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Abstract

Soft matter simulations include a wide range of applications, such as modeling

biomolecules, polymers, and organic electronics materials. In order to achieve the

length and time scales of relevant phenomena, the interactions in these systems

are commonly calculated by computationally efficient analytical force fields. One

part of this work describes an example application for force field based modeling of

amorphous organic semiconductors. However, the conventional force field approach

introduces parameters that have to be assigned from parameter sets suitable for the

considered molecule. Mainly due to the simple function expressions for the non-

covalent interactions, the fitting procedure for obtaining these parameter sets requires

empirical target values, which are not always available. Bottom-up approaches, such

as bottom-up force fields with fixed function expressions or neural network potentials,

aim to replace the experimental data with results from ab initio calculations. For

the application in large-scale molecular simulations, these methods still exhibit open

challenges. Fixed function expressions suffer from limited flexibility to reproduce the

ab initio potential energy surface and require manual type definitions to reduce the

number of parameters. Neural network potentials improve both issues, but their high

computational requirements limit the accessible length and time scales.

In this work, a novel bottom-up approach for modeling non-covalent interactions

is presented, designed for large-scale simulations. The concept of efficient additive

interactions is combined with the flexibility of artificial neural networks for the in-

terpolation of different chemical configurations and geometric arrangements. The

application of the model is demonstrated in molecular dynamics simulations, and the

comparison of calculated thermodynamic properties of several small organic molecules

with experimental data and conventional force fields reveals a promising predictive

performance. Additionally, the model preserves the energy decomposition into physi-

cally motivated components provided by the symmetry-adapted perturbation theory

used for the ab initio reference calculations. This separability and the independence

from empirical data make this model potentially useful for future material design

applications.
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Zusammenfassung

Simulationen weicher Materie umfassen ein breites Spektrum von Anwendungen,

wie z. B. die Modellierung von Biomolekülen, Polymeren und Materialien für die

organische Elektronik. Um die Längen- und Zeitskalen relevanter Phänomene zu

erreichen, werden die Wechselwirkungen in diesen Systemen üblicherweise durch

recheneffiziente analytische Kraftfelder berechnet. Ein Teil dieser Arbeit beschreibt

eine Beispielanwendung für die kraftfeldbasierte Modellierung von amorphen or-

ganischen Halbleitern. Der konventionelle Kraftfeldansatz führt jedoch Parameter

ein, die aus für das betrachtete Molekül geeigneten Parametersätzen zugewiesen

werden müssen. Vor allem aufgrund der einfachen Funktionsausdrücke für die nicht-

kovalenten Wechselwirkungen erfordert das Verfahren zur Bestimmung dieser Parame-

tersätze empirische Zielwerte, die nicht immer verfügbar sind. Bottom-up-Ansätze, wie

z. B. Bottom-up-Kraftfelder mit festen Funktionsausdrücken oder Potentiale basierend

auf neuronalen Netzen, zielen darauf ab, die experimentellen Daten durch Ergebnisse

aus ab initio Rechnungen zu ersetzen. Für die Anwendung in umfangreichen Moleku-

lardynamiksimulationen weisen diese Methoden noch offene Herausforderungen auf.

Feste Funktionsausdrücke leiden unter einer begrenzten Flexibilität, die ab initio

Potentialenergieoberfläche zu reproduzieren und erfordern manuelle Typdefinitionen,

um die Anzahl der Parameter zu reduzieren. Potentiale, die auf neuronalen Netzen

basieren, verbessern beide Aspekte, aber ihre hohen Rechenanforderungen begrenzen

die zugänglichen Längen- und Zeitskalen.

In dieser Arbeit wird ein neuartiger Bottom-up-Ansatz zur Modellierung nicht-kovalent-

er Wechselwirkungen vorgestellt, der für großskalige Simulationen konzipiert ist. Das

Konzept effizienter additiver Wechselwirkungen wird mit der Flexibilität künstlicher

neuronaler Netze für die Interpolation verschiedener chemischer Zusammensetzung-

en und geometrischer Anordnungen kombiniert. Die Anwendung des Modells wird

in Molekulardynamiksimulationen demonstriert, und der Vergleich der berechneten

thermodynamischen Eigenschaften mehrerer kleiner organischer Moleküle mit experi-

mentellen Daten und konventionellen Kraftfeldern zeigt eine vielversprechende Vorher-

sageleistung. Zusätzlich bewahrt das Modell die Energiezerlegung in physikalisch

motivierte Komponenten, die von der symmetrieangepassten Störungstheorie, die

für die ab initio Referenzrechnungen verwendet wird, bereitgestellt wird. Diese

Trennbarkeit und die Unabhängigkeit von empirischen Daten machen dieses Modell

potenziell nützlich für zukünftige Materialdesign-Anwendungen.
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Introduction 1
Soft matter simulations include a wide range of applications such as protein
folding [1], ligand docking [2], liquid crystal alignment [3], polymer self-
assembly [4], and organic electronics [5]. In contrast to covalently or ionically
bound hard matter, many key properties of soft matter systems are determined
by non-covalent interactions (NCIs), causing the comparatively low cohesive
energy density and eponymous soft character.

From an ab initio perspective, the two most popular concepts for the prediction
of NCIs are the supermolecular approach, where the interaction between two
molecules is deducted from the difference of dimer and monomer energies
[6], and the symmetry-adapted perturbation theory (SAPT), where the NCI is
obtained from a perturbation expansion [7]. The supermolecular approach is
a very general concept applicable to many electronic structure methods that
can model NCIs. In combination with coupled-cluster or Møller-Plesset theory
[8–10], in particular CCSD(T) and MP2 [11–14], it is a popular choice for
gold standard benchmark datasets [15, 16]. The SAPT method also offers a
range of truncations, and the higher-order flavors can approach the accuracies
of gold standard supermolecular calculations [17]. On top, it offers a natural
decomposition of energies [7, 18]. The accessible length scales are limited
for both approaches due to the unfavorable scaling of computational cost
with system size [10, 17]. However, many phenomena in soft matter physics
take place on large length and time scales where the application of ab initio
methods is not feasible [19–25].

Alternatives to ab initio methods are molecular force fields which consist of
analytical expressions for the inter- and intramolecular interactions. Tradition-
ally, the intramolecular part is modeled by harmonic bond and angle terms
and periodic torsional potentials, and the intermolecular part by pairwise
additive Lennard-Jones potentials and partial charge interactions [26–28]. In
combination with efficient simulation protocols such as Monte-Carlo sampling
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or molecular dynamics (MD) [29–32], the reduced computational effort ex-
tends the accessible length and time scales by several orders of magnitude
compared to ab initio methods. However, this gain comes with the price of
introducing parameters that have to be determined before the simulation.
The intramolecular parameters can be chosen to reproduce vibrational and
structural data, which can come from experiments or quantum mechanics [28,
33–35]. The partial charges can directly be fitted to the quantum mechanical
electrostatic potential of the monomer geometry [36]. The simple Lennard-
Jones potential requires the involvement of experimental target values in the
parameter fitting procedure to achieve error cancellation [26, 27]. Especially
for organic molecules, this top-down approach was successfully applied for the
development of general force fields which provide transferable parameters for
a wide range of functional groups [26–28, 37, 38]. In Chapter 3, I will present
an application of a general force field in MD simulations for a series of organic
semiconductors. The simulations are part of a collaborative study, where the
MD trajectories are the starting point for a multiscale workflow to determine
the material-specific molecular energy level distributions.

However, the top-down approach for the development of force fields also brings
some drawbacks. The derived force fields are dependent on empirical data and,
in general, provide an inaccurate description of physics at atomic scale [39].
This is the motivation for bottom-up force fields, where ab initio data for the
NCIs is used for the parameter adjustment to, partially or completely, eliminate
the empirical aspect from the model [40–52]. The design challenge is to find
flexible and physically motivated function expressions that can reproduce the
ab initio potential energy surface at an atomic scale [40]. Additionally, for the
development of transferable force fields in general, a bookkeeping scheme is
required to systematically classify atoms into a limited set of atom types to
reduce the number of parameters and enable the application to new molecules
not used in the parameter determination procedure [40].

An alternative bottom-up approach involves the use of artificial neural net-
works (ANNs) to predict interaction energies. In order to cope with high
dimensional potential energy surfaces, Behler and Parrinello proposed a divi-
sion of the model into submodels that compute atomic contributions to the
total interaction [53]. Some of the first successful applications of these neural
network potentials (NNPs) are models for predicting DFT level atomization
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energies of molecules containing a limited set of chemical elements [54]. For
each atom, its contribution to the target property is computed by a separate
ANN instance utilizing a symmetry function descriptor, a symmetrical repre-
sentation of the neighboring atomic positions, whereby different instances for
the same chemical element use identical ANN parameters [53, 54]. Compared
to conventional bottom-up force fields, a manual definition of atom types or
function expressions is not required, and the ANNs enable flexible regression
capabilities. Furthermore, it was shown that the concept is also applicable
with an atomic pairwise decomposition [55], which is the standard for the
description of NCIs in conventional force field approaches. Recent studies
tested both decomposition schemes to model NCIs of hydrogen-bonded dimer
structures and for this task and the atomic pairwise NNP outperforms the
model with atomic contributions [56, 57].

The NNPs mentioned above, with their main objective to predict energies across
conformational and configurational space, represent successful examples of
efficient surrogate models for quantum methods. When developing NNPs for
dynamic soft matter simulations, there are further aspects to consider. For
MD simulations, the relevant quantity is the force, which is related to the
derivative of the energy. Models with high regression flexibility, such as NNPs
with symmetry function descriptors, are prone to overfitting, which can lead to
artifacts in the energy curves and, therefore, unstable forces [56, 57]. For large-
scale simulations, another critical aspect is computational efficiency. Symmetry
function descriptors have to be calculated on-the-fly at each step followed by
an ANN inference, which is cheap compared to quantum methods but cannot
compete with conventional force fields [58].

In Chapter 4, I will present the development and application of a neural
network potential for non-covalent interactions, particularly designed to be ap-
plicable in large-scale MD simulations. The overall procedure can be described
as a workflow consisting of several steps outlined in Section 4.1. The relevant
fundamental concepts and theoretical methods are introduced in Chapter 2.
The model is based on the Behler-Parrinello network architecture with an
atomic pairwise decomposition [55, 57]. The submodels for the pairwise in-
teractions are constructed to counteract overfitting and ensure smooth energy
and force curves. As an alternative to symmetry functions, a pair fingerprint
descriptor is introduced, which depends on equilibrium monomer properties
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and can therefore be precomputed for the application in MD, resulting in an
efficient pairwise additive model. Similar to other bottom-up approaches, the
model is trained to predict dimer interaction energies obtained by the SAPT
method, whose inherent energy decomposition enables the separate training
of an independent model for each component [40, 42, 56, 57]. The genera-
tion of the training samples, molecular dimers at different orientations and
distances, is implemented in an automated procedure. The same applies to
the fingerprint calculation and model training. Therefore, the overall model
construction process requires no manual intervention.

In Section 4.2, the data efficiency of the model is examined. For a single
molecule, the model performance is compared for different sized datasets.
In Section 4.3, the developed workflow is deployed for the construction of
a force field for several small organic molecules to test the ability of the
model to interpolate between different dimer geometries. Furthermore, the
model is applied in MD simulations to predict thermodynamic properties for
all the molecules in the dataset. The predictions are compared to values
from conventional force fields and experiments. In Section 4.4, a model is
constructed for a set of hydrocarbons. In contrast to the previous application,
the subsequent prediction of thermodynamic observables and comparison with
experimental values is only performed for molecules that are not involved in
the model training. With that, the model performance to interpolate in the
space of pair descriptors is investigated and, therefore, its applicability for
developing transferable force fields.

One key result of the present work is the development of a neural network
potential for non-covalent interactions. Despite the lack of empirical target val-
ues in the training procedure, the applications show an outstanding agreement
with experimental data. The resulting interactions are separable into physi-
cally motivated components and allow efficient large-scale MD simulations.
The intervention-free training workflow enables a straightforward transfer to
new scientific problems, making the approach potentially suitable for many
applications and especially useful for material design of unknown molecular
compounds.
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Fundamental concepts and
theoretical methods

2
In this chapter, the fundamental concepts and theoretical methods are intro-
duced. First, an overview is given of the research field of multiscale modeling
in the context of molecular simulation. The different scientific problems are
classified into scale categories, and strategies are discussed on how to connect
the scales. Then, for the subcategories electronic structure and molecular me-
chanics, the methods and concepts are introduced, which are relevant for this
work. Finally, a brief introduction is given to machine learning with artificial
neural networks and its application to develop neural network potentials.

2.1 Multiscale modeling of molecular systems

Multiscale modeling combines different computational methods to describe
phenomena which are connected to multiple scales. The scales and related
method categories relevant for molecular simulation are shown in Fig. 2.1.

On a quantum mechanics (QM) level, the goal is to obtain knowledge about
the electronic structure of a system, i.e., the electronic wavefunction or density.
QM methods enable investigations of various aspects, such as the potential
energy surface for an arrangement of atoms [59], electronic transport prop-
erties [60], and reaction barriers [61]. Some results can directly be related
to macroscopic quantities, such as band gaps [62], ionization potentials [63],
and absorption spectra [64]. Several methods exist that range from parameter-
free ab initio methods [65] to semi-empirical approaches [66], which vary in
predictive power and computational cost.

In molecular mechanics (MM), the main idea is to replace the quantum
methods with approximate analytical expressions, so-called force fields, that
describe the potential energy surface, enabling a massive extension of length
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Fig. 2.1.: Multiscale modeling categories related to molecular simulation and
their typical length and time scales.

and time scales while losing the electronic degrees of freedom. The force
fields can be used for Monte Carlo sampling or to integrate the equations
of motions in molecular dynamics simulations. Applications are numerous
and include biomolecular simulations [67], morphology evolution [68], and
reaction dynamics [69].

Coarse graining (CG) is a technique to further extend the time and length
scales of molecular simulations by introducing super-atoms (beads) which
are reduced representations of several atoms. CG models exist at different
levels of detail where beads can represent atoms with implicit hydrogen atoms
(united atoms) [70], functional groups [71] or larger fragments [72]. Similar
to all-atomistic models, they can be applied with various sampling algorithms
such as molecular dynamics [73], Monte Carlo [74] or dissipative particle
dynamics [75]. Besides the reduced degrees of freedom, the elimination of fast
bond vibrations and the resulting large timestep enables extended time scales
for different applications in biomolecular and soft matter modeling [76, 77].
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2.1.1 Bridging the scales

In multiscale modeling, there are different ways to connect the scales. In this
section, some of the approaches are introduced.

Concurrent multiscale modeling describes tightly coupled simulation methods.
In hybrid approaches, methods of different scales are combined in one simula-
tion protocol (Fig. 2.2 a)). For example, in ab initio molecular dynamics, at
each time step, forces are calculated by a QM method and used to integrate
the classical equations of motions of the atoms [78]. Embedded approaches
spatially divide the total system into regions of different levels of theory, which
are connected by an interface region (Fig. 2.2 b)). In QM/MM approaches
for example, a subsystem is treated at QM level and interfaces with a region
treated by an analytical MM model [79]. For both approaches, the computa-
tional cost of the expensive method is a potential bottleneck for the accessible
time scales.

In sequential multiscale modeling, the methods of the different scales are
decoupled and connected via parameter passing (Fig. 2.3 a)). One example is
force field development, where force constants or partial charges are calculated
at the QM level and passed to the molecular mechanics level [80]. Another
example is the modeling of charge transport in amorphous organic semicon-
ductors, where energy levels and coupling parameters are computed by QM
methods that enable kinetic Monte Carlo simulations of hopping transport on
a lattice [81].

Mixed approaches extend sequential multiscale modeling by a feedback loop
which introduces a loose coupling (Fig. 2.3 b)). For instance, if a more
expensive low-level method passes parameters to a high-level method, the
calculation of the parameters can be dependent on the system state exploration.
Therefore, in order to account for this dependency, the parameters need to be
updated by passing back the system state to the low-level method. In general,
several simulation steps at the high-level method can be performed between
the feedback calls, and the interval can increase with higher system state
exploration. An application example is on-the-fly machine learning of force
fields. [82]

2.1 Multiscale modeling of molecular systems 7



Low-level method

High-level method

a) Concurrent multiscale modeling: Hybrid protocol

Simulation 
domain

Tight coupling

Low-level method

High-level method

Simulation 
domain B

Tight coupling

b) Concurrent multiscale modeling: Embedded protocol

Simulation 
domain A

Fig. 2.2.: Two types of concurrent multiscale modeling approaches. a) Hybrid
protocol: At each simulation step, the expensive low-level and cheap
high-level methods are employed in the whole simulation domain.
b) Embedded protocol: At each simulation step, the low- and high-
level methods are employed in spatially separate domains of the
simulation.
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High-level method

Low-level method

a) Sequential multiscale modeling

b) Mixed approach: Loose coupling via feedback loop

Simulation 
domain

Parameter passing

High-level method

Low-level method

Simulation 
domain

Parameter passing

Feedback

Fig. 2.3.: a) Sequential multiscale modeling approach: Parameters are com-
puted by a low-level method and passed to a high-level method
which is employed in the simulation domain. b) Loose coupling:
Similar to the sequential approach, however, if required, a feedback
is triggered to update the parameters on the basis of the system
state.
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2.2 Electronic structure methods

The time-independent non-relativistic Schrödinger equation for a system of n
electrons and K nuclei is given by

Ĥ(~r, ~R)Ψ(~r, ~R) = EΨ(~r, ~R) (2.1)

where E is the eigenvalue of the molecular wavefunction Ψ, ~r are the coor-
dinates of the electrons and ~R of the nuclei (the spin degrees of freedom are
omitted). The non-relativistic Hamilton operator is given by

Ĥ = T̂e + T̂N + V̂ee + V̂NN + V̂eN (2.2)

with the operators for the kinetic energies of the electrons

T̂e = −
n∑
i=1

h̄2

2me
∇2
i (2.3)

the kineteic energy of the nuclei

T̂N = −
K∑
k=1

h̄2

2Mk
∇2
k (2.4)

the interaction between electrons

V̂ee = q2
e

4πε0

∑
i<j

1
|~ri − ~rj |

(2.5)

the interaction between nuclei

V̂NN = q2
e

4πε0

∑
k<l

ZkZl

|~Rk − ~Rl|
(2.6)

and the interaction between electrons and nuclei

V̂eN = − q2
e

4πε0

n∑
i=1

K∑
k=1

Zk

|~ri − ~Rk|
(2.7)

where qe is the elementary charge, me is the electron mass, Mk and Zk are the
mass and atomic number of nucleus k, and ε0 is the vacuum permittivity. Due
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to the high dimensionality of the problem an analytical or numerical solution
for the full system is only possible for very few simple systems.

2.2.1 Born-Oppenheimer approximation

For most quantum chemistry applications, the standard approach to simplify
Eq. 2.1 is the Born-Oppenheimer approximation. It is motivated by the weight
difference of electrons and nuclei, enabling an adiabatic adjustment of the fast
electron cloud to the slow nuclei. Therefore, it is reasonable to decouple the
electronic and ionic part and to factorize the wavefunction:

Ψ(~r, ~R) = ΨN(~R)Ψe(~r, ~R) (2.8)

For the electronic part, the electrons are assumed to move in the fixed ionic
potential. Without the kinetic energy terms of the nuclei, the resulting elec-
tronic Schrödinger equation only contains a parametric dependence on nuclei
positions:

Ĥe(~r, ~R)Ψe(~r, ~R) = Ee(~R)Ψe(~r, ~R) (2.9)

with the electronic Hamiltonian

Ĥe = T̂e + V̂ee + V̂eN (2.10)

2.2.2 Density functional theory

Several methods have been developed to solve Eq. 2.9, such as Hartree-Fock
and density functional theory (DFT). Here, a brief overview of DFT is given,
which is a popular choice for a broad range of applications. DFT is based on
the Hohenberg-Kohn theorem [83], which states that the external potential
Vext can be determined uniquely (except for constant) from the the ground
state density ρ0.

ρ0
HK=⇒ Vext (2.11)

2.2 Electronic structure methods 11



Since Vext fully defines the Hamiltonian, the ground state density also defines
all system properties. Therefore, the ground state energy E0 is a universal
functional of the ground state density:

E[ρ0] = E0 (2.12)

Furthermore, the second part of the Hohenberg-Kohn theorem states that the
true ground state density ρ0 gives the lowest energy:

E[ρ0] = E0 ≤ E[ρ] (2.13)

where ρ is an arbitrary trial density. Unfortunately, the real functional is
unknown. Therefore, Kohn and Sham reformulated the problem and paved the
way for approximate functionals [84]. The Kohn-Sham approach introduces a
fictitious auxiliary system of non-interacting particles with the same ground
state density as the interacting system. The one-electron Kohn-Sham orbitals
ϕi are introduced, which are related to the density of the n-particle system by

ρ =
n∑
i

|ϕi(~r)|2 (2.14)

The functional of the total energy of the real system can now be regrouped
into known and unknown parts:

E[ρ] = Ts[ρ] +
∫

d3r Vext(~r)ρ(~r) + J [ρ] + Exc[ρ] (2.15)

with the Kohn-Sham kinetic energy of n independent particles

Ts[ρ] =
n∑
i

∫
d3r ϕ∗(~r)

(
− h̄2

2me
∇2
)
ϕ(~r) (2.16)

and the Coulomb energy

J [ρ] = q2
e

8πε0

∫
d3r

∫
d3r ′

ρ(~r)ρ(~r ′)
|~r − ~r ′|

(2.17)

with the elementary charge qe, the electron mass me, and the vacuum permit-
tivity ε0.
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The exchange-correlation functional Exc includes all the deviations from the
known terms due to many-body effects:

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Eee[ρ]− J [ρ]) (2.18)

where T [ρ] is the kinetic energy and Eee[ρ] the electronic interaction of the real
system. The Kohn-Sham orbitals are computed by the solving the Kohn-Sham
equations: (

− h̄2

2me
∇2 + Veff(~r)

)
ϕi(~r) = εiϕi(~r) (2.19)

where εi is the orbital energy of the Kohn-Sham orbital ϕi and the effective
potential Veff is dependent on the density itself:

Veff(~r) = Vext(~r) + q2
e

4πε0

∫
d3r ′

ρ(~r ′)
|~r − ~r ′|

+ δExc[ρ]
δρ(~r) (2.20)

Therefore, the solution is performed in a self-consistent loop starting from an
initial guess for the Kohn-Sham orbitals (Fig. 2.4). The theoretical challenge
is to find good approximations for the exchange-correlation functional Exc.
The simplest approach is the local density approximation which describes a
dependence of the functional on the local density [83]. Many more extensions
were developed, such as the generalized gradient approximation [85], which
includes the dependence on the density gradient, or hybrid approaches that
combine different approximations and energy terms from Hartree-Fock theory
[86–88]. Different basis sets for the Kohn-Sham orbitals provide further options
to choose a balance between accuracy and computational cost. Besides energies
and densities, DFT also enables the evaluation of forces that can be used for
geometry relaxations and dynamical simulations.

2.2.3 Partial charge fit and population analysis

Especially for molecular systems, several schemes have been developed to
define atomic partial charges from QM results. A fundamental approach is
to optimize point charges on the atomic positions to mimic the QM-derived
electrostatic potential. For this, some methods use sample points which are
placed in shells around molecules to compare the potential [36, 89, 90] (Fig.
2.5), others use a volume integral of the potential difference as cost function
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Fig. 2.4.: Outline of the Self-Consistent Field approach for the iterative solu-
tion of the Kohn-Sham equations [84].

[91, 92]. The partial charges from these methods are often used to approximate
long-range electrostatic interactions.

Other methods are based on the partitioning of the electronic density. One
example is the Hirshfeld population analysis [94]. For the assignment of the
molecular density to individual atoms, a promolecule is defined as the sum of
all spherically averaged densities ρ0

j of the isolated atoms in the molecule:

ρpro =
∑
j

ρ0
j (~r) (2.21)

With that, the Hirshfeld charge of atom i is defined by

qi = Zi −
∫

d3r
ρ0
i (~r)
ρpro (ρ(~r)− ρpro) (2.22)

where Zi is the nuclear charge of atom i, ρ0
i is the spherically averaged density

of isolated atom i, and ρ is the molecular density as calculated from QM.
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Fig. 2.5.: Shells of probing points used in the Merz-Singh-Kollmann ESP fitting
scheme [89], shown here for the formamide molecule. Red probing
points indicate a negative and blue a positive electrostatic potential.
Visualization software: OVITO [93].

Hirshfeld charges are a measure for the charge reorganization due to bond
formation [94].

Another way to extract information from QM results is to calculate bond orders
which characterize the nature and strength of covalent bonds between the
atoms in a molecule. In the Mayer bond order analysis [95], this information
is extracted from the wave function. For the restricted closed shell case (no
unpaired electrons), the bond order between atoms A and B is defined by

BMayer
AB =

∑
a∈A

∑
b∈B

(PS)ab(PS)ba (2.23)

with the density matrix P and the overlap matrix S given by

Pab = 2
∑
i=1

caic
∗
bi (2.24)

Sab =
∫

d~rχa(~r)χb(~r) (2.25)

where the summation is performed over doubly occupied molecular orbitals i
and cai is the coefficient of the basis function χa.
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2.2.4 Non-covalent interactions and energy decomposition

Non-covalent interactions (NCIs) act between molecules or atoms, and as
opposed to covalent interactions, they do not involve electron sharing. NCIs can
also occur between fragments of the same molecule. However, in the following,
the methods are described in the picture of two separate monomers. One
general procedure to calculate NCIs from first principles is the supermolecular
approach. Here, the non-covalent interaction energy between two fragments,
such as molecules, is computed via the difference of the total energy Etotal of
the complex and the energies E1 and E2 of the two individual fragments:

ENCI = Etotal − E1 − E2 (2.26)

In principle, any electronic structure method can be used for this approach.
However, most DFT functionals do not model electron correlation adequately.
Therefore, DFT calculations of NCIs require analytical dispersion energy correc-
tions or non-local van-der-Waals functionals [96–99]. Alternatives are methods
with an explicit treatment of electron correlation, such as the post-Hartree-Fock
methods coupled-cluster and Møller-Plesset theory [8–10]. Both methods are
often based on wavefunctions resulting from the Hartree-Fock method, an
alternative to DFT, which treats electron exchange but neglects correlation.
Furthermore, the supermolecular approach has an inherent inaccuracy for
finite basis sets, the basis set superposition error, which describes the error
that arises from the different number of basis functions in the monomer and
dimer calculations. In the dimer calculation, each monomer can borrow basis
functions from the other monomer, which improves the description of the
wavefunction and lowers the energy. In the monomer calculations, these basis
functions are missing. Therefore, the interaction energy is overestimated by
Eq. 2.26. A simple approximate fix is the counterpoise correction. Additional
basis functions are included in the monomer calculations, placed in each case
at the atomic positions of the other monomer as ghost atoms.

A different approach to calculate NCIs is provided by symmetry-adapted per-
turbation theory (SAPT) [7]. The method is based on a perturbation expansion
of the intermolecular energy, which directly computes the NCI and is free
from basis set superposition errors. An important feature of the method is
its intrinsic decomposition into separate energy contributions, which allows
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a physically motivated grouping into dispersion, exchange, electrostatic, and
induction components:

Einter = Edisp + Eexch + Eelec + Eind (2.27)

The attractive dispersion energy describes the interaction between correlated
and instantaneous density fluctuations on the monomers. The repulsive ex-
change energy arises from the Pauli exclusion principle due to overlapping
electron densities at short distances. The electrostatic energy describes the
interaction between the charge densities of the monomers. At large distances,
it is mainly determined by the interaction of the permanent multipoles of
the monomers. At short distances, charge penetration effects due to density
overlap can have a stabilizing effect. The induction component summarizes
the contributions from the mutual polarization of the monomers.

There are several SAPT approaches available that truncate the expansion at
different orders. Furthermore, a distinction is made between methods that
describe the monomers through Hartree-Fock wavefunctions and Kohn-Sham
orbitals of density functional theory. An overview of benchmarks for different
variations and basis sets can be found in Ref. [17].

2.3 Classical molecular simulation

This section provides an introduction to classical simulation methods with an
emphasis on dynamic simulations of molecules. However, the basic concepts
are valid in general. A comprehensive overview of the topic can be found in
Ref. [100].

2.3.1 Molecular force fields

The idea in molecular mechanics is to find analytical expressions for the
quantum energy and forces, which drastically extends the accessible time and
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length scales. For molecules with a fixed configuration, it is convenient to
divide the potential energy into intra- and intermolecular contributions.

Epot = Eintra + Einter (2.28)

The intermolcular interaction is often computed by a sum over the pairwise
Lennard-Jones and Coulomb contributions of atoms i and j:

Einter =
∑
pairs

[
ELJ
ij + ECoul

ij

]
(2.29)

The Coulomb energy is an estimate based on the interaction of partial charges
or multipoles. For partial charges centered on the atoms, the functional form
is (Fig. 2.6 a)):

ECoul
ij = 1

4πε0

qiqj
rij

(2.30)

where qi and qj are the partial charges on the atoms i and j, ε0 is the vacuum
permittivity, and rij is the distance between the atoms. The Lennard-Jones
potential combines all the remaining attractive and repulsive contributions. A
common choice is the 12/6-Lennard-Jones potential (Fig. 2.6 b)):

ELJ
ij = 4εij

(
σ12
ij

r12
ij

−
σ6
ij

r6
ij

)
(2.31)

where εij and σij are parameters which correspond to the potential well depth
and the zero crossing. The exponent of the attractive term has its physical
origin in the leading distance dependence of dispersion interactions. The
main reason for the choice of the repulsive r−12 dependency is computational
efficiency, since intermediate results can be reused during force field evaluation.
However, other variations exist such as r−9 or exponential repulsion terms.
The intramolecular interactions can be divided into several contributions:

Eintra =
∑

bonds
Ebond
i +

∑
angles

Eangle
i

+
∑

dihedrals
Edihedral
i +

∑
impropers

Eimproper
i

(2.32)
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Fig. 2.6.: Examples for non-covalent force field contributions. a) Coulomb
potential between two point charges q1 and q2. b) Lennard-Jones
potential (in units of its parameters σ and ε).
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In Fig. 2.7, the definitions of these two-, three-, and four-body terms are
illustrated. For the bond, angle and improper terms, a popular choice is the
harmonic potential:

Ebond
i = 1

2kb(r − r0)2 (2.33)

with the bond length r, the equilibrium bond length r0 and the force constant
kb (Fig. 2.7 a)).

Eangle
i = 1

2kθ(θ − θ0)2 (2.34)

with the angle θ, the equilibrium angle θ0 and the force constant kθ (Fig. 2.7
b)).

Eimproper
i = 1

2kϑ(ϑ− ϑ0)2 (2.35)

with the improper angle ϑ, the equilibrium angle ϑ0 and the force constant kϑ
(Fig. 2.7 c)). The dihedral potential is usually expressed by a periodic function.
As an example, the GAFF force field uses [28]:

Edihedral
i = 1

2kφ[1 + cos(nφ− γ)] (2.36)

where φ is the dihedral angle, n is the multiplicity, γ is the phase angle, and kφ
the force constant (Fig. 2.7 d)). Some force fields combine several terms with
different multiplicities [27, 28].

An essential concept for the simulation of bulk systems is the introduction of
periodic boundary conditions. In order to avoid a vacuum interface at the
edge of the simulation box, the system is extended by copies of itself (periodic
images) translated in all directions as illustrated in Fig. 2.8. Therefore, a finite
unit cell can approximate a quasi-infinite system.

The calculation of the pairwise intermolecular interactions in Eq. 2.29 is a sum
over atom pairs. The number of all possible pairs in a system of N particles is
O(N2). To improve this scaling issue, an approach is to only take into account
pair interactions within a finite spherical cutoff (Fig. 2.8). For short-range
contributions which converge to zero quickly, this is a good approximation. For
long-range interactions, such as electrostatics, a special treatment is necessary.
One example is the Ewald summation where the distance dependency of the
Coulomb interaction is decomposed into two parts:

1
r

= erfc(αr)
r

+ erf(αr)
r

(2.37)
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Fig. 2.7.: Definitions of different intramolecular force field contributions.

where α is the Ewald splitting parameter. The error function erf and compli-
mentary error function erfc are defined by

erf(x) = 1− erfc(x) = 2√
π

∫ x

0
e−τ

2dτ (2.38)

The first term in Eq. 2.37 is convergent in real space and is computed by
a direct summation, and the second part is a convergent sum in reciprocal
space.

2.3.2 Force field parameters

The function expressions described in the previous section have several material-
specific parameters that have to be determined before the simulation. As
discussed in the introduction, the parameter values of a top-down force field
can in part come from ab initio calculations, such as partial charges or covalent
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Fig. 2.8.: Periodic boundary conditions and the cutoff for pair interactions,
illustrated for two dimensions.
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interaction terms. However, especially for simple function expressions, such as
the Lennard-Jones potential, empirical target values are required to achieve
error cancellation, e.g., the enthalpy of vaporization and mass density [27,
28]. For bottom-up approaches, where also the non-covalent part is fitted to
ab initio data, more flexible function expressions are required [40].

In general, a distinction can be made between custom and transferable force
fields. While the function expressions can be the same, the main difference is
the transferability of the parameters. For custom force fields, the parameters
are fitted for specific molecular species and conditions. For transferable force
fields, the idea is to create a set of parameters, which can also be used for new
molecules that were not involved in the fitting process. The basic assumption
is that an atom is mainly characterized by the functional group and not the
entire molecule. This concept enables the definition of a set of parameters
for a class of molecules that share characteristic functional groups such as
organic molecules. In order to establish transferable parameters, the definition
of appropriate atom types for the assignment of Lennard-Jones parameters is
required. In Fig. 2.9, such a classification scheme is illustrated for the basic
types of carbon and hydrogen in the GAFF force field [28]. As it can be seen,
the same chemical element can be represented by various atom types, which
are chosen depending on the topology of the molecule. The scheme varies for
different force field families, but usually, mixing rules are applied to generate
Lennard-Jones parameters for pairs of dissimilar atom types, which drastically
reduces the number of parameters. Common choices are:

εij = √
εiiεjj (2.39)

σij = √σiiσjj or σij = σii + σjj
2 (2.40)

Similarly, bond, angle, improper, and dihedral types are defined, which can be
classified depending on the involved atom types. The total number of types
determines the number of free parameters of the force field.

2.3.3 Molecular dynamics

A simulation domain at time t can include several atoms with indices i at
positions ri(t) with velocities vi(t) and forces fi(t) defined by a force field. In
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Fig. 2.9.: Assignment of GAFF atom types for the organic molecule propyl-
benzene (via the AmberTools software [101]). The molecule is
described by the aromatic types "ca" (carbon) and "ha" (hydrogen)
and aliphatic types "c3" and "hc". Visualization software: OVITO
[93].

order to propagate the system state in time, one has to solve the equations of
motion, a set of coupled differential equations:

mi~ai(t) = ~fi(t) (2.41)

where mi is the mass and ~ai(t) the acceleration of atom i. The standard
approach for this problem is an iterative solution, which propagates the system
in discrete time steps. There are several algorithms available, here the common
Velocity-Verlet method is briefly introduced. For each time t, the positions ~r(t)
and velocities ~v(t) of the particles are saved. To propagate both vectors by the
time step ∆t, the following algorithm is applied:

~ri(t+ ∆t) = ~ri(t) + ~ri(t)∆t+ 1
2~ai(t)∆t

2 (2.42)

~vi(t+ ∆t) = ~vi(t) + 1
2[~ai(t) + ~ai(t+ ∆t)]∆t (2.43)

The accelerations ~ai(t) and ~ai(t+ ∆t) are computed from the force field which
also involves information about all interacting neighbors of atom i. The
choice of the time step is a compromise between computational efficiency and
integration accuracy. A time step too small limits the accessible time scale,
and a time step too big can lead to energy drift and unstable simulations. In
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principle, the force field and the integration algorithm are the basic ingredients
for conducting molecular dynamics simulations in the NVE ensemble. Often,
however, it is of interest to run simulations at a specific temperature. The
simulation temperature T is defined by the kinetic energy Ekin:

T (t) = 2
kB(3N −Nc)

Ekin = 2
kB(3N −Nc)

N∑
i=1

mi|~vi(t)|2

2 (2.44)

where N is the number of atoms, Nc the number of constraints, and kB the
Boltzmann constant. The equilibration of the system at a specific target tem-
perature is realized by the application of a thermostat, such as the Berendsen
method. At each step the velocities of the atoms are scaled by a factor λ(t),
which is defined to generate a temperature change ∆T that is proportional to
the deviation from the target temperature T0:

∆T = ∆t
τT

(T0 − T (t)) Eq. 2.44= (λ(t)2 − 1)T (t) (2.45)

λT (t) =
√

1 + ∆t
τT

(
T0
T (t) − 1

)
(2.46)

where τT is the coupling parameter which is small for strong and high for
weak coupling. The approach can also be extended to function as a barostat
to control the simulation pressure by adjusting the simulation box volume V .
The scaling factor λP (t) is then applied to the coordinates and simulation cell
vectors:

λP (t) =
[
1− β∆t

τP
(P0 − P (t))

] 1
3

(2.47)

where P0 is the target pressure, β the isothermal compressibility and τP the
coupling parameter. Since β enters only via the ratio β/τP , the knowledge of
an exact value is not crucial. The instantaneous pressure P (t) is defined as:

P (t) = 2Ekin
3V − 1

3V
∑
i<j

~rij(t) · ~fij(t) (2.48)

The scaling factors τT and τP control how fast the deviation decays. In the limit
of τ = ∆t, the observables are scaled to the target values at each time step,
and for τ →∞, the scaling is not active. The method effectively equilibrates a
system to the desired temperature and pressure. However, it does not result in
a correct NVT or NPT ensemble. Therefore, the Berendsen approach is mainly
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applied during system preparation. For production runs, where a consistent
ensemble is essential, the Nosé-Hoover thermostat is a common choice [102,
103]. Here, an extended system is defined, which has an additional degree of
freedom representing a heat bath and is constructed to sample a microcanonical
ensemble with constant energy. Due to the equipartition theorem, the heat
bath preserves a canonical ensemble at temperature T0 in the real system. If
the real system fluctuates from the target temperature, a heat flux from or
to the extended degree of freedom counteracts as a friction term ζ(t) in the
equation of motions [103]:

~a(t) =
~f(t)
m
− ζ(t)~v(t) (2.49)

dζ(t)
dt = 1

Q

(
N∑
i=1

mi~v(t)2 − gkBT0

)
(2.50)

where g corresponds to the degrees of freedom in the real system. The parame-
ter Q determines the coupling strength of the real system to the heat bath and
has to be chosen carefully. The general approach of using an extended system
can also be used for the development of a barostat to realize the NPT ensemble
[104, 105].

Another approach to control the temperature is Langevin dynamics, where
the equations of motion are supplemented by a friction and a stochastic term
which act as a thermostat :

mi~ai(t) = ~fi(t)− γ~vi(t) + ~ηi(t) (2.51)

with the damping coefficient γ and a random force ~ηi(t) that fulfills:

〈~ηi(t)〉 = 0 (2.52)

〈~ηi(t)~ηj(t′)〉 = CγkBTδijδ(t− t′) (2.53)

where C is a normalization factor depending on the distribution used to
generate the random directions. Langevin dynamics is a popular choice for
vacuum sampling simulations since it does not lead to the accumulation of
errors in the total rotational and translational degrees of freedom of the system
[106].
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2.4 Machine learning of potential energy surfaces

Machine learning (ML) is the umbrella term for computer algorithms, which
learn to perform specific tasks through a training procedure. The subject area
can be divided into several approaches, including supervised learning, where
the algorithm learns from known input/output value pairs, unsupervised learn-
ing, such as clustering analysis, and reinforcement learning, where an agent in
an environment learns a behavior that maximizes the cumulative reward for
its actions. Supervised learning algorithms have gained tremendous popularity
over the last years, especially due to their advances in image classification.
However, the concept is also applicable for regression tasks. The following
subsections are a brief overview of supervised machine learning in the context
of artificial neural networks for regression. Furthermore, the concept of neural
network potentials is introduced.

2.4.1 Artificial neural networks

The basic building block of artificial neural networks (ANN) is the artificial
neuron (Fig. 2.10 a)). It consists of a weighted sum T of its input features xi,
which is transformed by an activation function ϕ. The output y of an artificial
neuron is given by

T =
∑
i

wixi (2.54)

y = ϕ(T ) (2.55)

where the weights wi are the parameters of the model. Artificial neurons can be
used to construct many different network architectures. In the following, the
feed-forward artificial neural network with fully-connected layers is discussed
(Fig. 2.10 b)). It is composed of one or more consecutive layers that each
consists of several neurons. The last layer is identified as the output layer,
and if there are more layers, they are called hidden layers. Each layer uses
either the input features or the output of the preceding layer to generate a new
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representation. As a generalization, the output of a neuron k inside an ANN
can be defined as:

Tk =
∑
i

wikyi (2.56)

yk = ϕ(Tk) (2.57)

where yi is the ith output of the preceding layer, or if neuron k is in the first
layer, yi corresponds to the model input feature xi. The number of neurons
in a layer and the number of layers are hyperparameters of the model, which
are the model properties that are not optimized directly during training. The
term deep learning is usually used for ML approaches that include at least one
hidden layer. Another hyperparameter is the choice of the activation function.
In Fig. 2.11, several activation functions are shown. In order to model non-
linear relationships between input and output, a non-linear activation function
has to be chosen.

2.4.2 Backpropagation and model optimization

The goal of machine learning is to maximize the model performance by opti-
mizing its parameters, the weights and biases. Therefore, it is first required
to define a metric that measures the model error, which is also called loss
function. For regression applications, a popular choice is the squared error loss
function LSE. The loss for a prediction/target value pair of an output neuron
is defined as

LSE = (ytarget − yout)2 (2.58)

where ytarget is the true value and yout the prediction of the output neuron. Ef-
fective optimization methods for finding the parameter values which minimize
the loss function require the computation of a gradient. The partial derivative
of the loss with respect to the weights is resulting from chain rule:

∂LSE

∂wik
= ∂LSE

∂yk

∂yk
∂Tk

∂Tk
∂wik

= δkyi (2.59)
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a) Artificial Neuron

b) Artificial Neural Network (ANN)

Inputs
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Fig. 2.10.: a) Artificial neuron: The output results from a weighted sum of
all input values, which is transformed by an activation function.
b) Fully-connected artificial neural network (ANN): Consists of
several artificial neurons arranged in multiple layers. The number
of layers and neurons in each layer are hyperparameters of the
model.
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Fig. 2.11.: Expressions and plots of different activation functions.

30 Chapter 2 Fundamental concepts and theoretical methods



The expression for δk depends on the position of the neuron k in the network,
either in the output layer or in one of the hidden layers. For neurons in the
output layer, yk corresponds to yout, and δk is given by:

δk = 2∂ϕ(Tk)
∂Tk

(yk − ytarget) (2.60)

For the neurons in a hidden layer, δk is given by a recursive expression:

δk = ∂ϕ(Tk)
∂Tk

∑
j

wkjδj (2.61)

where the summation is performed over all neurons j of the next layer which
are connected to neuron k. With that, the partial derivatives of the loss
with respect to all model parameters are defined, which is the basis for the
backpropagation algorithm. It includes the following steps:

• Forward propagation: The input features of a sample are propagated
through the network to compute the neuron values T and the model
output. With the model output and the target values of the sample, the
loss is calculated.

• Backpropagation: Starting from the loss function, the gradients are
calculated layer by layer using multiple iterations of the chain rule.

• Weight update: The calculated gradients are used to update the weights
according to a predefined rule. An example for a simple update rule
for the weight wik is the gradient descent method with a fixed learning
rate α:

∆wik = wnew
ik − wold

ik = −α∂L
SE

∂wik
(2.62)

As seen in Eq. 2.60 and 2.61, the algorithm contains a derivative of the acti-
vation function, therefore, the chosen function should at least partially have
a non-zero derivative. Furthermore, the basic gradient descent method (Eq.
2.62) represents one of the simplest approaches to update the weights. Other
more sophisticated parameter update algorithms exist such as the adaptive mo-
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ment estimation optimizer (Adam) [107]. Finally, in practice, a bias parameter
bk is added to the summation in Tk:

Tk = bk +
∑
i

wikyi (2.63)

2.4.3 Training procedure

In general, the training of an ANN requires several training samples and
multiple iterations of the backpropagation algorithm described in the previous
section. For computational efficiency reasons, it is common to divide the
training dataset into batches, for which the backpropagation is performed
simultaneously. The gradient is then averaged over the samples of the batch. A
training cycle where all batches are presented to the model once is called an
epoch. Usually, multiple epochs are required to complete the model training.
The total number of epochs needs to be chosen with care. If the training is only
stopped upon the convergence of the training loss, high dimensional models
such as ANNs can already be in an overfitting regime. Although the model
parameters minimize the training loss, the performance for new samples not
involved in the training is not optimal. In Fig. 2.12 a), the overfitting issue is
illustrated for a simple example.

A simple approach to improve the generalization capabilities is the early
stopping method (Fig. 2.12 b)). Before the training, the dataset is split into a
training set used for parameter optimization and a validation set representing
new samples unknown to the model. Then, in regular intervals during the
training, the loss of the validation set is checked. If the validation loss is not
improving for a predefined number of epochs, the training is stopped. Finally,
the generalization performance of the trained model can be computed on an
independent test set not involved in training or validation. There are also other
techniques to improve the generalization of the model, such as regularization
methods, e.g., the L1 regularization, where an additional loss term penalizes
the weight parameters:

LL1 = λ
∑
m∈M

|wm| (2.64)

Ltotal = LSE + LL1 (2.65)
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Fig. 2.12.: a) Illustration of under- and overfitting. b) Early stopping method:
When the validation set error is not decreasing any more the
training is stopped to avoid overfitting.
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where λ is the penalty strength, and the sum is performed over the weights
of choice M , which can be a subset of layers. The LL1 term competes with
the model loss LSE and has the effect that weights that do not improve LSE

significantly are driven towards zero. When applied to the input layer, this
method effectively acts as an input feature selection.

2.4.4 Neural network potentials

The motivation for developing a neural network potential is to use the re-
gression capabilities of an ANN to find a relationship between the geometric
structure of an arrangement of atoms and some property, such as the poten-
tial energy surface, to realize cheap surrogate models for expensive quantum
chemical methods. The methodological challenge is to find an appropriate
geometry representation and network structure. In the following, the discus-
sion is continued in the context of atomization energy predictions for covalent
complexes. However, some aspects also apply to other properties.

If one considers directly using the Cartesian coordinates of the arrangement as
input for a regular ANN, several problems become obvious. First, the Cartesian
coordinates are not invariant to symmetry transformations, which means that
energetically equivalent structures can have completely different numerical
input features. Another issue, also related to the network structure, is the
missing invariance for index exchanges. Even when only considering one
chemical element, the ANN output is dependent on the sorting of the input
features. The fixed network structure makes it also difficult to develop models
for a varying number of atoms. Therefore, many alternative representations
have been developed to eliminate the discussed issues [53, 108, 109]. One of
them has been developed by Behler and Parrinello, which is briefly outlined in
the following [53].

The main concept of the Behler-Parrinello approach is the reduction of dimen-
sionality by dividing the model into submodels, which each compute a partial
contribution of the total quantity (Fig. 2.13). In this example, the submodels
compute atomic contributions to the atomization energy of a molecule. As
input features for the submodels, the symmetry function descriptor is used,
which describes the local environment of the corresponding atom and obeys
the required symmetries. The radial symmetry functions are defined by a
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Fig. 2.13.: a) Behler-Parrinello network: The Cartesian coordinates are trans-
formed to multiple symmetry function descriptors for each atom.
The descriptors are the input for a submodel instance which com-
putes the atomic contribution to the total energy. b) The submodel
is represented by a fully-connected ANN with a single output node.
Submodel instances corresponding to the same chemical element
use identical parameters. In actual applications, usually more
symmetry functions and nodes are used than shown here. Further
details can be found in Ref. [53].
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Fig. 2.14.: Plots of the summand used in the radial symmetry function de-
scriptor as defined by Behler and Parrinello [53] for a series of Rs
values.

summation of Gaussian functions over neighboring atom distances, scaled by
cutoff function fc [53]:

Gi(η,Rs) =
∑
j 6=i

e−η(Rij−Rs)2
fc(Rij)︸ ︷︷ ︸

g(Rij)

(2.66)

fc(Rij) =

 0.5
[
cos

(
πRij

Rc

)
+ 1

]
, Rij ≤ Rc

0, Rij > Rc
(2.67)

where Rij is the neighbor distance, Rc is the cutoff distance, and η and Rs are
parameters of the Gaussian function. The total descriptor for each atom i can
contain multiple symmetry functions Gi with different η and Rs parameters.
In Fig. 2.14, the summands g(Rij) of Eq. 2.66 are plotted for a series of Rs
values. A similar descriptor is also defined for three body angles the atom i is
involved in.

A key feature of the Behler-Parrinello approach is the sharing of weights
between submodels. Therefore, the energy prediction is inherently invariant
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to index exchanges. Furthermore, the extensible modular approach allows
the modeling of a variable number of atoms while keeping the number of
parameters fixed. The original work shows an example of a specific model
for homogeneous systems containing only one element. Later studies, such
as the ANI-1 model, further improved the descriptors and demonstrated the
development of transferable models for a small set of chemical elements
[54]. Independent submodels are then introduced for each element, and the
symmetry functions are calculated separately for each neighboring species.
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Application of molecular
dynamics for organic
semiconductors

3

In this chapter, an application of molecular dynamics (MD) is presented in the
context of a multiscale workflow to determine the static and dynamic confor-
mational disorder of amorphous organic semiconductors. First, in Section 3.1,
an introduction to the field of organic semiconductors is given, followed by the
description of the workflow in Section 3.2.

This chapter is based on Reiser et al. [110]. My main contribution is
presented in Section 3.2.1. Further results of the study are briefly sum-
marized in Section 3.2.2.

3.1 Organic semiconductors

Since the invention of organic light-emitting diodes (OLEDs) [111, 112],
organic semiconductors were continuously developed and put forth further
promising applications, such as organic photovoltaics (OPVs) [113] and organic
field-effect transistors (OFETs) [114], and already have made their way into
many commercial applications including displays for consumer electronics
and solar cells for photovoltaic systems. Devices typically consist of multiple
stacked thin layers of different amorphous or semi-crystalline organic materials
whose unique properties create new design possibilities such as flexible and
semi-transparent devices [115]. However, one main disadvantage of organic
semiconductors compared to inorganic alternatives is their poor charge carrier
mobility.

The charge transport in these materials is often described by charge carriers
which are localized on molecules and propagate through the system via ther-
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Fig. 3.1.: Simplified illustration of hopping transport in amorphous organic
semiconductors. Each short horizontal line represents a localized
energy level on a molecule. An electron (green) moves through the
system by subsequent hopping to nearby molecules. Some processes
involve an energy barrier and are thermally activated. The widths
σe and σh of the distributions of the lowest unoccupied molecular
orbitals (LUMOs), relevant for electron transport, and the highest
occupied molecular orbitals (HOMOs), relevant for hole transport,
are related to the average barrier heights and therefore also to
the mobilities. In reality, the charge carriers take a complex three-
dimensional path through the morphology and are often driven by
an external electric field.

mally assisted hopping processes, as illustrated in Fig. 3.1 [116]. The hopping
rates, which influence the mobility, depend on several quantities such as the
coupling between molecules, the reorganization energy, and the molecular
energy levels [117, 118]. Bässler et al. could show that for typical OLED mate-
rials, the energy distribution can be approximated by a Gaussian distribution
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and that the charge carrier mobility µ is related to the material-specific width
of this distribution, the so-called energy disorder σ, via [119–121]

µ ∝ exp
[
−C

(
σ

kBT

)2
]

(3.1)

where kB is the Boltzmann constant, T the temperature, and C a fitting
constant. Larger disorders correspond to more and deeper tail states which act
as charge carrier traps and lower the mobility. In order to gain more insight
about the charge transport in organic materials, several multiscale modeling
approaches have been developed [5, 81, 122–128]. They apply molecular
dynamics (MD) or Monte Carlo simulations to create a bulk structure of the
material, which is used to calculate hopping rates with density functional
theory (DFT) and to define the hopping network, the spatial arrangement
of molecular energy levels [122, 129, 130]. The results can then be used
in kinetic Monte Carlo simulations [131], master equation approaches [132–
134], or mean field models [135] to obtain a prediction for the mobility of the
material. Due to the high computational cost of the DFT calculations, these
approaches consider only individual snapshots of the molecular morphology
and assume a static spatial arrangement of time-independent molecular energy
levels [122].

In general however, the total disorder consists of static and dynamic contri-
butions [136–139]. In amorphous materials, the static part results from the
variation in the conformations and environments of the individual molecules,
which causes a broadening of the distribution of time-averaged energies [136].
The dynamic part describes the energy fluctuations due to the thermal vibration
and movement of the molecule in its confining environment [137–139].

3.2 Modeling of dynamic and static disorder

This work is based on a recent study by Friederich et al., where the applica-
tion of machine learning models to determine static and dynamic disorder
contributions was demonstrated for the material PEDOT:PSS [140]. In this
section, a comprehensive study is presented, including a wide selection of
materials relevant to OLED and OPV research. Furthermore, the workflow is
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limited to the calculation of the conformational disorder, and the calculation of
molecular energy levels does not take into account the environment of neigh-
boring molecules and charge carriers. Therefore, the electrostatic disorder
is neglected in this study. However, it also has a relevant influence on the
mobility and is investigated in other studies [5, 122].

The workflow consists of several steps which use different computational
methods. First, in MD simulations, trajectories of bulk morphologies are
generated for each considered molecule. For a small part of the monomer
structures from the trajectories, the molecular energy levels are obtained from
single-point DFT calculations in vacuum. The results represent the dataset used
to perform machine learning (ML) of a regression model for the inexpensive
prediction of molecular energy levels. The ML model is then applied to
calculate the energy levels of the remaining structures from the trajectories,
which allows the subsequent analysis of the static and dynamic disorder of the
material.

The geometries of the materials considered in this study are shown in Fig.
3.2 and 3.3. They result from a minimum conformer search using the CREST
module of the XTB program package [141–143]. A distinction is made between
n-type materials, suitable for electron transport, p-type materials, suitable for
hole transport, and materials suitable for both charge carriers.

3.2.1 Molecular dynamics of organic semiconductors

The bulk morphology simulations are conducted with the MD package LAMMPS
[31] using the GROMOS force field [38]. For all simulations, a timestep
of 1 fs and a short-range cutoff of 14 Å is applied. Furthermore, for long-
range electrostatics, the particle-particle particle-mesh (PPPM) solver and for
thermostatting and barostatting, the Nosé-Hoover approach is used, both as
implemented in LAMMPS.

Initially, the optimized geometries are submitted to the web-accessible tool
ATB [144, 145], which provides force field parameters and partial charges.
For the initialization of the simulation, 512 molecules are placed on a cubic
grid, each randomly oriented and with enough space between them to avoid
overlaps (except for mCP, where 1000 molecules are simulated). To bring the
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Fig. 3.2.: Rendered representations of the p-type semiconductors considered
in this study. Light gray: hydrogen, dark gray: carbon, blue: nitro-
gen. Visualization software: OVITO [93].
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Fig. 3.3.: Rendered representations of the n-type and multi-purpose semicon-
ductors considered in this study. Light gray: hydrogen, dark gray:
carbon, blue: nitrogen. Visualization software: OVITO [93].
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Fig. 3.4.: Rendered representation of the NPB bulk morphology resulting from
the MD protocol presented in Section 3.2.1. Light gray: hydrogen,
dark gray: carbon, blue: nitrogen. Visualization software: OVITO
[93].

system towards its equilibrium mass density, several subsequent simulation
intervals are performed. First, at a temperature of 300 K, the initial sparse
structure is compressed to a dense amorphous morphology through a pressure
ramp from 10 to 1 atm of the duration of 200 ps. After that, the long-range
solver is switched on, and the simulation is continued for 200 ps at a pressure
of 1 atm. To further improve the convergence of the density, a heating process
lasting a total of 400 ps is simulated composed of a linear temperature ramp
from 300 to 700 K followed by a cooling ramp of equal duration back to 300
K. The preparation of the morphology is completed by a final equilibration
run of 500 ps at the target conditions of 300 K and 1 atm. From the resulting
structure, a production simulation of 5 ns is performed during which the
system coordinates are saved in an interval of 1 ps. For one of the materials,
NPB, the rendered representation of the final morphology is shown in Fig. 3.4.
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3.2.2 Results and discussion of disorder analysis

The calculations and analysis presented in the following were performed
by Patrick Reiser [110].

A subset of the resulting trajectories of each molecule is used for the training
of an ML model for the prediction of DFT energy levels. Details on the devel-
opment of the ML approach are given in the original publication [110]. The
trained ML model is used to evaluate the energy levels Ui(t) of all monomers
and snapshots. With that, it is possible to calculate the total conformational
disorder of the materials and obtain separate values for the dynamic and static
contribution, as illustrated in Fig. 3.5 and outlined in the following. The
conformational disorder is one part of the total disorder next to electrostatic
contributions, which are not treated in this study. The dynamic conformational
disorder σdyn is defined by the ensemble average 〈·〉i over the variances of
fluctuating energies with time Vart[Ui(t)] of the individual molecules:

σdyn =
√
〈Vart[Ui(t)]〉i (3.2)

The static contribution σstat is given by the variance of the per-molecule time-
averages 〈·〉t of energies:

σstat =
√

Vari[〈Ui(t)〉t] (3.3)

The total conformational disorder σtot is primarily computed by the variance
of energies over all molecules and times:

σtot =
√

Vari,t[Ui(t)] (3.4)

If the dynamic and static distributions (Fig. 3.5 d) and e)) can be approximately
described as independent normal distributions, an alternative expression for
the total conformational disorder results:

σtot =
√
σ2

dyn + σ2
stat (3.5)

Furthermore, as a measure for the deviation from the normal distribution, the
population skewness γ1 quantifies the asymmetry of the disorder distributions
shown in Fig. 3.5 d-f):
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Fig. 3.5.: Breakdown of the conformational disorder into static and dynamic
contributions shown for the example of the p-type material NPB.
a) Heatmap of HOMO energies, each column represents one
molecule of the morphology, each row a snapshot of the trajec-
tory. b) Energy distribution during the trajectory of one specific
molecule. c) Energy distribution of all molecules during one specific
snapshot. d) Static disorder distribution of mean energy values of
the molecular trajectories and the corresponding probability density
function (PDF). e) Dynamic disorder distribution of energy fluctua-
tions around the mean energy of the molecular trajectory, plotted
for all trajectories. f) Total conformational disorder distribution of
energies from all molecular trajectories and snapshots. This figure
was created by Patrick Reiser. Reproduced with permission from
[110]. Further permission requests related to the material excerpted
should be directed to the American Chemical Society.
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γ1 = 1
N

N∑
i

(
xi − µ
σ

)3
(3.6)

where N is the number of samples xi, µ the mean and σ the standard devi-
ation corresponding to the disorder. The results of the disorder components
and skewness for the p-type and n-type materials are shown in Fig. 3.6, the
corresponding numerical values are given in Tab. A.1 and A.2 of Appendix
A.1. First, it can be seen that the total conformational disorder values are
in good accordance with the quadratic summation of the static and dynamic
disorder (Tab. A.1 and A.2). This agreement confirms the assumption of inde-
pendent static and dynamic distributions, which allow a consistent separation.
Therefore, it is possible to investigate the influence of molecular properties
separately for both disorder contributions.

While the dynamic disorder makes up a significant part of the total disorder
in all molecules, the ratio between the dynamic and static contribution shows
considerable variations. Molecules with large rotatable side groups, such
as TCTA, show a trend to larger static disorder values. Depending on the
conformation, the HOMO can either be delocalized over the molecule or
localized on the side groups (see Fig. 3.7). This trend is also observed for the
BPD molecules. Here, the smallest static disorder is observed for the compact
o-BPD with restricted rotational degrees of freedom. Another feature brought
out by the separation of contributions is the slight asymmetry of the static
distribution for some of the molecules. Depending on the sign of the skewness,
this can be linked to an increased or decreased density of tail states in the
energy gap. For example, the positively skewed HOMO distribution in the
case of NPB corresponds to an increase in hole traps compared to a symmetric
normal distribution.

In conclusion, the workflow provides a consistent breakdown of the conforma-
tional disorder into dynamic and static contributions and improves the insight
into the charge transport conditions in organic semiconductors. Furthermore,
the resulting time-resolved energy level fluctuations potentially allow a com-
parison with the time scales of hopping processes and could serve as a starting
point for developing advanced hopping transport simulation methods with
dynamic rates.
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Fig. 3.6.: Results of the total conformational disorder and breakdown into
static and dynamic contributions according to the method shown
in Fig. 3.5. For the n-type materials, the disorder corresponds to
the LUMO and for the p-type materials to the HOMO energies. The
analysis involves 38.3 million energies obtained from ML model
predictions on the MD geometries. The numerical results of all
HOMO and LUMO disorder values are given in Tab. A.1 and A.2 of
Appendix A.1. Additionally, the skewness is plotted for the static,
dynamic, and total distributions. It reveals a tendency for asymmet-
ric static distributions with a significant deviation from a normal
distribution. This figure was created by Patrick Reiser. Reproduced
with permission from [110]. Further permission requests related to
the material excerpted should be directed to the American Chemical
Society.

Fig. 3.7.: Representation of the HOMO orbital of TCTA computed in vacuum
using DFT for different conformations: a) optimized geometry, b)
and c) non-equilibrium conformers from the amorphous morphology.
Compared to the delocalized orbital of the optimized structure in a),
the twisted geometries in b) and c) show a localization on one or two
sidegroups. This figure was created by Patrick Reiser. Reproduced
with permission from the Supporting Information of [110]. Further
permission requests related to the material excerpted should be
directed to the American Chemical Society.
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Multiscale modeling of
separable non-covalent
interactions

4

This chapter is about the development and application of the Component-
separable Non-covalent Interaction Network (CONI-Net), an analytical model
for the description of non-covalent interactions, which is trained on ab initio
energies and applicable in molecular dynamics simulations.

In the first section, a detailed description of the method and all its components
is given. In Section 4.2, the data efficiency of the model is examined by the
computation of a learning curve. Subsequently, an application as a custom
model for a set of organic molecules is shown in Section 4.3. Finally, in
Section 4.4, the development of a transferable model for hydrocarbons is
demonstrated.

This chapter is based on Konrad and Wenzel [146].

4.1 Method development

The method developed in this work can be described by a workflow as shown
in Fig. 4.1, consisting of several steps discussed in the following subsections.
In Section 4.1.1, several preprocessing steps for the involved molecules are
described, such as geometry optimization of the monomers and the calculation
of atomic descriptors and partial charges. The model training is performed on
dimer samples. Therefore, in Section 4.1.2, a procedure for the automated gen-
eration of large dimer datasets is introduced. Section 4.1.3 gives an overview
of the CONI-Net model and the training procedure. Finally, in Section 4.1.4,
the protocol for the model application in molecular dynamics simulations for
predicting thermodynamic properties is presented.
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Fig. 4.1.: Overview of the workflow described in this section. Visualization
software for the molecular renderings: OVITO [93].
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4.1.1 Fingerprint descriptor and partial charges

For the model developed in this study, the representation of the system is
divided into atomic pairwise descriptors, which characterize intermolecular
pairs of atoms. As a first step, for each atom in the system, several quantities are
precomputed in QM calculations. On the one hand, properties that describe the
local chemical environment of the atom inside the molecule and, on the other
hand, partial charges that approximate the long-range electrostatic potential.

Initially, a geometry optimization is conducted for each monomer with the
DFT module of the ORCA package [147]. For this task, the B3LYP functional
[86–88] is used in combination with the aug-cc-pVTZ basis set [148]. From
the results, partial charges are extracted in a one-stage RESP fit [36] using
the postprocessing tool Multiwfn [149]. On the relaxed geometry, another
single-point calculation with the cc-pVTZ basis set is performed [150], followed
by a calculation of Hirshfeld charges [94] and Mayer bond orders [95] using
the postprocessing tools of ORCA.

With the calculated properties, an atomic fingerprint is defined by concatenat-
ing the Hirshfeld charge and the four highest bond order values. Thereby, each
pair of atoms can be described by a ten-digit pair fingerprint constructed from
the two atomic fingerprints (Fig. 4.2). The order of the two atomic fingerprints
is defined by rules which ensure the invariance of the pair fingerprints to index
exchanges in the Cartesian description. For pairs of different chemical ele-
ments, the order is determined by a fixed rule. Namely, the atomic fingerprint
of the lighter chemical element is put in the first place. For pairs of identical
elements, the order is deducted from comparing the entries of the two atomic
fingerprints one by one. The first unequal entries determine the order such
that the atomic fingerprint corresponding to the higher entry value is placed at
the front. In addition to the pair fingerprint, for each pair, the distance and
RESP charges are stored.
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Fig. 4.2.: Definition of the pair fingerprint descriptor of an intermolecular
atom pair. From DFT calculations of each monomer, the Hirshfeld
charge and the four highest Mayer bond order values are obtained
from postprocessing and combined to an atomic fingerprint. The
pair fingerprint is constructed by the concatenation of both atomic
fingerprints according to a sorting rule which ensures invariance
towards index permutation. Furthermore, the RESP charges for the
electrostatic baseline model and the pair distance are stored along-
side the pair fingerprint. Visualization software for the molecular
renderings: OVITO [93].
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4.1.2 Dimer sampling method

The training of the CONI-Net model requires a dataset of dimer samples
to learn the relationship between geometric arrangement and interaction
energy. The reference energy for a dimer geometry is obtained from symmetry-
adapted perturbation theory (SAPT), which provides a physically motivated
grouping into the interaction components dispersion, exchange, electrostatics,
and induction [7, 18]:

Edimer = Edisp + Eexch + Eel + Eind (4.1)

For the dataset in the subsequent applications, the calculations are performed
on SAPT2+3 level by the Psi4 quantum chemistry package using the aug-
cc-pVDZ basis set and the density fitting approximation [10, 148, 151–153].
For the molecules in the subsequent applications, this combination yields
an affordable computational expense that allows the generation of several
thousand samples. For that purpose, an automatic procedure was developed
to construct dimer arrangements from the monomer geometries obtained
during the preparation step described in the previous subsection. In order to
steer the sampling into a relevant distance region, an estimate for the dimer
interaction energy Eestimate is defined by Lennard-Jones interactions based on
GAFF parameters which are assigned automatically by the AmberTools software
[28, 101] and Coulomb interactions of the precomputed RESP charges. This
estimate enables the following sampling procedure:

1. Independent random rotations of both monomers

2. Identification of the dimer distance drep in the repulsive regime where
Eestimate = 1 kcal/mol

3. Random choice of a dimer distance in the range of drep to drep +5 Å, with
a selection probability proportional to exp(−βEestimate)

The sampling parameter β can be related to a sampling temperature Ts by
β = 1

kBTs
, where kB is the Boltzmann constant. In the subsequent applications,

Ts is set to room temperature which results in β = 1.69
kcal/mol .
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4.1.3 Network model

The CONI-Net model is comprised of four independent models, one model for
each energy component provided by SAPT: dispersion, exchange, electrostatics,
and induction. Each component model has the structure as shown in Fig. 4.3,
which is described in the following. The overall network structure is based
on the Behler-Parrinello approach, where the total network is divided into
submodels that compute partial contributions of the total quantity [53]. In the
present model, the submodels emerge from an atomic pairwise partitioning
of the total interaction component [55, 57]. They are represented by pair
networks which are composed of the following modules:

• Fully-connected artificial networks (ANNs): Calculation of exponents
and prefactors from pair fingerprint

• Function layer: Calculation of pair contribution using several power laws
constructed from ANN outputs

• Baseline model (only for the electrostatic component): Partial charge
interaction according to Coulomb’s law

The fully-connected ANNs for the prefactors and exponents contain two hidden
layers, each with four neurons using ReLU activation functions, followed by
an output layer with three neurons. The neurons, also referred to as nodes,
contain the parameters of the model, the weights and biases. The execution
of the total model involves one pair network instance per intermolecular pair.
Instances for pairs of the same combination of chemical elements use the same
parameter set, i.e., they share weights and biases. Furthermore, individual
transformations are performed on the output values of the exponent and
prefactor networks before they are passed on to the function layer. The direct
output kout

i of the exponent network is mapped to a finite value range around
the bias value kbias

i whereby the exponent ki resulting from output node i is
given by

ki = kbias
i + 2.0 · (sig(kout

i )− 0.5) (4.2)

where sig(x) is the simoid function which is defined as

sig(x) = 1
1 + e−x

(4.3)
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Fig. 4.3.: Structure of the CONI-Net model for any energy component. The
pair fingerprint, distance, and RESP charges of each pair are the
input of a pair network. Parameter sharing is applied for pair net-
work instances that belong to the same combination of chemical
elements. The pair network comprises two artificial networks for the
computation of prefactors and exponents and a function layer that
uses both values and the distance to evaluate the pair contribution
to the energy component. Additionally, the electrostatic compo-
nent includes a baseline model based on the Coulomb interaction
between the RESP partial charges. Visualization software for the
molecular renderings: OVITO [93]. Reproduced with permission
from [146]. Copyright 2021 American Chemical Society.
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The values for kbias
i are hyperparameters of the model. Throughout this study,

they are defined for the exchange component as

kbias
1 = 8, kbias

2 = 10 and kbias
3 = 12, (4.4)

and for the dispersion, electrostatics, and induction components as

kbias
1 = 6, kbias

2 = 8 and kbias
3 = 10. (4.5)

The output values of the prefactor network are also modified before passing
on. On the one hand, the signs are replaced by a predefined value depend-
ing on the energy component. For the exchange component, the prefactors
are constrained to positive values, and for the dispersion, electrostatics, and
induction components, to negative values. On the other hand, the output
values are scaled by a factor of 1000 kcal/mol, which defines the energy units
and is comparable to a change of parameter initializations and learning rates
locally inside the prefactor network. Subsequently, the resulting exponents
ki, prefactors ai, and pair distance r are inserted into the function layer to
calculate the pair contribution to the energy component:

Ep(r) =
3∑
i

air
−ki (4.6)

In order to prevent the pair contribution from diverging to negative infinite
values, a taper function is applied to attractive pair contributions in the region
below rmin, the shortest distance in the training data for the considered element
combination. This ensures stable MD simulations, even if the pair distance
falls below the known range in case of a rare close encounter. The taper factor
f is implemented as proposed in Ref. [154]:

r0 = rmin − 0.5 (4.7)

x(r) = r − r0
rmin − r0

(4.8)

f(x) = (1− x)3(1 + 3x+ 6x2) (4.9)
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If the distance falls below rmin, the pair contribution Ep is scaled down
smoothly. The resulting final pair interaction Ẽp(r) is given by

Ẽp(r) =


0, r ≤ r0

(1− f)Ep(r), r0 < r < rmin

E(r), r ≥ rmin

(4.10)

Finally, for the electrostatic component, a baseline energy is added to the pair
contribution based on the partial charge interaction:

Ebaseline(r) = 1
4πε0

q1q2
r

(4.11)

where ε0 is the vacuum permittivity and q1 and q2 are the partial charges of
the two pair atoms. The implementation of the model was realized with the
Python library PyTorch [155]. The weights and biases in the hidden and output
layers of the exponent and prefactor networks are initialized from the uniform
distribution

U
(
−
√
n−1

f ,
√
n−1

f

)
(4.12)

where nf is the total number of input features of the corresponding layer. The
model training is performed with the Adam optimizer using a learning rate α
and other settings as proposed in the original study [107] (β1 = 0.9, β2 = 0.999,
ε = 10−8, α = 0.001) and the mean squared error as loss function. In order to
avoid overfitting, an early stopping protocol is applied. Therefore, the total
dataset is randomly divided into a training and a validation set. The training
set is used for model optimization, while at checkpoints every 100 epochs,
the model loss on the validation set is checked. If the validation loss does not
improve for 800 steps, the training is stopped. The split ratio of training to
validation samples is 3:1 for all following applications. Before the training, a
normalization is performed for the entries of the pair fingerprints. Furthermore,
random noise from a normal distribution with a standard deviation of 0.1 is
added to the entries during training. When the early stopping criterion is
reached, the noise is turned off, and the training is continued for another 100
epochs from the checkpoint with the lowest validation loss.
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4.1.4 Molecular dynamics protocol

In some of the following applications, the trained CONI-Net model is applied
in molecular dynamics (MD) simulations of the liquid phase to predict the
thermodynamic properties enthalpy of vaporization and mass density, which
allows the comparison with experimental values and predictions from other
force fields. Below, a description of the setup, procedure, and analysis of
the simulations is given. The simulations are conducted with the LAMMPS
molecular dynamics package [31] and initially require the preparation of the
force field. Since the CONI-Net model is restricted to non-covalent interactions,
the intramolecular energies and forces are modeled by the GROMOS force field
[38]. The parameters for the bond, angle, and dihedral terms are generated
via the web-accessible Automated Topology Builder (ATB) [144, 145]. In order
to obtain the intermolecular part of the force field, first, the energy curves are
extracted from the CONI-Net models of the four components. For each pair
fingerprint occurring in the simulation, the energy components are evaluated
at 500 discrete distances ranging from 0.5 to 15 Å and summed to a total
energy curve. The force curve results from the numerical derivative of the
total energy curve using the Python library NumPy [156] and the fundamental
relation:

Fp(r) = − ∂

∂r
Ep(r) (4.13)

Finally, the energy and force curves yield a tabulated force field directly usable
with the LAMMPS package. Besides the tabulated interactions, which are
truncated with a cutoff of 15 Å, the electrostatic baseline model based on
the precomputed RESP charges is added through the corresponding LAMMPS
module, which allows treatment of long-range interactions by the Ewald
summation method.

For the preparation of the MD simulation, a total of 1000 molecules are first
individually randomly rotated and then placed on a spacious cubic lattice
to prevent initial overlaps. From this initial structure, the system is steered
towards its equilibrium density by several successive runs with Nosé-Hoover
style thermostatting and barostatting as implemented in LAMMPS. In Tab.
4.1 an overview of the MD parameters for the three preparation runs and
the production run of the liquid phase system is given. Furthermore, for the
following analysis, a simulation of a single molecule in vacuum is performed
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Tab. 4.1.: Overview of MD simulation settings during the preparation steps
1-3 and the production step 4, with the simulated time, the inte-
gration timestep, the pressure p, the pressure coupling parameter
τp, the temperature coupling parameter τT , and the relative target
error in forces of the Ewald summation method. The target tem-
perature T of the thermostat is constant for all steps and set to the
value used in the experiment. Adapted with permission from [146].
Copyright 2021 American Chemical Society.

step 1 2 3 4
time (ps) 200 200 400 2000
timestep (fs) 1 1 0.2 0.2
p (atm) 100→ 1 1 1 1
τp (ps) 1 1 5 5
τT (ps) 0.1 0.1 1 1
kspace rel. err. 1e-4 1e-4 1e-5 1e-5

with a Langevin thermostat using a timestep of 0.2 fs and a coupling parameter
τT of 1 ps. After an equilibration of 100 ns, a production run of equal duration
is performed. The simulation settings in the production runs of the liquid
and vacuum simulation are chosen similarly to those used in the benchmark
study of Caleman et al. [106], which will be used for comparison in one of the
subsequent applications.

For the calculation of the thermodynamic properties, the average potential
energies Evac

pot and Eliq
pot are obtained from the production runs of the vacuum

and liquid simulation. From the latter, the average volume 〈V 〉 is also extracted.
The predictions for the mass density ρ and enthalpy of vaporization ∆Hvap of
the liquid can then be calculated using expressions which are equivalent to
those applied in Ref. [106]:

ρ = M

〈V 〉
(4.14)

∆Hvap = Evac
pot − E

liq
pot + kBT (4.15)

with the Boltzmann constant kB, the total mass M and the temperature T .
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4.2 Learning curve

To evaluate the data efficiency of the model, in this section, the dependency
of the dataset size on the model performance to interpolate between different
dimer geometries of a single molecule is examined. The resulting relationship
between performance and dataset size is also referred to as a learning curve.
As a performance measure, the mean absolute error (MAE) on an independent
test set is used. Furthermore, the model selected by the validation set from
repeated training executions with random weight initializations is compared
to the actual best model for the test set. The entire investigation is conducted
for the organic molecule methanol.

4.2.1 Procedure

The following steps for calculating the learning curve are also outlined in Fig.
4.4. For different total dataset sizes, five unique random splits into training and
validation set in the ratio 3:1 are generated. For each split, the model training
is executed five times for each energy component. The best component models
for each split are then selected by two alternative criteria. On the one hand,
they are selected by the validation set MAE specific to the split. On the other
hand, by the MAE on an independent test set containing 2000 dimer samples.
For each split and selection criterion, the best component models are combined
to a best total energy model, resulting in two sets of five total energy models
for each dataset size.

4.2.2 Results and discussion

For both selection criteria, Fig. 4.5 shows the dependence of the mean and
range of the test set MAEs for the different dataset splits on the training set size.
From the best models for the test set (blue), it is clear to see that an increasing
training set size results in a decreasing average MAE. On the one hand, this
is due to the growing variety in the training set that comes with adding more
dimer geometries. On the other hand, with increasing training set size, the
number of validation samples increases proportionally and becomes more and
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Test set

Dataset

Random split 
training / validation

Split 1 Split 2

Multiple models for
Split 1

Select best component
models by validation set

Multiple models for
Split 2

Store test set MAE of best
combined total model

Increase dataset size

Initial dataset

all done

Select best component
models by test set

Store test set MAE of best
combined total model

Fig. 4.4.: Procedure for the calculation of the learning curve. Five unique
random splits are created for each dataset size, and for each split,
five models per energy component are trained. For clarity, only a
subset is shown in this figure.

more representative for many dimer arrangements. Since the validation set
MAE controls the early stopping criterion of the model training, a growing
number of validation samples can make the training more robust against
over- and underfitting and less sensitive to changing the dataset split. This
dependence is also reflected in the decreasing MAE ranges and convergence
of the two mean MAE values of both selection criteria for large training and
validation set sizes (Fig. 4.5).
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Fig. 4.5.: Learning curve (methanol dimers). The arithmetic mean and range
of test set errors of the best combined total energy models are
indicated by points and bars. The best models of each split and
component are selected by the validation set (orange) and for com-
parison by the test set itself (blue). Reproduced with permission
from [146]. Copyright 2021 American Chemical Society.

4.3 Custom force field

In this section, the developed workflow (Fig. 4.1) is applied for a set of organic
molecules to test the interpolation capabilities of the CONI-Net model and
fingerprint descriptor. Furthermore, the trained model is applied in molecular
dynamics simulations, and the predicted values for thermodynamic observables
are compared to values from experiments and conventional force fields.

4.3.1 Molecules and dataset

The molecules for this application consist of the chemical elements carbon,
hydrogen, nitrogen, and oxygen. Due to the high computational cost of the
SAPT method, they contain only between two and four non-hydrogen atoms
each. Furthermore, for this application, all molecules involved in the model
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CHNO dataset molecules & MD ensemble

dimethylether acetoneformaldehyde acetonitrile

formic acid formamideethanolmethanol

Fig. 4.6.: Renderings and names of the molecules in the CHNO dataset used
for model training. They also represent the MD ensemble used for
the property prediction simulations. Visualization software: OVITO
[93].

training are also used in the MD simulations for the property predictions.
Therefore, to enable a comparison, molecules were chosen for which literature
values from experiments are available and which are included in the OPLS-AA
and GAFF benchmark study of Caleman et al. [106]. The renderings and
names of the molecules are shown in Fig. 4.6.

The dimer dataset for the model training, hereafter referred to as the CHNO
dataset, consists of 2000 homodimers for each molecule and is divided into
training and validation sets with the ratio 3:1, which totals in 12000 training
and 4000 validation samples. Furthermore, an independent test set of 4000
samples with the same composition is prepared to evaluate the performance of
the final model.

4.3.2 Results of model training and property predictions

For a fixed choice of the training and validation set, the model training pro-
cedure for each component (Sec. 4.1.3) is conducted in five independent
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executions with random weight initializations. Then, for each component, the
model with the best MAE on the validation set is chosen for the final total
energy model. The results for the components and the total energy of the final
model on the test set are shown in Fig. 4.7, 4.8 and 4.9.

The final model is then applied in molecular dynamics simulations for all
molecules in the dataset (Fig. 4.6). The predicted enthalpies of vaporization
and mass densities are shown in Fig. 4.10 and Fig. 4.11. They are compared
to experimental values and predictions of the OPLS-AA and GAFF force fields
as published in Caleman et al. [106]. All numerical values related to Fig. 4.10
and Fig. 4.11 and references for the experimental values can be found in Tab.
A.3 of Appendix A.1.
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Fig. 4.7.: Total non-covalent interaction energies of the CHNO test set samples
predicted by the CONI-Net model vs. SAPT2+3 reference. The color
coding corresponds to the local point density calculated via a Gaus-
sian kernel-density estimate as implemented in SciPy [157], violet
represents low and yellow high values. Adapted with permission
from [146]. Copyright 2021 American Chemical Society.
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Fig. 4.8.: a) Dispersion and b) exchange energies of the CHNO test set samples
predicted by the CONI-Net model vs. SAPT2+3 reference. Adapted
with permission from [146]. Copyright 2021 American Chemical
Society.
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Fig. 4.9.: a) Electrostatic and b) induction energies of the CHNO test set
samples predicted by the CONI-Net model vs. SAPT2+3 reference.
Adapted with permission from [146]. Copyright 2021 American
Chemical Society.

68 Chapter 4 Multiscale modeling of separable non-covalent interactions



dim
eth

yle
the

r

(24
0.0

K)

for
mald

eh
yd

e

(25
3.1

5 K)

ace
ton

e

ace
ton

itri
le

meth
an

ol

eth
an

ol

for
mic a

cid

for
mam

ide
0

20

40

60

80
H

va
p

(kJ m
ol

)
Experiment
CONI-Net(CHNO), MAPE = 11.6 %
GAFF, MAPE = 10.9 %
OPLS-AA, MAPE = 8.5 %

Fig. 4.10.: Predictions of the trained CONI-Net model for the enthalpy of
vaporization of the molecules in the MD ensemble (Fig. 4.6) and
comparison to experiments and conventional force fields. Further-
more, the mean absolute percentage error (MAPE) with respect to
the experimental values is given for all models. The predictions of
GAFF and OPLS-AA are taken from Ref. [106]. The corresponding
numerical values and the literature references for the experimental
values are given in Tab. A.3 of Appendix A.1. Adapted with per-
mission from [146]. Copyright 2021 American Chemical Society.
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Fig. 4.11.: Predictions of the trained CONI-Net model for the mass density of
the molecules in the MD ensemble (Fig. 4.6) and comparison to
experiments and conventional force fields. Furthermore, the mean
absolute percentage error (MAPE) with respect to the experimental
values is given for all models. The predictions of GAFF and OPLS-
AA are taken from Ref. [106]. The corresponding numerical values
and the literature references for the experimental values are given
in Tab. A.3 of Appendix A.1. Adapted with permission from [146].
Copyright 2021 American Chemical Society.
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4.3.3 Discussion

The direct comparison of the test set MAEs of the different components shows
that for the CHNO model, the prediction of exchange and electrostatic in-
teractions is more challenging compared to the dispersion and induction
components. On the one hand, the exchange and electrostatics models have to
cover larger energy ranges, therefore relative deviations can have a stronger
effect on the absolute error. On the other hand, due to the different nature of
the interactions, the approximations of the model can have an unequal impact
on the individual components. One of the strongest approximations is the
isotropy of the pair potentials between the atoms, which mainly affects the
modeling of short-range effects that arise from orbital overlap, particularly
the charge penetration and Pauli repulsion of the electrostatic and exchange
components. For these effects, the anisotropy of the interaction occurs only
spherically averaged in the resulting model. This compromise can therefore
introduce an uncertainty in the prediction of close configurations and increase
the MAE. Whereas, for the dispersion, the isotropic model performs excep-
tionally well. Due to the flatter distance dependence of this component, the
relevant distance range is larger compared to the effects mentioned above. The
applicability of isotropic models for the description of dispersion interactions
has also been demonstrated by dispersion correction schemes for DFT [97].

The combined model for the total energy shows an overall consistent perfor-
mance to interpolate between the different molecules and dimer geometries,
even though the components were trained independently, and therefore no
error cancellation between the different interactions was enforced. For neural
network potentials of the atomization energy, it is common to evaluate the
model by its capability to achieve the so-called chemical accuracy of at least
1 kcal/mol for the MAE [54]. The MAE of the CHNO model is way below this
threshold. However, since, in general, the absolute energies of NCIs are lower
compared to atomization energies in most cases, the chemical accuracy may
not be a reliable indicator. The obvious solution would be to define a compara-
ble quality threshold for NCIs, but this is problematic since NCIs for different
configurations can have a high relative variation. Since the absolute model
error is expected to vary for the different regimes, the MAE for a set of samples
is heavily dependent on its composition. As an example, dimer configurations
at large distances may cope better with the approximation of isotropic pair
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interactions than close configurations, as discussed above. Therefore, while the
MAE is a useful metric to compare models for a given dataset, its significance
to assess the absolute model performance is limited.

Furthermore, an important reason why the test MAE has only partial relevance
is that the application area of the model is molecular dynamics simulations
of bulk systems. When transferring to extensive dynamic simulations, several
approximations can influence the simulation behavior that are not directly
visible in the model performance for dimer samples. One problem that arises
from the molecular mechanics model is the forced symmetry of the intramolec-
ular force field of specific functional groups. This issue particularly affects
methyl groups, which generally have a dihedral potential that allows rotation
into three equivalent minimum positions. Due to this symmetry, the partial
charges and pair potentials for all hydrogen atoms also have to be equal. For
the model in this work, this symmetry is introduced during the fingerprint and
partial charge calculation stage. However, this forced symmetry introduces an
artificial constraint that limits the modeling flexibility, especially if the rest of
the molecule does not share the symmetry of the functional group.

On the level of model training, only dimers constructed from equilibrium
monomer geometries are used in this study. However, when applying the model
in MD, distortions and dihedral rotations are introduced that are unknown to
the model, which can potentially lead to discrepancies in the intermolecular
potential. In order to avoid this, the dataset generation procedure would have
to include non-equilibrium monomer geometries, and the fit of partial charges
would have to be a compromise for the different conformers of the molecule.

Another approximation occurs during the application of the model in MD.
The model in this study is trained exclusively on dimer samples. Therefore,
many-body effects between three or more molecules are neglected, introducing
a source of error for describing the cohesive energy density. The significance of
this neglect depends on the nature of the considered molecules, e.g., in polar
or ionic liquids, many-body interactions can represent a significant share of
the total interaction energy [158, 159].

The objective of the model is to predict ab initio energies from SAPT. However,
to keep the computational demands for the generation of the datasets feasi-
ble, the accuracy of the ab initio reference method is limited. The resulting
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deviation between the reference energies for training and the true values
is forwarded to the model and can affect the prediction of thermodynamic
properties. Furthermore, since the reference SAPT calculations do not supply
forces, a direct training of the force is not possible. Any potential artifacts
related to the force would also first become apparent in the MD simulations.

When comparing the property predictions for the different molecules (Fig.
4.10 and 4.11), it shows that for all models, the results for the enthalpy of
vaporization have higher deviations from the experimental values than the
mass density predictions. On average, the OPLS-AA force field has the most
accurate predictions for both tasks, which can be explained by the focus on
the optimization of liquid properties during the development of the force field
[27]. The GAFF force field shows similar performance for most molecules.
However, mainly due to the poor prediction results for formic acid, the mean
absolute percentage errors (MAPE) for both properties are slightly increased
compared to the OPLS-AA force. For the enthalpy of vaporization, the average
performance of the CONI-Net model lines up right behind the conventional
force fields. The most considerable deviations arise for the two alcohols,
methanol and ethanol. A possible source of error could be the enforced
symmetry on the methyl groups, as discussed above. For the mass density, the
CONI-Net model shows an overall good agreement with experimental data and
positions between the OPLS-AA and GAFF performance.

To conclude, the results for the test set in Fig. 4.7 show, that the network
structure combined with the fingerprint descriptor is capable of interpolat-
ing the dimer potential energy surface for a set of small organic molecules.
Furthermore, the transferability to large arrangements is demonstrated in
MD simulations of the liquid phase (Fig. 4.10 and 4.11), where despite the
approximations, the performance to predict thermodynamic observables is
comparable to force fields with empirically derived non-covalent interactions.
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4.4 Transferable force field

In the following, the application of the CONI-Net model for the development
of a transferable force field is investigated. Therefore, the MD ensemble to
test the property prediction consists of molecules that were not used in model
training.

4.4.1 Molecules and dataset

For computational feasibility, the chemical space for this study is limited to hy-
drocarbons consisting only of the chemical elements carbon and hydrogen. The
training ensemble contains compounds with up to three carbon atoms, except
for benzene. The MD ensemble contains larger hydrocarbon molecules since
no expensive dimer dataset calculation is required for them. The renderings
and names of the molecules for both ensembles are shown in Fig. 4.12.

The CH dataset contains 2000 homodimers for each molecule in the training
ensemble and 400 heterodimers for every possible combination. The total
dataset is randomly split into a training and validation set at the ratio of 3:1,
resulting in a total of 20400 training and 6800 validation samples. Additionally,
an independent test set with the same proportions is generated, which contains
6800 samples.

4.4.2 Results of model training and property predictions

As for the CHNO model, with a fixed training and validation set split, the
model training is repeated five times for each component with random weight
initializations. The component models with the best validation set MAE are
then combined to the final total energy model. The test set results for the
total energy and individual components are shown in Fig. 4.13, 4.14 and
4.15. Subsequently, the final model is used to conduct MD simulations for
all molecules in the MD ensemble (Fig. 4.12). The resulting predictions for
the thermodynamic properties and the corresponding experimental values are
shown in Fig. 4.16 and 4.17. The related numerical values and references are
given in Tab. A.4 of Appendix A.1.
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CH dataset molecules
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methane ethane ethylene acetylene 

propane propene propyne benzene 

pentane 1-pentene 1-pentyne 

hexane isohexane naphthalene 

cyclohexane cyclopentene toluene o-xylene 

Fig. 4.12.: Renderings and names of the molecules in the CH dataset used
for model training and the MD ensemble used in the property
prediction simulations. Visualization software: OVITO [93].
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Fig. 4.13.: Total non-covalent interaction energies of the CH test set samples
predicted by the CONI-Net model vs. SAPT2+3 reference. The
color coding corresponds to the local point density calculated
via a Gaussian kernel-density estimate as implemented in SciPy
[157], violet represents low and yellow high values. Adapted
with permission from [146]. Copyright 2021 American Chemical
Society.

4.4.3 Discussion

In comparison to the model for the CHNO dataset, the resulting test set MAEs
for the total energy and components are slightly lower. On the one hand, the
total energy range is smaller compared to the CHNO model. On the other
hand, the attractive component with the largest range is now the dispersion
component compared to the electrostatic component for the CHNO model,
which indicates that the nature of interactions is shifted for the CH dataset.
Since the dispersion component copes very well with the approximations of
the model, this shift could also lead to an improvement in the prediction of
the total energy. Furthermore, an error cancellation effect cannot be ruled
out for the combined total energy, even though the components were trained
independently.

76 Chapter 4 Multiscale modeling of separable non-covalent interactions



8 6 4 2 0
CONI-Net(CH) (kcal

mol )

8

6

4

2

0

SA
PT

2+
3 

(kc
al

m
ol

)

a)
Dispersion, MAE: 0.02 kcal

mol

0.0 2.5 5.0 7.5 10.0 12.5
CONI-Net(CH) (kcal

mol )

0

2

4

6

8

10

12

SA
PT

2+
3 

(kc
al

m
ol

)

b)
Exchange, MAE: 0.06 kcal

mol

Fig. 4.14.: a) Dispersion and b) exchange energies of the CH test set samples
predicted by the CONI-Net model vs. SAPT2+3 reference. Adapted
with permission from [146]. Copyright 2021 American Chemical
Society.
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Fig. 4.15.: a) Electrostatic and b) induction energies of the CH test set samples
predicted by the CONI-Net model vs. SAPT2+3 reference. Adapted
with permission from [146]. Copyright 2021 American Chemical
Society.
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Fig. 4.16.: Predictions of the trained CONI-Net model for the enthalpy of
vaporization of the molecules in the MD ensemble (Fig. 4.12)
and comparison to experiments. Furthermore, the mean absolute
percentage error (MAPE) with respect to the experimental values
is given. The corresponding numerical values and the literature
references for the experimental values are given in Tab. A.4 of
Appendix A.1. Adapted with permission from [146]. Copyright
2021 American Chemical Society.
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Fig. 4.17.: Predictions of the trained CONI-Net model for the mass density
of the molecules in the MD ensemble (Fig. 4.12) and comparison
to experiments. Furthermore, the mean absolute percentage error
(MAPE) with respect to the experimental values is given. The
corresponding numerical values and the literature references for
the experimental values are given in Tab. A.4 of Appendix A.1.
Adapted with permission from [146]. Copyright 2021 American
Chemical Society.
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The systematic errors at the different stages of the model development as
described for the CHNO model in Sec. 4.3.3 also apply for this application.
The main difference here is the use of separate sets of molecules for the model
training and MD property prediction simulations. Therefore, the MD simu-
lations can also include larger molecules that allow significant conformation
changes due to soft torsional degrees of freedom, and hence the approximation
to use only equilibrium monomer geometries for the partial charge calcula-
tions can have a more substantial effect. Particular affected could be linear
chain molecules with a highly symmetric equilibrium geometry. However, as
discussed in Sec. 4.3.3, this issue could be reduced by an extended fitting
procedure that takes into account non-equilibrium conformers.

The property predictions in Fig. 4.16 and 4.17 show an overall good agreement
with the experimental values for both examined observables, the enthalpy of
vaporization and mass density. Compared to the results of the CHNO model, it
is noticeable that the deviations have less variance. In particular, the reliable
predictions suggest a solid performance of the modeling approach and ab initio
method for aliphatic and aromatic functional groups.

In conclusion, the applicability of the CONI-Net model and fingerprint de-
scriptor for the development of a transferable force field could successfully be
demonstrated. The application of the model in MD simulations yields promis-
ing results for the prediction of thermodynamic properties of molecules that
are not involved in the training set. Despite the minimalist dataset of small
hydrocarbons for the training, the model is transferable to larger molecules
and structures unknown to the model, such as cyclic or branched aliphatic
compounds and new combinations of functional groups.
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Summary and outlook 5
Summary

Analytical force fields are a useful concept to extend the length and time
scales of molecular simulations of soft matter phenomena. General force field
definitions provide parameter sets specialized for subsets of the chemical space,
such as organic molecules. The non-covalent interactions in these models
are represented by simple function expressions which are computationally
efficient but require empirical target data for the top-down parameter fitting
procedure.

One part of this work is the application of a general force field for molecular
dynamics simulations of several organic semiconductors. The efficiency of the
method allowed the simulation of long trajectories of the molecular vibrations
inside amorphous bulk morphologies. These trajectories enabled a collabo-
rative study on the development of a workflow to calculate the dynamic and
static contributions to the conformational energy level disorder in the materials.
However, the applicability of this approach is dependent on available force field
parameters for the considered molecules. For instance, organic semiconduc-
tors with metal centers, which are common emitters in organic light-emitting
diodes, could therefore not be included in this study. An extension of the
conventional force field is not straightforward, and experimental properties of
these exotic materials are in general not available. This challenge motivates
the development of a bottom-up approach for the modeling of non-covalent
interactions to eliminate the dependence on empirical target values and replace
it with data from ab initio calculations.

A bottom-up model for predicting non-covalent interactions in large-scale
molecular dynamics simulations has to fulfill several criteria. First of all, it
has to provide smooth and consistent force curves over the whole relevant
distance range to ensure stable integration of the equation of motions while
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providing adequate fitting flexibility to interpolate the ab initio interactions
for different species and geometries. Furthermore, to achieve long simulation
times and large system sizes, the energy and force calculations are required to
be computationally efficient. Finally, an automated and universal parameter
fitting procedure is essential for a straightforward extension into new areas of
the chemical space.

In this work, I presented the development of a neural network potential for
non-covalent interactions, which fulfills all of these requirements. The method
is based on a modified Behler-Parrinello approach with pairwise energy con-
tributions. As an alternative to symmetry functions, I developed a fingerprint
descriptor that characterizes the chemical environment of atoms in a molecule
by properties of the equilibrium geometry. Additionally, I introduced a new
submodel structure that processes the fingerprint descriptor and the distance
dependence of the pair contribution in separate steps. The resulting model is
robust against overfitting and flexible enough to interpolate complex potential
energy surfaces. Another advantage is the possibility to precompute the neu-
ral network inference for the application in molecular dynamics simulations,
enabling length and time scales comparable to conventional force fields. As
ab initio reference for the model training serves the interaction energy from
symmetry-adapted perturbation theory, which provides a decomposition into
physically motivated energy components. In particular, for each component,
an independent model is trained, thereby preserving full separability. Fur-
thermore, all required steps to build a model for a set of molecules from
scratch, including the preparatory calculations of the descriptor and dataset,
are implemented in a well-defined automated procedure.

I demonstrated the performance of the model in two separate applications.
First, a custom model was trained for a series of small organic molecules.
Subsequently, predictions for the enthalpy of vaporization and mass density
of the molecules were obtained from molecular dynamics simulations of the
liquid phase. The results agree well with the values from experiments and
conventional force fields, despite the absence of empirical target values in
the training procedure and moderate quality of the ab initio method. In the
second application, a model was trained for a set of hydrocarbons. However,
the prediction of thermodynamic observables was performed for molecules not
included in the training set. Nevertheless, the model is in excellent agreement
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with experiments and represents a successful proof-of-concept for deploying
the developed method as a transferable force field.

Outlook

The developed approach has possibilities for improvements at various points.
One aspect that influences the predictive performance of the model is the
quality of the ab initio reference calculations. If the computational resources
allow, there are larger basis sets and higher-order truncations of the symmetry-
adapted perturbation theory available [17]. Active learning schemes can
compensate for higher computational demands by reducing the number of
required training samples. For instance, the query-by-committee selection
method was shown to facilitate the training of a neural network potential for
predicting atomization energies [160, 161].

Another aspect related to the dataset is the dimer sampling algorithm, which
in this study is limited to equilibrium monomer geometries. In order to
improve transferability, the sampling procedure could also generate dimers
from non-equilibrium monomers. Similarly, the partial charge fit for the
electrostatic baseline model could also take into account non-equilibrium
conformations of the monomers. Furthermore, the fingerprint descriptor could
easily be extended by additional properties that characterize the atom pairs
in more detail. The model structure also has the potential for extensions.
On the one hand, a direct polarization model could be integrated, which
introduces many-body interactions that do not require self-consistent treatment
[162]. On the other hand, the method could be combined with a bottom-up
parametrization for the intramolecular interactions to achieve an entirely
consistent and complete model [33–35].

However, also in its current state, the method establishes new possibilities
for molecular simulations. The separability of the interactions enables a
contribution-resolved analysis of large arrangements such as solvent-solute
systems, and the bottom-up approach enables force field development for new
molecular materials where empirical data is not available.
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Appendices A
A.1 Numerical values

Tab. A.1.: Results for the dynamic, static, and total disorder values from the
predicted HOMO energies. The mean absolute error (MAE) of
the ML model on the validation set should be smaller than the
dynamic disorder, so that the noise from the energy prediction
is not dominant. To demonstrate the consistency of the disorder
separation method, the squared sum of the static and dynamic
disorder is given, which should be in agreement with the directly
computed total disorder. The data of this table was provided by
Patrick Reiser and is presented in the Supporting Information of
[110].

Molecule MAE R2 static dynamic total squared
(HOMO) disorder disorder disorder sum

(meV) (meV) (meV) (meV) (meV)
a-NPD 17 0.96 35.0 104.0 109.7 109.7
B4PyMPM 29 0.85 14.4 91.7 92.8 92.8
B4PyPPM 36 0.69 16.2 80.4 82.0 82.0
m-BPD 17 0.95 50.5 76.0 91.3 91.3
mCP 9 0.96 20.0 62.1 65.2 65.2
NPB 15 0.97 53.5 90.4 105.0 105.0
o-BPD 18 0.94 33.0 86.4 92.4 92.4
p-BPD 17 0.94 50.6 73.0 88.8 88.8
Spiro-OMeTAD 34 0.81 49.7 79.0 93.2 93.2
Spiro-TAD 25 0.85 41.8 66.2 78.2 78.3
TCTA 20 0.94 62.2 86.6 106.6 106.6
TPBi 21 0.87 24.6 68.3 72.6 72.6
TPyQB 25 0.85 33.9 70.1 77.8 77.9
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Tab. A.2.: Results for the dynamic, static, and total disorder values from the
predicted LUMO energies. The mean absolute error (MAE) of
the ML model on the validation set should be smaller than the
dynamic disorder, so that the noise from the energy prediction
is not dominant. To demonstrate the consistency of the disorder
separation method, the squared sum of the static and dynamic
disorder is given, which should be in agreement with the directly
computed total disorder. The data of this table was provided by
Patrick Reiser and is presented in the Supporting Information of
[110].

Molecule MAE R2 static dynamic total squared
(LUMO) disorder disorder disorder sum

(meV) (meV) (meV) (meV) (meV)
a-NPD 14 0.97 22.1 95.1 97.6 97.6
B4PyMPM 20 0.97 87.7 113.3 143.2 143.3
B4PyPPM 28 0.93 88.8 107.9 139.7 139.7
m-BPD 36 0.91 91.3 116.0 147.6 147.7
mCP 15 0.97 38.0 102.2 109.0 109.1
NPB 14 0.96 27.3 93.9 97.7 97.8
o-BPD 31 0.93 80.4 122.0 146.0 146.1
p-BPD 34 0.92 93.2 118.0 150.3 150.4
Spiro-OMeTAD 35 0.88 81.2 99.9 128.7 128.7
Spiro-TAD 33 0.89 73.5 101.4 125.2 125.3
TCTA 32 0.94 106.0 134.4 171.1 171.2
TPBi 32 0.91 68.2 111.8 130.9 130.9
TPyQB 20 0.92 41.2 78.4 88.6 88.6
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Tab. A.3.: Numerical values of the thermodynamic properties predicted by
the CONI-Net(CHNO) model, GAFF, and OPLS-AA and comparison
with experimental data. The enthalpy of vaporization ∆Hvap and
mass density ρ are given at the temperature T = 298.15 K (unless
stated otherwise) and in the units of kJ/mol and kg/m3. The mean
absolute percentage errors (MAPE) are specified with respect to
experimental values. The data of this table is presented in the
Supporting Information of [146].

Name Obs. Exp. CONI-Net(CHNO) GAFF OPLS-AA
dimethylether ∆Hvap 21.72 [106]a 21.19 ± 0.02c 24.12 ± 0.02 [106] 30.87 ± 0.03 [106]
(240.0 K) ρ 742.1 [106]a 728.2 ± 0.6c 773.0 ± 0.2 [106] 741.4 ± 0.1 [106]

formaldehyde ∆Hvap 23.10 [106]a 23.76 ± 0.01c 24.85 ± 0.02 [106] 24.11 ± 0.01 [106]
(253.15 K) ρ 815.0 [163] 863.0 ± 0.4c 838.0 ± 0.2 [106] 773.7 ± 0.1 [106]

acetone ∆Hvap 30.99 [164] 33.88 ± 0.03c 34.47 ± 0.02 [106] 30.76 ± 0.02 [106]
ρ 784.9 [164] 821.1 ± 0.4c 785.6 ± 0.1 [106] 800.3 ± 0.2 [106]

acetonitrile ∆Hvap 33.23 [164] 36.28 ± 0.02c 32.60 ± 0.01 [106] 30.42 ± 0.02 [106]
ρ 776.0 [164] 823.0 ± 0.4c 729.6 ± 0.1 [106] 755.1 ± 0.2 [106]

methanol ∆Hvap 37.43 [164] 27.67 ± 0.03c 39.62 ± 0.02 [106] 36.44 ± 0.01 [106]
ρ 787.2 [164] 776.8 ± 0.6c 807.5 ± 0.2 [106] 776.8 ± 0.1 [106]

ethanol ∆Hvap 42.32 [164] 31.76 ± 0.03c 44.62 ± 0.02 [106] 42.32 ± 0.02 [106]
ρ 784.8 [164] 776.0 ± 0.5c 797.3 ± 0.1 [106] 796.3 ± 0.0 [106]

formic acid ∆Hvap 46.30 [165]b 40.69 ± 0.02c 65.46 ± 0.02 [106] 42.48 ± 0.01 [106]
ρ 1214.5 [164] 1204.7 ± 0.5c 1371.0 ± 0.2 [106] 1136.8 ± 0.1 [106]

formamide ∆Hvap 60.57 [164] 57.10 ± 0.03c 62.15 ± 0.01 [106] 59.76 ± 0.01 [106]
ρ 1128.8 [164] 1192.0 ± 0.2c 1218.5 ± 0.1 [106] 1122.1 ± 0.1 [106]

∆Hvap MAPE 11.6 % 10.9 % 8.5 %
ρ MAPE 3.4 % 4.8 % 2.4 %

aTo enable a comparison at the same temperature as for the GAFF and OPLS-AA benchmark of
Ref. [106], the experimental values given by this reference were also used here. The authors
obtained them from the web database knovel.com.

bIn the gas phase of formic acid, the molecules are partially present as dimers, and therefore
the value for the enthalpy of vaporization strongly deviates from ideal gas behavior. In order
to enable a comparison with the expressions used to calculate the enthalpy of vaporization
from the molecular dynamics results, a literature value is chosen, which is corrected by the
dissociation enthalpy of the dimers. The corrected value is related to the transition of a
liquid to a monomeric gas.

cThe averages and uncertainties are calculated through block averaging with a block size of
200 ps.
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Tab. A.4.: Numerical values of the thermodynamic properties predicted by
the CONI-Net(CH) model and comparison with experimental data.
The enthalpy of vaporization ∆Hvap and mass density ρ are given
at the temperature T = 298.15 K (unless stated otherwise) and in
the units of kJ/mol and kg/m3. The mean absolute percentage
error (MAPE) is specified with respect to experimental values. The
data of this table is presented in the Supporting Information of
[146].

Name Obs. Exp. CONI-Net(CH)
1-pentene ∆Hvap 25.47 [163] 26.55 ± 0.05b

ρ 635.3 [166] 640.7 ± 0.1b

pentane ∆Hvap 26.41 [164] 27.41 ± 0.06b

ρ 621.4 [164] 635.8 ± 0.2b

cyclopentene ∆Hvap 28.37 [167] 25.97 ± 0.04b

(300.25 K) ρ 764.4 [166]a 741.3 ± 0.6b

1-pentyne ∆Hvap 28.40 [168] 28.50 ± 0.05b

ρ 690.7 [169] 687.8 ± 0.3b

isohexane ∆Hvap 29.89 [163] 30.99 ± 0.06b

ρ 648.5 [170] 666.0 ± 0.2b

hexane ∆Hvap 31.48 [164] 33.16 ± 0.06b

ρ 654.9 [164] 674.6 ± 0.2b

cyclohexane ∆Hvap 32.89 [164] 34.55 ± 0.04b

ρ 774.2 [164] 799.5 ± 0.3b

toluene ∆Hvap 37.99 [164] 41.57 ± 0.04b

ρ 861.9 [164] 890.8 ± 0.2b

o-xylene ∆Hvap 43.43 [164] 44.77 ± 0.04b

ρ 876.0 [164] 879.0 ± 0.2b

naphthalene ∆Hvap 59.00 [171] 56.01 ± 0.05b

(355.0 K) ρ 976.7 [172] 988.1 ± 0.1b

∆Hvap MAPE 4.9 %
ρ MAPE 2.0 %

aThe density at the temperature 300.25 K is obtained from an extrapolation using the value at
298.15 K and the temperature coefficient of density.

bThe averages and uncertainties are calculated through block averaging with a block size of
200 ps.
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A.2 Abbreviations

Adam Adaptive moment estimation optimizer
ANN Artificial neural network
CG Coarse graining
CH Label for dataset (carbon and hydrogen)
CHNO Label for dataset (carbon, hydrogen, nitrogen, and oxygen)
CONI-Net Component-separable Non-covalent Interaction Network
DFT Density functional theory
GAFF General Amber force field
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
MAE Mean absolute error
MAPE Mean absolute percentage error
MD Molecular dynamics
ML Machine learning
MM Molecular mechanics
NCI Non-covalent interaction
NNP Neural network potential
NVE Micro-canonical ensemble
NVT Canonical ensemble
NPT Isotherm-isobaric ensemble
OFET Organic field-effect transistor
OLED Organic light-emitting diode
OPLS-AA Optimized Potentials for Liquid Simulations (all-atom)
OPV Organic photovoltaics
QM Quantum mechanics
ReLU Rectified linear unit
RESP Restrained electrostatic potential
SAPT Symmetry-adapted perturbation theory
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