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Abstract—— Recent developments in mobile testing have 

raised the importance of black-box testing and the usage of 

automated test procedures. In order to secure a flawless user 

experience, developers are required to develop error free 

applications. The realization of mobile tests with the support of 

robotic equipment ensures new possibilities to run tests 

without further human interaction. In this paper we discuss 

different approaches for testing mobile applications with 

robotic arms and additionally share our insights on a 

prototype suited to automatically test mobile applications. The 

implemented prototype can perform black-box tests by 

utilizing an algorithmic approach based on tree-search. 

Keywords: robotic testing, mobile application testing, black-

box-testing, testing automation 

I. INTRODUCTION AND MOTIVATION 

Despite the ever-growing share of mobile devices on the 

world wide web traffic [1], mobile applications are often 

still tested by traditional verification and testing methods 

[2]. These traditional methods do not take into consideration 

that mobile devices are used quite differently than 

applications on stationary systems. Whereas traditional 

applications are used with mouse and keyboard, mobile 

devices are operated by touch inputs on a touch screen. 

Most current testing systems available for developers, lack 

the ability to test the GUI of a mobile application fully 

autonomously and with the replicated authenticity and 

realism of touching the device screen of the device under 

test (DUT). To test the software behavior of a wet device or 

with gloves, requires the use of special test series to stay 

reproducible and consistent. Furthermore, the variety of 

device sizes, types and touch sensibility makes it difficult to 

produce consistent tests. Testing the GUI in environments 

hostile to humans (at prolonged exposure) might be 

impossible to achieve. This prevents tests under extreme 

conditions like high humidity or temperature. We found two 

promising systems which presented testing of mobile 

applications with a robot, but they mostly use specialized 

tools and hardware. Due to these limitations, testing of 

mobile applications is based on manual testing in most cases 

which is inefficient and costly compared to autonomous 

testing [2, 3]. This paper presents an approach using a 

standard industrial robotic arm for testing mobile Android 

apps. Furthermore, this approach enables black box testing 

of applications without ownership of the source code. In 

addition, we propose a testing sequence to automate the 

process. Unlike other testing methods for Android, this 

method does not need code or system access besides the 

Android Debug Bridge (ADB) between a computer and the 

DUT. This approach focuses on opening all activities an 

Android app contains and logging the whole procedure with 

screenshots. Additionally, a generated execution tree makes 

it possible to retrace every activity on the device and every 

action that was performed by the robot. By using a robotic 

arm and simulating the touch on the application UI errors 

(frontend dependent) can be found, which depend on using 

real haptic touch. The prototype was implemented by using 

open source frameworks. Due to their usage, the developed 

toolset could be built hardware agnostic and easily 

adaptable to different robots or algorithms for further 

development. The prototype was built for and tested on 

Android applications because of their open nature. To 

evaluate the implementation a simple Android application 

was created, utilizing the commonly used elements of a 

typical Android application. 

This paper is structured as follows: Section II gives an 

overview of testing with a focus on GUI testing. Section III 

introduces related work with two similar robotic test 

systems and one automated testing tool for Android devices. 

In section IV the paper presents the tools used for the 

prototype and their interaction. Section V displays the 

implementation and architecture of the prototype and 

Section VI gives a short evaluation of the advantages and 

disadvantages of using the prototype. The paper closes with 

Section VII, which discusses future work and possible 

extensions of the prototype. 
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II. BACKGROUND 

Testing in Software engineering is defined as a systematic 

approach to examine a program to gain trust in its correct 

implementation of all requirements and its reaction to errors. 

It’s intention is to find errors [4]. To find errors behavior, 

the program is challenged into situations where the program 

deviates from its requirements. An error is defined as the 

failure of a function or action to perform its intended 

purpose. To find errors, a test must be systematically 

planned and executed. Afterwards the results need to be 

evaluated and documented to give practical results [5].  

One way to set apart testing methods is to distinguish 

between white-box and black-box testing. White-box tests 

are tests where the internal structure of the program is 

known to the tester. Usually an approach like this is used to 

test the formal requirements and the internal data flow. 

Unlike white-box tests, black-box tests do not necessarily 

know about the internal program structure. Black box tests 

obtain their test data from the specified functional 

requirements lacking the final program structure [6]. This 

enables testing of the documented requirements rather than 

the code implementation. Since it is not always feasible to 

test all possible test scenarios,  finding the right test cases 

(i.e. cases that throw an error) is more important [4]. One of 

the requirements of the prototype created was the 

implementation of a test method for black-box testing. This 

requirement facilitates testing of applications not written or 

owned by the tester. 

 
Figure 1 Testing pyramid [7] 

A useful classification for mobile application tests is the 

testing pyramid shown in Fig. 1 [8]. With each layer of the 

pyramid, the test effort increases due to higher complexity 

and dependencies. The top of the pyramid consists of UI-

Tests because they depend on all integrations below and 

each functional unit must work for itself and in integration 

with others before they are possible. Furthermore, UI-Tests 

cannot be performed alone. Therefore the amount of 

testcases increases exponentially in proportion to the 

amount of widgets on the UI [9]. Due to this errors found 

during integration-testing, typically cost five times more 

than errors found by Unit-Tests [10]. As a result of these 

limitations, it is recommended to develop an application 

with an iterative approach and check whether all basic unit 

tests pass after every added function [11]. Therefore, 

automating GUI-Tests could reduce the costs for software 

development. 

GUI-Testing consists of tests which assess multiple 

functions working together in a closed workflow. According 

to Googles testing fundamentals they should make up 

around 10% of the full test count [11]. On the one hand they 

should follow a sensible sequence, and on the other hand, 

they should cover a wide area of functionalities. This means 

that they must follow a special sequence of steps to get to a 

certain screen. With every screen to reach, the amount of 

potential test cases and GUI states increases [9].  

GUI-Tests are often prepared and executed through 

Capture-and-replay methods. They first capture a potential 

test sequence, which can be automatically replayed 

whenever a change in the application occurs. Then the as-is-

condition is compared to the defined reference. Testing like 

this takes less time than testing everything by hand but still 

requires a capture phase and it is possible a developer might 

overlook or forget to test parts of a program. 

A. Comparable testing methods for Android applications 

We identified three main methods to test Android 

applications and especially the GUI. The first method is 

testing an application on an emulator or on a device by 

manually testing all functionalities. This can be cheaper than 

other test methods if done in the beginning of a software 

project [12]. To use this method the software should be 

given to a person not involved in developing the application. 

This test method is not necessarily complete and can only 

determine the existence of errors, not their nonexistence. 

For Android this is done either on an emulator that can be 

used to cost-effectively test different screen sizes and 

specifications or directly on a physical device. 

The second frequently used method involves “espresso 

tests” [13, 14]. Espresso is a test framework from Google 

which allows the writing of GUI-Tests for Android. A test 

case must be written for each GUI element which then can 

be executed automatically after each new implementation. It 

is also possible to use espresso tests with the capture-and-

replay method by recording a sequence of interactions with 

an application. The corresponding test code is generated 

automatically and can then be replayed afterwards. Espresso 

tests can be executed on an emulator as well as on a 

physical device. In contrast to test users, espresso tests are 

more systematic in assessing an application. 

The third method that is increasingly used to test Android 

applications is Google’s cloud-based test framework 

“Firebase Test Lab”. By using the “Firebase Test Lab” 

developers eliminate the necessity to own a multitude of 

physical devices because they can test their applications on 

real devices in the cloud. It also allows to execute espresso 

tests as well as other pre captured test scenarios to be run on 

the device. One intriguing method of automatically testing is 

the robo test [15]. With robo tests an application can be 

tested by a software agent on multiple devices 



automatically. The software agent tests different elements 

on the application without requiring the developer to define 

them. Nevertheless, these tests only simulate touches on the 

device screen without actually touching the device and 

therefore lack authenticity and realism. 

III. RELATED WORK 

There are two systems considered for the implementation in 

this paper, where robotic systems with a multi-purpose 

approach were used to test mobile applications by touching 

the display instead of using digital methods. Both are black 

box testing methods. These systems were chosen for 

comparison because they both use a new approach to testing 

mobile applications with a hardware robot. 

One is Tappy a low cost delta-robot [16]. Delta robots use a 

technology also used in 3D-printers. Delta-robots are 

characterized by high speed and high accuracy in a 2-

dimensional plane but low adaptability to new contexts. 

They are usually used for pick and place activities. Tappy 

must be calibrated to the x-, and y-positions of the testing 

device. Then the system utilizes the capture-and-replay 

method. By making use of the ADB screenshots are taken, 

and the testing person selects elements in the app, that the 

system should test. The testing person must therefore enter 

the complete testing sequence which is saved and can be 

repeated by the robot. During this process elements can be 

forgotten by the tester due to lack of concentration or 

instructions, which is a disadvantage. 

The second system examined is Axiz. Axiz is more than just 

the robotic system itself but a complete framework for 

automatically testing Android applications [3]. The goal of 

this system is to use physical robots to perform more 

realistic black-box tests. The framework consists of two 

main parts. An autonomous test generator and a test 

executor. As an additional abstraction layer, the test 

generator uses a camera without any further connection to 

the smartphone to detect possible testable elements. The test 

cases are generated by reusing and extending realistic test 

cases created by traditional test methods. The testing robot 

is a four-axis robotic arm also usable for tasks other than 

testing. The robot was built by using inexpensive 

commodity hardware. 

For testing the UI of Android Applications on a device or an 

emulator with digital input (i.e. by simulating clicks on the 

device screen) there is a toolset called GUIRipper which 

uses the Android ripper technique [17, 18]. This tool and 

technique enable autonomous testing of GUIs by reading all 

elements and creating an ordered hierarchy of all elements. 

By comparing the old state of a GUI to the state after an 

event was fired (e.g. a button was clicked) possible 

interactions are found and put into a task-list. This task-lists 

is updated with every new event while exploring the 

application simultaneously and iteratively. The 

implementation introduced in this paper uses a similar 

approach for iterating over the application. 

IV. TOOLS USED 

A. Franka Emika Panda 7-DOF Robotic Arm 

Robotic arms show higher flexibility for testing mobile 

applications in closed space than for example Tappy. The 

human arm has 7-DOF [19]. Robotic arms with 7-DOF 

define the minimum to reproduce the human motion scope. 

It is still recommended to use more than 7-DOF for natural 

looking, humanlike movements [20]. This is due to their 

motor-powered joints instead of muscles [21]. For the 

implementation in this paper the robotic arm Panda from 

the company Franka Emika (shown in Fig 3 on the left) was 

used. This industrial robot offers a path deviation of around 

0.1 mm which makes it possible to reach elements on a 

mobile device with a high accuracy and low deviation 

between test executions and thus high repeatability. This 

accuracy makes it possible to reach even tiny UI elements 

which would be difficult to reach consistently even for 

humans. Through its sufficiently large workspace and 

humanlike motion abilities, the arm is capable of testing 

mobiles devices without further preparations [22]. It can be 

adapted for a multitude of different use cases without 

needing a new robot or toolset. The robotic arm uses a 

parallel gripper as an end effector which allows the use of a 

capacitive pen for touching the mobile device. By utilizing 

the standard gripper and a capacitive pen, no additional 

retooling is required, and the robot remains flexible. Due to 

the panda’s high force sensibility it is possible to detect if a 

touch on the DUT-surface was strong enough for a 

successful interaction. The Panda is a collaborative robot 

with many sensors for working with humans without the 

need for fences or additional security measurements. 

B. Communication with the robotic arm 

The robotic arm communicates over TCP/IP. It can connect 

with the robotic operating system (ROS). ROS is a software 

framework for robots. One of the main goals of ROS is to 

achieve a basic toolset that can be abstracted to different 

tasks [23]. It offers standard capabilities a robot could need 

in a modular and open fashion. With ROS it is possible to 

communicate with different systems or sensors on different 

hardware. The capsulated architecture of ROS allows every 

function to run as a node on its own system and if one 

system is substituted for another (e.g. another robotic arm) it 

requires less adaptions to achieve the same goal. Each node 

can communicate with other nodes via ordered message 

exchanges. Messages are defined and use an agreed upon 

format. One tool ROS offers is MoveIt!. MoveIt! presents 

the ability to convert a position in cartesian space (i.e. x-, y-, 

z-axis) to suitable joint angles. This allows sending a 

position in the real world, the end effector should move to. 

MoveIt! uses different inverse kinematic calculations to 

reach this point [24]. It can be adapted to different robotic 

arms with different joint counts. 



C. Extracting the GUI 

The different elements on a DUT GUI are extracted by 

utilizing the ADB-Bridge with a tool called UIAutomator 

and a python wrapper for it [25, 26]. By reading the UI-

elements (visible and invisible on the DUT screen) this tool 

generates a hierarchy of the GUI and writes it in an XML 

file. The created XML allows easy iteration through the 

different surface elements with additional information about 

the elements (e.g. “clickable”, “scrollable” or “focused”). 

By iterating through the elements, it is possible to build a 

tree structure of an application and follow its activities. The 

use of a tree structure enables using tested algorithms such 

as depth-first search or breadth-first search to visit the 

different nodes (i.e. elements and activities of an 

application). This method is only able to import applications 

written in native Android. Non-native applications will not 

output any elements on the GUI. UIAutomator also allows 

the simulation of different User Interactions (e.g. Clicks, 

scrolls and swipes) on a DUT. With this feature the testing 

sequence algorithm was tested without the need to execute 

every test on the robotic arm. Furthermore, it can take 

screenshots of the DUT. Since UIAutomator only uses the 

Android debug bridge, it can execute black-box tests. 

D. Test Application 

To test the implementation, a simple Android application 

was created. In addition, several activities were written to 

simulate a typical Android application. An activity is an in 

itself completed set of functions that creates a window 

where different UI elements can reside [27]. Jumping 

between is possible through interaction with screen 

elements. The activities in the test application exist with 

different objectives. Each activity implements some typical 

elements Android uses, such as lists, sidebars, input fields, 

buttons and touch sensitive items. From the main activity 

different subcategories and activities can be opened. The 

applications elements were chosen because Android studio 

recommends them as the most commonly used elements. 

V. IMPLEMENTATION 

The proposed implementation of an application testing 

follows several (predefined) steps. It starts with the teach-in 

phase, during which the robotic arm has to be set up to 

interact with the DUT. In the second phase (UI-reading-

phase) the display content of the DUT must be read. During 

the third phase (selection-phase) relevant, testable elements 

are to be found and added to a stack. In order to perform the 

test an efficient test sequence has to be calculated in the 

fourth phase (test-phase) and finally executed in the last 

fifth phase (execution-phase). 

 
Figure 2 Components in the prototype 

Fig. 2 shows a simplified version of the components 

relevant to the task at hand. The left block implements all 

modules necessary for controlling the robot. It uses modules 

created by the robot manufacturer. They are accessible over 

standard ROS topics. It also shows the usage of MoveIt! for 

calculating the inverse kinematic. Because of this modular 

architecture, the methods of this paper can be applied to any 

other robotic arm connected with ROS. The 

“smartphone_connect_node” can interact over ROS topics 

with other ROS controlled robotic arms and communicates 

over ROS topics with the “Android_test_software”. 

To test and interact with the DUT, a teach-in must be done 

in the teach-in. This is because the robot does not have any 

information about the location of the DUT, nor (more 

importantly) the elements on the device screen in particular. 

With this teach-in, the robot must be calibrated to know the 

exact positions, every time a new device is introduced to the 

robotic arm. The teach-in is also implemented in the 

“smartphone_connect_node” and it is called over typical 

ROS service requests. Whereas the robot exists in a three-

dimensional world, the DUT screen localizes its elements in 

a two-dimensional space. This is shown in Fig. 3 on the left 

picture. The left coordinate system denotes the robot world 

coordinates and the right one shows the DUT coordinates. 

There are various methods for adapting a robot system to a 

DUT, for example the method used by Tappy [16]. It 

requires an application to run on the DUT while the DUT 

must be placed at a specific point in front of the robot. Then 

the robot tests different points on the application and aligns 

itself according to the feedback it gets (i.e. which position 

on the screen translates to which robot end effector 

position).  



 
Figure 3 the robotic arm with the DUT in front and their coordinate 

systems. Right: A DUT with the initial teach-in points the robot learns 

The teach-in proposed in this paper consists of leading the 

robot with a capacitive pen as its end effector to three 

different points (p1, p2 and p3) on the DUT screen shown in 

Fig. 3. Because the points consist of the left upper, right 

upper, and right lower position of the screen, they can be 

used to calculate the width and height of the DUT after 

saving them and applying the Pythagoras’ theorem. This 

ensures that a device can even be in an inclined position. 

The robot is also shown the position of the “back” button of 

a device because they can vary among devices. The exact 

position of a GUI element is given over the ADB-interface 

in pixel coordinates for the left, right, upper, and lower side 

of an element. This can be transferred to the robot’s world 

space in meters by calculating the center of an element. By 

utilizing the framework MoveIt! to calculate the inverse 

kinematic between the touch point and the robotic arm 

joints, it is possible to send Cartesian coordinates indicating 

the position on the DUT the robot should touch. This 

method does not require any additional software to run on 

the DUT and is easy to implement. It is also independent 

from display sizes or other screen characteristics. 

 
Figure 4 Sequence to build the test tree 

The UI-reading-phase, selection-phase and testing-phase 

are done by the “Android_test_software” in the lower right 

corner of Fig. 2 and are completely autonomous. This node 

calculates the test sequence shown in Fig. 4. To start the 

sequence, the GUI is extracted as described in Paragraph C. 

The used method is based on a few principles shown by 

most Android applications [28]. Many elements of the type 

button lead to new activities. To go back one step in the 

activity hierarchy, the back button of the DUT is used. 

Elements other than buttons often create a new state in the 

same activity instead of leading to a new activity. On this 

basis, the average flow through an application can be 

described as an acyclic graph where each button leads to a 

new node. A tree is a special kind of acyclic, connected 

graph. Every node can be accessed from the trees root and 

there are no cycles inside. This ensures that the robot does 

not end up in a loop. It is not possible to connect activities 

that are not in a parent-child relationship, which is not 

necessary, because every activity can still be accessed from 

its parent. With every touched element (by the robotic arm), 

the application either opens a new activity with an entirely 

new GUI or new elements appear. The created prototype 

only registers buttons on the screen, but it would require 

little additional work to expand its capabilities to gather 

different elements. The robot can simulate swipes as well. 

The gathered hierarchy is scanned for new unvisited nodes 

(e.g. new buttons which were not touched before) and adds 

them to a tree. If there are no more unvisited nodes, the 

whole application has been tested and the test is concluded. 

If new elements are found, they are added to the current 

node and the next unvisited node is tested. If the current 

layer in the tree has no unvisited nodes, the back button is 

pushed until the application is in an activity with unvisited 

nodes. This is repeated until there are no untested elements. 

To test all saved tree nodes (i.e. activities) and 

simultaneously discover new ones, a search algorithm based 

on tree search algorithms is used. This is shown by the 

example test application in Fig. 5. Two algorithms are 

possible to search through a tree. Depth-first and breadth-

first. Since not all nodes are known at the beginning of the 

search, a mixture between the two algorithms was chosen. 

Compared to depth-first, breadth-first is not complete for 

traversing a finite graph without testing for cycles. For finite 

graphs breadth-first is complete compared to depth-first, 

which (if not tested for cycles) is not. This ensures every 

node is found. To save time by not going back too many 

times, all buttons in an opened activity are tested first, 

before going back. In Fig. 5, the step in which a node was 

found is annotated in red and the step in which it as tested is 

blue. 



 
Figure 5 Example algorithm testing the Test application 

After each test step a screenshot is taken, and a visual cyclic 

graph is generated to document the test procedure. This 

makes it possible to retrace which element leads to a 

program error or unexpected behavior. Additionally, the full 

tree is saved as a graph to follow the test sequence. 

VI. DISCUSSION 

The proposed approach is suited for automated testing of 

mobile applications by using a robotic arm with minimal 

human supervision and interaction during tests. This 

approach offers several advantages over other test methods 

for mobile applications. The initial resources and expenses 

needed to run the testing of mobile applications with a 

robotic arm contain higher acquisition costs, however the 

long-term variable costs (e.g. labor) are lower compared to 

other methods. After the robot has learned how to handle a 

specific DUT it is able to test any (written in native 

Android) application it receives. In contrast to cloud based 

autonomous testing tools (e.g. Firebase Cloud Testing) the 

method can only test one application and DUT at a time but 

compared to manual testing the robot can test an application 

in a consistent and tireless manner. It is also able to test a 

multitude of different devices of different shapes without 

changing the hardware. A large part of the software costs 

are labor costs for developers and test users. If the costs and 

work required for tests can be lowered, the developers are 

free to do the more creative software developing work than 

testing. Additionally, specially trained labor necessary for 

e.g. espresso tests, can be avoided. Using the robot can also 

enable testing scenarios that were not possible before (e.g. 

in hazardous environments) or which required additional 

arrangements. Furthermore, the tests are also more realistic 

compared to digital testing scenarios. Whereas other testing 

methods might offer more additional information why an 

application crashed, the information given by the proposed 

prototype should give a developer enough information to 

retrace the steps that lead to it, reproduce it and rectify it. In 

addition, it does not rely on code access to give this 

information, unlike other methods. 

VII. FUTURE WORK 

Using an industrial robotic arm when testing mobile 
applications, offers the opportunity to access known and 

tested robotic functions via ROS. Additionally, it allows 

for readjustment of the testing environment for different 

DUTs without much additional work. The tests executed are 

carried out under highly realistic circumstances, as opposed 

to merely digital tests, and can be carried out with various 

environmental requirements. 

Future work could implement the exploration strategy of the 

GUIRipper tool [17, 18] for further capabilities. This would 

also allow tests to search for additional UI elements and 

objects. Whereas other papers looked at using deep learning 

to gain a higher understanding of the GUI [29] we plan to 

implement a solution based on reinforcement learning [30]. 

A software agent should achieve “curiosity” about an 

application and try to see all possible actions and screens 

[31]. With further development, it should also be possible to 

process already written espresso tests on the robot. It is also 

planned to use a robotic arm for testing traditional software 

running on a computer with a touch screen. 
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