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Abstract. Heavy precipitation is one of the most devastat-
ing weather extremes in the western Mediterranean region.
Our capacity to prevent negative impacts from such extreme
events requires advancements in numerical weather predic-
tion, data assimilation, and new observation techniques. In
this paper we investigate the impact of two state-of-the-
art data sets with very high resolution, Global Position-
ing System (GPS)-derived zenith total delays (GPS-ZTD)
with a 10min temporal resolution and radiosondes with
~700 levels, on the representation of convective precipi-
tation in nudging experiments. Specifically, we investigate
whether the high temporal resolution, quality, and coverage
of GPS-ZTDs can outweigh their lack of vertical informa-
tion or if radiosonde profiles are more valuable despite their
scarce coverage and low temporal resolution (24 to 6 h). The
study focuses on the Intensive Observation Period 6 (IOP6)
of the Hydrological cycle in the Mediterranean eXperiment
(HyMeX; 24 September 2012). This event is selected due to
its severity (100 mm/12h), the availability of observations
for nudging and validation, and the large observation im-
pact found in preliminary sensitivity experiments. We sys-
tematically compare simulations performed with the Con-
sortium for Small-scale Modeling (COSMO) model assim-
ilating GPS, high- and low-vertical-resolution radiosound-
ings in model resolutions of 7km, 2.8 km, and 500 m. The
results show that the additional GPS and radiosonde obser-
vations cannot compensate for errors in the model dynam-
ics and physics. In this regard the reference COSMO runs
have an atmospheric moisture wet bias prior to precipitation
onset but a negative bias in rainfall, indicative of deficien-

cies in the numerics and physics, unable to convert the mois-
ture excess into sufficient precipitation. Nudging GPS and
high-resolution soundings corrects atmospheric humidity but
even further reduces total precipitation. This case study also
demonstrates the potential impact of individual observations
in highly unstable environments. We show that assimilat-
ing a low-resolution sounding from Nimes (southern France)
while precipitation is taking place induces a 40 % increase in
precipitation during the subsequent 3 h. This precipitation in-
crease is brought about by the moistening of the 700 hPa level
(7.5 gkg™!) upstream of the main precipitating systems, re-
ducing the entrainment of dry air above the boundary layer.
The moist layer was missed by GPS observations and high-
resolution soundings alike, pointing to the importance of pro-
file information and timing. However, assimilating GPS was
beneficial for simulating the temporal evolution of precipita-
tion. Finally, regarding the scale dependency, no resolution is
particularly sensitive to a specific observation type; however,
the 2.8 km run has overall better scores, possibly as this is the
optimally tuned operational version of COSMO. Future work
will aim at a generalization of these conclusions, investigat-
ing further cases of the autumn 2012, and the Icosahedral
Nonhydrostatic Model (ICON) will be investigated for this
case study to assert whether its updates are able to improve
the quality of the simulations.
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1 Introduction

In the western Mediterranean heavy precipitation events
(HPEs) cause fatalities and large economic losses every year
(Petrucci et al., 2018). Many of these events occurs dur-
ing autumn, since this is the time when large-scale sys-
tems (northerly troughs, extratropical cyclones) coincide
with large mesoscale moisture transports, advected with the
southerly flow (Toreti et al., 2010; Pinto et al., 2013; Dayan
et al., 2015; Gilabert and Llasat, 2017). This creates the
propitious humidity and instability conditions for convec-
tive systems that get triggered due to orography, wind con-
vergence, or thermodynamic processes (Ricard et al., 2012;
Khodayar et al., 2016). The representation of such events
is still a challenge for current numerical weather prediction
(NWP) models. The relatively short temporal and spatial
scales of convective phenomena, from minutes to less than
a day and from 10° to 10> km (Markowski and Richardson,
2010), make it challenging to forecast accurately where and
when an HPE will develop. One of the identified sources of
error is the misrepresentation of the spatial distribution of
atmospheric moisture. Current models have shown a large
sensitivity of convective precipitation to small differences
in moisture distribution (Lintner et al., 2017; Virman et al.,
2018). Hence, it is hoped that using sub-kilometre resolution
and sub-hourly frequencies in atmospheric models and data
assimilation (DA) systems can lead to substantial improve-
ments for HPE prediction.

DA is a key ingredient to the initial value problem of
NWP (Bauer et al., 2015), as the frequent assimilation of
high-quality observations helps adjust the NWP model to-
wards the true atmospheric state. Recent advancements in
observation systems and high-performance computing have
brought progress for DA of new observations (Carlin et al.,
2017; Kwon et al., 2018; Borderies et al., 2019; Federico et
al., 2017; Mazzarella et al., 2017). GPS measurements of
ZTDs are an especially interesting observation type, since
they can sample the integrated water vapour (IWV) amount
at minute temporal resolution (Bock et al., 2016). Past pub-
lications have shown improvements of GPS data for screen-
level temperature and humidity (Mile et al., 2019; Mascitelli
et al., 2019), lower to middle tropospheric moisture (Singh
et al., 2019; Bastin et al., 2019; Caldas-Alvarez and Khoda-
yar, 2020), and 24 h precipitation (Hdidou et al., 2020; Four-
rié et al., 2021). The advantages of this product are that it
has high temporal resolution, that it is all-weather (provides
IWYV estimates in cloudy as well as clear-sky situations), that
is has large accuracy (Bock et al., 2016, 2019; Jones et al.,
2019), and that it has a dense coverage over European coun-
tries. However, being an integrated quantity, GPS measure-
ments bear no information of the vertical distribution of hu-
midity (Guerova et al., 2016). This deficit can be decisive
in some situations since sufficient moisture even in shallow
atmospheric layers can make the difference between con-
vective triggering or suppression. For example, Davolio et
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al. (2017) find a good impact on precipitation forecasts from
assimilating constructed humidity profiles reaching the up-
per free troposphere. Federico et al. (2019) show that assim-
ilating derived humidity profiles from radar reflectivity and
lighting data induces a moist bias possibly due to the inabil-
ity of the system to correctly redistribute the humidity into
shallower vertical layers. This is one of the reasons why, to
date, radiosondes have remained the backbone of DA sys-
tems (Kwon et al., 2018). Radiosondes can supplement the
lack of vertical information of GPS observations but at the
expense of a coarser temporal resolution (in best cases, ev-
ery 6 h) and lower spatial coverage (~ 30 stations in western
Europe). To bring the best value from radiosonde assimila-
tion, targeted observations can help sample atmospheric con-
ditions at the right place and time, e.g. in regions upstream
of areas prone to heavy precipitation (Campins et al., 2013).
In this regard, a higher number of levels per sounding can
bring potential improvement, already assessed for validation
purposes (Benjamin et al., 2010).

Past modelling and observational studies demonstrated
that a good account of the spatial distribution of atmospheric
moisture is crucial for the representation of convective inten-
sities (Keil et al., 2008; Lintner et al., 2011; Honda et al.,
2015; Schumacher et al., 2015; Schlemmer and Hoheneg-
ger, 2015; Lintner et al., 2017; Virman et al., 2018). Con-
sensus exists that a moist planetary boundary layer (PBL)
is needed for convective triggering and maintenance (Lee
et al., 2018). However, the dependency on moisture at the
lower free troposphere (LFT) is less established. Dry mid-
levels can lead to a faster organization of mesoscale clus-
ters through stronger cold pools (Zuidema et al., 2017) but
also reduce the strength of connective updraughts through
entrainment of drier air. Several authors have highlighted the
important role of mid-level moisture in aiding the transition
from shallow to deep moist convection (Lintner et al., 2011;
Neelin et al., 2009; Bernstein et al., 2016; Zhuang et al.,
2018; Khodayar et al., 2018), as a sufficiently moist LFT
prevents excessive entrainment (Honda et al., 2015), helps
convection penetrate possible intrusions, and maintains the
buoyancy of the rising parcels.

In addition to DA, convection-permitting model resolu-
tion has brought important advancements in the simulation
of heavy precipitation (Chan et al., 2012; Prein et al., 2015;
Coppola et al., 2018; Meredith et al., 2020). However, the
question regarding how fine model resolutions should be, be-
yond the kilometre scale, in the so-called grey zone (Barthlott
and Hoose; 2015) is still open. Several papers have found im-
provements from using model resolutions of 1.5 km or higher
(Kendon et al., 2012; Martinet et al., 2017; Bonekamp et al.,
2018 and Lovat et al., 2019), whereas others found no sig-
nificant gain (Chan et al., 2012; Panosetti et al., 2016; Lee et
al., 2019). A possible reason is the fact that the appropriate
settings for running current models at such high resolutions
are not yet ready. In this context it is interesting to assess the
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sensitivity of the impact of new observations such as GPS
and high-resolution soundings to model resolution.
Assessing the capabilities of current NWP systems for
heavy precipitation is one of the aims of HyMeX, an inter-
national project aiming at a better understanding of the hy-
drological cycle in the Mediterranean (Ducrocq et al., 2014).
The Special Observation Period 1 (SOP1) between 1 Septem-
ber and 5 November 2012 provides an unprecedented col-
lection of data that are used in this study for assimilation,
validation, and process understanding. The event we focus
on occurred on 24 September 2012, during Intensive Obser-
vation Period 6 (IOP6), and brought precipitation amounts
of over 100mm in 12h to southern France, the Alps, the
Gulf of Genoa, and north-eastern Italy (Hally et al., 2014;
Ribaud et al., 2016). This HPE showed a negative impact
of GPS DA in preliminary assimilation tests, related to an
overall reduction of atmospheric moisture and precipitation
amount (between —40 % and —10 % depending on model
resolution). Given this unexpected result, we will investi-
gate here in more detail which characteristics of the GPS
DA were detrimental for the representation of precipitation.
To do so, we will systematically assess the impact of nudg-
ing GPS, operational soundings, and high-resolution sound-
ings using Consortium for Small-scale Modeling (COSMO)
simulations with — for this case unprecedentedly fine — grid
spacings of 7km, 2.8 km, and 500 m. The employed nudg-
ing scheme (Schraff and Hess, 2012) is well suited for such
studies (Federico et al., 2019; Bastin et al., 2019) and com-
pares well against other DA schemes (Schraff et al., 2016).
The employed methods will be outlined in Sect. 2. Section 3
discusses the meteorological situation during IOP6 and the
model runs used as reference. Section 4 presents the results
of the data impact studies. Conclusions are given in Sect. 5.

2 Data and methods
2.1 Observations

2.1.1 GPS-derived zenith total delays (ZTD) and
integrated water vapour (IWYV)

The GPS data set used for the nudging was specifically pro-
duced for the HyMeX project, merging measurements from
25 European national and regional networks commonly post-
processed for the first time to cover the period Septem-
ber 2012 to March 2013 (Bock et al., 2016). GPS measure-
ments provide information of the total delay endured by the
microwave signals emitted by GPS satellites in the zenith
direction (zenith total delay; ZTD). These are expressed in
units of millimetres, accounting for the excess length of the
optic path introduced by the refractivity of the Earth’s atmo-
sphere (Businger et al., 1996). The contribution to the delay
due to the interaction with water vapour molecules is called
the “wet” delay and can be obtained from the ZTD. This is
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the assimilated variable in the nudging experiments, which
is proportional to the IWV. The data set used in this paper
has a temporal resolution of 10 min, has an outstanding spa-
tial coverage over all south-western European countries (see
Fig. 1b), and was produced using the GIPSY/OASIS II v6.2
software (Bock et al., 2016). It enjoys a very high quality
due to its data-screening procedure, including range and out-
lier checks for mean ZTD and its standard deviation, as well
as ambiguity and daily number checks. Compared against
the product from the Network of European Meteorological
Services (EUMETNET) Global Navigation Satellite System
(GNSS) Water Vapour Programme (E-GVAP), the HyMeX
data set shows no significant biases (Bock et al., 2016).

HyMeX, also provides an IWV data set with 1h resolu-
tion, derived from the ZTD estimations (Fig. 1b). We employ
this IWV data set for comparison against our simulations.
The mean temperature and surface pressure values at the
GPS station locations, which are needed for the IWV deriva-
tion, were obtained from a product provided by the Techni-
cal University of Vienna and Application of Research to Op-
erations at Mesoscale — western Mediterranecan (AROME-
WMED) operational analysis, respectively. A validation of
the IWV product against operational radiosondes showed a
good performance, with biases of less than 1.5 mm for the
whole HyMeX period (Bock et al., 2016).

2.1.2 The operational and the HyMeX high-resolution
soundings

Operational atmospheric sounding data are provided by
Meétéo-France and the HyMeX database teams through the
HyMeX-MISTRALS web repository (https://mistrals.sedoo.
fr/HyMeX/, last access: 23 June 2021). The data set con-
sists of atmospheric soundings during the period 1995-2017,
covering the western Mediterranean countries (blue triangles
in Fig. 1b), operated by national and regional European at-
mospheric weather institutions and distributed through the
Global Telecommunication System (GTS). The soundings
have 30 vertical levels on average and have been validated
against GPS measurements with good agreement. Deviations
of only 3 % in IWV were found by Bock et al. (2016) for
the soundings.

In addition, we employed the unique high-resolution
soundings of the HyMeX SOPI in the nudging experi-
ments. These were conducted at locations upstream of ar-
eas prone to heavy precipitation (red markers in Fig. 1b).
They have a much finer vertical resolution with over 700
levels up to 300 hPa. We employed soundings from 12 sta-
tions over France (continental and Corsica) and Spain. Mo-
dem M10 sondes were launched at Ajaccio (Corsica), Nimes,
and Barcelona; Graw sondes, operated by the Karlsruhe In-
stitute of Technology, were launched at Corte (Corsica); and
Vaisala sondes were launched in southern France and Spain.
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2.1.3 Meteosat Second Generation (MSG) brightness
temperature

Brightness temperature is an estimation of the radiation emit-
ted by a surface, converted to temperature through Planck’s
law, assuming a black body. It provides a clue of the height
of cloud tops and is especially useful for deep penetrating
convective clouds. In this paper we use the All-Sky Radi-
ances product, obtained by the Spinning Enhanced Visible
and InfraRed Imager (SEVIRI) instrument aboard the Me-
teosat Second Generation satellite constellation. In particu-
lar, the infrared (IR) channel IR10.8 is used for detection of
organized convective systems. The data are accessible upon
registration at https://www.eumetsat.int/website/home/Data/
DataDelivery/index.html (last access: 23 June 2021).

2.1.4 Rain gauges (RG) and Multi-Source
Weighted-Ensemble Precipitation (MSWEP)

The RG data set used for validation in this paper is avail-
able for accumulation periods of 1, 6, or 24 h; has a dense
coverage of Spain, France, Italy, and Croatia; and has on av-
erage over 4000 stations active per sampled hour. The data
set is made available by Météo-France by means of the MIS-
TRALS/HyMeX repositories. The version used for this study
is V4, which includes high-resolution measurements from
Italy and Croatia as compared to older versions. Several qual-
ity checks are included in this version, such as consistency
validations among the different accumulation periods, re-
moval of duplicates, and dismissal of blacklisted stations.

The MSWEP product is used for validation of our model
results. We use version V2.1 with a temporal resolution of
3 h and a spatial resolution of 0.1° during 1979-2015. We ex-
amine the period 22-25 September 2012. A full description
of the data set can be found in Beck et al. (2017). MSWEP
is a gridded precipitation data set merging satellite, reanaly-
sis, and gauge-based estimates, utilizing, among others, the
Climate Prediction Center morphing technique (CMORPH),
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN), Tropical
Rainfall Measuring Mission (TRMM), ERA-Interim (reanal-
ysis), and Climate Prediction Center (CPC) and Global Pre-
cipitation Climatology Centre (GPCC; gauge) observations.
The MSWEP product shows a good correlation with the in-
dependent FLUXNET gauge network with median values
of 0.65 for the Pearson correlation coefficient. Root-mean-
square error (RMSE) median values were of 4.5 mm d-t,
showing better results than the TRMM TMPA 3B42 or
WEFDEI-CRU data sets (Beck et al. 2017). We selected this
precipitation data set for model validation given it profits
from the combined value of satellite precipitation products
as well as RG.
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2.2 The COSMO model

COSMO uses the non-hydrostatic, thermo-hydrodynamical
equations in a limited area approach (Schittler et al., 2016),
considering the wind components, temperature, pressure per-
turbation, the cloud water content, and the specific humid-
ity as prognostic variables. Optionally, also cloud ice, snow,
and graupel can be considered (Schittler et al., 2016). The
model levels are based on a height coordinate that follows the
terrain. The rotated grid is an Arakawa C type with Lorenz
vertical grid staggering. The dynamical solver is a second-
order leapfrog time-split scheme following Skamarock and
Klemp (1992). COSMO includes physical parameterizations
for the processes that are not explicitly represented. The grid-
scale cloud and precipitation parameterization uses a bulk
scheme continuity model including water vapour, cloud wa-
ter, cloud ice, rain, snow, and graupel as water species. Con-
vection is parameterized using the Tiedtke scheme (1989), a
bulk-mass-flux formulation dependent on mass, heat, mois-
ture, and momentum fluxes, including a cloud model, sim-
ulating processes such as condensation/deposition, evapora-
tion within the updraught, and evaporation below cloud base.
The radiation scheme follows the Ritter and Geleyn descrip-
tion (1992) and is applied with a lower temporal frequency
and lower resolution than that of the rest of the model to re-
duce computational costs. The soil model is the Terra Multi-
Layer (ML) model that is based upon the two-layer scheme
by Jacobsen and Heise (1982). Finally, the surface data use
the GLOBE data set (Hastings et al., 2000) with a 1 km res-
olution adequately interpolated (extrapolated) to the scale of
the different resolutions used (7 km, 2.8 km, and 500 m).
One of the main assets of COSMO is its flexibility to
be used with different horizontal resolutions, each of which
requires specific configuration settings. For finer spatio-
temporal scales, more processes are explicitly resolved at the
expense of higher computational costs. In this work we em-
ploy horizontal grid spacings of 7km, 2.8 km, and 500 m.
The most relevant differences between the 7 and the 2.8 km
set-ups are (a) the increase in levels from 40 to 50, (b) the re-
duction of time step from 60 to 20 s, and (c) the use of only a
shallow convection parameterization scheme in 2.8 km. The
formulation of the latter is analogous to the deep scheme,
except for the reduced vertical extent of clouds (limited to
Ap =250hPa; Baldauf et al., 2011) and the neglection of
dynamic entrainment (Doms et al., 2011). This scheme is in-
active in sub-kilometre simulations, i.e. in our 500 m simula-
tion. Other changes are (a) a further increase in vertical levels
to 80, (b) a time step of 2s, and (c) the use of a 3D turbulent
kinetic energy (TKE) diagnostic closure for the turbulence
parameterization. In the 7 and 2.8 km configurations, the clo-
sure of the turbulence parameterization scheme is 1D in that
it neglects all horizontal fluxes in the so-called boundary-
layer approximation (Doms et al., 2011). In the 3D TKE clo-
sure case, the vertical shear production term can come from
local sources as well as from advection, and the pressure cor-
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relation term is explicitly calculated, which is especially use-
ful over complex terrain (Goger et al., 2018).

2.2.1 The COSMO nudging scheme

The DA method used in this work is the nudging scheme
(Schraff and Hess, 2012). Nudging is an empirical DA
method consisting of relaxing the model’s prognostic vari-
ables towards the observations. This is done by adding a term
to the modelled numerics and physics (F ((pm"d, X, t)) for a
given prognostic variable (¢) at a location (x) and time (¢)
that depends on the difference between the observation (k)

and the model ((p,‘gbs — M4 (%), 1)); the temporal, spatial, and

quality weighting factors (W (x, 1) = (wk/zj wj> -wy), de-
pending in turn on a relative weight for each observation type
(w;); and a coefficient with units of frequency (G,) — see

Eq. (1). The nudging is performed at each model time step
when observations are available.

a
o (1) = F (9™ x.1) + Gy ) Wi (1)
k

[t = o™ i) M

In this work, we nudge atmospheric specific humidity
(GPS and radiosondes), temperature (radiosondes), and wind
(radiosondes). These are the quantities assimilated opera-
tionally at forecasting centres from GPS and radiosonde mea-
surements (Kwon et al., 2018). The nudging scheme is espe-
cially suited for these experiments, since it corrects the at-
mospheric fields during run time, with the same frequency
as the sampling of observations. Additionally, it has shown
good results in analysing humidity fields, especially at upper
levels (Schraff et al., 2016; Bastin et al., 2019), and is com-
putationally less expensive than other schemes (variational
schemes or hybrid schemes) given its simplicity (Guerova et
al., 2016).

Nudging of GPS and radiosondes

The COSMO nudging scheme only allows the assimilation of
prognostic variables. In the case of the radiosondes, COSMO
reads profiles of temperature, wind, and humidity, assign-
ing all observations to a grid point in model space. Given
that the grid points cannot correctly represent wavelengths
of 2Ax or less, the assignment is performed with no interpo-
lation in the horizontal direction (Schraff and Hess, 2012).
The observations are averaged over each model layer for
temperature and wind and interpolated to the representa-
tive height of each model level for humidity. Therefore, the
higher the number of vertical model levels, the more the as-
similation will profit from higher vertical resolution in the
radiosondes. The impact of the analysis increments on the
neighbouring grid points is controlled through lateral (wyy),
vertical (w;), and temporal weights (w;) through the equa-
tion wg = wyy - W, - Wy - &, where g accounts for the quality
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and representativeness of the observation. At the exact time—
space location of the observation wyy, w; and w; are set to
1.

The temporal spreading is controlled by the nudging co-
efficient, which is set to 6.10~%s™!; this corresponds to an
e-folding decay of 30 min. For radiosondes the assimila-
tion time window is set between —3 and +1 h. The vertical
spreading weight follows a Gaussian in height differences,
accounting for the hydrostatic relation and the ideal gas law
(Eq. 2). Where g is the gravitational acceleration, R is the gas
constant, T, is the virtual temperature of the observations,
Az is the height difference between model and observations,
and In p. is the correlation scale, equal to 1/+/3. More de-
tails can be found on the models documentation (Schraff and
Hess, 2012).

—[g/RTy|- Az] }2

In pe 2

w; = exp {

Horizontally, the spreading is performed using a second-
order autoregressive function of the distance between the ob-
servation location and the target point (Ar) divided by corre-
lation scale (s); see Eq. (3). The values of s range between 58
and 100 km, depending on the model level for radiosondes,
and are reduced by 45 % for GPS data to avoid conflicting
neighbouring observations, given its larger surface coverage
(Schraff and Hess, 2012), The correlation scale is invariant
under resolution changes as in its operational set-up. The im-
pact of adapting s to different model resolutions is not inves-
tigated here, as this would be out of the scope of the paper.
However, further testing of different values of the correlation
scale for higher resolutions is advised to address any poten-
tial conflicts of assimilated observations with for example an
increased resolution of the model’s orography.

Wyy = (1 4+ Ar/s)- e AT/ 3)

To assimilate GPS data, COSMO converts the ZTD infor-
mation into IWV (see Sect. 2.1.1) utilizing simulated sur-
face pressure at the station (ps) and mean temperature (7y,)
at run time from the assigned grid point. Given IWV is not
a prognostic variable, a specific humidity profile needs to be
constructed (q{)“‘)d). This is done by means of an iterative pro-
cess that scales the IWV simulated at that location and time
(IWV™d) with that of the observation (IWV°P). The profile
is constructed at the different model levels according to

b
et oo VIR "
vigr — v d*
! wyme

The process continues until the IWV error is lower than
0.1 % or after 20 iterations (Schraff and Hess, 2012). In the
remainder of the process the constructed profile is treated in
the same way as the one derived from radiosondes with the
exceptions that (a) no vertical weights are needed, since the
profile is constructed over model levels directly, and (b) tem-
porally, GPS data are interpolated linearly given their minute
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temporal resolution. Both for radiosonde and GPS observa-
tions, the nudging scheme sequentially carries out quality
checks for new input observations. These checks consist of
dismissal of observations with large biases; bias corrections,
e.g. humidity biases in Vaisala soundings; and gross error
checks to truncate the range of the observations within real-
istic limits.

2.3 Experimental set-up

We run 3d simulations between 22 September 2012
00:00 UTC and 25 September 2012 00:00 UTC. We simulate
this period with COSMO, using three horizontal resolutions
of 7km, 2.8 km, and 500 m in a one-way nesting strategy
(Fig. la). Integrated Forecasting System (IFS) simulations
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) with a resolution of 25km force the 7 km
runs, which in turn force the 2.8 km ones, and finally these
force the 500 m simulations. The following rationale guides
the nudging experiments. The study period is run in all three
resolutions as pure forecast runs (named CTRL-7, CTRL-
2.8, CTRL-500), which are used as references to compare
against simulations nudging GPS, operational radiosondes
(RAD, ~ 20 levels) and high-resolution radiosondes (HR,
~ 700 levels), and all possible combinations between them
(see Table 1), in all three resolutions. The nudging is per-
formed continuously processing new observations as soon as
they are available for the time step under integration. This
implies that the average frequency for nudging of GPS is
10 min and between 6 and 12h for radiosondes. We use al-
most 1000 GPS stations, 32 RAD sounding stations and 12
HR stations (Fig. 1b). All simulations of the same resolution
are forced with the same boundary conditions. For instance,
all 500 m simulations are forced by CTRL-2.8. This is done
to ensure that the different impacts observed in the simula-
tions are due to the use of different observations and not
from different forcing data. A total of 21 simulations were
performed (see Table 1). The study focuses on two investiga-
tion areas, the Cévennes alpine area in southern France (FR)
and the north-western Mediterranean basin (RhoAlps); see
Fig.1b. The extension of FR has been selected for study of
local instability, moisture, and wind conditions influencing
convective activity over the area. RhoAlps covers the exten-
sion of the four main heavy precipitation foci (see Fig. 2b).

2.4 Verification metrics

2.4.1 99th percentile of 3-hourly precipitation
aggregates

We validate extreme precipitation intensity simulated by
COSMO against MSWERP. To this end we upscale COSMO’s
grid to the MSWEP spatial resolution (0.1°). Then we obtain
3-hourly precipitation aggregates for the grid points within
the investigation area. The 99th percentile is obtained from
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the sample of all 3-hourly precipitation intensities at each
grid point during the day of precipitation, i.e. for eight time
steps during 24 September 2012.

2.4.2 Temporal correlation

In Sect. 4.1, we validate the precipitation temporal cor-
relation of the different simulations against observations
(MSWEDP). To this end, we calculate the Pearson correlation
coefficient between the model’s spatially averaged precipita-
tion (mod) and that of the observations (obs) as in Jolliffe and
Stephenson (2011) for 3-hourly aggregates during the day of
precipitation (24 September 2012).

Z-Mh (modi — M) (obsi — ﬁ)

1

VX3 (mod; —mod)” 248 (obs; — obs)

. 3

Ymod,obs =

where the sums run for all eight time steps (i) of the 3-hourly
aggregates during 24 September 2012. The spatial averag-
ing is performed over the investigation area RhoAlps, where
only land points are considered due to the lack of data of
MSWERP over the sea; all simulations are coarse-grained to
the MSWEP resolution.

For its interpretation it should be noted that the forecasting
efficiency of Pearson’s correlation coefficient is non-linear,
i.e. small improvements of 7moq,obs fOr values closer to 1 im-
ply larger forecasting efficiency than improvements of the
same extent for values closer to 0 (Jacques et al., 2018).

2.4.3 Fractions skill score (FSS)

The FSS provides an estimate of the agreement in the fraction
of surface affected by precipitation between observations and
simulations. After coarse-graining the simulations to the res-
olution of the observations (MSWEP, 0.1°), each grid point
within the investigation area (both for observations and sim-
ulations) is given a value of 1 if precipitation is larger than
20mmd~! and 0 to the remainder grid points. We selected
this precipitation threshold to be able to have defined precip-
itation structures within the investigation area (Roberts and
Lean, 2008; Skok and Roberts, 2016). We obtain the frac-
tions of area, affected by precipitation in the model (fiod)
and the observations (fobhs) for moving sub-boxes. The frac-
tions are computed as the ratio of the number of grid points
with value 1 (nprecip) divided by the total number of grid
points (n), of the moving sub-boxes (f = nprecip/Mtot). The
size of the sub-boxes is defined by the Neighbour Length
(N). We choose the maximum possible N to guarantee the
largest skill of the forecast. The maximum N is defined by
the number of grid points in the shortest dimension of the
investigation area. In our case this is the latitude dimension
(n1at = 42). N has to fulfil the condition nj,c = 2N — 1, hence
the neighbour length (N) of the moving boxes is 20. The FSS
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Figure 1. (a) Nested simulation domains for the different resolutions. (b) Spatial distribution of nudged measurements, GPS, operational
radiosondes (RAD) and high-resolution soundings (HR), and investigation domains FR and RhoAlps (boxes).

Table 1. Summary of simulations nudging radiosondes and GPS observations. In total 18 simulations with nudging plus three control runs
were performed. The simulations with combined nudging of observations maintain the same assimilation frequency and number of levels for
the different observations. The resolution of the GLOBE orography data set is 1 km. The TERRA-ML model is used for the soil-atmosphere

interactions parameterizations.

Model Configuration

Assimilation Configuration

Resol. Forcing Lev. Convec. Turb.  Orogr. Soil Observations Freq. Lev.
Tiedtke 1D RAD (Oper. Rads.) ~6h ~20
7 km IFS
Deep TKE 3x7= HR (High-res. Rads.) ~6h ~700
Tiedtke 1D | GLOBE | TERRA | 21sims. | GPS 10m Int
2.8 km CTRL-7 50 hall «
Shallow  TKE (1 km) ML ) GPS-RAD
Combined
3D RAD-HR
500m CTRL-2.8 80 - instruments
TKE GPS-RAD-HR
CTRL (No obs.)
is computed as shown in Eq. (6). 2.4.4 Root-mean-square error (RMSE) and mean bias
37 2ie (fmod — fobs)?
F§s = | — 3 2i=1 (Jmod = Jobs (6)

1 M 2 2 2
M (Zi:lfmod + Zi:lfobs>

where M is the number of moving sub-boxes. Equation (6)
corresponds to what is defined in Roberts and Lean (2008)
as asymptotic fractions skill score (AFSS). This asymp-
totic value is reached when the number of neighbours is
the largest. It provides the largest skill of the verification
and if there is no bias between the model and the observa-
tions AFSS equals one. On the other hand the lower limit
of the model’s skill is defined by the target FSS defined as
FSStarget = 0.5+ fobs/2 and is denoted by a dashed line in
Fig. 5c. Below this threshold the forecast has no skill.
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The validation of IWV and specific humidity simulated with
COSMO is quantified through the RMSE and MB (Eqgs. 7
and 8) in Sect. 4.2, where i is the running index for all avail-
able observations (N):

1 N 2
RMSE = \/ 5 Zi (mod; — obs;)?, (7

1 N
MB = Nzi (mod; — obs;). (8)

3 The HyMeX IOP6 (24 September 2012)
In the night of 24 September 2012 several mesoscale con-

vective systems (MCSs) were active over southern France,
the Alps, and the Italian gulfs of Genoa and Venice (Hally
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et al., 2014; Ferretti et al., 2014). Over the course of 12h,
RG recorded totals as large as 100mm over Montélimar,
the Swiss Alps, and at the Austrian—Italian border (Fig. 2b).
In total four regions can be characterized by heavy precip-
itation: the Rhone valley (France), Lugano (Switzerland),
La Spezia (Italy), and Udine (Italy). The synoptic situation
was dominated by an upper-level trough situated over west-
ern Europe and a surface low to the north-west of Ireland
during the night of 23 September 2012 (Hally et al., 2014;
Taufour et al., 2018). The associated cold front moved over
southern France, the Alps, and north-eastern Italy in the
course of 18 h, as the surface low moved from Ireland to the
Baltic Sea. A squall line developed over southern France at
00:00 UTC on 24 September 2012 (Fig. 2a), reaching its ma-
ture phase at 03:00 UTC and splitting into two smaller MCSs
at 05:00 UTC (Ribaud et al., 2016). The MCSs moved from
north-western to north-eastern Italy after midday (Pichelli
et al., 2017; Fig. 2a). The cyclonic circulation swept in air
from the Mediterranean over the Gulf of Lion, the Gulf of
Genoa, and up to Venice through the Adriatic Sea (Hally et
al., 2014). The additional low-level moisture supported the
unstable conditions needed for convective development and
fed the active systems until their decay after 20:00 UTC on
24 September 2012.

COSMO is able to represent the event, capturing the four
main precipitation spots and the main features such as the
squall line addressed by Hally et al. (2014). To demonstrate
this, Fig. 3 represents the spatial distribution of 24-hourly
aggregated rainfall simulated by COSMO (Fig. 3b—d) and
observed by MSWEP (Fig. 3a). Overall, the MSWEP pre-
cipitation product represents well the event over the area,
albeit with an underestimation over Liguria and an overes-
timation north of the Rhone valley and over the Alps, com-
pared to RG. Regarding COSMO, the precipitation intensi-
ties stay within the observed range despite a tendency for
underestimating the 24-hourly aggregations (Figs. 2b and 3).
Irrespective of resolution, COSMO struggles to represent the
observed amounts as large as 100 mm. Differences also oc-
cur in the precipitation structure and location with some de-
pendency on the model resolution. CTRL-7 (Fig. 3b) shows
the location of the convective line over FR shifted towards
the Alps and a too narrow and intense precipitation structure
over the Udine maximum. CTRL-2.8 (Fig. 3c) shifts the pre-
cipitation maxima over FR northward and splits the Udine
maximum into two: one over Udine and the other one over
the Gulf of Venice. Finally CTRL-500 (Fig. 3d) represents
a narrower convective line over FR with a better agreement
with observations and, as CTRL-2.8, a split maximum over
north-eastern Italy.
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4 TImpact of GPS, operational RADs, and HR
radiosonde nudging

4.1 Precipitation

The different observation types impact precipitation inde-
pendently of the model resolution. Figure 4, analogously to
Fig. 3, shows the spatial distribution of 24-hourly aggregated
rainfall. In this case only the 500 m resolution is shown given
the similarities with the results from the coarser resolutions
(7 and 2.8 km) that are provided in the Supplement.

Nudging GPS data induces a reduction of precipitation,
most strongly over the western slope of the Alps and Lugano,
decreasing precipitation from 50 to 15mm, and over the
Udine region, with a reduction of from 50 to 10 mm (Fig. 4a).
No shifting of the location of maxima occurs as no dynamic
impacts like changes in the wind direction and intensity seem
to be introduced by the GPS nudging (not shown). This
agrees with previous studies showing a weak impact of as-
similating thermodynamic profiles through latent heat nudg-
ing on horizontal wind (Jacques et al., 2018). Nudging RAD
observations brings an increase in precipitation, both in in-
tensity and extension (Fig. 4b). The areas most affected are
located to the east of the Rhone valley, over Lugano, and
Udine with up to 150 mm, well above the 50 mm simulated
in CTRL-500.. Nudging HR soundings brought, overall, a
marked decrease in precipitation amount over Lugano (Alps)
and Udine, compared to CTRL. Intensities over these two
spots are as low as 10 mm in the HR-500 simulation (Fig. 4¢).
This is not the case, however, for HR-2.8. Finally, combin-
ing all observation types for nudging (GPS-RAD-HR-500,
Fig. 4d) yields a structure similar of that of the RAD simu-
lations but with a weaker precipitation increase (Fig. 4b). It
is worth mentioning the existence of model artefacts in the
eastern part of the domain (Fig. 4d, for instance), which evi-
dence the difficulties of dynamically downscaled simulations
in initializing the microphysical species at the boundaries.
This, however, does not affect the conclusions of this study.

In the following we validate the assessed impact of the
different observation types quantitatively by comparing pre-
cipitation observations (MSWEP) against the COSMO simu-
lations. The use of MSWEP (resolution of 0.1°) is motivated
by the fact that it is a gridded product needed for the valida-
tion of precipitation correlation and structure. We validate for
24 September 2012 over investigation area RhoAlps, the spa-
tially averaged 24-hourly aggregated precipitation (Fig. 5a),
the 99th percentile of 3-hourly aggregated rainfall intensi-
ties (Fig. 5b), and the FSS (Fig. 5c). How these metrics are
computed is introduced in Sect. 2.4. For the verification,
all COSMO results have been coarse-grained to the native
MSWEP grid.

Figure 5a confirms that all CTRL runs underestimate pre-
cipitation amount by about 4 mm. CTRL-7 shows the best
result, since CTRL-2.8 and CTRL-500 emphasize more lo-
calized precipitation structures, which after spatial averaging
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Figure 2. Synoptic overview of IOP6. (a) Brightness temperature of the MSG-SEVIRI instrument (MSG-0 degree, all-sky radiances, https:
/lwww.eumetsat.int/, last access: 23 June 2021) and isolines of mean sea level pressure simulated by COSMO (7 km) on 24 September 2012 at

06:00 UTC. (b) 24-hourly accumulated precipitation from the HyMeX RG data set. The dark boxes FR and RhoAlps denote the investigation
areas.

(a) MSWEP (Obs.)

prec [mm d"]

(b) CTRL-7

prec [mm d

48

46

4417

prec [mm d"]

Figure 3. Spatial distribution of daily precipitation during 24 September 2012 00:00 UTC to 25 September 00:00, estimated by the MSWEP

v2.1, 3-hourly, 0.1° (a) and simulated by CTRL-7 (b), CTRL-2.8 (c), and CTRL-500 (d). The labels within the RhoAlps box show the values
of the spatial averages used in Fig. 5a for validation of the precipitation totals.

contribute less to the final total. The simulations with nudged
GPS data further reduce the precipitation amount, worsen-
ing the values in the comparison against observations for all
resolutions with averages of approximately 8 mm only. The
sole simulation able to increase the precipitation amount suf-
ficiently is RAD, with values between 15 and 12 mm. This,
as seen in Fig. 3b, is due to larger precipitation over the west-
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ern Alps and Switzerland. Nudging HR, similarly to GPS, re-
duces the 24-hourly precipitation, resulting in worse scores.
In this regard the higher vertical resolution of HR did not
bring added value for this case study, compared to RAD.
Finally, the combination of several observation types brings
counteracting effects for all resolutions, dominated by drying
induced by GPS and HR. Also noteworthy is the fact that for
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Figure 4. As Fig. 3 but for GPS-500 (a), RAD-500 (b), HR-500 (c¢), and GPS-RAD-HR-500 (d). The analogous analyses using the 7 and

2.8 km grids are shown in the Supplement.

GPS, GPS-RAD, HR, RAD-HR, and GPS-RAD-HR, the
most suitable resolution is 2.8 km.

In Fig. 5b, the analysis of 99th percentile intensities shows
that CTRL represents intensities of extreme precipitation
comparable to those of MSWEP. This implies that for this
case a good simulation of extreme precipitation intensities
did not imply a good prediction of the 24-hourly aggregates
(Fig. 5a). CTRL-7 and CTRL-2.8 show similar intensities,
but CTRL-500 has somewhat lower rates (by ~5mm). A
plausible explanation is the use of a 3D closure for the turbu-
lence scheme (see Table 1). Verrelle et al. (2015) showed that
a 3D closure for the turbulence scheme induces larger hori-
zontal diffusion in the area of the cloud base reducing con-
vective intensity. GPS shows weak extreme precipitation in-
tensities for all resolutions, with the best results for GPS-2.8
(20 mm). On the contrary, RAD shows a large increase with
3-hourly precipitation intensities in the order of 27 mm. The
HR simulations show weak precipitation (between 16 and 23
mm), analogously to the underestimation of 24 h sums shown
in Fig. 4a and c. Regarding the combined observations (GPS—
RAD-HR), the use of RAD increases the precipitation inten-
sities to more realistic values.

Finally, the FSS analysis (Fig. 5c) shows a good perfor-
mance of the CTRL runs (FSS ~ 0.85). Nudging GPS re-
duces the FSS score due to the excessive precipitation reduc-
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tion, which is consistent for all resolutions. RAD improves
the representation of the precipitation structure (FSS = 0.95)
due to the wider rain areas over Switzerland and the Rhone
valley and the eastward shift to the western side of the Alps
(Fig. 4b). HR also shows no added value for the improvement
of precipitation area. Combined observations (GPS-RAD-
HR) show little scale dependency and an improvement for
the structure thanks to the impact of RAD. For this metric
the 2.8 km grid shows the best value.

To understand the temporal evolution of the event, Fig. 6a
shows spatially averaged precipitation over the investigation
area RhoAlps. Precipitation as measured by MSWEP starts
on 23 September at 21:00 UTC (black line in Fig. 6a), over
the western part of the RhoAlps domain, reaching a steady
maximum of 3 mm h~! in the spatial averages between 06:00
and 18:00 UTC of 24 September (MSWEP; black colour).
The convective decay is effective after 18:00 UTC where the
last cells over the Italian—Slovenian border start to reduce
their intensity. All simulations (colour lines in Fig. 6a) cap-
ture the event with a good representation of its initiation
hour but simulate its decay between 3 and 2 h earlier. As in
Fig. 4, only the results for the 500 m resolution are shown.
The analogous results for the 7 and 2.8 km grid are given in
the Supplement, which show a similar response to the differ-
ent observation types. CTRL-500 (blue), GPS-500 (red), and
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Figure 5. (a) Accumulated precipitation amount during 24 Septem-
ber 2012, spatially averaged over RhoAlps, for COSMO and
MSWEP. (b) The 99th percentile in millimetres per 3h over the
investigation area RhoAlps during 24 September 2012. (c¢) FSS of
24 h precipitation amount.

HR-500 (green) show for most of the event’s duration a spa-
tially averaged intensity lower than MSWEP (between 0.5
and 1 mmh~!), explaining the differences in the 24-hourly
aggregations (Figs. 4 and 5). Only the simulations including
the operational soundings, RAD-500 (yellow) and GPS—HR-
RAD-500 (purple), show a precipitation increase in agree-
ment with the spatial distributions (Figs. 4b, d, and 5). The
temporal evolution shows that a precipitation increase occurs
after 24 September 06:00 UTC and reaches 4.5 mmh~! for
the former and 3mmh~! for the latter. In Sect. 4.3 we anal-
yse the causes of the vast moisture increase in RAD.

To provide a quantitative score of the agreement in the
temporal evolution of precipitation between observations
(MSWEP; black line in Fig. 6a and the simulations; coloured
lines), Fig. 6b shows the temporal correlation for the spatially
averaged 3-hourly aggregations (as presented in Fig. 6a; see
Sect. 2.4.2). CTRL-7 performs better than CTRL-2.8 and

https://doi.org/10.5194/wed-2-561-2021

CTRL-500, with a correlation of up to 0.9 against MSWEDP,
due to a better location of precipitation variations at each grid
point related to its more similar resolution to that of the ob-
servations (~ 11 km). Nudging GPS data improves the tem-
poral representation of precipitation of COSMO for all grid
types (Fig. 6b). This is related to a smoother representation of
the precipitation increase between 03:00 and 06:00 UTC and
a flatter curve in contrast to other observation types (Fig. 6a).
This is possibly due to the ability of the GPS nudging to
improve the representation of the arrival of moisture and
consequent increase, associated with precipitation initiation.
RAD and HR bring little improvement, with even some de-
terioration for RAD-7. HR also brings some improvement
due to a good representation of the timing of convective de-
cay. Combining the different observation types (GPS-RAD-
HR) brings a mixed impact (improvement by GPS and HR,
worsening by RAD), which conceals the dependency on the
model resolution used (r = 0.82).

We conclude from the previous analysis that (a) only RAD
brings an improvement to the simulation of precipitation;
(b) GPS and HR excessively reduce the simulated precipi-
tation, which could be related to model errors in COSMO;
(c) GPS brings added value in simulating the timing of the
event; and (d) there is overall little dependency on model res-
olution

4.2 Atmospheric moisture

Large moisture amounts were advected with the south-
westerly to south-easterly flow up the Rhone valley during
23 September 2012. Figure 7 shows the evolution of spa-
tially averaged hourly IWV from the 500 m COSMO sim-
ulations and GPS. For the following assessment we applied a
correction to IWV for height differences between the model
surface and the station altitude following Bock and Parra-
cho (2019). The correction is based on an empirical lin-
ear relationship between IWV biases and height differences
(dh) following the equation dTWV/IWV = —4 x 10™* . dh.
Grid points with surface height differences larger than 500 m
are dismissed. The average impact of these corrections does
not exceed 1% of IWV. The results for 2.8 and 7km can
be found in the Supplement. The highest GPS-IWV amount
(27 mm; black line in Fig. 7, underneath the coloured lines)
persists for 12 h over the study region starting on 24 Septem-
ber at midnight. CTRL-500 (blue line in Fig. 7) reproduces
the IWV temporal evolution fairly well until 10:00 UTC on
23 September, when a period of considerable overestimation
(+ 2 mm) begins, lasting until 05:00 UTC, well after convec-
tive precipitation had started. After 10:00 UTC, CTRL-500
matches better with the GPS-IWV observations. An overes-
timation of IWV by COSMO has already been assessed by
previous studies (Caldas-Alvarez and Khodayar, 2020) and
was also shown for the non-hydrostatic model AROME in
Bastin et al. (2019). Nudging GPS (red line in Fig. 7) reduces
the IWV overestimation until 06:00 UTC on 24 September.
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Figure 6. Temporal evolution of spatially averaged precipitation (a) and temporal correlation validation of the precipitation temporal evolu-
tion (b). All simulations have been coarse-grained to the MSWEP spatial resolution (0.1°). Spatial averages are performed for 3-hourly data.
The corresponding results of (a) for the 7 and 2.8 km simulations can be found in Figs. S3a and S4a of the Supplement.
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Figure 7. Temporal evolution of spatially averaged IWV for the
simulations with the 500 m grid. IWV is obtained through interpola-
tion to the location of the GPS stations, applying a height correction
following Bock and Parracho (2019). The corresponding results for
the 7 and 2.8 km simulations can be found in Figs. S3b and S4b of

the Supplement.

This observation type brings the best agreement with obser-
vations throughout the complete event. This is as expected,
provided that the GPS-IWV observations are not indepen-
dent from the assimilated GPS-ZTDs. Nudging RAD (yel-
low) also corrects the IWV overestimation until 05:00 UTC
24 September. However, an abrupt IWV increase takes place
after 05:00 UTC on 24 September, with differences up to
2 mm against observations lasting for about 5 h. Nudging HR
(green) corrects the IWV overestimation until the beginning
of the event (21:00 UTC 23 September) but excessively dries
the investigation area until 24 September 18:00 UTC. Nudg-
ing all observation types together (GPS—RAD-HR; purple)
corrects the IWV overestimation until 21:00 UTC on 23
September 2012 (purple line in Fig. 7).

The temporal evolution in Fig. 7 has shown (a) the correc-
tion of the moisture overestimation by all observation types
and (b) the relationship between IWV fluctuations and the
timing of heavy precipitation over the RhoAlps area. To pro-
vide a quantitative assessment of the moisture representation
in COSMO for this event, Table 2 shows the time averaged
RMSE (left) and MB (right) between the COSMO simula-
tions and the GPS measurements at the station locations. The
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MB is obtained as the MOD-OBS differences (Sect. 2.4).
The results show that assimilating the GPS observations re-
duces RMSE and MB compared to CTRL (Table 2). Nudg-
ing RAD shows likewise a reduction of RMSE and MB in
the convection-permitting grids (2.8 km and 500 m). This is,
however, not seen for 7 km. Finally, the corrections induced
in GPS-RAD-HR are dominated by the influence of the GPS
measurements.

The fact that the GPS and HR observations improve the
IWV representation, but generate too little precipitation, is
indicative of errors in the model’s numerics and physics for
this case study. The results suggest that COSMO struggles
to turn its excessive moisture content into precipitation, thus
leaving the atmosphere too humid.

To understand how IWV errors are distributed in the ver-
tical profile, Fig. 8 shows the MB (straight lines) and RMSE
(dashed lines) of specific humidity between COSMO and
four operational radiosondes of the RAD data set (Nimes,
Milan, San Pietro, and Udine; see Fig. 1b). All four stations
are in the lowlands (height < 100 m) to avoid biases due to
surface height differences. Although this comparison is not
done against an independent data set, it provides valuable
information of the vertical levels at which the nudging of
the different observations has the largest impact. Further-
more, given that both the operational and the special high-
resolution HyMeX radiosondes were used in the nudging
experiments, no other vertical humidity profiles with high-
accuracy were available for an independent comparison dur-
ing this period.

CTRL-7 (Fig. 8a, blue) shows a MB within acceptable val-
ues (between —0.2 and 0.2 gkg™!). Similar RMSE and MB
values are found for GPS-7 (red) and RAD-7 (yellow), but
the latter with a slightly more negative MB (—0.2gkg™")
throughout the complete profile, indicating a drier model at
the selected four low-height stations. HR-7 (green) shows
the largest deviations both for RMSE (up to 1.2 gkg™! at
850 hPa) and MB, with an overestimation below 950 hPa and
an underestimation above. GPS—-RAD-HR-7 (purple) has the
best MB and RMSE (~ 0.6 gkg~!), demonstrating the added
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Table 2. Root-mean-square error (RMSE; left) and mean bias (MB; right) of spatially and temporally averaged IWV between GPS and
COSMO (22 September to 25 September 00:00 UTC) over RhoAlps. The averages are obtained from hourly IWV values, at the GPS station
locations. The COSMO simulations have been coarse-grained to a common grid of 8 km grid spacing for this comparison. And a height
correction on model data based on Bock and Parracho (2019) has been applied.

RMSE [mm] [MB [mm] CTRL GPS RAD HR  GPS-RAD-HR
7km 0.7910.18  0.27]0.05 0.94|—-0.46 0.8810 0.39 1 0.06
2.8km 1.11]0.52 0.27]0.02 0.87]—-046 0.71 | —0.06 0.37 | —0.01
500 m 094104 0.33]-0.1 0.63 | 0.09 0.8]—-0.25 0.39|-0.14

value of combining these observation types. The 2.8 km reso-
lution (Fig. 8b) shows a somewhat different vertical distribu-
tion of specific humidity for CTRL-2.8 (blue) with an over-
estimation of the MB between 800hPa and 600 hPa up to
0.3 gkg~!. GPS-2.8 (red) shows similar values of the RMSE,
compared to its CTRL counterpart. The vertical gradient of
MB is similar to CTRL-2.8 although somewhat drier in GPS-
2.8, in agreement with the IWV reduction assessed in Fig. 7
and Table 2. This leads to the largest MB being found in the
PBL (~—0.2gkg™!) in GPS-2.8 (Fig. 8b; red). RAD-2.8
(yellow) has very good MB (0.2 gkg™!) and RMSE values
(0.8 gkg™"), as expected, given the dependence on the ob-
servations in this comparison. This influence can also be seen
for the good scores of GPS—RAD-HR-2.8 (purple). For the
500 m resolution (Fig. 8c), CTRL-500 (blue) shows an un-
derestimation of moisture in the PBL and an overestimation
above 800 hPa, up to 0.2 gkg~!. The impact of the different
observation types is analogous to that observed in the 2.8 km
simulations with the exception of HR-500 (green; Fig. 8c).

The previous assessment leads to the conclusions that
(a) COSMO misrepresents the humidity vertical gradient for
this case study (too wet between 500 and 850 hPa), which
was also found for another case study of the HyMeX pe-
riod in Caldas-Alvarez and Khodayar (2020); and (b) nudg-
ing GPS did not help improve the representation of the ver-
tical humidity gradient, as the correction at each level is ap-
plied based on the first guess. The latter explanations imply
that COSMO should have simulated stronger convective up-
draughts to generate more precipitation at the surface and
larger transport of moisture from the PBL to the LFT in the
CTRL and GPS simulations.

4.3 The relevance of the Nimes 05:00 UTC sounding

The good scores shown by RAD in the precipitation evalu-
ation (Fig. 5) and the large increase in IWV and precipita-
tion are worth an in-depth analysis of the impact of RAD on
the humidity distribution and convective processes responsi-
ble for the remarkable precipitation increase. Figure 9 sum-
marizes relevant information about the impact of RAD on
humidity and precipitation. Between 23 and 24 September,
before the arrival of the cold front, vast moisture amounts
were transported up the Rhone valley by the south-westerly
circulation (arrow in Fig. 9a). The moisture gathering up
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the valley preconditions the HPE. Once precipitation starts,
the Nimes RAD sounding at 05:15 UTC (hereafter referred
to as Nimes_0515) measured 6.5 gkg™! of specific humid-
ity at 700 hPa (Fig. 9b). Compared to other soundings (ei-
ther operational or high-resolution) released in the area
(Fig. 9b), Nimes_0515 measured between 1.5 and 2.5 gkg™!
more specific humidity. For example, over Candillargues at
03:14 UTC on 24 September specific humidity at 700 hPa
was 5 gkg~!, and over Marseille at 05:55 UTC it was lower
than 4 gkg~!. This implies that after its assimilation, specific
humidity at that level was considerably increased due to this
one particular sounding. To demonstrate this aspect Fig. 9¢c
shows that the reference runs of COSMO (CTRL-7 in blue)
at that time over Nimes have a 700 hPa level 1.5 gkg ™! drier
than the observation. Hence the correction of humidity at that
level after 05:15 UTC is crucial for the precipitation increase
observed for RAD.

The Gaussian horizontal spreading of information induced
by the nudging scheme (Schraff and Hess, 2012) and the
transport of humidity with the south-westerly mean flow
causes much wetter mid-levels over the Rhone valley and
over the western Alps. This impact was similar for all res-
olutions. To demonstrate quantitatively this impact, Fig. 9d
shows relative precipitation differences in percent (%) be-
tween the RAD-7 simulation and an auxiliary RAD-7 sim-
ulation where the Nimes_0515 sounding is dismissed. The
results show that the contribution to precipitation of the
Nimes_0515 sounding is a 40 % increase spatially averaged
over the whole domain and up to 70 % downstream of Nimes.

The large impact of the Nimes_0515 sounding gives im-
portant clues as to whether GPS systems were able to com-
pensate for radiosondes for this case study. With no means
to measure the vertical distribution of humidity, GPS strug-
gles to bring the expected improvement in precipitation rep-
resentation. The reason why other soundings close to Nimes
in time and space did not measure such a large humidity
amount at 700 hPa is still unknown. The large spatial het-
erogeneity of this variable might have played a decisive role,
and its undersampling has already been identified as a fac-
tor limiting heavy precipitation simulation (Khodayar et al.,
2018). Unfortunately, no other humidity observations exist
for that time and location (lidar, pressurized balloons, or
dropsondes). Another possible explanation is an ascent of
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Figure 8. Mean biases (solid lines) and RMSE (dashed lines) of specific humidity between the operational soundings for (a) the 7 km,
(b) 2.8 km, and (c) and 500 m simulations. The differences are obtained at the four stations within the investigation area RhoAlps (Milan,
Nimes, Udine, San Pietro) and are averaged for all stations and for the complete simulation period (00:00 UTC 22 September to 00:00 UTC

25 September 2012).
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Figure 9. (a) Location of the stations with RAD and HR profiles between 23 September 23:23 UTC and 24 September 05:55 UTC, as well
as cold front position and direction of the mean flow. (b) Radiosonde measurements (RAD and HR) in the area. (¢) Skew-T log p diagram

of the Nimes radiosonde at 05:15 UTC on 24 September and the simulation of

the profile by CTRL-500, interpolated to the station location.

(d) Precipitation differences between RAD-7 and the same simulation without the Nimes sounding shown in panel (c).

the Nimes_0515 sounding through a precipitating system. In
that case a saturated atmosphere would be present at 700 hPa
where the sounding was launched. This implies existing er-
rors in COSMO regarding the underestimation of humidity at
the LFT (see Fig. 8) and the need of excessive moisture and
rain are compensated for by this one sounding. This high-
lights the relevance and complications of targeted observa-
tions for DA. Moreover, it also highlights that, for this case
study, the accurate location and timing of that one sound-
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ing were more relevant for precipitation simulation than the
higher vertical resolution offered by the HR data set. Spa-
tial distances of 60km and temporal differences of 30 min
are enough to miss/capture a crucial measurement of water
vapour.
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4.3.1 Impact on moisture flux, instability, and wind
circulation

In order to better understand the precipitation increase due to
nudging, we now investigate its impact on moisture advec-
tion, temperature, and instability. We focus on the 700 hPa
level due to the humidity differences assessed earlier in this
section. The temporal period analysed is the 6 h following
the large precipitation increase in RAD, and the investiga-
tion area is now FR (Fig. 1), where the largest impact of the
Nimes_0515 sounding was seen. Only the 500 m results are
shown given the analogous impact in the other two resolu-
tions; the results for the 7 and 2.8 km grid can be found in
the Supplement.

Figure 10a shows that CTRL-500 (blue) and GPS-500
(red) have a similar distribution of specific humidity at
700 hPa, with median values of 5.3 gkg™! and extremes as
large as 6.5 gkg~!. The impact of exclusively nudging RAD
(yellow) soundings is an increase in specific humidity. This
is mostly due to the influence of the Nimes_0515 sounding
as discussed above. The impact of HR (Fig. 10a), in contrast,
is a reduction of the median and larger variability compared
to CTRL-500. The GPS—RAD-HR-500 (purple) simulation
shows increased humidity, mostly due to the RAD contri-
bution. Regarding horizontal wind speed (Fig. 10b), GPS-
500 (red), HR-500 (green), and GPS—RAD-HR-500 (pur-
ple) show hardly any differences compared to CTRL (blue).
However, the Nimes_0515 sounding enhances the speed at
this level, probably due to enhanced convection inducing
stronger winds. The impact for moisture flux at 700 hPa
(Fig. 10c) can be understood as the combination of humid-
ity and wind changes. CTRL-500 (blue), GPS-500 (red), and
HR-500 (green) show very similar median values of moisture
flux, close to 0.12 kg ms ™. For their part, RAD-500 (yellow)
and GPS-RAD-HR-500 (purple) show an increased mois-
ture flux with extreme values reaching 0.2 and 0.19 kg ms~!,
respectively (Fig. 10c). Regarding temperature (Fig. 10d),
GPS-500 (red) slightly reduces the values as well as specific
humidity. Due to weaker convection, less latent heat is re-
leased in the process of condensation and less mixing occurs
from the PBL to the free troposphere. However, the RAD-
500 (yellow) simulation shows larger extremes. This further
supports the hypothesis that the Nimes_0515 sounding sam-
pled in a precipitation area affected by latent heating and
vertical moisture fluxes. Finally, GPS—-RAD-HR-500 (pur-
ple) shows 75th percentile values up to 4.5 °C influenced by
the RAD and HR measurements. Regarding atmospheric in-
stability, Fig. 10.d represents convective available potential
energy (CAPE; Moncrieff and Miller, 1976), and Fig. 10e
represents the KO index (Andersson et al., 1989). CAPE pro-
vides a quantitative estimation of the energy available for lift-
ing of a hypothetical air parcel in the lowest 50 hPa of the at-
mosphere. The KO index provides an estimation of potential
instability. CTRL-500 (blue) shows the largest atmospheric
instability (high CAPE, low KO index). The nudged simu-
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lations show lower instability (CAPE and KO index). In the
case of GPS-500 (red) and HR-500 (green), the latter is expli-
cable from the drying of the atmospheric profile down to the
surface, which reduces equivalent potential temperature (6.)
for both CAPE and the KO index. For RAD-500 (yellow)
and GPS-RAD-HR-500 (purple), the moisture increase at
700 hPa is interpreted as an increase in 6, at that level, hence
leading to a less steep lapse rate decreasing CAPE (Figs 10e)
and increasing the KO index. It is worth noting that for this
case study not only the low-level conditional instability de-
fines the environment for convection but also the cold front
and upper-level divergence that release potential instability.
From this analysis we conclude that after 05:00 UTC the hu-
midity increase at 700 hPa was the dominating factor invigo-
rating convection.

5 Conclusions

This study assessed the impact of nudging GPS column water
vapour estimates, operational soundings, and high-resolution
soundings on high-resolution model simulations using an au-
tumn convective precipitation event in the western Mediter-
ranean as a case study (HyMeX-IOP6). The high density of
observations obtained in the framework of HyMeX allowed
a thorough investigation of assimilation experiments to sys-
tematically assess the added value, advantages, and disad-
vantages of the individual observation types and the sensi-
tivity to model resolution. For example, GPS lacks vertical
information but has a vast coverage in the western Mediter-
ranean and a temporal resolution of 10 min, whereas high-
resolution radiosondes have a high vertical resolution (~ 700
levels) but a scarce coverage and sub-daily temporal reso-
lution (6 to 12h). We performed the sensitivity experiments
using the COSMO model and the nudging scheme in model
resolutions of 7km, 2.8 km, and 500 m. The main conclu-
sions are the following.

COSMO shows deficiencies in representing the mecha-
nisms of heavy precipitation for this case study, which could
not be corrected by nudging additional observations. The ref-
erence runs (no assimilated data) showed a moist bias before
precipitation onset and an underestimation of precipitation,
indicating that COSMO is unable to transform the excess
of moisture (especially at the mid-levels) into precipitation.
Nudging GPS and HR data corrected this moist bias but also
further reduced precipitation, leading to worse verification
scores irrespective of resolution.

Nudging operational radiosondes, however, brought a
clear improvement in the representation of 24 h precipita-
tion, precipitation intensities, and spatial structure. The im-
provement was brought about by a large precipitation in-
crease (440 % in the 7 km simulations) after 05:00 UTC on
24 September lasting 3 h. This was mainly caused by the as-
similation of one particular sounding in southern France (i.e.
from Nimes at 05:15 UTC on 24 September), probably em-
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Figure 10. Box-and-whisker plots showing the median, quartiles, and extremes of specific humidity (a), wind speed (b), moisture flux (c),
temperature (d), CAPE (e), and KO index (f) at 700 hPa. All the values have been obtained from hourly COSMO output between 05:00 UTC

and 10:00 UTC of 24 September 2012 over the study region FR.

bedded in a precipitating convective cell, south of the main
convective systems. The main mechanism was an increase in
specific humidity of 2.5 gkg™! at the 700 hPa level, 5 h after
precipitation initiation, which likely reduced the entrainment
of dry air and led to higher moisture availability.

The large impact brought about by an individual sound-
ing implies, on the one hand, that traditional sounding sys-
tems, which need manned operations and have a lower spatial
coverage and temporal resolution, will still be needed, even
when GPS networks are also available. This is further sup-
ported by the difficulties of GPS observations to correct the
vertical distribution of specific humidity. On the other hand,
it implies that targeted observations, such as the ones carried
out in HyMeX, can in fact be decisive for assimilation in con-
vective situations — especially for variables with large spatial
and temporal variability such as atmospheric moisture.

The overall performance and type of impact of each obser-
vation type were not dependent on the model resolution used.
The 2.8 km resolution showed marginally better precipitation
scores for all used observations, suggesting that a computa-
tionally more expensive resolution of 500 m is not needed
for this case study. As 2.8 km is the operational configura-
tion, model parameters are optimally set for this resolution,
possibly giving an advantage that could be eliminated with a
re-tuning for 500 m.

We would like to highlight the added value of GPS nudg-
ing in improving the temporal evolution of precipitation.
GPS improves the anomaly correlation for all resolutions,
suggesting that nudging together GPS and soundings can
benefit both from the temporal evolution improvement and
the vertical resolution of the radiosondes.

The fact that COSMO underestimates the precipitation
amount with a pre-convective environment that is too moist
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in this case points to model errors in the physical parame-
terizations or numerics, which assimilation procedures could
not compensate for. The results for this case study provide
a first assessment, but further cases should be analysed to
allow for generalization of the findings. Moreover, in follow-
up work we investigate all precipitation events of the autumn
2012 and whether physics updates in the framework of the
development of the successor model ICON have been able to
reduce the highlighted problems.
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