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ABSTRACT
Forage supply of savanna grasslands plays a crucial role for local food security and conse
quently, a reliable monitoring system could help to better manage vital forage resources. To 
help installing such a monitoring system, we investigated whether in-situ hyperspectral data 
could be resampled to match the spectral resolution of multi- and hyperspectral satellites; if the 
type of sensor affected model transfer; and if spatio-temporal patterns of forage characteristics 
could be related to environmental drivers. We established models for forage quantity (green 
biomass) and five forage quality proxies (metabolisable energy, acid/neutral detergent fibre, 
ash, phosphorus). Hyperspectral resolution of the Hyperion satellite mostly resulted in higher 
accuracies (i.e. higher R2, lower RMSE). When applied to satellite data, though, the greater 
quality of the multispectral Sentinel-2 satellite data leads to more realistic forage maps. By 
analysing a three-year time series, we found plant phenology and cumulated precipitation to 
be the most important environmental drivers of forage supply. We conclude that none of the 
investigated satellites provide optimal conditions for monitoring purposes. Future hyperspec
tral satellite missions like EnMAP, combining the high information level of Hyperion with the 
good data quality and resolution of Sentinel-2, will provide the prerequisites for installing 
a regular monitoring service.
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Introduction

Grasslands occupy at least two-thirds of global agri
cultural land, with a large portion of them situated in 
subtropical environments (Suttie et al., 2005). These 
ecosystems are among the most sensitive to global 
environmental change (Huang et al., 2016; IPCC, 
2019). Increasing land-use pressure in combination 
with climate change have been shown to massively 
threaten their productivity and stability, with negative 
consequences for rural livelihoods and well-being 
(Guuroh et al., 2018; IPCC, 2019).

Low-input livestock production systems are com
mon in subtropical grasslands, and strongly depend 
on local forage provision (Fynn et al., 2016; Linstädter 
et al., 2016). In these systems, spatio-temporal 
dynamics in forage provision are the main drivers of 
management decisions of local farmers (Duru et al., 
2015; Müller et al., 2007). Moreover, the foraging 
behaviour, habitat selection and migration of wild 
herbivores are all closely related to forage availability 
(Abraham et al., 2019; Van Der Graaf et al., 2007). 
Considering the critical importance of forage services 
for conservation efforts and local livelihoods, as well as 

the increasing spatio-temporal variability of forage 
provision in subtropical grasslands due to global 
environmental change (Boone et al., 2017; Gaitan 
et al., 2014), there is an urgent need to establish sus
tainable management practices. These are best based 
on techniques to effectively map and continuously 
monitor the spatial extent, amount and temporal var
iation of forage services (Prince et al., 2009; Van 
Lynden & Mantel, 2001).

Thus, a frequent, region-wide monitoring of forage 
biomass and forage quality would present highly useful 
information both to farmers and to managers of con
servation areas such as National Parks or 
Transboundary Conservation Areas (Ramoelo et al., 
2012). However, conventional methods for the assess
ment of forage services require direct measurements, 
which are time-consuming, expensive and based on 
extensive fieldwork (Ferner et al., 2015). Furthermore, 
these estimates are restricted to the study sites, whereas 
reliable estimates are needed at a broader extent and in 
a spatially contiguous manner (Psomas et al., 2011). For 
this reason, remote sensing imagery offers distinctive 
advantages for monitoring spatio-temporal patterns of 
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forage quantity and quality (Lugassi et al., 2019; Phillips 
et al., 2009; Wachendorf et al., 2018).

Early attempts to monitor intra- and interannual var
iation in vegetation biomass via satellite imagery were 
undertaken in the Sahel (Prince, 1991; Tucker et al., 1983, 
1985). These studies were mostly based on the 
Normalized Difference Vegetation Index, NDVI (Diallo 
et al., 1991). More recent studies are often based on 
airborne hyperspectral data and concurrent field sam
pling (Beeri et al., 2007; Cho et al., 2007; Kooistra et al., 
2006; Suzuki et al., 2012). Statistical relationships 
between vegetation biomass and spectral data have 
been established using field spectrometer measurements 
resampled to match band definition of hyperspectral or 
multispectral satellite sensors (Hansen & Schjoerring, 
2003; Psomas et al., 2011; Xavier et al., 2006). However, 
few studies have actually applied such field-developed 
statistical models to satellite imagery (Anderson et al., 
2004; Lugassi et al., 2019; Zha et al., 2003) to test whether 
these models can be transferred to a different spatial level.

One of the most important applications of hyper
spectral remote sensing in vegetation studies is the 
mapping of forage quality (Townsend et al., 2003). 
The vegetation’s reflectance can be measured via field 
spectroscopy, and the full spectral information can then 
be related to forage quality characteristics, for example, 
foliar nitrogen (N), phosphorus (P) (Sanches et al., 
2013), acid detergent fibre (ADF), neutral detergent 
fibre (NDF), ash, and metabolisable energy (ME) 
(Ferner et al., 2015; Pullanagari et al., 2012).

Furthermore, several studies have shown that air
borne and spaceborne data can also be used to map 
forage quality. In subtropical grasslands, Mutanga and 
Skidmore (2004), Skidmore et al. (2010), and Mutanga 
and Kumar (2007) have mapped N, P and polyphe
nols, respectively, based on HyMap data, while Knox 
et al. (2011) used the CAO Alpha sensor to map N, 
P and fibre. Using multispectral WorldView-2 data, 
Zengeya et al. (2013) have mapped N concentration of 
vegetation in Zimbabwe, while Singh et al. (2018) used 
RapidEye imagery to estimate and map important 
forage fibre biochemicals such as NDF, ADF and lig
nin in South Africa. The vegetation N content is suited 
to mapping as it has a high correlation with chloro
phylls (Netto et al., 2005).

Upscaling from point-based observations is one 
suitable way to create maps of forage resources. 
Here, field spectroscopy is a starting point for upscal
ing data from the leaf to the canopy and finally to the 
pixel level (Lugassi et al., 2019; Milton et al., 2009). 
However, such upscaling attempts are hampered by 
the fact that plant-light interactions are highly scale- 
dependent (Ollinger, 2010). For example, senescent 
plant material and soil cover only play a major role 
at coarser spatial resolutions (Asner, 1998). Thus, it 
still remains a challenge to transfer the techniques 
developed in the field to spaceborne imagery.

To assess the best data basis for setting up a forage 
monitoring programme in West Africa’s subtropical 
savanna grasslands, we tested two satellite sensor types 
providing images with different spatial and spectral 
properties. While hyperspectral sensors like 
Hyperion with its many narrow bands appear to be 
better suited for the upscaling of hyperspectral models 
from field spectroscopy (Durante et al., 2014), 
a multispectral system such as Sentinel-2 with 
a higher spatial and temporal resolution should also 
be tested as it has been shown to be comparable and 
even more reliable than hyperspectral sensors 
(Transon et al., 2018). The latter is particularly impor
tant for savanna grasslands, where the vegetation has 
a rapid phenological cycle due to a short rainy season, 
leading to a limited time window for image acquisition 
(Vintrou et al., 2014). As both Hyperion and Sentinel- 
2 have their distinctive advantages, they are compared 
in this mapping exercise to identify the best-suited 
sensor for forage monitoring.

As mentioned above, subtropical grasslands are 
generally characterized by a high spatio-temporal 
variability of both forage quantity and quality 
(Ferner et al., 2018; Levick & Rogers, 2011). Thus, 
understanding how variable environmental conditions 
drive forage provision is a critical step towards design
ing sustainable land-use practices. Main drivers caus
ing variation in space are abiotic factors such as topo- 
edaphic conditions or climate, and biotic factors such 
as grazing pressure (Guuroh et al., 2018; Oomen et al., 
2016). Variation in time is generally caused by the 
vegetation’s phenological development, by variable 
weather conditions, and by management decisions 
(Berger et al., 2019; Brüser et al., 2014). Here, rainfall 
is regarded as the most important driver of forage 
production (e.g. Anyamba and Tucker (2005); Egeru 
et al. (2015)) while forage quality has been found to 
depend primarily on the vegetation’s phenological 
stage, and on its functional composition (Ferner 
et al., 2018; Knox et al., 2012).

The main objective of this study, therefore, was to 
develop a suitable, “combined” approach of field spec
troscopy and satellite data (sensu Lugassi et al. (2019)) 
for estimating and mapping important proxies of forage 
service provision in subtropical savanna grasslands. We 
specifically aimed at evaluating the potential to upscale 
models, calibrated from plot-based measurements, to 
larger landscapes. Our second aim was to investigate the 
effect of the sensors’ spectral characteristics on the 
transfer to satellite data, while our third aim was to 
match derived spatio-temporal patterns of forage sup
ply to patterns in environmental drivers to gain an 
improved understanding of forage resource dynamics. 
To this end, we could take advantage of the unique 
environmental setting of West Africa’s subtropical 
savanna grasslands, which are arranged along a steep 
latitudinal rainfall gradient (Le Houérou, 1980), leading 
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to pronounced changes in their biomass production 
and nutritive quality (Ferner et al., 2018; Guuroh 
et al., 2018). Our research questions are:

(1) Can we model forage quantity and quality from 
in-situ hyperspectral data resampled to match 
the spectral resolution of multi- and hyperspec
tral satellites?

(2) How does the type of sensor (hyperspectral vs. 
multispectral) affect model transfer to satellite 
data?

(3) Are there relationships between spatio- 
temporal patterns of forage characteristics and 

environmental conditions that can aid at 
a better understanding of spatio-temporal 
dynamics in forage supply?

Material and Methods

Study design

Our two-stage study combines investigations from 
different spatial scales (see Figure 1 for 
a methodological overview). The first stage implied 
spectral measurements and vegetation sample collec
tion on the field level (see details below). In the second  

Figure 1. Flow chart of the study`s field data collection and image processing methodology (gBM: green biomass, ME: 
metabolisable energy, ADF: acid detergent fibre, aNDF: amylase-treated neutral detergent fibre, P: phosphorus, PLSR: partial least- 
squares regression, PAV: photosynthetic active vegetation, NPAV: non-photosynthetic active vegetation, SOIL: open soil, MESMA: 
multiple endmember spectral mixture analysis, VNIR: visible and near infrared, SWIR: short wave infrared).
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stage, spectrometric models were resampled and 
applied on satellite imagery covering four focus areas 
located in the centre of the climate gradient. We con
centrated on only one Hyperion strip due to the lim
ited acquisition options of Hyperion images. Further 
details are given below in separate subsections.

Study area
Field data were collected within a broader study area in 
West Africa, which is transversed by a steep climate 
gradient. The area covers ca. 100,000 km2 and reaches 
from northern Ghana to central Burkina Faso (Figure 2). 
Climate is (sub-) tropical, with a rainy season from May 
to August in the north, and April to October in the 
southeast. Main geological units are migmatite in the 
north and sandstone in the south (Ferner et al., 2015). 
The area is characterized by steep local gradients of land- 
use intensity, ranging from protected to degraded areas 
characterised by high frequencies and intensities of dis
turbances like grazing and fire (Ferner et al., 2018; 
Ouédraogo et al., 2015).

We selected four focus areas in the border region of 
Ghana and Burkina Faso, following the climate gradient 

(Figure 2). They were mainly chosen to capture varia
tion along the climate gradient, in particular with 
respect to mean annual rainfall, which ranges from 
about 850 to 1000 mm a−1 (Table 1). In this area, the 
rainy season lasts from June to September. The north
ernmost area covers part of the Nazinon river basin in 
Burkina Faso. Towards the south, it is followed by three 
areas in northern Ghana. These are Aniabiisi, located 
north-west of the city Bolgatanga; Tankwidi, covering 
parts of the Tankwidi river basin as well as the sur
rounding forest reserve; and White Volta, covering 
parts of the White Volta river basin. Vegetation belongs 
to the northern Sudanian savanna (White, 1983). The 
four focus areas also represent strong difference in land 
use. While the Aniabiisi area is intensively farmed and 
grazed by livestock (Berger et al., 2019), the three other 
areas located in river basins are characterized by more 
natural habitat conditions.

Field data collection

For model calibration, we collected field data during 
the rainy season in 2012 at 21 sites spread along the 

Figure 2. Map of the study area in West Africa’s subtropical savanna grasslands. The broader study area covers two vegetation 
zones following White (1983) and is characterized by a steep increase of climatic aridity to the north (as indicated by isohyets), and 
by steep local gradients of land-use intensity. Inserted (right): Satellite images of the four focus areas, based on Sentinel-2 imagery 
from 19.10.2016. Focus areas’ position along the strip with satellite coverage is displayed as well.
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north-south gradient (Figure 1(a)) that featured – as 
far as possible – different vegetation communities at 
varying phenological stages on diverse geological 
undergrounds and slope positions, as well as different 
intensities of grazing pressure. In this way, we 
intended to cover the whole range of the naturally 
occurring diversity of vegetation types within the 
research area. Spectral reflectance measurements of 
vegetation plots were performed using a FieldSpec 3 
Hi-Res Portable Spectroradiometer (ASD Inc., 
Boulder, CO, USA) which detects light in a spectral 
range from 350 to 2500 nm (ASD Inc., 2006). 
Measurements were performed on 129 harvesting 
plots which were distributed over the 21 sampling 
sites. Plots had a circular shape and an area of ca. 
0.25 m2. For more details regarding the sampling 
design, see Ferner et al. (2015).

After measurements, aboveground plants vegetation 
was clipped to stubble height, air-dried and shipped to 
the laboratory of the Institute of Animal Science, 
University of Bonn (Germany). From the 129 samples 
taken in the field, several could not be used for model 
calibration due to partial sample losses and measure
ment errors. Lab analyses provided data (n > 100) for 
six forage variables. These are green biomass (gBM) as 
a measure of forage production (Ruppert & Linstädter, 
2014), and a number of variables to characterize forage 
quality, that is, metabolisable energy (ME), acid deter
gent fibre (ADF), amylase-treated neutral detergent 
fibre (aNDF), ash, and phosphorus (P)). Samples were 
oven-dried (60°C, >48 h) to obtain dry mass, which 
equals gBM since only patches dominated by living 
vegetation were sampled. ME was determined based 
on in vitro gas production using the Hohenheim gas 
test (Menke & Steingass, 1988) as well as the sample’s 
crude protein content (for further details see Ferner 
et al. (2015)). ADF and aNDF were determined using 
an ANKOM2000 Fiber Analyzer (ANKOM Technology 
Corporation, Fairport, NY). Ash equals the residuals of 
the samples after incineration at a temperature of 550°C 
(method 8.1; VDLUFA (2012)) while P was determined 
using a spectrophotometer (method 10.6.1; VDLUFA 
(2012)).

Processing chain of satellite data

We evaluated the feasibility of models derived from 
hyperspectral near surface remote sensing to be 
upscaled to i) hyperspectral EO-1 Hyperion satellite 
imagery and ii) multispectral Sentinel-2 satellite ima
gery. Hyperion was mounted on the Earth-Observing 
1 (EO-1) spacecraft (Ritchie et al., 1993) at 705 km 
above sea level. It provided 220 channels covering the 
visible and near-infrared portions of the solar spec
trum from 350 to 2600 nm in 10 nm spectral resolu
tion and 30 m spatial resolution. Hyperion was 
a pushbroom instrument that could image a 7.5 km 
by 100 km land area per image (Datt et al., 2003). 
Sentinel-2 is a constellation of two polar orbiting 
satellites equipped with an optical imaging sensor 
MSI (multi-spectral instrument; Brandt et al. (2015)). 
Here we used data from Sentinel-2A, which was 
launched on 23 June 2015. The satellite has 13 bands 
with a spatial resolution of 10 m – 60 m that span from 
the visible (VIS) and the near-infrared (NIR) to the 
short wave infrared (SWIR; Ky-Dembele et al. (2016)). 
Both satellites feature different sensor characteristics 
(Table 2).

Preprocessing of EO-1 Hyperion images
We acquired a time series of Hyperion images (26 in 
total; Figure 1(b)) covering at least the focus area of 
Aniabiisi from 2013 to 2016 (Figure 3(a)). All images 
were downloaded from USGS EarthExplorer (earth
explorer.usgs.gov) at a processing level of L1Gst (geo
metric systematic terrain corrected) or L1T 
(systematic terrain corrected).

Hyperion data were delivered in a raw processing 
state and required several preprocessing steps to gen
erate a product that could be used for monitoring 
purposes (see Figure 1). Preprocessing followed the 
procedure recommended by Rogass et al. (2014a), 
Rogass et al. (2014b)) and included a de-striping tech
nique, half image SWIR shift as well as interpolation of 
dead pixels using smoothing and dead column sub
stitution. Subsequently, bands from the VNIR and 
SWIR sensors were co-registered and a local log- 

Table 1. Climatic and edaphic site conditions as well as main land cover types of the four focus areas in Burkina Faso and Ghana.

Focus 
area Country

Climatea Land coverb Edaphic conditions

Mean annual 
temperature [°C]

Mean annual pre
cipitation [mm] Soil typec

Sand con
tent [%]d

Silt con
tent [%]d

Clay con
tent [%]d

Nazinon Burkina 
Faso

28.1 857.4 Open deciduous woodland, closed to 
open shrubland, agriculture

Cambisols 56.8 25.9 17.2

Aniabiisi Ghana 28.3 923.8 Agriculture Lixisols 53.4 29.6 17.0
Tankwidi Ghana 28.4 981.3 Closed to open shrubland, grassland Lixisols 61.8 22.2 15.9
White 

Volta
Ghana 28.3 1000.4 Closed to open shrubland Lixisol 60.9 23.4 15.7

awww.worldclim.org (Hijmans et al., 2005) 
bGessner et al. (2015) 
cHarmonized world soil database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) 
dWorld soil Information (ISRIC, 2013)
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polar phase correlation and best fit polynomial mod
elling applied. In a final step, images were spectrally 
smoothed using a Gaussian filter with sigma = 2. 
Afterwards all images were atmospherically corrected 
using ENVI FLAASH and lastly all bands affected by 
considerable noise (mostly due to atmospheric water 
vapour) were removed to leave 152 bands for further 
analysis.

Preprocessing of Sentinel-2 images
Sentinel-2 images were acquired for eight dates 
(December 2015 – December 2016; Figure 1(c)) to 
match ̶ as far as possible ̶ Hyperion image availability 
(Figure 3(b)). This was done to allow for a sound 
comparison of both sensor systems. Imagery was 
atmospherically corrected using the plugin “sen2cor” 
within the SNAP toolbox, provided by the European 
Space Agency (ESA). To match Hyperion spatial cov
erage, two separate Sentinel-2 tiles had to be 
mosaicked and clipped.

Spectral unmixing procedure
To assure that forage supply models were only applied 
to vegetated areas, a vegetation mask was created 
(Figure 1(d)). For this, we used MESMA (multiple 
endmember spectral mixture analysis; Dennison and 
Roberts (2003), Franke et al. (2009)) to determine the 
fractional cover of green vegetation on a pixel basis. 
We used a variety of pure field spectra of the three 
main land cover types in our study area, that is, photo
synthetic active vegetation (PAV), non-photosynthetic 
active vegetation (NPAV) and open soil (SOIL), mea
sured with the ASD Portable Spectroradiometer. 
Spectra were resampled in R (R Core Team, 2014) 
using the sensors´ spectral response functions to 
match spectral resolution of satellite images, that is, 
152 bands for Hyperion and 12 bands for Sentinel-2. 
These spectra were used to create separate spectral 
libraries that served as input for MESMA calculation 
in Viper Tools, a plugin to ENVI developed by 
(Roberts et al., 2007). MESMA output was one image 
with fractional coverages of PAV, NPAV and SOIL as 
well as MESMA residuals.

Spectral model calibration to estimate forage 
supply

To evaluate the effects of different spectral resolutions 
on model performances, full-range field spectra had to 
be resampled in R using the sensor’s spectral response 
functions to match image spectral resolution (Figure 1 
(e)). Subsequently, we used the R package “autopls” 
(Schmidtlein et al., 2012) to apply partial least-squares 
regression with automated backward selection (PLSR; 
Wold et al. (2001)). Partial Least Squares Regression or 
Projection to Latent Structures is a multivariate 
regression method that is widely used in chemo
metrics, hyperspectral remote sensing, bioinformatics 
and other fields. PLSR is especially useful if the pre
dictor variables are correlated or if the number of 
predictor variables is high as compared to the number 
of observations. The reason for this robustness is that 
the regression relies on a set of latent variables instead 
of the original, individual predictor variables. The 
latent variables form a feature space that is linearly 
related to the target variable as well as to the predictor 
variables.

Table 2. Summary of sensor characteristics of EO-1 Hyperion 
and Sentinel-2.

Characteristic EO-1 Hyperion Sentinel-2
Launch date 21.11.2000 23.06.2015
Sensor 

resolution
hyperspectral multispectral

Number of 
bands 
(bands 
used for 
this study)

242 
(152)

13 
(12)

Spatial/ 
spectral 
resolution

30 m (0.4 to 2.5 µm) 10 m 
(band 2, 3, 4, 8/central 
wavelengths 492.4 nm, 

559.8 nm, 664.6 nm, 
832.8 nm) 

20 m 
(band 5, 6, 7, 8A, 11, 

12/central wavelengths 
704.1 nm, 740.5 nm, 
782.8 nm, 864.7 nm, 

1613.7 nm, 
2202.4 nm) 

60 m 
(band 1, 9, 10/central 

wavelengths 442.7 nm, 
945.1 nm, 

1373.5 nm)
Quality low signal-to-noise ratio high signal-to-noise ratio
Availability freely available; mainly on 

order (cloud- 
dependant image 

acquisition)

freely available; in 
combination with 

Sentinel-2B a revisit time 
of 5 days at the equator 

is achieved

Figure 3. Temporal coverage of (a) Hyperion and (b) Sentinel-2 time series available for Aniabiisi area in Upper East Region, Ghana, 
from 2013 to 2016. Dark areas indicate time of rainy season; bright areas indicate time of dry season.
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Redundancy, noise and irrelevant or unreliable 
variables in the original predictor data set may never
theless hamper the calibration process and lead to 
weak models. Therefore, several methods for selecting 
useful subsets of predictors have been proposed. 
Autopls consists of iterative runs of PLSR, each fol
lowed by a selection of predictors (here: reflectance in 
spectral bands at given locations). Root mean squared 
errors (RMSE) in cross-validation of the resulting 
values for the target variable (here: values for forage 
quality and quantity) are the criterion for choosing the 
next set. The iterations are repeated as long as 
a reduction of model errors or a reduction of the 
number of latent vectors can be achieved. For the 
final validation, leave-one-out cross-validation is 
used. The procedure was used to model the relations 
between resampled spectral data and all six forage 
variables, resulting in six final forage supply models.

The pre-processed images were masked to leave 
only pixels with a vegetation cover >30% (according 
to MESMA results). From the masked image, MESMA 
residuals were subtracted. This was done to receive 
natural spectral curves for each pixel, as we expected 
residuals to represent random noise. Finally, forage 
supply models were applied following Ferner et al. 
(2015) to obtain maps of estimated forage variables.

Linear model selection based on AIC

A Hyperion time-series from 2013 to 2016 was used 
to test the influence of five environmental predictors 
(i.e. phenology, precipitation, cumulative precipita
tion, land-use, and soil type) on forage characteris
tics, we used general linear models with a forward 
and backward model selection based on the Akaike 
information criterion (AIC). To test for the influence 
of phenology, a time series of MCD43A4 data was 
retrieved from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), and NDVI values 
were calculated for the time period November 2013 
to December 2016 as (NIR – Red)/(NIR + Red). We 
decided to use MODIS data due to its very high 
temporal resolution of one to two days which helped 
to get a high number of usable images even during 
the rainy season when clouds were frequent (Ferner 

et al., 2015). We then used the R package “phenex” to 
model daily NDVI values and to extract phenological 
parameters. These were date of green-up (the point 
where the function of modelled NDVI values first 
exceeded the threshold of 0.55), date of maximum 
NDVI, and date of senescence (the point where the 
function of modelled NDVI values first fell below 
0.55). We used phenology as a factor with 1 = dates 
before green-up, 2 = dates between green-up and 
maximum NDVI, 3 = dates between maximum 
NDVI and senescence, and 4 = dates after 
senescence.

Precipitation was calculated per area as the monthly 
sum of rainfall (Schneider et al., 2011), using GPCC 
precipitation data provided by NOAA/OAR/ESRL 
PSD (via www.esrl.noaa.gov/psd/). Additionally, we 
included cumulative precipitation (cumPrecipitation) 
which equals the sum of precipitation of a given 
month plus the sum of the two preceding months. 
We also tested the main land use (1: open deciduous 
woodland, 2: closed to open shrubland, 3: agriculture) 
and soil types (1: cambisol, 2: lixisol; cf. Table 1). 
Model fits were determined using the adjusted coeffi
cient of determination (adjR2) which corrects for the 
number of predictors in the model.

Results

Performances of PLSR models differed considerably 
between the three model types, that is, models using 
full-range field spectrometer data, models based on 
full-range data resampled to hyperspectral satellite 
resolution (Hyperion) and models resampled to multi
spectral satellite resolution (Sentinel-2) (Table 3).

Model fits revealed that not all forage characteris
tics could be successfully modelled. For Hyperion, 
models predicting P and ash achieved low model fits 
(adjR2 of 0.12 and 0.05, respectively), while spectral 
data resampled to Sentinel-2 resolution did not con
tain enough information to successfully model ADF, 
P and ash (adjR2 of 0.01, 0.05, and −0.1, respectively). 
To evaluate model plausibility and consistency 
between models, those bands selected for the models 
using the spectral resolution of the spectroradiometer, 
Hyperion and Sentinel-2 were compared (Figure 4).

Table 3. Summary of model fittings for all forage characteristics using partial least-squares regression. High adjR2 values and low 
nRMSE values indicate a good fit of the regression models. Model validation was done via repeated (leave-one-out) cross 
validation (VALCV). The number of predictors (Pred) used for the respective latent variables (LV) is also given below.

Field spectrometer Hyperion satellite Sentinel-2 satellite

Forage characteristics

adjR
2 nRMSE [%]

LV (Pred)

adjR
2 nRMSE [%]

LV (Pred)

adjR
2 nRMSE [%]

LV (Pred)VALCV VALCV VALCV VALCV VALCV VALCV

Green biomass (gBM) 0.66 10.86 6 (37) 0.36 12.28 7 (7) 0.42 11.82 5 (7)
Metabolisable energy (ME) 0.54 11.64 6 (32) 0.54 11.64 6 (23) 0.41 13.31 4 (6)
Amylase-treated neutral detergent fibre (aNDF) 0.45 12.68 7 (9) 0.48 12.25 9 (28) 0.27 14.37 11 (12)
Acid detergent fibre (ADF) 0.34 18.67 6 (15) 0.38 17.85 8 (13) 0.01 23.13 3 (12)
Phosphorus (P) 0.16 19.06 2 (33) 0.12 19.58 2 (7) 0.05 20.26 2 (12)
Ash 0.29 14.69 5 (7) 0.05 13.26 7 (92) −0.10 14.69 2 (9)
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Many consistencies can be found between bands 
selected by different sensors. For gBM, the automatic 
band selection algorithm in autopls selected bands 
located in the NIR region while for ME, all models 
selected bands from the VIS region. For models pre
dicting aNDF, selected bands were mainly located in 
the NIR (red edge) and SWIR II region. For ADF and 
P, many comparable bands from the SWIR and the 
NIR regions, respectively, were selected in the 
FieldSpec and the Hyperion model, while all available 
bands were selected in the Sentinel-2 model. The 
FieldSpec model predicting ash was quite similar to 
the model predicting P, while the Hyperion and 
Sentinel-2 models included numerous bands from 
almost all spectral regions.

Since only model fits for gBM, ME and aNDF 
achieved satisfactory results for all sensors, we con
centrated our subsequent analyses on these forage 

characteristics. When applying the respective models 
to satellite imagery to generate forage supply maps, 
divergent results were achieved. Here, only maps for 
one time step (18./19.10.2016) are shown. These 
images provide data from the rainy season with 
a dense vegetation cover but only minimal cloud 
interference. For gBM (Figure 5), the pattern pre
dicted by both satellite sensors closely matched for 
the intensively used area “Aniabiisi” (b). Here, areas 
with a high production of green biomass (see Figure 
5(b)) often rendered forage with a low nutritive 
value (ME; see Figure 6(b)), and vice versa.

For the two southernmost regions “Tankwidi” (c) 
and “White Volta” (d), which are characterized by less 
arid conditions and near-natural vegetation, MESMA 
results differed, leading to many areas in the Hyperion 
image that were masked out before model application. 
The same applied for ME and aNDF models. A visual 

Figure 4. Spectral bands (central wavelengths) selected for the models for (a) gBM, (b) ME, (c) aNDF, (d) ADF, (e) P, and (f) ash 
using the original spectral resolution of a field spectroradiometer as well as data resampled to match the spectral resolution of 
Hyperion and Sentinel-2. Bands were selected from different spectral regions, that is, visible region (VIS; 350–700 nm), near- 
infrared (NIR; 701–1300 nm), shortwave infrared I (SWIR I; 1301–1800 nm) and shortwave infrared II (SWIR II; 1801–2500 nm). Note 
that Sentinel-2 did not provide continuous spectral cover.
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comparison with the original images (Figure 2) indi
cated that these masked areas were apparently covered 
by vegetation, that is, Sentinel-2 appears to produce 
better results. We assume that this is caused by con
siderable noise in the Hyperion image. For ME and 
aNDF, the agreement between both satellites is even 
lower, with Sentinel-2 estimating generally higher ME 
values (Figure 6) but lower aNDF values than 
Hyperion (see Figure A1 in Appendix).

To better assess model plausibility, time series of 
modelled forage characteristics from all four focus 
areas (both from Hyperion and Sentinel-2 models) 
were compared to field-based data from the same 

vegetation zone, that is, Sudanian savanna. 
Vegetation samples were taken during the rainy 
season in summer 2012 (June – September). For 
all three forage characteristics, values estimated by 
Hyperion and Sentinel-2 models during the rainy 
season fall within the range of values measured in 
the lab so that both models generated plausible 
values (for comparison, the rainy season 2016 was 
marked with a blue coloured box; see Figures A2– 
A4 in Appendix).

Over the course of the three growing seasons, 
dynamics of gBM and ME were clearly connected to 
seasonal changes between the dry and the rainy 

Figure 5. Forage supply map of green biomass (gBM) generated by applying models on Hyperion (18.10.16, left) and Sentinel-2 
(19.10.16, right) imagery for the focus areas, i.e (a) Nazinon, (b) Aniabiisi, (c) Tankwidi, (d) White Volta.
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season (Figure 7). However, values varied widely 
between focus areas whereby values from the most 
northern/arid site Nazinon and the heavily grazed 
site Aniabiisi tended to be more similar. Based on 
the results of linear models, the overall effect of 
environmental drivers on the temporal development 
of forage characteristics were roughly comparable. 
Phenology exerted by far the most important influ
ence, followed by cumulated precipitation sums over 
three months and recent precipitation, which was 
only a significant driver for ME (Table 4). The envir
onmental drivers under consideration could model 
most forage characteristics with a fit higher than 0.43. 
Only the model for green biomass performed less 
well (adjR2 = 0.34).

Discussion

Performance of resampled forage models – the 
spectral aspect

A main aim of this study was to model forage char
acteristics from in-situ hyperspectral data resampled 
to match the spectral resolution of multi- and hyper
spectral satellites. Here, we first discuss how spectral 
characteristics of Sentinel-2 and Hyperion sensors 
influenced model performance.

To answer this question, we developed an elaborate 
methodology which implied resampling the sensor’s 
spectral response functions to match image spectral 
resolution, and using partial least squares regression 
(PLSR) for model calibration. PLSR was chosen due to 

Figure 6. Forage supply map of metabolisable energy (ME) generated by applying models on Hyperion (18.10.16, left) and 
Sentinel-2 (19.10.16, right) imagery for the focus areas, that is, (a) Nazinon, (b) Aniabiisi, (c) Tankwidi, (d) White Volta.

EUROPEAN JOURNAL OF REMOTE SENSING 373



its ability to deal with the high dimensionality and 
collinearity of hyperspectral data (Carrascal et al., 
2009) while retaining only significant components 
with a high explanatory power (Harsanyi & Chang, 
1994). We found that, for all tested spectral resolu
tions, our methodological approach was successful in 
calibrating models for three forage characteristics 
(gBM, ME, and aNDF).

With respect to wavelengths selected by PLSR, suc
cessful models shared many similarities, which sup
ports the idea of a causal relationship between selected 
spectral regions and the forage characteristic under 

investigation (Knox et al., 2012). Examples of these 
similarities include the selection of bands from the 
NIR region (especially 800–900 nm) for gBM, for 
example, Sentinbel-2 bands 8 (centred at 832.8 nm) 
and 8A (centred at 864.7 nm), whereby the latter was 
also chosen in a study by Sibanda et al. (2015) predict
ing grass biomass and relates to the vegetation´s bio
physical quantity and yield (Thenkabail et al., 2013). 
Additionally, all ME models selected bands from the 
VIS region (350–700 nm), including Sentinel-2 bands 
1 (centred at 442.7 nm) and 3 (centred at 559.8 nm) 
which relate to chlorophyll concentration (Curran, 

Figure 7. Seasonal dynamics of (a) total gBM and (b) ME for all four focus areas predicted based on Hyperion time series. Areas 
affected by cloud cover were excluded. For comparison, (c) seasonal dynamics of MODIS NDVI time series used for the extraction of 
phenology parameters and sum of precipitation averaged over all four focus areas are shown.

Table 4. Significance levels of environmental drivers chosen by stepwise (forward and backward) model selection for each forage 
characteristic. Phenology parameters were extracted from a MODIS NDVI time series, precipitation is the monthly sum of rainfall 
while cumulative precipitation (cumPrecipitation) equals the sum of precipitation of a given month plus the sum of the two 
preceding months. Land use (1: open deciduous woodland, 2: closed to open shrubland, 3: agriculture) and soil (1: cambisol, 2: 
lixisol; cf. Table 1) were also tested as predictors. High adjR2 values indicate a good fit of the regression models.

Forage characteristics (response variables) Environmental drivers (predictors) adjR2

Phenology Precipitation cumPrecipitation Land use Soil
Green biomass (gBM) ** x x 0.34
Metabolisable energy (ME) *** * 0.43
Amylase-treated neutral detergent fibre (aNDF) * ** 0.50
Acid detergent fibre (ADF) ** * 0.45
Phosphorus (P) ** * 0.46
Ash ** * 0.43

Significance codes: “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 ‘x’ 1
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1989). All models predicting aNDF selected bands 
from the red edge and SWIR II region. Sentinel-2´s 
red edge bands (band 5–7) are cantered in the 700– 
800 nm region. It is not surprising that this region, 
which is strongly affected by the vegetation’s vitality, 
proved to be important to model an age-dependent 
plant characteristic such as fibre. On the other hand, 
Sentinel-2 band 12 (centred at 2202.4 nm) in the 
SWIR II region is quite broad and covers different 
adsorption features of starch, cellulose but also protein 
and nitrogen (Curran, 1989).

A comparably lower predictive power was observed 
for the Sentinel-2 models aimed at predicting aNDF. 
We assume that this is due to the missing spectral 
coverage of the Sentinel-2 sensor in the SWIR II 
region. Hence, while the FieldSpec and Hyperion 
models selected several SWIR II bands for aNDF pre
diction, only one band was available in Sentinel-2 
models. Likewise, the low predictive power of the 
Sentinel-2 model for ADF could be explained by the 
insufficient spectral resolution of Sentinel-2 in the 
SWIR I and SWIR II region. Although the SWIR 
I band (related to lignin, but also starch, protein and 
nitrogen (Curran, 1989)) and SWIR II band (related to 
protein and nitrogen (Curran, 1989)) of Sentinel-2 are 
well placed to detect some important forage informa
tion, they still provide only data from two bands from 
a very broad spectral area which contains manifold 
important information for forage studies (Card et al., 
1988; Curran, 1989; Norris et al., 1976; Workman & 
Weyer, 2008).

Our attempts to model P were not successful, 
neither for the full spectral resolution provided by 
the field spectroradiometer, nor for the satellite reso
lutions. In general, P concentrations in the soil of the 
research area are very low (Guuroh et al., 2018; Nwoke 
et al., 2003). Therefore, spectral adsorption features of 
more frequent constituents like water, cellulose, and 
nitrogen might have hindered the detection of 
P (Kokaly et al., 2009). In addition, inorganic com
pounds cannot be detected directly via field spectro
scopy, but only if a correlation exists with detectable 
organic compounds or structural plant characteristics 
(Deaville & Flinn, 2000; Reeves, 2000). Such 
a correlation was not found for our dataset (results 
not shown).

Likewise, our attempts to model ash failed, since the 
band selection procedure failed to select meaningful 
bands. Even in most of our models based on hyper
spectral data, the algorithm selected only a few bands, 
possibly due to the high multicollinearity of hyper
spectral data (Clevers et al., 2007; De Jong et al., 2003). 
It can be concluded that the low number of broad 
bands of Sentinel-2 in the SWIR region reduced the 
predictive power of many forage models in compar
ison to those based on hyperspectral data (Mansour 
et al., 2012). However, in general the spectral coverage 

of Sentinel-2 proved to be sufficiently high and strate
gically well placed for rangeland monitoring and man
agement purposes (Sibanda et al., 2016).

Application of models on satellite data – the 
spatial aspect

A second aim of our study was to assess the transfer
ability of field-developed statistical models to satellite 
imagery, with the idea to create spatial information in 
the form of forage maps. To ensure this transferability, 
we developed a multi-step methodology to avoid com
mon obstacles during the upscaling procedure. We 
first applied a mask based on MESMA results to 
ensure that models were only applied on vegetated 
pixels. The idea of such a mask was already suggested 
by Coops et al. (2003) and realized by, for example, 
Suzuki et al. (2012) and Psomas et al. (2011). The fact 
that modelled forage characteristics fell all within the 
range of those measured in the field are a strong indi
cation of our success. Hence, our results underline the 
importance of a well-designed preprocessing (and not 
postprocessing) step to improve a match of targets 
(here vegetation) between model calibration and 
model application, since it can never be assured that 
the model does not predict reasonable values when 
applied on incongruous targets, for example, soil 
pixels.

Furthermore, for upscaling field-based spectro
metric measurements to satellite data, it is mandatory 
to convert at-sensor radiance to surface reflectance by 
applying atmospheric correction (Psomas et al., 2011). 
Such a procedure is also prerequisite for multi-scene 
and multi-date analysis. Due to software limitations, 
we had to apply two different atmospheric correction 
methods to Hyperion and Sentinel-2 images, which 
might have caused some observed differences in pixel 
values and thus model outcomes (Martin et al., 2008). 
Both abovementioned aspects have to be carefully 
considered when transferring field-developed statisti
cal models to satellite imagery.

Furthermore, our study aimed at elucidating how 
the sensor type (hyperspectral vs. multispectral) would 
affect model transfer to satellite data. When compar
ing the performance of Hyperion and Sentinel-2, it 
became clear that none of the tested satellites provided 
optimal characteristics for the purpose of regular for
age supply monitoring in subtropical savanna grass
land. We tested Hyperion as a representative of 
a hyperspectral satellite, since it was the only satellite 
providing repeatedly and freely available hyperspectral 
imagery at the time of the study. Hyperion has several 
major shortcomings, including a low signal-to-noise 
ratio, unpredictable image acquisition, varying image 
coverage and the fact that the satellite was deactivated 
on 30 March 2017. The low data quality of the sensor 
became obvious in the grainy model results despite 
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complex image preprocessing. In comparison to 
Sentinel-2 models, though, Hyperion’s higher spectral 
resolution led to a higher model fit and lower predic
tion error for five of the six tested forage characteris
tics. Our results support the idea that a higher spectral 
coverage contains more essential information about 
plant constituents and thus enables the calibration of 
better fitted models for flexible application opportu
nities (Durante et al., 2014). For future applications, 
a number of hyperspectral satellites will be available, 
for example, Copernicus Hyperspectral Imaging 
Mission for the Environment (CHIME), PRISMA, 
EnMAP HyperSpectral Imager, HISUI, Spaceborne 
Hyperspectral Applicative Land and Ocean Mission 
(SHALOM), Hyperspectral Infrared Imager 
(HyspIRI) and Hyperspectral X IMagery (HypXIM) 
(Transon et al., 2018).

Until these new satellites are operational, especially 
for applications in Africa, more practical and afford
able multispectral remote sensing alternatives are 
needed (Zengeya et al., 2013). With the launch of 
Sentinel-2B on 7 March 2017, a frequent image acqui
sition (i.e. every five days) is possible, offering optimal 
conditions for monitoring purposes based on freely 
available imagery. The strategically placed bands of 
Sentinel 2, especially in the red-edge region, facilitate 
estimates of chemical constituents and can partly 
compensate for the reduced data range compared to 
hyperspectral sensors (Ramoelo et al., 2012).

Our comparison of forage supply maps based on 
multi- and hyperspectral satellites rendered consid
erable differences. As predicted data ranges from 
both sensors fell within the range of the samples 
taken on the ground, we are not able to determine 
which satellite provided better estimates. However, 
forage maps based on Sentinel-2 data tended to be 
visually more plausible since the MESMA proce
dure masked only non-vegetated areas and the spa
tial pattern of forage characteristics were less noisy 
than with Hyperion. A future satellite system 
should ideally combine the advantages of both 
tested data sources to install a more reliable mon
itoring system, i.e. the high spectral resolution of 
Hyperion and the high data quality and availability 
of Sentinel-2. The EnMAP sensor has a great 
potential to fill this gap in the future. It is supposed 
to provide a high spectral coverage (420 to 
2450 nm) in combination with a low signal-to- 
noise ratio at a spatial resolution of 30 m 
(Guanter et al., 2015). Also, like the Sentinel satel
lites, it will offer a high revisit time of up to four 
days at the equator as well as cost-free images for 
scientific use (Guanter et al., 2015). More recently, 
it became clear that ESA’s planned CHIME satellite 
in the Sentinel family might provide even more 
suitable characteristics for regular forage supply 
monitoring (Nieke & Rast, 2018).

Drivers of regional forage resources – the 
ecological aspect

Our final study aim was to match spatio-temporal 
patterns in forage characteristics to patterns in envir
onmental drivers to gain an improved understanding 
of forage resource dynamics. Our results indicate that 
both forage quantity (green biomass) and forage qual
ity (as captured by ME and aNDF) varied considerably 
in time and space. This expected result is in line with 
previous remote sensing studies from grasslands (e.g. 
Beeri et al., 2007; Durante et al., 2014; Levick & 
Rogers, 2011; Suzuki et al., 2012). We also found that 
areas with high biomass production often (but not 
always) rendered forage with a low quality, and vice 
versa. These observations can be explained by inherent 
trade-offs between forage quantity and forage quality 
(Mueller et al., 2008). Therefore, we recommend con
sidering both, the quantity but also the quality of 
forage when looking for monitoring approaches that 
support a resilient use of forage resources in the face of 
global change.

To cover two potentially important environmental 
drivers of forage supply, that is, climate and land-use, 
our study design captured steep gradients of climatic 
aridity and grazing pressure. However, at the broad 
spatial scale considered in this study, only general 
conclusions about regional drivers of forage supply 
can be drawn. In agreement with earlier studies [e.g. 
Grant and Scholes (2006), Knox et al. (2012)], we 
found pronounced seasonal changes in forage supply 
between the wet and dry season. As expected for 
a dryland region, seasonal dynamics of forage supply 
were found to be closer connected to rainfall patterns 
than to grazing intensities (Kgosikoma et al., 2015).

We found that both the most arid focus area 
(Nazinon) and the most heavily grazed area 
(Aniabiisi) had the tendency for a higher forage qual
ity. Arid areas support the growth of annual plants 
(Hempson et al., 2015) which often feature a high 
forage quality (Le Houérou, 1980). Likewise, high 
grazing pressure in savanna grasslands can induce 
a dominance shift from perennial to annual plants 
(Fuhlendorf & Engle, 2001; Pfeiffer et al., 2019). This 
supports the idea of aridity and grazing exerting con
vergent selective forces on plants (Reeves, 2000), as 
found by Linstädter et al. (2014) in an earlier study 
from African savanna grasslands. Furthermore, a shift 
of plant communities towards highly nutritious “graz
ing lawns” with a high grazing value can be observed 
under intensive grazing impact (Hempson et al., 
2015). High grazing pressure can stimulate the 
regrowth of fresh palatable plant material, thus keep
ing vegetation in an early phenological stage (Moreno 
García et al., 2014).

In this regard, it is not surprising that plant phe
nology, which is functionally linked to a progressive 
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decline in digestibility and crude protein (Changwony 
et al., 2015), was found to be the most important 
predictor of forage characteristics. Cumulative preci
pitation, in contrast to precipitation, integrates the 
recent history of rainfall events over the last three 
months. A study in the same research area but at 
a finer spatial resolution found antecedent rainfall to 
be an important driver of forage biomass (Guuroh 
et al., 2018). We assume that cumulative precipitation, 
in contrast to recent precipitation, is a better proxy of 
current ground water levels which in turn influence 
plant growth. In addition, cumulative precipitation 
can modulate the rivers’ water levels within our focus 
areas and thus forage resources on river banks 
(Nilsson & Svedmark, 2002). These areas are of special 
importance for pastoralists since they show consis
tently earlier green-up and delayed senescence and 
thus act as key pastoral forage sites (Brottem et al., 
2014).

An earlier field-based study from the same 
research area that was restricted to the rainy season 
revealed that local-scale forage supply was mainly 
controlled directly by land-use intensity, including 
fire frequency and grazing pressure. However, indir
ect proxies like aridity, vegetation characteristics and 
weather fluctuations also played a role (Ferner et al., 
2018). Both studies agree that vegetation dynamics 
and water availability play an important role in 
explaining forage supply. On the broader spatial 
and temporal scales of this study, however, the sub
stantial temporal changes due to the phenological 
development of plants and the influence of seasonal 
shifts between dry and rainy seasons may have over
ridden the more local influence of land-use drivers. 
A certain information loss thus seems to be inevitable 
when the aim is to be independent of resource- 
intensive local measurements and to provide infor
mation on larger scale instead.

Limitations of our approach

Our data sampling approach ensured a direct relation
ship between the spectral reflectance of vegetation and 
the samples analysed in the lab. However, this was 
only possible for relatively small sampling plots (i.e. 
0.25 m2) while other studies have emphasized the 
importance of a match between field and remote sen
sing image sampling resolutions (e.g. Thulin et al. 
(2012)). This approach was not suitable in our case 
for four reasons. First, the investigated satellites fea
tured different spatial resolutions; second, an estima
tion of ME is very costly and could not be provided for 
a representative area of a 30 × 30 m pixel; third, 
Hyperion image acquisition was not predictable but 
depended on weather forecasts; and fourth, the flight 
height and spatial coverage of the Hyperion satellite 
varied over time.

A further limitation of this approach is that no 
truly independent validation of model results was 
possible and we rely instead on an internal cross- 
validation procedure. With respect to the robust
ness and transferability of resampled models, 
Mutanga et al. (2015) found that although the 
model performance of resampled spectral data 
tended to overestimate model accuracy in compar
ison to a real application on satellite data, the 
magnitude of errors due to the up-scaling proce
dure was small enough to support a transfer. These 
results provide a legitimation of our approach, and 
give us confidence that our study rendered robust 
and transferable results. Nonetheless, we emphasise 
the need to further investigate model performance 
based on independent validation plots on the 
ground, which would only be possible for 
Sentinel-2 models. Furthermore, we acknowledge 
that testing other regression methods (e.g. random 
forest) or using vegetation indices in addition to 
reflectance data might have resulted in better model 
fits. However, testing different regression methods 
was beyond the scope of our study which focused 
on comparing the usability of multi- and hyper
spectral data. In this context, we expect our results 
to further improve by adding free Landsat 8 and 
future Landsat 9 images to the analysis, as sup
ported by other studies [e.g. Sibanda et al. (2015), 
Forkuor et al. (2018), and Wang et al. (2019)].

Our four focus areas differed with respect to habitat 
characteristics such as the presence of rivers or forests. 
Trees can dominate remote sensing based time-series 
analyses in this area (Brandt et al., 2015), but at the 
spatial resolution of Hyperion images we were not able 
to specifically mask out trees. Since leaves provide an 
important source of forage, especially during the dry 
season (Ky-Dembele et al., 2016), and the riparian 
zone provides highly nutritious grasses (Ramoelo 
et al., 2012) irrespective of the rainy season, we 
refrained from excluding floodplains. However, our 
models were specifically calibrated on herbaceous 
vegetation and an application on pixels dominated 
by tree spectra might have decreased model reliability 
in these areas.

The time series considered in our study ended in 
2016, since Hyperion images showed an increasing 
level of noise prior to the deactivation of the satellite 
on 30 March 2017. As a result, data for a direct com
parison of Hyperion and Sentinel-2 (launch date: 
23 June 2015 with first images being available in 
autumn 2015) were only available for a time span of 
ca. one year. This might have decreased the explana
tory power of our analysis. Moreover, it did not allow 
for a temporal assessment of multi- and hyperspectral 
model results. However, all seasons as well as very 
different habitat types were covered which ensured 
the validity of our conclusions.
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Conclusion

While numerous studies have investigated the poten
tial applications of near-surface remote sensing in 
detecting essential chemical constituents of vegetation, 
few studies have used this method to create maps 
based on satellite or aerial images in order to tackle 
urgent ecological challenges. Our study presents an 
attempt to go one step further to directly use remote 
sensing products, aided by field spectroscopy, in order 
to determine important drivers of forage supply in an 
African savanna grassland. Our findings provide evi
dence that partial least-squares regression is able to 
model several important forage characteristics based 
on hyperspectral as well as multispectral data. 
However, generated maps differed considerably: 
While the high spectral resolution of Hyperion ima
gery allowed for improved model fits, the better qual
ity of Sentinel-2 images resulted in more realistic maps 
of forage characteristics. We therefore conclude that 
so far none of the tested sensors provide optimal 
features for a regular forage monitoring. In the future, 
several planned hyperspectral missions will likely fill 
this gap. Nonetheless, by using a time-series of 
Hyperion images, we were able to contribute to 
a better understanding of forage drivers at a regional 
scale. Future research in this regard should focus on 
more reliable model validation methods to adequately 
evaluate model performances before eventually instal
ling automated monitoring systems of forage supply.
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Appendix

Figure A1. Forage supply map of amylase-treated neutral detergent fibre (aNDF) generated by applying models on Hyperion 
(18.10.16, left) and Sentinel-2 (19.10.16, right) imagery for the focus areas, that is, (a) Nazinon, (b) Aniabiisi, (c) Tankwidi, (d) White 
Volta.
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Figure A2. Box plots reflecting the time series of green biomass (gBM) values from the four focus areas predicted from Hyperion 
(dark colour) and Sentinel-2 (light colour) images in comparison to field samples measured during the rainy season 2012 (box plot 
to the right). The time period of the rainy season 2016 (June – Sept 2016) is marked with a box.

Figure A3. Box plots reflecting the time series of metabolisable energy (ME) values from the four focus areas predicted from 
Hyperion (dark colour) and Sentinel-2 (light colour) images in comparison to field samples measured during the rainy season 2012 
(box plot to the right). The time period of the rainy season 2016 (June – Sept 2016) is marked with a box.

Figure A4. Box plots reflecting the time series of amylase-treated neutral detergent fibre (aNDF) values from the four focus areas 
predicted from Hyperion (dark colour) and Sentinel-2 (light colour) images in comparison to field samples measured during the 
rainy season 2012 (box plot to the right). The time period of the rainy season 2016 (June – Sept 2016) is marked with a box.

384 J. FERNER ET AL.


	Abstract
	Introduction
	Material and Methods
	Study design
	Study area
	Field data collection
	Processing chain of satellite data
	Preprocessing of EO-1 Hyperion images
	Preprocessing of Sentinel-2 images
	Spectral unmixing procedure

	Spectral model calibration to estimate forage supply
	Linear model selection based on AIC

	Results
	Discussion
	Performance of resampled forage models – the spectral aspect
	Application of models on satellite data – the spatial aspect
	Drivers of regional forage resources – the ecological aspect
	Limitations of our approach

	Conclusion
	Data availability statement
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References
	Appendix

