibilities for new practical applications.1-7 Among those, novel molecular probes, 

supramolecular binders, and chemosensors may, in combination with innovative assays, lead to 

an tremendous improvement of sensing and medical diagnostics. Monitoring neurobiological 

processes8 by developing improved molecular sensing technologies has gained importance due 

to the increasing numbers in Parkinson’s and Alzheimer’s diseases,9,10 depression,11 and 

insomnia.12 Alzheimer’s and Parkinson’s diseases are the most common neurodegenerative 

diseases in the world, affecting more than 30 million individuals living with Alzheimer’s 

disease13,14 and around 9.4 million individuals living with Parkinson’s disease15 as of 2020. The 

number of individuals suffering from depression or insomnia is even higher.16 Neurotrans-

mitters (NTs) have been considered as the cause or markers for such diseases and 

dysfunctions,17-19 i.e., low NT levels have been associated with severe depression and 

anxiety.20,21 Additionally, NT precursors or agonists are often involved in the treatment of these 

diseases. For Parkinson’s medication, oral doses of L-3,4-dihydroxyphenylalanine (L-DOPA) 

are administered, which is converted into dopamine in the brain.22,23 Furthermore, anti-

depressants, which regulate the serotonin level, can be used as medication for depression.24  

For early detection as well as for regularly drug level monitoring, new approaches for the fast 

and selective detection of NTs in biofluids are needed. To date, instrumental-based methods 

such as coupled high-performance liquid chromatography-mass spectrometry (HPLC-MS)25-27 

and nuclear magnetic resonance spectroscopy (NMR)28 are the practical choice for the detection 

of small molecules in aqueous biofluids, but their capabilities for high-throughput screening 

and in situ imaging are limited. Additionally, they have certain limitations such as high costs, 

long assay times, and the need for skilled operators, which could be overcome by fluorescent 

receptors suitable for home-use and point-of-care diagnostics.29,30  

There are some inspiring showcases for the future potential of synthetic artificial chemosensing 

systems for medical diagnostics. For instance, the boronic acid-based glucose sensors 

developed by SenseonicsTM and GlySure Ltd can be used for monitoring intravenous glucose 

levels in real time over a period of several months.31,32 Nevertheless, the sensitive and selective 

detection of small molecule metabolites, hormones, and neurotransmitters based on supra-

molecular approaches remains a non-trivial task. 
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In this work, the development of novel and in biofluids functional chemosensors with a fast-

responding signalling unit was the overriding goal. Firstly, a deeper fundamental understanding 

of the driving forces for molecular recognition was gained by an in-depth thermodynamic 

investigation of host-guest complex formation with symmetrical macrocyclic hosts, i.e., cucur-

bit[n]urils (CBn) and β-cyclodextrins (β-CD). The temperature dependency of the thermo-

dynamic parameters of ten organic guests with CB7, CB8, and β-CD was probed. Furthermore, 

strong cation binding affinities to the CBn carbonyl-decorated portals with values up to 

log Ka ⁓ 6 were determined through a binding study with 20 (in)organic cations.  

Having concluded that there are fundamental shortcomings of macrocyclic hosts for the binding 

of small molecules, e.g., the insufficient binding affinity for hydrophilic guests that gets further 

diminished in the presence of salts, as well as their low binding selectivity, a completely new 

chemosensor design strategy was examined in this work. Specifically, zeolites as inorganic, 

microporous materials were loaded with dicationic reporter dyes, to produce composite 

materials that are excellent chemosensors for small and hydrophilic molecules, namely neuro-

transmitters. A variety of zeolite-based chemosensors was prepared and studied, revealing 

interesting binding trends and spectroscopic properties. Finally, the label-free and rapid 

neurotransmitter detection through economic and facile absorbance- and emission-based assays 

and the potential for high-throughput diagnostics in urine and for monitoring of important 

enzymatic reactions was demonstrated. This sensing design concept will be further transferable 

to the development of other artificial receptors that are capable of reversibly detecting label-

free metabolites, hormones, and neurotransmitters in situ and in real time. 
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2. Kurzzusammenfassung / Abstract in German 

Die supramolekulare Chemie erhält seit ihrem Aufkommen immer mehr Aufmerksamkeit 

aufgrund der vielseitigen Möglichkeiten neuer praktischer Anwendungen.1-7 Neuartige 

molekulare Sonden, supramolekulare Wirte und Chemosensoren können durch ihren Einsatz in 

innovativen Assays zu einer Revolution der Sensorik und medizinischen Diagnostik führen. 

Die Überwachung neurobiologischer Prozesse mittels verbesserter molekularer 

Sensortechnologien hat beispielsweise in den Neurowissenschaften8 aufgrund der steigenden 

Zahlen an Parkinson- und Alzheimer-Erkrankungen,9,10 Depressionen11 sowie Schlafstörungen 

an Bedeutung gewonnen.12 Alzheimer und Parkinson sind die weltweit häufigsten 

neurodegenerativen Erkrankungen. Im Jahr 2020 waren mehr als 30 Millionen Menschen von 

Alzheimer13,14 und ca. 9,4 Millionen Menschen von Parkinson15 betroffen. Die Anzahl der 

Personen, welche an Depressionen oder Schlafstörungen leiden, ist sogar noch höher.16 

Neurotransmitter werden als Ursache oder Marker solcher Krankheiten und Funktions-

störungen angesehen.17-19 Niedrige Neurotransmitterspiegel konnten beispielsweise mit 

schweren Depressionen und Angstzuständen in Verbindung gebracht werden.20,21 Des Weiteren 

werden Neurotransmittervorläufer oder Agonisten oft zur Abschwächung oder Behandlung der 

Krankheiten verwendet. So werden im Falle einer diagnostizierten Parkinson Erkrankung orale 

Dosen von L-DOPA verabreicht, welches im Gehirn in Dopamin umgewandelt wird.22,23 

Weiterhin können bei Depressionen Antidepressiva, welche den Serotoninspiegel regulieren, 

als Medikation eingesetzt werden.24 

Für eine frühzeitige Erkennung sowie einen regelmäßig überwachten Medikamentenspiegel 

werden neue Ansätze für den schnellen und selektiven Nachweis von Neurotransmittern in 

Bioflüssigkeiten benötigt. Bislang sind instrumentelle Methoden wie HPLC-MS und NMR die 

praktische Wahl für den Nachweis kleiner Moleküle in Bioflüssigkeiten, die Möglichkeiten für 

Hochdurchsatz-Screenings oder bildgebende Methoden sind begrenzt. Darüber hinaus bestehen 

weitere Einschränkungen wie hohe Kosten, lange Testzeiten und die Notwendigkeit von 

geschultem Personal. Diese Einschränkungen könnten durch fluoreszierende Rezeptoren, die 

für die Heimanwendung und Point-of-Care-Diagnostik geeignet sind, überwunden werden.29,30 

Es gibt einige inspirierende Beispiele für das zukünftige Potenzial künstlicher Chemosensor-

systeme in der medizinische Diagnostik. So können beispielsweise die von SenseonicsTM und 

GlySure Ltd entwickelten Boronsäure-basierten Glukosesensoren zur Überwachung des 

intravenösen Glukosespiegels in Echtzeit über einen Zeitraum von mehreren Monaten 
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eingesetzt werden.31,32 Die sensitive und selektive Detektion von niedermolekularen 

Metaboliten, Hormonen und Neurotransmittern auf Basis supramolekularer Ansätze ist weiter-

hin keine triviale Aufgabe. 

In der vorliegenden Arbeit wurde die Entwicklung neuartiger und in Bioflüssigkeiten 

funktionaler Chemosensoren mit einer schnell reagierenden Signaleinheit angestrebt. Zunächst 

wurde ein tieferes grundlegendes Verständnis der Triebkräfte für die molekulare Erkennung 

durch eine detaillierte thermodynamische Untersuchung der Wirt-Gast-Komplexbildung mit 

den symmetrischen makrozyklischen Cucurbit[n]urilen (CBn) und β-Cyclodextrinen (β-CD) 

erlangt. Weiterhin wurde die Temperaturabhängigkeit der thermodynamischen Parameter von 

zehn organischen Gastmolekülen mit den Wirtmolekülen CB7, CB8 und β-CD untersucht. 

Darüber hinaus erfolgte eine Bindungsstudie mit 20 (in)organischen Kationen, wodurch starke 

Bindungsaffinitäten von den Kationen zu den Carbonylgruppen der Cucurbit[n]urilportale mit 

Werten größer als log Ka = 6 gefunden wurden. Die hohen Bindungsaffinitäten für Kationen 

können zu Störungen bei der supramolekularen Detektion von organischen Analyten führen. 

Aufgrund der Feststellung, dass makrozyklische Wirte durch unzureichende Bindungsaffinitä-

ten für hydrophile Gäste, welche in Gegenwart von Salzen noch weiter abnimmt, sowie ihre 

geringe Bindungsselektivität, für die Bindung kleiner Moleküle grundlegende Mängel aufwei-

sen, wurde im Rahmen dieser Arbeit eine völlig neue Chemosensor-Designstrategie verfolgt. 

Konkret wurden Zeolithe als anorganische, nanoporöse Materialien mit dikationischen 

Reporterfarbstoffen beladen, welche als Wirt-Gast-Komplexe sich als ausgezeichnete Chemo-

sensoren für hydrophile kleine Moleküle wie Neurotransmitter herausstellten. Eine Vielzahl 

von Chemosensoren auf Zeolithbasis wurde hergestellt und untersucht, wobei interessante 

Bindungstrends und spektroskopische Eigenschaften festgestellt wurden. Anschließend wurde 

die markierungsfreie und schnelle Detektion von Neurotransmittern durch kostengünstige und 

einfache absorptions- und emissions-basierte Assays sowie das Potenzial für die Hochdurch-

satz-Diagnostik in Urin und zur Überwachung wichtiger enzymatischer Reaktionen demons-

triert. Zukünftig wird das Sensordesign-Konzept auf die Entwicklung weiterer künstlicher 

Rezeptoren übertragbar sein, die in der Lage sind, markierungsfrei Metaboliten, Hormone und 

Neurotransmitter in situ und in Echtzeit reversibel zu detektieren. 
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3. Introduction 

In the past few decades, the sensitive and selective, non-covalent detection of small organic 

molecules, e.g., metabolites such as hormones and the in this work discussed neurotransmitters 

(NTs), has emerged to a research field of significant importance.33-37 Abnormal concentration 

levels of NTs can serve as markers for a wide variety of body malfunctions and neurological 

disorders, e.g., tumours, migraine, depression, the irritable bowel and the sudden infant death 

syndrome as well as several other diseases.38-46 Nowadays, neurotransmitter sensing in 

diagnostic settings is performed through either antibody-based immunoassays47 or 

instrumental-based analytical methods, e.g., coupled HPLC-MS25-27 measurements or nuclear 

magnetic resonance (NMR) spectroscopy.28 Therefore, sensing remains restricted to specialised 

diagnostic laboratories and the capabilities for high-throughput screening as well as in situ 

imaging are strongly limited. Additionally, current methods are difficult to implement for 

home-use and point-of-care testing (POCT), in remote areas or in developing countries. 

Likewise, many biologically and medically oriented research investigations, e.g., the 

correlation of biological processes or diseases with the spatiotemporal occurrence level of 

molecular markers, are limited by the lack of dynamically responding receptors with a sensitive 

signal transduction capability. Low-cost, robust, and fast responding artificial receptors could 

offer many new diagnostic opportunities and are therefore topic of this work.  

In the following, NTs, their metabolism and function in the human body as well as their 

molecular recognition motifs are discussed. In addition, current detection methods based on 

chemosensors for rapid NT detection in combination with their advantages and disadvantages 

are covered. 

3.1. Neurotransmitters (NTs), their metabolism and body functions 

The term neurotransmitter (NT) includes all chemical carriers responsible for neurological 

signal transmission.48,49 In general, NTs are endogenous chemical messengers that allow 

neurons to communicate with each other throughout the body and are involved in all sorts of 

everyday life functions. Their synthesis is carried out by neurons and they are stored in synaptic 

vesicles, which are located at the axon terminal, close to the synaptic gap. Neuronal activation 

causes the NT release from the synaptic vesicle and once released, NTs diffuse from their pre-

synaptic neurons across the synaptic cleft to bind to a postsynaptic receptor (see Figure 1).50,51  



6  Introduction 

 
Figure 1: Schematic representation of the storage of NTs in vesicles and the release thereof in the synaptic gap with subsequent 

receptor binding. The receptors are located on the surface of the postsynaptic neuron. Image modified and reprinted from 

OpenStax, Anatomy & Physiology.52,53 

Besides their messenger function, NTs can activate intracellular processes. This receptor inde-

pendent signalling mechanism is commonly referred to as monoaminylation.54 The incorpo-

ration ability of primary amines into proteins by covalent linkage to glutamine residues has 

already been known since the 1950s (see Figure 2a).55,56 However, the term serotonylation was 

only introduced in 2003 by WALTHER and co-workers investigating the function of serotonin 

as hormone involved in vasoconstriction and platelet function.57 Serotonylation, which 

describes the covalent linkage of serotonin to proteins catalysed by transglutaminases, was 

showcased to influence the glycoprotein fibronectin located in platelets,58 glioma cells,59 and 

vascular smooth muscle cells.60 Moreover, serotonylation-related modifications of histones in 

neurons,61 and on the insulin secretion from pancreatic β-cells are known.57 Furthermore, 

dopaminylation, which describes the dopamine interaction with chromatin, was linked to 

cocaine addiction.62 By blocking histone dopaminylation, a withdrawal of the cocaine-seeking 

behaviour in rats was triggered.  

 

Figure 2: a) The covalent linkage of serotonin (1, blue) to glutamine residues (2) in proteins catalysed by the enzyme transglu-

taminase (green) is named serotonylation. b) Resonance structures for creatinine (4), which is commonly used as reference for 

biomarkers. 
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NTs are essential to the function of complex neural systems and are found locally in millimolar 

concentrations near their sites of action, e.g., near nerve cells. Their occurrence in readily 

accessible biofluids such as urine and blood serum is much lower, typically in the micromolar 

to nanomolar concentration range (see Table 1). It is common to report NT levels with creati-

nine as reference (see Figure 2b). Creatinine is an amino-functional heterocyclic compound 

that is produced in the organism through a reaction involving creatine phosphate and ATP.63 It 

is produced at a constant rate within an individual and removed from the blood chiefly by the 

kidneys. Creatinine levels are routinely monitored in urine and are frequently used to normalise 

biomarker concentrations, e.g., in urinalysis as correction for sample-to-sample or patient-to-

patient volume differences.52 Therefore, the concentration of the test analyte is divided by the 

total amount of creatinine excreted in the same urine sample. Creatinine can be detected by the 

Jaffe reaction, which is a long known colorimetric assay first introduced in 1886.64,65 The assay 

is based on the reaction of creatinine with alkaline picrate that yields an orange-red complex in 

alkaline medium within a few minutes of assay time.  Typical creatinine levels in human adult 

urine are 97 - 177 µmol kg–1 d–1.66 Nowadays laboratories routinely apply enzymatic assay kits 

with creatininase or creatinine deaminase67-70 as well as GC-MS, LC-MS, and HPLC71,72 for 

quantitative analysis of creatinine.73,74 

Table 1: Overview of typical concentration ranges for NTs in human biofluids. NT concentration ranges were calculated based 

on the assumption of 100 µmol kg–1 d–1 creatinine.   

Analyte Concentration range Medium Ref. 

Acetylcholine 

3.4 - 14.2 µM Saliva 75 

0.2 - 1.3 µM Blood 76 

2.8 - 5.8 µM / mM creatinine 

= 25.7 - 58.1 µM 

Urine (> 50 years old, 

females) 

77 

1.8 - 6.6 µM / mM creatinine 

= 17.8 - 65.7 µM 

Urine (> 50 years old, 

male) 

77 

Aspartate 

3.5 - 21.8 µM / mM creatinine 

= 35 - 218 µM 

Urine 78 

13.9 - 52.7 µM Saliva 75 

⁓ 7 µM Serum 79 

4.0 - 8.6 µM Human plasma 80 

Dopamine 

200 - 700 nM / mM creatinine 

= 2.0 - 7.0 µM 

Urine 78 

150 - 290 nM / mM creatinine 

= 1.5 - 2.9 µM 

Urine 81 

8.0 - 9.0 nM Human plasma 82 

Epinephrine 
4.7 - 5.7 nM / mM creatinine 

= 47 - 57 nM 

Urine 83 
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Analyte Concentration range Medium Ref. 

Epinephrine 0.35 - 0.55 nM Human plasma 82 

GABA 

2.7 - 3.3 µM / mM creatinine 

= 27 - 33 µM 

Urine 78 

85 - 135 nM Human plasma 84 

Glutamate 
3.3 - 18.4 µM / mM creatinine Urine 78 

12 - 40 µM Human plasma 85 

Glycine[a] 

44 - 300 µM / mM creatinine 

= 0.4 - 3.0 mM 

Urine 78 

34 - 230 µM Saliva 75 

⁓ 92 µM Serum 79 

155 - 270 µM / L plasma Human plasma 85 

Histamine 

0 - 7.5 µM Saliva 75 

10 - 100 nM / mM creatinine 

= 0.1 - 1.0 µM 

Urine 

 

78 

0.3 - 1.0 µM Whole blood 86 

0.5 - 1.8 nM Plasma 87 

Norepinephrine 

3.4 - 33.6 nM / mM creatinine 

= 34.2 - 336 nM 

Urine 88 

1.5 - 1.7 nM Human plasma 82 

Serotonin 

50 - 250 nM / mM creatinine 

= 0.5 - 2.5 µM 

Urine 78 

80 - 750 nM Human plasma 80 

Tyramine 
200 - 280 nM / mM creatinine 

= 2.0 - 2.8 µM 

Urine 89 

[a] Wide value range reported. 

NTs can be divided into three classes, which are namely (i) amino acids, including γ-amino-

butyric acid (GABA, 6), glutamate (7), glycine (8), and aspartate (9), (ii) biogenic amines, such 

as dopamine (10), norepinephrine (11), epinephrine (12), tyramine (13), serotonin (1), melato-

nin (14), and histamine (15) as well as (iii) others, containing gases such as nitric oxide, lipids 

such as anandamide (16), acetylcholine (17), and adenosine (18), see Figure 3. Furthermore, 

NTs can be grouped by their function in excitatory, inhibitory, and modulatory NTs.90 Excita-

tory neurotransmitters are responsible for the generation of an action potential, while inhibitory 

neurotransmitters prevent it. Modulatory neurotransmitters affect several neurons at the same 

time and consequently influence the effects of other chemical messengers. Several NTs can 

have either an excitatory or an inhibitory effect depending on the present receptors/target cells. 

From a structural point of view, neurotransmitters are closely related to amino acids from which 

they are metabolically derived through enzymatic decarboxylation. In the following chapter, 
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only catecholamine-based NTs such as dopamine, epinephrine, and norepinephrine, and indole-

based NTs such as serotonin and melatonin will be discussed in further detail.  

  

Figure 3: Selected examples for each of the introduced NT classes, namely (i) amino acids, (ii) biogenic amines, and (iii) 

others. 

3.1.1. Catecholamines 

Catecholamines are small molecules derived from the amino acid L-tyrosine (L-Tyr, 19). The 

most important catecholamines are dopamine (10), epinephrine (11), and norepinephrine (12).91 

Dopamine is an exceptional NT, as it can function both as excitatory as well as inhibitory NT, 

depending on the present receptor.92 Dopamine is associated with the reward mechanism in the 

brain93 and stands in close relation to drug addiction. Cocaine, heroin, LSD, alcohol, and other 

drugs with potential for psychological dependence lead to a temporary dopamine increase in 

the ventral tegmental area in the brain.94 Epinephrine, or commonly also referred to as adrena-

line, is an excitatory NT responsible for increasing heart rate, blood pressure, and glucose pro-

duction in extreme situations. Norepinephrine, or noradrenaline, has a very similar effect on the 

human body as epinephrine. Both NTs are essential to the body’s “fight-or-flight“ response, 

and their concentration levels fluctuate in response to physical and emotional stress.95-97  

All named NTs are metabolised through enzymatic reactions by catechol-O-methyltransferases 

(COMT) and monoamine oxidases (MAO). Dopamine is digested to homovanillic acid (HVA, 
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21), norepinephrine is converted to vanillylmandelic acid (VMA, 22, via normetanephrine as 

intermediate) similarly to epinephrine (via metanephrine as intermediate), and then excreted 

with urine (see Figure 4).98  

 

Figure 4: Biosynthetic pathway for catecholamines and trace amines in the human body (only for this work relevant extracts 

are shown). NTs are marked in blue whereas catalysing enzymes are marked in green. Trace amines and NTs are shown in 

their protonated form as the pKa values of the labile protons for all shown analytes are larger than the pH of water, i.e., pH 7.0 

at 25°C.  

Many diseases are linked and/or indicated by the alteration of the occurrence and the relative 

concentration changes of catecholamines.99-101 Typical catecholamine concentrations in urine 

are < 1 µM / mM creatinine for healthy adults.102 An example for a disease that causes increased 

NT levels is pheochromocytoma,103,104 which is a type of tumour that grows within the adrenal 

glands and produces an excess of catecholamines. Another example is neuroblastoma, which is 

an aggressive nervous system cancer with children.105 Additionally, factors such as infections 

in the body or stress can alter the catecholamine concentration levels.106  
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3.1.2. Indolamines 

Indolamines are substituted indole compounds that contain an amine group. Serotonin (1), or 

5-hydroxytryptamine (5-HT), is the most widely known indole-based NT as it is linked to a 

variety of roles in normal physiology, including development, cardiovascular function, and 

behaviours such as cognition, mood and sleep.93,107 Additionally, drugs that target serotonin 

receptors are commonly used in neurology and psychiatry.108 Serotonin is biologically synthe-

sised in two enzymatic steps starting from L-tryptophan (L-Trp, 23). An aromatic ring 

hydroxylation leads to the formation of 5-hydroxytryptophan (5-HTP, 24) followed by a side 

chain decarboxylation yielding serotonin (see Figure 5).109  

 

Figure 5: Biosynthesis of indole-based NTs starting from the essential amino acid L-tryptophan (L-Trp, 24). NTs are marked 

in blue whereas catalysing enzymes are marked in green. Trace amines and NTs are shown in their protonated form as the pKa 

values of the labile protons for all analytes are larger than the pH of water, i.e., pH 7.0 at 25°C.  
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5-Hydroxyindoleacetic acid (5-HIAA, 28) is excreted with urine as serotonin digestion product. 

It is formed by deamination of the side chain of serotonin by MAO. Therefore, 5-HIAA is often 

used for the indirect in-body serotonin concentration determination. Typical serotonin 

concentrations in urine range from 0.5 to 2.5 µM (~ 50 - 250 nM / mM creatinine) for healthy 

adults.110,111 Serotonin concentrations lower than 0.5 µM (≤ 50 nM / mM creatinine) have been 

linked to depression,112,113 and increased urinary serotonin levels (> 300 nM / mM creatinine) 

can be an indicator for gastrointestinal tumours amongst other diseases.114,115 Another well-

known indole-based NT is melatonin (14), which is a hormone responsible for the day-night 

rhythm.116 Additionally, melatonin plays an important role as a time cue for the endogenous 

circadian system that modulates memory processes.117  

3.2. Comparison of bioreceptors and current artificial receptors for NTs 

3.2.1. Bioreceptors 

A bioreceptor selectively interacts with a specific analyte species and thereby produces a 

measurable effect. As soon as a transduction unit is installed on a bioreceptor, the molecule is 

named biosensor.118,119 A wide variety of molecular structures and proteins has been found to 

act as NT receptors, however, most of them are ligand-gated ion channels and G protein-

coupled receptors (GPCRs).49 Typically, human NT receptors are located in the axonal 

terminals as well as in the release-targeted dendrites and bind NTs by an interplay of several 

non-covalent binding interactions (see Figure 6). 

 

Figure 6: a) Structure of a 5-HT2B serotonin receptor (PDB ID: 4IB4).120,121 b) Possible non-covalent interactions between a 

receptor and serotonin. 

The protein-based 5-HTx (x = 1 - 2, 4 - 7) receptors are a group of GPCRs constructed for sero-

tonin recognition.122,123 The receptor 5-HT3 is an exception as it is a ligand-gated ion channel.124 

The serotonin GPCRs are located in the central and peripheral nervous system. So far, fourteen 

different receptor subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 
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5-HT2C, 5-HT3, 5-HT4, 5-HT5A, 5-HT5B, 5-HT6, 5-HT7) grouped into seven families (5-HTx; 

x = 1 ˗ 7), have been described.  For dopamine, the GPCRs are named “Dy receptors“ (y = 1 - 5) 

and are prominent in the vertebrate central nervous system.125 The GPCRs mentioned here bind 

NTs with binding affinities of log Ka ≥ 5.6 (see Table 2).  

Table 2: Representative serotonin receptors (5-HTx; x = 1 - 4) and representative dopamine receptors (Dy; y = 1 - 5) and their 

association constants (given as log Ka) for dopamine, serotonin, epinephrine, and norepinephrine. All shown data was extracted 

from measurements in 50 - 80 mM Tris-HCl, pH 7.4 - 7.5 (partly with the addition of 100 mM NaCl).  

Bioreceptor 
log Ka 

(dopamine) 

log Ka 

(serotonin) 
log Ka 

(epinephrine) 

log Ka 

(norepinephrine) 

5-HT1A ─     8.0126 ─ ─ 

5-HT1B ─     8.0126 ─ ─ 

5-HT2A ─     8.2126 ─ ─ 

5-HT2C ─     8.1126 ─ ─ 

5-HT3 ─     8.2126 ─ ─ 

5-HT4 ─    8.2126 ─ ─ 

D1     5.6127     5.0127     4.6128     4.5128 

D2     7.8128 ─     5.3128     5.1128 

D3     7.6129 ─ ─ ─ 

   D4
[a]     9.0130 ─     7.8130     7.6130 

D5     6.6127     5.5127 ─     4.9127 
[a] Values given were determined for the high affinity receptor binding side.  

3.2.2. Artificial detection methods 

Natural receptor-based fluorescent protein mutants have been developed for the detection of 

neurotransmitters,131,132 but their large scale preparation is expensive and their handling incon-

venient. Already established and currently emerging molecular recognition-based sensing tech-

nologies are mainly based on biological building blocks and processes,133-137 namely immune-

based diagnostics (antibody-antigen interactions),47 genetically modified receptor proteins, 

DNA and RNA technologies (including PCR), and enzymatic reaction-based diagnostics. An 

exception are electrochemical sensing methods applicable for redox-active analytes, i.e., gluta-

mate or catecholamines in general.34 Other branches of non-biobased chemistry and particularly 

supramolecular chemistry, have by now contributed relatively little to realistic diagnostic 

applications. However, artificial receptors, which are robust and fast responding, can open 

exciting new possibilities for home-use and point-of-care diagnostics.  

Structurally utilizable features of NTs for the preparation of novel molecular probes and 

chemosensors are the presence of primary and secondary amino groups. Those can be targeted 

due to the high nucleophilic character of the unprotonated -NH2 moiety via ion-pair bonding. 

Their protonated physiological form in aqueous media is addressed by charge-assisted 
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hydrogen bonding. Carboxylate groups, as they are present in GABA, glutamate, aspartate, and 

glycine, are another structure recognition motif. To date, these are the main recognition motifs 

in contemporary designs of molecular probes and chemosensors.29 Furthermore, the presence 

of aromatic and hydrophobic aliphatic residues can be used to mediate hydrophobic inter-

actions. Typical NT functional groups that can serve as chemical anchors/recognition motifs 

for the development of new chemosensors are shown in Figure 7 exemplarily for dopamine 

and serotonin.  

 

Figure 7: Available chemical anchors/recognition motifs, exemplarily shown for dopamine and serotonin. 

Aldehyde groups and arylboronic acids have attracted much attention in the development of 

chemosensors. Aldehyde groups condense with amines under imine-bond formation. 

Arylboronic acids have the unique feature to form reversible covalent complexes with 1,2- or 

1,3-substituted Lewis-base donors, i.e., hydroxy or amino functional groups.138 GLASS and co-

workers reported fluorescent chemosensors for catecholamines that target the amino and diol 

functionalities of catecholamine NTs (probe 27 in Figure 8a). Due to the interplay of two 

recognition units, probe 29 selectively binds catecholamines with a primary amino group and a 

sterically accessible diol (catechol) moiety, such as norepinephrine. Other biogenic amines, 

e.g., glutamate, or secondary amine neurotransmitters such as epinephrine form no or much 

weaker adducts.139 Likewise, other researchers incorporated boronic acids as recognition motifs 

into fluorescence probes (see Figure 8b). Similarly to chemosensor 29, chemosensor 30 shows 

binding affinities in der order of Ka ⁓ 103 M–1 for various catecholamines in water,140 whereas 

chemosensor 31 and 32 show binding affinities of Ka(epinephrine) = 5 ∙ 103 M–1 and Ka(dopa-

mine) = 1 ∙ 104 M–1 in 50% MeOH.141 Interestingly, the additional aldehyde group, which was 

installed on chemosensor 32 compared to chemosensor 31, did not significantly affect the 

binding properties and affinities of the probe. A small drawback for the boronic acid recognition 

motif is the pH dependency of the reversible bond formation between the boronic acid and the 

catechol moiety. The competing equilibrium of the boronated species occurs near physiological 
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pH.138 Additionally, boronic acids are known to bind unselectively all diols, e.g., diol-decorated 

carbohydrates such as fructose.142 

 

Figure 8: a) Artificial receptor for the detection of primary catecholamines containing an aldehyde and a boronic acid recog-

nition motif.139 b) Other catecholamine probes based on boronic acid recognition motifs.140-143 

SCHRADER and co-workers developed acyclic phosphonate-boronate compounds (probe 33 and 

34).143 Unfortunately, the implemented binding affinity improvement by the installation of the 

additional bisphosphonate recognition elements turned out to yield lower binding affinities for 

catecholamines than previous boronic acid-based receptors. However, probe 33 and 34 show a 

good selectivity against non-catechol species.  

In addition to covalent-based approaches, the field of supramolecular host-guest chemistry re-

ceived a lot of attention due to the potential of reaching high binding affinities and dynamic 

binding modes. The monitoring of dynamic processes becomes possible based on the reversible 

binding events. So far, two classes of macrocyclic hosts are most widely utilized for small bio-

molecule sensing applications, i.e., cyclodextrins (CD, 35 for β-CD)144-148 and cucurbit[n]urils 

(CBn, 36 for CB7 and 39 for CB8),149-151 the latter macrocycles due to their comparably good 

binding affinities for small (bio)molecules (see Figure 9 and Table 3).  
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Figure 9: a) Comparison of binding affinities (depicted as log Ka) of representative 5-HTx (x = 1 - 4) and Dy (y = 1 - 5) bio-

receptors (green) and selected artificial receptors (orange, 35 - 40) for a) serotonin and b) dopamine. For more details see Table 

2 and Table 3. c) Chemical structures of the artificial receptors 35 - 40. 

Except for CB7, none of the so far known chemosensors can reach practically required binding 

affinities for neither serotonin (log Ka ≥ 6.0) nor dopamine (log Ka ≥ 5.6) in desalinated water 

or in aqueous-organic solvent mixtures. CB7 reaches the practically required affinity value for 

dopamine, but lacks in a signal transduction unit. A solution to this signal transduction lack and 

which problems can therefore arise are explained in more detail in Chapter 3.2.3. 

 

 



Introduction  17 

 

Table 3: Representative association constants (given as log Ka) of artificial receptors for serotonin and dopamine. If not stated 

otherwise the given values are determined in water. 

Host Number 
log Ka 

(serotonin) 

log Ka 

(dopamine) 

β-CD 35 1.7152 ─ 

CB7 36 4.8153     5.7153 

“Blue box” 37 3.2154     3.0154 

2,19,28,45-Tetraoxa-3,18,29,44-tetraoxo-10,36-

diyne-22,25,48,51-tetrakis(methoxyphosphoryl-

methyl)-[3.3.2]paracyclophane2- 

38[a] 3.2155     2.9155 

Triphenylene-2,3,6,7,10,11-hexaylhex-

akis(oxy)hexa-propionate 
39[b] 2.3156     2.3156 

CB8 decorated with 2,7-dimethyldiazapyrenium 

(CB8•MDAP) 
40 3.7157 ─ 

[a] Measurements were conducted in D2O. Shown binding affinities refer to a 1:1 complex formation. [b] Measurements were 

conducted in 100 mM Na2HPO4, pH 7.1. 

3.2.3. Cucurbit[n]urils (CBn) 

Cucurbit[n]urils (CBn, n = 5 - 8, 10, 14) are macrocyclic host molecules consisting of five to 

fourteen methylene-bridged glycoluril units (see Figure 10).158,159 In 1905, BEHREND and co-

workers first synthesised a condensation product from glycoluril (46) but did not have the 

equipment to fully characterise it.160 It was not until 1981 that FREEMAN, MOCK, and SHIH 

revealed the macrocyclic structure composed of six glycoluril units linked by pairs of methylene 

bridges.161 The molecule family was named “cucurbit[n]uril” as their shape has strong resem-

blance to a pumpkin (Cucurbitaceae). Since then, various new CBn homologues were 

synthesised.150,159,162-164 

 

 Figure 10: a) Chemical structure of CBn homologues. b) Synthesis of CBn (n = 5 - 8, 10). 
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The synthesis of CBn is based on the condensation of formaldehyde with glycoluril in an acidic 

environment and the number of condensed glycoluril units forming a macrocycle is controlled 

by the choice of reaction conditions (see Figure 10b).162 The reaction of formaldehyde and 

glycoluril first generates linear oligomeric products which then cyclise to CBn.164 The major 

product formed is CB6, which can be separated from CB5 and CB7 by fractional dissolution 

and crystallisation from acetone/water mixtures. CB8 can be synthesised in a similar procedure 

by precipitation from 6 M sulfuric acid. In terms of solubility, CB5 and CB7 are the better 

soluble homologues with a solubility of 20 - 30 mM in water, whereas CB6 and CB8 are rather 

insoluble only reaching concentrations of 180 µM or less. However, the solubility can be 

increased by the addition of cations or acids as the carbonyl groups function as weak bases.162  

CBn generally provide one of the strongest binding affinities of any known supramolecular 

hosts on account of high-energy cavity water release, which will be further described later 

on.149,165-168 Additionally, size selectivity can be tuned due to their cavity dimensions varying 

on the number of glycoluril units (see Table 4).  

Table 4: Structural parameters for the uncomplexed macrocyclic hosts CB5 to CB8.159  

Dimensions  CB5 CB6 CB7 CB8 

Outer diameter a 13.1 14.4 16.0 17.5 

Cavity diameter (Å) b 4.4 5.8 7.3 8.8 

Portal diameter (Å) c 2.4 3.9 5.4 6.9 

Height (Å) d 9.1 9.1 9.1 9.1 

Cavity volume (Å3) ─ 82 164 280 480 

Two main molecular recognition units for CBn are the carbonyl-fringed rims that can bind 

cations169 and the hydrophobic cavity that can stabilise hydrophobic guest molecules. 

Negatively charged species such as the amino acids aspartate and glutamate are not bound at 

all achieving a good selectivity for neutral or positively charged hydrophobic species.150,170  

Due to their high binding affinities and various cavity sizes, CBn have found a broad range of 

applications such as catalysis,150,171,172 enzymatic assays,173-175 stimuli-responsive gels,176,177 

functional nanostructures,178 self-sorting systems,179-181 as well as drug delivery.182-185 How-

ever, CBn are alongside with other hosts optically silent, i.e., they are not emissive and absorb 

light in the UV region, which is practically not relevant for sensing applications. They can be 

utilised to bind fluorescent dyes which therefore alters the photophysical properties of the dye 

due to a change in their microenvironment. This can lead to a fluorescence enhancement or 

quenching of the dye molecules caused by breaking dye aggregation due to complexation186 or 

by interactions with the host.187  
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Commonly used sensing assays are indicator displacement assays (IDA),188,189 guest displace-

ment assays (GDA),190,191 or associative binding assays (ABA),157,192 see Figure 11. In an IDA, 

an indicator dye is equilibrated with the macrocyclic host to form a host-dye complex. Subse-

quently, a competitive guest is introduced into the system causing the displacement of the indi-

cator dye from the host by forming a host-guest complex, which in turn modulates the optical 

signal. The intensity change can be fitted to determine the binding constant for the guest binding 

to the host molecule.188,189 The case is vice versa for a GDA, in which host and guest are pre-

equilibrated and a competitive indicator dye is added. This approach even enables the detection 

of in water poorly soluble guests due to the commonly enhanced host-guest complex 

solubility.190,191 In an ABA, host and indicator dye are preequilibrated forming a host-dye 

complex. In contrast to IDA, the cavity of the macrocyclic host is large enough to make room 

for the simultaneous binding of a second guest. Hence, the ABA sensing method does not 

“waste” the binding energy of the analyte for displacing a dye, and thus, analyte detection is 

more sensitive with ABA than with IDA.35,157,192,193 The complexation of an aromatic electron 

rich molecule and an aromatic electron deficient molecule that share the inner cavity volume of 

CB8 gives rise to charge transfer (CT) complexes that would not form without the mediation 

of the host molecule.192,194-196 The CT bands in the absorbance spectrum correlate to the 

HOMO-LUMO gap between the electron-rich aromatic analyte and the accepting electron-poor 

dye.196 

 

Figure 11: a) Schematic representation of an indicator displacement assay (IDA). b) Schematic representation of a guest dis-

placement assay (GDA). c) Schematic representation of an associative binding assay (ABA). d) Chemical structures of selected 

dyes that bind with high affinities to CB7 and CB8 suitable for IDA and ABA. 

Promising ABAs can be achieved by utilising the combination of self-assembled chemosensors 

from CB8 (38) and a fluorescent dye (see Figure 11d). For instance, KAIFER and co-workers 
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showed that self-assembled 1:1 complexes of CB8 with dicationic 2,7-dimethyldiazapyrenium 

(MDAP, 48), 2,7-dimethyldiazaphenanthrenium (MDPT, 49), and 2,7-dimethyldiazaperopery-

lenium (MDPP, 50) reporter dyes are promising fluorescent chemosensors for catechol and 

indole derivatives.35,197,198 Other suitable fluorescent dyes as components for ternary CB8-based 

chemosensors are perylene imide derivatives, such as perylene bisdiimide (PDI) and aryl 

viologens, e.g., methyl viologen (MV).196,199-202  

Chemosensors based on CBn may only at first glance appear very promising for the detection 

of hydrophobic and/or positively charged metabolites in aqueous media due to their 

unprecedently high binding affinities. Unfortunately, CBn are prone to competitively interact 

with alkaline and earth alkaline metal cations such as Na+ and K+, which are omnipresent in 

millimolar concentrations in biofluids.203,204 The non-covalent interactions between host and 

guest can be modulated by salts due to cooperative cation binding to the carbonyl-fringed CBn 

portals.204 The cations can reduce the experimentally observed binding affinities of CBn 

towards biorelevant target analytes by a factor of 1000. Thus, many reports for CBn-based 

sensing applications are typically restricted to deionized water or minimal buffers, e.g., 10 mM 

phosphate buffer. Cation effects are discussed in Chapter 3.2.3.2. 

Both affinity and selectivity of chemosensors are often the main practical limitation for their 

use in realistic diagnostic applications, e.g., in biofluids such as urine, saliva, and blood serum.  

Fundamental binding studies with proteins or selected synthetic hosts have shown that many of 

the most strongly binding receptors exploit the interplay of direct receptor-ligand interactions 

and a hydrophobic driving force.29,35,205,206  The synthetic receptor shown in Figure 12b was 

introduced by SCHRADER and co-workers. It is adopted from the β-adrenergic receptor protein 

design shown in Figure 12a.207
 The nitroarene groups are able to undergo π-stacking 

interactions with the catechol ring and the amide group can form hydrogen bonds to the 

phenolic hydroxyl groups of the catechol. Therefore, their artificial receptors bind adrenaline, 

noradrenaline, dopamine, and 2-phenylethylamine similarly with binding affinities of 

Ka = 100 - 250 M−1. The triphenylene receptor introduced by GIVELET and BIBAL is applicable 

for NT sensing in 100 mM phosphate buffer (see Figure 12c).156 However, the combination of 

hydrophobic effect and ion pairing leads to an unselective binding of phenylethylamines, 

serotonin, and D-glucosamine.156 
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Figure 12: a) Binding pocket for norepinephrine (11) of a receptor protein (β-adrenergic receptor, 51).207 b) “Lock-and-key” 

design of a synthetic NT binder (52), here shown for norepinephrine (11).207 c) Triphenylene-based receptor (39) for NT 

detection.156  

The biomimetic design principles are intuitive, however, the binding affinities achieved by 

designed artificial receptors are by orders of magnitude lower than that of receptor proteins. 

Reasons are (i) their low affinity for the target molecules, particularly in the presence of salts, 

(ii) their insufficient binding selectivity, e.g., they cannot distinguish neurotransmitters from 

amino acids, and (iii) their lack in a signal transduction mode.  

Most macrocyclic synthetic receptors (including CBn) are structurally highly symmetric since 

they are constructed from identical monomers. Consequently, these symmetric “locks” show a 

binding preference for (nearly) symmetric “keys”, e.g., simple ions, gases, and spherically-

shaped guests such as adamantanes and ferrocenes.151,208,209 Structurally complex biorelevant 

organic compounds, e.g., amino acids and their derivatives, are difficult to distinguish by 

symmetric hosts (see Figure 13). For example, CB7 binds dopamine and phenylalanine (Phe) 

with almost similar affinities (log Ka(dopamine) = 5.7 and log Ka(Phe) = 5.9 in water).69,70 

Furthermore, it is a challenge to distinguish between serotonin and its precursor L-tryptophan 

(L-Trp) by their binding affinities for CB7, as these are log Ka = 4.8 for serotonin and log Ka ≈ 

4.0 for L-Trp in water.69,70  
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Figure 13: a) Cavity water release for the very poorly H-bonded cavity water molecules in synthetic binders, i.e., CB7, and 

therefore the hydrophobic effect drives the binding of organic guests (high binding affinities possible). However, all sterically 

suitable aliphatic and aromatic guests are bound, particularly hydrophobic and dicationic ones, which results in a very poor 

binding selectivity. b) Cavity water release model for the poorly H-bonded cavity water molecules in CB8 complexes. 

Macrocyclic hosts such as CBn with concave, well-shielded binding cavities testify for the 

importance of the hydrophobic effect (or differential cavitation effects) as a powerful driving 

force for binding.149,166,167,210 It has been a long-standing riddle why CBn complexes show much 

higher binding affinities and much larger exothermic binding signatures than the corresponding 

CD complexes, despite similar cavity dimensions. Moreover, a “lock-and-key”-based binding 

model fails to rationalise the generally observed affinity and enthalpic driving force ordering 

of CB7 > CB8 & CB6 for their complexes with sterically well-fitting guests that satisfy the 

55% packing rule of MECOZZI and REBEK.211 Based on molecular dynamics (MD) simulations 

and isothermal titration calorimetry (ITC) experiments, a water-centric binding model for CBn 

complexes was revisited in 2012 that rationalised the observed strong enthalpic driving forces 

by the presence of poorly hydrogen-bonded cavity water molecules.149 The release of these 

poorly hydrogen-bonded cavity water molecules upon guest binding restores their hydrogen 

bonding potential. There are two counteracting effects, on the one hand, the energetically 

frustration of the water molecules is highest inside the small CB6 cavity, while on the other 

hand the number of cavity water molecules is highest in CB8. Hence, MD simulations predicted 

that the release of the total number of cavity water molecules from CB7 will lead to the overall 

strongest enthalpic contribution to binding, which is in excellent agreement with the 

experimentally observed trends.149 Later, this binding model was applied to other host-guest 

complexes and explained for instance the lower binding affinities found with cyclodextrin 

complexes, where cavity water molecules inside the CD cavities are partially hydrogen-bonded 

to the host, and thus energetically stabilised. More recently, this water-centric binding model 
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was expanded in terms of cavitation energies. It was shown that host-guest complex formation 

of CB5 with noble gases occurs in aqueous media despite an unfavourable overall dispersion 

energy change when transferring the guest from the aqueous bulk into the cavity of the 

host.168,212 It can be generally expected that the poorer the host cavity and the guest are solvated, 

the lower is the energetic cost of desolvating host and guest upon complex formation, and thus 

the higher is the binding free energy.213 In addition to these desolvation effects, energetic 

contributions of host-guest complex solvation as well as of the direct host-guest binding forces 

will always be present. The experimental verification of a binding model is therefore difficult.  

Many synthetic receptors with a well solvated, for bulk water-accessible binding cavity perform 

only poorly in aqueous media even if “lock-and-key” recognition motifs are carefully 

installed.205 Sensing with fluorescent ternary CB8 complexes and therefore an interplay of the 

hydrophobic effect, which drives the binding of guests, and the presence of a dicationic dye 

provides selectivity for aromatic guests through π-stacking and cation-π interactions (see 

Figure 13b).43,61 SCHERMAN and co-workers described the detection of dopamine in the pres-

ence of epinephrine and norepinephrine with the help of PDI (51) as reporter dye within the 

CB8 cavity with a detection limit below 2 ∙ 10−5 M in water (see Figure 14).214 Assay times of 

5 to 10 minutes without the need of pre-sampling or functionalisation steps were reached. For 

dopamine, binding affinities up to Ka = 106 M−1 were reported even in the presence of ascorbic 

acid (AA), which is a major interferent in the electrochemical detection of dopamine.34,215 In 

ABA, different analytes can be identified by clearly distinguishable spectroscopic fingerprints 

that arise from the “communication” between the dye and the analyte inside the CB8 cavity. A 

distinction between analytes based on different binding affinities as it is required for IDA is not 

necessary for ABA. In the simplest case, the identifiable analyte fingerprints are CT bands, but 

also more useful spectroscopic responses can occur. For instance, the amino acid Phe and 

thereof derived peptides can be spectroscopically distinguished from Trp-containing analytes 

with a CB8•MDPP chemosensor by the corresponding absorbance and emission spectra 

(measurable at low µM concentration).35,216 In comparison, an CB7-IDA-type chemosensor 

would have given the same signal response, e.g., change in the emission intensity, for both 

classes of peptides. 
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Figure 14: Schematic representation of the selectivity of CB8•PDI complexes (43•53) towards dopamine (10) in the presence 

of other catecholamine NTs, i.e., norepinephrine (11) and epinephrine (12).214 

However, utilisation of ABA does not solve all mentioned hindrances, as all sterically fitting 

aromatic guests are bound, partly with similar binding affinities. For instance, the macrocyclic 

host CB8 in combination with the dye MDAP binds serotonin with a binding affinity of 

log Ka = 3.7 and its precursor 5-hydroxy-L-tryptophan (5-HTP) with a binding affinity of 

log Ka = 3.9. Furthermore, tryptophan is bound even stronger with a binding affinity of 

log Ka = 5.2 and the parent, non-charged aromatic indole binds with log Ka = 5.3.192 

Unfortunately, tryptophan, serotonin, and other indole-based molecules show similar CT bands 

and can therefore be neither distinguished by their binding affinity nor by their spectroscopic 

fingerprint in an ABA with CB8. Thus, in a real biofluid, such systems would not be suitable 

as chemosensor for serotonin detection due to cross-reactivity. Consequently, there is still the 

need of understanding the potential driving forces in detail and to align the knowledge for the 

development of new, in biofluids functional, chemosensors. 

  



Introduction  25 

 

3.2.3.1. Common techniques for the determination of binding affinities in supra-

molecular complexes 

Common investigation methods for host-guest interactions in terms of binding affinities and 

complexation parameters are NMR spectroscopy,217 ITC,218-222 and spectrometer-based detec-

tion methods such as fluorescence- and absorbance-based titration methods.192  

NMR spectroscopy in supramolecular chemistry is often used to examine the complex for-

mation of host-guest assemblies.223-225 While complexation, the chemical environment of 

certain nuclei of host and guest molecules changes.226 Consequently, the electron density and 

local magnetic fields are changed resulting in different chemical shifts and signal intensities for 

the nuclei. NMR measurement can only characterise host-guest complexes which have 

equilibrium exchange rates being clearly different in the free and bound state of the guest. If 

the complexation equilibrium is too dynamic, the magnetic environment change is too quick 

and the signals assigned to the free and bound state are averaged, yielding in an unresolved 

spectrum. Therefore, titration experiments with one compound being added stepwise are com-

monly used for the determination of the binding affinity Ka (Δδ vs. concentration). A clear ad-

vantage of NMR-based investigations is the variety of received information on the molecular 

level. However, comparably high concentrations in the millimolar concentration regime are 

needed and complex molecules with a high amount of spectroscopically active nuclei cannot 

be investigated properly.  

ITC describes a method that measures the heat change occurring if two molecules interact with 

each other, i.e., heat release or heat uptake.222 In supramolecular reactions, the heat is released 

or consumed due to redistribution and formation of non-covalent bonds during the complexa-

tion process. The calorimeter used for ITC contains two cells, one being the sample cell and 

one being the reference cell (see Figure 15).227,228 Each of the cells is placed in an insulated 

compartment. The reference cell, which is filled with the experimental buffer, is continuously 

heated to the reference temperature. The sample cell is filled with a solution of one of the 

binding partners and its temperature is automatically regulated by an electrical heater to 

minimize the temperature difference between the cells. A stirring syringe injects a solution of 

the second binding partner in aliquots into the sample cell until the concentration of the second 

partner is two- to three-fold higher than the concentration of the first partner. 
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Figure 15: a) Schematic depiction of an isothermal titration calorimeter. b) ITC thermogram depicting the measured raw heat 

during a titration. c) The raw binding heats are integrated and corrected for the heat of dilution. Binding parameters such as 

Kd = 1/Ka and ΔH are obtained.   

On injecting aliquots, the association of the binding partners produces a heat effect that raises 

or lowers the temperature in the sample cell. The change of temperature triggers the feedback 

regulator to adjust the electrical power needed to maintain identical temperatures in both 

cells.227,228 The change in the respective feedback current is the primary observed signal and 

corresponds to a heat pulse (heat production over time). This measurement parameter is called 

the differential power (DP in µcal s–1). Each injection results in a heat pulse that is integrated 

with respect to time and normalised for concentration to generate a titration curve of ΔH vs. 

molar ratio. The resulting isotherm is fitted by a binding model to generate the binding affinity 

(Kd = 1/Ka), stoichiometry/molar ratio (N), and the molar reaction enthalpy (ΔH).221  

The knowledge of the association constant (Ka) and the molar reaction enthalpy (ΔH) enables 

the calculation of the standard free energy (ΔG) and the entropy (ΔS) changes according to the 

Gibbs-Helmholtz equation (see Equation 1),229,230 where R is the gas constant 

(R = 8.314 J mol−1 K−1) and T is the absolute temperature. 

Δ𝐺 = −RTln𝐾a = ∆𝐻 − T∆𝑆 Eq. 1 

UV-Vis and emission spectroscopy are widely used for the photophysical determination of 

binding affinities.230 Absorption spectroscopy is based on the transition of an electron from the 

ground state (S0) to an excited state (Sx with  x > 0) induced by a photon. The wavelength of the 

absorbed photon is hereby dependent on the energy gap between Sx and S0. These energy gaps 

are characteristic for each molecule as the smaller the energy gap between these two states is, 

the larger is the wavelength of the absorbed light (see Figure 16).  
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Figure 16: Jablonski diagram. 

Employing Beer-Lambert’s law,231-233 the absorbance (Abs) of a molecule can be used to 

determine its concentration in dilute homogenous solutions. The law states that the absorbance 

is directly proportional to the concentration (c) of the absorbing species with IAbs-0 as intensity 

of the irradiated light, IAbs as intensity of the transmitted light, ε as molar extinction coefficient 

and d as optical path length (see Equation 2).230,234  

Abs = log
𝐼Abs−0

𝐼Abs
= 𝜀 · c · d Eq. 2 

By measuring the absorbance of the formed complex during the titration of one species to the 

other, the host-guest binding affinity can be determined by fitting the curve of the obtained 

absorbances (absorbance vs. concentration of analyte).  

The excitation of a molecule by absorbing a photon leads to the transition of an electron from 

its ground state (S0) to an excited state (Sx with x > 0). The direct excitation from a singlet state 

to a triplet state is quantum mechanically forbidden according to the selection rules as the multi-

plicity of an electron cannot be changed during excitation.235 Due to intersystem crossing (ISC), 

the transition of an electron to a state with different multiplicity is still possible after excita-

tion.236 Intersystem crossing results from the spin-orbit coupling and its probability rises with 

the overlap of the vibrational levels of excited states. The radiative transmission from the 

excited state to the ground state is called fluorescence (Fl) and starts from the vibrational ground 

state of the excited state (S1, ν0, Kasha’s rule).237 The radiative transmission can result in a 

relaxation of the molecule into any vibrational level of the ground state, emitting photons with 

different energies and, thus, frequencies, depending on the vibrational level. The relaxation 

from a triplet state to a singlet state is forbidden, and therefore the emission (phosphorescence, 

P) has a longer lifetime compared to the allowed fluorescence emission.238 Similarly to ab-

sorbance-based titrations, fluorescence-based titrations can be used to examine binding 
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affinities.30,188-190 Host-guest complex formation causes a change in the microenvironment of 

both host and guest molecule. This can result in either a fluorescence enhancement or quenching 

of the dye emission due to electron or energy transfer.186,187 A further reason for altered 

spectroscopic properties is diminishing dye aggregation by host complexation. Depending on 

the examined binding assay (see Figure 11), the gained titration curves can be fitted with 

Equation 7 for a direct binding assay (DBA) or Equation 16 for an IDA188,189 or GDA.190 

Parameters for Equation 3 to Equation 16 were assigned as follows: [H] – host concentration 

at equilibrium; [H]0 – initial host concentration; [D] – dye concentration at equilibrium; [D]0 – 

initial dye concentration; [G] – guest concentration at equilibrium; [G]0 – initial guest concen-

tration; [HD] – host·dye concentration at equilibrium; [HG] – host·guest concentration at 

equilibrium; Ka
 HD – binding constant for the association of the host·dye (HD) complex; Ka

 HG – 

binding constant for the association of the host·guest (HG) complex; 𝐼0– background signal; 

𝐼𝐻𝐷 – signal from the host·dye (HD) complex; 𝐼𝐷 – signal from the free dye (D); It – observable 

signal as a function of time. 

DBA 

H + D ⇄ HD Eq. 3 

𝐾a
HD =

[HD]

[H][D]
 Eq. 4 

[H]0 = [HD] + [H] Eq. 5 

[D]0 = [HD] + [D] Eq. 6 

𝐼𝑡 = 𝐼0 + 𝐼HD ∙ [HD] + 𝐼D ∙ [D] Eq. 7 

IDA 

or 

GDA 

HD + G ⇄ HG + D Eq. 8 

H + D ⇄ HD H + G ⇄ HG Eq. 9 

𝐾a
HD =

[HD]

[H][D]
 𝐾a

HG =
[HG]

[H][G]
 Eq. 10 

[H]0 = [HD] + [H] + [HG] Eq. 11 

[D]0 = [HD] + [D] [G]0 = [HD] + [G] Eq. 12 + 13 

[HD] =  
𝐾a

HD · [H]

1 + 𝐾a
HD · [H]

[D]0 [HG] =  
𝐾a

HG · [H]

1 + 𝐾a
HG · [H]

[G]0 Eq. 14 + 15 

𝐼𝑡 = 𝐼0 + 𝐼HD ∙ [HD] + 𝐼D ∙ [D] Eq. 16 
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3.2.3.2. Influence of salts on the binding properties of chemosensors and typical salt 

concentrations in biofluids 

Quantification of cation binding to CBn portals has been of long-standing interest in the CBn 

community. For CBn without a bound guest, the cations bind to the portal(s) (see Figure 17a). 

Depending on the CBn size, cation size and charge, a charge repulsion can prevent the binding 

of a second cation.169 Small neutral guests bound inside of the CBn cavity can undergo co-

binding with a portal-bound cation (see Figure 17b). Furthermore, a stability enhancement can 

be achieved if the neutral guest owns metal binding functional groups such as carboxyl 

groups.239-241 In the case of positively charged guest molecules the bound cations at the CBn 

portals can act as competitors (see Figure 17c).169,202 The presence of cations in the host 

samples themselves introduced by their synthesis has to be considered, too. 

 

Figure 17: Cation binding of CBn. a) Cations bind to the carbonyl-fringed rims of CBn. b) Analyte binding of a neutral guest 

resulting in co-binding of guest and cation. c) Analyte binding of a positively charged guest replaces the weaker binding cation. 

Using an IDA with CB7 and a phthalocyanine dye, the PISCHEL group extracted binding 

constants of various alkali, earth alkali and selected transition metal cations with CB7 in neutral 

water.242 The values matched with the reported values by KIM, BOHNE, and co-workers 

(determined by kinetic assays)169 and that from the BICZÓK group (IDA with berberine).240,243 

The binding affinity for a 1:1 CB7•Na+ complex is around log Ka = 2.2. Consequently, all 

reported binding affinities for guests determined in buffered solution are measured under the 

influence of the cation presence and therefore do not reflect the pure host-guest binding affinity. 

This becomes even more complex when it comes to the determination of thermochemical 

parameters, e.g., the determination of enthalpies or entropies by ITC. The obtained released and 

absorbed heats will always reflect the heat associated with the cation binding/unbinding and 

the guest binding process. In the worst case, these two processes are opposite and cancel each 
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other out. For all the mentioned parameters, the best practice is therefore the determination of 

host-guest binding constants in neat water.  

Consequently, designing a functional chemosensor with high affinities and selectivity in bio-

media is greatly complicated by salt effects. Urine is one of the easiest collected biofluids and 

the collection can be carried out by the layman on a daily basis. Commonly for urinalysis the 

excreted urine is collected over a time period of 24 h. As Table 5 points out, the salt content is 

very high needing for either chemosensors that have binding affinities in water of log Ka ≥ 9 

(yielding binding affinities of log Ka ≈ 6 - 7 in urine, respectively)203 or that are unaffected by 

the presence of salts. In fact, there are several thousands of different metabolites in urine, most 

occurring at trace levels but some also reaching micromolar concentrations,78 that are regularly 

found in this protein-free biofluid. This molecular composition complexity is a challenge to be 

embraced when designing selectively responding chemosensors and probes. Additionally, the 

pH of urine can typically vary from 4.5 to 7.8 even for healthy patients.244 These fluctuations 

in the matrix background further challenge the development of functional chemical sensor 

systems for urinalysis. 

Table 5: Typical salt concentrations in human urine for healthy donors. Typical creatinine concentrations for a healthy adult 

are 10.4 ± 2 mM within 24 hours.78 

Metal cation NH4
+ Na+ K+ Mg2+ Ca2+ 

c(Mn+) in urine collected 

over a period of 24 h 

(mM/mM creatinine) 

1.9 - 3.7 6.0 - 24.0 4.5 - 4.7 0.2 - 0.4 0.2 - 0.4 
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3.3. Zeolites as inorganic porous materials 

Two of the main classes of inorganic porous materials should be mentioned here, which are (i) 

organised mesoporous materials with pore sizes between 2 and 50 nm (microporous < 2 nm; 

macroporous > 50 nm) according to the International Union of Pure and Applied Chemistry 

(IUPAC) and (ii) crystalline microporous solids.245 Examples for (i) organized mesoporous 

materials are silicates in the Mobile Composition of Matter (MCM) family.246,247 Zeolites can 

be grouped as (ii) crystalline microporous solids248 and belong to the group of aluminosilicates, 

which essentially consist of [SiO4] and [AlO4]
– tetrahedra. Sticking to international terminology 

and nomenclature, the IUPAC defines zeolites as follows: 

“Microporous materials with an inorganic, 3-dimensional host structure composed of fully 

linked, corner-sharing tetrahedra and the same host topology constitute a zeolite type frame-

work. Each confirmed zeolite framework type is assigned a three-letter code (e.g., FAU for the 

faujasite framework type)…”245 

3.3.1. Framework characteristics 

Zeolites have internal cavities, which are connected to each other through annular windows. In 

this way, a network of open pores into which guest molecules can penetrate, is formed.249 The 

size of the cavities varies depending on the zeolite structure. Every silicon and every aluminium 

atom is surrounded by four oxygen atoms which bridge either two silicon atoms or a silicon and 

an aluminium atom (see Figure 18). An Al-O-Al bond is forbidden due to the Loewenstein-

rule,250 which is a special formulation of the third Pauling rule for ion crystals, according to 

which cations are installed in a crystal lattice as far apart as possible. Based on that, the Si-to-Al 

ratio can never be smaller than 1 and the basic zeolite structure has twice as many oxygen atoms 

as the sum of silicon and aluminium atoms equals.249 Parent zeolites have the atomic 

composition |Mn+
x|[AlnSim(O2)(n+m)] · x H2O, where Mn+ designates cations, typically sodium 

and potassium, or positively charged organic structure directing agents such as amines, which 

neutralize the negative framework charge originating by the formal “Si4+”→“Al3+” substitution. 

The cations are arranged comparatively mobile in the cavities and can have both monovalent 

(H+, Li+, Na+, K+, Rb+) as well as divalent (Mg2+, Ca2+) character. Ion exchange is to a certain 

extent possible without affecting the structure of the overall zeolite material significantly.251,252  
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Figure 18: [SiO4] and [AlO4]– tetrahedra within a zeolite framework. 

Naturally occurring zeolites typically contain a high amount of aluminium doping but can be 

dealuminated while keeping the framework structure intact.253 Commonly used procedures for 

dealumination are the treatment with SiCl4 vapour,254-256 ammonium hexafluoro silicate,257-259 

chelating agents such as EDTA,260 or hydrothermal treatments with steam.256,261 For synthetical 

derived zeolites, the Si-to-Al ratio can be controlled during the synthesis by applying defined 

amounts of SiO2 and Al2O3. The synthesis will not be discussed in detail as it was not carried 

out in the presented work where only commercially available zeolites were used. At this point, 

it suffices to mention that zeolite synthesis involves hydrothermal treatment of mixed aluminate 

and silicate dispersions finally resulting in the formation of a crystalline material.262,263 The 

given variability of the Si-to-Al ratio makes zeolites versatile. The variations in composition, 

distribution and ordering of Si-O-Al and Si-O-Si linkages result in (i) variations in the location, 

amount and distribution of negative charge density in the structural frameworks and (ii) varia-

tions on cage and pore diameters as the Si-O-Al and Si-O-Si linkages define bond angles and 

lengths. Additionally, (iii) it enables the absence or presence of hydration water in addition to 

the presence of extra framework cations and (iv) therefore alters the behavior and properties of 

the zeolites significantly. 

The hydration structure of zeolites is highly dependent on the Si-to-Al ratio and the geometric 

constraints exerted by the framework.264-266 The interior of strongly negatively charged zeolites 

can be considered hydrophilic264 as a thin water layer solvates the cavity wall.267-269 In addition, 

there are less strongly bound water clusters present, e.g., for faujasite (FAU) filling the 

supercages as 12-membered rings.267-269 In contrast, the interior of zeolites with a higher 

Si-to-Al ratio is hydrophobic. It contains nanodroplets of water molecules with few dangling 

OH-bonds, displaying key features of a hydrophobic hydration.264,270 Spectroscopic evidence 

came from investigations with dye-loaded zeolites which estimate the polarity of FAU-type 

zeolites between that of alcohols and water depending on the Si-to-Al ratio and cations present, 
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and assign the cavity as non-hydrophilic.271,272 Notably, hydrogen bonding interactions between 

cavity waters and the oxygen atoms in the zeolite framework are non-existing or weak.264,273  

In the following, only framework characteristics of the within this work used zeolites are 

discussed. Specifically, faujasite-type (FAU) zeolite Y particles and Linde-type L (LTL) zeolite 

nanoparticles were used as water-dispersible receptor scaffolds. The FAU framework, as found 

in zeolite X and Y, exhibits larger pores than the LTL framework and has a three-dimensional 

network with a maximum accessible pore diameter of 11.3 Å. The division between zeolite X 

and zeolite Y is based on the Si-to-Al ratio. Si-to-Al ratios below 1.5 are assigned to zeolite X, 

whereas ratios larger than 1.5 are assigned to zeolite Y. The three-dimensional FAU structure 

is constructed of sodalite cages, hexagonal prisms, and supercages (see Figure 19a). The soda-

lite cages are the basic structural unit of FAU and are interconnected by hexagonal prisms. An 

ensemble of sodalite cages forms a large supercage of about 13 Å in diameter connected tetra-

hedrally through 7.4 Å windows.271 The spacious supercages of FAU can accommodate two 

aromatic molecules in a π-stacking geometry.  

 

Figure 19: a) Schematic representation of a sodalite cage as basic structural unit of FAU zeolites and the depiction of a super-

cage typical for zeolite X and zeolite Y. b) Framework structure of zeolite L.  

The Linde-type L framework, as found in zeolite LTL, with a maximum accessible pore 

diameter of 10.0 Å, is constructed of a unidimensional channel system formed by four- and six-

membered rings running alongside the c-axis of the crystal (see Figure 19b). The typical 
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Si-to-Al ratio for zeolite L is 3.0 and its structure was originally reported by BARRER and 

VILLINGER.274 Within their work, they describe the polyhedral cages formed by six-membered 

and four-membered rings and their agglomeration to columns through the connection of the six-

membered rings leading to a channel opening of around 7.3 Å. Overall, the channel-type zeolite 

L exhibits higher structural restrictions for absorbed species over zeolite Y with its spherical 

pores (supercages). A summary of the properties of the in this work utilised zeolites suitable 

for the uptake of organic cofactors is given in Table 6. 

Table 6: Properties of zeolite classes that were utilised within this work as cavity framework materials for the assembly of 

zeolites and dyes to form chemosensors. Information about the formula of the unit cells is given as from the supplier received; 

water molecule numbers were taken from ref.275 for LTL and from ref.276 for FAU. 

Zeolite class 
Linde-type 

(LTL, L) 
Faujasite (FAU, Y) 

Connectivity 2D channels  3D network  

Unit cell 

formulation  

|K+
6Na+

3| 

[Al9Si27O72] 

|Na+
54| 

[Al54Si138O384] 

|Na+
12| 

[Al12Si180O384] 

|Na+
4.68| 

[Al4.68Si187.31O384] 

Max. sphere 

diameter that 

can be included 

(Å)277 

10.0 11.3 11.3 11.3 

Max. sphere 

diameter that 

can diffuse 

along (Å)277 

7.5 (c-axis) 

2.1 (a- and b-

axis) 

7.3 7.3 7.3 

Si-to-Al ratio 3.00 2.55 15.0 40.0 

Abbreviation L3.0 Y2.55 Y15 Y40 

For the remaining part of this work, the different zeolites will be given by their abbreviation (Y 

for synthetically derived zeolite Y based on the FAU framework and L for synthetically derived 

zeolite L based on the LTL framework) concomitant with their Si-to-Al ratio as subscript 

number.  

3.3.2. Applications of zeolites 

Zeolites are attractive for many applications (see Figure 20) due to their (i) well-defined pore 

structure, and therefore (ii) their structure selectivity, (iii) their high negative charge density, 

(iv) their high thermal and chemical stability, (v) their strong BrØnsted activity (important for 

catalytic applications), and (vi) their cation exchange ability. Additionally, they can be used in 

a wide range of pH values. The highly ordered materials find promising applications in many 
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sustainable processes, including the removal of radionuclides from nuclear waste 

effluents,278,279 the treatment of mine acid water drainage,280 and the decontamination or re-

mediation of heavy metals.281 Other fields they are used in are amelioration of acidic soils,282 

biomass conversion,283 oil refining,284 oil-water separation,285 exhaust gas and hydrocarbon 

capture and conversion286-288 as well as air pollution remediation.289,290 

 

Figure 20: Representative applications of the versatile family of zeolites.  

The adsorption of organic fluorescent molecules makes zeolites promising candidates for 

photophysical and photochemical investigation studies. It was shown that size-suitable mole-

cules such as anthracene and 9-methylanthracene can be adsorbed nearly as one molecule per 

cage in zeolite X.291-294 Additionally, the appearance of CT bands for the interaction between 

anthracene and the dye MV2+ bound inside the cavities supported this finding. CALZAFERRI and 

co-workers demonstrated that the in LTL channels incorporated organic dye molecules can be 

used for light harvesting- and energy storage-based photovoltaic cells.275,295-297 With their find-

ings they laid the foundation for the development of further photonic devices. Zeolites were 

used to achieve controlled assemblies of dyes,272 as well as to detect gas, humidity, and reactive 

molecules based on supramolecular chemosensors.298 The advantages of zeolites in biotech-

nology and medicine are their availability on a tons-scale at low cost and their non-toxicity.299 

Zeolites can be charged with antibacterial metals such as Zn2+ or Ag+ and therefore they can be 

utilised to fight bacteria causing infections and inflammations.300-302 Natural zeolites can be 
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prospective drug carriers, as several studies, e.g., with ibuprofen, have proven.303,304 

Additionally, due to their well-defined microporosity and high surface area, they provide a slow 

release of bound molecules, and therefore offer a possible effective long-term activity. The 

incorporation of emitting molecules inside zeolite L crystals as fluorescent labels in 

combination with gadolinium complexes makes zeolite assemblies feasible for optical imaging 

such as magnetic resonance imaging (MRI).305-307 In another approach, DE COLA and co-

workers successfully showed the enrichment of zeolite L channels with the radioisotope 111In3+ 

as γ-emitter for scintigraphic imaging in nuclear medicine.308 The within this work mentioned 

applications of the zeolite family provide only a small insight into the large application 

versatility. For further reading, excellent review articles by WECKHUYSEN and YU (2015),309 

BACAKOVA, JIRKA, and co-workers (2018)299 and the comprehensive text books on zeolite 

science and technology310 and zeolite catalysis,311,312 as representative literature material are 

recommended.   
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4. Aim of this thesis 

Chemosensors, and especially chemosensors based on supramolecular chemistry, have become 

one of the promising fields for diagnostic sensing applications in the last few years.33-37 

Artificial receptors show a high potential to overcome the current biofluid diagnostic limitations 

such as high costs, long assay times, and the need for skilled operators. However, the design of 

artificial receptors and chemosensors remains an open challenge in supramolecular chemistry. 

Especially assays that selectively target specific neurotransmitters, without the interference of 

naturally occurring biofluid components, are rare. The development of robust and fast 

responding probes and chemosensors could open exciting new possibilities for home-use and 

point-of-care diagnostics of neurotransmitters that cannot be realised with existing technolo-

gies. Unfortunately, the systems reported have not reached the practical key requirements in 

terms of binding affinity and selectivity in aqueous media and physiological buffers until 

now.69,70 

The designated aim of this work was the development of novel and in biofluids functional 

chemosensors with a fast responding signalling unit. One objective was to deepen the funda-

mental understanding of the driving forces for aqueous self-assembly and to obtain a closer 

insight into supramolecular host-guest interactions. Additionally, the influence of salts on host 

molecules and their binding behavior was targeted, as once this is understood,203 one of the 

greatest application restrictions of supramolecular hosts in biomedia can be solved. The 

temperature dependency of complex formation was investigated, as often discussed binding 

models, e.g., high-energy cavity water release,149,166,167 were so far predominantly based on 

thermodynamic properties measured at ambient temperature. However, temperatures other than 

25°C can play an important role when host-guest systems are used, e.g., when it comes to 

sensing applications in biological systems. 

Besides cucurbit[n]urils (CBn), which are often used as artificial receptors due to their 

outstanding binding affinities,149-151 and β-cyclodextrins (β-CD), which are probably the best 

studied existing organic macrocycles,144-148 it was suspected that porous inorganic materials 

may also succeed as cavity framework components for the construction of artificial receptors. 

Porous inorganic materials are typically rigid and thus their cavity interior is more shape persis-

tent than that of organic macrocycles.313 Furthermore, porous inorganic materials contain multi-

ple binding cavities deep inside the framework, which are efficiently shielded from contact with 
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bulk water. Several classes of water-stable, inorganic porous materials with a hydrophobic cavi-

ty interior are known. Among those zeolites were targeted, as the loosely bound Mn+ cations 

can be exchanged in aqueous media for positively charged guests.252,314 Being able to combine 

the powerful high-energy cavity water release, which is mainly known from CBn as a major 

complexation driving force,149,166,167 with the “lock-and-key” analyte-host interaction motif 

based on rigid inorganic frameworks could end in the development of novel and versatile design 

principles for artificial high affinity receptors.  

 

Figure 21: Design strategy for the new chemosensors based on zeolites and dicationic dyes for the selective sensing of small 

biorelevant and positively charged molecules, e.g., neurotransmitters such as serotonin and dopamine. 

The strategy was to load the highly negatively charged zeolite framework with dicationic, and 

therefore strongly bound, planar dyes by replacing the intrinsic cations and thereby introducing 

a signalling unit (see Figure 21 and Figure 22). The remaining free cavity space besides the 

dye and the combination of the hydrophobic effect, ionic and cation-π interactions as well as 

hydrogen bonding should then ensure high affinity and selectivity for hydrophilic small bio-

molecules such as the positively charged NTs serotonin and dopamine. Sensing selectivity 

could be achieved either by reporter dye-induced thermodynamic binding preferences for 

specific analytes, or by analyte-selective fluorescent responses of the zeolite-bound reporter 

dyes. I hoped to establish a new concept or method that allows for the in-situ differentiation of 

spectroscopically silent and structurally similar analytes, paving the way for differential sensing 

applications in complex media.  

 
Figure 22: Preparation and sensing with zeolite L3.0-based chemosensors. The chemosensors can be prepared through immer-

sion of dicationic reporter dyes with zeolite nanoparticles and respond with emission quenching towards the addition of 

serotonin.  
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Figure 23: Chemical structures of the dicationic derivatives of DAP introduced via nucleophilic addition.  

To design several different zeolite-based chemosensors, the synthesis of a whole bibliography 

of dicationic dye molecules (D2 - D13) based on diazapyrene (DAP, D1) was planned (see 

Figure 23). Disubstituted and therefore dicationic DAP derivatives are known to be suitable 

dyes for supramolecular sensing approaches such as IDA and ABA.197,204,315  

Additionally, two DPP derivatives, namely dibenzyl diazaperoperylenium and di-(diisopropyl)-

benzyl diazaperoperylenium were taken into consideration (see Figure 24). DPP dyes possess 

significantly red shifted absorbance and emission signals compared to DAP-derivatives and 

therefore broaden the covered spectrum range. This could be particularly important regarding 

applications in biomedia owing to their, in some cases rather strong, autofluorescence. In order 

to ensure a better overview, all synthesised dye molecules within this work are abbreviated with 

DX (X = 1 - 16). 

 

Figure 24: Chemical structures of the dicationic derivatives of DPP, D14 and D15.  

Spectroscopic as well as ITC-based investigations of the by self-assembly received zeolite-dye 

combinations should reveal insights into the functionality and tunability of the new artificial 

receptors. Therefore, an in-depth analysis of the zeolite-based chemosensors’ binding 

characteristics (affinities and selectivity) with a range of biorelevant small molecule species 
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was planned. Investigations of external influences on the binding behaviour such as the 

presence of salts were also taken under consideration. Additionally, density functional theory 

(DFT) calculations should help to understand the binding geometry between the reporter dyes 

and the NTs inside of the channels (cooperation project with the WENZEL group in Karlsruhe). 

Ultimately, application examples with potential practical relevance for high-throughput 

diagnostics of biofluids and their components as well as real-time monitoring of enzymatic 

reactions were the goal. As biofluid, urine seems to be the most practical fluid as urinalysis can 

potentially be carried out regularly also by the layman and therefore shows a high potential for 

future home-use and point-of-care testing. For the real-time monitoring of enzymatic reactions, 

tyrosine decarboxylase (TDC) and DOPA decarboxylase (DDC) catalysed conversions were 

aimed for since in both cases it is expected that the educt does not interact with the zeolite-

based chemosensors, while the product should react by extinguishing emission signals of the 

receptor dyes in the chemosensors. Based on the results obtained, a general design concept for 

zeolite-based chemosensors and further options to tune the chemosensors should be derived. A 

summary of the targets within this work concluding to the overall aim of the development of in 

biofluids functional zeolite-based chemosensors is given in Figure 25. 

 

Figure 25: Summary of the targets of this work concluding to the overall aim of the development of in biofluids functional 

chemosensors.   
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5. Results and discussion 

The overarching topic of this work was the development of chemosensors that can capture 

neurotransmitters and other small biorelevant molecules. For practical applications, these 

chemosensors need to be functional in salt containing solutions such as PBS buffers and bio-

fluids. In addition to a high affinity, a high selectivity for each individual biomolecule is needed 

to avoid cross-reactivity with in biofluids present interferents. A fast responding and easy to 

read-out design strategy is required for potential further development into a practical sensing 

assay.  

The present thesis is split into two major parts. The first part is based on the fundamental under-

standing of supramolecular host-guest complexation and the influences of external conditions 

such as temperature effects and salt presence. In the second part, zeolite-based chemosensors 

were investigated in terms of their binding affinity and selectivity in addition to their potential 

functionality in biomedia. Therefore, real-time monitoring of enzymatic reactions and NT 

sensing in biofluids were examined more closely. 

5.1. Investigation of symmetric macrocyclic host molecules 

Host-guest complex formation with symmetric macrocyclic host molecules such as β-CD and 

CBn has attracted much attention within the last decades due to the versatility of the formed 

complexes. However, there is still a lack of systematic data on their binding properties at 

temperatures other than 25°C or under the influence of salt presence. For practical relevance, 

raised temperatures, typically to 37°C, play an important role for sensing applications in bio-

logical systems. Additionally, currently discussed binding models for aqueous supramolecular 

systems, e.g., high-energy cavity water release, were so far predominately developed by 

measuring and analysing thermodynamic properties investigated at ambient temperature.209  

Furthermore, the influence of salts on the binding properties of the macrocyclic hosts, i.e., in 

terms of thermodynamic or kinetic behaviour, is known since years.316 Nevertheless, there has 

not been a comprehensive investigation of the influence of inorganic cations on the binding 

event of macrocycles.  

The poor data situation motivated comparative ITC studies on binding strength as well as 

thermodynamic contributions under varied external conditions on CBn (n = 5 - 8) and β-CD. 

ITC measurements offer the accurate and direct determination of the heat change on the 

formation of a complex at constant temperature and therefore of the enthalpy ΔH. Historically, 
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van’t Hoff method was utilised for determining ΔH and ΔS, which is known to provide 

inaccurate values when applied to supramolecular systems, especially in complex solvent 

environments.223,317  

To avoid confusion in the following chapters, macrocyclic hosts will be abbreviated as CB5, 

CB6, CB7, CB8, and β-CD, whereas guests/analytes will be abbreviated in figures by their 

given numbers.  

5.1.1. Temperature effects on the binding properties of CBn and β-CD 

In the present work, an in-depth experimental ITC-based investigation of temperature effects 

in a temperature range of 5 to 55°C on the thermodynamic binding parameters (ΔG, ΔH, – TΔS, 

and ΔCp) for β-CD and CBn (n = 7 and 8) with a range of guests in water was conducted (see 

Figure 26).  

 

Figure 26: Selected host and guest molecules for the temperature study conducted by ITC. a – Commercially available 

substance used; b – synthetically prepared within this work following literature procedures, see ref.318,319 for CBn and ref.320 as 

well as Chapter 7.2.2.3 for MDAP and c – synthetically prepared by BORYSLAV TKACHENKO. 
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CBn were synthesised following literature procedures318,319 and desalted by dialysis prior to use 

while β-CD was purchased commercially. Based on their similar cavity volumes, i.e., 280 Å3 

for CB7164 and 263 Å3 for β-CD,145 a comparative study of these two macrocyclic hosts was 

instructive. Besides ferrocenylmethanol (FeCp2OH, 59) as  rigid, water-soluble guest and 

known high affinity binder, adamantanol (AdOH, 54) and its derivatives 4-hydroxydiamantane 

(4-DiAdOH, 55), 4,9-dihydroxydiamantane (4,9-DiAd(OH)2, 56), 3,9-dihydroxytriamantane 

(3,9-TriAd(OH)2, 57), and 9,15-dihydroxytriamantane (9,15-TriAd(OH)2, 58) were 

utilized.208,209,321 The adamantanol derivatives were kindly provided by BORYSLAV TKACHENKO 

from the SCHREINER group in Giessen. Additionally, nandrolone (Nan, 60) and L-phenylalanine 

(Phe, 61) were selected as biologically relevant analytes322 along with 1-hexanol (HexOH, 62) 

as medium-affinity guest. First, structural characterisations of the host-guest complexes were 

carried out by NMR spectroscopy in D2O or mixtures of D2O and MeOD-d3 (4:1) depending 

on the solubility of the guests. Exemplarily, the results for 4,9-DiAd(OH)2 (56) and 9,15-

TriAd(OH)2 (58) are shown in Figure 27 and Figure 28.  

 

Figure 27: 1H NMR spectra (500 MHz, D2O, r.t.) recorded for a) 4,9-DiAd(OH)2 (c = 250 µM, 56, free guest marked with red 

dots), b) CB8•4,9-DiAd(OH)2 (c = 250 µM; CB8 marked with blue stars, bound guest marked with orange dots), c) 

CB7•4,9-DiAd(OH)2 (c = 250 µM; CB7 marked with green stars, bound guest marked with orange dots) and d) a mixture of 

CB7•4,9-DiAd(OH)2 (c = 250 µM) and free 4,9-DiAd(OH)2 (c = 250 µM); symbols similar to a) - c)). 
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Figure 28: 1H NMR spectra (500 MHz, D2O + 10% MeOH/MeOD-d3, r.t.) recorded for a) 9,15-TriAd(OH)2 (c = 250 µM, 58, 

free guest marked with red dots), b) CB8•9,15-TriAd(OH)2 (c = 250 µM; CB8 marked with blue stars, bound guest marked 

with orange dots) and c) a mixture of CB8•9,15-TriAd(OH)2 (c = 250 µM) and free 9,15-TriAd(OH)2 (c = 250 µM); symbols 

similar to a) - b). 

The cavity of CBn constitutes an NMR-shielding region, whereas the region just outside of the 

carbonyl-fringed rims is deshielding.217,218 The complex formations of CBn•4,9-DiAd(OH)2 

(n = 7 and 8) and CB8•9,15-TriAd(OH)2 are observed as upfield shifts and with a signal 

broadening of the guest proton signals, which are marked with red (free guest) and orange 

(complexed guest) dots.323,324 The host signals in the region from 4 to 6 ppm are marked with 

green (CB7) and blue (CB8) stars. Due to their size, the triamantanes 57 and 58 exclusively fit 

into the CB8 cavity. Unfortunately, it was not possible to carry out aqueous ITC titration experi-

ments with 9,15-TriAd(OH)2 (58) owing to its low solubility in water. 

5.1.1.1. Thermodynamic investigations of the binding properties of CBn and β-CD 

Having confirmed suitability of the chosen guest molecules, ITC experiments were carried out 

to gain insights into the trends of binding affinities and thermodynamic parameters with 

temperature. In a typical experiment, the guest solution of the investigated host-guest combina-

tion was loaded into the ITC syringe in a 10 times higher concentration than the host concen-

tration in the cell and titrated 19 times to the host solution in 1.5 µL steps. The host solution 

was brought to the desired temperature prior to the measurement start. Exemplarily, the results 

for the titration of nandrolone into a CB7 solution (see Figure 29) as well as into a CB8 solution 
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(see Figure 30) in a temperature range of 5 to 55°C are shown. Graphs for the other investigated 

host-guest combinations are depicted in the appendix in Chapter 8.1. 

 

Figure 29: a) - f) ITC isotherms (dilution heat corrected) for the titration of nandrolone (c = 0 - 40 µM, 60) into an aqueous 

CB7 solution (c = 20 µM) in a temperature range of 5 to 55°C. 
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Figure 30: a) - f) ITC isotherms (dilution heat corrected) for the titration of nandrolone (c = 0 - 65 µM, 60) into an aqueous 

CB8 solution (c = 48 µM) in a temperature range of 5 to 55°C. 

The binding affinity of CB7•FeCp2OH lies above 109 M–1, and therefore competitive titration 

experiments with L-phenylalanine were used to correctly determine the association constant as 

it was already established by INOUE and KIM.208,209 Due to the strong binding of 

ferrocenylmethanol to CB7 resulting in a steep S-curve with little points at the region of N = 1 

suitable for fitting (see Figure 31a), a direct determination of Ka was not possible by ITC. For 

competitive titration experiments, the targeted guest competes for the binding in the host cavity 

with the prior guest, whose thermodynamic parameters of association with the host have already 

been determined. Utilizing a competitive ITC method by titrating a ferrocenylmethanol solution 

into a preequilibrated mixture of CB7 and L-phenylalanine the S-curve flattens (see Figure 

31b) and the binding affinity can be determined utilizing Equation 17.  

 



Results and discussion  47 

 

𝐾FeCp2OH = [Phe] · 𝐾exp · 𝐾Phe Eq. 17 

Δ𝐻FeCp2OH = Δ𝐻Phe + Δ𝐻exp Eq. 18 

The reaction enthalpy for the complexation of ferrocenylmethanol with CB7 was investigated 

by a direct host-guest titration to minimize interferences by the presence of a second guest 

altering the value. However, it would have been possible to determine the reaction enthalpy 

based on the conducted competitive titration following Equation 18. Full datasets for the range 

of 5 to 55°C can be found in Chapter 8.1. 

 

Figure 31: a) ITC isotherms (dilution heat corrected) for the titration of a) FeCp2OH (c = 0 - 55 µM, 59) into an aqueous CB7 

solution (c = 30 µM) and b) FeCp2OH (c = 0 - 100 µM, 59) into an aqueous CB7 solution (c = 62.5 µM) pre-equilibrated with 

Phe (c = 1.5 mM, 61) at 25°C. 

Equilibration times where too long for the investigation of the complex formation of AdOH 

with CB7 by ITC and gave imprecise heat integration results (see Chapter 8.1). Thus, the 

binding constants were determined by fluorescence titration where long equilibration times can 

be accommodated by waiting for several minutes between each injection.189 The required 

waiting time can be determined by kinetic investigations such as stopped-flow experiments. As 

the binding affinity of AdOH towards CB7 is exceptionally high with a binding affinity of 

Ka ≥ 1010 M−1, a two-step IDA with berberine chloride (BC, 63) and MDAP (48) was utilized 

(see Figure 32). The binding affinity of BC towards CB7 was determined in a direct binding 

assay (DBA) in a temperature range of 5 to 55°C. Fits were conducted following Equation 

3 - 7 in Chapter 3.2.3.1, using the fluorescence enhancement that BC undergoes when bound 

inside the CB7 cavity (see Figure 32a).240 An excitation wavelength of λex = 440 nm was used 
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and the fluorescence intensity was monitored at λem = 542 nm. The equilibration time for each 

titration step was set to 30 seconds based on the results obtained from detailed kinetic experi-

ments (see Figure 32b). For the determination of the binding affinity of MDAP towards CB7, 

an IDA with BC as weaker binding competitor was assessed. The CB7•BC mixture (1:1.2 – 

CB7:BC) was excited at λex = 421 nm and the fluorescence intensity was monitored at 

λem = 542 nm while titrating MDAP into the cuvette. The stronger binding dye MDAP displaces 

BC from the cavity leading to a decrease of the BC fluorescence, which was enhanced inside 

of the CB7 cavity (see Figure 32c). The equilibration time for each step was set to 15 seconds 

which was based on the results obtained from detailed kinetic experiments (see Figure 32d). 

Fittings were performed following Equations 8 – 16 in Chapter 3.2.3.1. For AdOH, a similar 

IDA was utilized but with MDAP as indicator dye (see Figure 32e).  The CB7•MDAP mixture 

(2:3 – CB7:MDAP) was excited at λex = 378 nm and the fluorescence intensity was monitored 

at λem = 427 nm while titrating AdOH into the cuvette.  The reaction time for each titration step 

was set to 300 seconds which was based on the results obtained from detailed kinetic 

experiments (see Figure 32f).  

 

Figure 32: a) Fluorescence intensity monitored at λem = 542 nm (λex = 440 nm) after the attainment of the equilibrium (30 sec 

equilibration time) as a function of BC (63) concentration with CB7 in the cuvette at 25°C (c(CB7) = 1.15 µM). b) Normalised 

stopped-flow signal for the mixing of BC and CB7 (c(BC) = 400 nM and c(CB7) = 200 nM; λex = 440 nm). c) Fluorescence 

intensity monitored at λem = 542 nm (λex = 421 nm) after the attainment of the equilibrium (15 sec equilibration time) as a 

function of MDAP (48) concentration with CB7•BC in the cuvette at 25°C (c(CB7) = 2.2 µM; c(BC) = 2.5 µM). d) Normalised 

stopped-flow signal for the mixing of MDAP and CB7•BC (c(MDAP) = 2.0 µM and c(CB7•BC) = 3.0 µM; λex = 357 nm). e) 

Fluorescence intensity at λem = 427 nm (λex = 378 nm) after the attainment of the equilibrium (300 sec equilibration time) as a 

function of AdOH (54) concentration with CB7•MDAP in the cuvette at 25°C (c(CB7) = 2.0 µM; c(MDAP) = 3.0 µM). f) 

Normalised stopped-flow signal for the mixing of AdOH and CB7•MDAP (c(CB7•MDAP) = 400 M and c(AdOH) = 400 µM; 

λex = 378 nm). 
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The reaction enthalpy ΔH for CB7•AdOH was determined by ITC as it equals the difference 

between the initial points (guest is immediately bound) and the end points (host cavities are 

completely filled and no guest molecules are further bound) and can therefore be determined 

correctly even with broadened heat integrals due to long equilibration times. Utilizing Equation 

1 in Chapter 3.2.3.1, ΔG and –TΔS were calculated from ΔH and Ka. These and all other within 

this study investigated values are given in Table 7. All determined values at 25°C are in good 

agreement with literature.151,208,209 

Table 7: Summary of the binding parameters characterising the complexation of selected guests by desalined CBn (n = 7 - 8) 

and β-CD in water. Averaged data taken from experiments repeated at least three times. ITC data was corrected by the mean 

value of the dilution heat. Typical errors are 20% in Ka, 0.2 in log Ka, and 2 kJ mol−1 in ΔH, ΔG and –TΔS.  

Host Guest T (°C) Ka (M−1) log Ka 
ΔH 

(kJ mol−1) 

ΔG 

(kJ mol−1) 

–TΔS 

(kJ mol−1) 

CB7 AdOH[a] 

(54) 

5 ─ ─ –72.7 ─ ─ 

15 3.4 · 1010 10.5 –73.2 –58.1 15.1 

25 2.6 · 1010 10.4 –79.4 –59.5 20.0 

35 1.7 · 1010 10.2 –84.0 –60.0 23.7 

45 1.2 · 1010 10.0 –89.1 –61.0 27.8 

55 4.7 · 109 9.7 –93.7 –60.8 32.9 

CB8 AdOH 

(54) 

5c 1.1 · 107 7.0 –28.9 –37.5 –8.6 

15 9.6 · 106 7.0 –31.8 –38.5 –6.7 

25 6.2 · 106 6.8 –33.9 –38.8 –4.9 

35 6.1 · 106 6.8 –37.5 –40.7 –3.1 

45 5.8 · 106 6.8 –43.6 –41.4 2.3 

55 4.3 · 106 6.6 –45.3 –41.7 3.6 

β-CD AdOH 

(54) 

5 1.0 · 105 5.0 –18.2 –26.7 –8.4 

15 8.6· 104 4.9 –22.0 –27.3 –1.8 

25 5.6 · 104 4.7 –27.2 –27.1 0.2 

35 4.1 · 104 4.6 –31.5 –27.3 4.3 

45 2.7 · 104 4.4 –36.2 –27.0 9.3 

55 2.3 · 104 4.4 –36.8 –27.5 9.3 

CB7 4-DiAdOH 

(55) 

5 3.1 · 106 6.5 –40.1 –34.5 5.5 

25 6.8 · 106 6.8 –50.3 –39.0 11.9 

55 1.9 · 107 7.2 –55.6 –45.4 10.4 

CB8 4-DiAdOH 

(55) 

5 3.6 · 107 7.6 –32.4 –39.3 –6.9 

25 4.4 · 106  6.6 –32.7 –37.9 –5.2 

55 5.7 · 106 6.7 –54.1 –42.3 11.9 

CB7 4,9-DiAd(OH)2 

(56) 

5 1.1 · 107 7.0 –41.3 –37.5 3.8 

15 1.3 · 107 7.1 –47.1 –39.3 7.8 

25 1.1 · 107 7.1 –52.7 –40.3 12.4 
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Host Guest T (°C) Ka (M−1) log Ka 
ΔH 

(kJ mol−1) 

ΔG 

(kJ mol−1) 

−TΔS 

(kJ mol−1) 

CB7 4,9-DiAd(OH)2 

(56) 

35 1.0 · 107 7.0 –58.0 –41.5 16.5 

45 1.8 · 107 7.2 –60.5 –44.2 16.3 

55 1.0 · 107 7.0 –72.2 –44.1 28.1 

CB8 4,9-DiAd(OH)2 

(56) 

5 1.7 · 107 7.2 –23.6 –38.2 –14.7 

25 1.8 · 107 7.2 –32.0 –41.5 –9.5 

55 4.0 · 106 6.6 –44.4 –41.6 3.1 

β-CD 4,9-DiAd(OH)2 

(56) 

5 3.4 · 105 5.5 –28.1 –29.6 –1.4 

25 1.3 · 105 5.1 –37.4 –29.0 8.4 

55 3.5 · 104 4.5 –42.1 –28.5 13.6 

CB8 3,9-TriAd(OH)2 

(57) 

5 1.1 · 107 7.0 –47.7 –37.5 10.1 

25 9.3 · 106 7.0 –53.0 –39.8 13.2 

55 9.2 · 106 7.0 –67.3 –43.3 24.0 

CB7 FeCp2OH[b] 

(59) 

5 1.2 · 1010 10.1 –83.4     –53.7 29.6 

15 5.1 · 109 9.7 –87.8     –53.5 34.2 

25 2.5 · 109 9.4 –88.3     –53.7 34.6 

35 1.3 · 109 9.1 –90.0     –53.8 36.2 

45 4.4 · 108 8.7 –94.2     –52.7 41.5 

55 2.4 · 108 8.4 –97.3     –52.7 44.6 

CB8 FeCp2OH 

(59) 

5 7.6 · 106 6.9 –47.8 –36.7 11.1 

15 5.4 · 106 6.7 –52.1 –37.1 15.0 

25 3.6 · 106 6.6 –55.0 –37.5 17.5 

35 5.2 · 106 6.7 –56.7 –39.6 17.1 

45 3.9 · 106 6.6 –59.0 –40.1 18.9 

55 3.4 · 106 6.5 –59.4 –41.1 18.3 

β-CD FeCp2OH 

(59) 

5 2.2 · 104 4.4 –23.7 –23.2 0.6 

15 1.4 · 104 4.1 –28.0 –22.8 5.1 

25 9.8 · 103 4.0 –32.2 –22.8 9.4 

35 7.6 · 103 3.9 –34.7 –22.9 11.8 

45 5.9 · 103 3.8 –35.6 –23.0 12.6 

55 4.4 · 103 3.6 –37.6 –22.2 15.0 

CB7 Nan 

(60) 

5 7.8 · 106 6.9 –41.3 –36.4 4.4 

15 5.6 · 106 6.7 –48.0 –37.2 10.7 

25 3.2 · 106 6.5 –53.2 –37.1 16.0 

35 2.3 · 106 6.4 –58.3 –37.4 20.8 

45 1.5 · 106 6.2 –65.0 –37.6 27.5 

55 1.2 · 106 6.1 –72.2 –38.2 33.9 

CB8 Nan 

(60) 

5[c] 1.7 · 107 7.2 –30.9 –38.5 –7.7 

15 9.7 · 106 7.0 –33.7 –38.6 –4.9 

25 8.3 · 106 6.9 –37.2 –39.6 –2.3 
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Host Guest T (°C) Ka (M−1) log Ka 
ΔH 

(kJ mol−1) 

ΔG 

(kJ mol−1) 

−TΔS 

(kJ mol−1) 

CB8 
Nan 

(60) 

35 5.4 · 106 6.7 –42.4 –39.7 2.7 

45 3.8 · 106 6.6 –45.7 –40.1 5.6 

55 1.8 · 106 6.2 –53.5 –39.2 14.2 

CB7 Phe 

(61) 

5 1.7 · 106 6.2 –36.7 –33.2 3.5 

15 1.3 · 106 6.1 –37.8 –33.7 4.0 

25 9.5 · 105 6.0 –39.7 –34.1 5.6 

CB7 Phe 

(61) 

35 7.8 · 105 5.9 –42.2 –34.8 7.4 

45 4.6 · 105 5.7 –48.0 –34.5 13.5 

55 3.6 · 105 5.5 –48.8 –34.8 13.9 

CB7 HexOH 

(62) 

5 1.5 · 106 6.2 –29.9 –32.9 –3.0 

15 8.9 · 105 6.0 –35.8 –32.9 2.9 

25 7.0 · 105 5.8 –40.1 –33.4 6.7 

35 4.0 · 105 5.6 –42.4 –33.1 9.3 

45 2.4 · 105 5.4 –46.6 –32.8 13.8 

55 1.4 · 105 5.2 –49.1 –32.5 16.7 

CB7 BC[d] 

(63) 

5 1.7 · 107 7.2 ─ ─ ─ 

15 1.5 · 107 7.2 ─ ─ ─ 

25 1.1 · 107 7.0 ─ ─ ─ 

35 6.7 · 106 6.8 ─ ─ ─ 

45 5.4 · 106 6.7 ─ ─ ─ 

55 3.3 · 106 6.5 ─ ─ ─ 

CB7 MDAP[e] 

(48) 

5 1.6 · 109 9.2 ─ ─ ─ 

15 1.7 · 109 9.2 ─ ─ ─ 

25 9.7 · 108 9.0 ─ ─ ─ 

35 6.4 · 108 8.8 ─ ─ ─ 

45 4.8 · 108 8.7 ─ ─ ─ 

55 3.0 · 108 8.5 ─ ─ ─ 
[a] Binding affinities were determined by emission-based titration with MDAP as competitor (IDA). [b] Binding affinities were 

determined by multistep ITC with Phe. [c] An additional offset was fitted. [d] Binding affinities were determined by emission-

based titration (DBA). [e] Binding affinities were determined by emission-based titration with BC as competitor (IDA). 

An acceptable reduction of complex stability with temperature indicated by a decrease in 

Δlog Ka of less than 1.5 over a range of 50°C was found for all investigated host-guest systems. 

Comparing the binding affinities of β-CD with AdOH and FeCp2OH to the investigated CBn 

host-guest complexes, the binding constants are for both guests around 102 M−1 weaker than 

the ones for CB8 and around 105 M−1 weaker than for CB7. This can be explained by the 

different cavity sizes, therefore emphasising on the importance of an optimum matching cavity 

and guest size, and by the different energy gain due to the release of high-energy water.149 In 

Figure 33, a graphical overview of the thermodynamic parameters of the host binding to AdOH 
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(54), 4,9-DiAd(OH)2 (56), and FeCp2OH (59) is shown, similar graphs for the other 

investigated host-guest pairs are depicted in Chapter 8.1.  

 

Figure 33: a) - c) Graphical overview of the temperature dependence of the standard complexation parameters for AdOH (54) 

with a) CB7, b) CB8, and c) β-CD. d) - f) Graphical overview of the temperature dependence of the standard complexation 

parameters for 4,9-DiAd(OH)2 (56) with d) CB7, e) CB8, and f) β-CD. g) - i) Graphical overview of the temperature 

dependence of the standard complexation parameters for FeCp2OH (59) with g) CB7, h) CB8, and i) β-CD in a temperature 

range of 5 to 55°C.  

It was discovered that the Gibbs free energy is almost unaffected by temperature changes. In 

contrast, the differences in standard complexation parameters in the investigated temperature 

range are not only remarkable when comparing different hosts but also when comparing 

different temperatures. The value of ΔH became on average around 3 kJ mol−1 more negative 

for each 10°C step - for some host-guest pairs, i.e., CB7•AdOH and CB8•FeCp2OH, the change 

was even up to 4.5 kJ mol−1, which equals a total Δ(ΔH) of  21 - 23 kJ mol−1 for the 

investigated temperature range of 50°C. The strongly negative ΔH values reaching almost 

−90 kJ mol−1 are an indicator for the non-classical hydrophobic effect, which has often been 

cited as primary cause of enthalpy driven inclusion of hydrophobic guests.149 The trends at 25°C 

for ΔH being the most negative for CB7 and the less pronounced for β-CD (maximum 

−38 kJ mol−1) in the investigated temperature range are an additional hint as CB7 was found to 
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be the homologue with the highest enthalpy gain from high-energy cavity water release.209 

Although the CB8 cavity hosts more water molecules than the CB7 cavity, the water molecules 

can form a better hydrogen bonding network inside the larger cavity and therefore their release 

to the bulk water frees less energy compared to CB7.149,166,209 Due to the more open shape and 

the H-bonding groups of CDs, water molecules inside β-CD cavities are less shielded and more 

comparable to bulk water in their H-bonding network than in CBn. Thus, the release of the 

water molecules from the cavity does not free as much energy as it is the case for CBn. The rise 

in enthalpic gain with temperature can be explained with the dependence of strength as well as 

number of hydrogen bonds within the cavity. However, also the guest size must be considered, 

as strong intra-cavity Van der Waals interactions (perfect fit; enthalpy gain) lead inescapably 

to reduced freedom of guest conformation (entropy loss). Adamantanol and ferrocenylmethanol 

as more spherical guests show overall the highest enthalpic and entropic contribution related to 

a reasonable size fit leading to an efficient high-energy water displacement from the 

hydrophobic cavity. Linear and flat shaped molecules such as hexanol (62, see Chapter 8.1, 

Figure 119) can neither benefit from a full high-energy water release nor from a good guest to 

host size fit and can therefore not reach these high contributions. Contrarily, energy might be 

even consumed due to distortion of the guest molecules.  

The same trends in ΔH and –TΔS with an opposite sign direction were found for all investigated 

host-guest pairs resulting in an enthalpy-entropy compensation. However, when considering 

the pure entropy ΔS (see Figure 34), there are only a few cases where the binding event is 

entropically favoured. To go into detail, these are the interactions of CB8•AdOH (5 - 35°C) and 

β-CD•AdOH (5 - 15°C), as well as CB8•FeCp2OH (5 - 25°C) and CB7•HexOH (5°C) for which 

at lower temperatures the complex formation is surprisingly enthalpically and entropically 

favoured in accordance with the overall trends for ΔH and ΔS.   

Taking the Iceberg model of hydrophobic hydration into account,325 the desolvation of nearly 

spherical adamantane should be entropically beneficial and enthalpically unfavourable (classi-

cal hydrophobic effect). For β-CD and CB8 it seems that the classical hydrophobic effect with 

nearly spherical guest molecules overcomes the non-classical hydrophobic effect at lower 

temperatures. As the “ordered” hydration shell becomes more and more unfavourable with 

temperature rise, the entropic gain becomes less and culminates in an entropic loss (non-classi-

cal hydrophobic effect). For CB8•FeCp2OH, a perfect fit inside the CB8 cavity supports the 

complex formation, whereas for CB7•HexOH the entropic gain only appears at 5°C probably 

caused by the overall high conformational freedom inside the cavity due to the drawn-out mole-

cule structure. Interestingly, the classical hydrophobic effect, clearly indicated by the entropy 
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gain at lower temperatures, was not obtained at all for complexes with CB7 except for hexanol 

as guest at 5°C.  

 

 

Figure 34: Correlation plot for all the within the present study determined thermodynamic parameters in a temperature range 

of 5 to 55°C. Dark colours indicate high temperatures, whereas light colours are used for low temperatures. 

Upon complex formation, adamantanol shows an exceptional enthalpic gain (most favourable), 

owing to the large Van der Waals contact between the guest and the host cavity, and at the same 

time the most unfavourable entropic contribution, owing to the severe conformational re-

striction. Comparing adamantanol and its derivatives, the binding affinities towards CB7 of the 

larger in size diamantanes drop by around 30% from log Ka = 10.4 for AdOH to log Ka = 6.8 

and 7.1 for 4-DiAdOH and 4,9-DiAd(OH)2 at 25°C. A similar percentage drop of around 30% 

was observed in all thermodynamic parameters. For the larger homologue CB8 similar binding 

affinities for all adamantanol derivatives were found with the difference, that the binding 

affinity of adamantanol and CB8 (log Ka = 6.8 at 25°C) is not nearly as high as for CB7 

(log Ka = 10.4 at 25°C). The Ka values for the other adamantanol derivatives are comparable to 

the ones obtained for CB7 (log Ka ⁓ 7). Interestingly, for 3,9-TriAd(OH)2 as guest, the binding 

affinity determined with CB8 as host is comparable to the ones found for adamantanol and the 

two diamantane derivatives, whereas the reaction enthalpy rises from −32 kJ mol−1 to 

−53 kJ mol−1 concomitant with a change of sign in −TΔS. The explanation of these findings 

remains still challenging and is part of the on-going work in collaboration with the GRIMME 

group in Bonn and the GILSON group in San Diego. It is hoped to gain a better understanding 

of the observed trends by MD and DFT simulations. 
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 As the CB7 values are exceptional amongst all known artificial receptors, a literature search 

was conducted leading in a correlation of thermodynamic parameters (see Figure 35, only data 

at 25 ± 5°C is shown) under consideration of the binding strength of 24 high-affinity guests 

(Ka > 109 M−1), 35 medium-affinity guests (106 M−1 < Ka < 109 M−1) and 35 relatively low 

affinity guests (Ka < 106 M−1) towards CB7. The reaction enthalpy ΔH seems to be the cause 

for the exceptional high binding affinities, whereas the –TΔS contributions seem to differ not 

that much amongst low-, medium-, and high-affinity guests. Weak binders (Ka < 106 M−1) do 

not reach enthalpic contributions higher than ΔH ⁓ – 40 kJ mol−1, whereas strong binders (Ka > 

109 M−1) are highly enthalpically favoured with values up to ΔH ⁓ – 100 kJ mol−1. This high 

range of possible enthalpic contributions to the binding event seems to raise CBn to such 

exceptional multifunctional hosts. When taking other artificial receptors into account, the 

exceptional strong binding characteristics can hardly be reached. One in log Ka close example 

is the in 2020 by ISAACS and co-workers introduced molecule family of Pillar[n]MaxQ with 

binding affinities up to Ka = 1012 M−1 and ΔH values up to –70 kJ mol−1.326 However, 

Pillar[n]MaxQ are still not meeting the exceptional high ΔH values of CBn.  

 

Figure 35: Correlation plot of the enthalpic (ΔH) vs. the entropic (−TΔS) contribution to the overall free energy ΔG for CB7 

with high (Ka > 109 M−1, blue), medium (106 M−1 < Ka < 109 M−1, red), and low (Ka < 106 M−1, green) binders at 25 ± 5°C in 

solutions with a maximum salt content of 10 mM. Detailed values and literature sources are listed in Chapter 8.2.  
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5.1.1.2. Heat Capacity Change (ΔCp) 

Having investigated the thermodynamic parameters of several host-guest complexes, heat 

capacity changes (ΔCp) were investigated in detail. The heat capacity is defined as the variation 

in ΔH with temperature (Equation 19).222 

Δ𝐶p =
𝜕∆𝐻

𝜕T
=  

T 𝜕∆𝑆

𝜕T
 Eq. 19 

A great variety of negative ΔCp values has been reported for the complexation of organic guests 

with CDs146 and for ligand-protein interactions.327 So far, there are only a few reported ΔCp 

values for CBn.144,208  

All the investigated host-guest complexes showed a negative change in their heat capacity along 

with a favorable entropic binding affinity. Negative values for ΔCp are expected in the event 

of a significant reorganisation of water molecules during host-guest complexation, commonly 

referred to as hydrophobic effect.208 A graphical overview of the thermodynamic parameters 

for AdOH (54), 4,9-DiAd(OH)2 (56), and FeCp2OH (59) is shown in Figure 36, similar graphs 

for the other within this work investigated guests are depicted in Chapter 8.1. All determined 

ΔCp values are listed in Table 9 and Table 10. 

 

Figure 36: Heat capacity changes for a) AdOH (54), b) 4,9-DiAd(OH)2 (56), and c) FeCp2OH (59) with CB7 (blue), CB8 (red), 

and β-CD (green) determined by the slope of a linear fit of the determined enthalpy values at different temperatures. 
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The heat capacity changes are stronger negative for the more hydrophobic guests adamantanol 

and nandrolone compared to FeCp2OH. This is in accordance with the found differences 

between these guests regarding enthalpic/entropic loss and gain. The different sizes of effective 

hydration shells for host, guest, and host-guest complex seem to be the explanation. In general, 

the investigated ΔCp values are much smaller than those reported for protein-ligand inter-

actions. For hexanol,  it was shown that the hydrophobic binding pocket of recombinant mouse 

major urinary protein (rMUP) shows a heat capacity of around –550 J K–1 mol–1 which is 

significantly more negative than the determined value of –370 J K–1 mol–1 for the interaction of 

hexanol with CB7.327 However, within the three investigated macrocyclic hosts the values are 

comparable.  

Table 9: Summary of the heat capacity changes ΔCp characterising the complexation of adamantanol and its derivatives by 

desalined CBn (n = 7 - 8) and β-CD in water.  

ΔCp (J mol−1 K−1) 
AdOH 

(54) 

4-DiAdOH 

(55) 

4,9-DiAd(OH)2 

(56) 

3,9-TriAd(OH)2 

(57) 

CB7 –470 ± 35 –300 ±  90 –570 ± 50 ─ 

CB8 –350 ± 30 –460 ± 190 –420 ± 30 –400 ± 60 

β-CD –400 ± 35 ─ –270 ± 85 ─ 

 

Table 10: Summary of the heat capacity changes ΔCp characterising the complexation of selected guests by desalined CBn 

(n = 7 - 8) and β-CD in water.  

ΔCp (J mol−1 K−1) 
FeCp2OH 

(59) 

Nan 

(60) 

Phe 

(61) 

HexOH 

(62) 

CB7 –350 ± 40 –600 ± 30 –270 ± 35 –370 ± 30  

CB8 –250 ± 30 –440 ± 40 ─ ─ 

β-CD –300 ± 30 ─ ─ ─ 

 

5.1.2. Binding affinities of CBn towards inorganic cations 

CBn samples often contain various impurities, such as water, hydrogen chloride, ammonium 

and alkali metal salts, which are typically introduced in the course of their preparation and 

purification.162 These additives can significantly influence the thermodynamic or kinetic 

binding properties of the macrocyclic hosts.316 The ability of CBn to bind metal cations in 

aqueous solutions (see Figure 37) was discovered over one hundred years ago and the first 

example of a structurally characterised CBn compound was a complex of CB6 with a Ca2+ 

ion.160,161  
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Figure 37: Cation binding ability of CBn, shown for a monovalent cation. 

Earlier on, several groups had studied the binding of inorganic cations with CBn. However, the 

different methods used, i.e., UV-Vis and fluorescence competitive displacement titrations, ITC 

and total organic carbon (TOC) measurements afforded quite different values for the same 

cation going in hand with inconsistent amounts of additives such as formic acid.328-333 It has been 

shown by BUSCHMANN and co-workers that the formic acid concentration affects the complex 

formation of earth metal cations with CB6 remarkably.330 Thus, reliable comprehensive data 

for the complexation of cations with CBn in water is important for understanding and analysing 

binding constants obtained with CBn in the presence of salts. In a comprehensive study, the 

binding affinities of 20 (in)organic cations with CB5, CB6, CB7, and CB8 were investigated in 

water in cooperation with the groups of NAU and BICZÓK.203 ITC investigations on CB5 as host 

were conducted within this work, ITC results for CB7 were partly obtained within this work 

and partly by ZSOMBOR MISKOLCZY form the BICZÓK group. Fluorescence titration experiments 

for CB6 and CB7 were collected by SHUAI ZHANG from the NAU group while CB8 results were 

obtain by the BIEDERMANN group. The chosen cations consisted of varying valent numbers, to 

be more precise eight monovalent cations including Ag+ (64), H3O
+ (76), NH4

+ (81), and five 

alkaline metal cations (Li+ – 66, Na+ – 74, K+ – 80, Rb+ – 82, Cs+ – 83), four divalent alkaline 

earth metal cations (Mg2+ – 68, Ca2+ – 73, Sr2+ – 77, Ba2+ – 79), and eight transition metal 

cations. The eight transition metal cations including three divalent (Ni2+ – 67, Cu2+ – 69, 

Zn2+ – 70), and two trivalent (Al3+ – 64, Fe3+ – 65) transition metal cations as well as three 

lanthanides (Yb3+ – 71, Eu3+ – 72, La3+ – 75). The size of the cations drawn to scale with 

respect to the CBn cavities are depicted in Figure 38. 
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Figure 38: a) 3D representation (space filling model) of CB5 - CB8. The portal diameters are 2.4 Å for CB5, 3.9 Å for CB6, 

5.4 Å for CB7, and 6.9 Å for CB8.118,124 b) 3D representation of the metal cations investigated in this study with sizes drawn 

to scale with respect to CBn.  

In the following, the obtained results for CB5 are discussed first, followed by the results for 

CB6 - CB8 concomitant with a general overview of the findings. The relatively well-soluble 

CB5 produced sufficiently large binding heats in the ITC experiments when conducted at 10°C. 

Host solutions were desalted prior to use by dialysis. In favorable cases, sigmoidal binding 

isotherms were observed, which provided access to the binding stoichiometry. All determined 

binding isotherms are shown in Figure 39 ˗ Figure 42. The values are listed in Table 11. 

 

Figure 39: ITC isotherms (dilution heat corrected) for the titrations of the investigated organic monovalent cations into a 

desalinated CB5 solution at 10°C. a) HNO3 (76, c = 7.50 mM) into CB5 (c = 748 µM) and b) NH4NO3 (81, c = 8.00 mM) into 

CB5 (c = 748 µM). Fits were conducted based on a 1:1 binding model. 
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Figure 40: ITC isotherms (dilution heat corrected) for the titrations of the investigated monovalent alkali metal cations into a 

desalinated CB5 solution at 10°C. a) LiNO3 (66, c = 15.0 mM) into CB5 (c = 1.14 mM), b) NaNO3 (74, c = 6.50 mM) into CB5 

(c = 748 µM), c) KNO3 (80, c = 2.70 mM) into CB5 (c = 200 µM), d) RbNO3 (82, c = 7.50 mM) into CB5 (c = 748 µM), and 

e) CsNO3 (83, c = 7.00 mM) into CB5 (c = 748 µM). Fits were conducted based on a 1:1 binding model. 
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Figure 41: ITC isotherms (dilution heat corrected) for the titrations of the investigated divalent metal cations into a desalinated 

CB5 solution at 10°C. a) Mg(NO3)2 (68, c = 22.5 mM) into CB5 (c = 748 µM), b) Ca(NO3)2 (73, c = 18.8 mM) into CB5 (c = 

1.14 mM), c) Sr(NO3)2 (77, c = 5.10 mM) into CB5 (c = 400 µM), and d) Ba(NO3)2 (79, c = 855 µM) into CB5 (c = 125 µM). 

Fits were conducted based on a 1:1 binding model. 
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Figure 42: ITC isotherms (dilution heat corrected) for the titrations of the investigated di- and trivalent transition metal cations 

into a desalinated CB5 solution at 10°C. a) Ni(NO3)2 (67, c = 5.00 mM) into CB5 (c = 200 µM), b) Yb(NO3)3 (71, c = 1.50 mM) 

into CB5 (c = 125 µM), c) La(NO3)3 (75, c = 2.50 mM) into CB5 (c = 200 µM), d) Eu(NO3)3 (72, c = 2.5 mM) into CB5 

(c = 125 µM), and e) Fe(NO3)3 (65, c = 7.00 mM) into CB5 (c = 748 µM). Fits were conducted based on a 1:1 binding model. 

Interestingly, exothermic as well as endothermic behaviours were observed for the investigated 

cations. Binding with an endothermic behaviour was found for the smaller in size monovalent 

H+ and Li+ as well as the divalent Mg2+, its in size related Ni2+, as well as for all investigated 

trivalent cations, namely Yb3+, La3+, Eu3+, and Fe3+. A correlation of the binding affinities 

(given as log Ka values) against the ionic cation radius is shown in Figure 43. Expectedly, for 

the monovalent cations, Li+ with the highest hydration energy and smallest size shows the 

weakest binding with CB5. However, the binding affinities towards CB5 followed an unex-

pected trend: H3O
+ < Li+ < NH4

+ ~ Cs+ < Rb+ < Na+ < K+. A bell-shaped curve was found by 

interconnecting the values on a graph pointing towards an ideal size match as criteria. Within 

the cation study, this finding was unique as the general trends pointed towards a binding 

preference of larger and less strongly hydrated metal ions. However, for CB5 as host, Rb+ and 

Cs+ with ionic radii of 1.5 Å and 1.7 Å seem to be too large to penetrate the cavity through the 



Results and discussion  63 

 

portals, which only have a portal opening of 1.2 Å. Due to this, the dipolar interaction with the 

oxygen lone pairs seems to not be ideal. Interestingly, the organic cations NH4
+ and H3O

+ 

showed comparably low binding affinities compared to the similar sized metal cations Rb+ and 

Ca2+. This finding can probably be explained by having a look at the hydrogen bond formation 

ability of the investigated molecules and cations. Polarizability of the cations, and therefore 

ion-dipole interactions between the cationic center and the carbonyl-decorated portals, seems 

to influence the complexation strength more significantly than hydrogen bond formation. As 

conclusion, the adjustment of the pH value should be carried out with organic buffers to 

minimize binding strength interferences.  

 

Figure 43: a) Plot of log Ka(CB5•cation) versus cation radius. All shown values were determined by ITC at 10°C in water. b) 

Plot of log Ka(CB5•cation) versus Gibbs energy –ΔGhydr. c) Cation radius versus Gibbs energy –ΔGhydr.  Pink = organic cations; 

green = alkali metal cations; red = alkaline earth metal cations; orange = divalent transition metal cations; blue = trivalent 

transition metal and lanthanide cations. 

For the investigated divalent alkaline earth metal cations, the following trend was observed: 

Mg2+ < Ca2+ < Sr2+ < Ba2+. From a size perspective, Sr2+ should fit best to the CB5 portals and 

therefore have the best binding affinity. However, Ba2+ was found to have the strongest binding 

affinity to CB5 as it is lower in hydration energy.334 Since the sizes of Mg2+ and Ca2+ do not fit 

perfectly to the CB5 portals and both possess high hydration energies, the binding constants are 
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much lower than for Sr2+ and Ba2+. For the four selected trivalent cations only a small trend in 

terms of binding affinity was found, namely Eu3+ < La3+ < Yb3+ < Fe3+, following the increasing 

size of the cations with La3+ being the largest (1.05 Å).  

Table 11: Binding constants and thermodynamic parameters characterising the complexation of selected cations by CB5 de-

termined by ITC at 10°C in water. Averaged data taken from experiments repeated at least three times. Experiments were 

corrected for heats of dilution. Due to the lack of a sigmoidal shape, it was not possible to reliably determine the thermodynamic 

parameters for some of the investigated cations. Estimated errors are 0.2 in log Ka and 2 kJ mol–1 in ΔH, ΔG, and –TΔS. 

Cation Number 
r 

(Å)334 

–ΔGhydr. 

(kJ mol−1)334 
log Ka 

ΔH  

(kJ mol−1) 

ΔG  

(kJ mol−1) 

–TΔS  

(kJ mol–1) 

H3O
+ 76 1.12 39335  0.5 ─ ─ ─ 

NH4
+ 81 1.48 285 2.6 –11.5 –14.1 –2.5 

Li+ 66 0.69 475 2.0 ─ ─ ─ 

Na+  74 1.02 365 3.9 –2.3 –21.4 –19.0 

K+ 80 1.38 295 4.7 –12.5 –24.9 –13.1 

Rb+ 82 1.49 275 3.2 –19.1 –17.5 1.6 

Cs+ 83 1.70 250 2.6 –35.4 –14.0 21.3 

Mg2+ 68 0.72 1830 2.5 ─ ─ ─ 

Ca2+  73 1.00 1505 2.6 –12.8 –14.4 –1.6 

Sr2+ 77 1.13 1380 5.2 –7.9 –28.0 –20.0 

Ba2+ 79 1.36 1250 6.4 –19.6 –34.9 –15.3 

Ni2+ 67 0.69 1980 2.7 ─ ─ ─ 

Fe3+ 65 0.65 4265 3.7 ─ ─ ─ 

La3+ 75 1.05 3145 4.2 24.5 –22.7 –47.1 

Eu3+ 72 0.95 3360 3.9 18.8 –21.1 –38.5 

Yb3+ 71 0.87 3570 3.7 17.0 –20.1 –37.1 

In previous publications it was shown that two equivalents of alkali metal cations can bind to 

one CBn host, i.e., on each of the portals one cation (see Figure 44).336,337 To probe this, titra-

tions of the same guest with various concentrations were performed to make molar ratios N ≥ 2 

possible. Fitting of the ITC data was conducted with a binding model that explicitly accounts 

for the binding of two metal cations to the CBn rims, namely the sequential-binding model 

(SB). The results were then compared to the values gained by using the standard one-set-of-

sites binding model (OSS). The experiments were done with three cations, i.e., K+, Sr2+, and 

La3+. These three cations were chosen because of their similar ionic radii, their relatively high 

binding constant at low concentrations (log Ka ≈ 4 - 5), and their S-shaped ITC curves. All 

made observations, including control experiments at different concentration ratios, were fully 

consistent with the formation of a 1:1 CB5•Mn+ complex, where the potential subsequent 

binding of a second cation to the other carbonyl portal is at least a factor of 10 weaker, likely 

due to electrostatic repulsion (see Figure 44). 
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Figure 44: Cations bind to the carbonyl-fringed rims of CBn. 

For example, a (first) binding constant of log Ka = 4.73 was found for the complexation of K+ 

by CB5 no matter if fitted by the OSS or SB binding model. However, it should be noted that 

the enthalpic and entropic contributions of the cation binding are rather strong and should 

therefore definitely be discussed, e.g., when ITC measurements for the direct determination of 

thermodynamic parameters in buffers are considered. In the worst case, the binding enthalpies 

of cations and organic guests cancel each other out and the binding event is not recognised as 

such, which was reported by GARCIA-RIO and co-workers for some calixarene-guest com-

plexes.338,339  

Similar to CB5, deeper ITC investigations with CB7 as host were conducted. For this relatively 

water-soluble host, the binding affinity for La3+ was obtained at 10°C affording a binding 

affinity of log Ka = 5.25. This value was in good agreement with the value obtained through an 

emission-based indicator displacement approach with berberine chloride as reporter dye 

resulting in a binding affinity of log Ka = 5.18.  

 

Figure 45: Plot of log Ka(CB7•cation) versus cation radius. Filled squares and triangles were determined by emission-based 

IDA with BC by the NAU group;203 unfilled squares and triangles were determined by ITC in MilliQ water. Pink = organic 

cations; green = alkali metal cations; red = alkaline earth metal cations; orange = divalent transition metal cations; blue = 

trivalent transition metal and lanthanide cations. 

Values measured within this work and by the BICZÓK group are shown in Table 12, the corre-

lation of the determined log Ka values versus cation radius is shown in Figure 45. Within this 

graph, the values determined by co-workers from this group, the NAU and the BICZÓK group are 
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presented equally. The detailed values are listed in the corresponding publication that was re-

ported in cooperation with the named groups.203  

Table 12: Binding constants and thermodynamic parameters characterising the complexation of selected cations by CB7 de-

termined by ITC at 25°C in water. Averaged data taken from experiments repeated at least three times. Experiments were 

corrected for heats of dilution. Estimated errors are 0.2 in log Ka and 2 kJ mol–1 in ΔH, ΔG, and –TΔS. 

Cation Number 
r 

(Å)334 

–ΔGhydr.  

(kJ mol−1)334 
log Ka 

ΔH  

(kJ mol−1) 

ΔG  

(kJ mol−1) 

–TΔS  

(kJ mol−1) 

H3O
+ 76 1.12 ─ 2.2    –6.4[a]    –12.0[a]      –5.6[a] 

K+ 80 1.38 295 3.3 –8.7 –18.8 –10.1 

Rb+ 82 1.49 275 3.4 –9.9 –19.5  –9.6 

Ca2+ 73 1.00 1505 4.0 –9.8 –22.9 –13.1 

Sr2+ 77 1.13 1380 4.3 –14.3 –24.6 –10.3 

Ba2+ 79 1.36 1250 4.8 –16.0 –27.2 –11.2 

La3+ 75 1.05 3145 5.6 –6.6 –30.3 –23.7 

Eu3+ 72 0.95 3360 5.0 –4.9 –27.1 –22.2 
[a] Measurements were conducted at 10°C. 

Within this cooperation work, further investigations of CBn other than CB5 and CB7, namely 

CB6 and CB8, were conducted by fluorescence titration experiments. As reporter dyes, trans-

4-[4-(dimethylamino)styryl]-1-methylpyridinium (DSMI) for CB6, BC for CB7, and PDI for 

CB8 were used. The corresponding values are plotted in Figure 46.  

 

Figure 46: a) Plot of log Ka(CB6•cation) versus cation radius. Values were determined by emission-based IDA with DSMI by 

the NAU group.203 b) Plot of log Ka(CB8•cation) versus cation radius. Values were determined by emission-based IDA with 

PDI by the BIEDERMANN group.203 Pink = organic cations; green = alkali metal cations; red = alkaline earth metal cations; 

orange = divalent transition metal cations; blue = trivalent transition metal and lanthanide cations. 

The trends observed for the larger CBn homologues CB6 - CB8 are all comparable to each 

other. Clearly, the interconnected lines for the alkali metal and alkaline earth metal cations 

reveal a general trend in favour of a stronger binding for the larger and less strongly hydrated 

metal ions. Additionally, a trend towards higher binding affinities with higher charge becomes 
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clear. These findings support the previous claim that ion-dipole interactions play an important 

role when it comes to driving forces for the complex formation. 

Based on the results obtained, it was possible to formulate an equation that will enable future 

estimates on the experimentally gained binding constant Kapp in saline solutions taking the 

binding affinity of the guest towards the CBn cavity (KCBn•Guest) as well as the binding affinity 

of present cations towards the CBn cavity (KCBn•Mn+) into account (Equation 20). The equation 

assumes, that the cations (Mn+) are in a direct competition with the investigated organic guest 

molecule comparable to an IDA with the indicator being a cation. However, this equation 

should only be used as estimation and the best practice is still the determination of host-guest 

binding constants in neat water.149,321,340-342 

𝐾app =  
𝐾CB𝑛·Guest

1 + 𝐾CB𝑛·Mn+[Mn+]
 for [Mn+] ≫ [CB𝑛]0 Eq. 20 

Following on from the shown results, our group has recently developed dilution-stable, uni-

molecular CBn-based chemosensors by linking indicator dyes through flexible tethers to 

CBn.343 This design strategy improved the tolerance of the chemosensors towards salts, 

allowing for sensing applications in human urine, saliva, and concentrated buffers.  
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5.1.3. Influence of intrinsically bound salts inside the CBn cavity 

As the binding affinities of CBn towards cations were identified to be significant, the 

competition of salts and analytes for the formation of CBn complexes was investigated (see 

Figure 47). To understand the influence of additives present in either the host itself or in the 

used buffered media, the binding event of lanthanumIII nitrate (75) to CB5 and of cobaltocenium 

hexafluorophosphate (84) to CB8 were investigated by ITC before and after dialysis treatment 

of the CBn. These two hosts were chosen because they represent the smallest and the largest 

CBn homologue used within this work.  

 

Figure 47: a) Competition of cations and guests towards the binding with CBn. b) Chemical structure of cobaltocenium 

hexafluorophosphate (84). 

For comparison, Table 13 shows the obtained values. Evaluating the ITC results for 

commercial and desalined CBn, it becomes clear that the salt contaminations introduced during 

the preparation and purification of the macrocyclic hosts,318,319 yield lower guest affinities due 

to the competitive binding. The effect seems to be more pronounced for the larger CBn 

homologue CB8 compared to the smaller CB5. As a conclusion of this study, all CBn stock 

solutions were desalted prior to use. 

Table 13: Thermodynamic parameters characterising either the 1:1 complexation of La3+ (75, nitrate as counterion, 

c = 2.5 mM) by commercial, salt-containing CB5 (c = 300 µM) and desalted CB5 (c = 200 µM) at 10°C or the 1:1 complexa-

tion of cobaltocenium+ (84, hexafluorophosphate as counterion, c = 150 µM) by commercial, salt-containing CB8 (c = 15 µM) 

and desalted CB8 (c = 15 µM) at 25°C in water.  

Host Guest log Ka  
ΔH 

(kJ mol–1) 

ΔG 

(kJ mol–1) 

–TΔS  

(kJ mol–1) 

CB5 (commercial) 75 4.1 24.1 –22.1 –46.1 

CB5 (desalted) 75 4.2 24.5 –22.7 –47.1 

CB8 (commercial) 84 6.6 –19.0 –37.8 –18.9 

CB8 (desalted) 84 7.3 –15.9 –41.8 –26.1 
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5.2. Design principle and preparation of zeolite-based chemosensors 

Besides gaining fundamental insights into host-guest chemistry, one of the main goals of this 

work was the development of a new class of fluorescent artificial receptors. The detailed 

investigated of symmetric host complexation revealed that there are still some crucial aspects 

such as salt-dependence of binding affinities and selectivity to be solved. Therefore, 

microporous hybrid materials, to be more precise zeolites with a negative framework and 

defined pore sizes, were utilized. The idea was to demonstrate how zeolite-based chemosensors 

can be obtained by the modular self-assembly of microporous zeolites with organic, fluorescent 

dyes, overcoming both the limitations of insufficient binding strength/selectivity and the lack 

of a sensitive signal transduction mode of the parent zeolites (see Figure 48).  

 

Figure 48: Preparation of and sensing with zeolite-based chemosensors, which can be easily prepared on a gram scale through 

immersion of dicationic reporter dyes with zeolite L3.0 nanoparticles. Here, chemosensor L3.0·D2 is shown, which responds 

with emission quenching towards the addition of serotonin. 

The strategy was to load the highly negatively charged zeolite framework with dicationic and 

therefore strongly bound planar dyes such as MDAP (D2) by replacing the intrinsically bound 

cations. The remaining free cavity space besides the dye as well as the combination of the 

hydrophobic effect, ionic interactions, cation-π interactions, and hydrogen bonding should then 

ensure high affinity and selectivity for hydrophilic small biomolecules such as the positively 
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charged NTs serotonin and dopamine. In this setting, the dyes intervene through direct stabilisa-

tion through intermolecular interaction with the analyte and therefore increase the binding 

strength of the artificial receptor. Subsequently, sensing selectivity can be achieved either by 

dye-induced thermodynamic binding preferences for specific guests, or by guest-selective 

fluorescent responses of the zeolite-bound dyes. 

In the following work, firstly, the selection and synthesis of the reporter dyes as well as the 

chemosensor preparation is described. Dyes and chemosensors were analysed regarding their 

photophysical properties. For the chemosensors and their parent zeolites, material characteris-

tics was conducted. Secondly, an in-depth description of the chemosensor binding characteris-

tics (affinities and selectivity) with a range of biorelevant small molecule species is presented. 

Aspects such as salt effects are discussed. Then, application examples with potential practical 

relevance for high-throughput diagnostics of biofluids and their components as well as real-

time monitoring of enzymatic reactions are presented. 

5.2.1. Reporter dye synthesis 

Dicationic aromatic fluorescent dyes were prepared as organic reporters. Their dicationic nature 

ensures a strong and rapid binding by the negatively charged zeolite cavities due to cation ex-

change. In addition, the dicationic character suppresses undesirable homo-stacking interactions 

of the dyes commonly observed in neutral and monocationic dye-loaded zeolites.271,272 The 

positively charged dyes can engage in direct non-covalent interactions with the analytes, 

ensuring a good binding strength and selectivity. Moreover, their electronic interaction with the 

bound analyte leads to electron transfer processes that can be sensitively monitored by fluores-

cence and absorbance spectroscopy, and that are specific for each dye-neurotransmitter pair. 

Additionally to the dicationic character, a mainly planar structure, which leaves enough space 

for the binding of a second guest, as well as an overall size fit to the zeolite cavity are required. 

Dicationic diazapyrenium- (DAP)33,34 and diazaperoperylenium-based (DPP)32,39 dyes were 

selected as they are often used fluorescent dyes for ABA and IDA with CBn, even for the 

detection of catechol and indole derivatives, as it was shown by KAIFER and co-workers.57,58 

Based on the experiences with CBn and under consideration of their hydrophobicity and 

photophysical properties, ten DAP-derivatives and two DPP-derivatives were synthesised. 
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5.2.1.1. DAP-based reporter dyes 

Diazapyrene (DAP) as non-charged reporter dye precursor was synthesised following 

established routes by STANG and co-workers344 and HÜNIG and co-workers345 starting from 

1,3,6,8-tetrahydro-2,7-dimethyl-2,7-diazapyrene (85) (see Figure 49). After synthesis of the 

diimide (86) using methylamine, a reduction with lithium aluminium hydride and subsequent 

Soxhlet extraction from chloroform was conducted to remove the keto groups yielding product 

87. A solvent-free oxidation with selenium led to the formation of the reporter dye precursor 

DAP (D1) with an overall yield of 17%. 

 

Figure 49: Synthetic route of DAP (D1). a) Methylamine, 40% aq., 130°C, 3 h, 70%.344 b) AlCl3, LiAlH4, THF, 70°C, 4 h, 

39%. c) Selenium, no solvent, 265°C, 4 h, 300°C, 1 h, 63%.345  

Having prepared DAP (D1), nucleophilic additions of several halogenated molecules, which 

can be grouped into alkyl-based (see Figure 50) and benzyl-based (see Figure 55) linkers, were 

performed. It was hoped that due to the variation of alkyl length, bulkiness and the 

presence/absence of heteroatoms/functional groups, selectivity trends might become clear and 

therefore lead to a better understanding of the practically required chemosensor design. To 

insert alkyl-derived linkers forming D2, D3, D4, and D8, an excess of the commercially 

available halogenated educt, namely methyl iodide for D1, 3-bromopropene for D2, 1,4-

dibromobutane for D4, and ethyl 2-bromoacetate for D8, was mixed with in dry DMF dissolved 

D1 and heated overnight. In the case of D2, a second addition of methyl iodide was conducted 

after heating for 24 hours, as it was found that in this way the reaction yield can be increased 

from less than 50% to 65%. For D2, D3, and D4, the desired dicationic reporter dye molecules 

precipitated at room temperature from the reaction mixture without further need of purification 

except for washing with DMF and drying under reduced pressure. For D8, precipitation by 

storing the reaction mixture in the fridge for 1 hour, overlaying with diethyl ether and subse-

quent storage at 4°C overnight led to the desired precipitate formation. The product solid was 

collected by filtration and dried in vacuo. 
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Figure 50: Overview of the within this work successfully prepared DAP modifications under nucleophilic addition of alkyl-

alike molecules. a) Methyl iodide, DMF, r.t., 2 d, 65%. b) Allyl bromide, DMF, 85°C, 1 d, 59%. c) 1,4-Dibromobutane, DMF, 

85°C, 1 d, 75%. d) Potassium thioacetate, water, r.t., 3 d, 92%. e) Acetyl chloride, MeOH, r.t., 1 d, 70%. f) 92, MeCN/phosphate 

buffer (5:1), pH 7.0, 50°C, 7 d, 34%. g) Ethyl 2-bromoacetate, DMF, 40°C, 1 d, 29%.  

The reaction with 1-chloro-2-(2-(2-(2-chloroethoxy)ethoxy)ethoxy)ethane (88) did not lead to 

any recognisable product formation even after 3 days of heating to 85°C in DMF. Therefore, a 

FINKELSTEIN reaction was entailed for the conversion of the chloride atoms of molecule 88 to 

iodide atoms by treating the solution with sodium iodide and therefore introducing a better 

leaving group (see Figure 51).346,347 1-Iodo-2-(2-(2-(2-iodoethoxy)ethoxy)ethoxy)ethane (92) 

was reacted with D1 in a solvent mixture of acetonitrile and phosphate buffer, pH 7.0, to form 

D7 with a yield of 34% after 7 days reaction time (see Figure 50).  

 

Figure 51: Finkelstein reaction. a) Sodium iodide, acetone, 80°C, 3 d, 91%.346,347 
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In the case of D4, the terminal bromine atom was substituted using potassium thioacetate as 

protected thiol. It turned out, that the introduction of thioacetates and their subsequent depro-

tection were crucial steps. First attempts included the addition of the thioacetate group directly 

onto 1,4-dibromobutane forming (4-bromobutyl) ethanethioate following a literature procedure 

(89).348 The monosubstituted product was isolated from the disubstituted product by flash 

column chromatography. Then, a nucleophilic attack on the DAP core was planned. However, 

the product formation was neither observed in DMF nor in MeCN as solvent. Fortunately, the 

synthesis route with first the reaction of 1,4-dibromobutane onto the DAP core with subsequent 

transformation of the bromide functional groups into thioacetates by utilizing potassium thio-

acetate in water led to the desired product (D5). The addition of a base such as K2CO3 as 

suggested by many literature sources caused an alteration of the DAP core and was therefore 

omitted.349,350 However, compensation of the base effect by elongation of the reaction time was 

successful.  

Basic deacetylation approaches351 and enzymatic deprotection attempts,352 e.g., by using 

Candida rugosa lipase (immobilised on Immobead 150), had failed. Finally, under a nitrogen 

atmosphere, the thioacetate was cleaved with acetyl chloride in dry methanol leading to the 

desired product (D6) with thiol groups attached to the DAP dye core by a tether.353  

 

Figure 52: Introduction of a thiol functional group onto the D1 reporter dye precursor. a) Potassium thioacetate, DCM/EtOH 

(1:2), r.t., 3 d, 53%.354 b) 93, DMF, 85°C, 1 d, 75%. c) Potassium thioacetate, water, r.t., 3 d, 92%. d) Acetyl chloride, MeOH, 

r.t., 1 d, 70%. 
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Approaches towards the addition of an alkyl amine, i.e., 3-bromopropylamine (90), did not 

yield the desired product, presumably due to the incompatibility of amine groups with the di-

cationic dye core. Therefore, a boc-protected bromobenzyl amine (molecule 91) was introduced 

following a base-catalysed literature procedure (see Figure 53).354  

 

Figure 53: Boc-protection of the amine group of 3-bromopropylamine. a) Di-tert-butyl dicarbonate, triethylamine, DCM, 

80°C, 1 d, 90%. 

After several attempts, a suitable reaction protocol was found for the reaction of 91 with D1 

(see Figure 54). The combination of acetonitrile and carbonate puffer, pH 10.0, and 80°C 

heating led to a product formation (D16). However, the cleavage of the boc-group led to the 

alteration of the DAP core. The addition of an amine functionality to D1 was not further 

followed since several other functional groups had already been successfully introduced and 

the so far synthesised modifications were tested first.  

 
Figure 54: Synthesis attempts towards an amine as functional group attached to the DAP core (D1). a) 91, MeCN/carbonate 

buffer (5:1), pH 10.0, 80°C, 1 d, 28%. 

The introduction of a benzyl-alike linker was straightforward. To insert benzyl-derived 

molecules forming D10, D11, D12, and D13, an excess of the commercially available 

halogenated educt, namely benzyl bromide for D10, 2,3,4,5,6-pentafluorobenzyl bromide for 

D11, 1,4-bis(bromomethyl)benzene for D12, and 4-(bromomethyl) benzaldehyde for D13, was 

stirred with in dry DMF dissolved D1 and heated overnight (see Figure 55). The desired di-

cationic reporter dyes precipitated at room temperature from the reaction mixtures without 

further need of purification except for washing with DMF and drying under reduced pressure. 
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Pleasingly, the synthesis of D11 was successful owing fluor atoms suitable for 19F NMR spec-

troscopy. This offers new options for the investigation of formed host•dye•analyte complexes. 

The reaction path starting from D12 towards the thiol with the thioacetate as intermediate 

similar to dye D4 - D6 did not lead to any turnover of D12.  

 

Figure 55: Overview of the within this work successfully prepared DAP modifications under nucleophilic addition of benzyl-

alike molecules. a) Benzyl bromide, DMF, 85°C, 1 d, 58%. b) 2,3,4,5,6-Pentafluorobenzyl bromide, DMF, 85°C, 1 d, 80%. c) 

1,4-Bis(bromomethyl)benzene, DMF, 85°C, 1 d, 57%. d) 4-(Bromomethyl) benzaldehyde, DMF, 70°C, 2 d, 56%. 

Characterisation of all successfully synthesised dyes was conducted by NMR, ESI-MS, and 

photophysical investigations. Having synthesised the variety of DAP-functionalised dicationic 

dyes, an in-depth absorbance- and fluorescence-based study was conducted (see Figure 56). As 

the values turned out to differ from each other, the found maxima were tabulate in Table 14 for 

the alkyl-alike linkers as well as in Table 15 for the benzyl-alike linkers. The absorption bands 

all have π-π* transition character. In the range of 300 to 350 nm, the signals can be assigned to 

the allowed S0-S2 transition, whereas the second absorption band in the region from 370 to 

450 nm matches to the for pyrenes forbidden S0-S1 transition.355 Compared to the parent DAP 

(D1), the absorbance and fluorescence spectra of the synthesised dicationic dyes are red-

shifted.355 

Table 14: Absorbance and emission maxima for the within this work synthesised DAP-derivatives with alkyl-alike linkers.  

Wavelength D2 D4 D5 D6 D8 

λabs,max (nm) 

─ 

320 

332 

371 

395 

415 

─ 

322 

334 

374 

397 

417 

─ 

322 

334 

371 

397 

417 

307 

320 

336 

373 

395 

419 

─ 

323 

335 

377 

402 

423 

λI,max (nm) 

(λex = 371 nm) 

424 

448 

550 

425 

449 

(480) 

425 

449 

(480) 

448  

(481) 

528 

435 

457 

(483) 
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Figure 56: Absorbance and emission (λex = 371 nm) spectra of the DAP derivatives with alkyl-alike groups (D2, D4, D5, D6 

and D8) as well as of the DAP derivatives with benzyl-alike groups (D10, D11, D12, and D13). 

Table 15: Absorbance and emission maxima for the within this work synthesised DAP-derivatives with benzyl-alike linkers.  

Wavelength D10 D11 D12 D13 

λabs,max (nm) 

309 

322 

338 

374 

396 

420 

─ 

324 

337 

377 

401 

422 

─ 

323 

337 

376 

399 

420 

309 

323 

339 

375 

398 

422 

λI,max (nm) 

(λex = 371 nm) 

429 

451 

(485) 

(535 - 550) 

431 

454 

485 

(535 - 550) 

427 

(450) 

(483) 

531 

430 

453 

─ 

(535 - 550) 
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5.2.1.2. DPP-based reporter dyes 

DPP can be synthesised similarly to DAP (D1).344 However, DPP is weakly soluble and only 

the methylation of the DPP dye core with methyl iodide was successful. Attempts to find a 

suitable solvent included DMF, 1,4-dioxane, MeOH, MeCN, DMSO, hexafluoroisopropanol 

(HFIP), water, and mixtures of these concomitant with heating to 45°C. Hence, the two DPP 

derivatives in this work were synthesised following a different approach without the beforehand 

synthesis of the DPP reporter dye precursor. In the case of the benzyl-substituted DPP (D14), 

commercial 3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA, 94) was dissolved in 

DMF under nitrogen atmosphere and reacted with benzylamine to yield the diimide 95.344 With 

the aid of lithium aluminum hydride and aluminum chloride, the carbonyl groups were then 

reduced forming the diamine 96.345 Following a oxidation procedure with 2,3-dichloro-5,6-

dicyano-1,4-benzoquinone (DDQ), D14 was obtained with an overall yield of 10% (see Figure 

57).315,356  

 

Figure 57: Synthesis of the benzyl-substituted DPP dye D14. a) Benzylamine, DMF, 110°C, 1 d, 98%.344  b) AlCl3, LiAlH4, 

THF, 80°C, 1 d, 39%.345 c) DDQ, MeCN, r.t., 1d, 100°C, 7 d, 27%.315,359 

The absorbance spectrum of dye D14 shows an intense, pyrene characteristic band in the visible 

region (Figure 58), which can be assigned to the S0-S2 electronic transition (λmax = 505 nm). In 

the UV-region, the band appearing between 375 and 490 nm can be assigned to the S0-S1 

electronic transition (λmax = 443 nm).355  
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Figure 58: Absorbance and emission (λex = 420 nm) spectra of the DPP derivative D14 in water. 

To increase the sterically hinderance of the attached benzyl groups, and therefore hopefully 

avoid self-aggregation of the receptor dye inside of the host cavities, isopropyl groups were 

installed on the benzyl groups. Consequently, commercially available N,N‘-bis(2,6-

diisopropyl)-3,4,9,10-perylenetetracarboxylic diimide (97) was subjected to the same 

procedure as molecule 96 in Figure 57. However, due to solubility reasons no turn-over was 

observed for the reduction in THF and therefore, the solvent was exchanged to DCM (see 

Figure 59). FTIR measurements confirmed the disappearance of the stretching vibration of the 

carbonyl groups around 1655 cm−1 after Soxhlet extraction and therefore the product formation. 

Subsequently, dye molecule D15 was obtained by DDQ oxidation315,359 with a yield of 5%.  

 

Figure 59: Synthesis of diisopropyl benzyl substituted DPP dye D15. a) AlCl3, LiAlH4, DCM, 55°C, 1 d, 25%.345 b) DDQ, 

MeCN, r.t., 1 d, 100°C, 7 d, 5%.315,359 
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5.2.2. Zeolite-based chemosensors and their material characteristics 

5.2.2.1. Chemosensor preparation and characterisation 

Linde-type zeolite L nanoparticles (50 - 300 nm particle size) and Faujasite-type zeolite Y 

particles (400 - 1050 nm particle size) were used as water-dispersible receptor scaffold for the 

preparation of zeolite-based chemosensors (see Figure 48). The Linde-type L framework, with 

a maximum accessible pore diameter of 10.0 Å and a channel entrance diameter of 7.6 Å, was 

selected as it was already used several times in literature, e.g., by CALZAFERRI and co-

workers,295,296 demonstrating the good ability of binding organic fluorescent dyes. Furthermore, 

the 3D-connected faujasite (FAU) framework, as found in zeolite X and Y, with a maximum 

accessible pore diameter of 11.9 Å and a channel entrance diameter of 7.4 Å, was investigated 

in this contribution. The spacious supercages of FAU are known to be able to accommodate 

two aromatic molecules in a π-stacking geometry.271,357 Unlike FAU-type zeolites, zeolite LTL 

contains 2D channels that are geometrically more constricted and thus do not support the 

formation of parallel π-stacking complexes. For the interaction of positively charged guests 

with negatively charged zeolites, uniform binding sites were assumed due to charge repulsion 

of similarly charged molecules. Thus, a 1:1 binding model was applied (see Equation 21 - 22), 

where Ce denotes an empty cavity, G describes the free guest, CeG signifies the complex of a 

bound guest towards an empty cavity and Ka is the appropriate association constant. 

Ce + G ⇄ CeG Eq. 21 

𝐾𝑎 =  
[CeG]

[Ce][G]
 Eq. 22 

5.2.2.1.1. ITC investigation of the dye-zeolite complex formation 

To probe the binding affinity of the within this work synthesised dye derivatives towards 

zeolites, ITC and emission-based host-guest titrations were performed. The aqueous zeolite L3.0 

dispersions were filtered to prevent possible clogging of the ITC device during the subsequent 

rinsing process and placed in the ITC measurement cell. A D2 solution of known concentration 

was loaded in the ITC syringe and titrated to the host solution in 1.5 µM steps (see Figure 60). 

The binding of the doubly charged dye D2 to the “empty“ (without taking the present cations 

into account) zeolite L3.0 cavities showed a modestly exothermic binding signature of 

ΔH = −6.7 kJ mol–1 (ΔG = –29.5 kJ mol–1 and –TΔS = –22.8 kJ mol–1) alongside with a 
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binding affinity of log Ka = 8.5. The found Ka value is only slightly lower than the within this 

work obtained binding affinity of D2 with CB7 (log Ka = 9.0). The revealed driving forces for 

the chemosensors formation are typical for ion exchange reactions.358,359 

 

Figure 60: Representative ITC data for the interaction of zeolite L3.0 and D2. a) Raw ITC data for the titration of D2 

(c = 0 - 85 µM) into a zeolite L3.0 dispersion (250 µg mL–1). b) Plot for reaction enthalpy versus concentration of D2. The 

presented data was corrected by the averaged dilution heat determined by dye titration into water and an additional offset was 

fitted because of the mismatching ionic strength in the host solution compared to the dye solution and control cell due to bound 

ions in the zeolite channels.  

Having investigated the interaction of the dicationic dye D2 with zeolite L3.0 in detail, it was 

assumed that the even more hydrophobic alkyl- and aryl-substituted DAP-core reporter dyes 

bind with a similar or even higher binding strength. Since the binding affinity of the reporter 

dye towards the zeolite L3.0 cavities was sufficiently high and the investigation of the reporter 

dye-zeolite complexes was not in the focus of this work, there were no further investigations of 

the dye binding affinities towards the zeolite cavities conducted.  

5.2.2.1.2. Chemosensor preparation by self-assembly 

Zeolite L3.0 as well as zeolite Y15 particles were loaded with the tailor-made dyes D2 - D14 to 

form fluorescent artificial chemosensors. These were prepared by mixing the zeolite dispersion, 

which was pretreated with a tip sonicator, with a predetermined dye stock solution and 

sonicated for ten minutes with a tip sonicator. The dye uptake by the zeolite material was readily 

witnessed by the vanishing of the colour of the supernatant. Then, the samples were centrifuged, 

decanted, and washed several times with water to remove surface-physiosorbed dye molecules. 

This sequence was repeated until the supernatant became colourless and non-emissive. 

Generally, after the second washing cycle no quantifiable amounts of unbound dye remained. 

Afterwards, the dispersions were either used as such or the chemosensors were stored as solid 

after lyophilisation and redispersed in the use case.  
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The dye loading was found to be possible in a range of 0 - 4 wt% (wt% based on the used 

amount of zeolite). Higher dye amounts led to unbound or surface-physiosorbed dye molecules. 

The within this work presented results were all obtained with chemosensor dye loadings in a 

range of 0.23 wt% to 2.3 wt%. The amount of dye loading (<< 1.0 equivalent per moles of 

zeolitic binding cavities) did not strongly affect the Ka values, suggesting that each dye-filled 

binding cavity behaves as an independent entity. For zeolite L3.0-based chemosensors, a maxi-

mum dye loading of 2.3 wt% led to an immediate chemosensor dispersion that can be used 

directly without any centrifugation steps. In contrast, zeolite Y15-based chemosensors can host 

the same amount of dye but should be treated by the described preparation steps as otherwise 

complete loading cannot be guaranteed. A possible explanation for this finding might be the 

different three-dimensional structure of the zeolite frameworks. Due to the high hydrophobicity 

of zeolite Y40, it was not possible to load the zeolite channels with such a high amount of dye. 

The maximum D2 reporter dye loading for Y40 was found to be ⁓ 2.0 wt%, determined by 

absorbance investigation of the supernatant. 

The loading was controlled in general by precise weighing on high precision laboratory 

balances and determination of the dye stock solutions by extinction coefficient-based ab-

sorbance measurements. Furthermore, absorbance measurements were utilized to quantify the 

dye amount inside the supernatant of the sonicated and centrifuged suspensions. This allowed 

the acquisition of the residual dye concentration in the solutions and thus the corresponding 

loading inside the zeolite particles by subtracting from the originally added dye concentration. 

Additionally, the determined values were confirmed by elemental analysis (EA) as an average 

value of the carbon-based quantifications (see Table 16). For example, 2.3 wt% of D2, which 

equals a D2 concentration of 16.3 µM, was loaded in the zeolite L3.0 pores to yield L3.0·D2. The 

dye concentration of 2.3 wt% was confirmed by absorbance measurement, while the elemental 

analysis showed a value of 2.4 wt%. Similar results were found for a dye loading of 0.23 wt%, 

which equals a D2 concentration of 1.63 µM. The obtained dye concentrations within the 

chemosensors were in good agreement with the independently determined inflection points of 

the fluorescence-based binding isotherms (applying a 1:1 binding model) of, e.g., L3.0·D2 with 

a strong binder such as serotonin. At the inflection point, the concentration of fluorescent 

binding cavities is equal to the titrant concentration.  

 

 



82  Results and discussion 

Table 16: Determined dye loading values in wt% for low (0.23 wt%) and high (2.3 wt%) D2 dye loadings of L3.0·D2 nano-

particles. Absorbance-based values were determined by investigation of the supernatant solutions after centrifugation of the 

chemosensor dispersions, emission-based values were determined at the inflection point of the binding isotherm. Elemental 

analysis determination was based on the average value of the carbon-based quantification.   

 Weighing 

(wt%) 

Absorbance 

 (wt%) 

Emission 

(wt%) 

EA 

(wt%) 

L3.0·D2  

(high loading) 
2.3 2.3[a] 2.3 (16.5 µM) 2.4 

L3.0·D2  

(low loading) 
0.23 0.23[a] 0.23 (1.6 µM) 0.23 

[a] No dye found in the supernatant. 

5.2.2.1.3. Materials characterisation of zeolite-based chemosensors 

Dynamic light scattering (DLS), zeta potential measurements (ζ), as well as confocal 

fluorescence microscopy were conducted to further investigate the self-assembled zeolite-based 

chemosensors. DLS measurements enable the determination of size, size distributions, and 

colloidal stability of the particles in dispersions and have become a powerful tool for the 

characterisation of zeolites and other nanomaterials.360,361 Size variations between the parent 

zeolite and the zeolite-based chemosensors can indicate on the adsorption of the dye molecules 

being either located on the outer nanoparticle sphere or inside of the cavities. The measurements 

provide information on the average hydrodynamic diameter (dH) of particles in dispersions 

using the Stokes-Einstein equation (see Equation 23) with kB as Boltzmann’s constant 

(kB = 1.38 · 10−23 J K–1), η as viscosity, and D as translational diffusion coefficient.362 

𝑑H =  
kBT

3π𝜂D
 Eq. 23 

The investigated results of the DLS measurements indicated a unimodal particle size distribu-

tion for all investigated dispersions (see Figure 61). Additionally, the analysis showed 

chemosensor particles which were in the same size range as the commercial zeolite starting 

materials. Filtration with a 0.22 µM syringe filter prior to the measurements did not alter these 

results and therefore the results are not separately shown. 
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Figure 61: DLS size distributions shown as averaged diameter size (size distribution by intensity) for zeolite L3.0 and its 

chemosensor L3.0·D2 (pink), zeolite Y15 and its chemosensor Y15·D2 (blue), and zeolite Y40 and its chemosensor Y40·D2 

(green).  

Moreover, zeta potential (ζ) measurements give insights into the surface charge and evaluate 

the stability of colloidal suspensions. High zeta potentials (> ±30 mV) are assigned to small 

particles, which are less likely to aggregate and are therefore more stable in dispersion, whereas 

low zeta potentials (< ±30 mV) are connected to coagulated particles as the charge repulsion is 

surpassed by the attractive forces.362 For the prepared chemosensors, the zeta potential did not 

change upon loading with the dyes and was in the lower range (see Table 17). Having size 

particles in the upper nanometre range and such moderate zeta potentials, flocculation and sedi-

mentation cannot be avoided. However, it was found that the sonicated zeolite Y-based 

chemosensor dispersions are stable for hours (see Figure 62). The smaller sized zeolite L3.0 

chemosensor dispersions were even stable for days, which is sufficient for most applications.  

 

Figure 62: Dispersion stability test for a) chemosensor Y15·D2 and b) Y40·D2 in water conducted in a microwell plate. The 

excitation wavelength λex = 371 nm was used. Solutions were stored in the dark with no stirring or shaking between 

measurements. 

Zeta potential measurements together with size measurements by DLS confirmed that the di-

cationic dyes are located inside the pores and are not adsorbed as microcrystals on the surface 
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of the zeolite particles, which is a common obstacle for zeolite-hybrid materials with non-

charged dyes.271  

Table 17: Zeta potential ζ of the used zeolites and their chemosensors with either D2 or D14 in MilliQ water and their average 

diameter size (size distribution by intensity) determined by dynamic light scattering (DLS). Errors in DLS and ζ ≤ 40%. Zeta 

potential measurements were not conducted in standard PBS to avoid salt interactions with the material.  

 ζ in MilliQ water (mV) 
Averaged diameter size 

(nm) 

Zeolite L3.0 –30 180 

L3.0·D2 –27 180 

L3.0·D14 ─ 180 

Zeolite Y15 –38 700 

Y15·D2 –36 700 

Confocal fluorescence microscopy further confirmed the presence of a colloidal dispersion of 

the zeolite L3.0-based chemosensors (see Figure 63). In contrast to solution experiments where 

L3.0·D14 particles are monodispersed, also smaller clusters of chemosensor particles were 

observed on the surface.  

 

Figure 63: Confocal fluorescence microscopy image of L3.0·D14 particles. Experiments were conducted by ELISA D’ESTE at 

the MAX PLANCK INSTITUTE in Heidelberg.334,363 

Additionally, the zeolite-dye composites were found to be stable in biorelevant buffers, e.g., 

phosphate buffer saline (1X PBS). For instance, re-immersion of L3.0·D2 in saline buffers 

followed by centrifugation did not cause the release of the dicationic dyes. Furthermore, no 

complex dissociation upon dilution was found as it is prone for other non-covalently linked 

host-dye pairs. 
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5.2.2.1.4. Photophysical characterisation of zeolite-based chemosensors 

Photophysical investigation of aqueous chemosensor dispersions were carried out. The formed 

chemosensors were found to be emissive with quantum yields (QY) only slightly reduced com-

pared to that of an aqueous solution of the pure dyes (see Table 18). When adding dopamine 

in excess, the quantum yield dropped tremendously to values < 0.01 due to the quenching of 

the analyte. 

Table 18: Absolute emission quantum yields (QY) for D2 and its zeolite-based chemosensors in water.   

 λex (nm) QY 

D2 336 0.66 

L3.0·D2 336 0.52 

L3.0·D2 + excess dopamine 336 < 0.01 

Y15·D2 336 0.52 

Y15·D2 + excess dopamine 336 < 0.01 

For the excitation and emission spectra, bathochromic shifts were found for the zeolite L- and 

zeolite Y-bound dyes compared to the pure dyes in water, emerging more for the DPP-based 

dyes than for the DAP-based dyes. In Figure 64, excitation and emission spectra for D2 and 

D14 are shown in comparison to their chemosensors.  

 

Figure 64: Normalised absorbance and emission spectra of some of the prepared zeolite-based chemosensors and their under-

lying dyes. 
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5.3. Binding studies of zeolite-based chemosensors with NTs and other 

metabolites 

Having prepared zeolite-based chemosensors by ion exchange in solution and after 

characterisation, their interactions with neurotransmitters and other small biorelevant molecules 

were conducted by ITC as well as by fluorescence and absorbance spectroscopy. Additionally, 

a theoretical description of the binding geometry was gained by DFT calculations carried out 

by our cooperation partners from the WENZEL group in Karlsruhe. 

For the chemosensor-analyte interaction, two different binding sites are available: (i) analyte 

binding towards an empty zeolite cavity and (ii) analyte binding towards a dye-decorated cavity. 

These possibilities imply a competitive binding model where two binding sites compete for one 

analyte molecule (see Equation 24 - 27). Ce denotes an empty cavity binding site, Cd describes 

a dye-decorated cavity, G symbolises the free guest and CeG implies a complex of bound guest 

towards an empty cavity. CdG denotes the complex of bound guest towards a dye-decorated 

cavity and Ka the corresponding association constant. 

Ce + G ⇄ CeG Cc + G ⇄ CdG Eq. 24 + 25 

𝐾a
e =  

[CeG]

[Ce][G]
 𝐾a

𝑑 =  
[CdG]

[Cd][G]
 Eq. 26 + 27 

As the determined binding affinities of the analytes towards the pure zeolite cavities („empty 

cavities“) were found to be negligible compared to the binding towards the dye-decorated 

binding sites (as will be demonstrated in the following subchapters), a simplification to a 1:1 

binding model (see Equation 3 - 7 in Chapter 3.2.3.2) was used for all presented results.  

5.3.1. Binding  kinetics  of  zeolite-based  chemosensors  with  NTs  and  other  metabolites 

To gain insights into the binding kinetics of the chemosensor-analyte binding event, stopped-

flow experiments were conducted. The binding kinetics were found to be very fast (signal 

saturation in the lower millisecond range) for all investigated chemosensors and analytes. This 

agrees with reported diffusion coefficients for benzene and azulene in zeolite X and Y, which 

are in the range of 10–11 m2 s–1 to 10–16 m2 s–1 having a cage-to-cage distance of 1.1 nm.271 This 

is a fortunate but not trivial finding taking reported diffusion coefficients (D = 10−11 - 10−19 m2 

s−1 in FAU) for aromatic species in zeolites into account. Apparently, water acts as a solvent to 

increase the diffusivity of the neurotransmitter inside the zeolite material. The rapid response 



Results and discussion  87 

 

of the nanozeolite-based chemosensors to the NTs is an important asset in comparison to con-

temporary antibody-based assays, which typically require minutes to hours of equilibration 

time.364 

 

Figure 65: Kinetic traces for the rapid mixing of L3.0·D2 with serotonin (red) in MilliQ water (λex = 371 nm) in a stopped-flow 

experiment. The binding kinetics were found to be very fast (signal saturation < 10 milliseconds). As reference the kinetic trace 

for the rapid mixing of D2 with zeolite L3.0 is given (blue). The manufacturer specifies the instrument-specific dead time as 8 

milliseconds. 

5.3.2. ITC  investigation  of  zeolite-based  chemosensors  with  NTs  and  other  

metabolites 

Important insights into the analyte binding mechanism towards the chemosensors were obtained 

by ITC. Based on the experiments already described, all used zeolite L3.0 dispersions 

(c = 250 µg mL–1) were filtered to prevent possible clogging of the device during the rinsing 

process. Subsequently, a defined amount of an aqueous dye (D2) stock solution was added to 

the dispersion to ensure a controlled amount of dye inside of the cavities and therefore the 

knowledge of the amount of the dye-decorated cavities. In a typical experiment, the aqueous 

analyte solution was loaded into the ITC syringe and titrated 25 times to the L3.0·D2 dispersion 

in 1.5 µM steps (see Figure 66a). The fitting was conducted according to the Wiseman isotherm 

(see Equation 28-29).365 

𝑑𝑄

𝑑[𝑁𝑇]𝑡
= 𝛥𝐻𝑉0 [

1

2
+

1 − 𝛸𝑅 − 𝑟

2√(1 + 𝛸𝑅 + 𝑟)2 − 4𝛸𝑅

] Eq. 28 

with                                       
1

𝑟
= 𝑐 = 𝐾𝑎[𝑀]𝑡 =

[𝑀]𝑡

𝐾𝑑
 Eq. 29 
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where (dQ/d[NT]t) refers to the moles of neurotransmitter added per injection, ΧR to the 

absolute ratio of neurotransmitter to FAR “binding sites” concentration, c is the Wiseman 

parameter and V0 is the effective volume of the calorimeter cell. 

The binding event of serotonin to the dye-filled cavities was found to have a strongly 

exothermic binding signature (ΔH = – 39.0 kJ mol–1, ΔG = −37.0 kJ mol–1, and –TΔS = –1.0 kJ 

mol–1) with a clear 1:1 binding stoichiometry (serotonin:D2). Interestingly, this is completely 

opposite to the reported strong endothermic binding characteristics of the natural receptor 

protein 5-HT3.
366

 The found binding affinity of log Ka = 6.5 fits perfectly to the by emission 

titration determined binding affinity of log Ka = 6.6 (see Chapter 5.3.3). As a control 

experiment, serotonin was titrated into a zeolite L3.0 dispersion with “empty“ cavities. Only a 

very weak binding with a binding affinity of log Ka < 3 was found for the monocationic 

serotonin towards the negatively charged zeolite cavities. Neither in the ITC titration of 

serotonin to zeolite L3.0 nanoparticles nor in the titration of serotonin to L3.0·D2, strong analyte 

binding to unfilled zeolite L3.0 cavities was observed (see Figure 66b). 

 

Figure 66: ITC thermogram for the titration of serotonin to a) chemosensor L3.0·D2 and b) zeolite L3.0 nanoparticles in water. 

The solid line represents a nonlinear least‐square fit.  

Comparing the investigated strong binding affinity of serotonin to L3.0·D2 with the binding 

affinity of serotonin to CBn, i.e., CB7 and CB8, both macrocyclic hosts bind serotonin with 

lower affinities (log Ka(CB7·serotonin) = 4.8),367 log Ka((CB8·D2)·serotonin) ≤ 4.8) and lower 
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enthalpic contributions (ΔH ≥ –15 kJ mol−1). The exceptional strong exothermic driving force 

of the zeolite-based chemosensor binding towards analytes becomes clear (see Figure 67a). 

The same concentrations of L3.0·D2 (calculated with respect to the number of binding sites, i.e., 

molar concentration of dye), zeolite L3.0 (same wt% as for corresponding chemosensor), and 

CBn-based chemosensors (same molar concentration of binding sites) was used in the experi-

ments. 

 

Figure 67: a) Comparison of the integrated ITC thermograms of serotonin binding to L3.0·D2 (red), CB7 (green), and CB8 

(blue). Clearly, serotonin capture by L3.0·D2 shows a sigmoidal curve shape, thus strongest binding affinity, due to the strongest 

exothermic driving force. b) Integrated ITC thermograms for the titration of serotonin (red), L-Trp (blue), indole (green), and 

catechol (pink) to L3.0·D2. Data points are connected by lines to guide the eye. c) Integrated ITC thermograms for the titration 

of serotonin (red), L-Trp (blue), indole (green), and catechol (pink) to zeolite L3.0. Data points are connected by lines to guide 

the eye. 

Probing other analytes, only the monocationic serotonin but not its structural uncharged 

analogues L-tryptophan and indole showed a sigmoidal binding curve indicative for a strong 

binding affinity and a favourable enthalpic binding signature (see Figure 67b). The combina-

tion of electrostatic attraction between the neurotransmitters and the zeolitic framework, 

cation-π interactions between the dye and the neurotransmitter, and the release of residual cavity 
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water molecules from the chemosensor cavities, are the most important contributors to the 

experimentally observed strongly favourable binding enthalpies and binding free energies for 

neurotransmitter detection. Water molecules bound to zeolite cavities generally show a 

comparably low diffusivity368 and hindered rotation369 and their entropy was found to range 

between that of liquid water (70 J K−1 mol−1) and water ice (42 J K−1 mol−1), e.g., S0 = 50 to 60 

J K−1 mol−1 for water in the supercages of FAU.276,370 Therefore, a simple model would have 

expected a positive entropic contribution to binding once the zeolitic water molecules get 

liberated but the opposite was observed. Other effects such as the release of cations upon D2 

and serotonin binding may be important. For none of the investigated guests, a binding 

behaviour towards the “empty” zeolite cavities was observed (see Figure 67c). 

5.3.3. Emission-based binding affinities of zeolite-based chemosensors for NTs and other 

metabolites 

In general, emission quenching was found for all discussed zeolite-based chemosensors in the 

presence of electron-rich aromatic NTs such as serotonin, dopamine, epinephrine, and norepi-

nephrine due to excited state electron transfer processes. In a typical emission-based titration 

experiment, 3 - 10 equivalents of an analyte stock solution compared to the concentration of 

the dye loaded into the zeolite cavities were titrated into a chemosensor suspension. The con-

centration of the analyte stock solution, typically 100 µM to 10 mM, was adjusted that less than 

10% dilution occurred upon titration. The analyte stock concentrations were independently 

assessed by their absorbances, utilizing reported extinction coefficients (see Table 27 in 

Chapter 7.2.1) prior to each titration experiment. Due to the electronic coupling within the 

dye-neurotransmitter interaction, which is specific for each NT, different levels of emission 

quenching were observed. Exemplarily, Figure 68a depicts the emission spectra of D2 in the 

absence and presence of serotonin (no quenching of the dye emission) as well as the emission 

spectra of L3.0·D2 in the absence and presence of serotonin. A strong dye emission quenching 

due to the binding of serotonin in close vicinity of the reporter dye was observed. It becomes 

clear that the dye-analyte interaction only occurs within the zeolite cavities and not for their 

encounter complex in bulk solution in the concentration range tested.  
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Figure 68: a) Normalised emission spectra of D2 and its corresponding chemosensor L3.0·D2 in the absence and presence of 

serotonin. b) Emission-based binding curves for the interaction of serotonin (red) and dopamine (green) with L3.0·D2 fitted 

with a 1:1 binding model in water, yielding in binding affinities of log Ka (serotonin) = 6.6 and log Ka (dopamine) = 5.3. The 

excitation wavelength λex = 371 nm was used. 

For a quantitative description of the zeolite-based chemosensor binding properties, binding iso-

therms were determined by fluorescence titration experiments and fitted based on a 1:1 binding 

model (Figure 68b). These binding isotherms were found to be highly reproducible within 

several titration experiments and for different chemosensor batches. The binding isotherms 

were obtained by plotting relative emission intensities at a suitable wavelength against the 

analyte concentration and were then fitted by a least-square fit through a binding equation for 

a single site 1:1 binding model under the assumption that only the dye (D) and the interaction 

between analyte (A) and dye (D), abbreviated as A-D, are emissive (see Equation 28). 

𝐹𝐴

𝐹0
= 1 +

∆𝐹 [(𝑐𝐴 + 𝑐𝐷 +
1

𝐾𝑎
) − √(𝑐𝐴 + 𝑐𝐷 +

1
𝐾𝑎

)
2

− 4 ∙ 𝑐𝐴 ∙ 𝑐𝐷 ]

2 ∙ 𝑐𝐷
 

Eq. 30 

Herein, FA is the emission intensity at a given analyte concentration and F0 is the emission 

intensity before analyte addition. ΔF is a measure of the relative emission increase or decrease 

caused by the analyte. For fully non-emissive A-D complexes, i.e., when the analyte (A) is an 

efficient quencher, ΔF reaches ‒1. The quantity cA denotes the concentration of the analyte (A) 

directly determined from the concentration of the stock solution and the added titrant volume. 

The quantity cD denotes the concentration of the possible “binding pockets” in the chemosensor, 

which can be obtained from the dye loading assuming a full uptake of the dye inside the cavities. 

The values Ka and ΔF result from the nonlinear least-square fit given the input FA, F0, cA, and 

cD. Notably, in all cases, fits were observed with an adjusted R-square value > 0.98.  
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5.3.3.1. Emission-based binding affinities of zeolite L-based chemosensors for sero-

tonin and dopamine 

As the detection of serotonin and dopamine was one of the main aims of this work, several 

DAP-core-based dyes were investigated as reporter dyes for these two analytes in combination 

with the zeolite L3.0 framework (see Figure 69, Table 19 and Chapter 8.3). Besides water, 

1X PBS was chosen as solvent as it contains 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 

and 1.8 mM KH2PO4 which sums up to a comparable or even higher amount of salts than found 

in biofluids (see Table 5 in Chapter 3.2.3.2). The synthesis and characterisation of the dyes 

are still on-going work and will be proceeded further. While not reaching the natural binding 

affinity of 5-HTx (x = 1 - 7) receptor proteins (see Table 3), the benchmark of log Ka ≥ 5.8 

needed for applications in biofluids was reached with almost all investigated dye-zeolite 

combinations for serotonin (see Table 19) with L3.0·D2 showing the highest binding affinity of 

log Ka = 6.6 (see Figure 68). For dopamine, the examined binding affinity values are close to 

the practically required affinity values, however, slightly higher values would be preferable to 

reach full functionality even in the presence of high salt concentrations. 

 

Figure 69: a) Normalised emission spectra of L3.0·D6 in the absence (black) and presence (red) of serotonin in water and 

1X PBS. b) Emission-based binding isotherms for the interaction of serotonin (red) and dopamine (green) with L3.0·D6 in water 

(squares) and 1X PBS (dots) fitted with a 1:1 binding model. The excitation wavelength λex = 371 nm was used. c) Normalised 

emission spectra of L3.0·D13 in the absence (black) and presence (green) of dopamine in water and 1X PBS. d) Emission-based 

binding isotherms for the interaction of serotonin (red) and dopamine (green) with L3.0·D13 in water (squares) and 1X PBS 

(dots) fitted with a 1:1 binding model. The excitation wavelength λex = 371 nm was used. 
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Chemosensor L3.0·D13 shows very similar binding affinities for serotonin and dopamine and 

could therefore be utilized in combination with chemosensor L3.0·D2 in a ratiometric sensing 

assay. The total neurotransmitter concentration could be sensed with L3.0·D13, while the detec-

tion with L3.0·D2 could provide the concentration of serotonin. In combination, such chemo-

sensors could therefore be used to determine the concentration of each of the individual neuro-

transmitters present. 

Table 19: Comparison of the determined binding affinities (given as log Ka) for serotonin and dopamine of the zeolite-based 

chemosensors L3.0·DX (X = 2, 6, 8, 11, 12, 14; see Figure 50 and Figure 55). Data was collected by emission-based titration 

experiments and fitted by a 1:1 binding model. Estimated error in log Ka is 0.2 based on repeating the experiments at least three 

times (n.d. = not determined).  

Chemosensor 
log Ka (serotonin) log Ka (dopamine) 

in water in 1X PBS in water in 1X PBS 

L3.0·D2 
alkyl-alike 

modifications 

6.6    4.8 5.3    3.7 

L3.0·D6 5.8    3.3 5.0    n.d. 

L3.0·D8 n.d.    n.d. 5.3 ≤ 3.0 

L3.0·D10 
benzyl-alike 

modifications 

5.9 ≤ 3.0 4.9 ≤ 3.0 

L3.0·D11 5.6 ≤ 3.0 5.2    n.d. 

L3.0·D13 5.8    3.7 5.5    3.9 

In general, the observed Ka values in water are impressive for the binding of small bioactive 

metabolites by an artificial receptor, as the within the theoretical section of this work discussed 

artificial receptors known so far reached only a maximum binding affinity of log Ka = 4.8 for 

CB7 with serotonin in water. The observed value for dopamine with CB7 is with a log Ka = 5.7 

significantly higher, however still not reaching practical relevance due to salt instability and 

susceptibility for interferents.153 The lack in a signal transduction module additionally reduces 

the selectivity of CB7-based chemosensors.  

As expected, alteration of the binding strength in 1X PBS as medium was observed. However, 

the remaining functionality under such high amounts of salts is promising. As methylation of 

the DAP-core was found to be straight forward with acceptable yields and cheap starting 

materials and as D2 turned out to be the leading dye in terms of binding affinity within the 

investigated fluorophores, further analyte binding studies were presumed with L3.0·D2. Another 

argument for the use of D2 was the simplicity of the system which should enable the later 

planned theoretical descriptions of the system to deepen the understanding of the binding event. 

Additionally, the influence of salt presence on the binding event was further investigated for 

L3.0·D2 with four of the mainly targeted analytes, namely serotonin, dopamine, epinephrine, 

and norepinephrine, and will be discussed in Chapter 5.4.  
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Figure 70: Comparison of the binding affinities (given as log Ka) for a) serotonin and b) dopamine of the DAP-core-based 

chemosensors L3.0·DX (X = 2, 6, 8, 10, 11, 13; see Figure 50 and Figure 55 for the chemical structures of the dyes) with the 

binding affinities of natural bioreceptors for serotonin and dopamine (see Table 2).  

The DPP derivative D14 was investigated in terms of binding affinity and selectivity when 

being bound into zeolite channels regarding later applications in biofluids. The red-shifted 

absorbance and emission signals (λabs,max = 445 nm and λem,max = 545 nm) could be advanta-

geous in comparison to the DAP signal, especially when analytic investigations in urine as 

yellow-coloured biofluid are targeted. Pleasingly, a quenching behaviour, similar to the one 

observed for L3.0·D2, was observed for L3.0·D14 in the presence of electron-rich NTs (see 

Figure 71). Binding affinities for serotonin and dopamine were determined to be log Ka = 6.4 

for serotonin and log Ka = 5.4 for dopamine, which are comparable to those of L3.0·D2 (log 

Ka = 6.6 for serotonin and log Ka = 5.3 for dopamine). 
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Figure 71: Normalised emission spectra of D14 and its corresponding zeolite-based chemosensor L3.0·D14 prior and after the 

addition of dopamine. b) Emission-based binding curves for the interaction of serotonin (red) and dopamine (green) with 

L3.0·D14 in water fitted with a 1:1 binding model. The excitation wavelength λex = 450 nm was used. 

5.3.3.2. Emission-based binding affinities of zeolite L-based chemosensors for NTs and 

other metabolites 

Regarding the analytes, the investigated series included two indole-based NTs (serotonin and 

melatonin), three catechol-based NTs (dopamine, epinephrine, and norepinephrine), two trace 

amines (tryptamine and tyramine), two amino acids (L-Trp and L-Tyr) as well as 5-HTP as 

serotonin precursor and catechol and indole as model compounds. The latter structures resemble 

the electron-rich aromatic moieties of the NTs responsible for the CT interactions. The values 

obtained are listed in Table 20 and Figure 72 shows the binding isotherms for the investigated 

chemosensor-analyte titrations.  

From the data investigated so far, it becomes clear, that all positively charged guests are bound 

more or less strongly by the zeolite L3.0-based L3.0·D2 and L3.0·D14 chemosensors. The cationic 

indolamines serotonin and tryptamine are both bound by the zeolite-based chemo-sensors with 

a strong binding affinity, while the parent molecules L-Trp and 5-HTP as well as the NT 

melatonin and the model compound indole as zwitterionic and neutral analytes are not bound. 

Interestingly, the two NTs dopamine and norepinephrine, which differ in one methyl group and 

one hydroxyl group, cannot be distinguished by their binding affinities towards the chemo-

sensor L3.0·D2 (log Ka(dopamine) = log Ka(norepinephrine) = 5.3). Strikingly, the NT 

epinephrine, which differs only in one methyl group compared to norepinephrine, is 

distinguishable by a lower binding affinity (log Ka(epinephrine) = 5.0). This observation can 

probably be explained by the different basicity of the primary (norepinephrine) and secondary 

(epinephrine) amine functionalities of the investigated NTs. The phenol-based zwitterionic 

L-Tyr is not bound, showcasing a strong binding preference of L3.0·D2 and L3.0·D14 towards 
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cationic analytes. This finding is impressive as other known artificial receptors such as CBn 

cannot be used for the differentiation between cationic and zwitterionic/neutral analytes as the 

charge selectivity is not given. For instance, the self-assembled chemosensor CB8·D2 binds 

the positively charged NT serotonin with a binding affinity of log Ka(serotonin) = 3.7 and its 

zwitterionic precursor 5-HTP with a binding affinity of log Ka(5-HTP) = 3.9.192 Furthermore, 

the zwitterionic amino acid L-Trp is bound even stronger with a binding affinity of 

log Ka(L-Trp) = 5.2 and the parent, non-charged aromatic indole is bound with a 

log Ka(indole) = 5.3. 

Table 20: Fitted single-site association constants (given as log Ka values) for the binding of zeolite L-based L3.0·D2 and 

L3.0·D14 with representative analytes determined by fluorescence titration experiments and fitted by a 1:1 binding model. 

Estimated error is 0.2 in log Ka based on repeating the experiments at least three times.  

Analyte Number 
Biological 

function 
Charge Aryl unit 

log Ka 

(L3.0·D2) 

log Ka 

(L3.0·D14) 

Serotonin 1 NT + 5HO-Indole    6.6    6.4 

Melatonin 14 
NT,  

Hormone 
+ – 

5-Methoxy-

indole 
≤ 3.0 ≤ 3.0 

Dopamine 10 NT + Catechol    5.3    5.4 

Norepinephrine 11 NT + Catechol    5.3    n.d. 

Epinephrine 12 
NT, 

Hormone 
+ Catechol    5.0    n.d. 

Tryptamine 25 
Trace 

amine 
+ Indole    6.0    n.d. 

Tyramine 13 
Trace 

amine 
+ Phenol    5.2    n.d. 

L-Trp 23 Amino acid + – Indole ≤ 3.2 ≤ 3.0 

L-Tyr 19 Amino acid + – Phenol ≤ 3.8    n.d. 

5-HTP 24 

Precursor 

of 

serotonin 

+ – 5HO-Indole ≤ 3.8 ≤ 3.0 

Indole 98 ─ No Indole ≤ 3.9 ≤ 3.0 

Catechol 99 ─ No Catechol ≤ 3.0 ≤ 3.0 
n.d. = not determined 
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Figure 72: a) - c) Emission-based binding curves for several neurotransmitters and structural related molecules to chemosensor 

L3.0·D2 in water; all data was fitted with a 1:1 binding model. The excitation wavelength λex = 371 nm was used. d) Chemical 

structures of the investigated analytes.  

5.3.3.3. Emission-based binding affinities of zeolite Y-based chemosensors for NTs and 

other metabolites 

Having investigated the zeolite L-based chemosensors in such detail, moving on to zeolite Y-

based chemosensors was obvious. For zeolite Y, 3D networks are the main structure motifs371 

opposite to the 2D channels of the zeolite L framework274,295 opening up the possibility of a 

parallel binding of dye and analyte and therefore the rise of stacking interactions due to the 

larger pores.271 It is well known that zeolites with a low Si-to-Al ratio and therefore a largely 

negative framework charge can selectively bind cationic species through electrostatic “lock-

and-key” interactions while zeolites with a higher Si-to-Al ratio bind both positively charged 

and non-charged guests.372 Therefore, zeolite Y15 with a Si-to-Al ratio of 15 and zeolite Y40 

with a Si-to-Al ratio of 40 were examined in combination with D2. Besides the examination of 

binding affinities for positively charged NTs such as serotonin and dopamine, also zwitterionic 

and non-charged analyte molecules, namely L-Trp, L-Tyr, indole, and catechol, were 

investigated. Binding affinities for the zwitterionic serotonin precursor L-Trp and the non-

charged molecule indole were found to be rather strong with log Ka ≈ 5 (see Figure 73 and 

Table 21). Surprisingly, indole does not bind to Y40·D2 and the binding affinities for serotonin 
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and dopamine were found to be significantly lower than that for Y15·D2. As it was already 

apparent with the dye loading, the dealumination to a large Si-to-Al ratio of 40 reduced the 

cation binding ability compared to zeolites with lower Si-to-Al ratios.  

 

Figure 73: Emission spectra for the titration of Y15·D2 with a) serotonin, b) L-Trp, and c) of Y40·D2 with serotonin in water 

resulting in a quenched emission. d) and e) Binding isotherms for the titration of Y15·D2 with dopamine, serotonin, indole, 

tryptophan, ascorbic acid, and catechol in water. f) Binding isotherms for the titration of Y40·D2 with serotonin, dopamine, 

tyramine, and indole in water. As excitation wavelength λex = 371 nm was used. The solid lines represent the nonlinear least-

square fits to a single-site 1:1 binding model. g) Chemical structures of the investigated analytes. 

Table 21: Fitted single-site association constants (given as log Ka values) for the binding of the zeolite-based chemosensors 

Y15·D2 and Y40·D2 with several analytes. Data was collected by fluorescence titration and fitted with a 1:1 binding model. 

Estimated error in log Ka is 0.2 based on repeating the experiments at least three times (n.d. = not determined). 

Analyte Number 
Biological 

function 
Charge Aryl unit 

log Ka 

(Y15·D2) 

log Ka 

(Y40·D2) 

Serotonin 1 NT + 5HO-Indole    6.1 5.3 

Dopamine 10 NT + Catechol    5.5 4.9 

Tyramine 13 
Trace 

amine 
+ Phenol    n.d. 4.6 

L-Trp 23 
Amino 

acid 
+ – Indole    5.3 n.d. 

Indole 98 ─ No Indole    5.2 ≤ 2.0 

Ascorbic 

acid 
100 Vitamin No 

Dihydroxy 

furan 
   4.3 n.d. 

Catechol 99 ─ No Catechol ≤ 2.0 n.d. 
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5.3.4. Absorbance-based investigations of the binding of NTs and other metabolites to 

the designed chemosensors 

UV-Vis spectroscopic titrations of analyte aliquots into L3.0·D2 dispersions were carried out. 

In general, the cooperative binding of a second guest to the designed zeolite-based chemosen-

sors results in changes in the absorbance spectrum of the encapsulated dye. Investigations on 

the absorbance of zeolite-, or in general nanoparticle-based chemosensors, have always been 

challenging as stray light effects from particles in the upper nanometre range mostly prevent 

any observation. By treating the within this worked used zeolite L3.0 particles by ultrasonication 

with a tip sonicator, it was possible to carry out UV-Vis measurements of the designed zeolite 

L3.0-based chemosensors without the need of any stray light or background correction caused 

by the zeolite particles. Six analytes, i.e., serotonin, tryptamine, 5-HTP, dopamine, tyramine, 

and norepinephrine were subjected to an absorbance-based binding titration (see Figure 74). 

The used colour code goes from dark violet to red with increasing analyte concentration. 

Interestingly, all analytes except for 5-HTP caused a decrease of the local absorbance maxima 

coming along with a slight blue shift (⁓ 2 - 3 nm) at 322, 338 and 420 nm. A broadening of the 

dye absorption bands was spotted accompanying the hypochromicity. The rise of a charge 

transfer (CT) band in the region from 450 to 550 nm was observed for the five analytes. The 

CT bands are caused by cation-π-type dye-analyte interactions inside of the zeolite channels 

and correlate with the HOMO-LUMO gap between the electron-rich aromatic analyte and the 

accepting electron-poor dye molecule.196 Within the shown experiments, the CT bands revealed 

itself as long-wavelength shoulders of the dye absorbance bands associated with the local S0-S1 

electronic transition. Unfortunately, such CT bands are rather weak in magnitude, typically 

requiring operational concentrations above 100 µM for both the analyte and the chemosensor 

for a reliable signal transduction.  



100  Results and discussion 

 

Figure 74: Absorbance-based titration of a) serotonin (c = 0 - 22 µM), b) dopamine (c = 0 - 45 µM), c) norepinephrine 

(c = 0 - 22 µM), d) tyramine (c = 0 - 22 µM), e) 5-HTP(c = 0 - 45 µM), and f) tryptamine (c = 0 - 22 µM) to stable aqueous 

nanoparticle dispersions of L3.0·D2. 

Moving on to Y15, ultrasonication was not sufficient to shred the compared to zeolite L3.0 much 

larger Y15 particles avoiding stray light correction. Figure 75a-b demonstrate the gained spectra 

for the titration of dopamine to a Y15·D2 dispersion before and after the subtraction of the self-

absorption and stray light signal of the Y15 particles (dashed black line). Absorbance titration 

was additionally to dopamine conducted with serotonin, L-Trp, and indole. In Figure 75, the 

used colour code goes from dark violet to red with increasing analyte concentration.  
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Figure 75: a) and b) show the absorbance spectra for the titration of Y15·D2 with dopamine (c = 0 - 40 µM) before and after 

correction for the absorbance signal of zeolite Y15 dispersions. Additionally, the absorbance spectra for the titration of Y15·D2 

with c) serotonin (c = 0 - 33 µM), d) L-Trp (c = 0 - 46 µM) and e) indole (c = 0 - 82 µM) are shown.  

5.3.5. DFT calculations 

A plausible binding geometry between the reporter dyes and NTs inside the zeolite L3.0 cavities, 

considering explicitly water molecules, were modelled by density functional theory (DFT) 

calculations by MARJAN KRSTIĆ from the WENZEL group in Karlsruhe. The results were 

discussed collectively in comparison to the experimental data. The structural and optical 

properties of reporter dye D2 and serotonin were studied using DFT with the hybrid PBE0 

functional.373 For all atoms, the triple-ζ-valence-plus-polarisation (def2-TZVP) atomic orbital 

(AO) basis sets were used.374 The GRIMME D3 dispersion correction with Becke-Johnson 

damping was included for all systems studied.375,376 Reporter dye and serotonin, in addition with 

their inclusion complex inside the zeolite channels, have been geometry optimised using the 

COSMO377 model for water. Harmonic vibrational analysis confirmed that local minima were 

reached.  

The “full” zeolite model was composed of two zeolite L3.0 pores, reporter dye D2 and serotonin 

molecules surrounded with 24 water molecules, and was optimised by applying the resolution 

of identity (RI)-DFT procedure378 together with multipole accelerated resolution of identity-J 

(“marij”) scheme. The non-hybrid Perdew-Burke-Ernzerhof (PBE) functional379 and def2-SVP 

AO basis set380 was used for all atoms to considerably reduce computational complexity.   
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Figure 76: a) Binding geometry of reporter dye D2 and serotonin inside a zeolite L3.0 channel obtained by full atomistic DFT 

calculations. b) Cation-π interaction between reporter dye and NT inside of the zeolite L3.0 channels. c) Emission quenching 

mechanism between reporter dye and NT inside of the zeolite L3.0 channels. 

Furthermore, through time-dependent (TD-)DFT simulations and subsequent electron density 

difference analysis, the physical origin of the emerging CT bands in the absorbance spectra 

were confirmed to be an excited state electron transfer processes that require neurotransmitters 

such as serotonin with an electron-rich aromatic moiety (see Figure 77).  

 

 
Figure 77: a) TD-DFT simulated absorption spectrum of D2 and serotonin based on calculated discrete vertical transitions 

(black vertical sticks), with the same dye and analyte orientation as in the zeolite channel with an implicit COSMO water 

environment. Analysis of the leading contributions to the main bands shows additional low-lying charge transfer transitions 

S1 - S5 responsible for the quenching mechanism marked with an asterisk (*). b) Charge transfer analysis based on the electron 

density differences between each of the first five excited states S1 - S5 and the ground state S0 showing clearly that additional 

low-lying transitions can be characterised as charge transfer transitions. 

The results can be interpreted as such that cation-π interactions play a major role for the dye-

analyte interaction in the channels of zeolite L3.0-based artificial receptors, while π-π stacking 

is unlikely to occur in the zeolite L3.0 channels but more likely in the larger in size zeolite Y 
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cavities. The absence of face-to-face dimers agrees with results obtained by RAMAMURTHY and 

co-workers,381 who observed H-aggregated thionine dimers in zeolite Y cavities while no such 

structures were spectroscopically found with zeolite L as host material.  

5.3.6. Reversibility of the NT capture by zeolite-based chemosensors 

To probe the potential of the designed zeolite-based chemosensor for imaging applications, 

chemosensor L3.0·D14 was immobilised on polylysine-coated coverslips. All coverslips were 

washed prior to the experimental usage with water. The addition of excess of neurotransmitter 

should lead to a quenching, while the NTs should be removed through rinsing (see Figure 78), 

which was probed by monitoring the chemosensor emission by confocal fluorescence micros-

copy.  

 
Figure 78: Schematic representation of the reversible capture and release of NTs by surface-immobilised chemosensor 

L3.0·D14.  

All confocal fluorescence microscopy investigations on the within this work prepared 

chemosensors were conducted by ELISA D’ESTE at the MAX PLANCK INSTITUTE in Heidelberg. 

Having confirmed the dispersity of the particles in the polylysine coating, dopamine was added 

to the sample at a final concentration of 50 µM and time-lapse imaging was started immediately 

afterwards (see Figure 79). The emission of the chemosensor was fully quenched. Rinsing was 

performed by exchanging the medium with water. A recovery of the emission of L3.0·D14 was 

observed. 
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Figure 79: a) Confocal microscopy experiments334 with L3.0·D14 particles that were electrostatically anchored to polylysine-

coated microscopy coverslips demonstrated binding of dopamine (50 µM) and its release through rinsing steps (images shown 

with the same brightness). In contrast to solution experiments where L3.0·D14 particles were monodispersed, also clusters of  

zeolite-based chemosensor particles were observed on the surface. b) Emission quenching of L3.0·D14 (Frame 1) upon the 

addition of dopamine was very fast for surface-bound chemosensors (time spacing of ~0.9 seconds between each image frame, 

total movie length for 20 frames ~18 seconds) which is in agreement with emission-based kinetic investigations (Chapter 

5.3.1).363 c) Quantification and statistics for the relative emission intensity for surface bound L3.0·D14 particles in the presence 

of dopamine and after (partial) removal of dopamine through rinsing of the L3.0·D14-decorated microscopy coverslips with 

water.363 Experiments were conducted by ELISA D’ESTE at the MAX PLANCK INSTITUTE in Heidelberg. 

5.4. Binding selectivity of the designed zeolite-based chemosensors 

5.4.1. Emission-based binding selectivity of zeolite L-based chemosensors for NTs and 

other metabolites in buffered media 

As already described in the introductory section of this work, salts play a crucial role when 

determining binding affinities of artificial receptors and often lower binding affinities by orders 

of magnitude. Especially when it comes to chemosensor applications in biofluids, sensing 

results with independence of salt presence and salt concentrations are required as these can vary 

even within one biofluid, e.g., from urine sample to urine sample (matrix effects). Binding 

affinities of four important NTs, namely serotonin, dopamine, epinephrine, and norepinephrine 

towards L3.0·D2 were investigated (see Figure 80) to determine if salt alterations occur 

similarly as with other organic macrocyclic hosts, e.g., CBn or CDs.202,204 The NT titrations to 

chemosensor L3.0·D2 were performed in water, 10 mM HEPES buffer, pH 7.2 (total 
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concentration of cations ccat,tot  10 mM), 10 mM phosphate buffer, pH 7.0 (ccat,tot  17.5 mM), 

and 1X PBS, pH 7.0 (ccat,tot  160 mM). HEPES buffer as well as phosphate buffer were chosen 

to examine if there is a difference between an organo-based and an inorganic ion-based buffer. 

Additionally, the influence of the addition of sodium chloride to 10 mM HEPES up to a 

concentration of 50 mM added sodium chloride was probed for dopamine. 

 

Figure 80: a) Binding curves for the titration of L3.0·D2 with serotonin in water (red), 10 mM HEPES buffer, pH 7.2 (total 

conc. of cations ccat,tot  10 mM, triangle), 10 mM phosphate buffer, pH 7.0 (ccat,tot  17.5 mM, star), and 1X PBS, pH 7.0 (ccat,tot 

 160 mM, dot). b) Binding curves for the titration of L3.0·D2 with dopamine in water (orange), 10 mM HEPES buffer, pH 7.2 

(ccat,tot  10 mM, triangle), 10 mM HEPES buffer + 10 mM NaCl, pH 7.2 (ccat,tot  20 mM, half-filled square), 10 mM HEPES 

buffer + 50 mM NaCl, pH 7.2 (ccat,tot  60 mM, half-filled dot), 10 mM phosphate buffer, pH 7.0 (ccat,tot  17.5 mM, star), and 

1X PBS, pH 7.0 (ccat,tot  150 mM, dot). The excitation wavelength λex = 371 nm was used. The solid line represents the least-

square fit to a single-site 1:1 binding model. c) Binding affinity of serotonin versus dopamine to bioreceptors (green), known 

artificial receptors (orange, see Table 3), and L3.0·D2 (blue, see Table 22). d) Chemical structures of the discussed known 

artificial receptors. 

The binding affinity of serotonin towards L3.0·D2 is only slightly altered in the presence of 

minimal buffers up to a salt content of 10 mM, independently if it is an organo-based or an 

inorganic ion-based buffer, whereas the binding affinity is lowered by 26% in 1X PBS (137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4) due to the high salt content (see 

Table 22). In contrast, the binding of dopamine towards L3.0·D2 is affected even by small 

amounts of salt presence, probably due to the overall weaker binding affinity of dopamine 

towards L3.0·D2 compared to serotonin. However, the overall affinity decrease is with 30% 

comparable to the values found with serotonin. Interestingly, for dopamine the organo-based 
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HEPES buffer seems to interfere the binding event much less, even under the addition of 50 mM 

NaCl, compared to a 10 mM phosphate buffer, which contains 10 mM phosphate anions 

concomitant to the doubled amount of salt cations. Possibly, Mn+ cations are directly involved 

in the molecular recognition event, as found for other filled zeolite systems. 

Table 22: Association constants (given as log Ka) determined by fluorescence titration for the binding of zeolite L3.0-based 

L3.0·D2 with the analytes serotonin, dopamine, norepinephrine and epinephrine in water and several buffered media. Buffer 

concentrations were 10 mM HEPES buffer, pH 7.2, 10 mM phosphate buffer, pH 7.0, and 1X PBS, pH 7.0. Given values are 

averages from at least three repetitions. Errors in log Ka are considered to be not larger than 20%. 

 
log Ka 

(serotonin) 

log Ka 

(dopamine) 

Selectivity 

ratio 

log Ka 

(norepine-

phrine) 

log Ka 

(epine-

phrine) 

Selectivity 

ratio 

Water 6.6 5.3 17 5.3 5.0   2 

HEPES 

buffer 
6.0 

5.0 

  4.9[a]  

  4.5[b]  

  9 5.3 4.3 12 

Phosphate 

buffer 
5.8 4.2 40 4.9 3.6 28 

1X PBS 4.8 3.7 17 4.0 3.5   5 
[a] Measurement in 10 mM HEPES buffer and 10 mM NaCl. [b] Measurement in 10 mM HEPES buffer and 50 mM NaCl. 

In fact, the observed binding selectivity are astonishing. A selectivity ratio of 40 was determined 

in 10 mM phosphate buffer when comparing serotonin and dopamine binding to L3.0·D2 (see 

Figure 80c). Strikingly, the binding selectivity does largely exceed that of the natural dopamine 

D1- and D5-receptor proteins (selectivity ratio < 5 for D1 and < 15 for D5; see Table 2 for 

detailed values) for these two NTs being not even similar in their core-structure. The selectivity 

of other known artificial receptors is even lower, having a maximum selectivity ratio of 4 for 

CB7. Moving on to epinephrine and norepinephrine as neurotransmitters that structurally only 

differ in one methyl group, an impressive binding selectivity with a selectivity ratio of 28 in 

10 mM phosphate buffer was found (see Figure 81). In general, the stronger binder norepi-

nephrine is less affected by increasing salt concentrations compared to the weaker binder epi-

nephrine. For the weaker binding epinephrine, the binding affinity towards L3.0·D2 was almost 

completely diminished in 1X PBS. This offers excellent opportunities for the development of 

selective detection assays, since these two NTs can be readily distinguished by a  L3.0·D2-based 

assay, although the NTs differ only slightly in their structure. Similar to the findings for 

dopamine and serotonin, the binding selectivity largely exceeds that of the natural 

α2A-adrenergic receptor and dopamine D2-receptor proteins (selectivity ratio < 5 for both) for 

these homologous catecholamines (see Table 23). The selectivity of other known artificial 

receptors is remarkably lower (selectivity ratio < 2).  
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Figure 81: Binding curves for the titration of L3.0·D2 with epinephrine (blue) and norepinephrine (pink) in a) water, b) 10 mM 

HEPES buffer, pH 7.2 (total conc. of cations ccat, tot  10 mM), c) 10 mM phosphate buffer, pH 7.0 (ccat, tot  17.5 mM) and d) 

1X PBS, pH 7.0 (ccat, tot  160 mM). e) Binding affinities of epinephrine versus norepinephrine to bioreceptors (green), known 

artificial receptors (orange) and L3.0·D2. Values and literature sources can be found in Table 22 and Table 23. 

Conversely, the framework type used for the preparation of the zeolite-based chemosensors 

seem to play an important, non-trivial role in determining the binding selectivity. It was ob-

served that Y2.55-based chemosensors that are similar in their Si-to-Al ratio to L3.0-based 

chemosensors show a much lower selectivity for norepinephrine (log Ka = 4.9) over epinephrine 

(log Ka = 4.4). 

Table 23: Representative binders for epinephrine and norepinephrine with their association constants given as log Ka and their 

selectivity for epinephrine over norepinephrine. If not stated otherwise, the given values were determined in water.  

Receptor 
log Ka 

(epinephrine) 

log Ka 

(norepinephrine) 

Selectivity 

ratio  

α2A-adrenergic receptor[a] 6.4382 5.8382 4.6 

Dopamine D2-receptor 5.3128 5.1128 2.4 

37 2.8154 3.2154 2.5 

 38[b] 3.1155 3.1155 1.0 

39[c] 2.3156 2.3156 1.0 
[a] Measurements were conducted in 25 mM Tris-HCl buffer, pH 7.4. [b] Measurements were conducted in D2O. Here shown 

binding affinities refer to 1:1 complexes. [c] Measurements were conducted in 100 mM Na2HPO4 solution, pH 7.1. 

5.4.1.1. Binding selectivity of zeolite L-based chemosensors towards interferents 

Proceeding towards a real life application, it was important to probe potential interferents for 

the zeolite-based chemosensor functionality. As mentioned above, both limited affinity and low 

selectivity are major obstacles for contemporary synthetic receptors when it comes to applica-

bility limitations in biofluid diagnostics.192,383,384 One important analyte class that should be 
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highlighted here are the biogenic polyamines, which are often formed as a product of a catabo-

lism pathway. Typical concentrations in saliva samples of healthy adults are 5 to 10 µM385 and 

can reach up to concentrations of 27 µM in humans with the absence of oral hygiene.386 Indeed, 

biogenic amines can be found in even higher concentration levels in food samples387,388 and are 

known food spoilage indicators and highly toxic in larger quantities. They can often be found 

in biofluids such as urine and should be excluded as sensing interferents. Therefore, the detec-

tion of low µM concentrations of serotonin by L3.0·D2 in the presence of up to 50 µM 

cadaverine was investigated (see Figure 82). The binding affinity for serotonin was only 

negligible altered up to a cadaverine concentration of 10 µM (log Ka = 6.8 in water and 

log Ka = 6.6 in the presence of 10 µM cadaverine). In the presence of 50 µM cadaverine, the 

binding affinity corresponds to a log Ka = 6.0, which is an alteration of 12%. Similarly, the 

binding strength of dopamine in the absence and presence of cadaverine was probed. Even 

under the addition of 100 µM cadaverine, the binding affinity was only decreased by 16%. 

Typical concentrations of the biogenic amine cadaverine in urine are in the lower micromolar 

range389 and therefore do not interfere the sensing of serotonin by L3.0·D2 at a physiological 

concentration range.  

 

Figure 82: Binding curves for the titration of L3.0·D2 with serotonin in the absence and presence of cadaverine (c = 0 - 50 µM). 

The excitation wavelength λex = 371 nm was used. The solid line represents the least-square fit to a single-site 1:1 binding 

model.  

To gain further insights into the binding behaviour of cadaverine towards zeolites and especially 

towards the sensing with L3.0·D2, ITC experiments were conducted. The dicationic diamine 

showed an undefined entropic energy release when titrated into a zeolite L3.0 dispersion (see 

Figure 83a). Likely, cadaverine occupies vacant, non-dye-filled channels as the ITC titration 

of cadaverine into a L3.0·D2 dispersion did not show any heat releases (see Figure 83b).  

In contrast, known artificial receptors are unselective or even preferentially bind amino acid or 

biogenic amines, preventing their practical use in biofluids for neurotransmitter detection. For 
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instance, the macrocyclic host CB8 in combination with the reporter dye D2 binds serotonin 

with a binding affinity of log Ka = 3.7 and its precursor 5-hydroxy-L-tryptophan (5-HTP) with 

a binding affinity of log Ka = 3.9.192 Furthermore, the amino acid L-tryptophan is bound even 

stronger with a binding affinity of log Ka = 5.2 and the parent, non-charged, aromatic indole 

binds with a log Ka = 5.3. Due to its dicationic character, cadaverine is bound even more 

strongly to CB7 reaching binding affinities of log Ka > 8.190 Fortunately, amino acids and 

biogenic amines do not interfere with the L3.0·D2-based sensing of positively charged analytes 

such as the NTs serotonin and dopamine.  

 

Figure 83: Raw heat ITC thermogram for the titration of a) zeolite L3.0 nanoparticles with the doubly charged biogenic amine 

cadaverine and b) L3.0·D2 nanoparticles with the doubly charged biogenic amine cadaverine.  

One naturally in biofluids occurring interferent for electrochemical sensing techniques, which 

are applicable for the sensing of redox-active catecholamines, is ascorbic acid (AA).34,36,215,390 

AA, which is commonly referred to as vitamin C, is a diprotic acid present as monoanion at 

physiological pH.391,392 The AA concentration in the extracellular fluid of the brain is 

approximately 200 - 500 µM,393 which is 104 - 106 times higher than the concentration of 

catecholamines.34,215,394  Typical ascorbate levels found in human blood plasma are in the range 

of 40 - 80 µM.319,320 Therefore, the sensing of serotonin and dopamine by chemosensor L3.0·D2 

and Y15·D2 was investigated in the presence of 500 µM ascorbic acid (see Figure 84). 

Pleasingly, the zeolite-based sensing protocol is tolerant towards redox-active compounds such 

as ascorbic acid. In terms of binding affinity, only negligible alterations were found. 
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Figure 84: Binding isotherms for the titration of Y15·D2 with a) serotonin and b) dopamine in the absence and presence of 

500 µM AA. The excitation wavelength λex = 371 nm was used. The solid line represents the least-square fit to a single-site 1:1 

binding model. The binding strength of serotonin and dopamine is almost unaffected by the presence of ascorbic acid. Similar 

results were found for L3.0·D2 in the presence of 500 µM AA. 

5.4.1.2. Differentiation between NTs in mixtures by zeolite L3.0-based chemosensors 

While it is often sufficient in a practical diagnostic application to indicate an abnormal total 

neurotransmitter level, it was nevertheless interesting if the designed zeolite-based 

chemosensors can distinguish different neurotransmitters in mixtures. To probe this, mixtures 

of serotonin and dopamine, all with a total concentration of cserotonin+dopamine = 3 µM were 

prepared and L3.0·D2 dispersions were subjected to these mixtures. The absorbance of L3.0·D2 

was determined before and after the mixing and the readout at 445 nm was referenced to the 

isosbestic point at 425 nm in water (see Figure 85). Utilizing the spectroscopic fingerprints of 

the different dye-analyte combinations, it is possible to distinguish, e.g., serotonin from dopa-

mine, and to deconvolute their concentration ratio in a mixture of a known total concentration. 

 

Figure 85: Ratiometric absorbance signals can be used for differentiation of mixtures of dopamine and serotonin by 

chemosensor L3.0·D2. 
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5.5. Chemosensor-based NT sensing in biofluids 

The affinities and selectivity of the designed zeolite-based chemosensors for NTs in saline 

aqueous media were astonishing and therefore I was eager to evaluate their performance in 

complex biological media. In many cases, metabolite analysis in urine is preferred because 

urine testing is non-invasive and often contains higher concentrations of metabolites than 

blood.395 Additionally, urine can be easily collected by the layman. The use of chemosensors 

for routinely urinalysis may overcome standing problems that are limiting the diagnostic utility 

of instrumental analytics, i.e., the largely varying urine composition from patient to patient, but 

also the temporal fluctuations of the metabolite concentrations during a day for the same 

subject. Current single-point analytics at long time intervals, e.g., months to years, make it 

difficult to identify relevant changes in the urine composition that indicate a disease versus the 

typical temporal fluctuations and systematic differences between different urine samples. 

Chemosensor-based analytics will provide a much more regular tracking of the urine metabo-

lome for each individual patient, and thus should enable more facile and predictive urinary 

diagnostics. 

 

Figure 86: a) Comparison of the absorbance spectra of several spot urine samples and the absorbances of chemosensor L3.0·D2 

and L3.0·D14. Urine samples were diluted with water to reach suitable concentration levels for absorbance spectroscopy. To 

gain better comparability, the data was normalised. b) Comparison of the emission spectra of several spot urine probes to the 

emission spectrum of L3.0·D2. An excitation wavelength of λex = 395 nm was used for all here shown samples. Same urine 

concentrations were used as in a). Data was normalised. c) Comparison of the emission spectra of a single urine probe excited 

at several wavelengths (λex = 371 nm, 395 nm, 416 nm, 425 nm, and 428 nm) with the emission of L3.0·D14 excited at 

λex = 450 nm.  
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To design a functional zeolite-based chemosensor in human urine, a suitable dye was needed 

which is not obviously affected by the self-absorption of urine. The biofluid naturally contains 

components that absorb/emit light causing the yellow colour.102 Several urine samples from 

healthy adult volunteers were collected and investigated in comparison to the chemosensors 

L3.0·D2 and L3.0·D14 by absorbance and emission spectroscopy (see Figure 86). No pre-treat-

ment steps except for dilution were carried out.  

Based on the results presented in Figure 86, it was first assumed that DAP-based dyes would 

probably interfere with intrinsic urine signals due to signal overlap. Therefore, the DPP-based 

dye D14 and its chemosensor L3.0·D14 were used for titration experiments in biofluids as the 

significantly red-shifted absorbance as well as the shifted emission maxima compared to DAP-

based dyes approved to be promising. However, later it was found that also D2 and its 

chemosensor L3.0·D2 can be utilized for NT sensing in urine (see Chapter 5.5.2). 

5.5.1. Binding affinities in biofluids  

Having with L3.0·D14 a suitable zeolite-based chemosensor at hand, the binding affinities of 

serotonin and dopamine in several biofluids, i.e., in human serum (HS), in human serum albu-

min (HSA), in neurobasalTM medium, in surine as artificial urine, and lastly in human urine 

were investigated. For experiments in HS and HSA as medium, the intrinsic serotonin binding 

ability of the serum proteins interfered with the chemosensor detection.396 Therefore, it was not 

possible to premix the serum with an (un)known amount of serotonin and determine it out of 

the mixture. However, the addition of HS or HSA to a L3.0·D14 dispersion in 50 mM HEPES 

buffer with subsequent titration of a stock solution of either serotonin or dopamine to it resulted 

in pleasingly high binding affinities (see Figure 87). It is assumed that the faster binding 

kinetics of the zeolite-based chemosensors (see Chapter 5.3.1) prevent the competitive binding 

of serotonin to HS.397,398  
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Figure 87: a) Emission spectra for the titration of L3.0·D14 with serotonin in human serum (HS) (HS/50 mM HEPES, pH 7.2, 

1:2 v/v). Data was corrected for autofluorescence of HS. b) and c) Fit for the relative emission intensity with a 1:1 binding site 

model. d) Emission spectra for the titration of L3.0·D14 with serotonin in human serum albumin (HSA) (HSA/50 mM HEPES, 

pH 7.2, 1:2 v/v). Data was corrected for autofluorescence of HSA. e) and f) Fit for the relative emission intensity with a 1:1 

binding site model.  

The used neurobasalTM medium (minus phenol red) supplied by THERMOFISHER SCIENTIFIC  

does not contain any NTs but 37 organic compounds and salts. Chemosensor L3.0·D14 was 

directly dispersed in the medium. Due to a strong self-emission of the medium, all emission 

spectra were corrected by the autofluorescence prior to analysis (see Figure 88). Pleasingly, 

the binding affinities found upon titrating serotonin or dopamine into the L3.0·D14 dispersion 

in neurobasalTM medium were comparable to the prior determined values in water and minimal 

buffers (see Table 24). Clearly, the selectivity of the zeolite-based chemosensors is outstanding 

and enables NT sensing assays even in such complex media.  
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Figure 88: a) Emission spectra for the titration of L3.0·D14 with serotonin in neurobasalTM medium. b) and c) Fit for the relative 

emission intensity with a 1:1 binding site model. d) Emission spectra for the titration of L3.0·D14 with serotonin in 

surine/50 mM HEPES (pH 7.2, 1:1 v/v). e) and f) Fit for the relative emission intensity with a 1:1 binding site model. 

For surine, binding affinities of L3.0·D14 towards serotonin and dopamine were found to be in 

a good range for sensing applications (Figure 88d-f). The quenching ability of the analytes 

towards the chemosensor remained unaffected which gives hope for the transfer into real human 

urine with its stronger autofluorescence compared to surine. Pleasingly, all probed biofluids 

seemed to have no strong influence on the binding affinity of chemosensor L3.0·D14. The 

determined values are summarized in Table 24. In all biofluids except for surine, a lower 

overall quenching effect of the dye emission was found due to the strong background signal of 

the biofluid itself and a therefore required background correction. Pleasingly, the dye quenching 

was almost unaffected in surine. The lowest detection effectiveness was found in HS with 

quenching factors < 40%.  

Table 24: Determined binding affinities (given as log Ka) of L3.0·D14 for serotonin and dopamine in water and different bio-

fluids. Data was collected by fluorescence titration and fitted by a 1:1 binding model. Estimated error in log Ka is 0.2 based on 

repeating the experiments at least three times. 

 Water 

HS / 

50 mM 

HEPES 

HSA / 

50 mM 

HEPES 

NeurobasalTM 

medium 

Surine / 

50 mM 

HEPES 

log Ka 

(serotonin) 
6.4 5.5 5.8 6.0 5.6 

log Ka 

(dopamine) 
5.4 5.2 5.4 4.3 5.1 
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5.5.2. Detection of NTs in surine and human urine  

To mimic real urine samples, an assay with spiked surine samples was conducted. A schematic 

representation of the chemosensor-based assay with L3.0·D2 for distinguishing abnormally low 

NT levels from that of normal and high values is depicted in Figure 89a.  

 

Figure 89: a) Schematic representation of a L3.0·D2-based surine assay for distinguishing abnormally low neurotransmitter 

levels from that of normal and high values in biofluids. b) Bar graph on the percentage emission intensity quenching of L3.0·D2 

when adding NT spiked surine samples (n for low, normal, and high serotonin levels = 3 each) in analogy to the under a) 

depicted scheme. Given errors are determined by standard deviation from the averaged values. 

To a dispersion of L3.0·D2 in 50 mM HEPES, pH 7.2 (readout 1, I0), surine was added 

(readout 2, I1). The subsequent addition of a NT solution, containing either only serotonin or 

serotonin alongside with 3 µM dopamine in surine, enabled readout 3 (I2). The addition of 

dopamine was carried out to mimic typical NT concentration levels found in urine. A full list 

of all concentrations is tabulated in Table 25.  

Table 25: Final NT concentration levels in the assay mixtures for serotonin and dopamine concomitant to Figure 89.   

Sample number 1 2 3 4 5 6 7 8 9 

c(dopamine) in µM 0 0 0 0 0 0 0 0 0 

c(serotonin)  in µM 0 0.5 1.0 1.5 2.0 2.5 10 20 30 

Range serotonin 

value 
low normal high 

 

 
     

    

Sample number 10 11 12 13 14 15 16 17 18 

c(dopamine) in µM 3 3 3 3 3 3 3 3 3 

c(serotonin)  in µM 0 0.5 1.0 1.5 2.0 2.5 10 20 30 

Range serotonin 

value 
low normal high 

The surine assay was conducted in microwell plates and the signal change was followed by 

monitoring the emission intensity at λem = 426 nm with an excitation wavelength of 

λex = 395 nm. The determined read-outs were averaged for each concentration range (see 
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Figure 89b, n = 3 for each range). Values equal or below 1.0 µM serotonin were assigned to as 

low values, values between 1.5 µM and 3.0 µM were allocated as healthy, whereas values above 

10 µM were considered as NT overproduction and therefore as disease.38-46 Despite the spread 

of the chosen NT concentrations and only taking standard deviations into account regardless 

the spread, it was still possible to differentiate between the low, normal, and high concentration 

region by the emission quenching read-out of L3.0•D2. The % intensity quenching was 

calculated from the three readouts following Equation 29.  

signal change (%) =  (
𝐼1 − 𝐼0

𝐼2 − 𝐼0
) Eq. 31 

In a next step, a calibration curve was recorded in triplicate and the values were averaged. Based 

on this calibration curve three samples with unknown concentrations were probed. For each 

unknown concentration, 16 replica were measured to investigate the intrinsic assay error based 

on possible chemosensor concentration variations due to inhomogeneity of the dispersion or 

the dye distribution as well as operational mistakes such as titration errors. The results are 

shown in Figure 90.  

 

Figure 90: Determination of unknown serotonin concentrations in surine based on a calibration curve and the NT detection of 

chemosensor L3.0·D2. The emission quenching ratio (I0−I)/I0 to that of an independently obtained calibration curve is shown. 

The deviations of the hereby obtained serotonin concentrations are indicated by the shaded boxes. 

The chemosensor-assay based serotonin concentrations were determined by comparison of the 

emission quenching ratio to that of an independently obtained calibration curve. The deviations 

of the hereby obtained serotonin concentrations are indicated by the shaded boxes. The ‘real’ 

serotonin concentrations in the spiked surine samples are depicted by dashed lines. Pleasingly, 

it was found that a L3.0·D2-based assay can distinguish low (0.3 µM – blue; 1.2 µM – green) 

from normal (2.1 µM – red) serotonin levels in surine. The practically sufficient high accuracy 

and precision of the assay was confirmed for samples with known serotonin concentrations in 

synthetic urine. Even the typical serotonin levels found for clinically depressed subjects were 
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reliably quantified. Having these promising results at hand, the designed zeolite-based 

chemosensors were transferred from surine assays to sensing in real human urine. The spot 

urine samples were collected from healthy adult volunteers and used as such without any pre-

treatment or pH adjustment. The first urine of the day was not considered for the examination. 

In total, eight urine samples and spiked thereof with 30 µM serotonin were used, mimicking 

high serotonin concentrations typical for cancer patients, respectively. A schematic 

representation of the chemosensor-based assay with L3.0·D2 is depicted in Figure 91a.  

 

Figure 91: a) Schematic representation of a facile L3.0·D2-based NT assay in human urine with a subsequent internal reference. 

The following addition of an excess of serotonin ensures 100% dye quenching, providing a measure for the autofluorescence 

of the urine sample in the presence of the fully emission-quenched chemosensor. b) Experimental results for serotonin levels 

in spontaneous urine samples from healthy volunteers (partly spiked, see x-axis) detected by the signal change of chemosensor 

L3.0·D2. c) Experimental data related to the in a) introduced assay (n = 8 individual probes). The excitation wavelength 

λex = 395 nm and the emission wavelength λem = 426 nm were used. 

The assay was conducted in a microwell plate and the signal change was followed by 

monitoring the emission intensity at λem = 426 nm with an excitation wavelength of 

λex = 395 nm. To a dispersion of L3.0·D2 in 50 mM HEPES (pH 7.2, readout 1, I0), first, human 

urine (readout 2, I1) and then an excess of serotonin (c = 150 µM) was added (readout 3, I2) to 

ensure 100% dye quenching. This provides the determination of the autofluorescence of the 

individual urine samples in the presence of the fully emission-quenched L3.0·D2 nanoparticles. 

Even without this residual background emission recording, it is possible to identify those 
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samples that were spiked with high serotonin concentrations prior to the examination, 

corresponding to typical serotonin levels for cancer patients. As pointed out in Figure 91b, no 

dietary restrictions were followed prior to urine donation, which was noticeable through the 

increase in the signal change for some probes from as healthy considered donors due to coffee 

consume. Environmental factors that may increase endogenous catecholamine production 

include noise, stress, discomfort, or the consumption of caffeinated beverages, nicotine, allergy 

medicine, chocolate, vanilla, or other foods such as walnuts, avocado, bananas, citrus, cheese, 

and licorice.399 Caffeine and nicotine effects are short term, a few minutes to hours only.399,400 

However, with a L3.0·D2-based assay these slightly raised test results are clearly distinguishable 

from diseased NT levels which are at least by a factor of 10 increased compared to normal 

values.  

5.6. Label-free enzymatic reaction monitoring 

A great advantage of supramolecular sensing assays is their ability to monitor dynamic 

processes in situ and in real time, while established chromatographic techniques and antibody-

based assays can only be used discontinuously at specific time intervals, e.g., as end-point 

assays.174,175 In contrast to that, enzymatic reactions and permeation of biologically active 

species through membranes can be monitored using macrocycle-based reporter pairs.174,175,401 

Unfortunately, current macrocycle-based systems are often limited by their susceptibility to 

competitive binders, e.g., salts, and are therefore restricted to minimal buffers. Having 

examined the good salt stability of the zeolite-based chemosensors with even an increase in 

selectivity for certain metabolomes, the designed zeolitic receptors were utilized for the 

screening of enzymatic activities. Thus, aromatic-L-amino-acid decarboxylase (AADC), or to 

go more into detail DOPA decarboxylase (DDC)402 and tyrosine decarboxylase (TDC) were 

considered. TDC is a medically relevant enzyme that is expressed by bacteria in the gut, and is 

suspected to cause the frequently witnessed ineffectiveness of oral L-DOPA administration for 

Parkinson's disease treatment.403,404 Current methods to evaluate the activity of TDC are based 

on ELISA, HPLC-MS or colorimetric assays, each of them requiring sample pre-treatment steps 

and being limited to single-point measurements.403,404 TDC catalyses the decarboxylation of  L-

tyrosine yielding tyramine as product. Due to the charge alteration of the substrate during the 

enzymatic reaction, the binding affinity of substrate and product differ towards chemosensor 

L3.0·D14, making it a good model reaction for the development of a product-selective 

chemosensor-based assay. It was hoped that the enzymatic reaction can be monitored by 

https://en.wikipedia.org/wiki/Parkinson%27s_disease
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L3.0·D14 due to the subsequent capturing of tyramine concomitant with a spectroscopical 

response (see Figure 92a). The binding affinity of L3.0·D2 as well as L3.0·D14 towards L-Tyr 

and 5-HTP is due to the zwitterionic and thus overall neutral molecule charge below 103 M–
 

1, 

whereas tyramine features a binding affinity of Ka = 105 - 106 M–
 

1 (see Figure 92b).  

 

Figure 92: a) Schematic depiction of the TDC-catalysed decarboxylation of L-tyrosine (L-Tyr, green), producing the by 

L3.0·D2 as well as L3.0·D14 strongly bound product tyramine (red). This chemical transformation can be followed in real time 

by monitoring of the emission intensity response of L3.0·D14. b) Comparison of the binding affinities of L-Tyr and its 

decarboxylation product tyramine towards L3.0·D2. c) TDC from native streptococcus faecalis specifically decarboxylates 

L-Tyr but not 5-HTP, monitored by L3.0·D14 emission at λem = 519 nm at 37°C (PRP = pyridoxal 5’-phosphate). 

All experiments were conducted under assay conditions following the decarboxylase proce-

dures supplied with the enzyme from CREATIVE BIOMART, i.e., 44 mM HEPES buffer, pH 7.2, 

88 mM sodium chloride, 500 µM L-DOPA, 85 µM pyridoxal 5’-phosphate hydrate (PRP), as 

well as 0.8 µg rHDOPA at 37°C (the end concentrations in the well plate are given here). At 

this juncture, 50 mM HEPES and 100 mM sodium chloride were used as assay buffer stock 

solution. All stock solutions were prepared in deionized water except for the L3.0·D14 

dispersion, which was directly prepared in 50 mM HEPES buffer, pH 7.2, with a concentration 

of 550 µg mL–1. The enzyme stock solutions were assigned with a concentration of 500 µg mL–
 

1 

(0.365 units mL–1). After combining assay buffer, L3.0·D14 in HEPES, substrate and PRP, the 

mixture was equilibrated for 30 minutes at 37°C until the emission showed a stable signal. 

Afterwards, the enzyme was added to the reaction mixture and the enzymatic reactivity was 

monitored at λem = 519 nm (λex = 300 nm). The enzyme used was native streptococcus faecalis 

L-tyrosine decarboxylase with an activity of 0.73 units mg–1. Fortunately, the investigated 

L3.0·D14 dispersions were applicable for label-free enzymatic reaction monitoring in real time 
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as can be seen in Figure 92c. As TDC selectively catalyses the decarboxylation of L-Tyr and 

does not cause any turnover decarboxylation of the serotonin precursor 5-HTP, the assay was 

performed with 5-HTP to proof long-term stability of the chemosensor dispersion under the 

used assay conditions.   

 

Figure 93: a) Real-time monitoring of L-tyrosine (c = 500 μM) decarboxylation in the presence of different concentrations of 

TDC enzyme, maintaining PRP as cofactor (c = 85 μM) in excess. The changes in the emission intensity of L3.0·D14 were 

monitored at λem = 519 nm. Initial rates (U) were obtained by linear fitting of the initial signal response regime. b) Real-time 

monitoring of tyrosine decarboxylation catalysed by TDC at six different substrate concentrations. The changes in the emission 

intensity of L3.0·D14 were monitored at λem = 519 nm. c) Investigation of the concentration influence of cofactor PRP on the 

enzyme kinetics of TDC. 

To get a closer insight into the enzymatic requirements of the reaction towards the product (P), 

different enzyme (E), substrate (S), and coenzyme concentrations were probed, assuming the 

following reaction pathway:  

𝐸 + 𝑆 ⇄ 𝐸𝑆 → 𝑃 

Expectedly, an increasing enzyme concentration with steady substrate concentration led to an 

increase in the initial rates (U), which was determined by linear fitting of the initial signal re-

sponse regime. However, the linear proportionality between enzyme concentration and initial 

rate is only given up to an enzyme concentration of 16.5 µg mL–
 

1. Additionally, it was found 

that when using 500 µM substrate, signal saturation of L3.0·D14 (550 µg mL–
 

1) was reached. 

Investigating different PRP concentrations, it became clear, that 25 μM suffice to ensure 

maximum enzymatic activity of 33 μg mL–
 

1 TDC. 

The monitoring of the label-free enzymatic reaction in real time under utilizing L3.0·D14 was 

transferred into neurobasalTM medium. The overall rate of TDC is lowered. However, the 

monitoring of the L-tyrosine conversion by following the emission of the introduced zeolitic 

receptors is still possible even in such a complex medium (see Figure 94). Monitoring with 

commonly known supramolecular tandem assays is infeasible in such a medium due to 

interference of the components of this highly complex mixture, e.g., by the contained amino 

acids or vitamins. 
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Figure 94: Real-time monitoring of TDC-catalysed tyrosine decarboxylation in a highly complex reaction medium such as 

neurobasalTM medium. 

It is well known that TDC can also decarboxylate L-DOPA. Therefore, the monitoring of the 

transformation of L-DOPA into dopamine under TDC catalysis was probed in the presence of 

L3.0·D14 as chemosensor (see Figure 95). The conversion of L-DOPA into dopamine was 

found to be detectable by a L3.0·D14 assay, however, by monitoring the emission intensity in 

the absence of TDC it became clear that also non-enzymatic degradation of the substrate under 

the assay conditions occurs. This prevented further comparison of the TDC activity in the 

presence of L-Tyr to L-DOPA. Nevertheless, the formation of dopamine was successfully de-

tected even if further improvements are needed to obtain reproducible results without degrada-

tion of the substrate during the assay.  

 

Figure 95: Enzyme reactivity of TDC from native streptococcus faecalis monitored by L3.0·D14 emission at λem = 519 nm in 

the presence of 5-HTP (blue), L-tyrosine (green), and L-DOPA (light green) at 37°C. 

Moreover, the introduced approach of utilizing zeolite-based chemosensor dispersions for the 

real-time monitoring of enzymatic turnovers can be extended to other enzymes that play a role 

in the biosynthesis or catabolism of neurotransmitters and will also be of utility for identifying 

new enzyme inhibitor drugs. The monitoring of a DDC-based enzymatic conversion of 

L-DOPA into dopamine (see Figure 96) was so far not possible due to the high instability of 
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L-DOPA under the used assay conditions leading to a constant quenching effect prior to the 

addition of the enzyme in combination with an unfortunately not as active as expected 

decarboxylase.  

 

Figure 96: Schematic depiction of the DDC-catalysed decarboxylation of L-DOPA (light green), producing the strongly by 

L3.0·D14 bound product dopamine (orange). This chemical transformation can be followed in real time by monitoring the 

emission intensity response of L3.0·D14. 

Overall, the introduced sensing assays are very promising, as they are versatile without the need 

of any pre-treatment or washing steps. Additionally, the possibility to carry out all experiments 

in microwell plates makes them very attractive. This approach will be approved to widen the 

scope of target analytes, e.g., to L-tryptophan or L-phenylalanine and their derivatives, through 

exploiting additional enzyme-chemosensor tandem assays. 

  



Conclusion and outlook  123 

 

6. Conclusion and outlook 

The aim of this work was the development of novel and in biofluids functional chemosensors 

with a fast-responding signalling unit. Therefore, a deeper fundamental understanding of the 

driving forces relevant for host-guest complex formation was needed. Based on this, zeolite-

based chemosensors with high affinities and selectivity towards NTs were developed. 

6.1. Investigations of symmetric macrocyclic host molecules 

In literature, there is still a lack of systematic data on the binding properties of supramolecular 

hosts in host-guest complexes. Hence, guest binding events with the symmetric macrocyclic 

host molecules β-CD and CBn were investigated in terms of salt and temperature dependency. 

β-CD as well as CBn complexes were found to be stable over a wide temperature range, with 

only a small decrease in stability (decrease of log Ka by ≤ 1.5 over a range of 50°C). All studied 

host-guest systems showed enthalpy-entropy compensation with increasing values with tem-

perature rise. The investigated large ΔH values are an indicator for the non-classical hydropho-

bic effect, being the most negative for CB7 (up to almost –90 kJ mol–1) and the less pronounced 

for β-CD (obtained maximum value: –38 kJ mol–1). Exceptional strong enthalpic contributions 

as driving forces were determined for guest molecules having an optimized size fit into the 

hydrophobic cavity leading to a full high-energy water release. Additionally, correlation graphs 

plotted from the obtained thermodynamic data within this work along with available literature 

data revealed a significant impact of enthalpic contributions towards the strength of the binding 

event for CB7 complexes. The obtained negative heat capacity changes (ΔCp) support the 

assumption of the non-classical hydrophobic effect as driving force for the complex formation. 

Comparing adamantanol with its di- and triamantane derivatives, the strongest enthalpic and 

entropic contributions were obtained for the complex formation of CB7•AdOH and 

CB8•3,9-TriAd(OH)2. The explanation of these findings remains challenging. It is part of the 

on-going work in collaboration with the GRIMME group in Bonn and the GILSON group in San 

Diego that utilize DFT and MD simulations to gain atomistic insights into the binding 

processes.  
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Figure 97: a) Schematic depiction referring to the within this work conducted temperature-dependent binding studies revealing 

several trends for host-guest complexation. b) Schematic depiction referring to the within this work presented investigations 

on the binding of salts towards CBn portals and the resulting influence on host-guest complex formation.203   

The influence of salts on the binding properties of macrocyclic hosts, i.e., in terms of thermo-

dynamic or kinetic behaviour, has been known for years.316 However, there has not been a 

comprehensive investigation of the influence of inorganic cations on the binding event of 

macrocycles. Therefore, CBn (n = 5 - 8) as macrocyclic hosts were investigated in combination 

with 20 (in)organic cations in cooperation with the NAU and the BICZÓK group.203 The chosen 

cations consisted of varying valent numbers, including two organic cations, five alkaline and 

four alkaline earth metal cations as well as eight transition metal cations. The cations were 

investigated by either dye displacement titrations (CB6, CB7 and CB8; BIEDERMANN group and 

NAU group) or ITC experiments (CB5 and CB7; this work and BICZÓK group). It was possible 

to reveal general binding trends in favour of a stronger binding for the larger and less strongly 

hydrated metal ions as well as for the inorganic cations with higher charge. Polarizability of the 

cations, and therefore ion-dipole interactions between the cationic center and the carbonyl-

decorated portals, seemed to be more significant for the complexation strength than hydrogen 

bond formation. Based on the results obtained, it was possible to formulate an equation that will 

enable future estimates on the experimentally gained binding constants Kapp in saline solutions 

(equation 17). The influence of desalination of CBn samples was probed for CB5 and CB8 by 

ITC. Clearly, salt contaminations yield apparent lower analyte affinities due to the competitive 

binding of the interferents. The effect seems to be stronger for the larger CBn homologue CB8 

compared to the smaller macrocyclic CB5. As a result of these studies, CBn samples should 

always be desalted prior to use to avoid the interference of impurities, such as hydrogen 

chloride, ammonium and metal ion salts, which are typically introduced in the course of the 

macrocycle preparation and purification.162 If pH adjustments are required (in)organic additives 

such as HCl should be considered.  
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6.2. Zeolite-based chemosensor design 

Besides gaining fundamental insights into host-guest chemistry, one of the main goals of this 

work was the development of a new class of fluorescent artificial receptors. The detailed inves-

tigation of symmetric host complexation revealed that there are still some crucial aspects such 

as salt-dependency of binding affinities and selectivity to be solved. Therefore, a new design 

strategy was introduced which is based on the combined application of non-classical hydropho-

bic effect and Fischer’s “lock-and-key” model utilizing microporous inorganic frameworks 

(pore size ~ 1 nm), see Figure 98. Specifically, highly selective, artificial receptors for 

positively charged, aromatic neurotransmitters were established by combining negatively 

charged, microporous zeolite L3.0 as well as zeolite Y15 and Y40 frameworks with aryl-moiety 

selective reporter dyes.  

 
Figure 98: Design strategy for the new designed chemosensors based on zeolites and dicationic dyes for the selective sensing 

of small biorelevant and positively charged molecules, e.g., neurotransmitters such as serotonin and dopamine. 

As reporter dyes, ten DAP-based and two DPP-based fluorophores were successfully synthe-

sized. Amongst the DAP derivatives the smallest derivative, namely 2,7-dimethyldi-

azapyrenium (D2), showed the highest binding affinities and was therefore utilized for further 

studies. For the two DPP derivatives, the benzyl-substituted DPP derivative (D14) was easier 

to access and thus used for further investigations. DPP dyes possess significantly red-shifted 

absorbance and emission signals compared to the synthesized DAP-derivatives and therefore 

broadened the covered spectrum range. Experimental evidence for the presence of the non-

classical hydrophobic effect was revealed in ITC measurements showcasing strong enthalpic 

contributions within the observed binding energies. Chemosensor particle sizes were 

determined to be in the range of 50 to 200 nm for zeolite L3.0-based chemosensors and around 

700 nm for zeolite Y-based chemosensors.  
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6.3. NT detection with zeolite-based chemosensors  

The interaction with NTs and other small biorelevant molecules was investigated by ITC as 

well as fluorescence and absorbance spectroscopy. Upon titrating an aqueous chemosensor dis-

persion with positively charged analytes, an emission quenching was observed (see Figure 

99a-b). The binding geometry inside the zeolite channels was described by DFT calculations by 

our cooperation partners from the WENZEL group in Karlsruhe (see Figure 99c). 

 

Figure 99: Preparation of and sensing with zeolite-based chemosensors, which can be prepared on a gram scale through im-

mersion of dicationic reporter dyes with zeolite L3.0 nanoparticles. Chemosensor L3.0·D2 is shown, which responds with 

emission quenching towards the addition of serotonin. 

Concomitant with the observed emission quenching, the growing of a charge transfer band 

(~ 500 nm) in the absorbance spectrum was observed, indicating a photoinduced electron 

transfer process. This reaction is promoted by a cation-π-type dye-neurotransmitter interaction 

inside the zeolite L3.0 channels, as evidenced by full atomistic DFT simulations. Further insights 

into the binding mechanism were obtained by ITC revealing a strongly enthalpically favoured 

(exothermic) serotonin binding to chemosensor L3.0·D2. This is completely opposite to the re-

ported strongly entropically favoured (endothermic) binding characteristics of the natural re-

ceptor protein 5-HT3.
366 The combination of electrostatic attraction between NTs and the 

zeolitic framework, a cation-π interaction between the dye and the NT as well as the release of 

residual cavity water molecules are important contributors to the experimentally observed 
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strongly favourable binding enthalpies and binding free energies for NT capturing by the de-

signed zeolite-based chemosensors. They show impressive selectivity, i.e., the neurotrans-

mitters norepinephrine and epinephrine, that differ only by one methyl group, can be readily 

distinguished in a zeolite-based chemosensor assay (see Figure 100). The selectivity ratios 

were determined to be up to 28 in saline buffers for L3.0·D2. This finding largely exceeds the 

selectivity ratios of the natural α2A-adrenergic382 and dopamine D2-receptor proteins128 

(selectivity ratio < 5) for these homologous catecholamines. High affinities, much larger than 

that of any other known artificial receptor, were found for the interactions of the designed 

zeolite-based chemosensors with serotonin and dopamine in deionized water, in saline buffers, 

and in biofluids. The designed zeolite-based chemosensors become more selective for serotonin 

over dopamine in the presence of salts (selectivity ratio of 17 in water vs. 40 in phosphate 

buffer). The chemosensors are not affected by metabolites such as cadaverine or ascorbic acid 

that represent critical interferents for other detection approaches, either for supramolecular or 

electrochemical methods.390,405  

 

Figure 100: Binding selectivity ratio of bioreceptors (green), known artificial receptors (orange), and L3.0·D2 (blue) for a) 

serotonin vs. dopamine and b) epinephrine vs. norepinephrine. 

The binding kinetics were very fast with signal saturation <10 milliseconds measured by rapid 

mixing in stopped-flow experiments. Spectroscopic fingerprints of the analytes, i.e., different 

levels of emission quenching, were utilized to distinguish serotonin from dopamine and to de-

convolute their concentration ratio in mixtures. The NT uptake and release were monitored by 

confocal fluorescence microscopy with surface-immobilized chemosensor L3.0·D14 confirming 

the reversible nature of the neurotransmitter binding. Finally, when using dealuminated and 

thus more hydrophobic zeolite framework, the analyte detection scope was extended to non-

charged aromatic and zwitterionic compounds such as indole and tryptophan, by using 

zeolite Y-based chemosensors.  
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6.4. Applicability in biofluids and for the monitoring of enzymatic reactions 

The designed zeolite-based chemosensors retained their micromolar affinities for NTs in 

complex biofluids such as human urine, human blood serum, and neurobasalTM medium.  

In a surine assay, mimicking low (≤ 0.5 µM), normal (1.0 - 2.5 µM), and high (≥ 10 µM) NT 

concentrations, it was possible to differentiate between the three concentration regions. 

Additionally, by assessing a calibration curve, three samples with unknown concentrations 

(c(serotonin) < 2.5 µM) were measured in 16x replica to investigate the intrinsic assay error 

based on possible chemosensor concentration variations due to inhomogeneity of the dispersion 

or the dye distribution as well as operational mistakes such as titration errors. Pleasingly, it was 

possible to accurately determine the unknown low (0.3 µM and 1.2 µM) and normal (2.1 µM) 

serotonin levels in surine by the L3.0·D2-based assay.  

 

Figure 101: Schematic representation of a facile L3.0·D2-based NT assay in human urine with a subsequent internal reference. 

The subsequent addition of an excess of serotonin ensures 100% dye quenching, providing a measure for the autofluorescence 

of the urine samples in the presence of the fully quenched chemosensor. 

When using the designed chemosensors in microwell plates, it was feasible to distinguish spot 

urine samples from healthy donors from spiked urine samples with abnormally high NT levels 

(see Figure 101). Additionally, slightly raised test results caused by not following dietary re-

strictions400,401 prior to urine donation were clearly distinguished from raised NT levels with a 

L3.0·D2-based assay. To this point, it was not possible to examine the exact serotonin 

concentration in urine as numerical read-out.  

The designed zeolite-based chemosensors were used for label-free enzymatic reaction 

monitoring. It was possible to follow the enzymatic reaction of TDC in real time in biological 

buffers and in complex biofluids. For comparison, this is a great practical challenge to existing 

technologies that provide only discontinuous data points and require time-consuming sample 

pre- and post-treatment steps.  
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Overall, a new class of fluorescent artificial receptors was introduced that can capture positively 

charged as well as zwitterionic and neutral NTs and their metabolites in biorelevant concentra-

tion ranges with unprecedented affinity and selectivity. The new class of zeolite-based 

chemosensors is thermally and chemically robust and can be readily prepared on a large scale 

at very low cost. The modular and facile preparation of the introduced artificial receptors offers 

many additional opportunities.  

6.5. Improvement of current zeolite-based chemosensors 

The binding affinity of the introduced zeolite-based chemosensors towards dopamine should 

be improved in the future as the current chemosensors “just” reach the practically required 

log Ka values. This may be possible by further functionalization of the DAP core, introducing 

a boronic acid functional group that may increase the affinity and selectivity (see Figure 102a). 

Additionally, oxidative enzymatic conversion of serotonin and dopamine, e.g., by laccase and 

horseradish peroxidase,406 could be utilized to achieve analytes with a higher dye quenching 

efficiency or binding affinity (see Figure 102b). Another option would be to focus on the de-

tection of the degradation products of the NTs, namely 5-HIAA for serotonin and HVA for 

dopamine, and therefore establish an “indirect NT sensing”. 

 

Figure 102: a) Possible boronic acid modification on the reporter dye to possibly increase the dopamine affinity. b) Enzymatic 

conversion of serotonin by either laccase or MAO and aldehyde dehydrogenase (typical degradation in the human body forming 

5-HIAA). 

First approaches towards ratiometric sensing assay by co-inclusion of a spectator dye whose 

emission is not affected by the presence of the neurotransmitters will be further followed. 

Furthermore, two chemosensors, e.g., the within this work introduced L3.0·D2 and L3.0·D13 

(see Figure 103), could be combined to a ratiometric sensing assay. The total neurotransmitter 

concentration could be sensed with L3.0·D13, while the detection with L3.0·D2 provides a 

measure for the serotonin concentration. In combination, such chemosensors could therefore be 

used to determine the concentration of each of the individual neurotransmitters present.  
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Figure 103: Chemical structures for the reporter dyes D2 and D13 suitable for a ratiometric NT sensing assay. 

6.6. Potential applications 

One day, zeolite-based chemosensors could be utilized for home-use and point-of-care testing 

and therefore support individualized therapies38 by providing information about the drug dose 

influence on the physiological neurotransmitter levels. Patients that receive drug treatment 

could regularly monitor the drug levels excreted in their urine, which may provide 

unprecedented options for a personalized medical treatment of diseases where the actual 

bioavailability of the drug for each patient is considered. In a bold future vision, drug side 

effects will be largely reduced if options for personal diagnostics become widely available that 

allow for an evidence-based selection of a drug and tuning of its dosage. Zeolite-based 

chemosensor assays may provide some useful information in combination with other methods 

that may assist in diagnosing diseases such as depression, Parkinson’s, or Alzheimer’s disease. 

Comparisons of the with zeolite-based chemosensors determined NT levels with concentration 

values obtained in specialized laboratories with certified NT tests will enable the development 

of an accurate NT concentration determination for the chemosensor assays in the future.  

As cooperation projects with ELISA D’ESTE from the MPI and the KUNER group in Heidelberg, 

the designed zeolite-based chemosensor are currently probed towards their ability for imaging 

applications. The chemosensor particles can be readily observed by two-photon microscopy. 

The presence of multiple binding sites in close spatial proximity is considered to be a real asset 

over genetically encoded fluorescent NT sensors as it could provide a much better signal-to-

noise ratio. 

The label-free enzymatic reaction monitoring in real time with the designed zeolite-based 

chemosensors in combination with their tunability directs towards an enzyme assay platform 

responsive to all sorts of positively charged aryl-type metabolites. It is believed that after further 

investigations of zeolite-dye combinations a broad spectrum of enzymatic reactions can be 

covered. 
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6.7. Development of other artificial chemosensors 

The rational combination of nanoporous inorganic materials295,407 with tailor-made reporter 

dyes provides a promising platform for the design of artificial receptors for metabolites and 

other small bioactive target molecules, particularly hydrophilic ones, for which any of the 

known synthetic binders still largely underperform. Besides recognition of the analytes, the 

combination of confinement and electronic dye-analyte interactions will allow the highly selec-

tive differentiation amongst very similar target molecules. I believe that this concept is trans-

ferable to other nanoporous materials408 such as metal organic frameworks (MOFs),409-411 co-

valent organic frameworks (COFs),412 and breakable and thus more biocompatible silica-

materials,413 which will be high-affinity binders for different analyte classes, depending on their 

charge and atomic composition. Moreover, the herein demonstrated convenient signal trans-

duction strategy, through co-inclusion of an emissive reporter dye into the porous framework, 

can find important applications because of its sensitivity and practical ease. 

  



132  Conclusion and outlook 

 

 

  



Experimental part  133 

 

7. Experimental part 

7.1. Miscellaneous 

7.1.1. Analytics and equipment 

Nuclear magnetic resonance (NMR)  

NMR spectra were recorded on a BRUKER Avance 500 (1H NMR: 500 MHz; 13C NMR: 

126 MHz) at room temperature. The substance to be analysed was dissolved in a deuterated 

solvent and transferred into a NMR sample tube. Within this work, the chemical shift δ is 

expressed in parts per million (ppm). During analysis, the residual signal of the solvent was 

used as secondary reference: chloroform-d1 (
1H: δ = 7.26 ppm, 13C: δ = 77.2 ppm), dimethyl 

sulfoxide-d6 (1H: δ = 2.50 ppm, 13C: δ = 39.5 ppm), methanol-d4 (
1H: δ = 3.31 ppm, 

13C: δ = 49.0 ppm), D2O (1H: δ = 4.90 ppm), tetrahydrofuran-d8 (1H: δ = 3.58 and 1.73 ppm, 

13C: δ = 67.6 and 25.4 ppm).414,415 1H NMR spectra were analysed according to first order, 13C 

spectra were 1H-decoupled and characterisation of the 13C NMR spectra was ensued through 

distortionless enhancement by polarization transfer (DEPT) and stated as follows: DEPT: “+“ 

= primary or secondary carbon atoms (positive DEPT-signal), “−“ = secondary carbon atoms 

(negative DEPT-signal), Cq = quaternary carbon atoms (no DEPT-signal). For central 

symmetrical signals, the midpoint is given, for multiplets the range of the signal region is given. 

The multiplicities of the signals were abbreviated as follows: s = singlet, d = doublet, t = triplet, 

quart =  quartet, quin =  quintet, m = multiplet. All coupling constants (J) are stated as modulus 

in Hertz (Hz).  

Infrared spectroscopy (IR) 

IR spectra were recorded on a THERMO SCIENTIFIC
TM

 NicoletTM iSTM50 FTIR spectrometer with 

a built-in attenuator total reflection (ATR) module. Measurements of the samples were con-

ducted via ATR and were measured in the range from 4000 cm−1 to 400 cm−1. The band inten-

sity (strength of absorption) was described as follows: vs = very strong (0 - 9.9% transmission 

T); s = strong (10 - 39.9% T); m = middle (40 - 69.9% T); w = weak (70 - 89.9% T); vw = very 

weak (90 - 100% T). The position of the bands is given as wavenumber ν̃ with the unit (cm−1). 
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Mass spectrometry (ESI-MS) 

Electrospray ionization (ESI) mass spectrometry (MS) experiments were carried out on a 

BRUKER micrOTOF-Q (208 - 320 Vac, 50/60 Hz, 1800 VA) mass spectrometer equipped with 

an ON-LINE NANOELECTROSPRAY ion source. The spectra were interpreted by molecular peaks 

[M]n+, peaks of protonated molecules [M+H]n+, and characteristic fragment peaks and indicated 

with their mass-to-charge ratio (m/z). Solvents used were H2O, MeOH and DMSO. 

Isothermal titration calorimetry (ITC) 

ITC experiments were carried out on a Microcal PEAQ-ITC from MALVERN PANALYTICAL in 

a temperature range of 5 to 55°C. Aqueous zeolite or chemosensor dispersions were filtered 

with a 0.45 µm polypropylene syringe filter prior to the experiments and added into the cell of 

the instrument, taking care that no air bubbles remained. Similarly, the aqueous solutions of the 

macrocyclic hosts (cucurbit[n]urils and β-cyclodextrin) were placed into the cell. In a typical 

experiment, 1.5 µL titrant solution (the first injection was 0.4 µL) with 150 seconds spacing 

was injected 25 times into the ITC cell (stir speed: 750 rpm; initial delay: 60 s; injection 

duration: 6 s), which contained host or chemosensor. The reference power was adjusted 

depending on the amount of heat released/restraint by the host•analyte interaction. If not stated 

otherwise, the raw data was analysed by the Microcal PEAQ-ITC analysis software using a 1:1 

complexation model. The first data point was always omitted. All data was baseline corrected 

by the averaged value of the titration of analyte/guest into water. For titrations involving 

zeolites, an additional offset fitting was needed due to buffer mismatch effects caused by ions 

leaching from the zeolites. 

Dynamic light scattering (DLS) and zeta potential (ζ) 

The hydrodynamic diameter and the zeta potential ζ of the within this work used zeolites and 

zeolite-based chemosensors were determined with a MALVERN ZetaSizer Nano. All samples 

were treated with an ultrasonic tip sonicator for 10 min prior to the measurements. For DLS 

measurements, disposable acryl cuvettes were used whereas for zeta potential measurements 

folded capillary zeta cell cuvettes (polycarbonate) supplied by MALVERN PANALYTICAL were 

used.  
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Thin layer chromatography (TLC) 

To control the reaction progress, prefabricated silica sheets (silica gel 60 on aluminium plate, 

fluorescence indicator F254, 0.25 mm layer thickness) by MERCK were used. Detection was 

carried out under UV-light provided by a CAMOQ UV lamp at λ = 254 nm or λ = 366 nm. 

Alternatively, the TLC plates were stained with a SEEBACH-dip (2.5% phosphor molybdic acid, 

1.0% cerium(IV) sulfate, 6.0% conc. sulfuric acid, 90.5% water) and dried in a hot air stream.  

Flash column chromatography 

The purification of some compounds was carried out with the automated CombiFlash Rf+ 

column chromatograph supplied by TELEDYNE ISCO. As column, commercially available 

prefilled columns, namely Redi Sep Rf, supplied by TELEDYNE ISCO were used. The crude 

products were dissolved in the mobile phase and applied with a syringe on top of the column. 

Elemental analysis (EA) 

Microanalyses were performed by the microanalytical services at the Institute of Nanotech-

nology on a vario MICRO cube CHNS analyser by ELEMENTAR. 

pH meter 

The pH of the solutions was measured with a WTW 330I pH meter equipped with a combined 

pH glass electrode (SenTix Mic). A minimum amount of hydrochloric acid or sodium hydroxide 

solution was used for pH adjustments. 

Centrifuge 

For zeolite-based chemosensor preparation, a centrifuge by SIGMA, type 2-16KL was used. 

Centrifugation was carried out at room temperature with a speed of 7000 - 8000 rpm. 

Lyophilisation 

The drying of aqueous solutions or dispersions was carried out on a ZIRBUS TECHNOLOGY 

VaCo2 lyophilisation plant. 
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Fluorescence spectroscopy 

Steady-state emission spectra were recorded on a JASCO FP-8300 fluorescence spectrometer 

equipped with a 450 W xenon arc lamp, double-grating excitation, and emission mono-

chromators. Emission and excitation spectra were corrected for source intensity (lamp and 

grating) and the emission spectral response (detector and grating) by standard correction curves. 

Fluorescence-based titration curves were performed manually or by an ATS-827 automatic ti-

tration unit to obtain the desired Ka values. For temperature-dependent studies, the temperature 

was varied between 5 and 55°C in 10°C steps by using a water thermostated cell holder STR-

812, while the cuvettes were equipped with a stirrer allowing rapid mixing. Quantum yield 

measurements were performed on a HORIBA JOBIN-YVON IBH FL-322 Fluorolog-3 spectro-

meter with a Quanta- integrating sphere attached as an accessory. The data was analysed by 

the commercially available software FluorEssenceTM (HORIBA JOBIN-YVON) version 3.5. 

Stopped-flow experiments 

Stopped-flow experiments were carried out on a JASCO FP-8300 fluorescence spectrometer 

equipped with a water thermostated SFA-20 stopped-flow accessory from TGK SCIENTIFIC 

LIMITED, which was driven by a pneumatic drive.  

Absorbance spectroscopy  

Absorbance spectra were measured on a JASCO V-730 double-beam UV-Vis spectrophotometer 

and baseline corrected. The spectra were normalised by division with the absorbance at a 

wavelength λmin ≥ 650 nm to correct for any minor baseline shifts prior to curve fitting. 

Plate reader 

For microwell-based assays, an EnSightTM multimode plate reader by PERKIN ELMER equipped 

with fluorescence intensity detection with monochromator (top- and bottom-reading) as well as 

filter- and monochromator-based absorbance detection and temperature control was used. All 

measurements were conducted in black opaque OptiPlateTM-96 polystyrene microplates 

supplied by PERKIN ELMER. 

 



Experimental part  137 

 

Cuvettes and microwell plates 

The used cuvettes were PS disposable macro cuvettes by BRAND GmbH with a diameter of 

10 mm (Cat No 759005) for emission-based measurements at wavelengths λ > 360 nm. PMMA 

disposable cuvettes by BRAND GmbH with a diameter of 10 mm (Cat No 759105) were used 

for measurements at wavelengths λ > 300 nm, whereas UV transparent disposable cuvettes with 

four transparent sides by BRAND GmbH with a diameter of 10 mm (Cat No 759128) were used 

for all other measurements.  

Pipettes 

Volume transfer was conducted by EPPENDORF
® RESEARCH

® plus single- or 8-channel pipettes 

with disposable tips (epT.I.P.S.®). 

Tip sonicator 

Sonication of zeolite dispersions and zeolite-based chemosensor dispersions was carried out 

with a UP200S tip sonicator (working frequency 30 ± 1 kHz, energy density ≥ 300 W cm−2) by 

HIELSCHER. 

Balances 

Weighed in mass > 1.0 g: SARTORIUS TE214S as well as METTLER TOLEDO XS204.  

Weighed in mass < 1.0 g: SARTORIUS SE2-F.  

Error estimation 

The statistical errors from the titration fittings were generally not larger than 10% in Ka values. 

The reproducibility error, that is, when the measurements were performed multiple times, was 

up to 20% and therefore larger. When repeating ITC titrations with CB5 at least three times, 

the errors were 15% in Ka and 1.0 kJ mol−1 in ΔH, ΔG, and –TΔS. Hence, a conservative 

estimate of the overall errors of the reported values is 0.2 in log Ka or 25% in Ka and 

± 2.0 kJ mol−1 for the thermochemical data. All binding affinity and ITC measurements were 

repeated at least three times for all systems studied. 
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7.1.2. Preparative work 

Reactions which required the exclusion of air and water were carried out under N2 atmosphere. 

Glassware was prepared in advance by employing the Schlenk technique by multiple evacuations 

of the glassware under heat and subsequent flooding with nitrogen. Solvents were evaporated under 

reduced pressure at a water-cooled rotating evaporator. Liquids were added via plastic syringes and 

V2A-needles. Solids were added in pulverised form. Reactions at 0°C were cooled with a mixture 

of ice/water. If not stated otherwise, solutions of inorganic salts are saturated aqueous solutions.  

Solvents and reagents 

The chemicals for the synthesis were purchased from MERCK, SIGMA ALDRICH, ACROS ORGANICS, 

and ALFA AESAR with the minimum quality “for synthesis” and were used without further purifica-

tion. Dry solvents were stored over molecular sieves (3 Å or 4 Å) to ensure their aridity over long 

periods. Deuterated solvents were purchased form VWR CHEMICALS and ACROS. Analytes were 

purchased from SIGMA ALDRICH, TCI, and ALFA AESAR with the highest purity grade available, 

typically as analytical standard grade and used as received. Cucurbit[n]urils were either pur-

chased from STREM CHEMICALS or synthesized following known literature procedures.318,319 

Zeolite L3.0 (Lucidot® NZL 40) was provided by CLARIANT, zeolite Y15 and zeolite Y40 were 

purchased from ZEOLYST INTERNATIONAL as H+ form (CBV720 and CBV780). Human serum 

(HS) was purchased as human serum from human male AB plasma provided by SIGMA, whereas 

fatty acid free human serum albumin (HSA) protein was purchased from ALFA AESAR. Neuro-

basalTM medium (minus phenol red) was purchased from THERMO FISHER SCIENTIFIC. Surine 

was purchased from CERILLIANT. The enzyme TDC was purchased from CREATIVE ENZYMES 

as native streptococcus faecalis L-tyrosine decarboxylase. The enzyme DDC was purchased 

from CREATIVE BIOMART as recombinant human DDC full length (DDC-284H Human), fused 

with a polyhistidine tag at the C-terminus and produced in Baculovirus-Insect cells. Buffer 

solutions were prepared following standard protocols. For 1X PBS, buffer tablets from CRUZ 

CHEM were dissolved in 500 mL MilliQ water. Adamantanol derivatives, namely 4-hydroxydi-

amantane (4-DiAdOH, 55), 4,9-dihydroxydiamantane (4,9-DiAd(OH)2, 56), 3,9-dihydroxytri-

amantane (3,9-TriAd(OH)2, 57), and 9,15-dihydroxytriamantane (9,15-TriAd(OH)2, 58) were 

kindly provided by BORYSLAV TKACHENKO from the SCHREINER group in Giessen. Dialysis 

membranes, namely SpectrumTM Spectra/PorTM Biotech cellulose ester (CE) dialysis membrane 

tubings with a MWCO from 100 to 500 D, were purchased from FISHER SCIENTIFIC.  
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7.2. Synthesis and characterisation 

7.2.1. General procedures 

General procedure for the desalination of CBn (GP1) 

For ITC experiments, all used CBn were desalted with a regenerated cellulose ester dialysis 

membrane (MWCO 100 - 500 D) system, as the salt content of the commercial samples was 

found to significantly affect the experiments. Therefore, the host solution was placed into a with 

MilliQ water prewashed dialysis tube and placed in a beaker with 2 L MilliQ water under stir-

ring. The MilliQ water was exchanged three times within 24 h. Desalined CBn solutions were 

stored in the fridge and used within 4 weeks. 

 

General procedure for the ion exchange of zeolites314 (GP2) 

Ion exchange within the zeolite pores252,416 was conducted to displace hydrogen cations by 

sodium cations. For this purpose, the zeolite dispersions were sonicated with a copious amount 

of NaHCO3. Afterwards, the mixtures were centrifuged and washed four times with 30 mL 

MilliQ water. 

 

General procedure for the preparation of zeolite-based chemosensor material (solid) (GP3) 

A dicationic dye was solubilized in 10 mL deionized water and the stock solution concentration 

was determined by extinction coefficient-based absorbance measurements (see GP5). Precisely 

weighed in zeolite powder was added to the solution. After 10 minutes of treatment with an 

ultrasonic tip sonicator (UP200S HIELSCHER, working frequency 30 ± 1 kHz, energy density 

≥ 300 W cm−2), the dispersions were centrifuged, decanted, and washed three to five times with 

water to remove surface-physiosorbed dye molecules. This sequence was repeated until the 

supernatant became colourless and non-emissive. Generally, after the second washing cycle no 

quantifiable amounts of unbound dye remained. Dye loading was found to be possible in a range 

of 0 - 4% (wt% based on the amount of zeolite used). Finally, the solids were dried in vacuum 

(lyophilisation) to yield the corresponding chemosensor solids.  
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General procedure for the preparation of zeolite-based chemosensor dispersions (GP4) 

Zeolite-based chemosensor dispersions in buffered solutions or synthetic biological media were 

prepared by weighing in the chemosensor solid to which an accurately measured volume of the 

medium was added. The mixtures were sonicated by an ultrasonic tip sonicator (working fre-

quency 30 kHz, energy density ≥ 300 W cm−2) for 10 minutes and used as such.  

For neurobasalTM medium, L3.0·D14 was directly dispersed in the medium and used as such. 

For human serum albumin (HSA) measurements, L3.0·D14 was dispersed in 50 mM HEPES, 

pH 7.2, and sonicated with HSA dissolved in 50 mM HEPES, pH 7.2 (cend(HSA) = 250 µM). 

For human serum (HS), L3.0·D14 was dispersed in 50 mM HEPES, pH 7.2, and sonicated 2:1 

(v/v) with HS. For surine, L3.0·D14 was dispersed in 50 mM HEPES, pH 7.2, and sonicated 1:1 

(v/v) with surine.   

Table 26: Concentrations of the used zeolite-based chemosensors and their dye loadings within the in this work conducted 

experiments. Dye loadings were determined by extinction coefficient-based absorbance measurements and precise titrating. 

Method 

Conc. of 

chemosensor  

(µg mL–1) 

Dye loading  

(wt% based on 

zeolite amount) 

Stopped-flow experiments 175 2.3 

ITC experiments 250 2.3 

Fluorescence experiments in water 250 0.23 

Fluorescence experiments in buffered media 250 0.23 

Fluorescence experiments in neurobasal mediumTM 1500 0.23 

Fluorescence experiments in HS and HSA 780 0.23 

Fluorescence experiments in surine 280 0.23 

Absorbance experiments 250 2.3 

(S)Urine assays 320 0.23 

Enzyme assays 550 0.23 

General procedure for the concentration determination of dye and analyte stock solutions 

(GP5) 

All dye and analyte stock solutions were prepared in MilliQ water and stored in the fridge at 

+4°C. The concentrations of the stock solutions were determined by UV-Vis titration measure-

ments based on their extinction coefficient (see Table 27) and Beer-Lambert’s law (see 

Equation 2 in Chapter 3.2.3.1) unless stated otherwise.231-233  

 



Experimental part  141 

 

Table 27: Absorbance maxima (λmax) and molar extinction coefficients (ελ,max) of the dyes and analytes used for the determina-

tion of the concentration of their stock solutions by UV-Vis titration measurements. 

Sample 
λmax  

(nm) 

ελ,max  

(M–1 cm–1) 
Reference 

BC 344 22300 417,418 

Cobaltocene+ 261 34200 419 

Dopamine 280 2670 420 

DPP 431 26000 self-determined 

Epinephrine 280 2754 421 

Indole 278 4900 363 

MDAP 393 7800 self-determined 

MPCP 335 7111 340 

Nitrate 201 9500 422,423 

Nandrolone 248 17300 self-determined 

Norepinephrine 280 3670 424 

Phenylalanine 257 195 424 

Serotonin 280 5510 425 

Tryptamine 280 5579 424 

Tryptophan 280 7820 425 

Tyramine 274 1479 420 

During the ITC-based investigation of the CB5•Ba2+ complexation, the Ba2+ concentration of 

the prepared stock solution decreased upon standing due to the formation of insoluble salts. The 

Ba2+ concentration was therefore adjusted by fixing the known CB5 concentration and forcing 

the molar ratio (N) to 1. However, the by this method determined values were consistent among 

themselves within the four performed repetitions. 

The concentrations of CB7 and CB8 stock solutions were determined by ITC titration experi-

ments with cobaltocenium hexafluorophosphate as guest.419 The concentrations of β-CD stock 

solutions were determined by ITC with adamantanol as guest. For all cases, the determined 

values were in accordance with all other investigated guests. For emission-based measurements, 

the CB7 concentration was determined by fluorescence titration against D2 by exciting the 

sample at λex = 339 nm and collecting the emission intensity at λem = 454 nm. The CB8 con-

centration was determined by fluorescence titration against MPCP by exciting the sample at 

λex = 368 nm and collecting the emission intensity at λem = 531 nm. The host concentrations 

were obtained by the intersect of the two linearly fitted reaction stages: (i) c(host) < c(dye) 

concomitant with an emission change with each titration step and (ii) c(host) > c(dye) 

concomitant with a plateau, when titrating host solution into dye solution. The concentrations 

of the non-emissive guest molecules studied in Chapter 5.1 were determined by ITC titrations 

with known concentrations of either CB7 or CB8. 
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General procedure for the urine assays (GP6) 

Urine samples (spot urine) were collected from healthy voluntary donors spontaneously during 

the day (morning urine was not used) and used without any pre-treatment steps except for dilu-

tion. Samples were stored in aliquots at –20°C. For measurements, samples were defrosted and 

stored at +4°C and used within 3 - 4 days. Before analysis, samples were incubated at room 

temperature for 30 minutes. Dilutions were done with water or assay buffer. 
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7.2.2. Synthesis and characterisation of dye molecules 

7.2.2.1. Precursors 

 

S-(4-bromobutyl) ethanethioate348 (89) 

1,4-Dibromobutane (93, 8.00 mL, 14.6 g, 67.8 mmol, 1.4 eq) was dissolved 

in 40 mL DCM under inert conditions. Potassium thioacetate (5.53 g, 

48.4 mmol, 1.0 eq) was predissolved in 82 mL dry ethanol and added dropwise. A colourless 

precipitate formed. The reaction mixture was stirred for 3 days at room temperature. After-

wards, the solvents were removed under reduced pressure and the colourless solid was redis-

solved in DCM and washed with water by an extraction procedure. After drying the organic 

phase over MgSO4, the solvent was removed under reduced pressure and the crude product was 

purified via flash column chromatography (silica) using a gradient of 0 - 100% DCM/cyclo-

hexane. The product (89) was isolated as a colorless oil with a yield of 54% (5.52 g, 26.1 mmol). 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 3.38 (t, 3J = 6.7 Hz, 2H, CH2), 2.86 (t, 

3J = 7.5 Hz, 2H, CH2), 2.30 (s, 3H, CH3), 1.89 (quin, 3J = 7.5 Hz, 2H, CH2), 1.70 (quin, 

3J = 7.5 Hz, 2H, CH2). 

 

tert-Butyl (3-bromopropyl)carbamate354 (91) 

A suspension of 3-bromopropylamine hydrobromide (90, 1.59 g, 

7.25 mmol, 1.0 eq) and di-tert-butyl dicarbonate (1.58 g, 7.25 mmol, 

1.0 eq) in 600 mL DCM was stirred under ice bath cooling. Triethylamine (1.21 mL, 880 mg, 

8.70 mmol, 1.2 eq) was added dropwise to the cooled mixture and the solution was stirred for 

1 day at room temperature. After washing the reaction solution two times with 500 mL 1 M 

KHSO4 aq., water, and brine with subsequent phase separation, the organic phase was dried 

over Na2SO4 and the solvent was removed under reduced pressure. The product (91) was 

obtained as a slightly yellow solid with a yield of 90% (1.55 g 6.52 mmol). 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 4.66 (bs, 1H, NH), 3.43 (t, 3J = 6.5 Hz, 2H, 

CH2), 3.29-3.27 (m, 2H, CH2), 2.04 (m, 2H, CH2), 1.44 (s, 9H, CH3). 



144  Experimental part 

1-Iodo-2-(2-(2-(2-iodoethoxy)ethoxy)ethoxy)ethane346,347 (92)  

To a solution of 1-chloro-2-(2-(2-(2-chloroethoxy)ethoxy)ethoxy) 

ethane (88, 1.00 mL, 1.18 g, 5.11 mmol, 1.0 eq) in 12 mL acetone, 

sodium iodide (3.83 g, 25.5 mmol, 5.0 eq) was added. The reaction mixture was heated to 80°C 

for 3 days. The colourless precipitate was filtered off, the filtrate was concentrated under 

reduced pressure, redissolved in DCM, and filtered again. After removing the solvent under 

reduced pressure, the dark yellow oil was purified via flash column chromatography (silica) 

using a gradient of 0 - 100% cyclohexane/ethyl acetate. The product (92) was obtained as a 

slightly yellow oil with a yield of 91% (1.92 g, 4.64 mmol). 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 3.74 (t, 3J = 7.5 Hz, 4H, CH2), 3.65-3.60 (m, 

8H, CH2), 3.25 (t, 3J = 7.5 Hz, 4H, CH2). 

 

7.2.2.2. 2,7-Diazapyrene synthesis 

 

2,7-Dimethylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone344 (86) 

A two-neck flask with a reflux condenser was filled with aqueous methyl-

amine (40 wt%, 120 mL, 1.39 mol, 74.5 eq). To this solution, 1,4,5,8-

naphthalenetetracarboxylic dianhydride (85, 5.00 g, 18.6 mmol, 1.0 eq) 

was added slowly and the orange reaction mixture was refluxed for 3 h. After cooling to room 

temperature, the precipitate was collected by filtration, washed with copious amounts of 

methanol, and dried in vacuo. The product (86) was isolated as a nude coloured solid with a 

yield of 70% (3.50 g, 13.1 mmol). 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 8.78 (s, 4H, H-Ar), 3.61 (s, 6H, CH3). 

− 13C NMR (126 MHz, CDCl3, 298 K): δ (ppm) = 163.1 (Cq), 131.0 (CH), 126.6 (CH), 27.5 

(CH3). 
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2,7-Dimethyl-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline345 (87) 

In a 500 ml two-neck flask, anhydrous AlCl3 (3.27 g, 24.6 mmol, 2.3 eq) 

was dissolved in 200 ml dry THF. To the stirring solution, LiAlH4 (2.40 g, 

74.0 mmol, 7.1 eq) was added carefully in small portions under ice bath 

cooling. 86 (3.10 g, 10.5 mmol, 1.0 eq) was added in portions and the red reaction mixture was 

heated to reflux. After 4 h the reaction mixture had turned green and was cooled to room tem-

perature. Subsequent, the reaction mixture was quenched with 400 mL ice water. The brown 

precipitate was filtered off and dried under reduced pressure. The solid was extracted with 1.5 L 

chloroform in a Soxhlet extractor for 5 h. The extract was evaporated and a brown-green solid 

was obtained. The product (87) was isolated with a yield of 39% (970 mg, 4.08 mmol). 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 7.18 (s, 4H, H-Ar), 3.99 (s, 8H, CH2), 2.61 (s, 

6H, CH3). − 13C NMR (126 MHz, CDCl3, 298 K): δ (ppm) = 128.4 (Cq), 126.3 (CH), 125.3 

(Cq), 54.1 (CH2), 34.1 (CH3). 

 

Benzo[lmn][3,8]phenanthroline // 2,7-diazapyrene345 (DAP, D1) 

In a 250 ml flask, selenium (5.00 g, 64.5 mmol, 20.0 eq) and 87 (770 mg, 

3.23 mmol, 1.0 eq) were stirred at 265°C for 4 h. Next, the black viscous 

mixture was heated to 300°C for 1 h.  After cooling to room temperature, the 

reaction flask was boiled for four times with 1 M aqueous HCl for 10 min. After each boiling, 

the black solid was filtered off the acidic solution yielding a red filtrate. The filtrates were 

combined and the addition of 5 M NaOH aq. caused the precipitation of a yellow powder. The 

precipitate was filtered off, washed with water, and dried in vacuo. The product (D1) was 

isolated as a yellow solid with a yield of 63% (414 mg, 2.03 mmol). 

1H NMR (500 MHz, MeOD–d3, 298 K): δ (ppm) = 9.53 (s, 4H, H-Ar), 8.39 (s, 4H, CH2). 

− 13C NMR (126 MHz, MeOD–d3, 298 K): δ (ppm) = 146.0 (CH), 128.0 (CH), 127.8 (Cq), 

127.5 (Cq).  
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7.2.2.3. 2,7-Diazapyrene functionalisation 

 

2,7-Dimethylbenzo[lmn][3,8]phenanthroline-2,7-diium diiodide320 (MDAP, 48, D2) 

Under nitrogen atmosphere, D1 (97.0 mg, 475 µmol, 1.0 eq) was dissolved 

in 12 mL dry DMF. Methyl iodide (1.00 mL, 2.28 g, 16.1 mmol, 34.0 eq) 

was added and the reaction solution was stirred at room temperature over-

night. Another portion of methyl iodide (1.00 mL, 2.28 g, 16.1 mmol, 34.0 eq) was added and 

the reaction solution was stirred at room temperature overnight. The yellow precipitate was 

filtered off, washed with DMF, and recrystallized from methanol. The crude product was dis-

solved in 1 M HCl, overlaid with acetone and the mixture was stored at 4°C overnight. The 

precipitate was filtered off and washed with acetone. The product (D2) was isolated as a yellow 

solid with a yield of 65% (151 mg, 309 µmol). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.03 (s, 4H, H-Ar), 8.85 (s, 4H, H-Ar), 4.97 (s, 

6H, CH3). − 13C NMR (126 MHz, D2O, 298 K): δ (ppm) = 141.9 (CH), 129.9 (CH), 129.5 (Cq), 

126.8 (Cq), 49.9 (CH3).  

 

2,7-Diallylbenzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D3) 

D1 (50.0 mg, 245 µmol, 1.0 eq) was dissolved in 10 mL dry DMF 

under nitrogen atmosphere. Allyl bromide (2.65 mL, 3.70 g, 

30.6 mmol, 125 eq) was added and the reaction mixture was stirred 

at 85°C for 18 h. A yellow precipitate was formed, which was filtered off, washed with DMF, 

and dried under reduced pressure. The product (D3) was isolated as a yellow solid with a yield 

of 59% (64.5 mg, 145 µmol). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.10 (s, 4H, H-Ar), 8.88 (s, 4H, H-Ar), 6.39-6.30 

(m, 2H, CH), 5.82 (d, 3J = 6.5 Hz, 4H, CH2), 5.69-5.63 (m, 4H, CH2). − 13C NMR (126 MHz, 

D2O, 298 K): δ (ppm) = 141.1 (CH), 130.0 (Cq), 129.9 (CH), 127.2 (Cq), 123.9 (CH2), 65.3 

(CH2). − ESI-MS (pos., CH3OH): m/z calc. for C20H18N2
2+ ([M]2+) 143.0370, found 143.0137; 

calc. for C20H17N2
+ ([M-H]+) 285.1386, found 285.1689. 
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2,7-Bis(4-bromobutyl)benzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D4) 

Under nitrogen atmosphere, D1 (25.0 mg, 122 µmol, 

1.0 eq) was dissolved in 11 mL dry DMF. 1,4-Dibromo-

butane (1.09 mL, 1.98 g, 9.15 mmol, 75.0 eq) was added 

and the reaction solution was stirred at 85°C for 20 h. The yellow precipitate was filtered off, 

washed with DMF, and dried under reduced pressure. The product (D4) was isolated as a yellow 

solid with a yield of 75% (53.4 mg, 90.1 µmol). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.12 (s, 4H, H-Ar), 8.86 (s, 4H, H-Ar), 5.24 (t, 

3J = 7.5 Hz, 4H, CH2), 3.57 (t, 3J = 6.4 Hz, 1H, CH2), 2.46 (quin, 3J = 7.5 Hz, 4H, CH2), 2.04 

(quin, 3J = 7.5 Hz, 4H, CH2). − 13C NMR (126 MHz, D2O, 298 K): δ (ppm) = 141.1 (CH), 

130.0 (Cq), 129.9 (CH), 127.0 (Cq), 62.9 (CH2), 33.0 (CH2), 30.1 (CH2), 28.5 (CH2). 

− ESI-MS (pos., H2O): m/z calc. for C22H24N2Br2
2+ ([M]2+) 238.0137, found 238.0220. 

 

2,7-Bis(4-(acetylthio)butyl)benzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D5) 

 D4 (35.0 mg, 55.0 µmol, 1.0 eq) was dissolved in 

10 ml deionized water and potassium thioacetate 

(15.1 mg, 132 µmol, 2.3 eq) was added as solid. The 

reaction mixture was stirred for 3 days at room 

temperature. The solvent was removed under reduced 

pressure and D5 was isolated as red-brown powder with a yield of 92% (32.0 mg, 51.0 mmol).  

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.10 (s, 4H, H-Ar), 8.86 (s, 4H, H-Ar), 5.22 (t, 

3J = 7.2 Hz, 2H, CH2), 2.97 (t, 3J = 7.2 Hz, 2H, CH2), 2.36 (quin, 3J = 7.5 Hz, 2H, CH2), 2.32 

(s, 6H, CH3), 1.75 (quin, 3J = 7.5 Hz, 2H, CH2). – 13C NMR (126 MHz, D2O, 298 K): δ (ppm) = 

201.7 (C=O), 141.1 (CH), 130.0 (Cq), 129.9 (CH), 127.0 (Cq), 63.2 (CH2), 30.2 (CH2), 30.0 

(CH3), 27.9 (CH2), 25.5 (CH2). − HR-ESI-MS (pos., MeOH): m/z calc. for C26H30N2O2S2
2+ 

([M]2+) 233.0869, found 238.0866. 
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2,7-Bis(4-mercaptobutyl)benzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D6) 

D5 (11.2 mg, 17.9 µM, 1.0 eq) was dissolved in dry MeOH 

and acetyl chloride (100 µL, 110 mg, 1.4 mmol, 78.0 eq) 

was added under nitrogen atmosphere. After stirring for 

12 h at room temperature the reaction mixture was quenched by the addition of 10 mL H2O. 

After removal of the solvents, D6 was isolated as dark brown solid with a yield of 70% 

(6.80 mg, 12.5 µM). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.12 (s, 4H, H-Ar), 8.86 (s, 4H, H-Ar), 5.22 (t, 

3J = 7.4 Hz, 4H, CH2), 2.64 (t, 3J = 7.0 Hz, 4H, CH2), 2.41 (t, 3J = 7.4 Hz, 4H, CH2), 1.75 (t, 

3J = 7.4 Hz, 4H, CH2). – 13C NMR (126 MHz, D2O, 298 K): δ (ppm) = 141.1 (CH), 129.9 (Cq), 

129.8 (CH), 127.0 (Cq), 63.3 (CH2), 30.1 (CH2), 29.5 (CH2), 23.0 (CH2). 

 

2,7-Bis(2-(2-(2-(2-iodoethoxy)ethoxy)ethoxy)ethyl)benzo[lmn][3,8]phenanthroline-2,7-

diium diiodide (D7) 

D1 (25.0 mg, 122 µmol, 1.0 eq) was dissolved in a mix-

ture of 4.0 mL MeCN and 700 µl phosphate buffer, pH 

7.0. 92 (3.80 g, 9.18 mmol, 75.0 eq) was dissolved in 1.0 

mL MeCN and was added to the reaction solution. The mixture was stirred at 50°C for 7 days. 

The yellow solution was overlayed with diethyl ether and stored in the fridge at 4°C, where 

orange/brown oil drops formed on the bottom of the flask overnight. Those were separated from 

the solution, dissolved in water (deionized), and washed twice with diethyl ether. The product 

was isolated as brown oil with a yield of 34% (37.9 mg, 36.7 μmol). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.17 (s, 4H, H-Ar), 8.94 (s, 4H, H-Ar), 5.44-5.39 

(m, 4H, CH2), 4.33-4.27 (m, 4H, CH2), 3.73-3.71 (m, 4H, CH2), 3.63-3.60 (m, 4H, CH2), 3.54 

(t, 3J = 6.1 Hz, 4H, CH2), 3.56-3.52 (m, 4H, CH2), 3.51-3.48 (m, 4H, CH2), 3.08 (t, 3J = 6.1 Hz, 

4H, CH2).  – 13C NMR (126 MHz, D2O, 298 K): δ (ppm) = 141.8 (CH), 130.2 (CH), 129.6 (Cq), 

127.1 (Cq), 71.0 (CH2), 70.0 (CH2), 69.5 (CH2), 69.5 (CH2), 69.0 (CH2), 63.3 (CH2), 3.7 (CH2).  
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2,7-Bis(2-ethoxy-2-oxoethyl)benzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D8) 

 Under nitrogen atmosphere, D1 (25.0 mg, 122 µmol, 1.0 eq) 

was dissolved in 11 mL dry DMF. Ethyl 2-bromoacetate 

(1.00 mL, 1.53 g, 9.18 mmol, 75.0 eq) was added and the re-

action solution was stirred at 40°C for 20 h. The reaction solution was cooled in the fridge to 

4°C, then overlaid with diethyl ether and kept in the fridge overnight. The formed yellow pre-

cipitate was filtered off, washed with copious amounts of DMF and dried under reduced pres-

sure. The product (D8) was isolated as a yellow solid with a yield of 29% (19.0 mg, 35.4 µmol). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.13 (s, 4H, H-Ar), 8.92 (s, 4H, H-Ar), 6.18 (s, 

4H, CH2), 4.39 (quart, 3J = 7.1 Hz, 4H, CH2), 1.32 (t, 3J = 7.1 Hz, 6H, CH3). −  13C NMR 

(126 MHz, D2O, 298 K): δ (ppm) = 167.0 (C=O), 142.7 (CH), 130.3 (Cq), 129.8 (CH), 127.4 

(Cq), 64.4 (CH2), 62.6 (CH2), 34.6 (CH), 13.2 (CH3). − ESI-MS (pos., MeOH): m/z calc. for 

C22H22N2O4
2+ ([M]2+) 189.0784, found 189.0860; calc. for C22H21N2O4

+ ([M-H]+) 377.1496, 

found 377.1522.  

 

2,7-Dibenzylbenzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D10) 

 Under nitrogen atmosphere, D1 (25.0 mg, 122 µmol, 1.0 eq) was 

dissolved in 11 mL dry DMF. Benzyl bromide (44.0 µL, 62.8 mg, 

367 µmol, 3.0 eq) was added and the reaction solution was stirred 

at 85°C for 20 h. The yellow precipitate was filtered off, washed with DMF, and dried under 

reduced pressure. The product (D10) was isolated as a yellow solid with a yield of 58% 

(38.7 mg, 70.8 µmol). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.11 (s, 4H, H-Ar), 8.79 (s, 4H, H-Ar), 7.61-7.63 

(m, 4H, H-Ar), 7.52-7.54 (m, 6H, H-Ar), 6.38 (s, 4H, CH2). − 13C NMR (126 MHz, D2O, 

298 K): δ (ppm) = 165.5 (CH), 133.4 (CH), 130.8 (Cq), 130.7 (CH), 130.5 (Cq), 130.3 (CH), 

130.0 (CH), 127.7 (CH), 67.1 (CH2).  
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2,7-Bis((perfluorophenyl)methyl)benzo[lmn][3,8]phenanthroline-2,7-diium dibromide 

(D11) 

 Under nitrogen atmosphere, D1 (25.0 mg, 122 µmol, 1.0 eq) 

was dissolved in 11 mL dry DMF. 2,3,4,5,6-penta-

fluorobenzyl bromide (180 µL, 95.8 mg, 367 µmol, 3.0 eq) 

was added and the reaction solution was stirred at 85°C for 

20 h. The yellow precipitate was filtered off, washed with DMF, and dried under reduced 

pressure. The product (D11) was isolated as a yellow solid with a yield of 80% (55.4 mg 

97.0 µmol). 

1H NMR (500 MHz, DMSO-d6, 298 K): δ (ppm) = 10.40 (s, 4H, H-Ar), 9.02 (s, 4H, H-Ar), 

6.59 (s, 4H, CH2). − 13C NMR (126 MHz, DMSO-d6, 298 K): δ (ppm) = 145.9 (Cq), 143.9 (Cq), 

142.4 (Cq), 140.4 (CH), 138.6 (Cq), 136.6 (CH), 112.9 (Cq), 17.9 (CH2). − 19F NMR (471 MHz, 

DMSO-d6, 298 K): δ (ppm) = −74.6, −138.8, −161.4. −  ESI-MS (pos., MeOH): m/z calc. for 

C28H12N2
2+ ([M]2+) 238.0415, found 238.0506; calc. for C28H11N2

+ ([M-H]+) 565.0757, found 

565.0836.  

 

2,7-Dibenzylbenzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D12) 

 Under nitrogen atmosphere, D1 (25.0 mg, 122 µmol, 1.0 eq) was 

dissolved in 10 mL dry DMF. 1,4-bis(bromomethyl)benzene 

(162 mg, 612 µmol, 5.0 eq) was added. The reaction solution was 

stirred at 60°C for 20 h. The yellow precipitate was filtered off, 

washed with DMF, and dried under reduced pressure. The product 

(D12) was isolated as a yellow solid with a yield of 57% (41.9 mg, 69.0 µmol). 

1H NMR (500 MHz, DMSO-d6, 298 K): δ (ppm) = 10.51 (s, 4H, H-Ar), 8.95 (s, 4H, H-Ar), 

7.68 (d, 3J = 8.0 Hz, 4H, H-Ar), 7.56 (d, 3J = 8.0 Hz, 4H, H-Ar), 6.39 (s, 4H, CH2), 4.71 (s, 4H, 

CH2). − 13C NMR (126 MHz, DMSO-d6, 298 K): δ (ppm) = 154.5 (CH), 145.3 (CH), 142.5 

(Cq), 140.0 (Cq), 134.7 (Cq), 130.6 (CH), 130.0 (CH), 129.7 (Cq), 65.5 (CH2), 34.0 (CH2). 

− ESI-MS (pos., DMSO): m/z calc. for C39H24N2Br2
2+ ([M]2+) 286.0138, found 286.0187. 
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2,7-Dibenzylbenzo[lmn][3,8]phenanthroline-2,7-diium dibromide (D13) 

Under nitrogen atmosphere, D1 (70.0 mg, 343 µmol, 1.0 eq) was 

dissolved in 7 mL dry DMF. 4-(bromomethyl) benzaldehyde 

(220 µL, 218 mg, 1.10 mmol, 3.2 eq) was added and the reaction 

solution was stirred at 70°C for 2 days. The yellow precipitate was 

filtered off, washed with DMF, and dried under reduced pressure. The product (D13) was 

isolated as a yellow solid with a yield of 56% (116 mg, 193 µmol). 

1H NMR (500 MHz, D2O, 298 K): δ (ppm) = 10.19 (s, 4H, H-Ar), 9.97 (s, 2H, CHO), 8.84 (s, 

4H, H-Ar), 8.04 (d, 3J = 6.7 Hz, 4H, H-Ar), 7.77 (d, 3J = 6.7 Hz, 4H, H-Ar), 6.51 (s, 4H, CH2). 

− 13C NMR (126 MHz, DMSO-d6, 298 K): δ (ppm) = 165.5 (CH), 133.4 (Cq), 130.8 (Cq), 130.7 

(CH), 130.5 (Cq), 130.3 (CH), 130.0 (CH), 127.7 (CH), 67.1 (CH2).  

 

7.2.2.4. Perylene-based dyes 

 

2,9-Dibenzylanthra[2,1,9-6,5,10]diisoquinoline-1,3,8,10(2H,9H)-tetraone344 (95) 

94 (PTCDA) (3.00 g, 7.60 mmol, 1.0 eq) was dissolved in 

dry DMF under nitrogen atmosphere at 50°C. Benzylamine 

(4.10 g, 38.3 mmol, 5.0 eq) was added and the reaction 

mixture was heated to 110°C for 5 h. Another portion of 

benzylamine (4.10 g, 38.3 mmol, 5.0 eq) was added and the reaction mixture was heated under 

reflux overnight. After cooling to room temperature the dark brown solid was filtered off and 

washed with DMF, MeOH, and diethyl ether. After drying the product in vacuo, 95 was isolated 

as brown solid with a yield of 98% (4.27 g, 7.48 mmol).   

IR (ATR): ν̃ (cm−1) = 3334 (m), 3031 (m), 2966 (m), 1690 (s), 1654 (s), 1611 (m), 1591 (s), 

1507 (m), 1496 (m), 1433 (m), 1403 (m), 1367 (s), 1344 (s), 1325 (s), 1245 (s), 1171 (m), 1124 

(m), 1073 (m), 993 (m), 809 (m), 745 (m), 695 (m). 

No NMR or ESI-MS investigation possible due to strong aggregation of the dye precursor. 
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2,9-Dibenzyl-1,2,3,8,9,10-hexahydroanthra[2,1,9- 6,5,10]diisoquinoline345 (96) 

 In a 500 ml two-neck flask, anhydrous AlCl3 (2.26 g, 

16.8 mmol, 2.3 eq) was dissolved in 200 ml dry THF. To 

the stirring solution, LiAlH4 (1.90 g, 50.7 mmol, 7.1 eq) 

was added carefully in small portions under ice bath 

cooling. 95 (4.10 g, 7.19 mmol, 1.0 eq) was added in portions and the blue reaction mixture 

was heated to reflux overnight. Afterwards, the reaction mixture was cooled to room tempera-

ture and quenched with 400 mL ice water. The brown precipitate was filtered off and dried 

under reduced pressure. The solid was extracted with 1.5 L chloroform in a Soxhlet extractor 

for 5 h. The extract was evaporated and a brown-green solid was obtained. The product (96) 

was isolated with a yield of 39% (3.23 g, 6.28 mmol). 

1H NMR (400 MHz, THF-d8): δ (ppm) = 8.11 (d, 3J = 7.6 Hz, 4H, H-Ar), 7.43-7.38 (m, 4H, 

H-Ar), 7.30 (t, 3J = 7.4 Hz, 4H, H-Ar), 7.24 (d, 3J = 7.4 Hz, 2H, H-Ar), 7.14 (d, 3J = 7.6 Hz, 

2H, H-Ar), 3.88 (s, 8H, CH2), 3.78 (s, 2H, CH2). − IR (ATR): ν̃ (cm–1) = 3036 (m), 3007 (m), 

2933 (m), 2882 (m), 2815 (m), 2755 (m), 1455 (m), 1405 (m), 1381 (m), 1365 (m), 1340 (m), 

1281 (m), 1268 (m), 1135 (m), 1108 (m), 892 (m), 821 (s), 761 (m), 737 (m), 701 (m). − 

ESI-MS (pos., MeOH): m/z calc. for C38H30N2Na+ ([M+Na]+) 537.2302, found 537.2405. 

No 13C NMR investigation possible due to strong aggregation of the dye precursor. 

 

2,9-Dibenzylanthra[2,1,9-6,5,10]diisoquinoline-2,9-diium dichloride315,356 (D14) 

A 100 ml round bottom flask with connected reflux con-

denser was charged with 96 (1.00 g, 1.94 mmol, 1.0 eq) 

and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) 

(3.20 g, 14.0 mmol, 7.2 eq). Afterwards, 100 mL of dry 

acetonitrile were added, and the mixture was stirred overnight at room temperature and then 

another 7 days at reflux. The solution was cooled to room temperature and 5 mL of concentrated 

HCl, and 150 mL of acetone were added. A red precipitate formed, and the solution was stored 

at 4°C overnight. The solid was collected by filtration and washed with copious amounts of 

acetone. The solid was dissolved in 20 mL of 1 M HCl and filtered. Upon addition of 300 mL 

acetone a red precipitate formed. The flask was left in the fridge overnight and the solid was 
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collected by filtration and washed with acetone. The product (D14) was isolated with a yield of 

31% (350 mg, 602 µmol).  

1H NMR (400 MHz, D2O, 298 K): δ (ppm) = 9.57 (s, 4H), 8.10-7.55 (m, 18H), 6.25 (s, 4H). − 

13C NMR (101 MHz, D2O, 298 K): δ (ppm) = 159.16 (CH), 137.52 (Cq), 133.82 (CH), 133.73 

(Cq), 130.8 (CH), 130.2 (CH), 129.7 (Cq), 125.6 (CH), 65.8 (CH2). − IR (ATR, 298 K): 

ν̃ (cm−1) = 3036 (m), 3007 (m), 2933 (m), 2882 (m), 2815 (m), 2755 (m), 1455 (m), 1405 (m), 

1381 (m), 1365 (m), 1340 (m), 1281 (m), 1268 (m), 1135 (m), 1108 (m), 892 (m), 821 (s), 761 

(m), 737 (m), 701 (m). − ESI-MS (pos., MeOH): m/z calc. for C38H26N2
2+ ([M]2+) 255.1043, 

found 255.1041.  

Due to low solubility and stacking, not all quaternary carbons appear after 10,000 scans. 

 

2,9-Bis(2,6-diisopropylphenyl)-1,2,3,8,9,10-hexahydroanthra[2,1,9-6,5,10-d’e’f’]diiso-

quinoline345 (98) 

 In a 500 ml two-neck flask, anhydrous AlCl3 (860 mg, 

6.58 mmol, 5.3 eq) was dissolved in 200 ml dry DCM. To 

the stirring solution, LiAlH4 (730 mg, 19.8 mmol, 15.8 eq) 

was added carefully in small steps under ice bath cooling. 

97 (880 mg, 1.25 mmol, 1.0 eq) was added in small portions and the reaction mixture was 

heated to reflux for 4 h. Due to incomplete conversion, AlCl3 (860 mg, 6.58 mmol, 5.26 eq) 

and LiAlH4 (730 mg, 19.8 mmol, 15.8 eq) were added again and the reaction mixture was re-

fluxed for another 4 h. Afterwards, the reaction mixture was cooled to room temperature and 

quenched by the addition of 500 mL ice water. The phases were separated, and the aqueous 

phase was filtered. The brown precipitate was dried under reduced pressure. The solid was 

extracted with 2 L chloroform in a Soxhlet extractor for 5 h. The extract was evaporated, and a 

red solid was obtained. The product (98) was isolated with a yield of 25% (205 mg, 313 mmol). 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 8.80 (d, 3J = 8.0 Hz, 8H), 8.75 (d, 3J = 8.0 Hz, 

8H), 7.54-7.48 (m, 2H), 7.38-7.35 (m, 4H), 2.76 (quin, 3J = 6.8 Hz, 4H), 1.19 (quin, 3J = 6.8 Hz, 

24H). − IR (ATR): ν̃ (cm–1) = 3319 (s), 2943 (m), 2831 (m), 1449 (w), 1115 (w), 1022 (w), 641 

(w). 

No 13C NMR investigation possible due to strong aggregation of the dye precursor. 
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2,9-Dibenzylanthra[2,1,9-6,5,10-d'e'f']diisoquinoline-2,9-diium315,359 (D15) 

A 100 ml round bottom flask with connected reflux con-

denser was charged with 98 (1.00 g, 1.38 mmol, 1.0 eq) 

and DDQ (2.25 g, 9.92 mmol, 7.2 eq) was added. After-

wards, 100 mL of dry acetonitrile were added, and the 

mixture was stirred overnight at room temperature and then another 7 days at reflux. The 

solution was cooled to room temperature and 5 mL of concentrated HCl, and 150 mL of acetone 

were added. An orange precipitate was formed, and the solution was stored at 4°C overnight. 

The solid was collected by filtration and washed with small amounts of acetone. The solid was 

dissolved in 10 mL of 1 M HCl and filtered. Upon addition of 200 mL acetone an orange 

precipitate formed. The flask was left in the fridge overnight and the solid was collected by 

filtration and washed with acetone. The product (D15) was isolated with a yield of 5% (50.0 mg, 

69.0 mmol). 

1H NMR (500 MHz, THF-d8, 298 K): δ (ppm) = 9.02 (d, 3J = 8.0 Hz, 4H, H-Ar), 8.73 (d, 

3J = 8.0 Hz, 4H), 7.42 (t, 3J = 7.7 Hz, 2H, H-Ar), 7.32 (d, 3J = 7.7 Hz, 4H, H-Ar), 2.80 (d, 

3J = 6.8 Hz, 4H, CH2), 1.15 (d, J = 6.8 Hz, 24H, CH3). − 13C NMR (101 MHz, THF-d8, 298 K): 

δ (ppm) = 163.1 (Cq), 145.8 (Cq), 135.0 (Cq), 131.5 (CH), 131.3 (Cq), 130.1 (Cq), 128.9 (Cq), 

126.8 (Cq), 123.8 (CH), 123.6 (Cq), 123.5 (CH), 29.1 (CH), 23.3 (CH3). 
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8. Additional data 

8.1. Additional data for Chapter 5.1.1 

 

Figure 104: a) - c) ITC isotherms (dilution heat corrected) for the titration of adamantanol (c = 0 - 35 µM, 54) into an aqueous 

CB7 solution (c = 19 µM) at 5, 25 and 55°C. 

 

Figure 105: a) - f) ITC isotherms (dilution heat corrected) for the titration of adamantanol (c = 0 - 35 µM, 54) into an aqueous 

CB8 solution (c = 16 µM) in a temperature range of 5 to 55°C. 
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Figure 106: a) - f) ITC isotherms (dilution heat corrected) for the titration of adamantanol (c = 0 - 350 µM, 54) into an aqueous 

β-CD solution (c = 196 µM) in a temperature range of 5 to 55°C. 

 

Figure 107: a) - c) ITC isotherms (dilution heat corrected) for the titration of 4-hydroxydiamantane (c = 0 - 20 µM, 55) into 

an aqueous CB7 solution (c = 8.0 µM) at 5, 25 and 55°C. 
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Figure 108: a) - c) ITC isotherms (dilution heat corrected) for the titration of 4-hydroxydiamantane (c = 0 - 20 µM, 55) into 

an aqueous CB8 solution (c = 11 µM) at 5, 25 and 55°C. 

 

Figure 109: a) - f) ITC isotherms (dilution heat corrected) for the titration of 4,9-dihydroxydiamantane (c = 0 - 90 µM, 56) 

into an aqueous CB7 solution (c = 42.5 µM) in a temperature range of 5 to 55°C. 
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Figure 110: a) - c) ITC isotherms (dilution heat corrected) for the titration of 4,9-dihydroxydiamantane (c = 0 - 45 µM, 56) 

into an aqueous CB8 solution (c = 19.5 µM) at 5, 25 and 55°C. 

 

Figure 111: a) - c) ITC isotherms (dilution heat corrected) for the titration of 4,9-dihydroxydiamantane (c = 0 - 60 µM, 56) 

into an aqueous β-CD solution (c = 29 µM) at 5, 25 and 55°C. 

 

Figure 112: a) - c) ITC isotherms (dilution heat corrected) for the titration of 3,9-dihydroxytriamantane (c = 0 - 40 µM, 57) 

into an aqueous CB8 solution (c = 21.5 µM) at 5, 25 and 55°C. 
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Figure 113: a) - f) ITC isotherms (dilution heat corrected) for the titration of ferrocenylmethanol (c = 0 - 100 µM, 59) into an 

aqueous CB7 solution (c = 62.5 µM) pre-equilibrated with Phe (61, c = 1.5 mM) in a temperature range of 5 to 55°C. 
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Figure 114: a) - f) ITC isotherms (dilution heat corrected) for the titration of ferrocenylmethanol (c = 0 - 55 µM, 59) into an 

aqueous CB7 solution (c = 30 µM) in a temperature range of 5 to 55°C. 
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Figure 115: a) - f) ITC isotherms (dilution heat corrected) for the titration of ferrocenylmethanol (c = 0 - 55 µM, 59) into an 

aqueous CB8 solution (c = 26 µM) in a temperature range of 5 to 55°C. 
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Figure 116: a) - f) ITC isotherms (dilution heat corrected) for the titration of L-phenylalanine (c = 0 - 55 µM, 61) into an 

aqueous CB7 solution (c = 35 µM) in a temperature range of 5 to 55°C. 
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Figure 117: a) - f) ITC isotherms (dilution heat corrected) for the titration of hexanol (c = 0 - 75 µM, 62) into an aqueous CB7 

solution (c = 40 µM) in a temperature range of 5 to 55°C. 

 

Figure 118: Graphical overview of the temperature dependence in a temperature range of 5 to 55°C of the standard complex-

ation parameters for 4-hydroxydiamantane (55) with a) CB7 and b) CB8 as well as for c) 3,9-dihydroxytriamantane (57) with 

CB8.  
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Figure 119: Graphical overview of the temperature dependence in a temperature range from 5 to 55°C of the standard com-

plexation parameters for nandrolone (60) with a) CB7 and b) CB8 as well as for c) L-phenylalanine (61) with CB7 and d) 

hexanol (62) with CB7.  

 

Figure 120: Heat capacity changes ΔCp for a) 4-hydroxydiamantane (55), b) 3,9-dihydroxytriamantane (57), c) nandrolone 

(60) and d) L-phenylalanine (61) as well as hexanol (62) with CB7 (blue) and CB8 (red) determined by the slope of a linear fit 

of the temperature dependency of the enthalpies. 
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8.2. Literature sources for the thermodynamic correlation analysis in Figure 35 

 Host Guest 
T 

(°C) 

log 

Ka 

ΔH 

(kJ mol–1) 

–TΔS 

(kJ mol–1) 

ΔS 

(J mol–1 K) 

High  

affinity 

guests 

CB7 FeCp2OH209 25 9.5 –90.0 36.0 –121 

CB7 FeCp2OH426 25 9.5 –88.0 34.0 –114 

CB7 FeCp2OH208 25 9.5 –90.0 26.0 –87.2 

CB7 
((Trimethylamino) 

methyl)ferrocene209 
25 12.6 –90.0 18.0 –60.4 

CB7 
((Trimethylamino) 

methyl)ferrocene208 
25 12.6 –89.0 –17.0 57.0 

CB7 
((Trimethylamino) 

methyl)ferrocene426 
25 12.6 –88.0 –18.0 60.4 

CB7 
((Dimethylamino) 

methyl)ferrocene209 
25 12.4 –87.9 17.2 –57.7 

CB7 
((Dimethylamino) 

methyl)ferrocene426 
25 12.3 –89.0 –17.0 57.0 

CB7 

1,1‘-Bis(trimethyl-

amino)methylferrocene
209

 

25 15.5 –90.0 2.1 –7.0 

CB7 

1,4-Bis(hydroxyl-

methyl)bicyclo[2.2.2] 

octane209 

25 9.8 –66.1 10.0 –33.5 

CB7 

1,4-Bis(aminomethyl) 

bicyclo[2.2.2]octane2+ 

209 

25 14.3 –65.3 –16.3 54.7 

CB7 

1,4-Dimethylpropane-

1,3-diamino-

bicyclo[2.2.2]octane209 

25 15.1 –68.2 –18.0 60.4 

CB7 AdOH209 25 10.4 –79.5 20.5 –68.8 

CB7 1-Adamantylamine+ 209 25 14.2 –80.8 –0.4 1.3 

CB7 
1-Aminomethyl 

adamantane+ 209 
25 15.0 –91.6 7.1 –23.8 

CB7 
1-(2-Aminoethyl) 

adamantane2+ 209 
25 15.7 –84.1 –5.9 19.8 

CB7 2-Adamantylamine+ 209 25 14.0 –81.6 1.7 –5.7 

CB7 

N,N’-bis(aminoethyl)-

1,6-hexane-diamine4+ 
208 

25 11.2 –36.9 –27.2 91.2 

CB7 
1,6-Hexanediamine2+ 

208 
25 9.3 –32.8 –20.4 68.4 

CB7 
Aminomethyl 

cyclohexane+ 208 
25 11.1 –57.8 –5.6 18.8 

 
CB7 

4-Aminomethyl-Phe-

Gly-Gly427 [b] 
27 9.0 –59.4 7.5 –25.0 

Medium 

affinity 

guests 

CB7 Nandrolone321 25 7.1 –52.2 12.0 –40.2 

CB7 Nandrolone321 [b] 25 6.6 –40.9 3.4 –11.4 

CB7 Fenchol428 25 6.7 –42.3 4.1 -13.8 

CB7 Spermine4+ 208 25 8.7 –27.3 –22.3 74.8 

CB7 

1-Methyl-3[[4-[(3-

methylimidazol-3-ium-

1-yl)methyl]phenyl] 

methyl] 

imidazol-1-ium429 

25 6.4 –42.7 –20.0 67.1 
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 Host Guest 
T 

(°C) 

log 

Ka 

ΔH 

(kJ mol–1) 

–TΔS 

(kJ mol–1) 

ΔS 

(J mol–1 K) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Medium 

affinity 

guests 

 

 

 

 

 

 

CB7 (+)-Camphor430 25 7.3 –89.9 48.2 –162 

CB7 BC 431 25 7.4 –38.0 –3.5 11.7 

CB7 
6-Methoxy-1-

methylquinolinium432 
25 6.3 –37.0 1.1 –3.7 

CB7 L-Phe208 25 6.3 –43.4 7.7 –25.8 

CB7 
Hexadecyltrimethyl 

ammonium bromide210 
25 6.4 –41.8 –6.1 20.5 

CB7 4-tBu-Phe427 [b] 27 6.6 –60.7 22.6 –75.3 

CB7 
4-Aminomethyl-Phe427 

[a] 
27 6.3 –17.6 –18.8 62.6 

CB7 Phe-Gly-Gly427 [b] 27 6.5 –56.1 18.4 –61.3 

CB7 Phe-Gly-Gly433 [b] 27 6.2 –45.2 9.6 –32.0 

CB7 Gly-Tyr-Gly433 27 6.4 –73.2 36.4 –121 

CB7 
4-tBu-Phe-Gly-Gly427 

[b] 
27 6.7 –67.8 29.7 –99.0 

CB7 
Gly-4-aminomethyl 

Phe-Gly427 [b] 
27 6.3 –34.3 –2.1 7.0 

CB7 
N-(furan-2-ylmethyl) 

prop-2-en-1-amine434 [b] 
25 6.5 –34.3 –2.5 8.4 

CB7 

N-((5-methylfuran-2-

yl)methyl)prop-2-en-1-

amine434 [b] 

25 6.0 –24.7 –9.6 32.2 

CB7 

6-Chloro-1,2,3,6,7,7a-

hexahydro-3a,6-

epoxyisoindole434 [b] 

25 6.8 –36.8 –2.1 7.0 

CB7 

1,2,3,6,7,7a-

Hexahydro-3a,6-

epoxyisoindole434 [b] 

25 6.8 –29.7 –9.2 30.9 

CB7 

N-((5-bromofuran-2-

yl)methyl)prop-2-en-1-

amine434 [b] 

25 6.9 –25.5 –8.8 29.5 

CB7 

6-Bromo-1,2,3,6,7,7a-

hexahydro-3a,6-

epoxyisoindole434 [b] 

25 6.5 –37.7 0.8 –2.7 

CB7 

6-Methyl-1,2,3,6,7,7a-

hexahydro-3a,6-

epoxyisoindole434 [b] 

25 6.8 –33.1 –5.4 18.1 

CB7 
Recombinant Insulin 

Serum433 
27 6.2 –45.2 9.6 –32.0 

CB7 
1-Methyl-[4,4'-

bipyridin]-1-ium435 [b] 
27 6.1 –23.0 –11.7 39.0 

CB7 
4-Aminomethyl 

Phe-Met436 [a] 
27 8.7 –43.9 7.5 –25.0 

CB7 MV435 [b] 27 6.8 –16.7 –22.2 74.0 

CB7 

1-(3-Ammoniopropyl)-

1'-methyl-[4,4'-bi-

pyridine]-1,1'-diium435 

[b] 

27 7.2 –17.6 –23.4 78.0 

CB7 Geranyl amine428 25 6.5 –39.7 2.5 –8.4 

CB7 Cadaverine437 25 6.6 –17.2 –21.3 71.4 

CB7 Tyramine437 25 6.4 –35.6 –0.8 2.7 

CB7 Dopamine153 25 5.7 –19.6 –12.7 42.6 
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Host Guest 

T 

(°C) 

log 

Ka 

ΔH 

(kJ mol–1) 

–TΔS 

(kJ mol–1) 

ΔS 

(J mol–1 K) 

Low 

affinity 

guests 

 

CB7 cyclopentanone208 25 5.6 –40.2 8.1 –27.2 

CB7 eucalyptol428 25 5.9 –37.4 3.6 –12.1 

CB7 epinephrine153 25 4.2 –11.4 12.8 –42.9 

CB7 serotonin153 25 4.8 –15.3 –12.3 41.3 

CB7 BaCl2
203 25 4.8 –16.0 –11.2 37.6 

CB7 CsCl203 25 3.5 –9.7 –10.3 34.5 

CB7 RbCl203 25 3.4 –9.9 –9.6 32.2 

CB7 KCl203 25 3.3 –8.7 –10.1 33.9 

CB7 CaCl2
203 25 4.0 –9.8 –13.1 43.9 

CB7 acetone149 25 2.8 –13.0 –1.0 3.4 

CB7 pyrrole149 25 3.2 –30.0 11.0 –36.9 

CB7 cyclopentanone149 25 5.6 –41.0 9.0 –30.2 

CB7 DMF149 25 2.8 –22.0 6.0 –20.1 

CB7 DMSO149 25 2.1 –14.0 2.0 –6.7 

CB7 SrCl2
203 25 4.3 –14.3 –10.3 34.5 

CB7 Phe427 [b] 27 5.1 –31.8 2.9 –9.7 

CB7 Gly-Phe-Gly427 [a] 27 5.4 –41.0 10 –33.3 

CB7 L-Tyr 25 4.3 –21.8 –3.1 10.4 

CB7 

N-((5-chlorofuran-2-

yl)methyl)prop-2-en-1-

amine 

25 5.7 –28.0 –4.2 14.1 

CB7 L-Lys151 [d] 25 2.3 –4.4 –8.8 29.5 

CB7 L-Phe151 [d] 25 5.3 –30.5 0.6 –2.0 

CB7 L-Trp151[d] 25 3.1 –28.9 11.3 –37.9 

CB7 L-Tyr151 [d] 25 4.2 –27.7 3.7 –12.4 

CB7 L-Trp437 [c] 30 3.3 –25.1 6.3 –20.8 

CB7 Histamine437 [c] 30 4.3 –9.6 –15.1 49.8 

CB7 Agmatine437 [c] 30 5.9 –20.5 –13.8 45.5 

CB7 L-Tyr437 [c] 30 4.3 –27.2 2.5 –8.2 

CB7 1,4-butandiamine437 [c] 30 5.5 –13.8 –18.0 59.4 

CB7 D/L-lysine437 [c] 30 2.9 –17.2 5.0 –16.5 

CB7 tryptamine437 [c] 30 4.7 –34.7 7.5 –24.7 

CB7 L-Arg437 [c] 30 2.5 –5.0 –9.2 30.3 

CB7 putrescine437[c] 30 5.5 –13.8 4.3 –14.2 
 [a] Measured within this work. [b] Data measured in 10 mM phosphate buffer, pH 7.0. [c] Data measured in 10 mM ammonium 

acetate buffer, pH 6.0. [d] Data measured in water at pH 6.0. [e] Data measured in 6 mM phosphate buffer, pH 7.0. 
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8.3. Additional data for Chapter 5.3.3 

 

Figure 121: a) Normalised emission spectra of L3.0·D10 in the absence (black) and presence (green) of dopamine in water 

(straight line) and 1X PBS (dotted line). b) Emission-based binding isotherms for the interaction of serotonin (red) and 

dopamine (green) with L3.0·D10 in water (squares) and 1X PBS (dots) fitted with a 1:1 binding model. The excitation 

wavelength λex = 371 nm was used. c) Normalised emission spectra of L3.0·D11 in the absence (black) and presence (red) of 

serotonin in water (straight line) and 1X PBS (dotted line). d) Emission-based binding isotherms for the interaction of serotonin 

(red) and dopamine (green) with L3.0·D11 in water (squares) fitted with a 1:1 binding model. The excitation wavelength 

λex = 371 nm was used. 
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9. List of abbreviations 

A Analyte 

Å Angstrom 

AA Ascorbic acid 

AADC L-Amino acid decarboxylase 

ABA Associative binding assay 

Abs Absorption of a photon 

AdOH Adamantanol (54) 

AO Atomic orbital 

APD Avalanche photodiodes 

BC Berberine chloride (63) 

cB 

°C 

Number of binding sites 

Degree Celsius 

CBn Cucurbit[n]urils 

CB5 Cucurbit[5]uril (41) 

CB6 Cucurbit[6]uril (42) 

CB7  Cucurbit[7]uril (36) 

CB8  Cucurbit[8]uril (43) 

Cd Dye decorated cavity 

CdG Complex of bound guest and dye decorated cavity 

Ce Empty cavity 

CeG Complex of bound guest and empty cavity 

Cq Quaternary carbon atom 

CD Cyclodextrin 

CE Cellulose ester 

COF Covalent organic framework 

COMT Catechol-O-methyltransferase 

conc. Concentration 

Cp Heat capacity 

CT Charge transfer 

D Diffusion coefficient 

D Dalton 
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D (indicator / reporter) Dye 

d Day 

d Doublet 

d Optical path length 

DAP  2,7-Diazapyrene (D1) 

DBA Direct binding assay 

DDC DOPA decarboxylase 

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 

DEPT Distortionless enhancement by polarisation transfer 

DFT Density functional theory 

4-DiAdOH 4-Hydroxydiamantane (55) 

4,9-DiAd(OH)2 4,9-Dihydroxydiamantane (56) 

dH Hydrodynamic diameter 

DLS Dynamic light scattering 

DNA Deoxyribonucleic acid 

DP Differential power 

DPP Diazaperoperylene 

DSMI trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium 

E Enzyme 

ε Molar extinction coefficient 

ζ Zeta potential 

EA Elemental analysis 

EDTA Ethylenediaminetetraacetic acid 

e.g. exemplari gratia, for example 

EM Electron microscopy 

em Emission 

ELISA Enzyme-linked immunosorbent assay 

eq Equation 

ESI Electrospray ionisation 

ex Excitation 

F0 Emission intensity before analyte addition 

FA Intensity at a given analyte concentration 

FAU Faujasite 

FeCp2OH Ferrocenylmethanol (59) 
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Fl Fluorescence 

FTIR Fourier-transform infrared spectroscopy 

G (free) Guest 

g Gram 

GABA γ-Aminobutyric acid (6) 

GC-MS Gas chromatography-mass spectrometry 

GDA Guest displacement assay 

GHB γ-Hydroxybutyric acid 

GP General procedure 

GPCR G Protein-coupled receptor 

H Host 

HEPES (4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid) 

HexOH 1-Hexanol (62) 

HFIP Hexafluoroisopropanol 

HPLC High-performance liquid chromatography 

HS Human serum (human male AB plasma) 

HSA Human serum albumin 

HVA Homovanillic acid (21) 

Hz Hertz 

IAbs-0 Intensity of irradiated light 

IAbs Intensity of transmitted light 

ID Intensity signal from free dye 

It Observable intensity signal as a function of time  

I0 Background signal 

IHD Intensity signal from host·dye complex 

IC Internal conversion 

IDA Indicator displacement assay 

i.e. id est, that is to say 

int. Interaction 

ISC Intersystem crossing 

ITC Isothermal titration calorimetry 

IUPAC International union of pure and applied chemistry 

Ka Association constant 

kB Boltzmann’s constant (kB = 1.38 · 10−23 J K−1) 
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Kd Dissociation constant 

kcal Kilocalories 

kg Kilogram 

kJ Kilojoule 

LC-MS Liquid chromatography-mass spectrometry 

L3.0·DX  Zeolite L3.0-based receptor loaded with reporter dye DX 

(X = 1 - 16)  

LTL Linde-type L 

m Multiplet 

m Middle 

Mn+ Metal cation 

MAO Monoamine oxidase 

max Maximum 

MCM Mobile composition of matter 

MD Molecular dynamics 

MDAP 2,7-Dimethyldiazapyrenium dication (48) 

MDPP 2,7-Dimethyldiazaperoperylenium dication (50) 

MDPT 2,7-Dimethyldiazaphenanthrenium dication (49) 

min Minute 

mL Millilitre 

mM Millimolar 

mmol Millimole 

MOF Metal organic framework 

MRI Magnetic resonance imaging 

MS Mass spectrometry 

ms Milliseconds 

MV Methyl viologen 

MWCO Molecular weight cut-off 

η Viscosity 

N Molar ratio / stoichiometry 

Nan Nandrolone 

NIR Near-infrared 

nm Nanometre 

NMR Nuclear magnetic resonance 
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NT Neurotransmitter 

OSS One-set-of-sites model 

P Product 

P Phosphorescence 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDI Perylene bisdiimide (53) 

Phe L-Phenylalanine (61) 

POCT Point-of-care testing 

ppm Parts per million 

PRP Pyridoxal 5’-phosphate hydrate 

PTCDA 3,4,9,10-Perylenetetracarboxylic acid (85) 

QY Quantum yield 

R Gas constant (R = 8.314 J mol−1 K−1) 

r Radius 

RI Resolution of identity 

rMUP Recombinant mouse major urinary protein  

RNA Ribonucleic acid 

rpm Rounds per minute 

r.t. Room temperature 

S Substrate 

s Strong 

s Singlet 

s Seconds 

S0 Ground state 

S1-S5 Excited states 

SB Sequential-binding model 

T Transmission 

T Temperature 

t Triplet 

T1-T3 Excited triplet state 

TD Time-dependent 

TDC Tyrosine decarboxylase 

TEM Transmission electron microscopy 
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tequilibr. Equilibration time 

TLC Thin layer chromatography 

TOC Total organic carbon 

3,9-TriAd(OH)2 3,9-Dihydroxytriamantane (57) 

9,15-TriAd(OH)2 9,15-Dihydroxytriamantane (58) 

(L-)Trp L-Tryptophan (23) 

(L-)Tyr L-Tyrosine (19) 

U Initial rate 

UV Ultraviolet 

µcal Microcalorie 

µg Microgram 

µmol Micromole 

µL Microliter 

µM Micromolar 

vis Visible 

VMA Vanillylmandelic acid (22) 

VR Vibrational relaxation 

vw Very weak 

ν̃ Wavenumber 

W Watt 

w Weak 

wt% Weight percentage 

Y15·DX Zeolite Y15-based receptor loaded with dye DX 

(X = 1 - 16) 

Y40·DX Zeolite Y40-based receptor loaded with dye DX 

(X = 1 - 16) 

ΔF Relative emission increase or decrease caused by analyte 

addition 

ΔG Molar reaction enthalpy 

ΔH Standard free energy 

ΔS Entropy 

τ Diffusion coefficient 

λ Wavelength 

λem Emission wavelength 
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λex Excitation wavelength 

5-HIAA 5-Hydroxyindoleacetic acid (28) 

5-HT 5-Hydroxytryptamine (serotonin) (1) 

5-HTP 5-Hydroxytryptophan (24) 
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