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Abstract
We present a method for learning universal vector representations out of 3D
objects represented in different data formats. A newly proposed switching mech-
anism is used in the design of neural network architecture. During the learning
process, the encoder for one specific format also learns to perceive the object
from the perspective of other formats, hence the learned universal representation
contains richer information. With the learned universal representation, it would
be possible to "translate" between different 3D shape formats of the input object
since they share similar embedding of 3D information. Higher performance can
also be achieved for the 3D data synthetic tasks with this method.

1 Introduction
1.1 Latent representation of 3D data

Depending on the measuring method and the processing and storing rules of
information, 3D objects may have various representing formats in the real-world.
On the Euclidean side, they may be represented as RGB-D images, multi-view
images or volumetric data. On the Non-Euclidean side, they may be represented
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as point clouds or meshes. However, no matter in which format store the 3D
information of the object, when it comes to the computer vision tasks, e.g.
detection, segmentation, or even other generative tasks, the target 3D object
will usually need to be converted into a latent representation first for further
computation.

Before the surge of deep learning, it was common to use classical mathematical
algorithms to get those 3D shape latent representations (or, 3D shape descriptors).
This computation process usually involves strict mathematical formulas and
deductions to get rule-based representations, e.g. Laplacian spectral eigenvectors
[15], or heat kernel signature [17]. Thanks to the development of deep learning
algorithms, the performance of some computer vision tasks, especially in the
detection and segmentation domain [7], have been boosted. During the training
of those neural networks, latent representations of input have already been
generated implicitly. Although this learning process has been regarded as
a black box at earlier years, researches in the visualization of learned latent
representations have been conducted [24]. Throughout the computer vision
learning history, a better method for learning the latent representations leads to
better performance on those tasks.

1.2 Universal vector representation

Learning an universal vector representation touches on two long-standing and
important questions in computer vision: how do we represent 3D objects in
a vector space and how do we recognize this representation from images. [6]
believed that a good vector representation for objects must satisfy two criteria:
it must be (1) generative in 3D; (2) predictable from 2D. In this report, we learn
universal representations for 3D objects of different formats by leveraging the
advantages of deep learning algorithms. For simplicity, we are only investigating
Euclidean data in this report.

On the one hand, the vector representation can be learned from different data
formats such as multi-view images and volumetric data; On the other hand, it
can be inferred during the training process of different neural networks designed
for different machine vision tasks. For analytical tasks, especially for the classic
classification tasks, vector representations will usually be learned before the
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last several fully connected layers. These vector representations are sometimes
referred as bottleneck features. Those bottleneck features can be further adapted
for other tasks, as it is done in transfer learning. For synthetic tasks, typical
generative models are AE/VAE [11] and GAN [8]. They learn the mappings
between the latent space and the real-world data space, thus reconstructions
from latent representations are possible. Theoretically, if we can learn universal
representations that contain both view information and geometry information,
better synthetic results may be achieved. Hence those generative models may be
modified for learning universal representations in our case and may also be used
as a verifier to indicate the performance.

From another perspective, the process may also be regarded as data compression
and the richness of its implicitly stored feature information is of pivotal impor-
tance. Since the learned universal vector representations can be used not only
for synthetic tasks, but also for analytical tasks, we are also expecting higher
performance in regular machine vision tasks like classification with them. Since
we want to merge the information from different data formats, the resolution of
data should also be considered. It would be apparently inappropriate to have a
fixed-size latent vector to represent objects of different resolutions, even under
the same format. Hence, the main idea of this report is to learn a fixed length of
vector representation for an object of a specific category, under certain resolution
limitations of different data formats.

2 Related Work

2.1 Learning representations (encoders)

Although latent representations are also learned in analytical tasks, they have
been seldom specifically explored. There are numerous papers using various
network architectures for 3D machine vision tasks. A typical one is VoxNet[13],
which was the first to use 3D convolution operations to learn features from
volumetric data. Its subsequent work of multi-level 3D CNN [5] learns multi-
scale spatial features by considering multiple resolutions of the voxel input.
Regarding the multi-view images format, a typical method is MVCNN [16]. It
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uses a parameter sharing network to encode images of one object from different
views, followed by a view pooling layer before the last several fully connected
layers. A subsequent work of GVCNN [4] groups all the views before encoding.
Each group uses one separate parameter sharing network to encode this group
of images, then a group fusion operation is defined in the latter step.

Methods combing the information from both multi-view images and volumetric
data have also been proposed. For example, Qi et al. [14] proposed to use
multi-resolution filtering in 3D for multi-view CNNs, as well as using subvolume
supervision for auxiliary training. Another example is FusionNet [10], which is
a fusion of three different networks: two VoxNets and one MVCNN. The three
networks fuse at the score layers where a linear combination of scores is taken
before finding the class prediction. Voxelized CAD models are used for the first
two networks and 2D projections are used for latter network.

2.2 Generating from representations (decoders)

Unlike analytical tasks, latent representation matters a lot to synthetic tasks.
There are mainly two types of deep generative models nowadays: AE/VAE [11]
and GAN [8]. Based on those two frameworks, various methods have been
proposed to learn latent representations from 3D data and to reconstruct back
to them. ShapeNet [23] used a reverse VoxNet, i.e. a decoder, to reconstruct
3D shapes from a latent representation which was learned from depth maps.
The dataset they created is also being widely used for 3D machine vision tasks
nowadays. Girdhar et al. [6] used AE directly to encode and decode 3D shapes.
With the learned latent representation from volumetric data, they proposed a
TL-embedding network which forces another encoder to learn a exactly the
same latent representation from corresponding images. This makes it possible
to generate 3D shapes from images. VAE has also been used in a similar way
for the 3D shape learning in other paper [2].

View information from images has also been widely investigated for 3D shape
reconstruction. Choy et al. [3] proposed a framework named 3D-R2N2 to
reconstruct 3D shapes from single- or multi-view images. By leveraging
the power of Long Short-Term Memory(LSTM), they discovered that the
reconstruction is incrementally refined as the network sees more views of
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the object. Some other papers also have used view information as auxiliary
constraints for the training of their 3D AEs. Tulsiani et al. [18] trained an
additional pose CNN to add an additional consistency loss between the inferred
depth image from a perspective and its ground truth. This inferred ray-trace
pooling view has also been used in the adversarial part of [9] for weakly
supervision.

Methods used GAN for 3D shape generation have also been proposed. 3D-GAN
[21] makes it possible to generate novel and relatively highly realistic 3D model
in the unsupervised way. It introduced three loss functions regarding image
encoder, generator and discriminator respectively. The update of all components
in the framework is also possible. Besides, visualizing the representation
vector, interpolation, arithmetic have been conducted to analyse the vector
representations. Liu et al. [12] adapted this idea and proposed an interactive
modeling framework that can generate realistic volumetric data with edit and
especially defined snap operations. Semantic information has been used in
Global-to-Local GAN (G2LGAN) [19] and SAGNet [22] to improve the synthesis
quality. G2LGAN also proposed a part refiner to refine the individual semantic
part output from local GANs. While showing that segmented information from
3D data can be embedded into the latent space, their work does not include too
much discussion of the latent space and its connection with other data formats
like image or common voxel.

3 Methodology

Although both AE and GAN were developed for data synthesis tasks by using
neural networks, they are quite different in their kernel ideas. AEs use real-world
data as input. An encoder-decoder structure network is used to encode the input
into latent representation, and subsequently reconstruct it back from the latent
representation. The most important loss here is the reconstruction loss. With a
well-trained decoder, it is possible to reconstruct the object with a well-learned
latent representation. An unsolved question here is how can we force the latent
representation to be meaningful. GANs are totally different from AEs since
they do not use real-world data as input directly. Instead, they train a generator,
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(a) Vanilla Autoencoder

(b) Switch-Autoencoder

Figure 2.1: An illustration of the (a) vanilla Autoencoder (AE) and the proposed (b) Switch-
Autoencoder (SAE). AE only takes volumetric data as input, while SAE takes input from both
image data and volumetric data, using a switch to randomly choose the learning source. The feature
maps/vectors learned inside the network may be regarded as latent representations.

which is similar to the decoder in AEs, on the latent space directly. Generated
data will be processed into a discriminator to classify it is generated or from the
real world. The whole training process is essentially the competition between
the generator and the discriminator. For GANs, the distribution of the latent
representation is usually pre-defined as a Gaussian, but how to disentangle the
features in the latent space is still a tough question.

In our case, since we are interested in learning a universal representation from
3D data of multi-formats, the original 3D information should be fully utilized.
Hence here we adopt the AE architecture to learn latent representations. GAN
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Figure 3.1: The basic structure of a generative adversarial network (GAN). It trains a generator to
decode the latent vector representation to a 3D shape, by using a discriminator to force the generator
to generate shapes as real as possible.

is great for generating the 3D data, it may be combined with the AE part for
better reconstruction in the future step.

3.1 Vanilla Autoencoder

Firstly, we started testing our idea with a simple Autoencoder. As shown in
Figure 2.1(a), it is just a normal AE but with 3D convolutions. The loss of
this network is the reconstruction loss. There are different ways to compute
the reconstruction loss including MSE, Cross Entropy, and IoU. IoU is more
like an indicator and does not provide smooth gradient. MSE is mainly used
for preliminary tests. In our case, we use the cross entropy as loss function.
The output before the last layer has been rectified to a range from 0 to 1. The
dataset we are using here is the ShapeNet [23]. It provides a wide variety of
real 3D objects, which makes the data-driven learning and analysing of the
latent representation possible and promising. The synthesis result from this
architecture may be regarded as the baseline of performance.

3.2 The Switch-Autoencoder

The multi-view images data is added to the input side in this setting of experiment.
Here, we propose a Switch-Autoencoder (SAE) for universal latent representation
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learning. We train two encoders separately for the voxel input and the image
sequence input. A switch is attached before the decoder. During the training,
the network randomly selects the encoded output from one encoder as the latent
representation, then inputs it to the decoder. This operation of switching between
encoders continues during the whole end-to-end training. In the TL-embedding
network proposed in [6], the image encoder is forced to learn the same embedding
from that of the voxel encoder, hence the image encoder does not contribute
to the improvement of the generator. Unlike TL-embedding network, in our
case, both encoders learn to perceive the object from the perspective of the other
format, hence both encoders contribute to the improvement of the generator.

The structure of proposed SAE is shown in Figure 2.1(b). For the image encoder
(encoder B), we use an architecture that is similar to multi-view CNN [16]. Each
view is encoded with a parameter-sharing network, followed by a view pooling
layer. Then it will be passed through several additional fully connected layers
to get the final latent vector representation. Here, we also use a network with
residual blocks in the image view encoder.

3.3 GAN

In order to improve the synthesis quality, the framework of GAN may be
integrated here. In this report, we are focusing on examining the quality of
generated shapes from GAN with normal Gaussian vector input. Its basic
structure is shown in Figure 3.1. The discussion and experiments of combining
AE/VAE and GAN is in the scope of our next step.

There are several non-negligible problems in the vanilla GANs. When training
the standard GAN, the loss of the discriminator and generator can oscillate
gradually, which make the training process unstable. Besides, vanilla GANs
also have the problem of mode collapse, which produces limited varieties of
samples. Here, we use the Wasserstein GAN(WGAN) [1] with gradient penality
[20], which has two main benefits: (1) improved stability of training process;
(2) a meaningful loss metric that correlates with generators convergence and
sample equality. We believe that merging the WGAN in the framework will
improve the quality of object generation.
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4 Experimental Results
4.1 Vanilla Autoencoder

Figure 4.1 shows some results from the vanilla Autoencoder. From it we can tell
that the network is able to reconstruct the input 3D shapes from learned latent
representations. Besides, the features of different types of chairs have also been
well captured.

Figure 4.1: Reconstruction results of chair objects from the vanilla Autoencoder.

4.2 The Switch-Autoencoder

Some reconstruction results from SAE is given in Figure 4.2. The up row
shows the results with volumetric data as the test input. The bottom row shows
the results with multi-view image sequence as the test input. From it we can
see that the voxel-encoder still preserves a relatively high quality, while the
image-encoder also captures decent 3D information. The sharp areas are difficult
for the image-encoder, as can be observed from the generated chair legs.

Overall, comparing with the results from only one format source, objects
generated from universal representations with both format sources look better.
The generated chairs are usually less rough.
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(a) SAE reconstruction results with volumetric data input

(b) SAE reconstruction results with image data input

Figure 4.2: Reconstruction results of chair objects from the proposed Switch-Autoencoder, using
(a) volumetric data or (b) image data as test input, respectively.

4.3 GAN

GANs are unsupervised learning algorithms that use a supervised loss as part
of the training. So their results are expected to be as good as the ones from an
AE. Figure 4.3(a) gives some results from a vanilla GAN. We can observe that
the vanilla GAN only captures very basic bulky features of chairs but fails on
the details, even using a relatively higher resolution. Another disadvantage of
the vanilla GAN is that, it can fall into mode collapse easily. In this case, the
discriminator is trained too well to classify generated models too easily, thus the
generator does not learn anything at all.

As discussed in Section 3, we are adopting the WGAN method with gradient
penalty to overcome the aforementioned problems. Since we are using WGAN,
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the last sigmoid layer of the discriminator has been removed. No log operations
were used for both losses. Besides gradient penalty, noise was added by doing
interpolation between generated and real data before feeding into the discrimina-
tor. Figure 4.3(b) gives some optimal results obtained in our experiments. The
latent representations we used were sampled from a distribution of N(0, 0.33).
As can be observed from the figures, although the generated objects are not
extreme smooth, they are already in decent chair-like shapes.

Experiments with other settings have also been carried out. For example, Figure
4.4(a) gives the results of using original sigmoid layer instead of tanh for the
last layer of generator. The model may generate lots of floating artifacts shortly
after the training begins. In order to reduce the memory consumption for future
architecture update, we tried to half the number of feature maps we used between
the layers. From Figure 4.4(b) we can observe that obviously the results are

(a) Reconstruction results from GAN

(b) Reconstruction results from WGAN-GP

Figure 4.3: Reconstruction results of chair objects from (a) vanilla GAN and (b) WGAN-GP. The
vanilla GAN only captures very basic bulky features of chairs but fails on the details, even using a
higher resolution. WGAN-GP can already generate decent chair-like shapes.
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not promising anymore. Regarding the initial parameter distribution of the
latent representations, experiments have been done with the more often used
distribution of N(0, 1), results are shown in Figure 4.4(c). Apparently the
generated objects are more noisy.

(a) Using sigmoid layer for generator, instead of tanh

(b) Using half number of feature maps

(c) Using a latent vector distribution of N(0, 1), instead of N(0, 0.33)

Figure 4.4: Reconstruction results of chair objects from WGAN-GP with other different settings.
(a) For the last layer of the generator, using sigmoid instead of tanh. (b) Using half number of feature
maps in the network. (c) The latent representations are sampled from a distribution of N(0, 1),
instead of N(0, 0.33).
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4.4 AE/VAE-GAN and more

In previous subsections, we have proven that our AE model and GAN model are
working. To learn a better universal representation and achieve better synthesis
performance, we may combine those two models since the decoder part in AE
is exactly the generator part in GAN. However, during the actual testing, this
idea never worked if they are straightforwardly combined. The main problem of
this idea is that the learned universal representation with AE does not naturally
follow a Gaussian distribution, while it is a mandatory requirement for GAN as
the input. Hence, Variational Autoencoder (VAE) should be used here for the
integration. For the encoder of an Autoencoder, each input is mapped directly
to one point in the latent space, which leads to the discontinuous latent space
and huge gaps between groups of similar points from the input space. In a
variational autoencoder, each input is instead mapped to a multivariate normal
distribution around a point in the latent space, which makes a continuous latent
space. Continuous latent space also makes the generation of new 3D object
possible and the analysis of latent space easier.

On the other hand, this report is mainly about the learning process of universal
representations. Reconstructed objects are used to validate the effectiveness of
proposed method. In order to make it more illustrative, experiments regarding
the investigations in the latent space should be carried out in future. For example,
not only for the synthesis tasks, but also for the analytical tasks including object
classification.

5 Conclusion and Outlook

In this report, we proposed a switch autoencoder method to learn universal latent
representations for 3D object with multiple-formats input. Synthesis experiments
have been carried out to validate the effectiveness of the proposed method. With
the learned universal representation, decoders can generate 3D objects of better
quality. The next step of our future experiments is to make VAE and VAE-GAN
work, with which the interpretability of the learned latent representation may be
explored. As discussed in Section 4.4, more experiments will be done regarding
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the latent space, e.g. similarity search or shape interpolation. In the future, other
3D formats like point cloud may be included. Semantic information may also
be used here for better interpretable latent representation learning.
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