Observation of a New Excited Beauty Strange Baryon Decaying to $\Xi_b^-\pi^+\pi^-$

A. M. Sirunyan et al.

(CMS Collaboration)

(Received 8 February 2021; revised 19 March 2021; accepted 23 April 2021; published 25 June 2021)

The $\Xi_b^-\pi^+\pi^-$ invariant mass spectrum is investigated with an event sample of proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the CMS experiment at the LHC in 2016–2018 and corresponding to an integrated luminosity of 140 fb$^{-1}$. The ground state Ξ_b^- is reconstructed via its decays to $J/\psi\Xi^-$ and $J/\psi\Lambda K^-$. A narrow resonance, labeled $\Xi_b(6100)^-$, is observed at a $\Xi_b^-\pi^+\pi^-$ invariant mass of 6100.3 ± 0.2(stat) ± 0.1(syst) ± 0.6(Ξ_b^-) MeV, where the last uncertainty reflects the precision of the Ξ_b^- baryon mass. The upper limit on the $\Xi_b^-(6100)^-$ natural width is determined to be 1.9 MeV at 95% confidence level. The low $\Xi_b^-(6100)^-$ signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Ξ_b baryon states, the new $\Xi_b(6100)^-$ resonance and its decay sequence are consistent with the orbitally excited $\Xi_b^-\pi^+\pi^-$ baryon, with spin and parity quantum numbers $J^P = 3/2^-$.

DOI: 10.1103/PhysRevLett.126.252003

The Ξ_b baryon family consists of isodoublet states composed of bsq quarks, where q represents an up or a down quark for the Ξ_b^{0} and Ξ_b^{-} states, respectively. According to the quark model for baryons containing one heavy quark [1], three such isodoublets that are neither orbitally nor radially excited should exist, including one with the light diquark angular momentum $j_{qs} = 0$ and spin parity $J^P = 1/2^+$ (the Ξ_b ground states), one with $j_{qs} = 1$ and $J^P = 1/2^+$ (the Ξ_b^{0}), and one with $j_{qs} = 1$ and $J^P = 3/2^+$ (the Ξ_b^{-}). Various theoretical models and calculations predict a spectrum of excited Ξ_b baryons [2–16]. Three of the four excited states with $j_{qs} = 1$ have been observed at the CERN LHC [17–19] via their $\Xi_b^-\pi^+$ and $\Xi_b^{0}\pi^-$ decays, in agreement with predictions [2–4]. The fourth state, $\Xi_b(600)^-$, is expected to be lighter than the $\Xi_b^{-}\pi^+$ mass threshold, making a strong transition to $\Xi_b^{-}\pi^+$ kinematically impossible. The next prominent isodoublets, in analogy with the quark model assumptions for the well-established excited Ξ_c baryons [20], are orbitally excited P-wave Ξ_b^{**} states with $J^P = 1/2^– (3/2^–)$, expected to decay to $\Xi_b^-(\Xi_b^0)\pi$ [12,13,21]. Recently, the LHCb Collaboration reported the observation of the $\Xi_b(6227)^+$ [22] and $\Xi_b(6227)^0$ [23] states, the former decaying to both $\Lambda_b^0 K^-\pi^-$ and $\Xi_b^0\pi^-$, and the latter to $\Xi_b^-\pi^+\pi^-$. This Letter presents a search for $\Xi_b^{-}\pi^+\pi^-$ excited states in the $\Xi_b^-(\Xi_b^0)\pi^-$ invariant mass spectrum, performed using proton (pp) collision data samples collected by the CMS experiment at the LHC at $\sqrt{s} = 13$ TeV in 2016–2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The ground state Ξ_b^- is reconstructed via its decays to $J/\psi\Xi^-$ and $J/\psi\Lambda K^-$, followed by the decays $J/\psi \rightarrow \mu^+\mu^-$, $\Xi^- \rightarrow \Lambda\pi^-$, and $\Lambda \rightarrow p\pi^-\pi^-$. The decay topologies are illustrated in Fig. 1. For the $\Xi_b^- \rightarrow J/\psi\Lambda K^-$ decay mode, following the studies reported by the LHCb Collaboration [24], the partially reconstructed $\Xi_b^- \rightarrow J/\psi\Sigma^0 K^-$ channel is also used, where the photon from the $\Sigma^0 \rightarrow \Lambda\gamma$ decay is too soft to be detected. The inclusion of charge-conjugated states is implied throughout this Letter. A signal peak, hereafter referred to as $\Xi_b^-\pi^+\pi^-$, is clearly observed near the $\Xi_b^-\pi^+\pi^-$ kinematic threshold, with a decay sequence consistent with being the $\Xi_b^-(6100)^-$ resonance and its decay sequence are consistent with the orbitally excited $\Xi_b^-\pi^+\pi^-$ decay. The $\Xi_b^-\pi^+\pi^-$ mass and an upper limit on its width are also measured.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a leading hadron calorimeter, each composed of a barrel and two end cap sections. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [25].

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors [26]. The second level, known as the high-level trigger (HLT), consists of a farm of processors...
running a version of the full event reconstruction software optimized for fast processing [27]. The events used in the analysis were selected at L1 by requiring the presence of at least two muons and at HLT by requiring that the two muons have opposite sign (OS), with various thresholds on the pseudorapidity η and momentum transverse to the beam axis p_T, compatible with being produced in the dimuon decay of J/ψ mesons.

Several simulated event samples are used in the analysis. The PYTHIA 8.230 package [28] is used to simulate the production of the $\Xi_b(6100)^-\Xi^-\pi^+\pi^-$ state, where the Ξ_b baryon, with a modified mass value, is used as a proxy for an excited $\Xi_b(6100)^-$ state. The $\Xi_b(6100)^-\rightarrow \Xi_b^0\pi^+\pi^-$ (including both resonant $\Xi_b^0\pi^+\pi^-$ and nonresonant $\Xi^-\pi^+\pi^-$ modes), $\Xi_b^-\rightarrow J/\psi\Xi^-$, $\Xi_b^-\rightarrow J/\psi\Lambda K^-$ (including $\Xi_b^-\rightarrow J/\psi\Sigma^0 K^-$, $\Sigma^0\rightarrow \Lambda\gamma$), and $J/\psi\rightarrow \mu^+\mu^-$ decays are modeled with EVTGEN 1.6.0 [29], where final-state photon radiation is included using PHOTOS 3.61 [30,31]. The generated events are then passed to a detailed GEANT4-based simulation [32] of the CMS detector, including the same trigger and reconstruction algorithms as used for the collision data. The simulation includes effects from multiple pp interactions in the same or nearby bunch crossings (pileup) with a multiplicity distribution matching the measured one.

The selection criteria are optimized using the Punzi figure of merit [33], which does not rely on the signal normalization. The expected background is estimated from data using the same-sign (SS) control region described below, while the signal efficiency is obtained from the simulated $\Xi_b(6100)^-\rightarrow \Xi_b^0\pi^+\pi^-$ events. The $\Xi_b^-\rightarrow J/\psi\Xi^-$ and $\Xi_b^-\rightarrow J/\psi\Lambda K^-$ requirements are optimized separately.

Events are required to have two OS muons passing the CMS soft-muon selection criteria [34] and satisfying $p_T(\mu^\pm) > 3$ GeV and $|\eta(\mu^\pm)| < 2.4$. The muons form a common vertex with χ^2 probability P_{vtx} above 1%. The dimuon invariant mass must be within 100 MeV of m_{PDG}^{ψ} (hereafter, m_{PDG}^{ψ} denotes the world-average mass of hadron $\chi [20]$), corresponding to about three times the mass resolution. The Λ candidates are formed from displaced two-prong vertices, assuming the decay $\Lambda \rightarrow p\pi^-$, as described in Ref. [35]. The $p\pi^-$ reconstructed mass is required to be within 10 MeV of m_{PDG}^{Λ}, corresponding to about three times the mass resolution. The two tracks are then refitted with their invariant mass constrained to m_{PDG}^{Λ}. The obtained Λ candidates are required to have $p_T > 1$ GeV and $P_{\text{vtx}} > 1\%$.

For the $\Xi_b^-\rightarrow J/\psi\Xi^-$ channel, the $\Xi^-\rightarrow \Lambda\pi^-$ candidates are obtained by combining charged particles of $p_T > 0.25$ GeV with the selected Λ candidates. The reconstructed Ξ^- must have $P_{\text{vtx}} > 1\%$, $p_T > 3$ GeV, and invariant mass within 9.5 MeV of $m_{\text{PDG}}^{\Xi^-}$, corresponding to about three times the mass resolution. The $\Xi^-\rightarrow \Lambda\pi^-$ candidates are obtained by performing a $\mu^+\mu^-\Xi^-$ kinematic vertex fit, constraining the dimuon invariant mass to m_{PDG}^{ψ}. For the $\Xi_b^-\rightarrow J/\psi\Lambda K^-$ decay channel, the Λ candidates must pass stricter requirements: $p_T > 2$ GeV and $|M(p\pi^-) - m_{\text{PDG}}^{\Lambda}| < 9$ MeV. The charged kaon candidates are particle tracks with kaon mass assignment satisfying high-purity tracking requirements [36] and $p_T > 1.2$ GeV. The $\Xi^-\rightarrow \Lambda\pi^-$ candidates are reconstructed by fitting the $\mu^+\mu^-\Lambda K^-$ vertex with the J/ψ mass constraint. Because the photon from the $\Sigma^0 \rightarrow \Lambda\gamma$ decay is not detected, both $\Xi_b^-\rightarrow J/\psi\Lambda K^-$ and $\Xi_b^-\rightarrow J/\psi\Sigma^0 K^-$ decays contribute to the $\mu^+\mu^-\Lambda K^-$ reconstructed combination.

The $\Xi_b^-\rightarrow J/\psi\Lambda K^-$ candidates are required to have $P_{\text{vtx}} > 1\%$ and $p_T > 10(15)$ GeV for the $\Xi_b^-\rightarrow J/\psi\Xi^-$ ($\Xi_b^-\rightarrow J/\psi\Lambda K^-$) channel. From all reconstructed pp collision vertices, the primary vertex (PV) is chosen as the one with the smallest pointing angle, as done in Refs. [37–40]. The pointing angle is the three-dimensional angle between the Ξ_b^- candidate momentum and the vector joining the PV with the reconstructed Ξ_b^- candidate decay vertex. The decay length L_{xy} of the Ξ_b^- candidate in the transverse plane, computed as the two-dimensional distance between the PV and the Ξ_b^- decay vertex, is required to be at least three times larger than its uncertainty $\sigma_{L_{xy}}$. The $p_T(\Xi_b^-)$ is...
required to be aligned with the transverse displacement vector: $\cos(\alpha(\Xi_b^-, \text{PV})) > 0.99(0.993)$ for the $\Xi_b^- \to J/\psi \Xi^-$ $(J/\psi \to \Sigma^0 \Lambda K^-)$ channel, where $\alpha(\Xi_b^-, \text{PV})$ is the pointing angle in the plane transverse to the beams. Two additional topological requirements are applied: the cosine of the pointing angle $\cos(\alpha(\Xi_b^-, \Xi_b^-))$ must be larger than 0.999 for the $\Xi_b^- \to J/\psi \Xi^-$ channel; and $L_{xy}/\sigma_{\text{PV}}(\Lambda, \Xi_b^-) > 20$ for the $\Xi_b^- \to J/\psi \Lambda K^-$ channel. In addition, the pion emitted in the $\Xi^- \to \Lambda \pi^-$ decay and the kaon emitted in the $\Xi_b^- \to J/\psi \Lambda K^-$ decay must have $d_{xy} > 0.9$ and 0.6, respectively, where d_{xy} is the impact parameter in the transverse plane with respect to the PV, and σ_{PV} is its uncertainty.

The invariant mass distributions of the selected Ξ_b^- candidates are shown in Fig. 2 for the $J/\psi \Xi^-$ (upper) and $J/\psi \Lambda K^-$ (lower) channels. The two plots also show the results of independent unbinned extended maximum-likelihood fits. In both cases, the fully reconstructed Ξ_b^- signal is described by a double-Gaussian function with two free parameters: the common mean and the total yield; the two width parameters and the proportion of each Gaussian are fixed from simulation studies. The background is described by a first-order polynomial in the $J/\psi \Xi^-$ fit and an exponential function in the $J/\psi \Lambda K^-$ fit. In the latter fit, the signal contribution from the partially reconstructed $\Xi_b^- \to J/\psi \Sigma^0 K^-$ decays is taken into account by including an asymmetric Gaussian in the fit model, with the shape parameters fixed from simulation studies. All normalization values (signals and backgrounds) are free parameters of the fit.

The signal yields from the fits described above are 859 ± 36 and 815 ± 74 for the $\Xi_b^- \to J/\psi \Xi^-$ and fully reconstructed $\Xi_b^- \to J/\psi \Lambda K^-$ decay modes, respectively, with the uncertainties being statistical only. The fitted Ξ_b^- masses of 5797.0 ± 0.7 and 5800.1 ± 1.2 MeV, respectively for the $J/\psi \Xi^-$ and $J/\psi \Lambda K^-$ channels, the uncertainties being statistical only, are consistent with each other and with the world-average value, 5797.0 ± 0.6 MeV [20]. The signal components corresponding to fully reconstructed Ξ_b^- candidates are shown by the solid green curves. The fitted yield of the partially reconstructed $\Xi_b^- \to J/\psi \Sigma^0 K^-$ contribution, reconstructed as $J/\psi \Lambda K^-$, is 820 ± 158, represented by the dotted-dashed curve in Fig. 2 (lower). The Ξ_b^- fit results illustrate this part of the reconstruction procedure and provide the first confirmation of the $\Xi_b^- \to J/\psi \Lambda K^-$ decay observed by LHCb [24].

When reconstructing $\Xi_b^- \pi^+ \pi^-$ candidates, we select events with Ξ_b^- invariant mass within 54 (27) MeV of the fitted Ξ_b^- mass for the $J/\psi \Xi^-$ $(J/\psi \Lambda K^-)$ channel, corresponding to approximately 2.8 (1.8) times the mass resolution, as shown by the vertical solid lines in Fig. 2. The $5.63 < M(J/\psi \Lambda K^-) < 5.76$ GeV mass region is used for the partially reconstructed $\Xi_b^- \to J/\psi \Sigma^0 K^-$ decay mode, shown by the dashed vertical lines in Fig. 2 (lower). These mass ranges are selected through the same optimization procedure as used for the other selection criteria.

Because the lifetime of the excited Ξ_c states is expected to be negligible, the $\Xi_c \pi^+ \pi^-$ candidates are formed by combining the selected Ξ_b^- candidates with two OS tracks originating from the PV, as in Refs. [37–40]. Combinations of a Ξ_b^- candidate with two SS pions from the PV are used as a control channel and form the SS control region. The analysis is performed using the mass difference variable $\Delta M = M(\Xi_b^- \pi^+ \pi^-) - M(\Xi_b^-) - 2m_{\pi^+}\pi^-$, which has a better mass resolution than $M(\Xi_b^- \pi^+ \pi^-)$, where $M(\Xi_b^-)$ represents the reconstructed Ξ_b^- mass. According to the simulation studies, this variable also has the advantage of being insensitive to a potential mass shift caused by the fact that the photon emitted in the $\Xi_b^- \to J/\psi \Sigma^0 K^-, \Sigma^0 \to \Lambda \gamma$ decay sequence is not reconstructed. Following the technique developed in Ref. [40], the selected Ξ_b^- candidate and all tracks forming the PV are refit to a common vertex, further improving the $\Xi_b^- \pi^+ \pi^-$ invariant mass resolution of the fully reconstructed channels from 1.39 ± 0.11 to

![Image](image_url)
The invariant mass distribution of the selected $\Xi_b^-\pi^+\pi^-$ candidates is shown in Fig. 3, using the mass difference ΔM. The left plot combines the data from the $\Xi_b^0\rightarrow J/\psi\Xi^-$ and $\Xi_b^-\rightarrow J/\psi\Lambda K^-$ channels, which have identical mass resolutions, according to simulation studies (the Ξ_b^- is fully reconstructed in both channels). The right plot shows the events that use the partially reconstructed $\Xi_b^0\rightarrow J/\psi\Sigma^0 K^-$ channel, with a 30% larger mass resolution. Given the definition of the ΔM variable, the mean mass of the signal peaks should not depend on the Ξ_b^- reconstruction channel.

A narrow peak is seen near the threshold of the $\Xi_b^-\pi^+\pi^-$ system in both plots of Fig. 3. The excess is also visible in each of the two independent decay channels, $J/\psi\Xi^-$ and $J/\psi\Lambda K^-$. We have also studied the OS and SS distributions in a wider range of ΔM (up to 280 MeV) and found no other significant peaks. A simultaneous unbinned extended maximum-likelihood fit is performed on the two data samples shown in Fig. 3, the result being represented by the red curves. The signal component is described with a relativistic Breit-Wigner (RBW) function \cite{42,43} for the $\Xi_b(1610)^-\rightarrow \Xi_b^0\pi^-$ decay, convolved with a double-Gaussian resolution function. The mass and natural width of the signal function are the two parameters of interest in the fit. The normalization and background parameters are different for the fully and partially reconstructed channels, as are the resolution parameters, which are fixed from the simulation studies. The background component is modeled with the threshold function $(\Delta M)^\alpha$, where α is a free parameter.

The fitted mass difference of the new $\Xi_b(1610)^-$ state is $\Delta M_{\Xi_b(1610)^-} = 24.14 \pm 0.22$ MeV, where the uncertainty is statistical only. The fitted signal yields are 26 ± 7 and 34 ± 9 for the fully reconstructed and the $\Xi_b^-\rightarrow J/\psi\Sigma^0 K^-$ channels, respectively. The relative yield of the $\Xi_b(1610)^-$, with respect to the Ξ_b^- yield, is found to be noticeably larger in the partially reconstructed Ξ_b^- channel, compared to the fully reconstructed channels. Given the large uncertainties in the observed small $\Xi_b(1610)^-$ signal yields, this discrepancy is consistent with being a statistical fluctuation. The order-of-magnitude larger signals of the $\Xi_b^0\rightarrow \Xi_b^+\pi^-$ decays, with respect to the Ξ_b^- ground state signals, are found to be consistent between all three Ξ_b^- reconstruction channels.

The natural width of the $\Xi_b(1610)^-$ is too small to be measured with the present data sample and experimental resolution. An upper limit on $\Gamma[\Xi_b(1610)^-]$ has been obtained through a scan of the profiled likelihood, assuming an asymptotic distribution. The measured upper limit, at 95% confidence level, is $\Gamma[\Xi_b(1610)^-] < 1.9$ MeV, where the systematic uncertainties, discussed below, are taken into account.

The local statistical significance of the $\Xi_b(1610)^-$ signal is evaluated with the likelihood ratio technique, comparing the background-only and signal-plus-background hypotheses (with four additional free parameters), using asymptotic formulas \cite{44,45}. The resulting significance of the $\Xi_b(1610)^-$ signal varies between 6.2 and 6.7 standard deviations, depending on the fit model variations used to evaluate the systematic uncertainties.
Several sources of systematic uncertainties in the measured mass difference $\Delta M_{\Xi_b(6100)}^-$ are considered. To evaluate the systematic uncertainties related to the choice of the fit model, several alternative functions are tested. Uncertainties related to the choice of the signal model are estimated by changing the resolution function from a double-Gaussian function to a single-Gaussian function or a sum of three Gaussian functions. Two alternative background models are considered: the threshold function multiplied by an exponential and the threshold function multiplied by a first-order polynomial. The largest deviations in the measured mass are 0.01 and 0.04 MeV, respectively, for the variations of the signal and background models; these values are taken as the two corresponding systematic uncertainties.

The RBW function used in the signal modeling includes Blatt-Weisskopf barrier factors [43], which depend on the radial parameter r and on the angular momentum l (spin). In the baseline fit, $r = 3.5$ GeV$^{-1}$ and $l = 1$. The corresponding systematic uncertainties are obtained by varying r between 1 and 5 GeV$^{-1}$ or by assigning $l = 0$. The r variations have a negligible effect on the results, while fixing $l = 0$ changes the signal shape and induces a mass difference variation of 0.01 MeV, taken as the corresponding systematic uncertainty.

To account for a possible difference between the measured and simulated mass resolutions, the fits are repeated using proton-proton collision data collected by the CMS tracker was replaced between the 2016 and 2017 data-taking periods. The measured mass is found to be consistent with zero and a 95% confidence level upper limit of 1.9 MeV has been determined.

Simulation studies show a shift of 0.07 MeV between the Ξ_b mass difference $\Delta M_{\Xi_b(6100)}^-$ and its decay sequence are consistent with the lightest orbitally excited Ξ_b^- baryon, with the light diquark angular momentum $J_{ds} = 1$ and $J^P = 3/2^-$ (excitation with orbital momentum $L = 1$ between the b quark and the ds diquark). This suggests that it is the beauty analog of the $\Xi_c(2815)$ baryon [41]. Measuring a natural width of the $\Xi_b(6100)^-$ smaller than 1.9 MeV comes as a surprise, given the larger values predicted by the theory calculations [12,13,21], based on the assumption that the $\Xi_b^0 \rightarrow \Xi_b^0 \pi^-$ decay proceeds predominantly via S wave $\Delta S = 0$). The observation of this baryon and the measurement of its properties provide information that should help to distinguish between different theoretical models used to calculate the properties of the excited Ξ_b states.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS-IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI.
(Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESID (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOST (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); the F. R. S.-FNRS and FWO (Belgium); under the “Excellence of Science—EOS”—be.h Project No. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy—EXC 2121 “Quantum Universe”—390833306, and under Project No. 400140256—GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA Research Grants No. 123842, No. 123959, No. 124850, No. 125105, No. 128713, No. 128786, and No. 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), Contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, Project No. 14.W03.31.0026 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, Grant No. MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, Contract No. C-1845; and the Weston Havens Foundation (USA).

[9] I. L. Grach, I. M. Narodetskii, M. A. Trusov, and A. I. Veselov, Heavy baryon spectroscopy in the QCD string model, in Proceedings of the 16th International Conference on Particles and Nuclei (PANIC08) (2008) [arXiv:0811.2184].

[27] CMS Collaboration, Search for the $\Xi_c(5660)$ State Decaying Into $B_s^0\pi^\pm$ in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV, Phys. Rev. Lett. 120, 202005 (2018).

[28] CMS Collaboration, Studies of $B_s^0(5840)^0$ and $B_s^0(5830)^0$ mesons including the observation of the $B_s^0(5840)^0 \rightarrow B^0K^0_s$ decay in proton-proton collisions at $\sqrt{s} = 8$ TeV, Eur. Phys. J. C 78, 939 (2018).

[29] CMS Collaboration, Observation of Two Excited B_s^0 States and Measurement of the $B_s^0(2S)$ Mass in $p\bar{p}$ Collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 122, 132001 (2019).

(CMS Collaboration)

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik, Wien, Austria
3 Institute for Nuclear Problems, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
10 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11a Universidade Estadual Paulista, São Paulo, Brazil
11b Universidade Federal do ABC, São Paulo, Brazil
12 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
13 University of Sofia, Sofia, Bulgaria
14 Beihang University, Beijing, China
15 Department of Physics, Tsinghua University, Beijing, China
16 Institute of High Energy Physics, Beijing, China
17 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
18 Sun Yat-Sen University, Guangzhou, China
19 Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE)—Fudan University, Shanghai, China
20 Zhejiang University, Hangzhou, China
21 Universidad de Los Andes, Bogota, Colombia
22 Universidad de Antioquia, Medellin, Colombia
23 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
24 University of Split, Faculty of Science, Split, Croatia
25 Institute Rudjer Boskovic, Zagreb, Croatia
26 University of Cyprus, Nicosia, Cyprus
27 Charles University, Prague, Czech Republic
28 Escuela Politecnica Nacional, Quito, Ecuador
29 Universidad San Francisco de Quito, Quito, Ecuador
30 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
31 Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
32 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
33 Department of Physics, University of Helsinki, Helsinki, Finland
34 Helsinki Institute of Physics, Helsinki, Finland
35 Lappeenranta University of Technology, Lappeenranta, Finland
36 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
37 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
38 Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
39 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
40 Georgian Technical University, Tbilisi, Georgia
41 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
42 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
43 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
44 Deutsches Elektronen-Synchrotron, Hamburg, Germany
45 University of Hamburg, Hamburg, Germany
46 Karlsruher Institut fuer Technologie, Karlsruhe, Germany
47 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
48 National and Kapodistrian University of Athens, Athens, Greece
49 National Technical University of Athens, Athens, Greece
50 University of Ioannina, Ioannina, Greece

252003-14
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Yonsei University, Department of Physics, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait
Riga Technical University, Riga, Latvia
Vilnius University, Vilnius, Lithuania
University of Sonora (UNISON), Hermosillo, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
University of Montenegro, Podgorica, Montenegro
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
Moscow Institute of Physics and Technology, Moscow, Russia
National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
P.N. Lebedev Physical Institute, Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Novosibirsk State University (NSU), Novosibirsk, Russia
Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
Tomsk State University, Tomsk, Russia
University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Universidad Autónoma de Madrid, Madrid, Spain
Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
University of Colombo, Colombo, Sri Lanka
University of Ruhuna, Department of Physics, Matara, Sri Lanka
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
Istanbul Technical University, Istanbul, Turkey
Istanbul University, Istanbul, Turkey
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
Catholic University of America, Washington, DC, USA
The University of Alabama, Tuscaloosa, Alabama, USA