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SUMMARY

Laboratory research into bulk-type solid-state batteries (SSBs) has
been focused predominantly on powder-based, pelletized cells
and has been sufficient to evaluate fundamental limitations and
tailor the constituents to some degree. However, to improve exper-
imental reliability and for commercial implementation of this tech-
nology, competitive slurry-cast electrodes are required. Here, we
report on the application of an approach guided by design of exper-
iments (DoE) to evaluate the influence of the type/content of poly-
mer binder and conductive carbon additive on the cyclability and
processability of Li1+x(Ni0.6Co0.2Mn0.2)1�xO2 (NCM622) cathodes in
SSB cells using lithium thiophosphate solid electrolytes. The predic-
tions are verified by charge-discharge and impedance spectroscopy
measurements. Furthermore, structural changes and gas evolution
are monitored via X-ray diffraction and differential electrochemical
mass spectrometry, respectively, in an attempt to rationalize and
support the DoE results. In summary, the optimized combination of
polymer binder and conductive carbon additive leads to high elec-
trochemical performance and good processability.

INTRODUCTION

Advances in electrochemical energy storage have been going at breakneck pace in

recent years. This is largely attributed to progress in mobile devices. Conventional

Li-ion batteries (LIBs) have played a major role in improving connectivity in a global-

ized world. As battery technologies progressed, novel concepts of integrating them

into existing systems have emerged, ranging from solving environmental problems

to revolutionizing the century-old automobile industry. State-of-the-art LIBs remain

the first choice for energy-storage systems. However, LIBs have limitations. First,

they do not yet possess the desired energy and power densities for mobility and

transportation applications. Second, they possess an inherent safety concern

because of the flammable components in the system, which have led to well-docu-

mented spontaneous combustion and explosions.1

Solid-state batteries (SSBs) are widely seen as the next generation of lithium batte-

ries that could potentially overcome the previously mentioned limitations.2 SSBs

may possess increased power and energy densities, improved safety conditions,

and a larger operating temperature window. These advantages would allow them

to be used in a wider range of applications. The main components of SSBs are the

cathode composite, the solid-electrolyte separator layer, and the anode composite

(or Li metal). The cathode composite is a solid dispersion of solid electrolyte, active

material, and additives. The separator layer is a densely packed solid electrolyte with

sufficient mechanical stability and high tolerance against dendrite growth, in the
Cell Reports Physical Science 2, 100465, June 23, 2021 ª 2021 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

https://twitter.com/Janek_Lab_JLU
https://twitter.com/TBrezesinski
mailto:jun.teo@kit.edu
mailto:juergen.janek@kit.edu
mailto:torsten.brezesinski@kit.edu
https://doi.org/10.1016/j.xcrp.2021.100465
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrp.2021.100465&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS Article
case of a Li metal anode.3 In contrast, LIBs have a porous separator filled with flam-

mable organic electrolyte.

There are two main groups of solid electrolytes under consideration for next-gener-

ation SSBs, namely, sulfides/oxides (glasses, ceramics, and glass-ceramics) and

polymers. Each has advantages and disadvantages. The sulfide (thiophosphate)

solid electrolytes have high room-temperature ionic conductivities2 and low elastic-

ity moduli and shear strengths,4,5 and they possess good processability at low tem-

peratures. However, they are highly reactive under ambient conditions, requiring

them to be processed in a dry environment. In addition, the reaction with water (at-

mospheric conditions) generates toxic gases such as H2S, thus contributing to a

potentially new safety issue. Moreover, sulfide solid electrolytes have narrow elec-

trochemical stability windows and show significant interfacial reactivity at both low

and high voltages.6 In contrast, the oxide ceramic electrolytes are relatively more

stable under ambient conditions and do not generate toxic gases when exposed

to humidity. Their electrochemical stability windows are also larger compared with

those of sulfides. However, they possess lower room-temperature ionic conductiv-

ities, are brittle, and typically synthesized at high temperatures. Furthermore, pro-

cessing of oxide solid-electrolyte SSBs is extremely challenging. Oxides are true

ceramic materials with high elasticity moduli and shear strengths, making the forma-

tion of low-impedance interfaces between the solid electrolyte and the cathode

active material (CAM) achievable only at high temperatures.7 Lastly, the polymers

are often considered ideal solid electrolytes, possessing strong dendrite growth

resistance and improved safety and reliability, but they still show too low

conductivity.8,9

In the last few years, there has been an exponential growth in the research and devel-

opment of predominantly powder-based, pelletized SSBs, ranging from the tailored

composition of the cathode composite,10,11 particle size,12 cell-fabrication pres-

sure,13 and stack pressure applied during electrochemical cycling14–17 to the oper-

ation temperature.18 Such cells often show good electrochemical performance.

However, those that are typically used on a laboratory level are not scalable. Further-

more, variances between assembled SSBs are commonly observed for pelletized

cells, resulting in discrepancies of experimental results. To be cost competitive

with LIBs and exhibit improved reliability, SSBs have to transition toward sheet-

based designs.

The concept of sheet-based (sulfide) SSBs has been thoroughly discussed and is re-

garded as feasible.19,20 However, although there are almost three decades of expe-

rience in processing of porous electrode sheets for LIB applications, there is little

experience in processing of compact solid-state electrode sheets. And there are still

numerous challenges for the production of sheet-based SSBs, the first of which is the

formulation of a slurry recipe (choice of solvent, cathode components, etc.). For

example, the application of sulfide solid electrolytes requires solvents to be nonpolar

to avoid unwanted side reactions. Consequently, the polymer binders have to be

nonreactive, are preferably soluble in nonpolar solvents, and should provide suffi-

cient mechanical stability to the fabricated electrode sheets and not severely affect

the ionic conductivity of the solid electrolyte.21 Furthermore, binders have different

functional groups, and it is crucial to understand their interaction with the different

components in the cathode composite and how that influences the SSB operation.

The combinations of solvent and binder alone highlight the considerable number of

parameters (viscosity, adhesion force, etc.) contributing to the electrode quality and
2 Cell Reports Physical Science 2, 100465, June 23, 2021
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ultimately the electrochemical performance. Under normal circumstances, the num-

ber of experiments required increases on a factorial scale with the number of param-

eters under consideration. In addition, when dealing with a large dataset, with large

numbers of possible combinations between parameters, important correlations

among them may be missed. Here we use a design of experiments (DoE) approach

to tailor the cathode-composite-sheet preparation process for improved electro-

chemical performance. DoE is a well-established method for optimizing experi-

mental sets with the goal of maximizing statistical power and/or minimizing the

number of trials. We exploit DoE to reduce the number of experiments without

compromising information quality (statistical power) due to the relatively cost- and

labor-intensive process of electrode-sheet preparation.

In this work, we describe the screening of different types of polymer binders and car-

bon additives and their respective contents with the help of a DoE approach (we

have several fixed parameters for the slurry recipe, such as the choice of solvent

and cathode active material). Three candidates for binders and two candidates for

additives are selected, and the design is evaluated using the statistical software

JMP 14 (SAS Institute Inc.). A set number of electrode sheets are created with various

combinations of the binder type/content and carbon type/content, which are sub-

jected to electrochemical and mechanical tests in SSB full cells with a carbon-coated

Li4Ti5O12 (LTO) anode. We then feed this data back into the software to build a sim-

ple linear model that allows the prediction and optimization of the materials’ com-

bination. Finally, we use a combination of ex situ and operando techniques to better

understand the cell cyclability and justify the predictions.
RESULTS AND DISCUSSION

DoE approach

The goal of the present DoE-guided approach was the optimization of slurry-cast cath-

odes for application in SSBs with regard to the type and content of polymer binder and

carbon additive (Scheme 1). The first step involved defining the experimental condi-

tions. As mentioned, we focusedmainly on the variation of thematerial-related param-

eters and therefore fixed the process-related ones. The material-related parameters

were defined as follows: (1) carbon type (Super C65 carbon black or vapor-grown car-

bon fibers [VGCF]) in categorical roles, (2) carbon content (0.5–1.5 wt %) in continuous

roles, (3) binder type (polyisobutene [OPN], poly(styrene-co-butadiene) rubber [SBR],

or hydrogenated nitrile butadiene rubber [hNBR]) in categorical roles, and (4) binder

content (1.0–3.0wt%) in continuous roles,with ‘‘categorical’’ implying that the variables

are represented as they are and ‘‘continuous’’ implying that the variables can be set to

any value between the lower and the upper limits. These made up the first input vari-

ables needed for the program to design a set of experiments. The required number

of runs in this study was 23 (Table S1). Then, all experiments were carried out, and

the resultswere evaluated in termsof capacity retention and specific discharge capacity

after 20 cycles and mechanical properties (bendability and punchability of the cathode

sheet). These formed the second set of input variables. After preparingall 23 electrodes

(details in the Supplemental Experimental Procedures) and performing the necessary

tests, the results were analyzed in JMP 14. To probe the possible interactions among

variables, we used the response surface model (RSM) to fit the data. While evaluating

the model, it is crucial to avoid overfitting. Overfitted models are unnecessarily com-

plex. They fit better to the dataset but producepoorer predictions. Away to avoid over-

fitting is to remove variables of small significance, resulting in a more robust model

while maintaining a high adjusted R2 value. The p value represents the probability of

an outcome under the assumption that the null hypothesis is true. In this study, the
Cell Reports Physical Science 2, 100465, June 23, 2021 3



Scheme 1. Schematic overview of the DoE-guided approach for tailoring of slurry-cast cathodes

in SSBs
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null hypothesis was defined as ‘‘The input variables (with/without their interactions) do

not influence the electrochemical performance and processability of the cathode

sheet.’’ A high p value for an input variable would mean that it does not strongly affect

the electrochemical performance and processability of the cathode sheet. Hence, vari-

ables with p > 0.05 were removed from consideration when building the model. An

advantage of using the adjusted R2 value over the R2 value is that it takes interactions

amongvariables intoaccount and is abetter representationof amodel that hasmultiple

variables. The closer the adjustedR2 value is to 100%, the better themodel is at predict-

ing the output variables.

For high prediction power, the number of parameters was reduced to eight and six

for the capacity retention and specific discharge capacity, respectively. When

considering both electrochemistry and mechanical outputs, the minimum number

of parameters required was six (Table S2).

Optimizing for electrochemical performance

Monitoring capacity retention helps to quantify the cell degradation, whereas the

specific discharge capacity is an indication of the practical energy storage capability

of the cell. In general, the large scattering of the electrochemical performance

among cells of different binder/carbon combinations already indicates the strong

dependence on the material type and content (Figure S1). To gain more insight

on how each parameter affects the electrochemical performance, the selected pa-

rameters from all 23 cells were fed into the statistical program to create prediction

profiles independent from one another.

The plots in Figure 1 show the corresponding combinations of material parameters

and their influence on the specific discharge capacity and capacity retention. The
4 Cell Reports Physical Science 2, 100465, June 23, 2021



Figure 1. Prediction profiles generated for the optimization of electrochemical performance

The optimum combinations for (A–D) 20th-cycle specific discharge capacity and (E–H) capacity retention after 20 cycles are extrapolated to be OPN (1.0

wt %)/VGCF (0.5 wt %) and hNBR (1.0 wt %)/VGCF (0.5 wt %), respectively.
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steeper the slope of the line, the larger the influence of the parameter. The intersec-

tion with the dashed red lines represents the optimal value for the respective vari-

able. The blue lines for the binder and carbon type represent the 95% confidence

interval for each categorical value. For the binder and carbon content, the gray areas

encompassed by the blue curves represent the 95% confidence band on a contin-

uous level. Looking at the generated profiles, themagnitude of influence of the input

variables on both the specific discharge capacity and the capacity retention de-

creases from binder type to binder content, to carbon type, and lastly to carbon con-

tent. The optimal recipe shown in Figures 1A–1D to maximize the specific discharge

capacity predicted achieving ~96 mAh/gNCM622 after 20 cycles. This recipe would

require OPN as the polymer binder and VGCF as the conductive additive, with con-

tents of 1.0 and 0.5 wt %, respectively. In comparison, when optimizing for capacity

retention (Figures 1E–1H), a recipe resulting in ~97%would require a combination of

1.0 wt % hNBR and 0.5 wt % VGCF.

In summary, the only difference in the independent optimization of these two elec-

trochemical parameters was the binder material (Figures 1A and 1E). For optimized

capacity retention, apparently hNBR yielded the best result. However, the main

reason for this is that the initial specific discharge capacity was the lowest among

the three binder types (~30 mAh/gNCM622 lower than for OPN). In both cases, the

optimal value for binder was 1.0 wt % (Figures 1B and 1F). The need for low binder

content can be attributed to the employed polymers being insulating in nature, and

high content increases the resistance by impeding charge transfer.22,23 However, in

comparing the slope for binder content, a larger influence on capacity retention than
Cell Reports Physical Science 2, 100465, June 23, 2021 5



Figure 2. Cycling performance of electrochemically optimized cathodes

Specific discharge capacity (dark blue) over 20 cycles and corresponding Coulombic efficiency

(light blue) of a slurry-cast cathode (uncoated NCM622, b-Li3PS4) with OPN binder (1.0 wt %) and

VGCF conductive additive (0.5 wt %). LTO and b-Li3PS4 served as the pellet anode and solid-

electrolyte separator, respectively, in the SSB cell. The electrochemical data represent the optimal

recipe for maximum capacity and correspond to DoE run 1 (see Table S1).
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on specific discharge capacity is apparent. The profiles (along the x axis) are interde-

pendent, and the steeper slope could result from its dependence on hNBR as the

choice of binder. As for carbon-related parameters, VGCFwas chosen as the optimal

choice in both cases (Figures 1C and 1G). This can be explained, at least partly, by its

lower specific surface area compared with Super C65 (by a factor of ~6). It has been

reported recently that the presence of carbon additives may potentially activate and

accelerate the formation of decomposition products,24–26 which leads to impedance

buildup. A lower specific surface area may reduce the number of contact points be-

tween the electronically conductive carbon and the thiophosphate solid-electrolyte

particles, thereby reducing the probability of side reactions.27,28 Lastly, carbon con-

tent of 0.5 wt %was found to be optimal in both cases (Figures 1D and 1H). Themore

gradual slope compared with the other parameters reveals that it has a minor influ-

ence on the overall electrochemical performance of the cell.

In the present work, the specific discharge capacity was chosen to represent the electro-

chemical performance, because the capacity retention was not an accurate starting

indicator. This is because a low-capacity cell would show inherently higher capacity

retention. However, capacity retention could work as a second indicator for cells deliv-

ering similar discharge capacities. Hence, in this study, the SSB cell optimized for elec-

trochemical performance is based on the specific discharge capacity and is represented

by a slurry-cast cathode with 1.0 wt % OPN and 0.5 wt % VGCF. This recipe has been

investigated in one of the 23 experimental runs (DoE run 1, see Table S1). The cyclability

at a rate of C/10 and 25�C of the cell using uncoated Li1+x(Ni0.6Co0.2Mn0.2)1�xO2

(NCM622) CAM (~12 mgNCM622/cm
2 areal loading) is shown in Figure 2, in which the

initial specific charge and discharge capacities amounted to ~157 and 103 mAh/

gNCM622, respectively, corresponding to~66%Coulombic efficiency. TheCoulombic ef-

ficiency stabilized above 99% after four cycles. After 20 cycles, the capacity decayed to

~96 mAh/gNCM622. This correlates with a fade rate per cycle of ~0.36%.

Optimizing for electrochemical performance and processability

Optimization for electrochemical performance established that low binder content is

necessary for optimum cyclability. However, slurry-cast cathodes with low binder
6 Cell Reports Physical Science 2, 100465, June 23, 2021



Figure 3. Prediction profiles generated for the optimization of electrochemical performance and processability

The optimum combination for the (A, D, G, and J) 20th-cycle specific discharge capacity, (B, E, H, and K) bending test, and (C, F, I, and L) punching test is

OPN (2.7 wt %)/VGCF (0.5 wt %). The scale used for the bending and punching tests is detailed in the Experimental Procedures and Figure S2.
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content are usually prone to delamination and cracking during cell preparation. For

practical applications, the electrodes have to bemechanically stable to fulfill the require-

ments for roll-to-roll processing. The mechanical stability was probed via two in-house

mechanical tests (Figure S2), which simulated common stages in an industrial fabrication

process.19 The scaling values from 1 to 4 were defined as being continuous and should

be considered goodness values (they do not represent the theoretical upper and lower

limits). In fact, JMP 14 extrapolated a system with processability above our set limit,

which meant a slurry-cast cathode with mechanical properties better than what was

observed during testing. For electrochemical performance, the 20th-cycle specific

discharge capacity was chosen as the only input variable for the reasons explained

earlier. Bending and punching tests were used as input variables to represent the pro-

cessability of the electrode sheets. The generated profiles in Figure 3 show that there

are certain trade-offs to be expected among thematerial-related variables. OPN binder

was found to be the preferred choice for achieving slurry-cast cathodes with both good

electrochemical performance and good processability. The profiles indicate that the

choice of binder is the bottleneck for electrochemical performance (Figure 3A) but

only plays a minor role in processability (Figures 3B and 3C). However, the profiles for

binder content display a small influence on electrochemical performance (Figure 3D),

whereas the content is a significant bottleneck for processability (Figures 3E and 3F).

Both bending and punching tests indicated that higher binder content is necessary

for optimum processability. A larger fraction of polymer binder leads to a more

compliant and processable system. However, in exchange for improved processability,

the electrochemical performance would be negatively affected. To optimize for both
Cell Reports Physical Science 2, 100465, June 23, 2021 7



Figure 4. Cycling performance of electrochemically and processability optimized cathodes

Specific discharge capacity (dark blue) over 20 cycles and correspondingCoulombic efficiency (light blue) of

a slurry-cast cathode (uncoated NCM622, b-Li3PS4) with OPN binder (2.7 wt %) and VGCF conductive

additive (0.5 wt %). LTO and b-Li3PS4 served as the pellet anode and solid-electrolyte separator,

respectively, in the SSB cell. The electrochemical data represent the extrapolatedoptimumcombination for

maximum electrochemical performance and processability.

ll
OPEN ACCESS Article
electrochemical performance and processability, a recipe with 2.7 wt % binder content

would be required. This trade-off between electrochemical performance and mechan-

ical stability is also in agreement with modeling studies performed on composite

cathodes in SSBs.29 As for carbon-related parameters (Figures 3G–3L), the slope in

the prediction profiles is generally flatter than that of the binder-related parameters,

suggesting a smaller degree of influence on both the electrochemical performance

and the processability of the cathode sheets. Nevertheless, VGCF with content of 0.5

wt % was chosen as the optimized fraction of conductive additive.

In summary, the optimized recipe regarding electrochemical performance and cath-

ode processability was equally composed of 2.7 wt % OPN and 0.5 wt % VGCF. This

is somewhat different from the recipe that was solely optimized with regard to elec-

trochemical performance, in which only 1.0 wt % OPN was included. The VGCF con-

tent was similar for both recipes.

Representative cycling data at a rate of C/10 and 25�C of the SSB cell using uncoated

NCM622 CAM (optimized for both electrochemistry and processability) are shown in

Figure 4. The initial specific charge and discharge capacities were ~147 and 107

mAh/gNCM622, respectively, corresponding to ~73%Coulombic efficiency.We hypoth-

esize that the higher Coulombic efficiency (by ~7%) results from more extensive

coverageof theNCM622 secondaryparticleswithpolymerbinder, i.e., fewer solidelec-

trolyte/CAMcontact points for performance-decreasing (electro-)chemical reactions to

occur.After 20 cycles, the capacitydecayed to~90mAh/gNCM622. This corresponds toa

fade rate per cycle of ~0.84%,which is about twice that of the cell optimized for electro-

chemical performance only. With a measured 20th-cycle specific discharge capacity of

~90mAh/gNCM622, comparedwith the extrapolated valueof 93mAh/gNCM622, this sug-

gests that the model built in JMP 14 from the DoE approach is quite robust. The long-

term cycling performance is shown in Figure S3.

Investigating binder limitations

Applying the DoE approach led us to an optimized recipe for the fabrication of

slurry-cast NCM622 cathodes. As we have shown, both binder type and content
8 Cell Reports Physical Science 2, 100465, June 23, 2021



Figure 5. Cycling performance of SSB cells using different polymer binders

(A) First-cycle charge/discharge curves of slurry-cast cathodes (uncoated NCM622, b-Li3PS4) with

2.0 wt % polymer binder (blue, OPN; green, SBR; pink, hNBR) and 1.0 wt % VGCF conductive

additive. LTO and Li6PS5Cl served as the pellet anode and solid-electrolyte separator, respectively,

in the SSB cells.

(B) Specific discharge capacities (dark blue/green/pink) over 20 cycles and corresponding

Coulombic efficiencies (light blue/green/pink).
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have the strongest influence on electrochemical performance and sheet processabil-

ity (carbon additives exert a minor influence in both cases). To understand the differ-

ences in cyclability and the role of the polymer binder, we subsequently probed the

respective SSB cells by means of electrochemical impedance spectroscopy (EIS),

electron microscopy, X-ray diffraction (XRD), and differential electrochemical mass

spectrometry (DEMS), see details in the Supplemental Experimental Procedures.

To this end, slurry-cast cathode|Li6PS5Cl|LTO cells were investigated, with the pos-

itive electrode consisting of uncoated NCM622, b-Li3PS4, 1.0 wt % VGCF, and 2.0 wt

% OPN, SBR, or hNBR binder. This carbon/binder combination was chosen to maxi-

mize the electrochemical performance while remaining mechanically stable and

reproducible on the laboratory level. Hence, instead of the recommended 2.7 wt

% content, a 2.0 wt % binder sheet was used. Moreover, Li6PS5Cl was used in the

solid-electrolyte separator layer to minimize detrimental effects from low room-tem-

perature ionic conductivity.

Figure 5A depicts the initial charge/discharge curves at a rate of C/10 and 25�C for the

different polymer binders. As is evident, the cell containing OPN was capable of
Cell Reports Physical Science 2, 100465, June 23, 2021 9
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delivering the largest specific charge and discharge capacities of ~191 and 148 mAh/

gNCM622, respectively, resulting in a first-cycle Coulombic efficiency of ~77%. For

SBR, slightly lower specific capacities of ~177 and 132mAh/gNCM622 (~75%Coulombic

efficiency) were achieved, and hNBR showed the lowest values of ~163 and 105 mAh/

gNCM622 (~64%Coulombic efficiency), respectively. Apart from thebinder, all other SSB

constituents were the same. Hence, one can assign differences in specific capacity and

Coulombic efficiency to the effect of thepolymer binder. This implies an improvedelec-

trochemical stability in the order of OPN > SBR > hNBR, because the initial Coulombic

efficiency decreased in a similar manner. On subsequent cycling, all cells underwent a

rather linear capacity fade, inwhich those comprisingOPNor SBR lost 23%–24%of their

initial specific discharge capacity in the course of 20 cycles. The Coulombic efficiency

stabilized above 99% after six cycles (Figure 5B). In contrast, for the cell with hNBR,

the specific discharge capacity was already reduced by ~50% after 20 cycles, and the

Coulombic efficiency barely exceeded 99%.

Togainmore insight into the factors leading to the differences in capacity retention, EIS

measurements were conducted at 25�C on the SSB cells after 20 cycles. The Nyquist

plots of the electrochemical impedance and the corresponding fits to the data

are shown in Figure S4. Except for OPN, the EIS data were fitted assuming an R1 +

(R2/Q2)(R3/Q3) equivalent circuit. In the former case, an additional Q4 element was

included. R1 is the resistance of the bulk solid electrolyte, R2 is the grain-boundary resis-

tanceof the solid electrolyte, andR3 represents the cathode interfacial resistance.
30 The

resistancesweredeterminedby fitting semicircles to the frequency rangeof the respec-

tive circuit elements and taking the values of the intersection with the x axis. As ex-

pected, the bulk solid-electrolyte (separator) resistance was similar in all cases, ranging

from 43–54U. The calculated values for the cathode interfacial resistance were ~1,250,

1,850, and 4,200 U for OPN-, SBR-, and hNBR-based cathodes (0.64 cm2 electrode

area), respectively, confirming the results from galvanostatic cycling. Because the

tested electrodes differed solely in their polymer-binder component, the EIS data

further suggest the electrochemical stability is in the order of OPN > SBR > hNBR.

Regarding the solid-electrolyte grain-boundary resistance, values of ~250, 550, and

1,450 U were calculated for OPN, SBR, and hNBR, respectively. The latter resistance

has been attributed in the literature to particle fracture and/or (chemo-)mechanical-

driven separation.25,30 Hence, we suspect that these differences may be related to

the different binder material’s inherent capabilities to mitigate suchmechanical degra-

dation/deformation. However, the coverage of the solid-electrolyte particle surface

with polymer binder, which negatively affects the ion conduction (at the grain bound-

aries), must also be taken into account and may have a large impact on the resistance.

For instance, the acrylonitrile groups of hNBR have been reported to exhibit ion-dipole

interactions with the lithium ions of thiophosphate solid electrolytes. This interaction

thus could hypothetically lead to stronger coverage, resulting in larger cathode interfa-

cial resistance.21 However, SBR contains aromatic units as functional groups, exhibiting

weaker intermolecular forces with the solid electrolyte. OPN, which solely contains an

aliphatic hydrocarbon polymer chain without functional groups, is believed to have

the least chemical/physical interactions with the solid electrolyte.

Investigating inhomogeneities

Finally, we addressed the possibility of the different polymer binders of having an

effect on the distribution of the electrode constituents, thereby indirectly affecting

the electrochemical performance. Specifically, combined scanning electron micro-

scopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) analysis was performed

on cathode cross sections. The corresponding SEM images and elemental maps

are shown in Figure S5. The cross sections revealed partial occurrence of VGCF
10 Cell Reports Physical Science 2, 100465, June 23, 2021
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agglomerates. Such agglomerates were more visible in the cathodes containing SBR

or hNBR. Overall, the SEM imaging and EDS mapping indicated that in terms of ho-

mogeneity, the carbon additive in particular is seemingly better distributed in the

cathodes using OPN. This may help in achieving improved electronic conduction,

which is especially important for sheet-based electrodes, in which insulating poly-

mer binder reduces the ionic and electronic partial conductivities. Regarding

porosity, we found no apparent difference among the three binders.

Inhomogeneity in the cathode composite may lead to the appearance of inactive

CAM fractions, causing decreased capacities.31,32 The occurrence of inactive

NCM622 can be observed from the remaining 003 reflection at the initial 2q position

(as seen for the pristine CAM). To eliminate the possibility that the differences in elec-

trochemical performance among polymer binders are related to inactive fractions of

CAM, ex situ XRD measurements were carried out. The XRD patterns for all three

slurry-cast cathodes showed a similar 003 peak shape (in charged state), with the

reflection shifted to lower 2q values (Figure S6). This confirms the absence of inactive

NCM622. However, the asymmetric shape suggested differences in the state-of-

charge (SOC) homogeneity, as usually observed for SSBs.31 The unit-cell volumeafter

the first charge cycle was examined by means of Rietveld-refinement analysis. This

allowed comparison of the lattice parameters with those of NCM622 in a liquid-elec-

trolyte-based cell (used as a reference), in which conclusions can be drawn about the

degree of delithiation (Figure S7). NCM622 CAM (reference) was cycled in a half-cell

configuration under identical conditions to the SSB cells. The initial specific charge

capacities calculated from the x(Li) were ~187, 176, and 171 mAh/gNCM622 for

OPN, SBR, and hNBR, respectively. This is in good agreement with the measured

values (~196, 183, and 165 mAh/gNCM622). Differences can be attributed to errors

in the estimation of x(Li). In addition, these estimations rely on direct comparisons be-

tween solid-electrolyte cells (ex situ) and liquid-electrolyte cells (operando) with the

same CAM, which could be unreliable because of the SSB disassembling process.

Hence, an attempt on operando XRD was made. The specialized cell setup used is

shown in Figure S8, and the analysis of the operando synchrotron data can be found

in Figure S9. Regardless, the operando XRDmeasurements were able to verify the ex

situ data and the SEM/EDS investigations: inactive CAM plays a minor or no role.

Investigating binder stability via gas evolution

Gas evolution during electrochemical cycling has been reported to adversely affect

the state of health of batteries. Although it is not as apparent as in liquid-electrolyte-

based cells, gassing occurs for SSBs in the first few cycles. Overall, material degra-

dation from the reaction of released gases with the electrode constituents appears

to be less significant for the latter cells. Nevertheless, the sulfide solid electrolytes

are degrading over time as a result of outgassing of the active material.

Together with the results from EIS, XRD, and SEM, we assume that differences in the

chemical/electrochemical stability of the polymer binder in the system have a signif-

icant influence on the overall performance of the SSB cells. Operando gassing

studies via DEMS were thus performed to determine the stability of the different

binders based on the resulting gas evolution. To this end, NCM622 was cycled at

a rate of C/20 and 45�C in the voltage range of 2.9–5.0 V versus Li+/Li. The higher

charge cutoff voltage (5.0 versus 4.4 V) and temperature (45�C versus 25�C) were
chosen with the intention of increasing the evolution of highly reactive singlet oxy-

gen (1O2) from the CAM lattice and observing its potential influence on the compo-

nents in the cathode sheets, especially the binder material. The respective cells were

cycled for three cycles, and gas evolution was observed with decreasing amounts in
Cell Reports Physical Science 2, 100465, June 23, 2021 11



Figure 6. Gassing behavior of SSB cells using different polymer binders

(A–C) Voltage profiles and corresponding time-resolved evolution rates (left y axis) and cumulative amounts (right y axis) for (D–F) H2, (G–I) O2, and (J–L)

CO2, as well as the normalized ion currents for (M–O) SO2. The SSB cells consisted of a slurry-cast cathode (uncoated NCM622, b-Li3PS4) with 2.0 wt %

OPN, SBR, or hNBR binder and 1.0 wt % VGCF conductive additive, a Li6PS5Cl solid-electrolyte pellet separator, and an indium anode.
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consecutive cycles at increasing onset voltages (from ~4.3 to 4.6/4.8 V) (Figures 6A–

6C). Four gases were detected: H2, O2, CO2, and SO2. The evolution of H2 (m/z = 2)

only occurred at the beginning of the first charge cycle and could be attributed to the

reduction of trace water at the anode (Figures 6D–6F).33 For O2 evolution, the cells

are required to achieve >80% SOC.34,35 This condition was met for all cells, and the

mass signal (m/z = 32) showed a sharp peak (Figures 6G–6I) with onset voltages of

~4.3 V for OPN-based cathodes and ~4.4 V for SBR- and hNBR-based cathodes in

the initial cycle. The origin of O2 evolution has been proposed in the literature to

be a consequence of the destabilization of the layered Ni-rich oxide lattice at high

voltages (>4.5 V versus Li+/Li).34,35 Although the OPN-based cell was able to reach

~89% SOC (243 mAh/gNCM622), the SBR- and hNBR-based cells only achieved ~86%

(235 mAh/gNCM622) and ~80% (220 mAh/gNCM622), respectively. The cumulative

amount of O2 evolved in the first cycle was ~36, 18, and 5 mmol/gNCM622 for OPN,

SBR, and hNBR, respectively. This difference in O2 evolution is due to the difference

in SOC, because the amount follows an exponential-like relationship with SOC after

reaching the 80% threshold. As seen in Figure S10, the SBR-based cathode followed

a similar evolution progression to the OPN-based cathode, despite showing about

50% lower O2 evolution.

TheCO2mass signal (m/z=44) for SSB cells predominantly stems fromelectrochemical

decomposition of residual surface carbonates on the CAM particles, which is typically

indicated by a sharp peak with an onset voltage > 4.2 V (Figures 6J–6L).36–38 However,

a peak was also observed at the beginning of charging. In conventional liquid-electro-

lyte cells, CO2 evolution at the start would be associatedwith an electrochemical reduc-

tion of the organic carbonate electrolyte. However, this is not applicable to SSBs. It

could be postulated that the CO2 evolution is correlated with side reactions at the

anode, given that both H2 evolution and CO2 evolution occur almost simultaneously.39

In general, we hypothesize that there are three possible sources for CO2 evolution

above 4.2 V: (1) electrochemical decomposition of residual surface carbonates, (2)

chemical oxidation of the polymer binder, and (3) oxidation of the carbon additive.

However, it has been shown in the literature that carbon additives are relatively stable
12 Cell Reports Physical Science 2, 100465, June 23, 2021
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against the released oxygen from the NCM lattice40 and therefore should not

contribute to the observed CO2 evolution. This leaves us with scenarios 1 and 2, which

we elaborate uponwhendiscussing about SO2 evolution, because the twomass signals

are believed to be correlated. Interestingly, when zooming into the gas evolution of

both O2 and CO2 during the first cycle, we noticed a double peak for CO2 for the

OPN- and SBR-based cathodes (Figure S11). For the hNBR-based cathode, no distinct

double peak was observed due to the lower SOC.

As is typical for SSB cells containing lithium thiophosphate solid electrolytes, a sharp

peak corresponding to the mass signal m/z = 64 (SO2) was detected (Figures 6M–

6O). The mass signal of SO2 is normalized with respect to the carrier-gas mass signal

m/z = 4 (He) and represents at best a semiquantitative comparison. The formation of

SO2 could be attributed to the reaction between the solid electrolyte and the reactive

oxygen released from the CAM at high voltages and from the electrochemical decom-

position of residual surface carbonates.36–38,41 This is in agreement with the observed

onset of SO2 evolution, coinciding with both the O2 and CO2 signals. For hNBR-based

cathodes, the SO2 ion current exhibited an intensity similar to that of OPN-based cath-

odes, despite only showing ~14% of the O2 evolution compared with the latter during

the first cycle. The higher intensity of the SO2 ion current in the hNBR-based cathode

suggests that the solid electrolyte in these electrodes is less stable, supporting the ar-

guments used in the discussion of the EIS data. The acrylonitrile groups of hNBR appar-

ently exhibit ion-dipole interactions with the lithium ions of sulfide solid electrolytes,

making it more vulnerable to side reactions. In contrast, SBR-based cathodes showed

a more damped signal, indicating reduced SO2 evolution, which cannot be simply ex-

plained by the lower amount of evolved O2.

In an attempt to explain the damped SO2 signal for the SBR-based cathodes, we hy-

pothesize several possibilities: (1) coverage of the solid electrolyte and/or active ma-

terial particles with polymer binder, preventing short-lived 1O2 from reaching the

solid electrolyte; (2) reaction of evolved SO2 with functional groups of the binder;

and (3) preferential reaction of reactive oxygen with the binder instead of the solid

electrolyte. For this discussion, a more in-depth analysis of the mass signal m/z =

44 was required. Specifically, both OPN- and SBR-based cathodes with a near iden-

tical SOC were needed for quantitative comparison, because CO2 evolution, like O2

evolution, shows an exponential-like relationship with the SOC (Figure S10). To this

end, slurry-cast electrodes with LiNbO3-coated NCM622 CAM were prepared

and electrochemically tested. Representative first-cycle voltage profiles at a rate of

C/10 and 25�C and the specific discharge capacities and Coulombic efficiencies

over 20 cycles are shown in Figures 7A and 7B. Evidently, SSB cells with the

LiNbO3-coatedNCM622clearly outperformed thoseusinguncoatedCAM (Figure 5).

This result was not unexpected and further indicates the effectiveness of the protec-

tive coating to mitigate decomposition reactions at the interfaces. OPNwas capable

of delivering the largest initial specific charge and discharge capacities of ~199 and

170 mAh/gNCM622 (~2 mAh/cm2), respectively (~85% versus ~77% Coulombic effi-

ciency for uncoated NCM622). For SBR, lower specific capacities of ~192 and 164

mAh/gNCM622 were achieved (~85% versus ~75% Coulombic efficiency for uncoated

NCM622). The protective surface coating was most beneficial for the hNBR-based

cathode, improving both first-cycle specific discharge capacity and Coulombic effi-

ciency by ~55%and 33%, respectively. Despite the similar initial irreversibility among

the three polymer binders, the Coulombic efficiency of the hNBR-based cathode

required four more cycles to stabilize above 99.5%, compared with two cycles for

theOPN- and SBR-based cathodes. This suggests thatmore side reactions are occur-

ring, especially in the initial cycles. However, an in-depth analysis would require
Cell Reports Physical Science 2, 100465, June 23, 2021 13



Figure 7. Cycling performance of SSB cells using different polymer binders

(A) First-cycle charge/discharge curves of slurry-cast cathodes (LiNbO3-coated NCM622, b-Li3PS4)

with 2.0 wt % polymer binder (blue, OPN; green, SBR; pink, hNBR) and 1.0 wt % VGCF conductive

additive. LTO and Li6PS5Cl served as the pellet anode and solid-electrolyte separator, respectively,

in the SSB cells.

(B) Specific discharge capacities (dark blue/green/pink) over 20 cycles and corresponding

Coulombic efficiencies (light blue/green/pink).
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further investigations. After 20 cycles, the specific discharge capacities decayed, as

expected, corresponding to fade rates per cycle of ~0.17%, 0.32%, and 0.39% for

OPN, SBR, and hNBR, respectively. This result marks a significant improvement

over the SSB cells using uncoated NCM622 CAM.

Such slurry-cast LiNbO3-coatedNCM622 cathodes were then used in operandoDEMS

studies, and the gassing behavior of the corresponding SSB cells is shown in Figure 8

(for OPN and SBR) and Figure S12 (for hNBR). With a near-identical SOC for both

OPN- and SBR-based cathodes (~250 versus 249 mAh/gNCM622), we analyzed the evo-

lution of O2, CO2, and SO2. The total amounts of O2 detected after the first cycle were

~205 and 161 mmol/gNCM622 for OPN and SBR, respectively, thus about an order of

magnitude larger than what was observed for the uncoated NCM622 cathodes. The

increased amounts help with the analysis of the gas evolution trends. The higher

SOC also led to the appearance of an additional redox peak at ~4.6 V versus Li+/Li

(see differential capacity plots in Figure S13), which might be indicative of oxygen

redox.34,42,43 In addition, we did not observe a damped signal for the SBR-based cath-

ode with regard to the SO2. This was to be expected because the larger amount of
14 Cell Reports Physical Science 2, 100465, June 23, 2021



Figure 8. Gassing behavior of SSB cells using different polymer binders

(A and B) Voltage profiles and corresponding time-resolved evolution rates (left y axis) and cumulative amounts (right y axis) for (C and D) H2, (E and F)

O2, and (G and H) CO2, as well as the normalized ion currents for (I and J) SO2. The SSB cells consisted of a slurry-cast cathode (LiNbO3-coated NCM622,

b-Li3PS4) with 2.0 wt % OPN or SBR binder and 1.0 wt % VGCF conductive additive, a Li6PS5Cl solid-electrolyte pellet separator, and an indium anode.
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evolvedO2 wouldmean that there are plenty of reacting agents (1O2) available to both

thepolymerbinder and the solidelectrolyte.Nevertheless, theCO2evolutionwasmore

significant in the SBR-based cell. Because of the different gassing behavior of the un-

coated and coated NCM622 cathodes, we are able to draw some conclusions here.

We hypothesize that the first CO2 peak (of the double peak at high voltages) is a result

of the electrochemical decomposition of surface carbonates, whereas the second one

results from possible reactions between the reactive oxygen and the binder material.

Given that chemical oxidation of liquid electrolytes has been proposed in the litera-

ture,34 it would be possible for 1O2 to attack the carbon chains/functional groups of

the binder to produceCO2.
44,45 Thedouble peak seen forCO2 supports the hypothesis

of a chemical oxidation of the binder. Moreover, the CO2 evolution (second peak) was

most pronounced in the SBR-based cathode. Reactive oxygen has been shown to be

capable of reacting with polymers possessing an alkene chain (units),44 and among

the three materials, SBR is the only binder possessing one.

Finally, we try to explain the depressed SO2 evolution seen for the SBR-based cathode

using uncoatedNCM622.Wepostulate thatO2 (probably
1O2) reactswith both the SBR

binder and the solid electrolyte. To justify this, we bring some values into context. First,

the LiNbO3-coatedNCM622 cathodes showed a (maximum) first-cycle normalized SO2

ion current of 3.23 10�6 and 2.53 10�6 for OPN and SBR, respectively. The overall in-

crease in ion current, compared with SSB cells using uncoated NCM622 (Figure 6), is

due to the larger amounts of evolved O2. As a result, the depressed SO2 signal is not

observed, because there is enough 1O2 to react with both the binder and the solid elec-

trolyte. Second, despite showing less O2 evolution, the SBR-based cathode exhibited

2–3 timesmoreCO2 evolution than theOPN-based electrode. Third, comparing the to-

tal amount of CO2 evolution for both the uncoated and the LiNbO3-coated NCM622

cathodes, we noticed that it remained similar for the OPN-based electrode at 4–

5mmol/gNCM622,whereas thatof theSBR-basedelectrode increasedbya factorof about

three (~11.0 versus 3.7 mmol/gNCM622). The NCM622 particles used were all from the
Cell Reports Physical Science 2, 100465, June 23, 2021 15
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same batch and therefore should have a similar amount of residual surface carbonates.

Consequently, the additional CO2 evolved from the SBR-based LiNbO3-coated

NCM622 cathode originated from a different source. In conclusion, these observations

agree with our hypothesis that the alkene chain in SBR binder reacts with O2 through a

pathway that entails the formation of CO2.

In conclusion, slurry-cast cathodes with electrochemical performance on par with

powder-based, pelletized SSBs were produced with the help of DoE (Table S3).

In addition, the optimization obtained for unprotected NCM622 CAM was transfer-

able to LiNbO3-coated NCM622, delivering high discharge capacities and showing

good capacity retention and thus providing a methodology for the production of

slurry-cast cathodes with different types of CAMs. Most importantly, the slurry-cast

cathodes displayed similar cyclability but with increased reproducibility, which is

necessary for use in future studies. When optimizing for electrochemical perfor-

mance, slurry-cast cathodes with OPN binder and VGCF conductive additive

were found to outperform other binder/carbon combinations. The type of binder

and carbon additive and their respective content did affect the cycling perfor-

mance to varying degrees. Not surprisingly, the well-performing electrode sheets

all contained a low fraction of binder. JMP 14 extrapolated an optimum combina-

tion of 1.0 wt % OPN binder and 0.5 wt % VGCF conductive additive. However,

slurry-cast cathodes with low binder content (<2.0 wt %) were susceptible to crack

formation and delamination during cell preparation. For SSB sheet-based elec-

trodes to be commercially viable, they have to be fabricated via continuous pro-

cessing methods, in which they are usually subjected to strong mechanical forces

during bending and shearing. Hence, in this study, the mechanical stability of the

cathode sheet was also taken into consideration. The overall mechanical stability

was found to largely depend on the binder content, with the other parameters,

such as the type of binder and carbon additive, having a low degree of influence.

A compromise between electrochemical performance and processability was

achieved at 2.7 wt % OPN and 0.5 wt % VGCF. The measured cycling performance

of SSB cells using a slurry-cast cathode with the optimal parameters corroborated

the robustness of the model. Further understanding of the results from the DoE

approach and the model built was provided by EIS, SEM/EDS, and XRD measure-

ments. Lastly, operando gas analysis confirmed the (electro-)chemical stability of

OPN. In addition, the correlation among O2 evolution, CO2 evolution, and SO2

evolution allowed for hypotheses of reaction pathways, suggesting that polymer

binders possessing alkene chains/units or functional groups that could potentially

destabilize the solid electrolyte are unfavorable, especially at high voltages when

in use with a layered Ni-rich oxide cathode material.
EXPERIMENTAL PROCEDURES
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Materials

Electrode sheets were prepared using pristine (unprotected) NCM622 (60%Ni, BASF)12

powderas theCAM.Thesolidelectrolytes,b-Li3PS4 (BASF)andargyroditeLi6PS5Cl (NEI),

with room-temperature ionic conductivities of ~0.2 and 2 mS/cm, respectively, were

applied as received. Three polymer binder materials were used for the study: OPN

(Oppanol N 150 from BASF, average molecular weight [Mw] = 3.1 3 106 g/mol), hNBR

(Therban LT 1707 VP from Arlanxeo, Mw = 5.53 105 g/mol), and SBR (45 wt % styrene

from Sigma Aldrich, Mw z 63 105 g/mol).27,46,47 Super C65 carbon black (Timcal) and

VGCF as electronically conductive additives were both dried at 300�C in a vacuumover-

nightbeforeuse.TheLiNbO3-coatedNCM622waspreparedbycoatinga1wt%sol-gel-

derived LiNbO3 surface layer onto the pristineCAM.48–50Allmaterials were handled and

stored in an argon glovebox from MBraun ([O2] < 0.1 ppm, [H2O] < 0.5 ppm).

DoE

The mass fractions of the two carbon additives, Super C65 and VGCF, were chosen

to vary between 0.5 and 1.5 wt % (with a 0.5 wt % increment), whereas the content of

the three polymer binders was chosen to vary between 1.0 and 3.0 wt % (with a 1.0 wt

% increment). In other words, there were three variables with three levels and one

variable with two levels. A classical, full factorial design of the cathode composite

would thus require 54 (3 $ 3 $ 3 $ 2) experiments. Our customized experimental

design reduced the number of required experiments to 23 (Table S1). The optimiza-

tion was done with response variables quantifying the electrochemical and mechan-

ical performance. Mechanical properties (processability) are represented by the re-

sults of two in-house mechanical tests, namely, bending and punching tests. To

simplify the analysis, we assigned an arbitrary numerical scale to assess qualitative

observations, so the higher number represents better processability. For the punch-

ing tests, round electrodes were punched from the cathode sheet with a circular ge-

ometry (9 mm diameter). They are rated according to the following scale: 4 = no me-

chanical deformation, 3 = edge delamination, 2 = delamination and cracking, and

1 = unprocessable (Figure S2). In case of the bending tests, the electrodes were

tensioned at both ends and subjected to a rolling motion along a metal pipe

(1 mm diameter) at varying bending angles. They are rated as follows: 4 = no me-

chanical deformation, 3 = delamination, 2 = delamination and cracking, and 1 = un-

processable. Several process-related parameters were fixed and excluded from the

experimental design based on prior knowledge.

Cell assembly and electrochemical measurements

For the 23DoEexperimental runs, the SSBcells consistedof a slurry-cast cathode (9mm

diameter), a solid-electrolyte pellet separator (10 mm diameter), and a pellet anode

(10 mm diameter). A specialized cell setup containing two stainless-steel dies and a

plastic (polyether ether ketone, PEEK) ring was used. First, 65 mg of b-Li3PS4 was

compressed at a pressure of ~125 MPa. The cathode was then punched into a circular

geometry (2.0–2.4mAh/cm2areal capacity), placedon topof the solid-electrolyte sepa-

rator layer, and subsequently compressed at ~375 MPa. Lastly, 60 mg of anode com-

posite was pressed onto the other side of the solid-electrolyte pellet at ~125 MPa.

The anode composite was prepared by mixing 300 mg of carbon-coated LTO (NEI)

with 100 mg of Super C65 carbon black and 600 mg of b-Li3PS4 at 140 rpm for

30 min in a 70 mL milling jar (Fritsch) with 10 zirconia balls (10 mm diameter) under an

argon atmosphere using a planetary ball mill. For all subsequent electrochemical

testing, SSB cells consisting of a slurry-cast cathode, a Li6PS5Cl pellet separator

(100 mg), and a pellet anode (60 mg) were used. The anode composite was prepared

in a fashion similar to that described earlier but with Li6PS5Cl as the solid electrolyte.

During electrochemical testing, a stack pressure of ~80 MPa was maintained.
Cell Reports Physical Science 2, 100465, June 23, 2021 17
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Galvanostatic charge/dischargemeasurementswereperformedat 25�Candat a rate of

C/10 (1C = 180 mA/gNCM622) in the voltage range between 1.35 and 2.85 V versus Li4-
Ti5O12/Li7Ti5O12 (equal to ~2.9–4.4 V versus Li+/Li) using a Maccor battery cycler.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.

2021.100465.
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