
Automated Testing of Mobile Applications Using a Robotic Arm

Demian Frister

Karlsruhe Institute of Technology (KIT)

AIFB - BIS

Karlsruhe, Germany

Demian.frister@kit.edu

Aleksandar Goranov

Research Center for Information Technology (FZI)

Karlsruhe, Germany

goranov@fzi.de

Andreas Oberweis

Karlsruhe Institute of Technology (KIT)

AIFB – BIS

Research Center for Information Technology (FZI)

Karlsruhe, Germany

Andreas.oberweis@kit.edu

Abstract—— Recent developments in mobile testing have

raised the importance of black-box testing and the usage of

automated test procedures. In order to secure a flawless user

experience, developers are required to develop error free

applications. The realization of mobile tests with the support of

robotic equipment ensures new possibilities to run tests

without further human interaction. In this paper we discuss

different approaches for testing mobile applications with

robotic arms and additionally share our insights on a

prototype suited to automatically test mobile applications. The

implemented prototype can perform black-box tests by

utilizing an algorithmic approach based on tree-search.

Keywords: robotic testing, mobile application testing, black-

box-testing, testing automation

I. INTRODUCTION AND MOTIVATION

Despite the ever-growing share of mobile devices on the

world wide web traffic [1], mobile applications are often

still tested by traditional verification and testing methods

[2]. These traditional methods do not take into consideration

that mobile devices are used quite differently than

applications on stationary systems. Whereas traditional

applications are used with mouse and keyboard, mobile

devices are operated by touch inputs on a touch screen.

Most current testing systems available for developers, lack

the ability to test the GUI of a mobile application fully

autonomously and with the replicated authenticity and

realism of touching the device screen of the device under

test (DUT). To test the software behavior of a wet device or

with gloves, requires the use of special test series to stay

reproducible and consistent. Furthermore, the variety of

device sizes, types and touch sensibility makes it difficult to

produce consistent tests. Testing the GUI in environments

hostile to humans (at prolonged exposure) might be

impossible to achieve. This prevents tests under extreme

conditions like high humidity or temperature. We found two

promising systems which presented testing of mobile

applications with a robot, but they mostly use specialized

tools and hardware. Due to these limitations, testing of

mobile applications is based on manual testing in most cases

which is inefficient and costly compared to autonomous

testing [2, 3]. This paper presents an approach using a

standard industrial robotic arm for testing mobile Android

apps. Furthermore, this approach enables black box testing

of applications without ownership of the source code. In

addition, we propose a testing sequence to automate the

process. Unlike other testing methods for Android, this

method does not need code or system access besides the

Android Debug Bridge (ADB) between a computer and the

DUT. This approach focuses on opening all activities an

Android app contains and logging the whole procedure with

screenshots. Additionally, a generated execution tree makes

it possible to retrace every activity on the device and every

action that was performed by the robot. By using a robotic

arm and simulating the touch on the application UI errors

(frontend dependent) can be found, which depend on using

real haptic touch. The prototype was implemented by using

open source frameworks. Due to their usage, the developed

toolset could be built hardware agnostic and easily

adaptable to different robots or algorithms for further

development. The prototype was built for and tested on

Android applications because of their open nature. To

evaluate the implementation a simple Android application

was created, utilizing the commonly used elements of a

typical Android application.

This paper is structured as follows: Section II gives an

overview of testing with a focus on GUI testing. Section III

introduces related work with two similar robotic test

systems and one automated testing tool for Android devices.

In section IV the paper presents the tools used for the

prototype and their interaction. Section V displays the

implementation and architecture of the prototype and

Section VI gives a short evaluation of the advantages and

disadvantages of using the prototype. The paper closes with

Section VII, which discusses future work and possible

extensions of the prototype.

mailto:goranov@fzi.de

II. BACKGROUND

Testing in Software engineering is defined as a systematic

approach to examine a program to gain trust in its correct

implementation of all requirements and its reaction to errors.

It’s intention is to find errors [4]. To find errors behavior,

the program is challenged into situations where the program

deviates from its requirements. An error is defined as the

failure of a function or action to perform its intended

purpose. To find errors, a test must be systematically

planned and executed. Afterwards the results need to be

evaluated and documented to give practical results [5].

One way to set apart testing methods is to distinguish

between white-box and black-box testing. White-box tests

are tests where the internal structure of the program is

known to the tester. Usually an approach like this is used to

test the formal requirements and the internal data flow.

Unlike white-box tests, black-box tests do not necessarily

know about the internal program structure. Black box tests

obtain their test data from the specified functional

requirements lacking the final program structure [6]. This

enables testing of the documented requirements rather than

the code implementation. Since it is not always feasible to

test all possible test scenarios, finding the right test cases

(i.e. cases that throw an error) is more important [4]. One of

the requirements of the prototype created was the

implementation of a test method for black-box testing. This

requirement facilitates testing of applications not written or

owned by the tester.

Figure 1 Testing pyramid [7]

A useful classification for mobile application tests is the

testing pyramid shown in Fig. 1 [8]. With each layer of the

pyramid, the test effort increases due to higher complexity

and dependencies. The top of the pyramid consists of UI-

Tests because they depend on all integrations below and

each functional unit must work for itself and in integration

with others before they are possible. Furthermore, UI-Tests

cannot be performed alone. Therefore the amount of

testcases increases exponentially in proportion to the

amount of widgets on the UI [9]. Due to this errors found

during integration-testing, typically cost five times more

than errors found by Unit-Tests [10]. As a result of these

limitations, it is recommended to develop an application

with an iterative approach and check whether all basic unit

tests pass after every added function [11]. Therefore,

automating GUI-Tests could reduce the costs for software

development.

GUI-Testing consists of tests which assess multiple

functions working together in a closed workflow. According

to Googles testing fundamentals they should make up

around 10% of the full test count [11]. On the one hand they

should follow a sensible sequence, and on the other hand,

they should cover a wide area of functionalities. This means

that they must follow a special sequence of steps to get to a

certain screen. With every screen to reach, the amount of

potential test cases and GUI states increases [9].

GUI-Tests are often prepared and executed through

Capture-and-replay methods. They first capture a potential

test sequence, which can be automatically replayed

whenever a change in the application occurs. Then the as-is-

condition is compared to the defined reference. Testing like

this takes less time than testing everything by hand but still

requires a capture phase and it is possible a developer might

overlook or forget to test parts of a program.

A. Comparable testing methods for Android applications

We identified three main methods to test Android

applications and especially the GUI. The first method is

testing an application on an emulator or on a device by

manually testing all functionalities. This can be cheaper than

other test methods if done in the beginning of a software

project [12]. To use this method the software should be

given to a person not involved in developing the application.

This test method is not necessarily complete and can only

determine the existence of errors, not their nonexistence.

For Android this is done either on an emulator that can be

used to cost-effectively test different screen sizes and

specifications or directly on a physical device.

The second frequently used method involves “espresso

tests” [13, 14]. Espresso is a test framework from Google

which allows the writing of GUI-Tests for Android. A test

case must be written for each GUI element which then can

be executed automatically after each new implementation. It

is also possible to use espresso tests with the capture-and-

replay method by recording a sequence of interactions with

an application. The corresponding test code is generated

automatically and can then be replayed afterwards. Espresso

tests can be executed on an emulator as well as on a

physical device. In contrast to test users, espresso tests are

more systematic in assessing an application.

The third method that is increasingly used to test Android

applications is Google’s cloud-based test framework

“Firebase Test Lab”. By using the “Firebase Test Lab”

developers eliminate the necessity to own a multitude of

physical devices because they can test their applications on

real devices in the cloud. It also allows to execute espresso

tests as well as other pre captured test scenarios to be run on

the device. One intriguing method of automatically testing is

the robo test [15]. With robo tests an application can be

tested by a software agent on multiple devices

automatically. The software agent tests different elements

on the application without requiring the developer to define

them. Nevertheless, these tests only simulate touches on the

device screen without actually touching the device and

therefore lack authenticity and realism.

III. RELATED WORK

There are two systems considered for the implementation in

this paper, where robotic systems with a multi-purpose

approach were used to test mobile applications by touching

the display instead of using digital methods. Both are black

box testing methods. These systems were chosen for

comparison because they both use a new approach to testing

mobile applications with a hardware robot.

One is Tappy a low cost delta-robot [16]. Delta robots use a

technology also used in 3D-printers. Delta-robots are

characterized by high speed and high accuracy in a 2-

dimensional plane but low adaptability to new contexts.

They are usually used for pick and place activities. Tappy

must be calibrated to the x-, and y-positions of the testing

device. Then the system utilizes the capture-and-replay

method. By making use of the ADB screenshots are taken,

and the testing person selects elements in the app, that the

system should test. The testing person must therefore enter

the complete testing sequence which is saved and can be

repeated by the robot. During this process elements can be

forgotten by the tester due to lack of concentration or

instructions, which is a disadvantage.

The second system examined is Axiz. Axiz is more than just

the robotic system itself but a complete framework for

automatically testing Android applications [3]. The goal of

this system is to use physical robots to perform more

realistic black-box tests. The framework consists of two

main parts. An autonomous test generator and a test

executor. As an additional abstraction layer, the test

generator uses a camera without any further connection to

the smartphone to detect possible testable elements. The test

cases are generated by reusing and extending realistic test

cases created by traditional test methods. The testing robot

is a four-axis robotic arm also usable for tasks other than

testing. The robot was built by using inexpensive

commodity hardware.

For testing the UI of Android Applications on a device or an

emulator with digital input (i.e. by simulating clicks on the

device screen) there is a toolset called GUIRipper which

uses the Android ripper technique [17, 18]. This tool and

technique enable autonomous testing of GUIs by reading all

elements and creating an ordered hierarchy of all elements.

By comparing the old state of a GUI to the state after an

event was fired (e.g. a button was clicked) possible

interactions are found and put into a task-list. This task-lists

is updated with every new event while exploring the

application simultaneously and iteratively. The

implementation introduced in this paper uses a similar

approach for iterating over the application.

IV. TOOLS USED

A. Franka Emika Panda 7-DOF Robotic Arm

Robotic arms show higher flexibility for testing mobile

applications in closed space than for example Tappy. The

human arm has 7-DOF [19]. Robotic arms with 7-DOF

define the minimum to reproduce the human motion scope.

It is still recommended to use more than 7-DOF for natural

looking, humanlike movements [20]. This is due to their

motor-powered joints instead of muscles [21]. For the

implementation in this paper the robotic arm Panda from

the company Franka Emika (shown in Fig 3 on the left) was

used. This industrial robot offers a path deviation of around

0.1 mm which makes it possible to reach elements on a

mobile device with a high accuracy and low deviation

between test executions and thus high repeatability. This

accuracy makes it possible to reach even tiny UI elements

which would be difficult to reach consistently even for

humans. Through its sufficiently large workspace and

humanlike motion abilities, the arm is capable of testing

mobiles devices without further preparations [22]. It can be

adapted for a multitude of different use cases without

needing a new robot or toolset. The robotic arm uses a

parallel gripper as an end effector which allows the use of a

capacitive pen for touching the mobile device. By utilizing

the standard gripper and a capacitive pen, no additional

retooling is required, and the robot remains flexible. Due to

the panda’s high force sensibility it is possible to detect if a

touch on the DUT-surface was strong enough for a

successful interaction. The Panda is a collaborative robot

with many sensors for working with humans without the

need for fences or additional security measurements.

B. Communication with the robotic arm

The robotic arm communicates over TCP/IP. It can connect

with the robotic operating system (ROS). ROS is a software

framework for robots. One of the main goals of ROS is to

achieve a basic toolset that can be abstracted to different

tasks [23]. It offers standard capabilities a robot could need

in a modular and open fashion. With ROS it is possible to

communicate with different systems or sensors on different

hardware. The capsulated architecture of ROS allows every

function to run as a node on its own system and if one

system is substituted for another (e.g. another robotic arm) it

requires less adaptions to achieve the same goal. Each node

can communicate with other nodes via ordered message

exchanges. Messages are defined and use an agreed upon

format. One tool ROS offers is MoveIt!. MoveIt! presents

the ability to convert a position in cartesian space (i.e. x-, y-,

z-axis) to suitable joint angles. This allows sending a

position in the real world, the end effector should move to.

MoveIt! uses different inverse kinematic calculations to

reach this point [24]. It can be adapted to different robotic

arms with different joint counts.

C. Extracting the GUI

The different elements on a DUT GUI are extracted by

utilizing the ADB-Bridge with a tool called UIAutomator

and a python wrapper for it [25, 26]. By reading the UI-

elements (visible and invisible on the DUT screen) this tool

generates a hierarchy of the GUI and writes it in an XML

file. The created XML allows easy iteration through the

different surface elements with additional information about

the elements (e.g. “clickable”, “scrollable” or “focused”).

By iterating through the elements, it is possible to build a

tree structure of an application and follow its activities. The

use of a tree structure enables using tested algorithms such

as depth-first search or breadth-first search to visit the

different nodes (i.e. elements and activities of an

application). This method is only able to import applications

written in native Android. Non-native applications will not

output any elements on the GUI. UIAutomator also allows

the simulation of different User Interactions (e.g. Clicks,

scrolls and swipes) on a DUT. With this feature the testing

sequence algorithm was tested without the need to execute

every test on the robotic arm. Furthermore, it can take

screenshots of the DUT. Since UIAutomator only uses the

Android debug bridge, it can execute black-box tests.

D. Test Application

To test the implementation, a simple Android application

was created. In addition, several activities were written to

simulate a typical Android application. An activity is an in

itself completed set of functions that creates a window

where different UI elements can reside [27]. Jumping

between is possible through interaction with screen

elements. The activities in the test application exist with

different objectives. Each activity implements some typical

elements Android uses, such as lists, sidebars, input fields,

buttons and touch sensitive items. From the main activity

different subcategories and activities can be opened. The

applications elements were chosen because Android studio

recommends them as the most commonly used elements.

V. IMPLEMENTATION

The proposed implementation of an application testing

follows several (predefined) steps. It starts with the teach-in

phase, during which the robotic arm has to be set up to

interact with the DUT. In the second phase (UI-reading-

phase) the display content of the DUT must be read. During

the third phase (selection-phase) relevant, testable elements

are to be found and added to a stack. In order to perform the

test an efficient test sequence has to be calculated in the

fourth phase (test-phase) and finally executed in the last

fifth phase (execution-phase).

Figure 2 Components in the prototype

Fig. 2 shows a simplified version of the components

relevant to the task at hand. The left block implements all

modules necessary for controlling the robot. It uses modules

created by the robot manufacturer. They are accessible over

standard ROS topics. It also shows the usage of MoveIt! for

calculating the inverse kinematic. Because of this modular

architecture, the methods of this paper can be applied to any

other robotic arm connected with ROS. The

“smartphone_connect_node” can interact over ROS topics

with other ROS controlled robotic arms and communicates

over ROS topics with the “Android_test_software”.

To test and interact with the DUT, a teach-in must be done

in the teach-in. This is because the robot does not have any

information about the location of the DUT, nor (more

importantly) the elements on the device screen in particular.

With this teach-in, the robot must be calibrated to know the

exact positions, every time a new device is introduced to the

robotic arm. The teach-in is also implemented in the

“smartphone_connect_node” and it is called over typical

ROS service requests. Whereas the robot exists in a three-

dimensional world, the DUT screen localizes its elements in

a two-dimensional space. This is shown in Fig. 3 on the left

picture. The left coordinate system denotes the robot world

coordinates and the right one shows the DUT coordinates.

There are various methods for adapting a robot system to a

DUT, for example the method used by Tappy [16]. It

requires an application to run on the DUT while the DUT

must be placed at a specific point in front of the robot. Then

the robot tests different points on the application and aligns

itself according to the feedback it gets (i.e. which position

on the screen translates to which robot end effector

position).

Figure 3 the robotic arm with the DUT in front and their coordinate

systems. Right: A DUT with the initial teach-in points the robot learns

The teach-in proposed in this paper consists of leading the

robot with a capacitive pen as its end effector to three

different points (p1, p2 and p3) on the DUT screen shown in

Fig. 3. Because the points consist of the left upper, right

upper, and right lower position of the screen, they can be

used to calculate the width and height of the DUT after

saving them and applying the Pythagoras’ theorem. This

ensures that a device can even be in an inclined position.

The robot is also shown the position of the “back” button of

a device because they can vary among devices. The exact

position of a GUI element is given over the ADB-interface

in pixel coordinates for the left, right, upper, and lower side

of an element. This can be transferred to the robot’s world

space in meters by calculating the center of an element. By

utilizing the framework MoveIt! to calculate the inverse

kinematic between the touch point and the robotic arm

joints, it is possible to send Cartesian coordinates indicating

the position on the DUT the robot should touch. This

method does not require any additional software to run on

the DUT and is easy to implement. It is also independent

from display sizes or other screen characteristics.

Figure 4 Sequence to build the test tree

The UI-reading-phase, selection-phase and testing-phase

are done by the “Android_test_software” in the lower right

corner of Fig. 2 and are completely autonomous. This node

calculates the test sequence shown in Fig. 4. To start the

sequence, the GUI is extracted as described in Paragraph C.

The used method is based on a few principles shown by

most Android applications [28]. Many elements of the type

button lead to new activities. To go back one step in the

activity hierarchy, the back button of the DUT is used.

Elements other than buttons often create a new state in the

same activity instead of leading to a new activity. On this

basis, the average flow through an application can be

described as an acyclic graph where each button leads to a

new node. A tree is a special kind of acyclic, connected

graph. Every node can be accessed from the trees root and

there are no cycles inside. This ensures that the robot does

not end up in a loop. It is not possible to connect activities

that are not in a parent-child relationship, which is not

necessary, because every activity can still be accessed from

its parent. With every touched element (by the robotic arm),

the application either opens a new activity with an entirely

new GUI or new elements appear. The created prototype

only registers buttons on the screen, but it would require

little additional work to expand its capabilities to gather

different elements. The robot can simulate swipes as well.

The gathered hierarchy is scanned for new unvisited nodes

(e.g. new buttons which were not touched before) and adds

them to a tree. If there are no more unvisited nodes, the

whole application has been tested and the test is concluded.

If new elements are found, they are added to the current

node and the next unvisited node is tested. If the current

layer in the tree has no unvisited nodes, the back button is

pushed until the application is in an activity with unvisited

nodes. This is repeated until there are no untested elements.

To test all saved tree nodes (i.e. activities) and

simultaneously discover new ones, a search algorithm based

on tree search algorithms is used. This is shown by the

example test application in Fig. 5. Two algorithms are

possible to search through a tree. Depth-first and breadth-

first. Since not all nodes are known at the beginning of the

search, a mixture between the two algorithms was chosen.

Compared to depth-first, breadth-first is not complete for

traversing a finite graph without testing for cycles. For finite

graphs breadth-first is complete compared to depth-first,

which (if not tested for cycles) is not. This ensures every

node is found. To save time by not going back too many

times, all buttons in an opened activity are tested first,

before going back. In Fig. 5, the step in which a node was

found is annotated in red and the step in which it as tested is

blue.

Figure 5 Example algorithm testing the Test application

After each test step a screenshot is taken, and a visual cyclic

graph is generated to document the test procedure. This

makes it possible to retrace which element leads to a

program error or unexpected behavior. Additionally, the full

tree is saved as a graph to follow the test sequence.

VI. DISCUSSION

The proposed approach is suited for automated testing of

mobile applications by using a robotic arm with minimal

human supervision and interaction during tests. This

approach offers several advantages over other test methods

for mobile applications. The initial resources and expenses

needed to run the testing of mobile applications with a

robotic arm contain higher acquisition costs, however the

long-term variable costs (e.g. labor) are lower compared to

other methods. After the robot has learned how to handle a

specific DUT it is able to test any (written in native

Android) application it receives. In contrast to cloud based

autonomous testing tools (e.g. Firebase Cloud Testing) the

method can only test one application and DUT at a time but

compared to manual testing the robot can test an application

in a consistent and tireless manner. It is also able to test a

multitude of different devices of different shapes without

changing the hardware. A large part of the software costs

are labor costs for developers and test users. If the costs and

work required for tests can be lowered, the developers are

free to do the more creative software developing work than

testing. Additionally, specially trained labor necessary for

e.g. espresso tests, can be avoided. Using the robot can also

enable testing scenarios that were not possible before (e.g.

in hazardous environments) or which required additional

arrangements. Furthermore, the tests are also more realistic

compared to digital testing scenarios. Whereas other testing

methods might offer more additional information why an

application crashed, the information given by the proposed

prototype should give a developer enough information to

retrace the steps that lead to it, reproduce it and rectify it. In

addition, it does not rely on code access to give this

information, unlike other methods.

VII. FUTURE WORK

Using an industrial robotic arm when testing mobile
applications, offers the opportunity to access known and

tested robotic functions via ROS. Additionally, it allows

for readjustment of the testing environment for different

DUTs without much additional work. The tests executed are

carried out under highly realistic circumstances, as opposed

to merely digital tests, and can be carried out with various

environmental requirements.

Future work could implement the exploration strategy of the

GUIRipper tool [17, 18] for further capabilities. This would

also allow tests to search for additional UI elements and

objects. Whereas other papers looked at using deep learning

to gain a higher understanding of the GUI [29] we plan to

implement a solution based on reinforcement learning [30].

A software agent should achieve “curiosity” about an

application and try to see all possible actions and screens

[31]. With further development, it should also be possible to

process already written espresso tests on the robot. It is also

planned to use a robotic arm for testing traditional software

running on a computer with a touch screen.

REFERENCES

[1] StatCounter. "Percentage of all global web pages served to

mobile phones from 2009 to 2018: Digital in 2018." Statista.
https://www.statista.com/statistics/241462/global-mobile-

phone-website-traffic-share/ (accessed 10.09.2020, 2020).

[2] J. Gao et al., "Mobile Application Testing: A Tutorial,"
Computer, vol. 47, no. 2, pp. 46-55, 2014, doi:

10.1109/mc.2013.445.

[3] K. Mao et al., "Robotic Testing of Mobile Apps for Truly
Black-Box Automation," IEEE Software, vol. 34, no. 2, pp. 11–

16, 2017, doi: 10.1109/ms.2017.49.

[4] G. J. Myers et al., The art of software testing, 3 ed. Hoboken,
NJ: Wiley (in eng), 2012, p. 240.

[5] P. Liggesmeyer, Software-Qualität: Testen, Analysieren und

Verifizieren von Software, 2. ed. Heidelberg: Spektrum
Akademischer Verlag (in ger), 2009.

[6] W. E. Perry, A Standard for Testing Application Software.

Auerbach Publishers, 1989.
[7] M. Fowler, "The Practical Test Pyramid: The Test Pyramid," ed,

2018.

[8] M. Cohn, Succeeding with agile: Software development using
Scrum (The Addison-Wesley signature series A Mike Cohn

signature book). Upper Saddle River, NJ: Addison-Wesley (in

eng), 2010, p. 475.
[9] A. M. Memon et al., "Using a goal-driven approach to generate

test cases for GUIs," in International Conference on Software

Engineering: ICSE 99 New York, N.Y, B. Boehm, D. Garlan,
and J. Kramer, Eds., 1999: ACM, pp. 257–266, doi:

10.1145/302405.302632.

[10] J. O. Paul Ammann, Introduction to Software Testing, 2 ed.
Cambridge University Press, 2016.

[11] Google. "Fundamentals of Testing."

https://developer.android.com/training/testing/fundamentals
(accessed 19.03, 2020).

[12] R. Ramler and K. Wolfmaier, "Economic perspectives in test
automation," in Proceedings of the 2006 international workshop

on Automation of software test - AST '06, H. Zhu, J. R. Horgan,

S. C. Cheung, and J. J. Li Eds. New York, NY, USA: ACM
Press, 2006, p. 85.

[13] T. Lämsä, "Comparison of GUI testing tools for Android

applications," University of Oulu, 2017.
[14] Google. "Espresso | Android Developers."

https://developer.android.com/training/testing/espresso/

(accessed 11.09, 2020).

https://www.statista.com/statistics/241462/global-mobile-phone-website-traffic-share/
https://www.statista.com/statistics/241462/global-mobile-phone-website-traffic-share/
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/training/testing/espresso/

[15] Google. "Firebase Test Lab Robo Test | Firebase."

https://firebase.google.com/docs/test-lab/android/robo-ux-test

(accessed 11.09, 2020).

[16] Testdevlab. "How we built a robot for automated manual mobile
testing." https://www.testdevlab.com/blog/2017/07/how-we-

built-a-robot-for-automated-manual-mobile-testing/ (accessed

11.09, 2020).
[17] D. Amalfitano et al., "A toolset for GUI testing of Android

applications," in International Conference on Software

Maintenance (ICSM). Piscataway, NJ: IEEE, 2012, pp. 650–
653.

[18] D. Amalfitano et al., "Using GUI ripping for automated testing

of Android applications," in International Conference on
Automated Software Engineering - ASE 2012, 2012-01-01 2012:

ACM Press, doi: 10.1145/2351676.2351717. [Online].

Available:
http://www.cs.umd.edu/~atif/papers/AmalfitanoASE2012.pdf

[19] M. Benati et al., "Anthropomorphic robotics," Biological

Cybernetics, vol. 38, no. 3, pp. 125–140, 1980, doi:
10.1007/bf00337402.

[20] T. Asfour and R. Dillmann, "Human-like motion of a humanoid

robot arm based on a closed-form solution of the inverse
kinematics problem," in International Conference on Intelligent

Robots and Systems: (IROS 2003), Piscataway, NJ, 2003: IEEE,

pp. 1407–1412, doi: 10.1109/iros.2003.1248841.
[21] M. J. Matarić, The robotics primer (Intelligent robotics and

autonomous agents series). Cambridge, Mass: MIT Press (in
eng), 2007, p. 306.

[22] FrankaEmika. "Datasheet Panda." https://s3-eu-central-

1.amazonaws.com/franka-de-uploads/uploads/Datasheet-EN.pdf
(accessed 10.09., 2020).

[23] M. Quigley et al., "ROS: an open-source Robot Operating

System," in ICRA workshop on open source software, vol. 3,
2009.

[24] S. Chitta et al., "Moveit![ROS topics]," IEEE Robotics &

Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.
[25] uiautomator. (2018). Accessed: 11.09.2020. [Online].

Available: https://github.com/xiaocong/uiautomator

[26] Google. "UI Automator | Android Developers."
https://developer.android.com/training/testing/ui-automator

(accessed 10.09, 2020).

[27] Google. "Activity | Android Developers."
https://developer.android.com/reference/android/app/Activity

(accessed 11.09, 2020).

[28] Google. "Principles of navigation."
https://developer.android.com/guide/navigation/navigation-

principles (accessed 11.09, 2020).

[29] T. Zhang et al., "Deep Learning-Based Mobile Application
Isomorphic GUI Identification for Automated Robotic Testing,"

IEEE Software, vol. 37, no. 4, pp. 67-74, 2020, doi:

10.1109/ms.2020.2987044.
[30] D. Adamo et al., "Reinforcement learning for Android GUI

testing," 2018: ACM Press, doi: 10.1145/3278186.3278187.

[Online]. Available:
https://dx.doi.org/10.1145/3278186.3278187

[31] S. Still and D. Precup, "An information-theoretic approach to

curiosity-driven reinforcement learning," Theory in Biosciences,
vol. 131, no. 3, pp. 139-148, 2012/09/01 2012, doi:

10.1007/s12064-011-0142-z.

https://firebase.google.com/docs/test-lab/android/robo-ux-test
https://www.testdevlab.com/blog/2017/07/how-we-built-a-robot-for-automated-manual-mobile-testing/
https://www.testdevlab.com/blog/2017/07/how-we-built-a-robot-for-automated-manual-mobile-testing/
http://www.cs.umd.edu/~atif/papers/AmalfitanoASE2012.pdf
https://s3-eu-central-1.amazonaws.com/franka-de-uploads/uploads/Datasheet-EN.pdf
https://s3-eu-central-1.amazonaws.com/franka-de-uploads/uploads/Datasheet-EN.pdf
https://github.com/xiaocong/uiautomator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/navigation/navigation-principles
https://developer.android.com/guide/navigation/navigation-principles
https://dx.doi.org/10.1145/3278186.3278187

