
New Generation Computing (2021) 39:115–158
https://doi.org/10.1007/s00354-020-00120-0

Card-Based Cryptography Meets Formal Verification

Alexander Koch1 ·Michael Schrempp1 ·Michael Kirsten1

Received: 11 May 2020 / Accepted: 13 November 2020 / Published online: 2 April 2021
© The Author(s) 2021

Abstract
Card-based cryptography provides simple and practicable protocols for performing
secure multi-party computation with just a deck of cards. For the sake of simplicity,
this is often done using cards with only two symbols, e.g.,♣ and♥ . Within this paper,
we also target the setting where all cards carry distinct symbols, catering for use-cases
with commonly available standarddecks and aweaker indistinguishability assumption.
As of yet, the literature provides for only three protocols and no proofs for non-trivial
lower bounds on the number of cards. As such complex proofs (handling very large
combinatorial state spaces) tend to be involved and error-prone, we propose using
formal verification for finding protocols and proving lower bounds. In this paper, we
employ the technique of software bounded model checking (SBMC), which reduces
the problem to a bounded state space, which is automatically searched exhaustively
using a SAT solver as a backend. Our contribution is threefold: (a) we identify two
protocols for converting between different bit encodings with overlapping bases, and
then show them to be card-minimal. This completes the picture of tight lower bounds
on the number of cards with respect to runtime behavior and shuffle properties of
conversion protocols. For computing AND, we show that there is no protocol with
finite runtime using four cardswith distinguishable symbols andfixed output encoding,
and give a four-card protocol with an expected finite runtime using only random cuts.
(b) We provide a general translation of proofs for lower bounds to a bounded model
checking framework for automatically finding card- and run-minimal (i.e., the protocol
has a run of minimal length) protocols and to give additional confidence in lower
bounds. We apply this to validate our method and, as an example, confirm our new
AND protocol to have its shortest run for protocols using this number of cards. (c) We

This article is an extended version of a proceedings paper with the same title that appeared at
ASIACRYPT 2019 with DOI https://doi.org/10.1007/978-3-030-34578-5_18 [15]. We replaced the
proof sketch of Theorems 4.1 and 4.2 with a full formal version. Moreover, we adapted our verification
tool to handle more general decks, which allows us to additionally show run-minimality of two-color deck
AND protocols from the literature. These new results are mainly described in “Verification of
run-minimality in two-color deck protocols’ and “Verification of shuffle set size maximality”.

B Alexander Koch
alexander.koch@kit.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-020-00120-0&domain=pdf
http://orcid.org/0000-0002-3510-9669
http://orcid.org/0000-0001-9816-1504
https://doi.org/10.1007/978-3-030-34578-5_18

116 New Generation Computing (2021) 39:115–158

extend our method to also handle the case of decks on symbols ♣ and ♥, where we
show run-minimality for two AND protocols from the literature.

Keywords Secure multiparty computation · Card-based cryptography · Formal
verification · Bounded model checking · Standard decks · Two-color decks

Introduction

Card-based cryptographic protocols allow to perform secure multi-party computation
(MPC), i.e., jointly computing a function while not revealing more information about
each individual input than absolutely necessary, with just a (regular) deck of playing
cards, as long as they have indistinguishable backs. Let us start with an example.
Assume that Alice and Bob meet in a bar and spend the evening together. After
quite some chat, they would like to find out whether to have a second date. They are
faced with the following problem: in case only one of them likes to meet again, this
would cause an uncomfortable embarrassment if he or she is the first to come out.1

Fortunately, Alice is a notable cryptographer and likes card games, so she has with
her a standard deck of cards. She remembers the protocol by Niemi and Renvall [26]
for computing the AND function of two bits, here for outputting “yes”, if both players
share thismutual interest, and “no” otherwise. Using thisMPCprotocol hides the input
of the respective other player unless it is obvious from their own input and output,
hence hiding a “yes”-choice given of only one player, from the other.

To get a feeling for how such card-based protocols work, let us introduce the said
protocol by Niemi and Renvall. The protocol uses five cards with distinguishable
symbols, which we denote—for simplicity2—as 1 2 3 4 and 5 . It is essential
that the cards’ backs are indistinguishable, such that when they are put face-down
on the table, the only thing observable is . With these cards, the two
players can encode a commitment to a bit (yes or no) by the order of two cards i j ,
i, j ∈ {1, . . . , 5} (with i �= j) via the encoding

i j =̂

{
0, if i < j,

1, if i > j.

Alice inputs her bit by putting the cards 1 2 face-down and in the respective order
on the table (she puts 1 2 for input 0, and 2 1 for input 1), while Bob does the
same using his cards 3 4 . We need an additional helper-card, here a 5 , which is put
to the left of the two players’ cards.

The protocol starts by swapping Alice’s second card with Bob’s first card in the
card sequence (pile) on the table. The resulting card configuration has an interesting
property, namely that the order of the cards 1 and 4 in this sequence already encodes

1 This is known as the “dating problem”.
2 Alice and Bob in the story might, e.g., use 7, 8, 9, 10, and a queen with any symbol.

123

New Generation Computing (2021) 39:115–158 117

the output of the protocol, i.e., it reads 4 1 if the output is 1, and 1 4 otherwise.
Hence, by securely removing the cards 2 and 3 (which is explained below), one
directly obtains the output. We see this by inspecting all possible cases:

Bits Input sequence After swap Removing 2 + 3

(0, 0) 5 1 2 3 4 5 1 3 2 4 5 1 x x 4

(0, 1) 5 1 2 4 3 5 1 4 2 3 5 1 4 x x

(1, 0) 5 2 1 3 4 5 2 3 1 4 5 x x 1 4

(1, 1) 5 2 1 4 3 5 2 4 1 3 5 x 4 1 x

We can remove the cards 2 and 3 , while keeping the relative order of all cards
in the sequence intact, by cutting the cards, i.e., rotating the sequence by a random
offset which is unknown to the players. We can then securely turn the first card and
remove it in case it is a 2 or a 3 . Due to the cut, the turned card is random and hence
does not reveal anything about the inputs. When both cards are removed, we reach a
configuration where 5 is the first card by the same procedure where the two remaining
cards encode the AND result. Here, the 5 played the crucial role of a separator that
keeps the relative order of the remaining cards—starting from the separator—intact,
when doing a random cut. (A formal version of this protocol is given in Protocol 2
and Fig. 7.)

In this paper, we are interested in whether we can do away with the helping card
5 , and whether there are simpler protocols. Moreover, to handle the increasing com-
binatorial state space (relative to protocols on decks of just ♣ and ♥), we introduce
formal verification to the field of card-based cryptography.

Secure Multiparty Computation with Cards

In combining different protocols, one can do much more than just computing the
AND function. For example, it is possible to compute arbitrary Boolean circuits by
combining the well-known fact that any circuit can be expressed using only NOT and
AND gates, with a method to duplicate the physically encoded bit in case of forking
wires, which we make explicit by a COPY gate. In the encoding above, NOT simply
inverts the order of the two cards, and a COPY protocol is given, e.g., by Mizuki [18].
Using this setup, we can do general MPC for any function without needing to trust a
possibly corrupted computer.

A particular advantage of protocols using physical assumptions is that they can
provide a bridge to reality. Examples are given by Glaser, Barak and Goldston as
well as Fisch, Freund and Naor, who give a protocol for proving in zero-knowledge
that a nuclear warhead (to be disarmed due to an international treaty) conforms to a
prescribed template, without giving away anything about its internal design [9,11]. In
our setting of cryptography with cards, this bridge is used if the cryptographic protocol

123

118 New Generation Computing (2021) 39:115–158

is embedded in a real card game, e.g., to prevent cheating.3 Here, using computers is
not only cumbersome, but there is no guarantee that the card sequence on a player’s
hand is the one he or she or he inputs into the software, hence we have no bridge to
the physical world.

Another application of such protocols is to explain MPC in an interesting and
motivating way to students in cryptography lectures. Card-based cryptography tries
to find protocols for the above-mentioned AND and COPY functionalities which are
card-minimal, simple and practicable. For simplicity, many protocols in card-based
cryptography work with specially constructed decks, e.g., of only the two symbols
♣ and ♥ . This is easy for an explanation and there are nice and easily describable
protocols, such as the five-card trick by den Boer [5] and the six-card AND protocol
by Mizuki and Sone [21].

However, the setting where all cards are distinguishable, as described above, has
several advantages. First,we assume little about the indistinguishability of cards,which
leads to stronger security guarantees. (This is closer to the indistinguishable version of
tamper-evident seals, e.g., scratch-off cards, by Moran and Naor [22].) We only need
the backs (or envelopes wrapping the cards, if one wishes) to be indistinguishable.
Second, these standard decks are more commonly available, in contrast to constructed
decks. If one were to use standard decks for the protocols above, they would need
multiple copies of the same card. Third, this setting may lead to protocols using less
cards than the optimal ones in the two-color deck setting. In fact, as our paper shows,
one may use less cards than in the two-color deck setting. For example, our new four-
card Las Vegas AND protocol presented in “Card-Minimal Protocols for AND” uses
only a very basic, practicable shuffling mechanism, namely random cuts, and uses
one card less than the provably card-minimal Las Vegas AND protocol (restricted to
certain types of practical shuffles) in the two-color deck setting. As of yet, there has
only been little research in this direction, with Niemi and Renvall, and Mizuki [18,26]
being the only works that consider the setting where all cards have distinguishable
symbols, called “standard deck” setting. Nothing is known about non-trivial lower
bounds on the number of cards, which is likely due to the large state space, as there
are many more distinguishable card re-orderings compared to the two-color case.

Within this paper, our interest is to find an automatic way of constructing compact
card-based protocols which are secure and correct, based on only the two standard
operations turn and shuffle, given the desired number of cards. We exploit the obser-
vation that, to the best of our knowledge, all findings in the literature employ only
protocols with runs of comparatively small length using only a small number of cards.
Based on the hypothesis that we may always find some number n which is greater than
or equal to any run-minimal card-protocol, we apply the automatic off-the-shelf formal
program-verification technique software bounded model checking (SBMC) [3]. This
technique allows, given such a bound n, to encode a program verification task into
a decidable set of logical equations, which can then be solved by a SAT or an SMT
solver. In this work, we propose an automatic method based on SBMC that, given
the desired numbers of cards and protocol length, either constructs such a protocol if

3 As an example, in a Duplicate Bridge tournament, one might prove that all sessions are handed the same
cards, eliminating the need of a trusted dealer (no pun intended).

123

New Generation Computing (2021) 39:115–158 119

and only if one exists, or proves the underlying SAT formula to be unsatisfiable, i.e.,
shows that no such protocol exists. Based thereon, we propose that the cumbersome
and error-prone task of finding such protocols or proving their non-existence by hand
may be supported or complemented by such an automatic approach which is flexibly
adaptable to a variety of card-based protocols and desired restrictions.

Prior to our work, it was not yet clear which role the input encoding plays when
devising new protocols. This is the question on whether it can make a difference
regarding the possibility of a protocol if we provide, e.g., 1 2 to Alice and 3 4
to Bob, or 1 3 to Alice and 2 4 to Bob. We provide an analysis of this question,
showing thatwith certain restrictions, there is a relatively large freedom in choosing the
input (and/or output) bases. This is a useful prerequisite in proving the impossibility
of a protocol with a given number of cards.

Contribution

Our contribution consists in providing interesting new protocols and impossibility
results, as well as a fully automatic method based on formal verification to support
such findings. The specific advances therein are the following (cf. also Table 1 for a
comparison to the literature):

1. A four-card AND protocol in the standard deck setting, improving upon the work
by Niemi and Renvall [26] by one card, and reaching the theoretical minimum on
the number of cards. W.r.t. shuffling, this protocol only uses an expected number
of 6 random cuts, compared to 7.5 random cuts in a (shortened) variant of Niemi
and Renvall [26]. Additionally, the protocol has a natural interpretation and the fact
that it uses only random cuts makes it particularly easy to implement in an actively
secure way [16].

2. We show that under certain conditions the cards for encoding input or output can be
chosen freely. For one-bit output protocols and if five or more cards are available,
we can freely choose both input and output bases by only extending the protocol
by expected three shuffles and three turn steps. For this matter, we identify two
protocols for converting a bit encoding if the new encoding shares one card with
the old one.

3. We show that there is no finite-runtime protocol for converting between bases with
non-empty intersection using four cards.Moreover, there cannot be a finite-runtime
AND protocol with four cards if we fix the basis in advance.

4. We introduce formal verification to card-based cryptography by providing a tech-
nique which automatically finds new protocols using as few as possible operations
and searches for lowest bounds on card-minimal protocols.

5. We extend this technique to more general decks and show two AND protocols
in the two-color (or two-symbol) deck setting, i.e., where the deck constitutes a
multiset of cards on symbols ♣ and ♥ , to be run-minimal. Finally, we employ
our formal verification method to give a formal guarantee that we may safely
reduce the maximal permutation set size and thereby optimize the running time
for our protocol-finding technique in “Verification of run-minimality in two-color
deck protocols”. This is due to the fact that in the two-color setting the number of

123

120 New Generation Computing (2021) 39:115–158

Table 1 Minimum number of cards required by AND and basis conversion protocols, subject to the running
time and shuffle restrictions specified in the first two columns

Running time Shuffle restr. # cards Protocol Lower bound

AND protocols

Las Vegas Random cuts 4 Theorem 5.1 – (trivial)

Finite – ≥ 5a,≤ 8 [18, Sect. 3.4] Theorem 4.2

Finite Uniform closed ≥ 5a,≤ 8 [18, Sect. 3.4] Theorem 4.2

Disjoint basis convert protocols

Finite Uniform closed 4 [18, Sect. 3.2] – (trivial)

Overlapping basis convert protocols

Las Vegas Random cuts 3 Theorem 6.1 – (trivial)

Finite – 5 Theorem 6.2 Theorem 4.1

Finite Uniform closed 5 Theorem 6.2 Theorem 4.1

Note that random cuts are a subclass of uniform closed shuffles
aLower bound result only holds for fixed output basis, flexible case is still open

possible sequences in a protocol state may be significantly smaller than the number
of possible permutations on the deck.

RelatedWork

The feasibility of card-based cryptographic MPC is due to den Boer [5], Crépeau
and Kilian [7], Niemi and Renvall [25], with a formal model given by Mizuki and
Shizuya [19]. The only two papers looking at standard deck solutions are by Niemi
and Renvall [26], Mizuki [18]. Lower bounds on card-based cryptographic protocols
are given by Koch et al. [17], Kastner et al. [12] and Koch [14] for the two-color
deck setting. The card-minimal protocol for this setting, using only practicable (i.e.,
uniform closed) shuffles, is given by Abe et al. [1] and uses five cards. The state trees
used for protocols in this paper are devised by Koch et al. [17], Kastner et al. [12].

To the best of our knowledge, this is the first work which applies formal methods
to the field of card-based cryptography. However, a large range of research has been
done using formal methods in the more general field of secure two-party and multi-
party computations. This can be clustered into either analyzing security protocols given
as high-level, abstract (and usually idealized) models, or program-based approaches
targeting real(istic) protocol (software) implementations. Avalle et al. [2] further struc-
ture this into the two main approaches of automated model extraction and automated
code generation. We refer the interested reader to overviews as given by Blanchet
[4] or Avalle et al. and only go into a few selected works for which we identified
closer links to our approach, e.g., using software bounded model checking (SBMC),
SATsolvers on real(istic) protocol implementations, or relating in the analyzed security
model. Standard cryptographic assumptions using lower-level computational models
are—albeit more realistic—usually harder to formalize and automate. One notable
line of research is CBMC-GC [10] which builds on top of the tool CBMC [6]. It

123

New Generation Computing (2021) 39:115–158 121

uses SBMC in a compiler framework translating secure computations of ANSI C
programs into an optimized Boolean circuit which can subsequently be implemented
securely utilizing the garbled circuit approach. Another similar setting to ours is ana-
lyzed by Rastogi et al. [27], who also assume an “honest-but-curious” attacker model.
Therein, a domain-specific language is built on top of the F� language, a full-featured,
verification-oriented, effectful programming language by Swamy et al. [29]. Swamy
et al. then implement MPC programs with enabled formal verification provided by
the semantics of the language.

Outline

We give the computational model of card-based protocols, security definitions, etc.
and the necessary preliminaries as well as a basic setup for software bounded model
checking in “Preliminaries”. “On the choice of cards for input and output” discusses
which freedom one has when choosing the specific cards for encoding inputs and
outputs to card-based protocols and introduces a formal relabeling operation. We give
lower bounds on the number of cards for AND and basis-conversion protocols in
“Impossibility of finite-runtime four-card AND and basis conversion with overlap-
ping bases”. A four-card Las Vegas AND protocol and two basis-conversion protocols
are presented in “Card-minimal protocols for AND” and “Card-minimal protocols for
basis conversion with overlapping bases”, respectively. “An illustration of our verifi-
cation methodology” gives results from applying our formal verification setup based
on SBMC to our new AND protocol. In “Verification of run-minimality in two-color
deck protocols” and “Verification of shuffle set size maximality”, we describe our new
results for the two-color deck case.

Preliminaries

In this section, we first formally introduce card-based protocols with their computa-
tional model (including some basic required notions), a convenient formal protocol
representation, a suitable security notion, and the formal requirements for proving
lower bounds. Secondly, we introduce our applied formal technique called software
bounded model checking, on which, thirdly, we establish our general technique for
automatically finding card- and run-minimal protocols.

Card-Based Protocols

Formally, a deck D of cards is a multiset over a (deck) alphabet or symbol set Σ . We
denote multisets by �·�, e.g., �♥,♥,♣,♣� is a deck over {♥,♣}. In this paper, except
for “Verification of run-minimality in two-color deck protocols” and “Verification of
shuffle set size maximality”, we focus mainly on decksD = �1, . . . , n�, n ∈ N, where
each symbol occurs exactly once. FollowingMizuki [18], we call these decks standard
decks, because decks of common card games are a good representation of such formal
decks.

123

122 New Generation Computing (2021) 39:115–158

A card that is lying on a table (as usual in card-based protocols) can have two
orientations, namely face-up (showing the symbol of the card), or face-down. A special
back symbol ‘?’ that is not part of Σ represents what is visible about a card that is
turned face-down. In this way, we can describe a card lying on the table by a fraction
symbol a

b , where exactly one of a and b is ‘?’, and the other is a symbol from Σ .
Here, a represents a part that is visible from the card when it lies down, and hence a

b
is a face-down card if a = ?, and a face-up card if a ∈ Σ . As card-based protocols
usually involve some turning-over of the cards, this status will likely change during a
protocol, causing the numerator and denominator to be swapped.

Card-based protocols then proceed on sequences of such cards (α1, . . . , α|D|)where
all cards from the deck D are lying on the table as just described and in the given
order. The visible sequence of such a sequence then arises by just taking the “visible”
numerator of all cards. For example, if the sequence is (?

♥ , ?
♥ , ♣

? , ?
♣), the corresponding

visible sequence of the cards is (?, ?,♣, ?). The sequence trace of a finite protocol run,
and analogously its visible sequence trace, is then the sequence of all card sequences
and visible sequences, respectively, as they arise during the run. Let SeqD denote the
set of sequences on deck D.

In the following, we will often just use the symbol sequence that contains only the
card symbols ((♥,♥,♣,♣) in the example above) as a shorthand for the corresponding
face-down cards. This is due to Kastner et al. ([12], Cor. 2 and Lem. 4), who showed
that it does not increase the computational power of card-based protocols to leave
cards face-up longer than necessary, and that one can safely assume that any face-
down cards that are turned over during a step in the protocol are directly turned back
after learning its symbol.

For encoding a bit, we additionally assume a linear order on the card symbols inΣ ,
which is the usual order on N for standard decks, and ♣ < ♥ for simple two-element
decks. Two face-down cards with distinct symbols s1, s2 ∈ Σ then encode a bit via
the following encoding rule introduced by Niemi and Renvall [26]:

s1 s2 =̂
{
0, if s1 < s2,

1, if s1 > s2.

Card-based protocols proceed by mainly two actions on the sequence or pile of cards:
We can introduce uncertainty (aboutwhich card iswhich) by shuffling them in arbitrary
or in certain controlled ways, e.g., by cutting the cards in quick succession, so that
players do not knowwhich card ended up wherein the card sequence (or pile). Slightly
more formal, a (uniform) shuffle is specified by a permutation set, from which one
element is drawn uniformly at random and applied to the cards, without the players
learning which one it was. Secondly, we may turn over cards and publicly learn their
symbol, and act on the basis of this information. Moreover, we may deterministically
permute the cards.

A protocol computes a Boolean function f : {0, 1}2 → {0, 1} if the possible start
sequences, corresponding to the player inputs b ∈ {0, 1}2, do encode these inputs
as described above, and that the cards that are declared to contain the output value
upon termination of the protocol, do encode the output value o = f (b) for each

123

New Generation Computing (2021) 39:115–158 123

respective input b ∈ {0, 1}2 as described above. A more formal definition in terms
of the tree representation introduced in “Computational model and protocol state tree
representation” is given at the end of that section.

Permutations and Groups

Let Sn denote the symmetric groupon {1, . . . , n}. For elements x1, . . . , xk ∈ {1, . . . , n}
the cycle (x1 x2 . . . xk) is the cyclic permutation π with π(xi) = xi+1 for 1 ≤ i < k,
π(xk) = x1 and π(x) = x for all x not occurring in the cycle. Every permutation can
be written as a composition of pairwise disjoint cycles. For example, (1 3 2)(4 5)
maps 1 	→ 3, 3 	→ 2, 2 	→ 1, 4 	→ 5, and 5 	→ 4. The identity permutation is denoted
as id.

Given permutations π1, . . . , πk ∈ Sn , 〈π1, . . . , πk〉 denotes the group generated
by π1, . . . , πk . A shuffle is a random cut if its permutation set is the group 〈π〉 =
{π0, . . . , π l−1} generated by a single element π which is a cycle (x1 x2 . . . xl). A
shuffle is called a random bisection cut if its permutation set is generated by a π which
is the composition of pairwise disjoint cycles of length 2. Finally, an Sk-shuffle is a
shuffle with permutation set Sk .

Computational Model and Protocol State Tree Representation

For our formal descriptions, we make heavy use of the KWH trees introduced by
Koch et al. [17] and shown to be equivalent to the computational model byMizuki and
Shizuya [19,20] in the work by Kastner et al. [12]. For this matter, let us first describe
what a state during a run of card-based protocols is. We start by an example, namely
the state of a protocol in the very beginning, i.e., after the players have put their cards
encoding their inputs on the table:

12 34 X00
12 43 X01
21 34 X10
21 43 X11

As mentioned above, we resort to only write symbol sequences instead of full card
sequences. Each line in the state as depicted by the above boxed information rows
describes a card sequence that is possible at this point in time in the protocol, together
with a certain type of polynomial in the variables X00, X01, X10, X11. For example,
the first line of the state can be read as “the sequence (?1 ,

?
2 ,

?
3 ,

?
4) lies at the table

with the symbolic probability X00”, i.e., with the probability that (0, 0) is the input
of the protocol (which is left as a variable, instead of a concrete value, as the input
distribution can be arbitrary). Note that 12, and 34 encode 0 as required for input (0, 0)
and that the order of the rows is of no significance in the above depiction. We capture
the notion of a state more formally in the following definition:

Definition 2.1 (State) Let D be a deck of a protocol P computing a Boolean function
f : {0, 1}2 → {0, 1}. A state μ of P is a map μ : SeqD → X2, where X2 denotes

123

124 New Generation Computing (2021) 39:115–158

Fig. 1 A shuffle operation, given by example (left), and via the general rule (right)

the polynomials over the variables Xb for b ∈ {0, 1}2 of the form ∑
b∈{0,1}2 βbXb, for

βb ∈ [0, 1] ⊂ R, and μ(s) for s ∈ SeqD is interpreted as the probability that s is the
actual sequence on the table, in terms of the symbolic probabilities on the inputs.

Defined this way, the boxes drawn throughout the paper are just depictions of such
a (state) map, i.e., we just write down all sequences s ∈ SeqD that are not assigned
probability 0, and annotate it to their right with the polynomial μ(s). (An alternative
characterization of a state is given by Koch ([13], Def. 7.1).)

Every standard-deck protocol starts by a state as above:

12 34 X00
12 43 X01
21 34 X10
21 43 X11

but we eventually add further cards (5 , 6 , …) if the deck is larger to the right of
the players bits. The state (or KWH) tree of a protocol is then a directed tree where
the nodes are states as above, with annotations at the outgoing edges of each state,
specifying the action that is performed next. Let μ be the state with the outgoing
annotation, then the possible actions are defined as:

1. (shuffle,Π) leads to a μ′ as in Fig. 1, where Π ⊆ S|D| is a permutation set.
2. (turn, T) branches the tree into statesμv for each observation v possible by reveal-

ing the cards at positions from the set T ⊆ {1, . . . , |D|}, as in Fig. 2.μv contains the
sequences from μ which are compatible with the observation v. For each sequence
s compatible with v, we have μv(s) := μ(s)/Pr[v], where Pr[v] ∈ (0, 1] is the
probability of observing v. Note that we omit the implicit operation to turn the card
back face-down, as motivated above.

3. (perm, π) permutes the sequences of μ according to π .
4. (result, p1, p2) stops the computation and returns the cards at p1, p2 as output.

A protocol computes a Boolean function f : {0, 1}2 → {0, 1} if the start state (tree
root) encodes each b ∈ {0, 1}2 in the first four cards (the remaining cards being at fixed
positions), and in the leaf nodes of the protocol’s state tree, it holds for the positions

123

New Generation Computing (2021) 39:115–158 125

Fig. 2 A turn operation. Here,
v1, . . . , vn , are the possible
observation by turning the cards
at positions in T . For each
i ∈ {1, . . . , n} the si,1, . . . , si,�i
are the sequences from
s1, . . . , s� which are compatible
with vi . Note that in secure
protocols, the probability of
observing vi , denoted as Pr[vi],
is constant

given by the result operation that the cards at these positions encode a value o ∈ {0, 1}
if all Xi occurring in μ(s) for sequence s satisfy f (i) = o (Correctness).

We say that a protocol has finite runtime if its tree is finite. It is a Las Vegas protocol,
if it is not finite runtime, but the expected length of any path in its tree, i.e., the expected
value of the length of an arbitrary descending path in the tree starting from the root
(as a random variable, where the randomness is in the choice of the path), is finite.
Note that while we consider looping protocols, we do not consider the case where a
complete restart is necessary. For self-similar infinite trees, we simplify by drawing
edges to earlier states.

Security of Card-Based Protocols

We slightly adjust the security notion from the literature to standard decks. For more
details, we refer to Koch [13]. Since different encodings for the same bit are possible,
we want the encoding basis of the output bit to not give away anything about the
inputs. We say that a protocol is secure if at any turn operation the probability for each
observation v is a constant ρ ∈ [0, 1] (using ∑

i∈{0,1}2 Xi = 1), and additionally if at
any result operation the probability of each output basis is constant in the same sense.

Similar to the work by Kastner et al. [12], for our impossibility proofs and for-
malizations with bounded model checkers, it is also useful to consider a weaker form
of security, which is a necessary criterion for security as defined above: a protocol is
possibilistically output-secure, if at any state of the protocol, every output can still be
possible. This weakens the normal security guarantee, as the probability for a given
input sequence could be higher in this state. One could even be able to exclude a spe-
cific input sequence, if the corresponding output can still be possible through another
input sequence. Together with possibilistic input-security, this discussion leads to the
following formal definition:

Definition 2.2 (cf. Kastner et al. [12]) A protocol P = (D,U , Q, A) computing a
function f : {0, 1}2 → {0, 1} has possibilistic input security (possibilistic output
security) if it is correct, i.e., the probability of the output being O = f (I) is 1,
and for uniformly4 random input I and any visible sequence trace v with Pr[v] > 0
as well as any input i ∈ {0, 1}2 (any output o ∈ {0, 1}) we have Pr[v|I = i] > 0
(Pr[v| f (I) = o] > 0).

4 Actually, the distribution does not matter, as long as Pr[I = i] > 0 for all i ∈ {0, 1}2.

123

126 New Generation Computing (2021) 39:115–158

Proving Lower Bounds

Let us begin by defining an equivalence relation on the states that helps to greatly
reduce the complexity of impossibility proofs by identifying states that are only a
permuted version of each other:

Definition 2.3 (Similarity) We call two states, or analogously two reduced states as
defined next,μ andμ′ similar, if there is a permutationπ such that applying (perm, π)

toμ gives rise toμ′. For notation, let 〈μ〉∼ be the equivalence class ofμ up to similarity,
i.e., the set of all states that are permuted versions of μ as defined by similarity.

In other words, μ is similar to μ′ if it is equal to μ′ up to column permutation on the
sequences part of the state depiction.

As in the work byKastner et al. ([12], Definition 3), we define reduced states, where
states are not annotated by their symbolic probabilities, but by the result that is specified
by their inputs—a formal definition follows below. This simplifies impossibility proofs
by reducing information and the state space. Any such reduced tree captures only a
weak form of security, possibilistic security, as discussed above where each output
(reachable in principle) needs to be still possible. Showing that a protocol is impossible
even in this weak setting implies its general impossibility.

To obtain a reduced state tree, we project all the symbolic probabilities of the
sequences of all states in a state tree to a type (representing the possible future output
associated with the sequence in a correct protocol, see below), which can be any
o ∈ {0, 1}. For this, let P be a protocol computing a function f : {0, 1}2 → {0, 1} and
μ be a state in the state tree. For any sequence s with μ(s) being a polynomial with
positive coefficients for the variables Xb1 , . . . , Xbi (i ≥ 1), set μ̂(s) := o ∈ {0, 1} if
o = f (b1) = f (b2) = · · · = f (bi) in the resulting reduced state μ̂.We call sequences
in μ̂ according to their type o-sequences. Moreover, we introduce the additional type
⊥ for sequences s whereμ(s) does have positive coefficients for variables representing
input that would map to different output, as in X00 + X11 when f (0, 0) �= f (1, 1).5

Definition 2.4 (Reduced state) Let P be a protocol computing a Boolean function
f : {0, 1}2 → {0, 1} with deck D. Then a reduced state μ̂ of P is a map μ̂ : SeqD →
{0, 1,⊥} which maps a sequence s ∈ SeqD to its type (as defined above).

Ifμ is a (non-reduced) state ofP , we can map it to its reduced state as follows: The
reduced state μ̂ of P arising from μ is defined via μ̂(s) := ts , where ts is the type of
μ(s). Note that it is always possible to map a state to its reduced version.

As an example, let us look at the tree excerpt on the left of Fig. 1, and its reduced
version (here, shown on the right), when assuming it is part of a protocol computing
AND:

5 It is clear that if a state with a ⊥ sequence arises, then the protocol has to abort later, as if this sequence
would actually lie on the table, it is no longer clear whether an input sequence encoding (0, 0), or an input
sequence encoding (1, 1) was on the table at the start.

123

New Generation Computing (2021) 39:115–158 127

1234 X00 + X01
1243 X10
2134 X11

1234 1/2(X00 + X01 + X10)
1243 1/2(X00 + X01 + X10)
2134 1/2X11
2143 1/2X11

(shuffle, {id, (3 4)})

1234 0
1243 0
2134 1

1234 0
1243 0
2134 1
2143 1

(shuffle, {id, (3 4)})

For example, the annotation of 1234 in the first state, X00 + X01, is mapped to its
type 0, as it only contains variables representing inputs (namely (0, 0) and (0, 1)) that
result in output 0. Note that by using reduced states, we bring the state space from the
countably infinite to the finite, which is a necessary step for the impossibility proofs,
albeit using it only allows us to show impossibility to the weaker notion of possibilistic
security (which nevertheless is a necessary condition for full security, hence the even
stronger impossibility claim).

A reduced state is turnable at position i ∈ {1, . . . , |D|}, if for each symbol c ∈ Σ ,
there is, among the sequences s with symbol c at position i , an r -sequence for each
r ∈ {0, 1} in the image of the function computed by the protocol, and/or a⊥-sequence.
This essentially means that after the turn at i all outputs are still possible, capturing
the notion of output-possibilistic security. The reduced state is turnable if it is turnable
at a position i ∈ {1, . . . , |D|}.

For proving impossibility results, we make use of the backwards calculus as given
by Koch [14]. We highlight the main ideas here but refer to it for details.

Definition 2.5 (Backwards shuffle) Let G be a non-empty set of reduced states of a
protocol P . Then shuf−1(G) is the set of reduced states μ′ of P such that there is a
permutation setΠ (containing id, and dependent onμ′) such that (shuffle,Π) applied
to μ′ results in a reduced state in G. In other words, shuf−1(G) is the set of states that
are transformed into a state in G by a shuffle. Note that the trivial shuffle is allowed,
i.e., G ⊆ shuf−1(G).

For example, if G would consist of just one state, μ, where o1, . . . , o4 are distinct
symbols6:

o1o2 o3o4 0
o1o2 o4o3 0
o2o1 o3o4 1
o2o1 o4o3 1

,

then shuf−1(G) would contain exactly the following eight states:

6 While we chose for the example the same state as depicted on p. 21 in the impossibility proof where it is
later used, note that there, G also already includes all the depicted eight states including any deterministic
permutations (via the similarity relation) of all these, and hence is a much larger set to start with.

123

128 New Generation Computing (2021) 39:115–158

o1o2 o3o4 0
o1o2 o4o3 0
o2o1 o3o4 1
o2o1 o4o3 1

,

o1o2 o4o3 0
o2o1 o3o4 1
o2o1 o4o3 1

,

o1o2 o3o4 0
o2o1 o3o4 1
o2o1 o4o3 1

,

o1o2 o3o4 0
o1o2 o4o3 0
o2o1 o4o3 1

,

o1o2 o3o4 0
o1o2 o4o3 0
o2o1 o3o4 1

,

o1o2 o4o3 0
o2o1 o4o3 1

,

o1o2 o4o3 0
o2o1 o3o4 1

,

o1o2 o3o4 0
o2o1 o4o3 1

.

To see this, observe that the first one is just μ, which is contained by definition,
as the trivial shuffle (shuffle, {id}) will map it to itself. Moreover, all the other states
in this list result in μ by the (shuffle, {id, (3 4)}). The above list is exhaustive as
we cannot generate a 0-sequence or a 1-sequence via a shuffle if it was not already
present in the state on which the shuffle was applied. (Note that in the generation
of this list we make use of the assumption that id is always contained in a shuffle,
which is the case for closed shuffles anyway, but w.l.o.g. otherwise also, as in the case
that id would not be contained, we could replace the shuffle by a conjugated version
that is pre-/postfixed by a corresponding deterministic perm operation, cf. Kastner et
al. [12].)

Definition 2.6 (Backwards turn) Let G be a non-empty set of reduced states of a
protocol P . Then, turn−1

f (G) is the set of reduced states μ′ of P , such that μ′ ∈ G, or
that there is a position i ∈ {1, . . . , |D|} such that (turn, {i}) applied to μ′ results in
reduced states that are contained in G. In other words, it is the set of states being in G,
or having a turnable position i such that all immediate successor states from a turn at
i are in G.

For example, if G would consist of three reduced states μ1, . . . , μ3, which each
have a constant column at the fourth position:

1234 0
1324 0
2134 1

,

1243 0
1423 1
2143 1

,

1342 0
1432 1
3142 1

.

Then turn−1
f (G) would contain, in addition to the states in G, exactly the following

four reduced states:

1234 0
1324 0
2134 1
1243 0
1423 1
2143 1
1342 0
1432 1
3142 1

,

1234 0
1324 0
2134 1
1243 0
1423 1
2143 1

,

1234 0
1324 0
2134 1
1342 0
1432 1
3142 1

,

1243 0
1423 1
2143 1
1342 0
1432 1
3142 1

.

123

New Generation Computing (2021) 39:115–158 129

Here, first observe that the first state is just a combination of all three states, whereas
the second, third and fourth is a combination of μ1 and μ2, of μ1 and μ3 and of μ2
and μ3, respectively. When forming the “backwards turn” set, we can just combine
states with a constant column of distinct symbols into one, as a turn at the position
where these individual states had a constant column branches/gives rise to exactly
these individual states.

We call turn−1
f (·) and shuf−1(·) backwards turn and backwards shuffle. Define by

clf(G) the closure of turn−1
f (·) and shuf−1(·) operations on G. Note here, that if a

finite-runtime protocol exists for a given start state, then there exists a sequence of
shuffle/turn operations which, applied to the start state, will result in a final state.
Therefore if we assume G to be the set of all possible final states for a deck D, then it
holds that if the start state is not in clf(G), then no finite-runtime protocol for D can
exist.

Automatic Formal Verification Using SBMC

In the following, we introduce an automatic technique from formal program verifica-
tion, namely software bounded model checking (SBMC), to the field of card-based
cryptography. We first describe the general technique of using SBMC to check for
software properties, before we explain how we apply it to search for cryptographi-
cally secure card-based protocols. In a nutshell, we translate the task to a reachability
problem in software programs (which will later-on be a program encoding operations
on an abstract state tree as described above), which the SBMC tool encodes into an
instance of the SAT problem.

We assume we are given an imperatively defined function f under the form of an
imperative program (for example, written in the C language), that uses some parameter
values taken among a set of possible start values I . An entry i ∈ I is a list of values,
one value for each such parameter: it gives a value to everything that a run of f depends
on, such as its input variables, or anything that is considered non-deterministic (i.e.,
of arbitrary, but fixed, value for any concrete evaluation of f) from the point of
view of f . For this reason, those parameters are qualified as “non-deterministic”, to
distinguish them from normal parameters used in a programming language to pass
information around. Moreover, some values can be “derived”, thus, computed in f
from the non-deterministic parameter values, or declared as constants in f , and both
values of non-deterministic parameters or derived values can then be used as normal
parameters in the program. We are also given a software property to be checked about
f , in the formCant ⇒ Ccons, where ant and cons stand for antecedent and consequence
respectively. BothCant andCcons are sets of Boolean statements. A Boolean statement
is a statement of f that evaluates to a Boolean value, for example, a simple statement
checking that some computed intermediate value is positive.An entry i is said to satisfy
a set of Boolean statements if and only if all Boolean statements in the set evaluate
to true during the execution of f using the non-deterministic parameter values i , and
is said to fail the set of Boolean statements otherwise. The property Cant ⇒ Ccons

requires that for all possible entries i ∈ I , if i satisfies Cant, then i satisfies Ccons. As
an example, assume f computes, given i , two intermediate integer values v1 and v2,

123

130 New Generation Computing (2021) 39:115–158

and then returns a third value v3. The property to be checked could, e.g., be: if v1 is
negative, then v2 is positive and v3 is odd. A solver that is asked to check a software
property Cant ⇒ Ccons thus exhaustively searches for an entry i that satisfies Cant but
fails Ccons. The property is valid if and only if there does not exist any such entry i ,
i.e., it is impossible to find.

SBMC is a fully-automatic static program analysis technique used to verifywhether
such a software property is valid, given a function and a property to be checked.
It covers all possible inputs within a specified bound. It is static in the sense that
programs are analyzed without executing them on concrete values or considering any
side channels. Instead, programs are symbolically executed and exhaustively checked
for errors up to a certain bound, restricting the number of loop iterations to limit runs
through the program to a bounded length. This is done by unrolling the control flow
graph of the program and translating it into a formula in a decidable logic that is
satisfiable if and only if a program run exists which satisfies Cant and fails Ccons. The
variables in the formula are the non-deterministic parameters of f , and their possible
values are taken from I .

This reduces the problem to a decidable satisfiability problem.Modern SAT-solving
technology can then be used to verify whether such a program run exists, in which
case an erroneous input has been found, and the run is presented to the user. If the
solver cannot find such a program run, it may be either because the property is valid,
or because it is invalid only for some run which exceeds the bound. In some cases,
SBMC is also able to infer statically which bound is sufficient to bring a definitive
conclusion.

Automatic Formal Verification for Card-Based Protocols

Our approach employs a standardized program representation of the KWH trees intro-
duced by Koch et al. [17] (and described in the beginning of this section). This allows
a general programmatic encoding of both shuffle and turn operations, as well as of the
fixed input state (indicated by the input card sequences from the table in the very begin-
ning of this paper), the non-deterministic reachable states, and the logical function to
be computed securely.

The input state is trivially derived from the specified numbers of cards as the size and
order of the players’ commitments is fixed and the (without loss of generality) consec-
utively ordered card sequence of (distinguishable) helper-cards is simply prepended
to the input card sequence, annotated with their respective input probabilities. Any
input state thus consists of exactly four distinguishable card sequences. Based on this
input state, the program performs a loop, which successively performs turn or shuffle
operations based on the input state and computes the resulting states from which it
continues performing turn or shuffle operations. The loop ends when the specified
bound (representing the length of the protocol to be found) is reached, checks whether
the final state is indeed a valid computation of the secure function, and (if and only if
the check is successful) the found protocol is then presented to the user.

However, this task involvesmultiple computational complexities,most notably both
the number of (possibly) reachable states, and the choice of the next operation, i.e.,

123

New Generation Computing (2021) 39:115–158 131

either choosing the card(s) to be turned or which shuffle to perform. We partially
overcome the first computational complexity by not considering Las Vegas protocols
as this relieves us from checking every reachable sequence of states to be finite. In
fact, we compute all reachable states after every protocol operation, but only check
each of them to be valid, and then proceed our operations on only one of them, which
is non-deterministically chosen among them. The second computational complexity
consists in first non-deterministically choosing whether to shuffle or to turn, and then
to perform the respective operation. The turn operation is less interesting as it is mostly
the obvious implementation for updating the computed state and its probabilities using
mostly standard imperative program operations, except that the turn observations are
again non-deterministically chosen, hence making the SBMC tool consider any of
them to be possible. The more interesting operation is the shuffle operation, as it
must randomly draw a set of permutations on which the thereby reachable states are
computed.We implement this by non-deterministically choosing a set of permutations
from a precomputed set of all generally possible permutations. Both the amount and
the choices of the respective permutations are chosen non-deterministically.Moreover,
we have the ability to restrict our experiments to only closed shuffles, and can even
bound the shuffle set size to keep the running time of the verification time acceptable,
if needed (albeit possibly reducing the strength of the results, cf. “Verification of
shuffle set size maximality”). For example, in our analysis of the run-minimality of
Protocol 1, we bounded the permitted size of the permutation sets by the (arguably
quite reasonable) number 8, in order to keep the execution times still manageable
for our experiments. Note that our technique from “Verification of shuffle set size
maximality” shows that only a bound of 12 would be really safe to assume, leaving
a small gap in the argumentation as we superficially exclude exactly the possible 12-
element alternating groups A4 as shuffles steps from the possible protocol candidates,
when showing that no shorter protocol can exist. We leave it for future work to tweak
the code such that the looser bound of 12 is within reach with our technique.

Finally, after iterating the afore-mentioned loop for the specified bound number
with the described operations and restricting that final state indeed computes the secure
function, we specify the software property Ccons to be checked simply as the Boolean
value false. This trivially unsatisfiable property implies that the verification task
always fails once there exist input and non-deterministic parameters such that the
respective program run reaches the statement in the program which checks this prop-
erty. The SBMC tool exhaustively searches for a run of the specified length through
the program which leads from the starting state to a correct and secure state which
satisfies the given security notion, i.e., reaches the above-metioned statement. Hence,
if there exists any protocol of the specified length which computes the secure func-
tion and for which the specified operations and valid intermediate states (representing
KWH-trees) exist, such a protocol is presented by our method. If no such protocol can
be found, we know there is no card-based protocol of the specified length satisfying
all our restrictions on permitted turn and shuffle operations, as well as intermediate
and final states. This means there exists no model for the SAT formula which encodes
the set of all permitted program runs given our specified requirements.

Hence, assuming our translation of KWH trees and respective protocol operations
into a simple imperative program are correct, this method can then be used in an

123

132 New Generation Computing (2021) 39:115–158

iterative manner to strengthen the bounds from the literature. Note that this is largely
based on the so-called “small-scope hypothesis”, i.e., a large number of bugs are
already exposed to small program runs. We apply this hypothesis to the setting of
card-based security protocols as all protocols in the literature only use a small number
of turn and shuffle operations and the length of any found protocol is below ten
operations.

This approach can be generalized to search for card-based protocols using a pre-
defined number of actions and adhering to a given formal security notion. We have
written a general program7 to search for such situations parameterized in the desired
restrictions on actions and security notions.Note that, to copewith the still considerable
state space size, we use the refined security notion of output-possibilistic security.

On the Choice of Cards for Input and Output

We essentially show that the choice of input basis (or output basis, but not necessarily
both) is irrelevant for the functioning of the protocol. In rare cases, one has to append
two operations to existing protocols to make them fully basis flexible. In the Niemi–
Renvall protocol shown above, the protocol description specifies Alice’s cards to be of
symbols 1, 2, andBob’s to be of symbols 3, 4 and the helping card to be a 5. To simplify
later proofs and to demonstrate an interesting symmetry in card-based protocols, we
show that this choice is irrelevant for the functioning of the protocol.

For this, we define a relabeling from deck alphabet Σ to a deck alphabet Σ ′, i.e.,
a bijective function λ : Σ → Σ ′.8 A relabeling of a sequence s = (s1, . . . , sn) is a
relabeling of each of its symbols, i.e., λ(s) := (λ(s1), . . . , λ(sn)). A relabeling of a
state is given by the relabeling of all its sequences, a relabeling of a protocol/state
(sub)tree is the relabeling of all its states as described by Figs. 3 and 5.

Lemma 3.1 If P is a protocol with deterministic output basis, one can relabel the
cards without affecting the functioning.

Note that the deterministic output basis restriction is important, because if we have
a randomized output encoding such as in Fig. 4 on the left, a relabeling might affect
the monotonicity of the encoding of only one of the possible output bases. In this case,
we make use of the following lemma, as illustrated in Fig. 4.

Lemma 3.2 Every protocol with one-bit output and a randomized output basis can be
transformed into a protocol with deterministic output basis, by inserting a shuffle and
a turn before any result operation with randomized output basis.

Impossibility of Finite-Runtime Four-Card AND and Basis Conversion
with Overlapping Bases

In this section, we give our main impossibility results.

7 The source code is available under https://github.com/mi-ki/cardCryptoVerification.
8 In case of the decks being a subset of N, we may use usual permutation notation. We require that if λ

maps x to y, then the cardinalities of x and y are equal in the deck.

123

https://github.com/mi-ki/cardCryptoVerification

New Generation Computing (2021) 39:115–158 133

Fig. 3 Example of the relabel
action, swapping the card
symbols of 1 and 3, and of 2 and
4, respectively. This action is for
abbreviated writing only, it does
not actually relabel the physical
cards, which seems impossible
without learning their symbols.
Hence, the tree on the left is
virtually translated to the right.
Note that the relabeling only
affects the sequences, the
observations at edges belonging
to turn actions and may swap the
order of the indices in result
operations

Fig. 4 Example of making the
basis deterministic,
cf. Lemma 3.2. On the left, you
can see a tree part with one-bit
output and randomized basis,
i.e., the output basis may be
{1, 2} or {3, 4}, each with a
probability of 1/2. We can make
it known to the players, i.e.,
deterministic, by splitting up the
state via an Sk -shuffle (here:
k = 2) on the remaining cards
(so that they no longer contain
any information), turning these
and then doing the result
operation. By what is visible in
the turn, one can derive the
output basis

Theorem 4.1 There is no four-card finite-runtime basis conversion protocol for over-
lapping bases with deck D = �1, 2, 3, 4�.

Proof We proceed using the backwards calculus technique by Koch [14], as described
in “Proving lower bounds”. That is, we start with the set of final states G of basis
conversion protocols. Then, we iteratively build a (possibly) larger set by adding states

123

134 New Generation Computing (2021) 39:115–158

Fig. 5 The formal rule for
relabeling leaf nodes of one-bit
output protocols. Let
r1 = sk [i], r2 = sk [j] ∈ D be
the output symbols (before
relabeling) of some arbitrary
sequence sk of μ. Then, τ = id,
if r1 < r2 implies λ(r1) < λ(r2)
(λ is monotone on r1, r2) and
τ = (i j) otherwise

which reach the states of the current set by a shuffle or a turn, in order to obtain the
closure clf(G). As we consider only reduced states (cf. “Proving lower bounds”), the
set of possible states is finite, hence, applying turn−1

f (·) and shuf−1(·) operations to
the (growing) set of states, starting from G, will become stationary. Finally, it remains
to be shown that the start state is not contained in the derived closure.

We assume w.l.o.g.9 the input basis {1, 2} with helping cards 3 and 4, and the
output basis {o1 < o2} ⊂ {1, 2, 3, 4}. For the basis conversion impossibility, we
will require |{1, 2} ∩ {o1, o2}| = 1 (which we call basis intersection requirement in
the following). However, whether we use this requirement or not, the closure clf(G)

remains the same.10 Hence, we will use this requirement only in the last step of the
proof when we show that the start state is not in clf(G), and reuse the closure for the
AND protocol impossibility proof in Theorem 4.2.

After setting the stage, we start by describing the set G0 from which we will derive
the closure clf(G0) according to the backwards calculus technique described above.
Let o3 < o4 be the remaining two symbols, i.e., {o3, o4} = {1, 2, 3, 4}\{o1, o2}. Thus,
the final state is (up to similarity11) any choice of at least one 1-sequence and one
0-sequence of the states on the left set12:

〈 o1o2 o3o4 0
o1o2 o4o3 0
o2o1 o3o4 1
o2o1 o4o3 1

〉

∼

〈 o3o4 o1o2 0
o3o4 o2o1 0
o4o3 o1o2 1
o4o3 o2o1 1

〉

∼

9 For the impossibility result, the symbols of the cards are irrelevant, aswe could prepend a relabel operation
to any protocol, to bring it into this form.
10 This is the (reduced-state) closure on the final states of arbitrary one-bit-output functions for the given
deck.
11 Refer to Definition 2.3. We do not want to assume anything on at which positions the output lies, hence
we include all permutations of the states into the discussion.
12 with the output being encoded in positions 1, 2, or at different positions, if looking at the permuted
versions of the state.

123

New Generation Computing (2021) 39:115–158 135

The state set on the right contains the template for final states with output basis
{o3 < o4}, which we will include in the starting set G0, as they are reachable from
final states with output basis {o1, o2} by the backwards calculus anyway, due to the
existence of the disjoint basis conversion protocol by Mizuki [18] (again, with any
choice of at least one 1- and one 0-sequence). As long as we can still show that the
start state is not in clf(G0), it is okay to enlarge G0, since our claim is only made
stronger (using the monotonicity property of the backwards operations turn−1

f (·) and
shuf−1(·)).

We have shuf−1(G0) = G0, because any subset of a state from G0 which contains
at least one 1-sequence and one 0-sequence (which is required as otherwise 1-/0-
sequences cannot be generated out of thin air by a shuffle) is already in G0. Hence, we
consider G1 := turn−1

f (G0), i.e., the states which are turnable at a position i , where
all immediate child nodes after turning at i are in G0. W.l.o.g.13 we fix the turn to
be at position 4. Following Koch ([14], Lemma 3), we use that G1 = turn−1

f (G0) =
G0 ∪ turn−1

f (cc(G0)) holds, where cc(G0) is the set of states in G0 that have a constant
column, i.e., the union of these four equivalence classes up to similarity:

〈
o1o2 o3o4 0
o2o1 o3o4 1

〉
∼

〈
o1o2 o4o3 0
o2o1 o4o3 1

〉
∼

〈
o3o4 o1o2 0
o4o3 o1o2 1

〉
∼

〈
o3o4 o2o1 0
o4o3 o2o1 1

〉
∼

The states from G1\G0 look as follows:

. . . a 0

. . . a 1

. . . b 0

. . . b 1

. . . c 0

. . . c 1

. . . d 0

. . . d 1
, (∗)

where at least two of the four (two-sequence) blocks are present, and a, b, c, d ∈ D
are pairwise distinct.We show that a further backwards turn does not enlarge the set by
showing cc(G1) = cc(G0). For this, note that the states from cc(G0) (i.e., the blocks,
considered in isolation) have exactly two constant columns, but with the specific
pairing that if one of the constant columns consists of o1, the other one consists of o2
and vice versa, or if one consists of o3, the other one consists of o4 and vice versa.

13 As we consider states up to similarity, we can just permute each of these states constituting the full
turnable state in such a way that their constant column is at position 4

123

136 New Generation Computing (2021) 39:115–158

Using this structure, we can deduce that states from G1\G0 with a constant column,
say w.l.o.g.14 at position 3, have the respective paired symbol (of the o1-o2 or o3-
o4 constant-column symbol pairing) in the fourth column. Therefore,15 these states
can have at most two sequences in total, i.e., they are already in G0. This shows
turn−1

f (G1) = G1.
Now, for the main step of the proof, we define G2 := shuf−1(G1) and G3 :=

turn−1
f (G2). Since the shuffling is unrestricted, applying another backwards shuffle to

G2 cannot produce a larger set, as we can always replace two consecutive shuffles by
an equivalent single shuffle. The remaining proof will show G3 = G2, in which case
no further enlargement is possible. Finally, showing that the start state is not in G2
finishes the proof.

As G2’s states are subsets of G1’s states,16 cc(G2)’s general form is as on the left,
from which we can leave out further sequences, as long as we still have at least one
1-sequence and one 0-sequence:

. . . da 0

. . . da 1

. . . db t1

. . . dc t2

. . . da 0

. . . da 1

. . . db t1
(. . . ab t1)

. . . dc t2
(. . . ac t2)

(. . . xd t3)
(. . . yd t3) , (�)

where ti ∈ {0, 1} (i = 1, 2, 3) are the types of the sequences and ti = 1 − ti their
inverses. To see this, observe that states of the form on the left are subsets of the form
on the right, where x, y are either both set to a, or one is set to b and the other to c,
and, where we leave out at least all sequences interfering with our wish of a constant
column in this position (i.e., the sequences in parentheses in the form on the right).
With the variables introduced above, we assume a (constant-column symbol) pairing
between a and d, and between b and c.17 This is the only way to obtain a maximal
number of sequences with a d in column 3 for a state in G1. Hence, states in cc(G2)
have at least 2 but at most 4 sequences.

Our aim is to show that the set of these states is cc(G0) again, i.e., that cc(G2) =
cc(G0). (In other words, we show that it is impossible to reach any state in G1 via
a shuffle from a state of cc(G2)\cc(G0), which will be shown to be empty.) In the
following, we do a case distinction on the number of sequences of states μ ∈ cc(G2).

14 Analogous to before, as all constituting states of the set are up to similarity, we have free choice in
choosing a position at which the constant column should be.
15 As both sequences in a block have identical symbols in column 4, and given the pairwise distinctiveness
of these symbols between blocks, there are at most two such sequences within a state.
16 We assume w.l.o.g. that any shuffle contains the id permutation, hence, non-trivial shuffling generates
new sequences. Consequently, backwards shuffling then only leaves out sequences, which we describe in
set-theoretic terms, by abuse of notation.
17 Note that this only refers to the 2-line subblocks of a state.

123

New Generation Computing (2021) 39:115–158 137

Let us prepend this case distinction with two general observations that will be used
in the following. First, every shuffle set Π that is used to map μ ∈ cc(G2) to a state
μ′ ∈ G1 will contain a permutation π with π(3) �= 3, i.e., one that moves the constant
(third) column, as otherwise we cannot generate necessary additional sequences with a
non-d symbol at position 3. As defined by Koch et al. [17], we call a state i/ j -state if it
has i 0-sequences and j 1-sequences. Using this notation, we have that, if μ ∈ cc(G2)
is an i/ j-state, then the reached μ′ ∈ G1 after the shuffle will be a i ′/ j ′-state with
i ′ ≥ 2i and j ′ ≥ 2 j , as the shuffle generates i + j new sequences with d at a position
π(3) �= 3.

Now, let us first consider (a) the case thatμ has three or four sequences. In this case,
there cannot be a permutation π ∈ Π with π(3) = 4, as there are only two possible
sequences with a d in position 4 in states of G1, and this (i.e., having a permutation
that maps the d-column to column 4) is the only way to obtain these two sequences
ending with d, as no other column contains a d in μ. Hence, in this case, we have
i ′ + j ′ ≤ 6 due to the two unreachable sequences ending with d. Moreover, as G1
is built from blocks with one 0- and one 1-sequence, we know that i ′ = j ′. But this
allows us already to exclude the case of i + j > 2, because if, e.g., i = 1 and j = 2
(or vice versa), then i ′ ≥ 2 and j ′ ≥ 4, but j ′ = i ′ yields i ′ + j ′ = 8, and if i = j = 2,
then we also have i ′ + j ′ = 8, both contradicting i ′ + j ′ ≤ 6. Hence, cc(G2) cannot
contain any state with three or four sequences.

Now, let (b) μ contain two sequences. For this case, we consider choices of two
sequences from a state in G1\G0 of (∗) with d in column 3. (We will show below that
in the current case we can choose these more specifically from the state on the right of
(�), without the parentheses.)18 If we choose both sequences to end with da, the state
would be in cc(G0), which is, however, inconsistent with the state being in G1\G0.
Hence, there is at most one sequence of each of the following types: sequences ending
with da, with db and with dc. If we choose to include a sequence ending with da,
then it is inconsequential whether we choose one ending with db or with dc (only the
d-a constant-column symbol pairing assigns a a special role). W.l.o.g. we choose a
sequence ending with db in the following. This leaves us with two choices, either to
include a sequence ending with da or to exclude it. In total, we can obtain three states
that are not already in cc(G0):

bcda 0
acdb 1

bcda t
cadb t

acdb t
badc t

,

where t ∈ {0, 1} is the type of the sequence. However, the third state is similar to the
second one via the permutation (1 4), so we do not need to consider this case. Each
of these states needs one 1- and one 0-sequence, which we can fix w.l.o.g. in the first
state. This is because the first state is similar to the first state with swapped 0 and 1
types, also via the permutation (1 4).

18 To see that this is not already immediate, observe that the state on the right of (�) was chosen tomaximize
the number of d’s in column 3, and is not as general as saying that the state is of (∗) with a d in column 3.
However, this loss of generality does not restrict the general form of cc(G2) on the left of (�).

123

138 New Generation Computing (2021) 39:115–158

Wewant to show that there is no way to shuffle these two states into a state of G1\G0
as given in (∗). As a first step, we show that,more specifically, it suffices to demonstrate
the slightly stricter claim that there is no way to shuffle these two states into a state
of G1\G0 as given on the right of (�) (including the sequences with parentheses). This
is because of the following: as the two-sequence states considered here each have a
sequence ending with da, our shuffle needs to reach the other sequence ending with
da, in order to complete the block ending with a in G1\G0. Because of the d-a pairing,
this sequence also has a d in the third column. Hence, the state reached by the shuffle
has at least three ds in the third column. However, as we start with two sequences with
distinct types (and all symbols are distinct in the standard deck setting) any permutation
π ∈ Π\{id} that increases the number of ds in that column (by π(3) = 3) at least
doubles the number of sequences. Hence, the resulting state in G1\G0 has at least four
ds in column 3 and is therefore of the form in (�).

Consequently, for the first state, we have the following scenario:

bcda 0
cbda 1

acdb 1
dcab 0

(. . . dc ?)
(. . . ac ?)

(. . . xd ?)
(. . . yd ?)

bcda 0
acdb 1

id

(1 4 3)

(1 4 2)

id

Reaching the state on the left by a shuffle contains at least {id, (1 4 3), (1 4 2)}. But
applying (1 4 2) to the first sequence yields a sequence cadb, which is not possible
in the scheme on the left side due to being the third sequence with a trailing b.

The case of the second state is as follows:

bcda t
cbda t

cadb t
cdab t

(. . . dc ?)
(. . . ac ?)

(. . . xd ?)
(. . . yd ?)

bcda t
cadb t

id

(1 4 3 2)

(2 4)

id

Reaching the state on the left by a shuffle contains at least {id, (2 4), (1 4 3 2)}.
But if we apply (2 4) to the first sequence, we obtain badc, and if we apply (1 4 3 2)
to the second sequence, this gives the sequence adbc. The two additional sequences
both end with a c, hence they would form a block in the scheme on the left, which is

123

New Generation Computing (2021) 39:115–158 139

not possible, as the resulting block would miss a constant b-column. This shows that
cc(G2) = cc(G0).

The start state of base conversion protocols is (up to similarity)

〈
12 34 0
21 34 1

〉
∼

with the basis intersection requirement |{1, 2} ∩ {o1, o2}| = 1. Because of this, the
state is not in G0. As it has a constant column, it would need to be in cc(G2) which is
equal to cc(G0) by the argument above. Hence, the state is not in G2. ��
Theorem 4.2 There is no four-card finite-runtime AND protocol with deck D =
�1, 2, 3, 4� with fixed-in-advance output basis.

Proof As the final states are (without the basis intersection requirement) the same as
in the proof of Theorem 4.1, we use the closure clf(G0) derived there, and show that
the start state of an AND protocol is not contained in clf(G0). For this, observe that
the start state of an AND protocol is (up to similarity) as from the following set:

〈 12 34 0
21 34 0
12 43 0
21 43 1

〉

∼

In particular, it has three 0-sequences and one 1-sequence, which excludes it from
being in G0 or G1 (derived in the proof of Theorem 4.1 above), as the numbers of 0- and
1-sequences differ. Moreover, observe that it has in each column exactly two distinct
symbols, each exactly twice. For states in G2 (which are subsets of G1) it holds that
each symbol occurs at most twice in the turn column 4, where each (two-sequence)
block ending with one such symbol consists of one 1-sequence and/or one 0-sequence.
If we try to leave out sequences from the G1 template (for the subsets of G2) to obtain a
state of type 3/1, we lose the property of having each occurring symbol exactly twice.
Hence, the start state cannot be in G2. ��

Card-Minimal Protocols for AND

Theorem 5.1 There is a four-card Las Vegas AND protocol with deckD = �1, 2, 3, 4�
using only random cuts.

Proof See Fig. 6 and Protocol 1. ��
To get a better understanding of why the protocol works and how it is related to

the protocol by Niemi and Renvall [26], let us consider exemplarily the case that the

123

140 New Generation Computing (2021) 39:115–158

Fig. 6 Four-card Las Vegas AND protocol using random cuts, cf. Protocol 1. Here, X0 := X00+X01+X10
and X1 := X11. The relabel operations are not actual actions to be performed but help abbreviate the write-
up of the protocol, see “On the choice of cards for input and output”

first card to be revealed is a 1, the other cases are analogous. In this situation, let
us look at the different cases, given in Table 2. Using the method as before, we can
remove 3 by performing a random cut while leaving the relative order intact (1 here
is assigned the role of the 5 in Niemi and Renvall’s protocol) and waiting until it
appears when turning. Later we can remove the 1 from the remaining cards, to get
the output encoded using the cards 2 and 4 . A closer analysis of the situation after

123

New Generation Computing (2021) 39:115–158 141

Table 2 The different states of
Protocol 1 after 1 was revealed
in the first turn. The permutation
to be applied in this case is
(3 4). The situation is similar in
all other cases

Bits Sequence After permutation Removing 3

(0, 0) 1 2 3 4 1 2 4 3 1 2 4 x

(0, 1) 1 2 4 3 1 2 3 4 1 2 x 4

(1, 0) 1 3 4 2 1 3 2 4 1 x 2 4

(1, 1) 1 4 3 2 1 4 2 3 1 4 2 x

Protocol 1 Our four-card AND protocol. The first bit is in basis {1, 2}, the second in
{3, 4}, and the output in {1, 2, 3, 4}\{v2, v3}, where v2, v3 are the last two revealed
symbols. See Fig. 6 for a KWH tree representation.
(shuffle, 〈(1 2 3 4)〉)
v1 := (turn, {1})
if v1 = 1 then (perm, (3 4))
else if v1 = 2 then (perm, (2 3 4))
else if v1 = 3 then (perm, (2 4 3))
else if v1 = 4 then (perm, (2 3))

Let π := (1 3)(2 4)
repeat

(shuffle, 〈(1 2 3 4)〉)
v2 := (turn, {1})

until v2 = π(v1)

(shuffle, 〈(2 3 4)〉)
v3 := (turn, {2})
Let σ := (1 4)(2 3)
if v3 = σ(v2) then (result, 4, 3)
else (result, 3, 4)

removing 3 shows that one can take a shortcut when one is not bound to the output
being cards 2 4 (which is not our goal, because in the other cases besides the first
turn being 1 it is different anyway, and one would have to add conversion protocols to
ensure this). The situation is as follows: The remaining three cards are either a cyclic
rotation (cut) of the sequence 1 2 4 , if the output is 0, or a cyclic rotation of the
sequence 1 4 2 , otherwise. A cut cannot rotate a sequence of the former type to
become the other, or vice versa. After the cut, we can safely turn any card and, from
the resulting symbol, deduce in which order the other cards must be output to encode
the protocol result.

For an analysis of the number of shuffle steps in the protocol, observe that we have
performed two shuffles until we reach the loop condition, which holds with probability
1/4. After the loop, we have one additional shuffle step. Hence, the expected number
of shuffles is 3 + ∑∞

n=1

(
1 − 1

4

)n = 6.

123

142 New Generation Computing (2021) 39:115–158

Comparison to Niemi and Renvall [26]

The previous protocol, using five cards, was described in the introduction. For a
pseudo-code description, see Protocol 2.

Protocol 2 Five-card AND protocol by Niemi and Renvall [26]. The first bit is in
basis {1, 2}, the second in basis {3, 4}. The output basis is {1, 4}. See also Fig. 7 for
a KWH tree representation.
(perm, (3 4))
repeat

(shuffle, 〈(1 2 3 4 5)〉)
v := (turn, {1})

until v = 2 or v = 3
repeat

(shuffle, 〈(2 3 4 5)〉)
v := (turn, {2})

until v = 2 or v = 3
repeat

(shuffle, 〈(3 4 5)〉)
v := (turn, {3})

until v = 5
(result, 4, 5)

As Niemi and Renvall state, their running time in the number of shuffle steps is
calculated as follows: their protocol starts with a shuffle and repeats this with proba-
bility 3/5. The second loop contains a shuffle and has a repeating probability of 3/4. The
shuffle in the final loop is repeated with probability 2/3. In total, the expected running
time is 3+∑∞

n=1

(3
5

)n +∑∞
n=1

(3
4

)n +∑∞
n=1

(2
3

)n = 3+1.5+3+2 = 9.5. However,
for a fair comparison to our protocol, we eliminate the last loop from their protocol,
as its only function is to ensure that the output is in basis {1, 4}, which our protocol
does not guarantee. In this case, the modified Niemi–Renvall protocol has an expected
number of 3+ 1.5+ 3 = 7.5 shuffle steps. Hence, our four-card AND protocol needs
one card less and outperforms the Niemi–Renvall protocol by an expected number of
1.5 shuffle steps.

Card-Minimal Protocols for Basis Conversion with Overlapping Bases

In this section, we give two protocols for converting a basis encoding in the case where
the old and the new encoding share a card. The first protocol has an expected (finite)
running time of three shuffles and turn operations. While it has not been explicit in
the literature, it is in a way implicit in the protocol by Niemi and Renvall [26], as the
authors aimed to get a fixed-in-advance output basis.

123

New Generation Computing (2021) 39:115–158 143

Fig. 7 KWH tree of the five-card AND protocol given by Niemi and Renvall [26] withD = �1, 2, 3, 4, 5�
using only random cuts, cf. Protocol 2. Note that X0 := X00 + X01 + X10 and X1 := X11. The output is
in basis {1, 4}

Theorem 6.1 There is a three-card Las Vegas basis-conversion protocol for overlap-
ping bases with deck D = �1, 2, 3� and uniform closed shuffles.

Proof See Fig. 8 and Protocol 3. ��

Theorem 6.2 There is a five-card finite-runtime basis conversion protocol for over-
lapping bases with deckD = �1, 2, 3, 4, 5�. It only uses two random bisection cuts as
shuffle operations.

123

144 New Generation Computing (2021) 39:115–158

Fig. 8 Three-card Las Vegas basis conversion for D = �1, 2, 3� with uniform closed shuffles

Protocol 3 Three-card Las Vegas basis conversion protocol as given in Fig. 8 with
D = �1, 2, 3�, input basis {1, 2} and output basis {1, 3}
repeat

(shuffle, 〈(1 2 3)〉)
v := (turn, {1})

until v = 2
(result, 3, 2)

Protocol 4 Five-card finite-runtime conversion protocol with overlapping bases for
D = �1, 2, 3, 4, 5�, input basis {1, 2} and output basis {1, 3}
(shuffle, 〈(1 2)(4 5)〉)
v := (turn, {1})
if v = 2 then (perm, (1 2)(4 5))
(shuffle, 〈(1 3)(4 5)〉)
v := (turn, {4})
if v = 4 then (result, 1, 3)
else (result, 3, 1)

Proof This is just applying the basis conversion by Mizuki [18] twice, cf. Protocol 4.
��

An Illustration of Our VerificationMethodology

In the following, we exemplify our translation of card-based cryptographic AND
protocols using standard decks to the bounded model checker CBMC, which takes
programs in the C language. For our experiments, we used CBMC 5.11 with the built-
in solver based on the SAT-solver MiniSat 2.2.0 [6,8]. All experiments are performed
on an AMD Opteron(tm) 6172 CPU at 2.10 GHz with 48 cores and 256 GB of RAM.

We translate KWH trees in the C language using a simple encoding into a bounded
C program with only static structures and no pointers, e.g., we employ C structs (see

123

New Generation Computing (2021) 39:115–158 145

1 struct sequence {
2 uint val[numberOfCards];
3 struct fractions probs;
4 };

Listing 1 C struct holding the state trees.

1 uint permSetSize = nondet_uint();
2 __CPROVER_assume (0 < permSetSize);
3 __CPROVER_assume (permSetSize <= NUM_POSS_SEQ);
4 uint permutationSet[permSetSize][numberOfCards];
5 uint takenPermutations[NUM_POSS_SEQ] = { 0 };
6

7 for (uint i = 0; i < permSetSize; i++) {
8 uint permIndex = nondet_uint();
9 __CPROVER_assume (permIndex < NUM_POSS_SEQ);
10 __CPROVER_assume (!takenPermutations[permIndex]);
11

12 takenPermutations[permIndex] = 1;
13 for (uint j = 0; j < numberOfCards; j++) {
14 permutationSet[i][j] =
15 startState.seq[permIndex][j] - 1;
16 }
17 }
18 struct state result =
19 doShuffle(startState, permutationSet, permSetSize);
20 __CPROVER_assume (isBottomFree(result));

Listing 2 Simplified shuffle operation for CBMC.

Listing 1) holding an array of card sequences for the sequence s, attached with their
respective values for each probability (for the probabilistic security notion) or depen-
dency (for output-possibilistic security) Xi occurring inμ(s), which is simply encoded
by another C struct fractions. The sequences are constructed using non-deterministic
values restricted by respective software conditions to enforce a lexicographic order-
ing. Moreover, we assign the starting values in μ(s) with fixed (i.e., deterministic)
values based on the constructed sequences. Subsequently, an array of (consecutively)
reachable states is constructed non-deterministically using simple implementations of
the turn and the shuffle operation as explained in “Preliminaries”. We then repeatedly
(after each turn/shuffle) check whether all possible resulting (non-deterministic) states
correctly and securely compute the specified function, e.g., here a secure AND.

An example shuffle operation is shown in Listing 2 for the case of output-
possibilistic security. Therein, the keyword __CPROVER_assume is used by the bounded
model checker to restrict all program runs passing this statement to satisfy the specified
(Boolean) condition. By assigning values using the special function nondet_uint(),
we assign a non-deterministic non-negative integer number, which is restricted to val-
ues greater than zero and at most of value NUM_POSS_SEQ (which is a variable computed
by the pre-processor and is the maximum number of sequences possible with the given
deck) in the following program statement. In the shown example, the non-determinism

123

146 New Generation Computing (2021) 39:115–158

Table 3 Running times for showing/disproving protocol existence for standard and two-color decks. While
all rows having “✓” in the column “Protocol” indicate that a protocol run is output by our method with
the CBMC running time as indicated in the table, these do not automatically feature probabilistic security.
Hence,we add references to protocolswith the given parameters,which should not (generally) be understood
as having been discovered using our method

cards Shuffles # steps Protocol # var. # clauses Time

Standard decks

4 Closed 5 ✗a 67.3 M 266.4 M 114.1 h

4 Closed 6 ✓, also Fig. 6 68.2 M 269.7 M 45.3 h

Two-color decks

4 – 3 ✗ 5.2 M 20.3 M 46 min

4 – 4 ✓, also Fig. 9 with (3) 6.9 M 27.0 M 50 min

4 Closed 5 ✗b 12.3 M 47.2 M 7.9 h

4 Closed 6 ✓, also Fig. 9 with (2) 9.3 M 34.4 M 45 min

5 Closed 4 ✓, also Fig. 14 22.3 M 87.2 M 45 min

aThis holds only w.r.t. protocols with shuffle size of at most 8, excluding subgroups of size 12
bFor this, we had to strengthen the security to input-possibilistic security

is used to construct a set of permitted permutation sets (to be used by the shuffle opera-
tion), which makes the SBMC tool inspect the following program code for all possible
assignments of this value. If necessary, this may result in a fully exhaustive search,
however, the prover is often able to restrict the domain based on further program state-
ments and dependencies seen in the rest of the program. A similar trick is used when
computing the concrete permutations using the non-deterministic value of permIndex
in order to check all possible permutations which possibly move the values, but pre-
serve all existing numbers in the sequence itself. This is done using the int-array
takenPermutations, which is first initialized to zero and, when choosing a concrete
permutation, assumed to be zero at position permIndex, however set to the number
one right afterwards (such that it is not permitted to be chosen again). In the subse-
quent inner loop, the permutations are assigned choosing the according cards from the
sequences in the start state using the non-deterministic value permIndex. Finally, the
shuffle is applied, resulting in the state variable result, which is then checked using a
further method isBottomFree to not contain any sequences with impermissible values
for Xi , which would result in incorrect computations of the AND function.

We applied our approach to the computation of a secure AND protocol using four
cards to, first, substantiate our proof that no protocol of a length below six can be found,
and, secondly, automatically find a permitted protocol using six operations. For the
running times and formula size (i.e., numbers of variables and clauses) generated by
our method, we refer to Table 3.

Verification of Run-Minimality in Two-Color Deck Protocols

For the two-color deck setting, a card-minimal Las Vegas AND protocol using only
four cards was given by Koch et al. [17]. While they use only closed shuffles, some of

123

New Generation Computing (2021) 39:115–158 147

Fig. 9 The four-card protocol by Koch et al. [17], with placeholders as specified in the text to define two
similar variants of the same protocol. The contracted, non-closed variant has a shortest run of length 4,
while the closed variant has a shortest run of length 6

the shuffles are non-uniform and hence, the protocol is rather difficult to implement.
However, we argue that it is insightful to analyze whether the protocol features a
shortest run. For this, let us note that there are two possible versions of this protocol:
by contracting two subsequent closed shuffles, we can generate a protocol with fewer
but non-closed shuffles. Both protocols are given in Fig. 9 and Protocol 5, where
Π1,F1,Π2,F2 are permutation groups and probability distributions are as follows:

Π1 := 〈(1 2)(3 4)〉, F1 : id 	→ 1/3, (1 2)(3 4) 	→ 2/3, (1)

Π2 := 〈(1 3)(2 4)〉, F2 : id 	→ 1/3, (1 3)(2 4) 	→ 2/3,

123

148 New Generation Computing (2021) 39:115–158

Protocol 5 Two protocols to compute AND using four cards, cf. also Fig. 9. The
placeholders Πi , Fi are given in (1) and the αi are defined in (2) and (3).
α1
(turn, {2})
if v = (?, ♣, ?, ?) then

(turn, {2}) // turn back
α2

1 (turn, {4})
if v = (?, ?, ?, ♣) then

(result, 1, 2)
else if v = (?, ?, ?, ♥) then

(turn, {4}) // turn back
(shuffle, {id, (1 3)})
(perm, (1 3 4 2))
(shuffle, Π2,F2)

goto 2

else if v = (?,♥, ?, ?) then
(turn, {2}) // turn back
α3

2 (turn, {1})
if v = (♥, ?, ?, ?) then

(result, 2, 4)
else if v = (♣, ?, ?, ?) then

(turn, {1}) // turn back
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
(shuffle, Π1,F1)

goto 1

and α1, α2, α3 are placeholders for one or two actions, which are for the full protocol
as follows:

α1 := (shuffle, 〈(1 3)(2 4)〉); (shuffle, 〈(2 3)〉), (2)

α2 := (shuffle, 〈(1 3)〉); (shuffle,Π1,F1),

α3 := (shuffle, 〈(3 4)〉); (shuffle,Π2,F2),

and for the protocol using contracted shuffles as below:

α1 := (shuffle, {id, (1 3)(2 4), (2 3), (1 2 4 3)}), (3)

α2 := (shuffle, {id, (1 3), (1 3)(2 4), (1 4 3 2)},F3),

F3 : id 	→ 1/6, (1 3) 	→ 1/6, (1 3)(2 4) 	→ 1/3, (1 4 3 2) 	→ 1/3,

α3 := (shuffle, {id, (3 4), (1 3)(2 4), (1 3 2 4)},F4),

F4 : id 	→ 1/6, (3 4) 	→ 1/6, (1 3)(2 4) 	→ 1/3, (1 3 2 4) 	→ 1/3.

123

New Generation Computing (2021) 39:115–158 149

1 __CPROVER_assume ((i != 0 i != 1) || start[i] == 1 || start[i] == 2);
2 __CPROVER_assume ((i != 2 i != 3) || start[i] == 3 || start[i] == 4);
3 for (uint i = 4; i < N; i++) {
4 start[i] = i + 1;
5 }

Listing 3 Simplified start sequence assignment in the standard deck for CBMC.

1 __CPROVER_assume (start[1] != start[0]);
2 __CPROVER_assume (start[3] != start[2]);
3 for (uint i = 4; i < N; i++) {
4 start[i] = nondet_uint();
5 __CPROVER_assume (0 < start[i]);
6 __CPROVER_assume (start[i] <= NUM_SYM);
7 }

Listing 4 Simplified start sequence assignment in the two-color deck for CBMC.

Run-minimality resultsTo summarize our run-minimality results derived from our
adaption of the program to the two-color setting, we showed by formal verification
that the closed AND protocol variant has a shortest run of 6 steps, relative to all closed
four-card AND protocols. This is because our method excluded the possibility of an
input-possibilistic19 closed four-card AND protocol with a run of length 5. Moreover,
our contracted AND protocol is run-minimal in that no (output-possibilistic) four-card
AND protocol with a run of length 3 exists. See also Table 3. In the following, we
describe the changes in our verification method.

As the programbyKoch et al. [15] is already very general, the adaptions for covering
the two-color settings required only little changes. The programs mainly differ in the
assignment of the start state, in the following code snippets identified by start, for the
protocol. In the following, the variable NUM_SYM specifies the number of distinct card
symbols, which was not needed in the standard deck setting, as there it was identical
to the total number of cards. In Listing 3, the variable N specifies this total number of
cards.

In the standard deck setting, each player gets distinct symbols 1 and 2, or 3 and
4, respectively (as shown in the first two lines in Listing 3). For the two-color deck
setting, it suffices to require that the individual cards for each player are pairwise
distinct as shown in the first two lines in Listing 4. Moreover, we simply numbered the
helper cards consecutively for the standard deck setting (see the loop in Listing 3), but
allowed an arbitrary assignment of valid card symbols in the two-color deck setting
(see the loop in Listing 4).

Besides the introduction of the variable NUM_SYM, these are the main changes that
were needed to cover the two-color deck setting. Note that we moreover adapted the
script that calls the SBMC tool together with our C program to compute the new
number of possible sequences. For the standard deck setting, the number was simply

19 Because it found a possible output-possibilistic (but not input-possibilistic) protocol run, we had to
strengthen the search criteria to protocols which are at least input-probabilistic.

123

150 New Generation Computing (2021) 39:115–158

1 uint seqIdx1 = nondet_uint();
2 uint seqIdx2 = nondet_uint();
3 __CPROVER_assume (seqIdx1 < seqIdx2);
4 minState.sequence[seqIdx1].probs = {1, 0}; // set probability to X0
5 minState.sequence[seqIdx2].probs = {0, 1}; // set probability to X1
6

7 struct state nextState = performShuffle(minState);
8 uint foundValidState = isValid(nextState);
9 assert (foundValidState);

Listing 5 Simplified maximality verification for CBMC.

the factorial of the total number of cards. In the two-color deck setting, this is the
binomial coefficient of the two different amounts of cards with distinct symbols.

Verification of Shuffle Set Size Maximality

In the following, we exploit the fact that the number of possible sequences in a protocol
state may be significantly smaller than the number of possible permutations on the
deck for the two-color setting. We, therefore, extend our formal verification technique
to additionally establish a formal guarantee that it suffices to search protocols with
a smaller permutation set size (i.e., also the shuffle set size). Hence, the number of
possible shuffles gets significantly smaller, which reduces the work for the SBMC tool
and thus leads to significantly smaller running times.

We can write a simple program—via some simple adaptions from the program
in “An illustration of our verification methodology”—that serves as an input for the
SBMC tool to verify the maximality of a given shuffle set size. The shuffle oper-
ation from Listing 2 is adapted such that we can specify a lower bound for the
non-deterministic variable permSetSize. We search for a single shuffle operation such
that a valid output state is reached from a “minimal state”, i.e., a state that has at most
one 1-sequence and one 0-sequence (that should not be mixed together in the shuffle).
In Listing 5 this is done by setting the probabilities of two arbitrary distinct sequences
in that state to be the inverse of each other, i.e., (1 0) and (0 1). In the end, we check
whether, after performing a shuffle operation on this state, we can still reach a valid
state afterwards. Note that, since we are looking for worst-case maximality bounds, it
suffices to employ the output-possibilistic setting (see Definition 2.2) which reduces
the search complexity.

For the verification of a maximal shuffle set size, we can run the SBMC tool on
this program for various lower bounds for permSetSize until we find the smallest
value such that no valid state is reachable anymore. This gives us a guarantee that
larger shuffle set sizes cannot produce smaller protocol runs and we can hence use this
value for an upper bound on the shuffle set size in the approach from “Verification of
run-minimality in two-color deck protocols”.

The described functionality in the C program is shown in Listing 5. Therein,
seqIdx1 and seqIdx2 are the non-deterministically chosen indices for the zero- and

123

New Generation Computing (2021) 39:115–158 151

Table 4 Running times for proving shuffle set size maximality

cards Shuffles Shuffle size Valid shuffle # var. # clauses Time

Standard decks

4 – 12 ✓, cf. Fig. 11 5.2 M 12.9 M 51.9 min

4 – 13 ✗ 13.8 M 55.9 M 2.4 h

4 Closed 12 ✓, cf. Fig. 11 13.5 M 54.0 M 16.9 min

4 Closed 13–24 ✗a – – –

Two-color decks

4 – 12 ✓, cf. Fig. 10 1.5 M 6.1 M 54 sec

4 – 13 ✗ 1.6 M 6.5 M 70 sec

4 Closed 8 ✓, cf. Fig. 10 1.4 M 5.0 M 69 sec

4 Closed (9–)12 ✗ 2.2 M 8.2 M 3.2 min

5 – 48 ✓ 13.9 M 57.0 M 3.4 h

5 – 49 ✗ 14.2 M 58.1 M 11.4 h

5 Closed 12 ✓ 4.9 M 18.9 M 26.1 min

5 Closed 20 ?b 9.1 M 35.4 M –

5 Closed 24 ?b 11.8 M 46.4 M –

5 Closed 25–120 ✗c – – –

For some of the settings with closedness requirement we specify ranges, which should indicate that the
larger range is already impossible due to the size restrictions of subgroups. See Naik [23,24] for reference
aAs the largest proper subgroup is of size 12, there is nothing to show. (S4 creates ⊥-sequences)
bThis run did not finish in time, or ran into the self-set timeout bound of 5 days.
c >48 permutations is impossible even non-closed, and 60 is the only proper subgroup size >24

one-sequence, which are assumed to be distinct. The minimal start state is given by
the variable minState (which contains an array of sequences). We perform a non-
deterministic shuffle operation on minState by calling the method performShuffle.
Finally, we ask the SBMC tool to check whether the produced nextState is a valid
state using the final assert statement.

Note that the results of this section in determining the maximal useful shuffle set
size hold not only for AND but also for all Boolean functions that have at least two
possible outputs. The results are summarized in Table 4.

As an example, see Fig. 10 (left) for themaximal shuffle set size (of 12) that is useful
in four-card two-color protocols in general. Here, the shuffle starts from a minimal 2-
sequence state that was chosen arbitrarily and non-deterministically by our SAT solver,
but is likely to have maximal Hamming distance among their sequences. For protocols
using only closed shuffles, our method showed that this bound is 8 permutations, as
there is no larger closed permutation set that can result in a valid state, cf. Fig. 10
(right). These bounds are fully tight.

In the five-card two-color setting, closed protocols can make use of shuffle groups
of at most 24 permutations. It is an open question whether this is a tight bound, but
we know that there is a 12 element shuffle that is valid. However, it still allows us
to restrict the maximal shuffle group size to 24 when searching protocols. For this
five-card case and arbitrary non-closed shuffle sets, the maximal shuffle set size that
does not introduce ⊥-sequences on a minimal state is 48. This is a tight bound.

123

152 New Generation Computing (2021) 39:115–158

Fig. 10 Situation discovered by our formal method to find a minimal state and a maximal permutation set
(of size 12 (left) and 8 (right), respectively), such that applying this shuffle to the minimal state does not
generate an invalid state (with ⊥-sequences). Our method showed that larger shuffle sets (left) or groups
(right) cannot result in valid states, allowing us to reduce the shuffle set size in verification steps without

loosing generality. Here, Dconj
8 denotes a dihedral group of order 8

Fig. 11 Situation discovered by
our formal method to find a
minimal state and a maximal
permutation set (of size 12,
namely the alternating group
A4), such that applying this
shuffle to the minimal state does
not generate an invalid state
(with ⊥-sequences), in the
standard deck setting

Additionally, we have adapted this method to the standard deck setting as well and
have determined that the largest permutation set permissible in a protocol on four
cards is 12. This also holds for the closed case, i.e., there is a group with 12 elements,
namely the alternating group A4, that, if performed on a minimal state, can result in a
state that does not contain any ⊥-sequences.

Conclusion

In this paper, we proposed a newmethod to search card-based protocols for any secure
computation, by giving a general formal translation applicable to be used by the formal
technique of software bounded model checking (SBMC). This method allows us to
find new protocols automatically, and prove lower bounds on required shuffle and turn
operations for any protocol, and provide an example for the computation of a minimal
AND protocol. We also found a new protocol that only uses the theoretical minimum
of four distinguishable cards for an AND computation. Moreover, we supported this
finding by our automatic method in showing the impossibility of any protocol using
less shuffle and turn operations using only practicable shuffles (random cuts). The
protocol is hence optimal w.r.t. the running time restriction “restart-free Las-Vegas”.
For the four-card standard deck setting, we showed that there is no finite runtime
protocol, regardless of the shuffle operations used. This result completes the picture
of tight lower bounds for the four-card setting. Additionally, we showed tight lower

123

New Generation Computing (2021) 39:115–158 153

bounds on basis conversions for single bits and proposed the missing protocols, and
establish the theorem that using a minimum of five cards, both input- and output-bases
can be chosen freely, which fosters our impossibility result for the four-card setting.

Finally, we extended our verification method to the case of decks using only two
colors, which is more common in the field of card-based cryptography. In this setting,
we were able to show two variants of a card-minimal Las Vegas AND protocol to be
also run-minimal, i.e., the protocol has a run of minimal length. Moreover, for the
case of 4 cards, we derived tight upper bounds on the size of the maximal usable
permutation set, of 12 and 8 for general and closed protocols, respectively. As this is
not restricted to AND protocols, but applies more generally, we believe this to be of
independent interest for researchers in the field of card-based cryptography.

Open Problems

Let us point out some open problems in the card-based security area that could be
approached based on the findings in this paper: (1) for finite-runtime protocols, there
exist no proven tight lower bounds on the required number of cards (five to eight cards).
We recommend more research applying computer-aided formal methods at this point,
as the state space for five or more cards is very large. (2) Our verification approach is
fast for finding protocols and/or lower bounds on the operations needed in a protocol
for given shuffle-restrictions. However, this is based on the assumption that protocols
exist already for a given predefined length to find or confirm impossibility results.
Investigating computer-aided formal methods for universal impossibility results might
be worthwhile. (3) The two most common settings in card-based cryptography are
the standard deck setting with only distinguishable cards and the two-color decks
using ♣ and ♥. However, it may be possible that by mixing these settings (e.g., only
distinguishable cards with one pair of identical cards), we might find more efficient
protocols (especially in the finite runtime setting). For such amixed setting, Shinagawa
and Mizuki [28] provide nice results to use in further research.

Acknowledgements The authorswould like to thank the anonymous reviewers for their detailed and helpful
comments and suggestions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Further protocols

This appendix contains the 8-cardANDprotocol byMizuki [18] (Fig. 12) and a second
four-card protocol which uses a number of 4.5 shuffles in expectation, which are,
however, non-closed and hence, more impractical to implement, cf. Fig. 13.Moreover,

123

http://creativecommons.org/licenses/by/4.0/

154 New Generation Computing (2021) 39:115–158

wehave added a variant of the protocol byAbe et al. [1]wherewe save one permutation
step in the beginning, in Fig. 14.

Fig. 12 The eight-card
finite-runtime AND protocol by
Mizuki [18], with
D = �1, . . . , 8� and
uniform-closed shuffles. Output
is in basis {5, 6} or {7, 8}, each
with probability 1/2

123

New Generation Computing (2021) 39:115–158 155

Fig. 13 A four-card Las Vegas AND protocol with deck D = �1, 2, 3, 4� and uniform shuffles. Note that
X0 := X00 + X01 + X10 and X1 := X11. The output is in one of the bases {1, 3}, {1, 4}, {2, 3}, {3, 4},
determined by the position of the final state in the tree, and can be converted as needed

123

156 New Generation Computing (2021) 39:115–158

Fig. 14 A slightly shorter version of the five-card two-color Las Vegas AND protocol with uniform closed
shuffles given by Abe et al. [1]. Here, we save one initial permutation step at the cost of using the slightly
more complex shuffle Π1 that is not as easy to perform as just cutting the cards (albeit still a “random
cut”, i.e., a cyclic group generated by a cycle). As our counting method for the number of steps assumes
single-card turns, observe that the two-card turn step in the end can be split into two single-card turns, where
turning the first card can already result in the final state on the left. Hence, its shortest run consists of only
four steps. (This protocol version was found when trying to prove the run-minimality of the protocol by
Abe et al. [1] w. r. t. closed five-card two-color AND protocols – whether a protocol with these parameters
and a run of only three steps exists, remains open.)

123

New Generation Computing (2021) 39:115–158 157

References

1. Abe, Y., Hayashi, Y.-i., Mizuki, T., Sone, H.: Proceedings of the 5th ACM on ASIA Public-Key
Cryptography Workshop (eds Emura, K., Seo, J.H., and Watanabe, Y.) 3–8. https://doi.org/10.1145/
3197507.3197510

2. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol implementations: a survey.
Formal Asp. Comput. 26, 99–123 (2014). https://doi.org/10.1007/s00165-012-0269-9

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Proceedings of the 5th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science,
vol. 1579. Berlin, Heidelberg. (1999) . https://doi.org/10.1007/3-540-49059-0_14

4. Blanchet, B.: Proceedings of the First International Conference on Principles of Security and Trust.
Lecture Notes in Computer Science, vol. 7215. Springer, Berlin, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28641-4_2

5. Den Boer, B.: Lecture Notes in Computer Science, vol 434, Berlin, Heidelberg (1989). https://doi.org/
10.1007/3-540-46885-4_23

6. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs in TACAS 2004. In:
Jensen, K., Podelski, A. (eds.), pp. 168–176. Springer (2004). https://doi.org/10.1007/978-3-540-
24730-2_15

7. Crépeau, C., Kilian, J.: Discreet solitary games in CRYPTO ’93. In: Stinson, D.R. (ed.), pp. 319–330.
Springer (1993). https://doi.org/10.1007/3-540-48329-2_27

8. Eén, N., Sörensson, N.: An extensible SAT-solver in SAT 2003. In: Giunchiglia, E., Tacchella, A.
(eds.), pp. 502–518. Springer (2003). https://doi.org/10.1007/978-3-540-24605-3_37

9. Fisch, B., Freund, D., Naor, M.: Physical zero-knowledge proofs of physical properties in CRYPTO
2014. In: Garay, J.A., Gennaro, R. (eds.), pp. 313–336. Springer (2014). https://doi.org/10.1007/978-
3-662-44381-1_18

10. Franz, M., Holzer, A., Katzenbeisser, S., Schallhart, C., Veith, H.: CBMC-GC: an ANSI C compiler
for secure two-party computations in CC 2014. In: Cohen, A. (ed.), pp. 244–249. Springer (2014).
https://doi.org/10.1007/978-3-642-54807-9_15

11. Glaser, A., Barak, B., Goldston, R.J.: A zero-knowledge protocol for nuclear warhead verification.
Nature 510, 497–502 (2014). https://doi.org/10.1038/nature13457

12. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y.-I., Mizuki, T., Sone, H.: The minimum
number of cards in practical card-based protocols in ASIACRYPT 2017. In: Takagi, T., Peyrin, T.
(eds.), pp. 126–155. Springer (2017). https://doi.org/10.1007/978-3-319-70700-6_5

13. Koch, A.: Cryptographic Protocols from Physical Assumptions Ph.D. thesis (KIT, Karlsruhe) (2019).
https://doi.org/10.5445/IR/1000097756

14. Koch, A.: The Landscape of Optimal Card-based Protocols. Cryptology ePrint Archive, Report
2018/951. (2018). https://eprint.iacr.org/2018/951

15. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification in ASI-
ACRYPT (2019). In: Galbraith, S.D., Moriai, S. (eds.) Proceedings, part I, pp. 488–517. Springer
(2019). https://doi.org/10.1007/978-3-030-34578-5_18

16. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography in fun with algorithms,
FUN 2021. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) vol. 157, pp. 171–1723. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.
FUN.2021.17

17. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards
in ASIACRYPT 2015. In: Iwata, T., Cheon, J.H. (eds.), pp. 783–807. Springer (2015). https://doi.org/
10.1007/978-3-662-48797-6_32

18. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing cards in
CANS 2016. In: Foresti, S., Persiano, G. (eds), pp. 484–499. Springer (2016). https://doi.org/10.1007/
978-3-319-48965-0_29

19. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine.
Int. J. Inf. Sec. 13, 15–23 (2014). https://doi.org/10.1007/s10207-013-0219-4

20. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its applica-
tions. IEICE Trans. 100–A, 3–11 (2017)

21. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR in FAW 2009. In: Deng, X.,
et al. (eds.), pp. 358–369. Springer (2009). https://doi.org/10.1587/transfun.E100.A.3

123

https://doi.org/10.1145/3197507.3197510
https://doi.org/10.1145/3197507.3197510
https://doi.org/10.1007/s00165-012-0269-9
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-28641-4_2
https://doi.org/10.1007/978-3-642-28641-4_2
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-662-44381-1_18
https://doi.org/10.1007/978-3-662-44381-1_18
https://doi.org/10.1007/978-3-642-54807-9_15
https://doi.org/10.1038/nature13457
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.5445/IR/1000097756
https://eprint.iacr.org/2018/951
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1587/transfun.E100.A.3

158 New Generation Computing (2021) 39:115–158

22. Moran, T., Naor, M.: Basing cryptographic protocols on tamperevident seals. Theor. Comput. Sci. 411,
1283–1310 (2010). Accessed 02 May 2020. https://doi.org/10.1016/j.tcs.2009.10.023

23. Naik, V.: In Groupprops, the group properties Wiki (2014). https://groupprops.subwiki.org/wiki/
Subgroup_structure_of_symmetric_group:S4. Accessed 02 May 2020

24. Naik, V.: In Groupprops, the group properties Wiki (2014). https://groupprops.subwiki.org/wiki/
Subgroup_structure_of_symmetric_group:S5. Accessed 02 May 2020

25. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191,
173–183 (1998). https://doi.org/10.1016/S0304-3975(97)00107-2

26. Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundam. Inf. 38, 181–188 (1999). https://doi.org/
10.3233/FI-1999-381214

27. Rastogi, A., Swamy, N., Hicks, M.:Wys�: a DSL for verified secure multi-party computations in POST
2019. In: Nielson, F., Sands, D. (eds.), pp. 99–122. Springer (2019). https://doi.org/10.1007/978-3-
030-17138-4_5

28. Shinagawa, K., Mizuki, T.: Secure computation of any Boolean function based on any deck of cards
in FAW 2019. In: Chen, Y., et al. (eds.), pp. 63–75. Springer (2019). https://doi.org/10.1007/978-3-
030-18126-0_6

29. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhargavan, K., Fournet,
C., Strub, P.-Y., Kohlweiss,M., Zinzindohoue, J.K., Béguelin, S.Z.: Dependent types andmultimonadic
effects in F in POPL 2016. In: Bodik, R., Majumdar, R. (eds.), pp. 256–270. ACM (2016). https://doi.
org/10.1145/2837614.2837655

Affiliations

Alexander Koch1 ·Michael Schrempp1 ·Michael Kirsten1

Michael Schrempp
michi.schrempp@freenet.de

Michael Kirsten
kirsten@kit.edu

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

123

https://doi.org/10.1016/j.tcs.2009.10.023
https://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4
https://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4
https://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S5
https://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S5
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.3233/FI-1999-381214
https://doi.org/10.3233/FI-1999-381214
https://doi.org/10.1007/978-3-030-17138-4_5
https://doi.org/10.1007/978-3-030-17138-4_5
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
http://orcid.org/0000-0002-3510-9669
http://orcid.org/0000-0001-9816-1504

	Card-Based Cryptography Meets Formal Verification
	Abstract
	Introduction
	Secure Multiparty Computation with Cards
	Contribution
	Related Work
	Outline

	Preliminaries
	Card-Based Protocols
	Permutations and Groups
	Computational Model and Protocol State Tree Representation
	Security of Card-Based Protocols
	Proving Lower Bounds

	Automatic Formal Verification Using SBMC
	Automatic Formal Verification for Card-Based Protocols

	On the Choice of Cards for Input and Output
	Impossibility of Finite-Runtime Four-Card AND and Basis Conversion with Overlapping Bases
	Card-Minimal Protocols for AND
	Comparison to Niemi and Renvall fuinspsNiemiR99

	Card-Minimal Protocols for Basis Conversion with Overlapping Bases
	An Illustration of Our Verification Methodology
	Verification of Run-Minimality in Two-Color Deck Protocols
	Verification of Shuffle Set Size Maximality
	Conclusion
	Open Problems

	Acknowledgements
	Appendix: Further protocols
	References

