KIT | KIT-Bibliothek | Impressum | Datenschutz

Exactly solvable spin- 1/2 XYZ models with highly degenerate partially ordered ground states

Palle, Grgur 1; Benton, Owen
1 Institut für Theorie der Kondensierten Materie (TKM), Karlsruher Institut für Technologie (KIT)


Exactly solvable models play a special role in condensed matter physics, serving as secure theoretical starting points for investigation of new phenomena. Changlani et al. [Phys. Rev. Lett. 120, 117202 (2018)] have discovered a limit of the XXZ model for S=1/2 spins on the kagome lattice, which is not only exactly solvable, but features a huge degeneracy of exact ground states corresponding to solutions of a three-coloring problem. This special point of the model was proposed as a parent for multiple phases in the wider phase diagram, including quantum spin liquids. Here, we show that the construction of Changlani et al. can be extended to more general forms of anisotropic exchange interaction, finding a line of parameter space in an XYZ model which maintains both the macroscopic degeneracy and the three-coloring structure of solutions. We show that the ground states along this line are partially ordered, in the sense that infinite-range correlations of some spin components coexist with a macroscopic number of undetermined degrees of freedom. We therefore propose the exactly solvable limit of the XYZ model on corner-sharing triangle-based lattices as a tractable starting point for discovery of quantum spin systems which mix ordered and spin-liquid-like properties.

Verlagsausgabe §
DOI: 10.5445/IR/1000135254
Veröffentlicht am 15.07.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0163-1829, 0556-2805, 1095-3795, 1098-0121, 1538-4489, 1550-235X, 2469-9950, 2469-9969, 2469-9977
KITopen-ID: 1000135254
Erschienen in Physical review / B
Verlag American Physical Society (APS)
Band 103
Heft 21
Seiten 214428
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page