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Abstract: This paper deals with a method for the parameter and order identification of a fractional
model. In contrast to existing approaches that can either handle noisy observations of the output
signal or systems that are not at rest, the proposed method does not have to compromise between
these two characteristics. To handle systems that are not at rest, the parameter, as well as the order
identification, are based on the modulating function method. The novelty of the proposed method is
that an optimization-based approach is used for the order identification. Thus, even if only noisy
observations of the output signal are available, an approximate identification can be performed.
The proposed identification method is, then, applied to identify the parameters and orders of a
lithium-ion battery model. The experimental results illustrate the practical usefulness and verify the
validity of our approach.

Keywords: fractional analysis; lithium-ion battery; parameter and order identification

1. Introduction

In recent years, fractional models have been increasingly used to describe a broad
range of real world problems [1]. Fractional analysis provides models that accurately
describe the long-term phenomena of systems as the fractional operators take into account
the entire system’s past. In contrast to the integer order operators, the information of
the system’s past is not concentrated in the initial conditions; however, the system’s
past is represented by a non-constant function [2]. In the context of parameter and order
identification, this non-constant function has to be considered, otherwise it leads to incorrect
parameter and order identification [3].

To overcome this drawback, the majority of approaches for parameter and order
identification assume the system to be at rest (see e.g., [4–8]). This means that the input
and output signal are assumed to be zero before the start of the identification. However,
fractional models are primarily used to describe long-term phenomena, such as the dif-
fusion process in a lithium-ion battery. For a lithium-ion battery to be considered at rest,
this diffusion process must have completely decayed, which can take several hours [9].
Therefore, the assumption that the system is at rest is restrictive in terms of applicability.

In [3,10], two approaches were proposed that dropped the assumption of a system
at rest. The authors of [3] applied the Caputo definition for the fractional derivatives.
Integrating the underlying fractional differential equation with the highest derivative order
leads to the initial values in the system description. These initial values are interpreted
as additional parameters of the system and collected in an extended parameter vector.
Under the assumption that the fractional orders are known, a method for the bias-free
identification of the extended parameter vector under noisy observations of the input and
output signal is presented.

A shortcoming of the method from [3] is that the initial values of the Caputo deriva-
tives do not initialize the system properly [11]. Instead, as with the Riemann–Liouville
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definition, the entire past of the input and output signal has to be taken into account to
initialize the Caputo derivative properly [12].

This is considered in the approach of [10], which is based on the findings from [5]. In
opposite to [3], not only the parameters but also the orders of the fractional system are
identified in the method from [10]. The approach is derived from the modulating function
method, which allows elimination of the influence of the entire system past. Even though
the approach is demonstrated with a noisy observation of the output signal, the orders are
determined by solving a root-finding problem. Thus, the noisy observation of the output
signal leads to an ill-posed problem.

To determine the orders in the presence of noise, an optimization-based approach is
proposed in this paper. The approach is also based on the modulating function method
to keep the possibility of eliminating the influence of the entire system’s past. For the
sake of practical implementation, the Grünwald–Letnikov definition is used instead of the
Riemann–Liouville definition.

The remainder of this paper is structured as follows: First, Section 2 outlines the
preliminaries. In the first part of Section 3, the parameter identification is briefly introduced.
The second part of Section 3 presents the order identification under noisy observations of
the output signal, which is the first main contribution of the paper. The application to a
lithium-ion battery and the identification of the parameters and orders are the second main
contribution, which is described in Section 4. In Section 5, we draw the main conclusions
from this paper.

2. Preliminaries

In the literature, many definitions for the fractional operator exist. With regard to
practical implementation, the presented approach is based on the definition of Grünwald–
Letnikov. Further, the fractional model and the identification equation on which the
approach is based on are given in this section.

2.1. Fundamentals of Fractional Calculus

Throughout this subsection, f : (−∞, t]→ R and h : [t, ∞)→ R are smooth functions
with f (t) = 0, for all t ≤ t0 and h(t) = 0, for all t ≥ t3. Let α, β ∈ R, α > 0, β > 0 and
t0, t1, t2, t3 ∈ R with t0 ≤ t1 < t < t2 ≤ t3. Furthermore, b·c describes the floor function
and denotes the biggest integer smaller or equal to the argument.

All so far mentioned definitions of Caputo, Riemann–Liouville, and Grünwald–
Letnikov can be found in, e.g., [13–16], whose notation is also used in this paper.

Definition 1. Left-Sided Grünwald–Letnikov Derivative.
The definition of the left-sided Grünwald–Letnikov derivative is

dGLα
t0 t f (t) := lim

T→0

1
Tα

b t−t0
T c

∑
l=0

(−1)l
(

α

l

)
f (t− lT), (1)

where T is the sampling time.

Definition 2. Right-Sided Grünwald–Letnikov Derivative.
The right-sided Grünwald–Letnikov derivative is defined as:

dGLα
t t3

h(t) := lim
T→0

1
Tα

b t3−t
T c

∑
l=0

(−1)l
(

α

l

)
h(t + lT), (2)

where T is the sampling time.

Following the notation of [16], the fractional derivative operators are given by dα
t0 t .

The derivative order α is given as the right upper index dα. The lower left index dt0
for the
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left-sided case or the lower right index dt3
for the right-sided case marks the time before

t0 or after t3 the function is zero. The third parameter is the actual time t and is given as
lower right respectively left index.

The derivative of the right-sided Grünwald–Letnikov definition with respect to the
order is given in the following lemma, which was originally stated in [10].

Lemma 1. Derivative of the Right-Sided Grünwald–Letnikov Definition.
The derivative of the right-sided Grünwald–Letnikov definition is

∂ dGLα
t t3

h(t)
∂α

= − lim
T→0

ln(T)
Tα

b t3−t
T c

∑
l=0

(−1)l
(

α

l

)
h(t + lT)+

lim
T→0

1
Tα

b t3−t
T c

∑
l=0

(−1)l
(

α

l

) l−1

∑
λ=0

1
α− λ

h(t + lT).

(3)

The proof can be found in [10].

Remark 1. Assuming a continuous and bounded function h and a finite sampling time T, then the
derivative of the right-sided Grünwald–Letnikov definition (3) does not have singularities and
is bounded.

2.2. Fractional Model

Consider the general non-commensurable fractional model

n

∑
i=0

ai DRLαi
t1 t ỹ(t) =

m

∑
k=0

bk DRLβk
t1 t u(t), (4)

where u(t) is the time-continuous input signal and ỹ(t) is a noisy observation

ỹ(t) = y(t) + ε(t) (5)

of the noise-free output signal y, which is superimposed by a white noise ε with a zero
mean. The derivative operator D indicates that the system is not at rest. RL marks that the
system is interpreted in terms of Riemann–Liouville [13–15]. The unknown parameters are
collected in the vector

p = [an, . . . , a0, bm, . . . , b0]
>, (6)

where ai, bk ∈ R, and the fractional orders in the vector

θ = [αn, . . . , α0, βm, . . . , β0]
>, (7)

where αi, βk ∈ R, αi > 0 and βk > 0. Without loss of generality, the fractional orders are
assumed to be ordered 0 ≤ α0 < · · · < αn, 0 ≤ β0 < · · · < βm with αn ≥ βm. The number
of unknown parameters n, m ∈ N are assumed to be known.

Regarding the noise ε, the input signal u, the output signal ỹ, and the parameters p,
the following assumptions are made.

Assumption 1. Noise Properties.
We assume white noise ε with zero mean

E{ε(t)} = 0 and (8)

E{ε(t)ε(t− τ)} = σ2δ(τ), (9)

where E denotes the expectation, σ denotes a constant, and δ denotes the Dirac delta function (see
([17], p. 56)).
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Assumption 2. Bounded Signals.
The input u and output signal ỹ are assumed to be bounded.

Assumption 3. Parameter Normalization.
Without loss of generality, the normalization an = 1 holds in (4).

2.3. Simulation of a Fractional Model

In the parameter identification method, a simulation ysim of the system output signal
y is needed. To simulate a fractional model (4), a closed-form solution with zero initial
conditions is given in [18] (p. 113). In general, if the system is not at rest and, hence,
no zero initial conditions are present, an error between the simulated output signal with
and without zero initial conditions occurs [19]. To reduce this error, an extension based
on a closed form solution that considers the latest past of the system in sense of the
short-memory principle [20] is proposed in [19].

Definition 3. Closed-Form Solution Considering the Short-Memory Principle.
A closed-form solution that considers the short-memory principle is defined as:

ysim(t) = lim
T→0

1
n
∑

i=0

ai
Tαi

 m

∑
k=0

bk

Tβk

L

∑
l=0

(−1)l
(

βk
l

)
u(t− lT)−

 b t−t1
T c

∑
l=b t−t2

T c+1


n

∑
i=0

ai
Tαi

b t−t2
T c

∑
l=1

(−1)l
(

αi
l

)
ysim(t− lT) +

b t−t1
T c

∑
l=b t−t2

T c+1

(−1)l
(

αi
l

)
y(t− lT)


,

(10)

where T is the sampling time, t1 is the time where the measurement starts, t2 = t1 + LT is the time
where the simulation starts, and L is the memory length.

Remark 2. For the definition 3, it is assumed that the system is at rest before t0.

The input signal u and the output signal of the system y in t ∈ [t1, t2) are used to
initialize the closed-form solution (10). From t = t2 onward, the simulation of the system
output signal ysim is calculated recursively.

2.4. Modulating Function Method and Identification Equation

The modulating function method was first proposed in [21]. The basic idea is to
transfer the derivatives of the initial signals to an arbitrary and continuously differentiable
function by means of integration by parts. Therefore, the fractional model (4) is multiplied
with a function that is continuously differentiable. The resulting products of the function
and the input as well as output signal are integrated over t ∈ [t1, t2]. Applying integration
by parts leads to the result that the derivatives are swapped but at the expense of arising
boundary terms.

Definition 4. Modulating Function [21].
With regard to a fractional model (4), a modulating function is a function satisfying

(P1) : γ(t) ∈ Cαn([t1, t2]) and

(P2) : γ(v)(t1) = γ(v)(t2) = 0, ∀v = 0, 1, . . . , bαnc+ 1.
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The property (P1) ensures that all necessary derivatives of the modulating function
exist. The property (P2) eliminates the boundary terms which arise due to the integration
by parts. Considering a third property, viz.

(P3) :
dCαi

t t2
γ(t) = 0, ∀i = 0, 1, ..., n and t ∈ [t0, t1],

dCβk
t t2

γ(t) = 0, ∀k = 0, 1, ..., m and t ∈ [t0, t1],

which is stated in [22]. The identification of the modulating function method for a fractional
model with initialized derivative operators results in

n

∑
i=0

ai

t2∫
t1

ỹ(t) dCαi
t t2

γ(t)dt =
m

∑
k=0

bk

t2∫
t1

u(t) dCβk
t t2

γ(t)dt. (11)

The derivatives of the model (4) are considered to be described by the fractional oper-
ator of Riemann–Liouville. Applying the modulating function method, the derivative type
changes to the Caputo definition for the modulating function [22]. Therefore, the approach
can be formulated using the Grünwald–Letnikov derivative, and the Caputo definition
has to be replaced by the Grünwald–Letnikov definition. If the modulating function is
dαne+ 1-times continuously differentiable, the derivative operator of Riemann–Liouville
and Grünwald–Letnikov are interchangeable [23]. The Riemann–Liouville derivative is
linked with the Caputo derivative through ([24], p. 91)

dRLα
t t2

f (t) = dCα
t t2

f (t) +
bαnc

∑
k=0

(t2 − t)k

k!
dRLα

t t2
f (t)

∣∣
t=t2

. (12)

Due to (P2) and assuming that the modulating function is zero for t ≥ t2, the boundary
terms in (12) are eliminated. Hence, in our case, (11) is equivalent to [10]

n

∑
i=0

ai

t2∫
t1

ỹ(t) dGLαi
t t2

γ(t)dt =
m

∑
k=0

bk

t2∫
t1

u(t) dGLβk
t t2

γ(t)dt, (13)

which is the identification equation for the approach of this paper.

3. Combined Iterative Parameter and Order Identification

In this section, a method for parameter and order identification is introduced. The nov-
elty is that the method can handle noisy observations of the output signal. The identification
is performed iteratively whereby the orders are updated in a first step, and afterwards the
parameters are identified for the orders of the actual iteration. This procedure is shown in
Figure 1. For a consistent parameter estimation under noisy measurements, we apply the
approach from [19]. This approach is outlined in Section 3.1. The focus of the paper is on
the order identification under noisy observations of the output signal. Instead of solving a
root-finding problem, as in [10], an optimization-based approach is used to identify the
derivative orders of a fractional model (4). This main contribution of the paper is given in
Section 3.2.

3.1. Parameter Identification

The method introduced in [19] is an extension of the instrumental variable method
for integer order models to fractional order models. To apply the instrumental variable
method, we require Np ≥ N identification equations, where N = n + m + 1 is the number
of model parameters. The Np identification equations are generated by evaluating the
integrals in (13) for different time intervals. In general, the lower bound of the integral can
be expressed by t1,h and the upper bound by t2,h where h ∈

{
0, 1, . . . , Np − 1

}
. These time

points can be derived, e.g., by shifting the integrals by a fixed time T∆. Assuming that the
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identification process is started at t = t1 and the fixed integral width is TI , the lower and
the upper bound are given by t1,h = t1 + hT∆ and t2,h = t1,h + TI , respectively.

initial order θ0

parameter
identification p

(
θq
)

order identification θq

convergence?

yes

no

parameter
identification p (θ0)

q = q + 1

Figure 1. Iterative method for simultaneous parameter and order identification of a fractional model.

Let Assumption 3 hold. If the derived identification equations are independent,
the linear system

Y
(

θq

)
= M

(
θq

)
p
(

θq

)
(14)

is set up for the parameter identification. The parameters depend on the latest estimates

of θq. The vector Y :=
[
y0, y1, . . . , yNp−1

]>
describes the αn-th fractional derivative of the

modulated output signal

yh :=

t2,h∫
t1,h

ỹ(t) dGLαn
t t2,h

γ(t + hT∆)dt. (15)

The measurement matrix M :=
[
m0, m1, . . . , mNp−1

]>
consists of the vectors mh ∈ RN×1,

which are the remaining modulated derivatives of the output and input signal:

m>h :=

− t2,h∫
t1,h

ỹ(t) dGLαn−1
t t2,h

γ(t + hT∆)dt, . . . ,−
t2,h∫

t1,h

ỹ(t) dGLα0
t t2,h

γ(t + hT∆)dt,

t2,h∫
t1,h

u(t) dGLβm
t t2,h

γ(t + hT∆)dt, . . . ,

t2,h∫
t1,h

u(t) dGLβ0
t t2,h

γ(t + hT∆)dt

,

(16)
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where h ∈
{

0, 1, . . . , Np − 1
}

. Due to the noisy observations of the output signal, the least-
squares method leads to biased estimates of the parameters [25]. Therefore, a matrix of

instrumental variables W :=
[
w0, w1, . . . , wNp−1

]>
where

w>h :=

−t2,h∫
t1,h

ysim(t) dGLαn−1
t t2,h

γ(t + hT∆)dt, . . . ,−
t2,h∫

t1,h

ysim(t) dGLα0
t t2,h

γ(t + hT∆)dt,

t2,h∫
t1,h

u(t) dGLβm
t t2,h

γ(t + hT∆)dt, . . . ,

t2,h∫
t1,h

u(t) dGLβ0
t t2,h

γ(t + hT∆)dt


(17)

is used to solve the linear system (14):

p
(

θq

)
=
(

W>
(

θq

)
M
(

θq

))−1
W>
(

θq

)
Y
(

θq

)
. (18)

Instead of the noisy observations of the system output signal ỹ, the simulation of the output
signal ysim is used to set up (17). Thus, the instrumental variables fulfill the requirements
of the instrumental variable method in that they are uncorrelated to the noise but strongly
correlated to the undisturbed input signal and output signal of the system.

The approach can be summarized as follows:

1. The parameters are estimated using the least-squares method after N iterations where
N is the number of parameters for the first time.

2. These parameters are used to simulate the output signal ysim with the current frac-
tional orders θq. In general, the entire past of the system is not available. Thus,
the closed-form solution based on the short-memory principle (10) is used to calcu-
late ysim.

3. The calculated output signal ysim is used to set up the instrumental variable matrix W
and to refine the parameter estimates iteratively via (18) until a maximum number of
iterations Np is reached or the difference between the two estimates is almost zero.

3.2. Order Identification

For the parameter identification, we assumed that the derivative orders are available
in each iteration. In this subsection, an order identification method is proposed. Therefore,
the identification equation of the modulating function (13) is interpreted as a nonlinear
function that depends on the orders of the system

fo(θ) :=
n

∑
i=0

ai

t2∫
t1

y(t) dGLαi
t t2

γ(t)dt−
m

∑
k=0

bk

t2∫
t1

u(t) dGLβk
t t2

γ(t)dt. (19)

For a noisy output signal, the nonlinear equation for the order identification results in

f (θ) :=
n

∑
i=0

ai

t2∫
t1

ỹ(t) dGLαi
t t2

γ(t)dt−
m

∑
k=0

bk

t2∫
t1

u(t) dGLβk
t t2

γ(t)dt. (20)

In the sequel, we first investigate the influence of the noise on the order identification.
Afterwards, an optimization-based method for the order identification is proposed, and
the combination with the parameter identification is outlined.

3.2.1. Ill-Posed Root-Finding Problem

For the original parameters ai and bk and the orders αi and βk of the model, fo is zero.
In [10], this fact is used to transfer the order determination into a root-finding problem.
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In contrast to fo, in general, f is not zero for the original parameters and orders but takes
the value

e(θ) := f (θ)− fo(θ) (21)

=
n

∑
i=0

ai

t2∫
t1

ε(t) dGLαi
t t2

γ(t)dt. (22)

It is possible that, for small deviations of the original parameters and orders, f is zero.
However, the possibility also exists that f is always different from zero. In this case, an
identification of the orders using root-finding algorithms is not possible. This is exemplified
in Figure 2. A system described by

DRLα
t1 t ỹ(t) + a0ỹ(t) = b0u(t) (23)

where a0 = 10, b0 = 1 and α = 0.8 is excited with a pseudo random binary signal. The iden-
tification Equation (20) is evaluated in a brute-force manner for α = {0.5, 0.01, . . . , 0.9},
while the parameters are kept at a0 = 10 and b0 = 1. The first evaluation is performed
with the noise-free output signal, which is represented by the blue line in Figure 2. The
red line, on the other hand, is obtained from an output signal, which is superposed by a
time-variant noise ε. The root disappears in this case, and thus the order can not be derived
by the approach proposed in [10].

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
−0.2

0

0.2

0.4

α

f (
α
)

noise-free observation noisy observation

Figure 2. Visualizing the influence of the noise on the identification equation.

3.2.2. Optimization-Based Approach

In order to identify at least the derivative orders in the presence of noisy observations
of the output signal approximately, an objective function

J(θ) :=
1
2

Nθ

∑
h=1

f 2
h (θ), (24)

where Nθ ≥ n + m + 2 is defined. As can be seen, the objective function is formulated in
the sense of best fitting. In (24), the function

fh(θ) :=
n

∑
i=0

ai(θ)

t2,h∫
t1,h

ỹ(t) dGLαi
t t2,h

γ(t)dt−
m

∑
k=0

bk(θ)

t2,h∫
t1,h

u(t) dGLβk
t t2,h

γ(t)dt (25)

includes independent equations derived from (20). Equation (25) can be obtained from
shifting the integral as described in Section 3.1.
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To identify the orders, the objective function has to be minimized with respect to
the orders:

min
θ∈RNθ

≥0

{J(θ)}. (26)

The optimization problem (26) is solved using the Gauß–Newton method ([26], S. 214 ff.).

θq+1 = θq −
[

HJ
(

θq

)]−1
∇J
(

θq

)
, (27)

where ∇J is the gradient:

∇J
(

θq

)
:=

 Nθ

∑
h=1

∂ fh

(
θq

)
∂αn

fh

(
θq

)
, . . . ,

Nθ

∑
h=1

∂ fh

(
θq

)
∂β0

fh

(
θq

)> (28)

and HJ is the approximated Hessian of the Gauß–Newton method:

HJ
(

θq

)
:=



Nθ

∑
h=1

∂ fh(θq)
∂αn

∂ fh(θq)
∂αn

. . .
Nθ

∑
h=1

∂ fh(θq)
∂αn

∂ fh(θq)
∂β0

...
. . .

...
Nθ

∑
h=1

∂ fh(θq)
∂β0

∂ fh(θq)
∂αn

. . .
Nθ

∑
h=1

∂ fh(θq)
∂β0

∂ fh(θq)
∂β0

. (29)

3.2.3. Convergence Analysis

In this subsection, the derivative of the order identification Equation (20) is calculated
first. This derivative is needed for gradient (28) as well as Hessian (29). Secondly, the con-
vergence of the Gauß–Newton method for the stated problem (26) with (24) is analyzed.

Lemma 2. Partial Derivative of Order Identification Equation (25).
Suppose No = n + m + 2, J = { j ∈ N|j ≤ No}, j ∈ J and an independent equation fh (25) of
f in (20). Further, let {θ}j describe the j-th element of the order vector θ in (7).
The partial derivative of fh with respect to {θ}j is

∂ fh(θ)

∂{θ}j
=

n

∑
i=0

∂ai(θ)

∂{θ}j

t2,h∫
t1,h

ỹ(t) dGLαi
t t2,h

γ(t)dt−
m

∑
k=0

∂bk(θ)

∂{θ}j

t2,h∫
t1,h

u(t) dGLβk
t t2,h

γ(t)dt +Ψ(j), (30)

where

Ψ(j) =


an+1−j(θ)

t2,h∫
t1,h

ỹ(t)
∂ dGL

αn+1−j
t t2,h

γ(t)

∂{θ}j
dt, j ≤ n + 1

−bNo−j(θ)
t2,h∫

t1,h

u(t)
∂ dGL

βNo−j
t t2,h

γ(t)

∂{θ}j
dt, else

. (31)

In (31), the partial derivative of the Grünwald–Letnikov derivative is given in Lemma 1.

Proof. If (25) is derived with respect to {θ}j, it must be considered that the parameters
as well as the derivative of Grünwald–Letnikov depend on the orders. To calculate the
derivative, the product rule is used. While the parameters depend on all orders and
are stated in (30), the Grünwald–Letnikov derivatives only depend on one specific order.
Therefore, a case distinction depending on the derivative order {θ}j has to be performed,
which is given in (31). The needed derivative of the Grünwald–Letnikov derivative with
respect to the order is given in Lemma 1.
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The derivatives of the parameter ∂ai(θ)/∂{θ}j and ∂bk(θ)/∂{θ}j in (30) depend on the
specific method for the parameter identification. In this paper, the instrumental variable
method from [10] is used to achieve a consistent parameter estimation. Based on the pa-
rameter identification Equation (18), the corresponding partial derivative of the parameters
is calculated.

Lemma 3. Partial Derivative of the Parameter.
Suppose N = n + m + 1, Np ∈ N, Np ≥ N and the parameter identification Equation (18):

p(θ) =
(

W>(θ)M(θ)
)−1

W>(θ)Y(θ), (32)

where M(θ) =
[
m0(θ), m1(θ), . . . , mNp−1(θ)

]>
is the measurement matrix with

m>h (θ) :=

− t2,h∫
t1,h

ỹ(t) dGLαn−1
t t2,h

γ(t + hT∆)dt, . . . ,−
t2,h∫

t1,h

ỹ(t) dGLα0
t t2,h

γ(t + hT∆)dt,

t2,h∫
t1,h

u(t) dGLβm
t t2,h

γ(t + hT∆)dt, . . . ,

t2,h∫
t1,h

u(t) dGLβ0
t t2,h

γ(t + hT∆)dt

,

(33)

W(θ) =
[
w0(θ), w1(θ), . . . , wNp−1(θ)

]>
is the instrumental variable matrix with

w>h :=

−t2,h∫
t1,h

ysim(t) dGLαn−1
t t2,h

γ(t + hT∆)dt, . . . ,−
t2,h∫

t1,h

ysim(t) dGLα0
t t2,h

γ(t + hT∆)dt,

t2,h∫
t1,h

u(t) dGLβm
t t2,h

γ(t + hT∆)dt, . . . ,

t2,h∫
t1,h

u(t) dGLβ0
t t2,h

γ(t + hT∆)dt

,

(34)

and Y(θ) =
[
y0(θ), y1(θ), . . . , yNp−1(θ)

]>
is the measurement vector with

yh(θ) =

t2,h∫
t1,h

ỹ(t) dGLαn
t t2,h

γ(t + hT∆)dt. (35)

Further, let {θ}j describe the j-th element of the order vector θ (7).
The partial derivative of p with respect to {θ}j can be calculated as

∂p(θ)
∂{θ}j

=
[
W>(θ)M(θ)

]−1
[

∂W>(θ)
∂{θ}j

Y(θ) + W>(θ)
∂Y>(θ)
∂{θ}j

−

∂W>(θ)
∂{θ}j

M(θ)p(θ)−W>(θ)
∂M(θ)

∂{θ}j
p(θ)

]
.

(36)

Proof. Starting from the linear system (14), the first step is the multiplication of the linear
system (14) with the transposition of the instrumental variable matrix W

W>(θ)M(θ)p(θ) = W>(θ)Y(θ). (37)
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Deriving (37) with respect to {θ}j yields

∂W>(θ)
∂{θ}j

M(θ)p(θ) + W>(θ)
∂M(θ)

∂{θ}j
p(θ) + W>(θ)M(θ)

∂p(θ)
∂{θ}j

=

∂W>(θ)
∂{θ}j

Y(θ) + W>(θ)
∂Y(θ)
∂{θ}j

.

(38)

To obtain this equation, the product rule is used. Equation (38) is rearranged such that all
expressions except for the expression depending on the partial derivative of the parameter
are on one side

W>(θ)M(θ)
∂p(θ)
∂{θ}j

=
∂W>(θ)
∂{θ}j

Y(θ) + W>(θ)
∂Y(θ)
∂{θ}j

−

∂W>(θ)
∂{θ}j

M(θ)p(θ)−W>(θ)
∂M(θ)

∂{θ}j
p(θ).

(39)

Under the assumption of independent equations for the parameter identification problem,
the inverse of W>(θ)M(θ) must exist. Otherwise, the requirements for the parameter
identification are not met. The inversion of W>(θ)M(θ) is the last step to calculate the
derivative of the parameters.

Due to the computational effort of the non-recursive instrumental variable method,
often the recursive realization is used in practical applications ([17], p. 269). In this case,
(36) cannot be calculated, and the difference quotient is used to approximate the derivative
of the parameters. As an example, the difference quotient for the κ-th element of the
parameter vector p and the j-th element of the order vector θ result in

∂
{

p(θ)
}

κ

∂{θ}j
≈

{
p
(

θ + ∆ej

)}
κ
−
{

p(θ)
}

κ

∆
, (40)

where κ = 1, 2, . . . , n + m + 1, j = 1, 2, . . . , n + m + 2. In (40), ∆ ∈ R>0 is a sufficiently
small constant that represents the difference interval. The vector ej is the j-th unit vector of
Rn+m+2 and is used to select the element of the vector θ.

Under the assumption that the Hessian HJ is non-singular, the Hessian of the Gauß–
Newton method is a positive definite matrix ([26], S. 215). Hence, if the derivatives
∂ fh(θq)/∂{θ}j exist and ∇J has no singularity, the Gauß–Newton method converges.

Lemma 4. Convergence Analysis.
The derivatives ∂ fh(θq)/∂{θ}j (30) exist and ∇J (28) has no singularity if

(a) the sampling time T is finite, and
(b) the modulating function γ,
(c) the input signal u, the output signal ỹ, the parameters ai and bk, and the derivatives of the

parameters ∂ai(θ)/∂{θ}j and ∂bk(θ)/∂{θ}j are bounded.

Hence, if these requirements are fulfilled, the Gauß–Newton method converges against a minimum
for the stated problem (26) with (24).

Proof. If the sampling time is equal to zero, the partial derivative of the Grünwald–
Letnikov definition (3) has a singularity. Due to this, the sampling time must be restricted
to finite values, which is ensured by requirement (a).

If (30) is not bounded, the inverse of the Hessian does not exist. For (30) to be bounded,
all terms of (30) must be bounded, which is covered by the requirements (b) and (c).



Mathematics 2021, 9, 1607 12 of 19

With regard to practical applications, the requirements (a)–(c) are not restrictive.
The requirement (a) is always fulfilled for implementation on processing units. The
fulfillment of requirement (b) can be ensured by the choice of the modulating function
without any restriction by the properties (P1) and (P2). The boundedness of the input
signal, output signal, parameters, and the derivatives of the parameters regardless of the
chosen method is guaranteed by the practical Assumption 2, which fulfills requirement
(c) [19]. However, the Gauß–Newton method generally does not ensure that the global
minimum is reached. This results from the fact that the Gauß–Newton method is based
on a linear approximation of the original problem. The minimum the Gauß–Newton
method converges against depends on the chosen initial solution and on the specific
nonlinearity ([26], S. 214 ff.).

4. Parameter and Order Identification for a Model of a Lithium-Ion Battery

In this section, the proposed parameter and order identification approach is applied to
a lithium-ion battery model. To this end, it is crucial that the modulating function satisfies
property (P3) as, otherwise, the system is required to be at rest. Considering the lithium-
ion battery, the diffusion process has to decay, which can take several hours. The choice of
such a modulating function is stated in Section 4.1. In Section 4.2, the fractional model of a
lithium-ion battery is given, and the experimental setup is explained in Section 4.3. The
ground truth for the identification is determined in Section 4.4. The identification is carried
out in Section 4.5.

4.1. Choice of Modulating Function

One advantage of the approach from Section 3 is that the system need not to be at
rest at the beginning of the identification process. This advantage is at the cost of the
modulating function fulfilling property (P3) in addition to (P1) and (P2). In [22], they
proved that the spline-type modulating function also fulfilled property (P3).

Definition 5. Spline-Type Modulating Function [27].
The spline-type modulating function is the integration over a weighted sequence of impulses

γs,ν(t) =
t2∫

t1

s−ν︷︸︸︷
· · ·

t2∫
t1

s

∑
µ=0

(−1)µ
(

s
µ

)
δ

(
µ

TI
k
− t + t1

)
dts−ν, (41)

where s ∈ N is the number of splines, and ν ∈ N represents the order of the modulating function.

4.2. Model of a Lithium-Ion Battery

Several models to describe a lithium-ion battery exist in the literature. Depending
on the modeling goal, the range is from detailed electrochemical models to behavior
models, see [28,29]. The electrochemical models are based on particle models, and partial
differential equations are used, whereas the behavior models are described by RC circuits.
Fractional models are a compromise between the electrochemical models and behavior
models, see [30] (p. 141 ff.) and [16,29,31,32]. In general, the fractional impedance model
of a lithium-ion battery is used to describe the overvoltages of the different loss processes
and the overvoltage of the diffusion process in a lithium-ion battery [31].

The model
ZLIB(s) = R̃0 +

1
Cdiffsαdiff

(42)

where s depicts the complex number frequency parameter and αdiff ∈ (0, 1) is the fractional
order used in this paper is based on [29]. Due to the minimal sampling time Tmin = 0.07 s
is realizable with the experimental setup, which is explained in the next subsection, and
only the low frequency range of the model proposed in [29] can be correctly reconstructed.
The loss processes of the high and mid frequency range are collected in R̃0. The differential
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capacity Cdiff describes the amount of charge that has to be removed or inserted to change
the open circuit voltage (OCV) by a specified quantity [33]:

Cdiff :=
dQ

dOCV
. (43)

For the parameter and order identification, the model (42) has to be rearranged so that it
appears in the form of (4). First, the fractions are extended

ZLIB(s) =
R̃0Cdiffsαdiff + 1

Cdiffsαdiff
. (44)

Second, using the Laplace transform ([13], p. 79) yields

Cdiff DRLαdiff
t1 t y(t) = R̃0Cdiff DRLαdiff

t1 t u(t) + u(t). (45)

Due to Assumption 3, (45) is divided by Cdiff

DRLαdiff
t1 t y(t) = R̃0 DRLαdiff

t1 t u(t) +
1

Cdiff
u(t). (46)

Comparing (46) with (4), the parameters and order to identify are a1 = 1, a0 = 0, b1 = R̃0,
b0 = 1/Cdiff, α1 = αdiff and α0 = 0.

4.3. Experimental Setup

Due to safety reasons, the lithium-ion battery was operated in a climate chamber VC3

4018 from Vötsch. The lithium-ion battery was excited with a BOP 20-20M from Kepco,
and the excitation was realized as a current excitation. The current was measured with a
digital multimeter 34410A from Agilent, which had a standard deviation of σi = 1.1 mA.
The voltage was measured with a DS2004 High-Speed A/D Board from dSpace. The DS2004
High-Speed A/D Board was integrated in a real-time system and had a standard deviation of
σu = 0.14 mV.

The data transfer of the multimeter to the host computer took Tt = 0.05− 0.07 s. While
the data were transferred, no new data could be recorded from the multimeter. To avoid an
incorrect parameter and order identification due to measurement losses, the sampling time
was chosen to be T = 0.1 s.

The measurement was recorded in a voltage-correct circuit, which is shown in Figure 3.
With this, it is taken into account that the parameters and orders of the fractional model of
the lithium-ion battery (44) depended on the OCV and were only valid for small-signal
excitation ([9], p. 63 f.). To achieve a consistent parameter identification, the measured
voltage had to be corrected by the instantaneous OCV ([17], p. 255). A current-correct
circuit leads to systematic errors in voltage measurements, such that the correction of the
measured voltage is also incorrect. Even if the voltage across the ammeter is very low,
the voltage drop suggests a great change in the state of charge (SOC), especially in the range
of SOC ∈ [40%, 60%]. This is due to the flat course of the SOC-OCV curve, see Figure 4.

4.4. Experiment and Ground Truth

The fractional battery model (44) is only valid in a single operating point, which
depends on the temperature and state of charge. To prevent any changes from the operating
point due to temperature changes, the temperature was kept constant at 20 °C inside the
climate chamber. Thus, the state of charge was not varied during the measurement.
A pseudo random binary signal with a pulse duration of TP = 10 s with the following two
properties was used. The first property concerns the peak-to-peak amplitude, which was
chosen as î = 400 mA. Next to this, the pseudo random binary signal was designed such
that it was zero mean over the entire measuring range.
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BOP 20-20M

A

V

34410A

DS2004 lithium-ion
battery

Figure 3. Schematic illustration of the measurement setup for the parameter and order identification
of a lithium-ion battery model.
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Figure 4. Relation between the state of charge (SOC) and open circuit voltage (OCV) for the used
lithium-ion battery of type SLPB 834374H.

The measured input signal is shown in Figure 5, and the measured output signal of
the lithium-ion battery is shown in Figure 6. In both figures, a dashed red line indicates
the point in time from which the data were used for the combined parameter and order
identification. The data before TB = 80 s were only available for the determination of the
reference parameters.

The lithium-ion battery was not excited for the first TR = 20 s to check if the lithium-
ion battery was at rest and to determine the instantaneous OCV. As the standard deviation
of the measurement σu,mea = 0.146 mV is comparable to the standard deviation of the
manual σu = 0.14 mV, we assumed that the lithium-ion battery was at rest. The OCV was
calculated as mean value of the first TR = 20 s and was

OCV = 3.749 V. (47)

In combination with Figure 4, the SOC was determined to be SOC = 34.9%. Consider-
ing (43), the corresponding differential capacity can be derived from the SOC-OCV curve.
The differential capacity is equivalent to the reciprocal of the derivative of the SOC-OCV
curve. With the given SOC-OCV curve (cf. Figure 4) and SOC value, the differential
capacity was determined as

Cdiff = 191.6 A s V−1. (48)

The parameter to be identified is

b0 =
1

Cdiff
= 0.0053 V A−1 s−1. (49)
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The parameter b1 = R̃0 = 0.039Ω and the order α = 0.395 are estimated by a complex
nonlinear least squares regression. As an objective function, the quadratic error between
a simulated output signal and the measured output signal is used. For the simulation,
the complete input signal is used. Thus, we ensured that the system was at rest and no
error occurred in the parameter and order due to neglecting a part of the system’s history.

0 20 40 60 80 100 120 140 160 180 200
−0.3

−0.2

−0.1

0

0.1

0.2

t in s

i (
t )

in
A

input signal begin of identification

Figure 5. Input current measured with the digital multimeter 34410A and used as the input signal
for the parameter and order identification of the fractional battery model (44).

0 20 40 60 80 100 120 140 160 180 200
3.735

3.74

3.745

3.75

3.755

3.76

t in s

u (
t )

in
V

output signal begin of identification

Figure 6. Output voltage measured with the DS2004 High-Speed A/D Board and used as the output
signal for the parameter and order identification of the fractional battery model (44).

4.5. Results of the Combined Parameter and Order Identification

The instrumental variable method as described in Section 3.1 was applied for the
parameter identification. To set up the instrumental variables, a simulated output signal
ysim is needed. The closed-form solution (10) considering the short-memory principle was
used so that a strong correlation was achieved with the undisturbed output signal, but the
whole past of the system did not have to be taken into account. The memory length was
chosen to be L = 200. The less computationally expensive recursive instrumental variable
method instead of the non-recursive method was applied. Hence, an initial covariance
matrix must be provided. As two parameters have to be identified, the covariance matrix
is a 2× 2 matrix and is chosen to be

P(0) =
[

0.1 0
0 0.1

]
. (50)
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The values in (50) are motivated by the very small reference parameters. Before the identifi-
cation can be performed, the spline-type modulating function (41) has to be parameterized.
The number of splines was chosen to be s = 5, and the order was ν = 3. The identification
horizon was TI = 40 s. Further, to generate independent Equation (25), the start of the
integral is shifted by T∆ = 4 s for each equation.

For the first parameter identification q = 0 and, hence, before the iterative parameter
and order identification is started (see Figure 1), the first two iterations within the parameter
identification are performed in sense of the least-squares method as described at the end
of Section 3.1. After the first two iterations, the output signal is simulated using the
actual estimates of the parameters and the instrumental variables are calculated for the
parameter identification. Within the iterative parameter and order identification (q > 0),
the parameters of the iteration before (q− 1) are used to set up the instrumental variables
for the first iteration of the parameter identification. Afterwards, the updated estimates are
always used.

As in the case of parameter identification, the identification Equation (25) of the
order identification is also based on the modulating function method. The spline-type
modulating function with the same parameterization as for the parameter identification is
used. The initial value of the order is specified to be αdiff,0 = 0.8. Since the identification is
performed in the non-recursive form, the derivative of the parameters can not be calculated
analytically. Instead, the numerical approximation (40) is used. The deviation from the
derivation order of the actual iteration, which is required to evaluate the difference quotient,
is set to ∆ = 0.001 (see (40)).

The iterative character of the parameter identification and of the combined param-
eter and order identification approach makes stopping criteria necessary. In this paper,
two stopping criteria were formulated for each iteration. One stopping criterion is the
maximum number of iterations qmax. The maximum number of iterations is limited by the
measurement duration TD = 120 s (cf. Figures 5 and 6), the memory length L in combina-
tion with the sampling time T, and the chosen identification horizon TI and shifting time
T∆ of the modulating function method. Using the chosen data, the maximum number of
iterations is

qmax =
TD − LT − TI

T∆
= 15. (51)

A second stopping criterion considers the change of the estimated parameter and orders be-
tween two consecutive iterations. If the change of the parameters is smaller than εp = 10−6,
the instrumental variable method terminates, and the next step of the order identification
is performed. If the change of the order is smaller than εo = 10−6, the combined parameter
and order identification process terminates.

To distinguish the identified parameters from the reference parameters, these are
denoted as p̂. The notation α̂ is used to mark the identified order. The identification results
are presented in Figure 7. The reference parameters, which were determined in the section
before, are illustrated as dotted blue lines, while the identified parameters and orders are
given as a solid red line. Even though only noisy observations of the input and output
signal are available, all parameters and the order converge against the reference values.
Nonetheless, the exact values are not reached within the considered time. This is in line
with the discussion about the influence of the noise on the nonlinear equation for the order
identification in Section 3.2. The relative error after termination, i.e., the relative error
between the data of the eleventh iteration and reference values, for the parameters are

er,1 =
b̂1(α̂diff,11)− b1

b1
× 100 % = 0.6 %, (52)

er,0 =
b̂0(α̂diff,11)− b0

b0
× 100 % = −4.4 % and (53)
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er,α =
α̂diff,11 − αdiff

αdiff
× 100 % = 0.5 %. (54)

0
0.2
0.4
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Figure 7. The identification results of the proposed method for a lithium-ion battery using
real measurements.

5. Conclusions

In this paper, a combined parameter and order identification method for fractional
systems under noisy observations of the output signal was proposed.

The order identification was performed by an optimization-based approach that relied
on the modulating function method. The optimization-based approach ensured the order
identification to be robust against measurement noise. The parameter identification was
based on the instrumental variable approach from [19]. In contrast to the methods from
the literature, our method did not require the system to be at rest at the beginning of the
identification process. Furthermore, we provided practical implementable expressions of
the necessary equations and derivatives, which were derived in analytical form.

We applied the combined identification method to a fractional model of a lithium-ion
battery. The experimental results revealed that the proposed method yielded the correct
parameters in the presence of noisy observations of the output and input signal. These
identification results demonstrated that the method was practically applicable.

Author Contributions: Conceptualization, O.S.; methodology, O.S.; software, O.S.; validation, O.S.
and M.P.; investigation, O.S. and M.P.; resources, S.H.; writing—original draft preparation, O.S.;
writing—review and editing, M.P. and S.H.; visualization, O.S.; supervision, S.H. All authors have
read and agreed to the published version of the manuscript.

Funding: We acknowledge the support of the KIT-Publication Fund of the Karlsruhe Institute
of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Mathematics 2021, 9, 1607 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

C Caputo
GL Grünwald–Letnikov
OCV open circuit voltage
RL Riemann–Liouville
SOC state of charge

References
1. Kanth, A.S.V.R.; Garg, N. Computational simulations for solving a class of fractional models via Caputo-Fabrizio fractional

derivative. Procedia Comput. Sci. 2018, 125, 476–482. [CrossRef]
2. Sabatier, J.; Merveillaut, M.; Malti, R.; Oustaloup, A. How to impose physically coherent initial conditions to a fractional system?

Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1318–1326. [CrossRef]
3. Lu, Y.; Tang, Y.; Zhang, X.; Wang, S. Parameter identification of fractional order systems with nonzero initial conditions based on

block pulse functions. Measurement 2020, 158, 107684. [CrossRef]
4. Aldoghaither, A.; Liu, D.Y.; Laleg-Kirati, T.M. Modulating functions based algorithm for the estimation of the coefficients and

differentiation order for a space-fractional advection-dispersion equation. SIAM J. Sci. Comput. 2015, 37, 2813–2839. [CrossRef]
5. Belkhatir, Z.; Laleg-Kirati, T.M. Parameters and fractional differentiation orders estimation for linear continuous-time non-

commensurate fractional order systems. Syst. Control Lett. 2018, 115, 26–33. [CrossRef]
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