
Classifying Usage Control and Data Provenance
Architectures

Paul Georg Wagner

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
paul.wagner@kit.edu

Abstract

Given the ubiquity of data acquisition and processing in our everyday life,
protecting data sovereignty in distributed systems is a significant topic of
research. Usage control and provenance tracking systems are very promising
steps towards a technical solution for the problem of data sovereignty. However,
due to their complexity and diversity these systems are still not fully understood.
In this work we investigate the functionality of usage control and provenance
tracking systems. We classify them into three different categories based on their
security goals and properties. Furthermore we identify generic use cases for
these systems that help to understand what attack vectors system operators have
to be mindful of.

1 Introduction

In the age of ubiquitous computing, data are quickly becoming the most important
assets of many private enterprises and public IT infrastructures. Therefore
securely managing databases and preventing cyber attacks as well as data theft
have been crucial IT security tasks for quite some time. However, in recent years

135



Paul Georg Wagner

the focus of these IT security goals somewhat changed. While in the past it was
sufficient to protect local infrastructures such as computer systems and databases
from unauthorized access, many modern business processes require extensive
data exchange with remote stakeholders such as clients, business associates and
customers. Examples for this can be found in the context of digital supply chains
and collaborative predictive maintenance [5]. Current research projects such
as the International Data Space [7] push for highly interconnected business
ecosystems on a big scale and in many different areas. In such scenarios
valuable business data are being disclosed into computer systems operated by
external stakeholders, who might have conflicting interests. From an IT security
perspective the data owner needs a way to control his information even when
it is being processed in remote infrastructures. It needs to be ensured that the
data recipients cannot inadvertently disclose the received information, or even
deliberately misuse it for their own benefit.

Similar challenges also exist when considering the topic of data privacy protec-
tion. Unlike with business data, personally identifiable information of a single
individual seldom holds great monetary value. Nevertheless the protection of
shared personal information is still of great concern. While (supra-)national
data privacy laws regulate the acquisition and usage of personally identifiable
information on the legislative level, given the noticeable trend towards highly
interconnected data processing systems, there is a clear demand for technical
solutions as well. At the present moment this is especially evident in the field of
medical data processing. In light of the current global Covid-19 health crisis,
being able to autonomously collect and distribute health data on a large scale has
become profoundly relevant. Nonetheless, given the privacy-sensitive nature of
these data, the patients clearly need to remain in control of their information
throughout this process. As a result, over the last few years lots of research
regarding privacy-compliant medical data sharing has been conducted [1, 3,
6]. In general, data subjects have a legitimate right to monitor and control
what personal information is being used in what way, even if the actual data
processing is performed on a remote device operated by a third party.

These challenges regarding both data protection and data privacy can be
subsumed under the term data sovereignty. Data sovereignty describes the
approach of enabling data providers to monitor and control the use of their

136



Classifying Usage Control and Data Provenance Architectures

information at all times, even when they are being used by remote stakeholders.
During this process, the data in question can be business-related, or consist of
personally identifiable information. To achieve data sovereignty in technical
systems, there are some tasks to be considered. First of all, it is necessary to
track data flows across systems and domain boundaries. This is called data
provenance tracking and allows to reliably monitor data usage regardless of
where the data is being processed. Besides passively observing data flows,
providers also need to be able to actively control and prevent certain types
of unwanted data usage. This can be done by applying usage control (UC)
techniques.

In this work we investigate the general design of usage control and provenance
tracking systems and analyze them with regard to four dimensions:

• Security goals

• Enforcement capabilities

• System architecture

• Attack vectors

Based on this analysis we classify usage control and provenance tracking systems
into three different categories. We also identify generic use cases for these
systems that help to understand what stakeholders are relevant and what attack
vectors can occur in different scenarios. The remainder of this paper is structured
as follows. Section 2 briefly introduces the design and functionality of usage
control and provenance systems on a purely conceptual level. Afterwards in
section 3 we identify and categorize several corresponding system architectures
that are used as a basis for implementing these concepts. In section 4 we then
identify relevant stakeholders and describe four generic use cases for usage
control and provenance systems as well as important attack vectors that have
to be considered. Finally in section 5 we conclude with a short recap and an
outlook on future research.

137



Paul Georg Wagner

2 Provenance Tracking and Usage Control

In order to establish a technical solution for data sovereignty, we need versatile
provenance tracking and effective usage control frameworks. Both of these
topics have been subject to a lot of research in the past. In this section we will
briefly introduce the most common way of defining provenance tracking and
usage control mechanisms.

2.1 Provenance Tracking Mechanisms

Data provenance allows data providers to track the usage of their digital assets
and collect information about derivations that have been created as part of
a data processing step. The most common formal model for provenance
is the PROV standard [4], formerly known as the Open Provenance Model
(OPM). This family of documents describes data formats and serializations
for exchanging provenance information across heterogeneous environments. It
does not, however, propose concrete mechanisms for implementing provenance
tracking in data processing systems. For this, Bier [2] suggests a provenance
tracking system mainly consisting of three distinct components (c.f. figure 2.1).

Figure 2.1: Provenance tracking components.

First of all, a policy enforcement point (PEP) is responsible for monitoring
data accesses and creating events that represent data flows within the system.
PEPs are usually implemented close to data processing applications and are
capable of examining how data is being used. As data monitoring components,
they are at the heart of each provenance tracking system. The generated events

138



Classifying Usage Control and Data Provenance Architectures

containing data flow information are then relayed to a provenance storage point
(ProSP). The ProSP evaluates the events and aggregates all data flow information
into a provenance graph. The nodes of this provenance graph correspond to
representations of certain data at a specific point in time, while the edges describe
linkages between data representations (i.e. data flows). In short, the provenance
graph represents a comprehensive information flow history of the entire data
processing domain. If sensitive data are shared across domain boundaries, a third
level is established by including a provenance collection point (ProCP). This
component queries and aggregates multiple provenance graphs, thereby creating
a coherent history of data that have been tracked across multiple systems.

2.2 Usage Control Mechanisms

In addition to tracking provenance information, achieving data sovereignty
requires a mechanism for data providers to actively and continuously control the
access to their information even after it has been disclosed. This can be done
by applying usage control (UC) techniques. Usage control was developed over
a decade ago as a generalization of attribute-based access control. In contrast
to classical access control schemes, UC allows for continuous authorization of
data accesses over a period of time. It also features the possibility to declare
obligations that need to be fulfilled before, during or after a certain data usage,
which is not covered by classical access control. This allows the definition
of complex data usage strategies, such as limiting the number of views or the
time of access to sensitive information. The most widely adopted formal usage
control model is UCONABC , which has been introduced in 2004 by Park and
Sandhu [8]. Even today UCONABC provides the formal basis for many usage
control systems. In terms of designing usage control architectures, most modern
systems rely on a derivative of the XACML reference architecture [9]. Originally
developed for attribute-based access control, the XACML components can be
canonically extended to implement usage control policies. Figure 2.2 shows a
generic usage control system based on XACML components.

As before, the central component of the system is a policy enforcement point
(PEP), which closely interfaces the data processing applications and contin-
uously generates events representing any data usage. However, unlike PEPs

139



Paul Georg Wagner

Figure 2.2: Usage control components.

implemented for provenance tracking, usage control PEPs must be capable of
actively interfering with the data processing as well. It is not sufficient to just
observe data usage anymore – usage control PEPs need to be able to actively
intercept data usage events and potentially modify or block their execution
based on the prevailing usage policies. We call an enforcement point capable
of this intercepting PEP, in contrast to an observing PEP. Naturally every
intercepting PEP is also an observing PEP. While observing PEPs are sufficient
for provenance tracking, we require the definition of suitable intercepting PEPs
in order to enforce usage control on sensitive data.

The other essential usage control component is the policy decision point (PDP).
The PDP holds a set of active usage control policies and receives the events
from the intercepting PEP. The received events are then evaluated against the
set of active policies, which results in a usage control decision. In addition to
the classical binary access decision of allow versus deny, the PDP can also
rule that the data usage described by the event should be modified prior to its
execution. In the end the intercepting PEP receives the decision and enforces it
on the data processing application.

Finally there are two more components involved in the usage control enforcement
process. The policy information point (PIP) can be queried by the PDP for subject
and object attributes, as well as generic information such as database entries
or environmental properties. The policy execution point (PXP) is responsible
for executing obligations demanded prior to a data usage, for example the
incrementation of an access counter. Obligations are invoked by the PDP and
have to be executed successfully before the PDP publishes a positive decision.

140



Classifying Usage Control and Data Provenance Architectures

In the end it is the collaboration of all components that ensures proper usage
control enforcement.

3 Classifying System Architectures

In the previous section we described the mechanisms and basic components of
usage control and provenance tracking systems. However, this merely conceptual
view on usage control and provenance does not yet describe how to actually
apply these mechanisms in real-world use cases. Depending on the specific
demands and requirements there are many ways of designing usage control and
provenance architectures. In this section we explore and categorize different
options in designing actual system architectures and discuss what real-world use
cases they cover.

3.1 Usage Control Architectures

Local UC architecture. The simplest form of usage control systems are local
UC architectures. Figure 3.1 shows an example of such an architecture. A
local UC architecture consists of a single computer system that enforces a set
of usage rules on local data without considering any external influences. The
usage control components (PEP, PDP, PIP and PXP) all run as services on the
local computer system that should be protected. Furthermore, both the sensitive
data as well as the respective usage control policies are also stored directly on
this system. During system operations, the usage rules are then enforced on the
local database by the mechanisms described earlier (c.f. figure 2.2). Usually
there is a fixed set of usage control policies that have been defined by the system
administrator (analogous to mandatory access control). In addition to that,
system users can also create protection policies for their own data (analogous to
discretionary access control).

Figure 3.1 shows the four usage control components implemented as dedicated
software modules instead of a single large monolithic software stack. Usually
this design is preferred, because it respects separation of concerns and allows the

141



Paul Georg Wagner

Figure 3.1: Local usage control architecture.

flexible extension of the usage control system. Nevertheless, all UC components
run on a single system containing all data that are subjected to usage control.

The benefit of the local UC architecture is its simplicity and self-containment.
The architecture does not depend on any other system and manages both the
database as well as the policy set sovereignly. On the other side, the local UC
architecture cannot enforce usage control anymore as soon as the data are being
shared with another system. Hence it is not suitable for implementing any of the
scenarios that have been described in the introductory motivation.

Cross-domain UC architecture. In order to support usage control enforce-
ment across different stakeholders, multiple local UC architectures can be
merged into a cross-domain UC architecture. As the example in figure 3.2
shows, a cross-domain architecture links together multiple remote UC systems
that can share sensitive data as well as respective usage control policies. Each
participating usage control system represents a single UC domain, i.e. it operates
on a set of policies that are evaluated by a single decision point (PDP). Even
though the cross-domain architecture now deals with multiple UC domains
(unlike local architectures), each UC domain is still implemented as a single
computer system.

The main difference of this architecture compared to a set of local UC architec-
tures is that now data flows between usage control domains are being considered
as well. Furthermore, the various UC domains are usually operated by different
stakeholders. For example, figure 3.2 shows a data flow from the green system on

142



Classifying Usage Control and Data Provenance Architectures

Figure 3.2: Cross-domain usage control architecture.

the right to the blue system on the left. Since the data provider wants to protect
his sensitive information in the domain of the remote data receiver, the data
flow is preceded by the deployment of a usage control policy regulating the data
usage on the remote side. This deployment step is automatically initiated by the
enforcement point (PEP) of the donating system (here: right side) whenever it
observes an outgoing data flow. The actual policy transmission is then performed
by the policy execution point (PXP) as part of a UC obligation. The donating
enforcement point only allows the outgoing data flow if the deployment of the
protection policy has been executed successfully. Finally the deployed policy is
being continuously evaluated by the remote decision point on the data receiver
(here: left side). At this point the remote PEPs ensure proper enforcement of
the demanded usage restrictions even outside the data owner’s usage control
domain.

Being able to handle usage control between different stakeholders is the main
advantage of cross-domain UC architectures over purely local architectures.
Hence cross-domain architectures are suitable to implement the scenarios
outlined in the introductions. On the other side, now the usage control systems
must be able to remotely deploy and enforce protection policies. Furthermore,
the used policy model has to be able to distinguish local from remote data usage.
Finally the cross-domain architecture is still limited to a single computer system
per usage control domain. This hinders scalability in generic and flexible use
cases.

143



Paul Georg Wagner

Distributed UC architecture. The most flexible type of usage control systems
are designed as distributed UC architectures. In contrast to the cross-domain
configuration, distributed architectures allow the deployment of a single usage
control domain over several collaborating computer systems. Figure 3.3 shows
an example of this type of usage control. As you can see, the usage control
components previously running on a single computer system are now distributed
across multiple devices. Most notably, there are now multiple PEPs running on
user devices, while the policy decision point (PDP) runs centrally on a dedicated
server. This allows support for use cases where several computer nodes are used
for data processing inside a UC domain (e.g. when using thin clients in server
environments). Depending on the scenario it is also possible to include multiple
information points (PIPs) and execution points (PXP) running on dedicated
hardware. This is very useful, since both of these components often attach to
existing infrastructure such as databases or directory services. However, in order
to avoid policy conflicts there is usually only a single decision point (PDP) per
usage control domain.

Figure 3.3: Distributed usage control architecture.

While in principal suitable for the same usage control scenarios as cross-domain
architectures, the distributed form of usage control offers far greater flexibility
than their monolithic counterparts. This is true even in scenarios with only a
single UC domain and no data flows between different stakeholders. Being able to
independently deploy PIPs and PXPs as dedicated components in existing server
infrastructure enables a wider range of usage control applications. Supporting
multiple PEPs within a single UC domain allows data processing applications

144



Classifying Usage Control and Data Provenance Architectures

to be deployed independently of the rest of the usage control infrastructure, for
example on mobile devices of employees. Furthermore, this also offers a level
of scalability within a UC domain. It is now possible to add more enforcement,
execution or information points into an existing UC domain whenever the need
arises. On the other hand a distributed UC architecture is more complicated
than a UC system running exclusively on a single computer system. It has
to be ensured that all usage control components can communicate reliably
and securely with each other, even when they are located within a single UC
domain. Because of this increase in complexity there are broader attack vectors
on distributed usage control architectures and their security properties must be
inspected more closely.

3.2 Provenance Tracking Architectures

In addition to distinguishing different types of usage control architectures,
provenance tracking systems can be classified in a similar fashion. However,
unlike the UC architectures, provenance tracking systems should be classified
according to the scope of the acquired provenance information rather than how
the system components are deployed.

System-wide provenance tracking. The simplest way of tracking provenance
information is to only focus on the data within a single computer system. As
the example in figure 3.4 shows, such a system consists of at least one policy
enforcement point (PEP) observing all data usages on the system, while a
provenance storage point (ProSP) residing on the same system generates and
stores provenance information. While there is always only one ProSP per system,
it is possible to use multiple PEPs for monitoring data usage (e.g. one per data
processing application). The generated provenance graph then attests to the
history of data usage on this particular system, for example in order to prove
compliance with data privacy laws.

Naturally, this type of architecture only tracks the provenance of data while it
is being processed on a single computer system. As soon as the information
leaves the system in question, no more fine-grained provenance tracking is

145



Paul Georg Wagner

Figure 3.4: System-wide provenance tracking architecture.

possible. This is because the provenance storage points have only a local view
on data processing and operate independently on multiple systems. Hence this
architecture is only suitable for use cases where all relevant data processing is
performed inside a single system.

Domain-wide provenance tracking. Domain-wide provenance tracking is
used to track the provenance of data within a single domain. Unlike the system-
wide provenance tracking, this means that data flows between multiple systems
(i.e. multiple PEPs) within a domain are being tracked by a dedicated ProSP.
However, it is still not possible to track data flows across multiple domains and
different stakeholders. Figure 3.5 shows an example of this architecture.

Figure 3.5: Domain-wide provenance tracking architecture.

146



Classifying Usage Control and Data Provenance Architectures

Cross-domain provenance tracking. In contrast to the previous two architec-
tures, cross-domain provenance tracking allows keeping track of data usage even
across multiple domains and stakeholders. For this, multiple domain-wide (or
system-wide) architectures are linked together and share provenance information.
That way provenance tracking is possible even across the domains of different
stakeholders. In addition, there is a global provenance collection point (ProCP)
aggregating the provenance graphs of multiple local provenance storage points.
This allows to generate a comprehensive history of data usage across multiple
domains. Figure 3.6 shows an example of cross-domain provenance tracking.

Figure 3.6: Cross-domain provenance tracking architecture.

As Bier pointed out in [2], usage control and provenance tracking can be
combined. Similarly, usage control and provenance architectures can also
be combined. Clearly, the system-wide provenance tracking architecture is
compatible with both local and cross-domain UC architectures. Since there is at
least one policy enforcement point in each of those architectures, all that is needed
to implement system-wide provenance tracking is a provenance storage point for
each system. However, system-wide provenance tracking cannot be used with
distributed architectures, since there is no single computer system performing all
relevant data processing anymore. On the other hand, domain-wide provenance
tracking requires a distributed usage control architecture, while cross-domain
provenance tracking is compatible with cross-domain and distributed usage
control. Both of them are not compatible with purely local usage control,

147



Paul Georg Wagner

because their PEPs cannot observe data flows across system and/or domain
boundaries. Table 3.1 shows the possibilities of combining usage control and
provenance architectures.

Table 3.1: Combining usage control and provenance architectures.

Usage control

local cross-domain distributed

Pr
ov

en
an

ce system-wide 3 3 7

domain-wide 7 7 3

cross-domain 7 3 3

4 Identifying Generic Use Cases

After describing the different possibilities of realizing usage control and prove-
nance architectures, we are left to evaluate their security properties in different
use cases. We do this by first identifying the stakeholders that have an interest
in usage control and provenance systems of different flavors. As we will see,
depending on the concrete goal of the protection systems, the stakeholders’
motives can change somewhat and they even have to be considered attackers.
Afterwards we describe four different generic use cases for provenance and
usage control that demonstrate what attack vectors are to be expected and what
security guarantees the various options ultimately yield.

4.1 Stakeholders

There are four main stakeholders to be considered when designing usage control
and provenance architectures.

Data owner. This stakeholder holds the rights on a certain set of data that
is being disclosed. Usually the data owner has either a monetary or personal
interest in monitoring and regulating the usage of his information. For this

148



Classifying Usage Control and Data Provenance Architectures

purpose the data owner defines usage control policies that specify what may or
may not be done with the disclosed information. Furthermore, the data owner
may demand tracking the provenance of his information to maintain transparency.
If the disclosed data contain personally identifiable information, a data owner is
often also called data subject.

System user. A system user operates computer systems that run data processing
applications in the usage control infrastructure. This stakeholder has legitimate
access to information previously disclosed by a data owner and uses it to achieve
a certain task. While doing so, the usage control infrastructure enforces the
restrictions provided by the original data owner. The system user’s access and
distribution of protected information may also be logged by the provenance
tracking infrastructure. Crucially, the system user does not have privileged
access to the systems he operates or the protection components running there.
Depending on the scenario, a system user may be motivated to bypass the usage
control protection and/or provenance tracking for his personal benefit. Hence
this stakeholder must be considered as a possible adversary.

System owner. The system owner is responsible for operating computing
systems that run data processing applications as well as the local usage control
and provenance infrastructure. Usually this stakeholder has an interest in
receiving sensitive information from external data owners and use them outside
the boundaries specified by the data owner’s usage rules. Unlike the system user
he has privileged access to all parts of the managed infrastructure and may use
this power to manipulate usage control and provenance components. However,
as we will see there are also scenarios where the system owner is the primary
data owner. In this case we can trust the system owner to setup all protection
systems correctly and not bypass the usage control enforcement, since it is his
own interest to enforce protection rules against non-privileged system users.

Supervisory authority. The supervisory authority is a stakeholder only rel-
evant to infrastructures with provenance tracking. This stakeholder is not
directly involved in any data sharing, but instead has an interest in verifying

149



Paul Georg Wagner

the legitimacy of the data usage with regard to data privacy laws. Usually this
stakeholder is a government agency, but it may also be a trusted third-party
verifying the privacy-compliance for all participants.

4.2 Provenance Compliance

Provenance compliance is a use case where stakeholders want to track the usage
of sensitive information throughout the whole data processing infrastructure.
Their goal is to verify the legitimacy of the data usage and its compliance
to contractual agreements or data privacy laws. We can distinguish between
internal compliance and external compliance.

Internal compliance means that a system owner intends to conduct provenance
tracking only within his own local infrastructure and on his own data. An example
for this use case would be a company tracking data flows within their own
infrastructure for process optimization purposes or to verify that their employees
act in compliance with company-internal standard operating procedures. In this
case the system owner (i.e. the company) simultaneously acts as the data owner
and the supervisory authority. Notably there are no external data owners present
in this scenario. The only other relevant stakeholders are the system users,
which in this example would be company employees using the IT infrastructure
to perform their tasks as usual, thereby generating provenance information.
While the company acts as supervisory authority by analyzing the provenance
on their own data, the generated provenance graphs are not intended to serve
as evidence for any external supervisory authority. For the use case of internal
compliance both system-wide and domain-wide provenance architectures are
suitable. Regarding the security properties of internal compliance, the most
important adversaries are the system users (i.e. the employees). They might try
to hide illegitimate or undesired data usages from their employer by blocking or
forging provenance information. Hence the system owner needs to make sure
that the provenance tracking components (mainly PEP and ProSP) are properly
protected from tampering. In case of a domain-wide provenance architecture
it also has to be ensured that no forged provenance information can be sent
to the provenance storage point. However, even though a system user may be

150



Classifying Usage Control and Data Provenance Architectures

motivated to tamper with provenance information in order to hide data accesses
from his employer, there is usually no direct monetary incentive for him to do so.

External compliance on the other hand is conducted with the explicit goal of
proving compliance to external data owners or supervisory authorities. In this
case the system owner receives sensitive information from external data owners
in order to process it in his own infrastructure. He is required to track the usage
of this data in his domain and report the respective provenance information
back to the data owners for transparency. All three discussed provenance
tracking architectures are suitable for this task. The most important difference
to internal compliance is that the system owner now has a clear interest of
forging provenance information in order to deceive the original data owners and
supervisory authorities. He can do this by manipulating either the enforcement
points or the provenance storage points on his own systems. In order to mitigate
this problem, we need to establish trust in the system owner’s infrastructure,
either by contractual agreements or technical measures (c.f. section 5).

4.3 Usage Control Enforcement

Besides provenance compliance, the other important use case is enforcing usage
control on data processing applications. Depending on the goals that should
be achieved by the protection system, once again we can distinguish between
internal enforcement and external enforcement.

Internal usage control enforcement, similar to internal compliance, is conducted
by a system owner solely in his own infrastructure. For example, a company has
a valuable pool of business data and wants to safeguard data usage in their own
local infrastructure. The system owner can do this by establishing either a local
or distributed UC architecture (in the latter case only with a single domain).
In such a system intercepting enforcement points will oversee all data usages
in the companies infrastructure and query the central decision point for each
data access. The company can then deploy proper usage restrictions in form of
policies at this decision point. Once again, since in this case the system owner
is simultaneously also the data owner, we can trust him to properly setup and
operate the necessary usage control infrastructure. However, the system users
(i.e. employees) that are being subjected to usage control enforcement when

151



Paul Georg Wagner

working with the protected data, may be motivated to bypass the protection
components and access the sensitive data without restriction. Hence we have to
view system users as the most important possible adversaries and properly protect
all the deployed usage control components from tampering by non-privileged
system users.

External usage control enforcement is the most important use case that a UC
architecture should address. In this case a data owner wants to impose his
own usage restrictions on remote data processing applications running within a
remote UC domain. This requires either a cross-domain or distributed usage
control architecture. The data owner can then deploy his own usage control
policies into the remote UC domain, before transmitting sensitive data. The
remote usage control components (either within a single computer system or
as distributed services) then intercept all data usages in the remote system and
enforce the deployed usage restrictions on them. As before, from a security
perspective the most important adversary is the system owner of the receiving
side. This remote system owner has a clear interest of bypassing the usage
control components in his own domain and access the foreign data without
restrictions. Furthermore the system owner has full control over the enforcing
UC system and can manipulate the components to either ignore the deployed
policies, or bypass the interception at the enforcement point. Just as with
external compliance, we hence need to establish trust in the system owner’s
remote infrastructure, either by contractual agreements or technical measures.

Table 4.1 shows the four identified use cases and their characteristics.

Table 4.1: Use cases for usage control and provenance.

Compliance UC-Enforcement
internal external internal external

PEP capability observing observing intercepting intercepting

Architecture
system system local cross-domain
domain domain distributed distributed

cross-dom.
Attacker user owner user owner

152



Classifying Usage Control and Data Provenance Architectures

5 Conclusion

In this work we investigated the functionality and properties of usage control
as well as provenance tracking systems. We classified three different variants
of both UC and provenance tracking architectures, and described in what way
they can be combined. Finally we identified generic use cases of usage control
and provenance tracking systems that help to understand how these systems can
operate in practice and what attack vectors are to be expected.

As pointed out in the previous section, there has to be a way of enforcing the
correct application of these techniques on the remote side. This is especially
important for the use cases of external compliance as well as external usage
control enforcement. This part of the problem is often overlooked, but it
is essential for the security guarantees of the resulting system. While most
existing systems make do with non-technical solutions such as operational and
contractual agreements, a possible technical solution for this issue relies on
trusted computing to cryptographically attest to the integrity of usage control
and provenance tracking components. However, correctly applying trusted
computing to this problem is not trivial and still an area of active research
[10]. Since there are many ways of ending up with insecure systems when
not properly considering how to establish trust in remote usage control and
provenance components, this is an important area for future research.

References

[1] Arno Appenzeller et al. “Enabling data sovereignty for patients through
digital consent enforcement”. In: Proceedings of the 13th ACM Inter-
national Conference on Pervasive Technologies Related to Assistive
Environments. 2020, pp. 1–4.

[2] Christoph Bier. “How usage control and provenance tracking get together-
a data protection perspective”. In: 2013 IEEE Security and Privacy
Workshops. IEEE. 2013, pp. 13–17.

153



Paul Georg Wagner

[3] Eleonora Ciceri et al. “PAPAYA: A Platform for Privacy Preserving Data
Analytics”. In: Digital Health (2019), p. 42.

[4] Paul Groth and Luc Moreau. “PROV-overview. An overview of the PROV
family of documents”. In: (2013).

[5] Matthias Jarke, Boris Otto, and Sudha Ram. Data Sovereignty and Data
Space Ecosystems. 2019.

[6] Xiaoguang Liu et al. “A blockchain-based medical data sharing and
protection scheme”. In: IEEE Access 7 (2019), pp. 118943–118953.

[7] Boris Otto et al. IDS Reference Architecture Model. Tech. rep. International
Data Spaces Association, 2018.

[8] Jaehong Park and Ravi Sandhu. “The UCON ABC usage control model”.
In: ACM Transactions on Information and System Security (TISSEC) 7.1
(2004), pp. 128–174.

[9] OASIS Standard. extensible access control markup language (xacml)
version 3.0. 2013.

[10] Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer. “Challenges
of Using Trusted Computing for Collaborative Data Processing”. In:
International Workshop on Security and Trust Management. Springer.
2019, pp. 107–123.

154


	Preface
	Privacy and Patient Involvement in e-Health
	Characterization of Mueller matrices in retroreflex ellipsometry
	A Data Annotation Process for Human Activity
Recognition in Public Places
	Improving 3D Semantic Segmentation with
Twin-Representation Networks
	"Let’s get ready to bundle!":
Crowd-level Human Keypoint Tracking
	DOE-based Multi-spot Confocal Interference Microscope
	A Proposal on Discovering Causal Structures in
Technical Systems by Means of Interventions
	A Step Towards Explainable Person Re-identification Rankings
	Multi-object Tracking in Drone Videos
	Classifying Usage Control and Data Provenance Architectures
	Learning Universal Representation for Multi-formats 3D Objects



