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Abstract

We propose a method for learning weighting
schemes in weighted hybrid recommender systems (RS)
that is based on statistical forecast and portfolio theory.
An RS predicts the future preference of a set of items
for a user, and recommends the top items. A hybrid
RS combines individual RS in making the predictions.
To determine the weighting of individual RS, we learn
so-called optimal weights from the covariance matrix
of available error data of individual RS that minimize
the error of a combined RS. We test the method on the
well-known MovieLens 1M dataset, and, contrary to the
“forecast combination puzzle”, stating that a simple
average (SA) weighting typically outperforms learned
weights, the out-of-sample results show that the learned
weights consistently outperform the individually best RS
as well as an SA combination.

1. Introduction

A recommender system (RS) is an information
system aimed at predicting the utility of an item for a
particular user from available data. For instance, RS
forecast the “rating” or “preference” a user would give
to an item, and then recommend those items with the
highest predicted preference [1].

RS are vital to commercial applications, especially
in the realm of digital business models, for instance
to generate playlists for music or video streaming
services such as Spotify or Netflix, for online shops
such as Amazon, or content or personal connection
recommendation in social media such as LinkedIn or
Facebook, and for various other application domains.
Specifically, nowadays’ affiliate networks offering
personalized advertisements are based on RS that
compute, e.g., when and how to display which banner
advertisement to which customer [2].

To make utility predictions, various paradigms
exist that use different analytical methods or
consider different input data. Amongst the most

prominent paradigms are collaborative filtering (CF),
content-based filtering (CB), and knowledge-based
systems. For instance, CF estimates utility by finding
statistical neighbors of a user with respect to past
behavior (items previously purchased, viewed, selected,
or rated), and then recommends items the neighbors
also liked. CB uses characteristics or features of an item
to recommend additional items with similar properties
to the ones a user has shown high utility for (e.g.
gave high rating). Knowledge-based systems exploit
relationships and dependencies between items to make
recommendations, from simple logical rules or bills of
material to semantic technologies exploiting ontological
networks. For each paradigm, there is again a multitude
of different algorithms available [3, 4].

It has been shown that the combination of two or
more RS approaches into a hybrid recommender system
(HRS) can improve predictive accuracy, while again
various approaches exist how to combine RS [5].

This is well in line with findings when combining
statistical forecasts or human judges (social forecasts),
where various studies have shown that combining
statistical forecasts can improve forecast accuracy [6, 7,
8, e.g.] or judgmental forecasts [9, 10, 11, e.g.].

Approaches to the hybridization of RS are manifold,
ranging from weighted (numerically combining the
predictive outcomes of different RS), switching
(algorithms for dynamically choosing one particular
RS), to cascading (one RS generates a coarse ranking,
and another RS refines the ranking) [5].

In this work, we consider the first mentioned
hybridization technique, the weighing of individual RS
to derive a combined forecast, where we aim at learning
the weighting scheme that maximizes the accuracy of
the hybrid RS.

In the next section, we review related literature
on weighted hybrid RS, the challenges of weighting
predictive algorithms, and sketch our contribution in the
realm of weighted HRS.
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2. Related Work

First, we summarize the literature on weighted
HRS. Subsequently, we sketch the so-called “forecast
combination puzzle”, stating that a simple average (SA)
weighting is hard to beat in an out-of-sample evaluation.
Finally, we summarize the contribution of this work to
the literature on weighted HRS.

As aforementioned, HRS combine two or more
methods to improve performance by alleviating the
drawbacks of the individual methods [5]. E.g., CF
suffers from the cold-start problem, which means it is
impossible to create recommendations for users which
have not rated any items yet or items which have
not been rated yet. As another example, CB suffers
from over-specialization, i.e., the items which are
recommended to a given user are all similar to items
which that user has rated positively, resulting in a lack
of serendipity and possibly even the recommendation of
substitute products to already consumed ones.

Furthermore, each predictive method uses a certain
part of the overall information available to make the
prediction, and lacks other information with predictive
value exploited by another method based on different
data. E.g., CF only uses the user-item rating matrix as
an input, while CB also exploits item metadata in order
to compute similarities between items.

In a weighted HRS, several individual
recommendation techniques are run independently,
hence considering different information, and their
predictions are then combined using an aggregation
function [5] (e.g. a linear combination for a regression
task [12] or a majority vote for a classification problem
[13]).

The combination of two or more prediction methods
in order to improve accuracy has been subject to a lot
of research in the fields of statistics and forecasting. In
their seminal paper, Bates and Granger [6] introduce
Equation (1) for choosing the combination weights in
the case of two forecasts1.

w =
σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
(1)

In Equation (1),w represents the weight given to the first
forecast. Since the weight vector must sum to 1, in the
two-forecast case, the second forecast is given a weight
of 1 − w. σi is the standard deviation of past errors
of forecast i, and ρ is the correlation between the past
errors of the two forecasts. The better forecast, i.e. the
one with the lower mean squared error (MSE), receives a

1In their original article, there is a sign error (− instead of +) in
the denominator.

higher weight. This weighting strategy is called optimal
weights (OW). It minimizes the MSE in-sample, i.e.
on the available training data, given that the individual
forecasts are unbiased, i.e. do not consistently over- or
underestimate the true values, and that the performance
of the individual forecasts is consistent over time. If
the forecasts are biased, they must be corrected by
subtracting the mean bias from each prediction.

After Bates and Granger’s initial article, a lot of
research was produced on the combination of forecasts
[7, 14, e.g.]. Interestingly, it was repeatedly reported
that using the SA, i.e. giving equal weights to all
forecasts, outperformed more sophisticated strategies
that learn the weights, such as OW. This observation has
been coined “forecast combination puzzle” and has been
subject to research for decades.

Smith and Wallis [14] provide a theoretical
explanation for the puzzle: For more sophisticated
weighting schemes like OW, the weights must be
estimated from past errors of the individual forecasts.
While Equation (1) is guaranteed to yield minimal MSE
in-sample, it does not necessarily deliver an estimate
which is optimal out-of-sample, i.e. on unseen test data.

Empirical research in forecast combination typically
uses rather small datasets such as time series of
economic indicators with only a few dozens or hundreds
of observations. The smaller the training sample on
which the weights are learned, the higher the estimation
uncertainty and the more learned weighting schemes
like OW are adjusted to randomness in the training
sample rather than to persistent structure in the data
(overfitting error). This results in high out-of-sample
errors due to this high model variance error component.

Static weights such as SA, on the other hand, are
not learned on training data and are therefore not
subject to wrong fitting to randomness. Therefore,
they do not overfit the training data; they have a
sampling-variance-related error of 0.

On the other hand, SA does not exploit any structure
from the training data, and therefore SA is subject to
an underfitting error: It produces higher in-sample MSE
than OW, which produces the lowest in-sample MSE
of all linear weight combinations. The difference is, in
statistical learning theory, called the model bias. Hence,
for which of both combination models, OW versus SA,
the aggregate of model bias and model variance is lower,
produces the lower MSE out-of-sample. In the literature
on statistical forecasting, this is coined the bias-variance
trade-off.

The forecast combination puzzle therefore results
from the fact that model variance typically exceeds
model bias, especially if there is a rather small number
of observations, and therefore the SA is hard to beat in
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empirical settings.
This is especially the case if the true, unknown

out-of-sample optimal weight is close to the SA.
However, if the true optimal weight is farther away
from the SA, empirical results [14, e.g.] still show
that the OW estimate is mostly outperformed by a
strategy which is more sophisticated than SA but more
robust than OW. This weighting scheme, which was also
suggested by Bates and Granger [6], ignores the error
correlation between the individual forecasts (assumes
ρ = 0, even if the true ρ is different) and only uses
the inverse ratio of error variances. This strategy, which
we will call “modified OW” or “OW ignoring error
correlation” in the following, always yields a w in
between wsa and wow (given p > 0), which can be
seen in Equation (1). It is more sophisticated than SA
since it gives more weight to the better forecast, but is
more robust than OW because OW can lead to extreme
and instable values of w, especially if σ1 and σ2 are
similar and ρ is close to 1, leading to the denominator
of Equation (1) approaching 0.

In this paper, we apply OW to learn weights in HRS.
Not a lot of research has been published on the selection
of combination weights in weighted HRS. Jahrer et
al. [15] compare different weighting strategies like
ridge regression, neural networks, or gradient boosted
decision trees. Their ridge regression combination is
similar to OW, but some differences exist: They solve
a ridge regression with a regularization parameter λ in
order to avoid overfitting. This approach can lead to
weight vectors which do not sum to 1, especially in
the case of systematically biased predictors, which are
not checked for or preprocessed. Our OW approach
instead checks the predictors for mean biases, corrects
them if necessary, and then solves a constrained least
squares problem with the condition that the resulting
weight vector must sum to 1. Furthermore, instead of
learning the weight vector on the whole training set
using cross-validation, they train the individual methods
on the training set and learn the combination weights
on a holdout set which is rather small in relation to the
training set and might not properly represent the whole
dataset. This way, the resulting weight vector might
overfit to the holdout set.

We show how OW can be derived from a large
user-item rating matrix and demonstrate that, in contrast
to the usual findings in the realm of the combination
puzzle, that OW are beneficial to combine individual
RS given the large sets of training data, which are
mostly available in RS. We propose a simple and
computationally efficient combination strategy for HRS
that can be expected to outperform other weighting
schemes given sufficient training sample size. In

addition, we analyze the bias-variance trade-off along
the dimension ntrain, i.e. how the performance
of OW develops in relation to SA and the more
robust modified OW when the number of available
observations decreases.

3. Methodology

This section explains how we calculate optimal
combination weights of different RS methods based on
the errors that those methods produce, and then evaluate
OW by comparing it to SA and the individual methods.

In a first step, we check whether the assumptions
under which OW produce in-sample optimal weights,
namely that the individual RS are unbiased, are met. In
case these assumptions are violated, we preprocess and
transform the data aimed at meeting the presumptions.

Second, we split the available data into a training
set of the size ntrain and a test set of the size ntest.
The training set is used to learn optimal combination
weights, while the test set is used to evaluate the
combined predictions.

Third, we run a k-fold cross-validation on the
training data. In each iteration, we train the individual
methods on k − 1 folds of the training set and evaluate
their predictions on the remaining fold. Using the
error vector of each RS method, we can estimate the
error covariance. The error covariance is averaged
over the k iterations and then used to compute OW.
This approach is taken since, as described above,
OW is only guaranteed to be the optimal combination
strategy in-sample, i.e. on the training set. Using
cross-validation to compute a pseudo-out-of-sample
estimate of the error covariance allows us to derive a
more robust weighting strategy which does not suffer as
much from overfitting as in-sample OW.

Finally, we re-train all components on the whole
training set and let them make predictions on the test
set, which has not been used at all so far. We compare
the performance – measured by root mean squared error
(RMSE) – of the individual RS with the performance of
combinations with OW and SA weighting.

4. Experimental Design

We now describe the design of the experiments
we conduct to analyze the out-of-sample accuracy
using OW compared to SA and the individual models,
respectively. First, we characterize the dataset used in
the experiments. Second, we describe the individual RS
methods which we apply and combine.
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4.1. Dataset

For our experiments, we use the MovieLens 1M
dataset [16]. The data consists of 1,000,209 ratings of
3,900 movies made by 6,040 users. The ratings are
based on a five-star scale, i.e., they have integer values
from 1 (worst) to 5 (best). We represent the ratings in the
user-item matrix R, where each row vector contains the
ratings by one user and each column contains the ratings
for one item. An entry rui contains the rating for item
i by user u, or a missing value in case no no rating has
been given yet. In our experiments, we remove a subset
of the available ratings in R as a test set, which are then
the “missing” values to be predicted out-of-sample. We
denote the prediction of user u’s rating for item i by r̂ui.

In addition to the ratings, the dataset contains
metadata for users and items: Each user is described by
his or her gender, age (seven groups), occupation, and
ZIP code; each movie is represented by its title, genre(s),
and year of release. We denote the user (item) metadata
as a matrix U (I), where each row vector represents a
user (item).

4.2. Individual RS methods

We compare and combine four different methods,
which are briefly described in the following. They
are chosen such that each method either uses different
input data or makes different assumptions about the
underlying preference model.

4.2.1. Neighborhood-based collaborative filtering
(“knn”) This prediction technique exploits (only) the
user-item matrix R. The assumption is that users who
behaved in a similar way in the past will also behave in
a similar way in the future. There exists user-based and
item-based CF.

User-based CF computes similarities between users
based on their rating vectors, using a similarity metric
such as the cosine similarity. For a given user and a
given item, the rating prediction is a weighted average
of the ratings for this item given by the most similar
users (the “neighbors”). The ratings of neighbors are
weighted by their similarity to the given user. This
means that items are recommended which are popular
in a neighborhood of like-minded users [17, e.g.].

Item-based CF is analogous to user-based CF, only
with the terms “user” and “item” exchanged.

4.2.2. Model-based collaborative filtering (“svd”)
While neighborhood-based CF is based on a
nearest-neighbors regressor, model-based CF methods

are trained to learn a model that describes the user
preferences. Any predictive model can be used, but the
most popular method is matrix factorization.

In matrix factorization CF, the user-item matrix R is
decomposed into a matrix of user factors and a matrix of
item factors. Each user and each item are represented by
f latent factors (f is a hyper-parameter which can e.g.
be learned using cross-validation). The factor matrices
are learned, e.g. by using an alternating least squares
procedure. The prediction matrix R̂ is then derived by
multiplying the two factor matrices [18, e.g.].

Matrix factorization CF has empirically been shown
to be one of the most accurate and also computationally
efficient RS algorithms.

4.2.3. Content-based filtering (“cb”) CB works in
a similar way to item-based CF. The difference is that
the similarities between items are not computed based
on ratings, but instead based on the item metadata I .
For a given user, items are recommended which are most
similar, based on their properties (for movies, e.g. genre
and year of release), to items which the user has liked in
the past [19, e.g.].

By computing similarities based on I , CB integrates
independent information which CF does not exploit.

4.2.4. Demographic filtering (“df”) Demographic
filtering (DF), like CB, exploits independent metadata
in addition to R. It is similar to user-based CF, but
the similarities between users are computed based on
the user metadata U (e.g. age, gender, occupation).
Users are recommended items which are popular in their
demographic neighborhood [20, e.g.].

4.3. Preparation

For each of the individual RS methods, we first
test the OW model assumption of no mean bias, i.e.,
whether the mean prediction errors of the RS methods
are approximately 0.

Table 1 displays the mean errors for all methods,
as well as the standard errors. Mean errors are very
close to 0 and standard errors very low, so we include
all of the individual RS in our experiments without a
prior mean-debiasing (error centering), as we expect the
impact to be negligible.

To parameterize the RS methods and assess their
out-of-sample performance as well as the performance
of their combinations, we apply the approach described
in Section 3. We use 75% of the ratings as training
data and 25% as test data, which for the full MovieLens
dataset results in ntrain ≈ 750, 000 and ntest ≈
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Predictor Mean prediction error Standard error

svd 0.0002 0.0007
knn -0.0155 0.0007
df -0.0025 0.0010
cb 0.0081 0.0010

Table 1. Mean prediction errors of all individual RS

with standard errors.

250, 000. For the pseudo-out-of-sample estimation of
the error covariance, we run a cross-validation with
k = 5 folds.

In addition, to analyze the behavior of OW also on
smaller sets of available training data, we conduct the
experiments with two subsets of the data, where we use
only 50% and 10% of the available ratings, respectively.

5. Experimental Results

First, we provide and discuss results with the
complete dataset. Afterwards, we discuss the results
with the rating subsets in order to show the effects of
a decreasing ntrain.

Table 2 displays the aggregated experimental
outcomes with the complete MovieLens dataset. The
first column denotes the weighting scheme used, i.e.,
whether the individual RS methods (rows 1-4), SA
over mutual combinations of the methods (rows 5-11),
the modified OW scheme ignoring error correlation
(rows 12-18), or an OW combination scheme (rows
19-25) has been applied. The second column displays
the individual methods used or combined. For better
comparison, there is one additional row (“Total”) for
SA, modified OW, and OW, respectively, which reports
the aggregate over all pairs. The third column shows the
out-of-sample RMSE of each method or the methods’
pairwise combination over ten random train-test splits
together with the standard deviation of the RMSE.

In order to make the results more accessible, in
the fourth column, for each of the combinations with
learned weights we additionally display the percentage
difference in RMSE to the respective SA combination
of the same RS methods. For instance, a value of −5%
means that the learned weights resulted in an RMSE 5%
lower than the one obtained when using SA.

Finally, the two outer-right columns display the
learned weight w together with the weight’s standard
deviation over the ten runs, and the error correlation
ρ of the two combined methods, also with its standard
deviation.

Starting the results discussion with the individual
methods, the table shows that the sole application of
cb results in the highest RMSE of 1.0224, while svd

achieves, with 0.878, the lowest RMSE of all individual
methods.

In line with expectation from the literature on
forecast combination, SA combination further reduces
the RMSE obtained with all individual RS methods.
While this is expected for cb with the individually
highest RMSE, where an SA with any of the individually
better-performing methods decreases RMSE compared
to cb, also the RMSE of svd is slightly reduced by an
SA combination with knn from 0.8780 to 0.8738.

The results in column “∆ SA” show that the RMSE
with SA combination is further reduced by using an OW
combination ignoring error correlation for all pairs. In
total, over all six mutual RS method combinations, the
average RMSE is reduced by 0.47%.

However, the RMSE with the OW ignoring error
correlations is strongly reduced when learning and
applying OW considering error correlation, as can be
seen in the seven rows on the bottom of the table.
The overall lowest RMSE of 0.8725 is obtained with
an OW combination of svd and knn. The lowest
improvements are observed when combining svd and
knn (−0.15%), while the highest improvements are
made when combining svd and cb (−3.66%) or knn and
cb (−3.40%). On average over all six pairs, applying
OW results in a RMSE that is, on average, 1.97% lower
than the RMSE with SA.

At a first glance, the results contradict empirical
findings in forecast combination research, indicating
that SA is hard to beat out-of-sample, and if so, then
rather by the modified OW which ignores ρ than by OW.

Looking at the table in more detail, we observe
that OW is the dominant combination strategy for each
pair of forecasts. However, for some combinations
the difference to SA is small and the difference to
the individual methods is comparably large, while for
other combinations the difference to SA is large and the
difference to the individual methods is smaller.

In the cases where the weight value wow learned
by OW approaches wsa = 0.5 (combination of svd
and knn, wow = 0.6, and combination of df and cb,
wow = 0.61), the RMSE difference between OW and
SA is rather small (0.15% and 0.29%, respectively).
Obviously, in case OW are similar to SA weights, the
RMSE difference between both combination schemes
is also small, but the learned weights still improve the
results of an SA combination.

On the other hand, for those combinations where
OW is farther away from SA (the other four
combinations), the difference in RMSE between OW
and SA is larger (between 2.06% and 3.66%).

The forecast combination puzzle states that typically
the estimated OW are too instable to improve the RMSE

Page 1556



RMSE (std.) ∆ SA w (std.) ρ (std.)
Weighting Method(s)

Individual methods

cb 1.0224 (0.0009)
df 0.9768 (0.0011)
knn 0.8964 (0.0012)
svd 0.8780 (0.0016)

Simple average (w = 0.5)

df + cb 0.9488 (0.0007)
knn + cb 0.9279 (0.0010)
knn + df 0.9155 (0.0012)
svd + cb 0.9103 (0.0012)
svd + df 0.8962 (0.0011)
svd + knn 0.8738 (0.0014)
Total 0.9121 (0.0011)

OW ignoring error correlation

df + cb 0.9478 (0.0007) -0.10% 0.52 (0.0002)
knn + cb 0.9202 (0.0010) -0.83% 0.56 (0.0002)
knn + df 0.9123 (0.0012) -0.35% 0.54 (0.0001)
svd + cb 0.9007 (0.0012) -1.05% 0.57 (0.0002)
svd + df 0.8917 (0.0011) -0.49% 0.55 (0.0003)
svd + knn 0.8737 (0.0014) -0.01% 0.51 (0.0002)
Total 0.9078 (0.0011) -0.47%

OW

df + cb 0.9460 (0.0007) -0.29% 0.61 (0.0011) 0.80 (0.0003)
knn + cb 0.8964 (0.0010) -3.40% 0.96 (0.0009) 0.87 (0.0002)
knn + df 0.8966 (0.0011) -2.06% 0.95 (0.0013) 0.91 (0.0002)
svd + cb 0.8770 (0.0014) -3.66% 0.92 (0.0008) 0.84 (0.0006)
svd + df 0.8761 (0.0012) -2.24% 0.86 (0.0021) 0.88 (0.0003)
svd + knn 0.8725 (0.0015) -0.15% 0.60 (0.0044) 0.95 (0.0002)
Total 0.8941 (0.0012) -1.97%

Table 2. Aggregated predictive results of the individual RS algorithms and their pairwise combination using OW

and SA on the MovieLens 1M dataset.

with SA out-of-sample. Concretely, the puzzle states
that when OW is close to SA, SA will outperform OW,
and when OW is farther away from SA, the modified
OW is to be preferred. Our results contradict this advice:
OW is the best weighting strategy for all cases, and the
fartherwow is away from SA, the larger the performance
improvement by using OW over SA.

It is also worthwile comparing the OW combinations
to the respective individual methods. The OW
combination of df and cb yields the highest
improvement (3.08%). This is in part caused by
the relatively low error correlation of ρ = 0.8. For the
combinations of knn with cb and df, respectively, the
RMSE is virtually the same as when using knn alone,
while combining svd with cb or df results in slight
improvements. One reason for this, again, is that the
errors of knn are more highly correlated with those of
cb and df than it is the case for svd. Finally, combining
the two best individual methods, svd and knn, yields an
improvement of 0.63% over using only svd, which is
one of the most accurate RS algorithms.

Figure 1 provides more insights on the findings
displayed in Table 2. Each subplot represents a
combination of one pair of prediction methods. For each
combination we determine the out-of-sample RMSE as
a function of the weighting parameter w; hence, the
curves show which RMSE would have been observed
with a particular w, again averaged over ten runs. The
vertical lines mark the values of w which result from
using OW (dashed line), modified OW (dotted line), and
the true out-of-sample optimal value of w (dash-dotted

line), which is unknown upfront. SA (w = 0.5) is
marked on the horizontal axis.

In each subplot, a characteristic U -shape can be
observed, which shows that the combination of two
methods yields a smaller RMSE than each of the
individual methods. The graphs show that the OW
estimate is close to the out-of-sample optimal weight.

This is especially the case for those combinations
where the error correlation ρ is relatively low (ρdf,cb =
0.8, ρsvd,cb = 0.84). For the combinations with higher
correlation, spec. ρsvd,knn = 0.95, the OW estimate is
farther off the real out-of-sample optimal weights (the
estimate is more instable), but still dominates SA, the
modified OW, and the individual methods.

As aforementioned, we ran the same experiments on
50% as well as 10% of the available data in order to
analyze the performance relationships with increasing
overfitting and instability of the OW estimates with
decreasing training set size.

The results for 50% of the data are reported in
Table 3. The structure of the table is the same
as in Table 2. We also observe similar results as
with the full dataset; in particular, SA improves the
best individual method, OW estimates ignoring error
correlation improve over SA, while the lowest RMSE
are achieved with the OW combinations, as before.
However, the error difference is smaller than on the
full dataset. The OW estimate is similarly accurate as
with the full dataset, but the true, out-of-sample optimal
weight is closer to SA for all combinations except df and
cb.
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0 (cb) 0.5 (simple average) 1 (df)
w

0.90

0.95

1.00

Combining df and cb

0 (cb) 0.5 (simple average) 1 (knn)
w

Combining knn and cb

0 (df) 0.5 (simple average) 1 (knn)
w

Combining knn and df

0 (cb) 0.5 (simple average) 1 (svd)
w

0.90

0.95

1.00

Combining svd and cb

0 (df) 0.5 (simple average) 1 (svd)
w

Combining svd and df

0 (knn) 0.5 (simple average) 1 (svd)
w

Combining svd and knn

OW estimate (w)
OW ignoring error correlation
actual OW (best w out-of-sample)

Figure 1. Comparison of OW, SA, individual methods, and OW ignoring error correlation for pairwise

combinations of methods on the MovieLens 1M dataset.

RMSE (std.) ∆ SA w (std.) ρ (std.)
Weighting Method(s)

Individual methods

cb 1.0279 (0.0020)
df 0.9801 (0.0012)
knn 0.9125 (0.0013)
svd 0.9181 (0.0018)

Simple average (w = 0.5)

df + cb 0.9518 (0.0015)
knn + cb 0.9384 (0.0013)
knn + df 0.9273 (0.0011)
svd + cb 0.9388 (0.0021)
svd + df 0.9239 (0.0012)
svd + knn 0.9062 (0.0015)
Total 0.9311 (0.0015)

OW ignoring error correlation

df + cb 0.9507 (0.0015) -0.12% 0.52 (0.0002)
knn + cb 0.9318 (0.0013) -0.71% 0.56 (0.0002)
knn + df 0.9250 (0.0011) -0.24% 0.53 (0.0002)
svd + cb 0.9331 (0.0021) -0.62% 0.55 (0.0003)
svd + df 0.9222 (0.0012) -0.19% 0.53 (0.0004)
svd + knn 0.9062 (0.0015) -0.00% 0.50 (0.0003)
Total 0.9281 (0.0015) -0.32%

OW

df + cb 0.9488 (0.0016) -0.32% 0.62 (0.0012) 0.79 (0.0004)
knn + cb 0.9121 (0.0013) -2.81% 0.91 (0.0011) 0.86 (0.0004)
knn + df 0.9119 (0.0012) -1.66% 0.94 (0.0014) 0.93 (0.0002)
svd + cb 0.9158 (0.0022) -2.45% 0.90 (0.0017) 0.87 (0.0004)
svd + df 0.9140 (0.0012) -1.07% 0.79 (0.0030) 0.90 (0.0005)
svd + knn 0.9062 (0.0015) -0.01% 0.36 (0.0074) 0.96 (0.0002)
Total 0.9181 (0.0015) -1.39%

Table 3. Results analogous to Table 2 for 50% of the training data. Principle relationships are similar to the full

dataset, but the differences are smaller.

Page 1558



0 (cb) 0.5 (simple average) 1 (df)
w

0.90

0.95

1.00

Combining df and cb

0 (cb) 0.5 (simple average) 1 (knn)
w

Combining knn and cb

0 (df) 0.5 (simple average) 1 (knn)
w

Combining knn and df

0 (cb) 0.5 (simple average) 1 (svd)
w

0.90

0.95

1.00

Combining svd and cb

0 (df) 0.5 (simple average) 1 (svd)
w

Combining svd and df

0 (knn) 0.5 (simple average) 1 (svd)
w

Combining svd and knn

OW estimate (w)
OW ignoring error correlation
actual OW (best w out-of-sample)

Figure 2. Display analogous to Figure 1 for 50% of the training data. Results are similar to the full dataset, but

the actual out-of-sample best weights are closer to SA.

This can be seen in Figure 2, again depicting the
RMSE as a function of w but for the 50 % sample. The
graphs show relationships similar to the ones observed
on the full dataset presented in Figure 1, but the actual,
out-of-sample best weight is closer to the middle and
therefore closer to wsa = 0.5 for almost all subplots.
Therefore, the difference in performance is smaller than
on the full dataset.

Finally, the results for 10% of the data are
reported in Table 4. The table shows that even when
using only 1

10 of the available data, OW is still the
combination strategy that results in the lowest RMSE
and outperforms SA as well as modified OW. However,
as expected, the error difference is smaller than for 50%
and 100% of the data, since for the decreased number of
observations the model variance (overfitting of weight
estimates) is stronger.

OW only dominates for five mutual combinations
of methods, while for knn and df SA would have
outperformed estimated OW combinations, specifically
with OW estimates considering error correlations, which
are, for this combination, dominated also by more robust
OW estimates ignoring correlations.

The increasing instability of the OW estimates can
also be seen in Figure 3. We observe that the distance
between the true out-of-sample optimal weight and
the OW estimate increased. For instance, for the
combination of knn and cb, the OW estimate is off by
0.07 (0.68 − 0.61) on the 10% dataset, whereas for
the whole dataset, it is only off by 0.02 (0.98 − 0.96).
Similarly, for the combination of knn and df, the OW

estimate is off by 0.12 (0.59−0.47) on the 10% sample,
in comparison to only 0.01 (0.96 − 0.95) on the full
dataset. This is also the one combination where the OW
estimate is outperformed on the 10% sample by both SA
and OW ignoring error correlation, as described above.

6. Conclusion and Discussion

Our experimental findings show that OW estimates
can be learned in the realm of RS that significantly
outperform the individually best RS as well as the SA
of RS algorithms. While this finding contradicts the
forecast combination puzzle, stating that most likely
SA will outperform learned weights, this outcome is
explained by the fact that (i) the presumptions of OW
optimality on training data are approximately met, and
(ii) that a comparably large set of training observations
is available, which is typically not available in business
forecast scenarios usually considered in the forecasting
literature.

As large sets of observations are often available for
RS, e.g. in the realm of media platforms or e-commerce
shops, OW are likely to be a beneficial choice for
weighted HRS in many practical settings. This result is
of importance as of the key role of RS in today’s digital
world, and as OW estimates can be computed efficiently.
Applying OW is a viable strategy in weighted HRS,
where, surprisingly, today there is very little research on
strategies for choosing the weight.

It is worthwhile to mention that, considering
decreasing benefits of using OW with decreasing
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RMSE (std.) ∆ SA w (std.) ρ (std.)
Weighting Method(s)

Individual methods

cb 1.0649 (0.0040)
df 1.0062 (0.0041)
knn 0.9869 (0.0033)
svd 0.9534 (0.0031)

Simple average (w = 0.5)

df + cb 0.9696 (0.0036)
knn + cb 0.9736 (0.0044)
knn + df 0.9727 (0.0042)
svd + cb 0.9810 (0.0038)
svd + df 0.9583 (0.0039)
svd + knn 0.9517 (0.0028)
Total 0.9678 (0.0038)

OW ignoring error correlation

df + cb 0.9680 (0.0036) -0.16% 0.53 (0.0008)
knn + cb 0.9717 (0.0044) -0.19% 0.53 (0.0008)
knn + df 0.9728 (0.0042) 0.01% 0.50 (0.0007)
svd + cb 0.9751 (0.0038) -0.60% 0.56 (0.0007)
svd + df 0.9570 (0.0038) -0.14% 0.53 (0.0006)
svd + knn 0.9508 (0.0028) -0.10% 0.53 (0.0006)
Total 0.9659 (0.0038) -0.20%

OW

df + cb 0.9661 (0.0038) -0.36% 0.62 (0.0031) 0.75 (0.0009)
knn + cb 0.9675 (0.0045) -0.62% 0.61 (0.0039) 0.78 (0.0011)
knn + df 0.9733 (0.0042) 0.06% 0.47 (0.0064) 0.88 (0.0013)
svd + cb 0.9544 (0.0033) -2.71% 0.97 (0.0059) 0.89 (0.0007)
svd + df 0.9511 (0.0038) -0.75% 0.78 (0.0063) 0.91 (0.0005)
svd + knn 0.9482 (0.0028) -0.36% 0.80 (0.0081) 0.90 (0.0010)
Total 0.9601 (0.0038) -0.80%

Table 4. Results analogous to Table 2 for 10% of the training data. OW still dominates SA and the modified

OW overall, but the gap is smaller due to the higher model variance.
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Figure 3. Display analogous to Figure 1 for 10% of the training data. The smaller ntrain increases estimation

uncertainty for OW.
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training sample size, OW will not be the optimal choice
for sample sizes below a certain threshold, e.g. for small
enterprises or platforms with few error observations,
where one would then face the combination puzzle. Our
results show that we started to experience the puzzle
when reducing the training set size to 10% of available
rating data. In such cases, model variance with OW
increases and regularization is required, for instance
by shrinking OW towards SA by a degree that can
be learned using cross-validation. Shrinkage has been
shown in the realm of business forecasting to be a
beneficial strategy in case the number of observations
decreases or the number of forecasts increases [21, e.g.].

In our future research, encouraged by the
experimental outcomes presented before, we will follow
two directions. First, we will study the combination of
three or more RS methods. Recent literature on forecast
combination motivates the (average) combination of
more than two forecasts, so called select-crowds [11].
Fortunately, OW can also be computed for an arbitrary
number of individual RS using Equation (2) [22, e.g.].

w =
Σ−1
e ι

ι′Σ−1
e ι

(2)

In Equation (2), Σe is the covariance matrix of errors
of the individual forecasts and ι is a column vector
of p ones, where p is the number of forecasts.
Combining three or more RS, we expect further
accuracy improvements, and we will analyze under
which conditions that is the case.

Second, we will study whether the shrinkage of
OW toward SA might further improve accuracy in the
realm of RS, specifically with decreasing training set
size. We will explore linear shrinkage methods, i.e.,
linear combinations of OW and SA weights, as well as
non-linear approaches to shrink OW towards SA.
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