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Abstract

The growing importance of 3d scene understanding and interpretation is inher-
ently connected to the rise of autonomous driving and robotics. Semantic
segmentation of 3d point clouds is a key enabler for this task, providing geo-
metric information enhanced with semantics. To use Convolutional Neural
Networks, a proper representation of the point clouds must be chosen. Various
representations have been proposed, with different advantages and disadvantages.
In this work, we present a twin-representation architecture, which is composed
of a 3d point-based and a 2d range image branch, to efficiently extract and refine
point-wise features, supported by strong context information. Additionally, a
feature propagation strategy is proposed to connect both branches. The approach
is evaluated on the challenging SemanticKITTI dataset [2] and considerably
outperforms the baseline overall as well as for every individual class. Especially
the predictions for distant points are significantly improved.

1 Introduction

Understanding a 3d environment is one of the key challenges for autonomous
vehicles or robots. For this task of 3d scene understanding and interpretation,

53



Fabian Duerr

2D CNN

range image branch

Point-
Network

point-based branch

spherical projection

Figure 1.1: The proposed twin-representation architecture, which exploits two different point cloud
representations. The 3d point-based branch extracts and refines point-wise features while the 2d
range image branch efficiently aggregates context information.

semantic segmentation of images or point clouds, which assigns a class label to
every pixel or 3d point, provides valuable information.
The combination of geometric and semantic information provided by 3d semantic
segmentation is particularly valuable. To tackle this task with established deep
learning approaches, like Convolutional Neural Networks (CNNs), a proper
representation of point clouds has to be chosen, to allow their application.
Point-based approaches [12, 19] operate directly on the raw point clouds while
projection based methods [11, 18] transform them into a regular space, like 2d
or 3d grid, to enable convolution operations.
Recently, the combination of voxel and point-based representation showed
promising results [9, 17], by exploiting the advantages of both representations.
In general, projection based methods, like voxel grids, efficiently aggregate
neighborhood information because of the regularity of their data representation.
The projection however requires a discretization in most cases, where the choice
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of resolution is a trade-off between loss of information and memory as well
as computational costs. Point-based approaches on the other hand efficiently
operate on the original point cloud resolution without information loss, but the
aggregation of neighborhood information and context is expensive. Because of
these complementary properties, the combination of both representations offers
a great potential.
This work follows the general idea of combining projection and point-based
representations but focuses on the more efficient range image representation.
Therefore, we present a twin-representation architecture, which combines a
2d range image and a 3d point-based branch, see Fig. 1.1. The 2d branch
works on range images resulting from a spherical projection and enables the
efficient aggregation of local neighborhoods and context. The point-based
branch computes point-wise features while preserving the original resolution
and is supported by the aggregated information from the 2d branch, to predict the
final 3d semantic segmentation. To summarize, our contributions are twofold:

• A twin-representation architecture composed of a 2d range image and
3d point branch, which preserves point-wise features while efficiently
aggregating local context.

• A feature propagation strategy for 2d→ 3d feature transformation.

2 Related work

The growing importance of autonomous vehicles and robots also raised the
importance of 3d semantic segmentation. Supported by an increasing number
of available indoor [1] and outdoor datasets [2, 23, 3] considerable progress
has recently been achieved. A crucial and recurring question when addressing
3d semantic segmentation with CNNs is the representation of 3d point clouds.
Many different representations have been proposed in recent works, which can
generally be grouped into two categories.
Point-based methods, like PointNet [12] and its successor PointNet++ [13],
directly process the raw point clouds. PointNet applies a shared multilayer
perceptron (MLP) pointwise and a symmetric operation performs global feature
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aggregation. While this is very efficient, a single global feature aggregation
greatly limits the ability to capture spatial relations. Therefore, PointNet++ was
proposed, which applies individual PointNets to local regions and aggregates
them in a hierarchical fashion. While being one of the first approaches, many
others [8, 7, 20, 19] followed.
Projection based methods can further be divided into subcategories based on the
chosen regular space, like voxel grids [27, 18], permutohedral lattice [15, 16] or
bird’s eye view [26]. Another possibility is a spherical projection, which results
in a so called range image. SqueezeSeg [21] was one of the first approaches
building upon range images for a road segmentation task. Improved versions
were released in [22] and [24]. The latter targets full semantic segmentation and
proposed Spatially-Adaptive Convolutions (SAC) to deal with spatially-varying
feature distributions, induced by the spherical projection. Another approach
is RangeNet++ [11], which builds upon the DarkNet53 backbone [14] and
presented a label projection strategy from range image space to 3d point clouds.
[10] proposed LaserNet, based on deep layer aggregation [25], for 3d object
detection, while one intermediate result is a semantic segmentation.
Recently, first attempts were made to exploit the advantages of multiple rep-
resentations in one architecture. PVCNN [9] combined a shared MLP for
point-wise feature extraction with 3d convolutions in voxel space for context
aggregation. It is therefore able to extract point features in full resolution
while extracting and aggregating neighborhood information in a coarse voxel
space. It’s successor SPVCNN [17] replaced the dense 3d convolutions by its
spare counterparts, which allows for a higher voxel resolution and therefore
more preserved information. While sparse 3d convolutions already improve the
performance and possible resolution, 2d convolutions are still more efficient
with similar or less information loss. Therefore, our proposed segmentation
architecture combines a 2d range image branch with a point-based branch and
relies on a novel feature propagation strategy from 2d range image space to 3d
point clouds.
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3 Twin-Representation Network

The goal of the presented approach is the exploitation of two different input
representations, range images and 3d point clouds, to improve 3d semantic
segmentation. Fig. 3.1 shows the overall architecture, which consists of three
main components. The range image backbone provides 2d feature maps of
different stages and resolution while a feature propagation step transforms the
2d features back to their corresponding 3d points. Thereby, both components
together efficiently provide aggregated neighborhood and context information
for each individual point. These are used by the third component, a 3d point
network. In the following, we provide details for each individual component.

Range Image Backbone Range images and the corresponding spherical
projection are motivated by a lidar’s internal structure, which usually consists
of a vertical stack of lasers spinning around their vertical axis. As a result, the
measurements can be described by an azimuth angle φ, an elevation angle θ and
measured distance r and intensity e. We follow [4] for the conversion of the
point clouds to range images of shape 6× h×w, with channels r, x, y, z, e and
an occupancy flag.
The chosen 2d network architecture is based on deep layer aggregation [25] and
closely related to LaserNet [10]. We reduced the number of Residual Units [6] in
the first two feature extractors to four and five. Additionally, the downsampling
in the first feature extractor was omitted. The backbone provides 2d feature
maps of three different stages, see Fig. 3.1. Because of the underlying deep layer
aggregation, all three stages are at full resolution while still representing features
of different context stages. Full resolution feature maps have the advantage,
that a distinctive feature vector can be provided for every 3d point, expect for
colliding points [4].

Feature Propagation The fusion of feature maps F and point features f point

requires a transformation of 2d features back to their corresponding 3d points p.
One possible strategy is the assignment of a 2d feature to the 3d point belonging
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Figure 3.1: The proposed segmentation architecture. The range image backbone efficiently
aggregates 2d context information and provides them via a feature propagation step to the point
network, which itself computes point-wise features and combines them with the provided context
information.

to its pixel position
f twin

p = f point
p ⊕ F [up, vp], (3.1)

where u and v are the 2d coordinates resulting from the spherical projection and
⊕ denotes concatenation. One possible disadvantage of this strategy occurs for
colliding points, because all of them get the same feature vector assigned, even if
they are far apart in 3d. For solving the related challenge of label back-projection,
[11] proposed a KNN-based approach. The 3d labels are chosen by a majority
vote among the approximated k-nearest-neighbors, weighted by their euclidean
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distance. Although we want to back-project intermediate feature vectors, instead
of simple labels, we yet pick up the general idea of using the 2d neighborhood of
a pixel as nearest-neighbor candidates. Instead of a majority vote, we compute
the weighted sum over the feature vectors:

f twin
p = f point

p ⊕
∑

p̃∈Nk(p)

w(p,p̃) · F [up̃, vp̃], w(p,p̃) = 1
||p− p̃||2

, (3.2)

with Nk being the k×k-neighborhood of p. Therefore, features are aggregated
based on the point distribution in 3d space.

Point Network Motivated by the original PointNet, the point network stacks
multiple shared MLPs to extract and refine point features. After each stage,
the propagated features from the 2d branch, which provide the aggregated
neighborhood and context information, are concatenated with the point features,
see Eq. 3.1 and 3.2. The point network operates on the original point cloud
resolution over all stages, so no information are lost. The shared MLPs are
implemented by 1×1-convolutions and their feature channel depth increases
with network depth.

4 Experiments

4.1 SemanticKITTI

We evaluate our approach on the challenging, large-scale SemanticKITTI dataset
[2, 5], which provides point-wise annotations for 360◦-Velodyne-HDL-64E
scans. The annotations contain 19 classes for the single scan benchmark.
22 labeled sequences of varying length, recorded at 10 Hz, add up to just
over 43, 000 scans. Sequences 0-10 are provided with labels for training and
validation while sequences 11-21 without published labels form the test split.
The official recommendation is to use sequence 08 for validation, but we use a
larger validation split for our ablation studies, consisting of sequences 02, 06, 10,
for more significant conclusions. We follow the official evaluation metric and
report the mean Intersection-over-Union (mIoU).
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Table 4.1: Observed improvements when adding the point network (PN) and KNN feature
propagation, compared to a single range image backbone (RB).

RB PN KNN mIoU (%)

X 51.4
X X 53.7
X X X 54.8

4.2 Implementation Details

The implementation is based on PyTorch and all experiments are trained in
mixed precision mode using distributed data parallel training on four Tesla V100
GPUs.
Class-balanced cross entropy loss is optimized by Adam with a weight decay
of 0.0005 for 100k iterations. The learning rate starts with 0.001 and is then
multiplied with e−5·10−5·i after every iteration i. To counteract overfitting, we
randomly flip the range images horizontally with a probability of p = 0.5 and
rely on random crops of size 64× 1024 during training.
First, solely the range image backbone is trained with a batch size of 32. Building
upon this, we train the entire network, also with a batch size of 32.

4.3 Results

Our evaluation starts with an investigation of the influence of the individual
components, with the results being depicted in Table 4.1. The range image
backbone, as a common 2d range image approach, is our baseline and achieves
a mIoU of 51.4%. The presented twin-representation architecture, which is
composed of the backbone and a point network, significantly outperforms the
baseline by +2.3%. Replacing the simple propagation strategy by the proposed
KNN feature propagation further improves the results to 54.8%.
In the next step, we investigate the results restricted to the distance intervals
0−20m, 20−40m and >40m. Table 4.2 shows an overall performance increase
of our approach for all chosen intervals. However, especially the results for distant
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Table 4.2: Comparison of the mIoU (%) for different distance intervals.

Approach 0−20m 20−40m >40m

RB 52.7 43.6 33.9
RB+PN 54.9 46.7 36.7
RB+PN+KNN 55.6 47.2 39.2

points are significantly improved by +5.3%, which is particularly challenging
because of the declining point density with increasing distance. For the other two
intervals, a smaller but still considerable improvement of +2.9% and +3.6% is
achieved.
Finally, we evaluate the results for the individual classes. Looking at Table 4.3,
especially the classes motorcycle, truck, person and bicyclist experience a
significant improvement by using the combination of range image backbone
and point network. Likewise, the results for the classes car, other-vehicle, trunk
and pole improved. In general, while no significant improvements for greater
static classes can be observed, small classes greatly benefit from our approach.
Adding KNN feature propagation further improves the results for most classes,
without any bias regarding a special group of classes. One class to emphasize
however is motorcyclist, which is improved by +11.2%.

5 Conclusion

In this work, we presented a twin-representation architecture to combine a
3d point-based branch with a 2d range image branch, to improve 3d semantic
segmentation. While the first computes and refines point-wise features over
multiple stages, the latter supports the 3d branch with an efficient aggregation
of neighborhood and context information. A feature propagation step connects
both branches. The evaluation showed a significant overall improvement, con-
sidering that our approach outperforms the baseline for every individual class.
Additionally, especially distant points experience a significant improvement.
To summarize, combining the two input representations enables the exploita-
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Table 4.3: Overview over the improvements for the individual classes. The presented approach
outperforms the baseline for every single class. Values are given as IoU (%).
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RB 51.4 83.9 31.7 35.9 33.4 31.1 45.4 23.2 2.4
RB+PN 53.7 85.0 32.3 44.1 42.5 34.7 53.6 29.0 3.1
RB+PN+KNN 54.8 86.5 29.7 45.9 44.4 36.2 53.0 28.4 14.3
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RB 91.2 80.2 58.8 8.6 76.7 58.0 82.8 63.8 70.1 49.5 49.6
RB+PN 90.8 80.0 59.0 8.8 76.5 58.3 82.9 66.2 70.9 52.0 50.4
RB+PN+KNN 91.3 80.5 61.0 7.3 78.1 60.2 83.4 65.6 71.7 49.3 52.8

tion of their different strengths, which considerably improves 3d semantic
segmentation.
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