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Abstract

Recently, remarkable progress was made in the understanding of how fully-differential next-
to-next-to-leading order (NNLO) computations in perturbative Quantum Chromodynamics
(QCD) for hadron collider processes can be performed. This progress includes development
of promising subtraction schemes that allow us to treat infrared and collinear singularities
efficiently. As the result of these developments, many phenomenologically important processes
at hadron colliders have been computed with NNLO QCD accuracy. However, despite this
progress, the search for the optimal subtraction scheme continues. In this thesis we discuss the
recently proposed nested soft-collinear subtraction scheme and apply it to the description of
deep inelastic scattering of an electron on a proton. Our results provide an important building
block that will allow for description of more complex processes at hadronic colliders in a fully
differential manner, using the nested soft-collinear subtraction scheme.
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1. Introduction

The Standard Model of particle physics (SM) describes all known elementary particles and
their interactions [1-3], except for the very weak force of gravity. Although predictions of
the Standard Model are in good agreement with experimental observations, there are strong
indications that physics beyond the Standard Model should exist. They include the existence of
dark matter and dark energy, as well as the observed matter-anti-matter asymmetry. None of
these phenomena can be explained with the Standard Model of particle physics. Since, contrary
to earlier expectations, searches at the Large Hadron Collider (LHC) did not find any evidence
for physics beyond the Standard Model, the current situation in particle physics is extremely
puzzling and intriguing.

Since substantial further increase in the energy of colliding particles at the LHC and elsewhere
is currently not feasible, in the next decade the focus of collider experiments will move towards
higher experimental precision. This will allow us to refine existing measurements of the many
SM parameters and to scrutinize Standard Model phenomena at the highest accessible energies
[4]. To be able to use upcoming experimental measurements to stress-test the Standard Model
and to search for New Physics, reliable theoretical predictions for hadron collider processes
are needed. Precision of a few percent may be achieved if theoretical predictions include
next-to-next-to-leading order (NNLO) corrections in perturbative Quantum Chromodynamics
(QCD). However, calculations at this perturbative order are non-trivial and many challenges
need to be addressed; they range from difficulties in computing two-loop amplitudes with
several mass scales to an efficient treatment of real radiation to more conceptual issues such
as a better understanding of non-perturbative effects in hard-scattering processes in hadron
collisions.

Fully-differential computations allow for a comprehensive comparison of theory and experi-
ment because rich physics information can be extracted from kinematic distributions rather
than from fully inclusive observables. However, fully-differential descriptions of LHC pro-
cesses are difficult since QCD amplitudes that describe real radiation possess infrared and
collinear singularities that need to be treated with the utmost care. The goal of this thesis is to
contribute to the developments of theoretical methods that will enable fully-differential NNLO
QCD calculations.

From this perspective, the emerging understanding of how to treat infrared and collinear
singularities in NNLO QCD computations without integrating over resolved phase space of
final state particles, the so-called subtraction and slicing methods, is one of the most important
recent advances in perturbative QCD and indeed in collider physics [5-20]. Thanks to these

developments, many interesting processes at hadron colliders have been computed through
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NNLO QCD precision [21-35]. However, existing methods typically obscure the physical origin
of the singularities, and, as a result, their analytic structures and numerical implementations
are complex and inefficient. For this reason, the search for the optimal subtraction scheme
continues.

The recently proposed nested soft-collinear subtraction scheme [36], which we discuss in this
thesis, possesses many features of a would-be optimal scheme. For example it is physically
transparent, analytic, fully local, numerically efficient and highly modular.!

We use this modularity to first study subtractions for simpler processes and use the ob-
tained results as building blocks for the more complex ones. Three basic processes need to
be considered to obtain a complete set of building blocks sufficient for the application of
the nested soft-collinear subtraction scheme to any process at hadron colliders with massless
colour-charged particles. They are (i) production and decay of a colour-singlet particle; and (ii)
a process with one colour-charged particle in the initial and one in the final state.

The nested soft-collinear subtraction scheme has so far been used to describe production and
decay of vector bosons and Higgs boson [37,38] through NNLO QCD. In addition it was applied
to deep-inelastic scattering of a proton on an electron [39]. The latter is the simplest process
with colour-charged partons in the initial and final states. We note that, since partonic cross
sections of these simple processes are known analytically, the subtraction formulas derived
in the context of the soft-collinear subtraction scheme can be tested to a very high precision.
Passing such test is an important prerequisite for applying them in a more general context.

The goal of this thesis is to discuss the application of the nested soft-collinear subtraction
scheme to deep inelastic scattering process elaborating on Ref. [39]. We provide a detailed
description of the nested soft-collinear subtraction scheme, including a step-by-step derivation
of the subtraction terms in case of deep inelastic scattering. We hope that this thesis can serve
as a useful reference for learning about this subject. We provide a detailed guide through this

thesis in Chapter 2.

1A detailed discussion of these features is given in Section 3.5.



2. Organization of the thesis

In this chapter we briefly describe the organization of the thesis that may help to understand
connections between its different parts. We begin with a short discussion of precision physics
at hadron colliders in Chapter 3. In Chapter 4 we set up notations for the description of NNLO
QCD corrections to the DIS process. In Chapter 5 we present a computation of the NLO partonic
cross sections. We discuss quark-initiated contributions to the NNLO partonic cross section in
Chapter 6. Gluon-initiated contributions to the NNLO partonic cross section with additional
quark final-states are discussed in Chapter 7. We discuss numerical implementation of formulas
in Chapter 8. In Chapter 9 we present analytic and numeric results. We conclude in Chapter 10.
Many formulas are collected in appendices. Below we summarize parts of the thesis where

information on specific topics can be found.

Nested soft-collinear subtractions

To understand the main idea of the nested-soft collinear subtraction scheme we recommend
to read the LO and NLO discussions in Sections 4 and 5, respectively. The NNLO extension
is discussed in Chapter 6. Appendix B contains description of operators that appear in the
discussion of subtraction terms.

Partonic channels

In Table 2.1 we present all partonic processes that contribute to DIS through NNLO QCD and
point to parts of the thesis where they are discussed. The quark-initiated process q + e~ —
e~ +q+ g+ g is described in detail. Notation is set up in the introduction to Chapter 6.
Subtraction terms are constructed in Section 6.1. Computation of counter terms is discussed in
Sections 6.2 to 6.4. In particular, we discuss emissions of one or two soft gluons in Section 6.2;
emissions collinear to partons in the initial-state in Section 6.3.1; emissions collinear to final-
state partons in Section 6.3.2 and the emission of two partons that are collinear to each other in
Section 6.3.3. Finally, subtraction terms for two partons that are emitted collinear to the same
or to two different final-state parton(s) are discussed in Section 6.4.

We discuss gluon-initiated processes in Chapter 7, see Table 2.1 for more details. Since analytic
computations are largely analogous to the quark-initiated processes we confine ourselves to

showing results of the calculations but we do not go into details.
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Contributing processes to DIS through NNLO QCD

channel tree-level ~ one-loop  two-loop

g+e —e +gq Chapter 4 Section 5.3 Section 6.6

gt+e —e +q+g
gt+e —e +q+4g
g+e —e +q+g+g  Chapter6 — —
g+e —e +q+q +3 Section6.7 — —
gt+e —e +qg+4+g  Chapter7 — —

Chapter 5 Section 6.5 —
Section 5.5 Section 7.4 —

Tab. 2.1.: In this table we list all partonic processes that contribute to DIS through NNLO QCD
and point to places in this thesis where they are discussed. Note that anti-quark-initiated
channels are not present in the table, since their computation is identical to the quark-initiated
processes.

Functions describing differential cross sections

function definition details
Fwm(14,4y) Eq. (4.5) Chapter 4
Fy(14,4y) Eq. (5.54) Section 5.3
Fyv(14,44) Eq. (6.203) Section 6.6
Fm (14,44 55) Eq. (5.4) Chapter 5
Finmg (1g,44 1 5) Eq. (5.78) Section 5.5
Fiv (14,441 5¢) Eq. (6.185) Section 6.5
Fivg (1,44 |54) Eq. (7.32) Section 7.4
Fim (14,44 | 5, 64) Eq. (6.4) Chapter 6
F3t(14,44,54,64) Eq. (6.220) Section 6.7

Fimins (19,44 154,6,) Eq. (6.222) Section 6.7 and 6.7.1
Fovgs (111/ 4, | 54, 6q) Eq. (6.229) Section 6.7 and 6.7.2
Fimg (1,44 | 54, 65) Eq. (7.5) Chapter 7

Tab. 2.2.: In this table we point to parts of this thesis where various functions that describe
differential cross sections are discussed and defined.

Hard matrix elements/cross sections

Throughout this thesis, we use the various functions Fv, Fim,g, Frv etc. to describe partonic
cross sections. In Table 2.2 we point to parts of the thesis where these functions are defined.



Analytic results for subtraction terms

We present finite remainders of the subtraction terms in Chapter 9, Sections 9.1 to 9.3. To
understand them it is useful to read the NLO discussion in Chapter 5. In Tab. 2.2 we show
where definitions and discussions of the many different functions that contain the matrix

elements squared can be found.

Numerical implementation

We describe the numerical implementation of the subtraction scheme in Chapter 8. Required
limits can be found in Appendix B. Discussion of the phase space parametrization is provided
in Appendix F. To get familiar with notations used to describe partonic cross sections it is also

advisable to read the beginning of Chapter 6.






3. Hard processes in hadron collisions and
perturbative QCD

Man-made particle collisions with the highest energy currently occur at the Large Hadron
Collider (LHC) at CERN. The overarching goal of the LHC is to discover physics beyond
the Standard Model. Unfortunately, no new particles or interactions have been observed
at the LHC so far. Since existing measurements can only rule out new particles as long as
their masses are significantly smaller than the LHC center-of-mass energy of 13 TeV, such
non-observation of new particles does not prove that they do not exist but only that they are
heavy. However, although such heavy particles can not be produced directly at the LHC, they
can affect physics there, if they are created but disappear back into a quantum vacuum in a
short time interval. Such effects are small and observing them requires high precision, both in
experimental measurements and in theoretical predictions. In general, high precision allows us
to refine existing measurements of SM parameter and to explore ones that are currently beyond
reach, especially properties of the recently discovered Higgs boson [40].

Achieving high precision on the theory side is complicated by the fact that hadrons are
composite particles made of partons bound by the poorly understood non-perturbative strong
force. Since, so far, it is not possible to fully describe properties of even a single proton from first
principles, it is not obvious that a first-principles description of hadron collisions is possible.

To understand why this actually works, we note that hadrons colliding at high energies
interact in various ways. Most of the time, such interactions happen through an elastic scattering
processes where both hadrons stay intact, or processes of diffractive dissociation where one
or both hadrons disintegrate into a small number of hadrons. However, with a much lower
probability, individual partons in the colliding hadrons can get close to each other and interact
by exchanging a large momentum, see Fig. 3.1. These rare processes are referred to as hard
scattering processes and they are of great interest to modern particle physics. This is so because,
thanks to a large momentum transfer and the phenomenon of asymptotic freedom, such
processes can be accurately described in perturbative Quantum Chromodynamics (QCD) and
because new heavy particles can be produced in such processes. A combination of these facts
makes a detailed exploration of hard processes an excellent way to search for New Physics at
the LHC.
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final-state parton

proton, P; v

final-state radiation

scattering

proton, P

A
final-states

¥

Fig. 3.1.: Schematic picture of a high-energy collision of two protons with momenta P;—; ». Because of
short-distances and asymptotic freedom, scattering partons with momenta fractions x1P; and x P,
can be assumed to be free and there interaction (hard scattering) can be computed in perturbative
QCD. Initial- and final state radiation needs to be included beyond LO. Underlying events of the
proton remnants are shown in the background.

3.1. Hadronic cross sections

The foundation of theoretical predictions for hard scattering processes at hadron colliders is the
factorization theorem [41]. It states that, up to power-suppressed terms, hadronic cross sections

are described by the following formula [41]

doy —Z/ldx dxa fi(x1) fi(x2) do7i(x1, x2) {1+O<AQCD>} 3.1)
H—ijO 1 GA2 JikA1)Jj A2 ijA\A1, A2 Q . .

In Eq. (3.1) f; are the so-called parton distribution functions and dd;; are partonic cross sections
that describe scattering of a parton i on a parton j. Parton distribution functions are non-
perturbative and process-independent. For this reason, they can be extracted from a subset
of experimental data and used to describe any process from a complementary dataset. All
non-perturbative effects that go beyond the distribution functions are suppressed by powers
of Agcp/Q where Agep ~ 0.3 GeV is a non-perturbative QCD scale and Q 2 O(10GeV) is a
typical scale of a hard process.

The partonic cross sections dd;; in Eq. (3.1) can be computed in QCD perturbation theory.

Expanding dd;; in powers of the strong coupling constant a5, we write
doy; = o9 + dof® 4+ dof™* + O(a]) . (3.2)

In Eq. (3.2) contributions labeled with “lo” describe the leading order process, contributions
labeled with “nlo” provide O(as) corrections to d?fl.l]?’ and contributions labeled with “nnlo”
provide O(a?) corrections. Computations of d[Til]?’ and dff{}lo are well understood and largely



3.2. Infrared poles and their cancellation

q e~ q o=
q et q et
(a) (b)
q e~ q e~ q e~
q et q et q et
() (d) (e)

Fig. 3.2.: Examples for Feynman diagrams that contribute to the single-real (a), the single-virtual (b),
the double-virtual (c), the real-virtual (d) and the double-real (e) contribution to the NLO and NNLO
partonic cross section of the Drell-Yan process.

automated [42—48]. The goal of this thesis is to develop methods to compute d?f{}“lo at a fully
differential level.

3.2. Infrared poles and their cancellation

In order to compute higher-order perturbative contributions to the partonic cross section dd;;
that describes a process i 4+ j — X, we need to include both virtual loops corrections to this
process as well as inelastic processes i +j — X+ g,i+j — X + g+ g etc with additional
partons in the final state [49]. These two contributions are referred to as virtual and real
corrections, respectively. Although these corrections are not infrared finite separately, upon
combining them we obtain well-defined infrared-safe observables. Hence, we write the NLO
(NNLO) QCD contribution to a partonic cross section as

snlo _ 1A N A pdf snnlo 1A A N ~pdf
da{} 0= dog; + d(f{j + dO’ij , d(fl-‘]‘-“ 0= doy" + dafjv + d(rfjr + dal.]. , (3.3)
where dd, and ddy describe one-loop and two-loop virtual corrections to the hard process
i+j— X, dfrfj describes a process with one additional parton in the final state i +j — X + f

and do;” describes the one-loop correction to ddy;, do;;" describes a process with two additional
partons in the final state i +-j — X + f; + f> and dﬁf}df describes corrections to the partonic
cross section caused by the collinear renormalization of parton distribution functions. Using
the Drell-Yan process as an example, we show Feynman diagrams that contribute to the terms
on the right-hand sides of Egs. (3.3) in Fig. 3.2.1

The individual contributions on the right-hand side of Eq. (3.3) are not infrared-finite. Vir-
tual corrections, present in dd, and dd;y, contain explicit infrared and collinear poles in the

dimensional regularization parameter € = (d — 4)/2 [50] that are known to be independent of

IMore details on the collinear PDF renormalization can be found in Section 5.3 and Section 6.6.
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the hard matrix elements [51-55].

As an example consider a process q(p1) + §(p2) — X(px) where X is an arbitrary colour-
singlet state (Z, W=, 9, ZZ, WTW~™, vy, ZZZ, etc.). According to Refs. [51-53], the singular
structure of the UV-renormalized one-loop contribution to the cross section reads

* as(p) e 1 3
2%(Mtree : Ml—loop) (pl/ p2, PX) = —ZCF |: o 1_|(1_€):| |:€2 + 2€:|

(3.4)

29 - —€ )
cos(ree) (A7)t | Mums(p, o)+ 2R (M M) (1 ).

In Eq. (3.4) M0 op 18 an infrared-finite remainder of a one-loop amplitude. We note that,
in NNLO QCD computations also two-loop amplitudes are required. A formula similar to
Eq. (3.4) is also known for the two-loop case [54,55].

In contrast to explicit 1/ € poles present in virtual correction, real emission contributions doy
and dd;; contain kinematic singularities that become poles in 1/¢€ only upon integrating over
phase space of additional partons in the final state. However, we have to avoid such integration
to keep partonic cross sections fully-differential. Hence, we need to develop a method that
allows us to extract implicit 1/€ poles from the real emission contributions without integrating
over the resolved phase space.

We may hope to achieve that goal because in singular kinematic regions, responsible for
the appearance of infrared and collinear poles, real emissions are always unresolved. Such
kinematic configurations occur when a parton is emitted with vanishingly small energy (soft),
or when the angle between the parton and another parton approaches zero (collinear). These
unresolved real emissions develop singularities that produce 1/ € poles that cancel the 1/€ poles
of virtual contributions. Expressing this statement in a language of well-defined mathematical
formulas for the deep-inelastic scattering process at NNLO QCD, within the context of the
nested soft-collinear scheme, is the goal of this thesis.

3.3. Singularities of real-emission contributions

Singularities of QCD amplitudes are related to kinematic limits where virtual intermediate
particles become on-shell. In amplitudes with real emissions this can happen (i) when the
energy of emitted gluons vanishes (soft singularity); or (ii) when gluons or (anti-)quarks are
emitted in the direction of another parton (collinear singularity).

To illustrate this, consider a diagram that describes an emission of a gluon off an external

incoming quark line. Considering soft and collinear limits, we find

1 1
~ = —> o00. (3.5)
(p—k)> 2E,Ex(1—cos®) E 0
or
0 —0

10



3.3. Singularities of real-emission contributions

As stated above, the reason for this divergence is that a virtual quark with momentum (p — k)
in this diagram becomes on-shell (p — k)?> — 0, in the soft Ex — 0 and/or in the collinear
6 — 0 limits.

In these limits, any QCD amplitude factorizes into a universal function that becomes singular
in the limit and an amplitude of a lower multiplicity process [56]. To illustrate this statement,
consider the tree-level amplitude of the process q(p1) + §(p2) — X + g(k), where X is an
arbitrary colour-singlet state, in soft and collinear limits. In the soft limit, where the energy of
the gluon g(k) vanishes, the amplitude squared reads [57]

2 2 P1-p2 2
| Miree ({1, P2}, k)| E 50 2CF g5p % (p1- %) (p2 - K) X [Miree ({p1, p2})I”- (3.6)
In Eq. (3.6) Miree({p1, p2}) is the amplitude of the process q(p1) + §(p2) — X without an
additional gluon. As can be seen from the right-hand side of Eq. (3.6), soft singularities reside
in an eikonal function

. _ P1-p2
Eik({py, pa}, k) = — P P2 (3.7)
Wbl = G e )
The eikonal function Eq. (3.7) contains soft Ex — 0 and collinear, k || f; and k || 7, singularities.
As an example of a collinear singularity, we study the amplitude of the process g(p1) +
7(p2) — X 4 g(k) in the limit k || #;. The amplitude squared reads [57]

1 Mree zZ- ’ 2
Muepr, 2} KIP o 2y % =y (2) x (Ml PupaIE g
ki1 P1- z
where
_ E1—E
z = El 7 (3'9)

and the function Py,(z) is the so-called splitting function. It reads [57]

1+ 22
Pyy(z) = Cr 1=, e(l—z)|. (3.10)

The matrix element on the right-hand side in Eq. (3.8) still depends on the gluon energy through
the variable z, but this dependence is not singular. The collinear singularity resides in the
overall factor 1/ (py - k). Similarly to the soft case Eq. (3.6), collinear singularities are described
by universal process-independent splitting functions.?

In NNLO QCD computations we have to consider tree-level amplitudes for processes with
two additional partons compared to the Born process. Hence, in addition to the previously

discussed single-soft emission and double-collinear limits, we also need to consider cases when

ZNote that, collinear singularities described by Eq. (3.8) only depend on the four-momenta of the collinear gluon
g(k) and the collinear quark g(p1). Hence, the singular factor on the right-hand side of Eq. (3.8) is valid for an
arbitrary processes with any number of external partons.
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3. Hard processes in hadron collisions and perturbative QCD

two gluons become soft (the double-soft limit) or two partons become collinear to another
parton (the triple-collinear limit). It is well known [56] that also in these cases QCD amplitudes
factorize into universal functions and amplitudes of lower multiplicities.

As an example, consider a process q(p1) + §(p2) — X + g(k) + g(I), c.f. Fig. 3.2 (e). In the
double-soft limit, k — 0,1 — 0, k ~ I, we find?

[Muee({prp2b K DI o Bik({p1, p2} kD) < [Muee({p1, p2}) - (3.11)

Since the explicit formula for the double-soft eikonal function Eik({p1, p2},k, 1) in Eq. (3.11) is
fairly complicated, we do not show it here. For the case of deep-inelastic scattering, that we
need in this thesis, Eik({p1, p2}, k, 1) is given in Appendix B.2. However, we want to emphasize
that the double-soft limit Eq. (3.11) is structurally identical to the case of a single soft gluon
in Eq. (3.6) in that all singularities factorize from the hard matrix element in terms of the
double-soft eikonal function Eik({p1, p2},k,1).

In the triple-collinear k || I’ || 71 limit the amplitude squared reads [56]

|Mtree({p1/ Pz}, k/ l)|2

1 2
~ P ,k,l XMr z - 7 Vi
i (Gpr k= 12 Fasn (P ) Mtz propad)

(3.12)

where z = (E; — Ex — E;)/Eq and Pygq(p1,k, 1) is the splitting function that describes a collinear
splitting g — q* + ¢ + g. Again, similar to the double-collinear case Eq. (3.8), the amplitude
squared in Eq. (3.12) factorizes into a singular part and a regular part. Explicit formulas for
Pqqq and other triple-collinear splitting functions are given in Appendix E.2.*

Finally, NNLO QCD corrections require us to include one-loop amplitudes to processes that
contain an additional parton in the final state, c.f. Eq. (3.3). The singular behavior of real-virtual
amplitudes was studied in Refs. [58-60]. It is similar to the behavior of tree-level amplitudes
and we only show the soft limit as an example.® Considering the one-loop amplitude for the
process q(p1) + 4(p2) — X + g(k) in the soft Ex — 0 limit, we obtain [58-60]

2%(M?ree : Ml-loop) (PL P2, k)
~ 0 ZCF gg,b X (plpz X 28:E(Z\/I?ree ' Ml-loop) (PL 792)

Ex— Plk)(}?zk)
gg,b [ 1 (4n)¢ 1"5(1 _ €)r3(1 te)
_ ZCFCA ? 2 |:87[2 r(l — e):| |:1"2(1 _ 26)1—~<1 + 26) (313)
. 1+e€
" <m> X | Musee(p1, p2)”-

The squared amplitude in Eq. (3.13) contains two contributions. The first term on the right-hand

3For simplicity we do not show colour correlations in Eq. (3.11).

“We note that the arguments of the splitting function Pgeq in Appendix B.4 are slightly different and refer to
Eq. (B.21) for the relation between the different arguments.

5For collinear limits we refer to the discussion in Section 6.5.
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3.4. The subtraction method

side of Eq. (3.13) is proportional to the one-loop correction to the hard process and the same tree-
level eikonal function that appeared in the soft limit of a Born process q(p1) + 4(p2) = X+ g,
c.f. Eq. (3.6). The second term on the right-hand side is proportional to the tree-level amplitude
squared and the universal one-loop corrected eikonal function; note that this contribution is
purely non-abelian.

Singular limits of the amplitudes that we just discussed can be used to extract 1/¢ divergences
from real emission contributions without the need to integrate over resolved phase space. This

is done with the help of subtraction methods that we now discuss.

3.4. The subtraction method

Real emission QCD amplitudes possess soft and collinear singularities. These singularities
turn into poles in the dimensional regularization parameter € = (d — 4)/2 upon phase space
integration. To show this, we approximate integration over gluon momentum in the soft and

collinear limits and obtain

d 'k dE, de6 ]
/ niaE, MUPLRE ~ [ w1 gz < IMEPHE ~ 15 (3.14)
k

Ek%O
0 —0

We would like to extract 1/€ poles and to regulate singularities in real matrix elements without
integration over resolved phase space so that we can evaluate phase space integrals numerically
for any infrared safe observable. This can be achieved with the subtraction method.

To illustrate the basic idea of this method, we consider the integral

1
' 1
0

where F(x) is an arbitrary function regular at x = 0. The integrand in Eq. (3.15) diverges at the
lower integration boundary and the singularity is regulated by the parameter € leading to a
1/€ pole after integration. We want to extract this pole analytically and regulate the integral so
that we can safely take the limit e — 0.
To achieve this, we write F(x) = [F(x) — F(0)] + F(0), use this expression in the integral
Eq. (3.15) and find
/ 1 / 1
1= / dx = [F(x) = F(0)] + F(0) / dr (3.16)
0 0

In the second term on the right-hand side of Eq. (3.16) the function F decouples from the

13



3. Hard processes in hadron collisions and perturbative QCD
integral and we can integrate over x analytically. We obtain

dx
X

1
I— —éF(O) +/ [F(x) — F(0)] + O(e). (3.17)
0

It follows from Eq. (3.17) that we have succeeded in isolating the 1/¢€ pole in I and in regulating
its integrand. The remaining integral in the second term on the right-hand side of Eq. (3.17) is
finite and we have taken the € — 0limit. The integral in Eq. (3.17) can be computed numerically
for any function F(x).

3.5. An optimal subtraction scheme and nested soft-collinear

subtractions

Singular limits of NLO QCD amplitudes and methods to use them to obtain NLO QCD cross
section are well-known [42,43,61]. Moreover, all singular limits of QCD amplitudes required
for computing NNLO QCD corrections have been known for about 20 years. Yet, it took quite
some time before it was realized how to combine these NNLO limits and the ideas of NLO
FKS subtraction [42,43] to establish a valid subtraction scheme for NNLO computations. We
describe one of the reasons for such a delay below.

Absence of entangled soft-collinear limits

The discussion of singularities in Section 3.3 applies to soft radiation at large angles and hard
collinear radiation. But what happens if soft gluons also become collinear or collinear gluons
also become soft or one gluon is soft and one gluon is collinear? Do new limits appear in these
cases? Inspection of individual Feynman diagrams suggests that this is indeed the case. For

example, considering a diagram

ki ko
p g g 1 X 1 — (3.18)
p—Fki— ko 2p-k1+2p-k2—2k1-k2 Zp-kl ar ’ '
and
kz — 0

we observe that an entangled soft-collinear singularity develops if one gluon becomes soft
and the other becomes collinear. Such entangled soft-collinear limits of diagrams can not be
analyzed in a process-independent way. However, it appears that this is not necessary. Indeed,
individual Feynman diagrams are not physically quantities; they need to be combined into
gauge-invariant scattering amplitudes and for these it can be checked explicitly that such
entangled limits do not appear. It follows that remaining soft-collinear limits can be described
by taking the known soft and collinear limits sequentially.

14



3.5. An optimal subtraction scheme and nested soft-collinear subtractions

In Ref. [36] it was pointed out that this result is general thanks to the phenomenon known
as colour coherence. This phenomenon is widely used to extend collinear parton showers to
partially accommodate soft emissions. Colour coherence states that a soft parton does not
resolve angles of a collinear parton because it has a large wavelength. As a result the known soft
and collinear limits [56-60] are sufficient to describe and regulate all singularities in arbitrary

real-emission NNLO QCD scattering amplitudes.

The optimal subtraction scheme

Given the importance of fully-differential NNLO QCD computations for the LHC physics
program, many subtraction schemes that allow us to handle infrared and collinear singularities
have been proposed [5-12] and used to compute important processes with NNLO QCD accu-
racy [21-35]. In spite of this success, the current subtraction methods are not fully satisfactory.
In fact, upon reflection, it becomes clear that an optimal subtraction scheme should satisfy the

following criteria:

e it should be physically transparent in a sense that it must only deal with physical singularities
and there should be a clear mechanism of how different infrared poles cancel against
each other;

e differential cross sections should be regulated locally, which means that such cross section
can be evaluated at any resolved phase space point;

e infrared 1/€ poles should be known analytically to establish their cancellation;

¢ a subtraction scheme should be modular, so that subtractions for complex processes can
be built from subtractions derived for simpler processes;

e complex LHC processes require numerical integration over huge phase spaces. An efficient
numerical evaluation and a scalable implementation of the subtraction scheme is therefore

important;
e it should be applicable to all processes at the LHC.

Although none of the existing NNLO subtraction schemes satisfy all these criteria, this does
not appear to be a problem so far, since phenomenological applications mainly focused on
2 — land 2 — 2 processes. When considering more complicated 2 — 3 processes, the
singularity structures become more complicated, and this increase in complexity may result
in unfeasible computational times. The nested soft-collinear subtraction scheme which we
describe in this thesis is a step in the direction of a more physically transparent and efficient
subtraction method.

Nested soft-collinear subtractions

The so-called nested soft-collinear subtraction scheme was introduced in Ref. [36]. It is based on (i)
the fact that the soft and collinear limits are independent and can thus be treated separately (a
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3. Hard processes in hadron collisions and perturbative QCD

consequence of colour coherence), and, (ii) partitioning of radiative phase space into regions
with defined structure of collinear singularities [6]. It utilizes known universal infrared and
collinear limits of NNLO QCD amplitudes to both demonstrate the cancellation of infrared and
collinear 1/€ poles independent of the hard matrix element and to design analytic subtraction
terms. It is a analytic and local, and, when applied to simple processes, it was shown to be
efficient. Thus, it possesses many features of an optimal scheme discussed above. Although, in
principle, there is no obstacle to making it fully general, this has yet to be done.

A completely general formulation of the scheme for hadronic processes should allow NNLO
QCD calculations for a scattering process of 2 — n coloured partons. Such a general framework
can be constructed from simpler building blocks. Indeed, at NNLO QCD only two real partons
can become unresolved at once. Since collinear singularities factorize on external legs [56],
it is sufficient to study all possible triple-collinear initial- and final-state splittings for simple
processes. Soft singularities depend on momenta and colour charges of all external partons [56].
However, it is well known [56] that non-trivial contributions depend on the momenta of two
external partons at most. It is therefore useful to apply the subtraction scheme to simpler
processes with only two external partons. To cover all kinematic cases we need to study initial-
initial (colour-singlet production), final-final (colour-singlet decay), and initial-final (DIS-like)
configurations. The results of such studies can then be used as building blocks to construct
subtractions for more complicated hadron collider processes.

We note that since (inclusive) partonic cross sections of simple 2 — 1 (colour-singlet pro-
duction), 1 — 2 (colour-singlet decay) and DIS processes are known analytically [62-66],
subtraction formulas derived in the context of the soft-collinear subtraction scheme for these
processes can be thoroughly tested. Passing such a test is an important prerequisite for applying
obtained results to more complicated processes.

These tests were done for the production and decay of a Higgs boson and a vector boson
in Refs. [37,38]. This thesis describes the application of the nested soft-collinear subtraction

scheme to deep inelastic scattering of an electron on a proton [39].
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4. Deep inelastic scattering

In the remainder of this thesis we focus on deep inelastic scattering (DIS) of an electron on a
proton, see Fig. 4.1. The goal is to study the application of the nested soft-collinear subtraction
scheme to a processes that contains colour charged particles in the initial and final states. To

this end, we consider the hadronic process

p(P1) +e (p2) — e (p3) + X(Px)-. (4.1)

As discussed in Section 3.3, singular limits of QCD amplitudes are independent of hard matrix
elements. Hence, to determine generic subtraction terms for DIS-like processes, it is sufficient
to consider a process in Eq. (4.1) mediated by a t-channel photon exchange.

The differential cross section for the process in Eq. (4.1) is described by a convolution of

partonic differential cross sections with parton distribution functions. We write

1
doy = Y / dx fi(x) déy(x), 4.2)
Lo

where f; are parton distribution functions and dd; are partonic cross sections that describe a
photon-mediated scattering of a parton i on an electron.

The partonic cross sections can be computed in perturbative QCD. We expand dd; in powers
of the strong coupling constant s and write the partonic cross sections as

do; = dol® + do™e + dome 4 O(al). (4.3)

1

In this chapter we discuss the leading order (LO) contribution d(AT}O to the differential partonic

}X7PX

€ P2 > \
€

D3

Fig. 4.1.: Schematic illustration of deep inelastic scattering of a proton on an electron that is mediated
by a photon. The proton scatters into a number of hadronic jets X with accumulated momentum Px
while the electron stays intact.
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4. Deep inelastic scattering

q > > q q < < q

Fig. 4.2.: Feynman diagrams that contribute to the amplitudes of partonic quark-electron scattering
process (left) and anti-quark-electron scattering process (right) at LO QCD.

cross section Eq. (4.3). We study next-to-leading order (NLO) contribution d?finlo in Chapter 5
and next-to-next-to-leading order (NNLO) contribution d?fimlo in Chapters 6 and 7.

At leading order in &, both quark-initiated process g4 + e~ — e~ 4 q and anti-quark-initiated
process § +e~ — e~ + g contribute, see Fig. 4.2. All computations for quark-initiated and
anti-quark-initiated processes are identical and we only consider the quark-initiated process
qg(p1) +e (p2) = e (p3) + g(ps) in what follows.

We write the cross section of the quark-electron scattering process as

2501, = [ Fow(ly4) = (Fin (15.4), (4.4)
where
Fim(1g,49) = N [dps][dpa) (270)%6'Y) (p1 + p2 — p3 — pa) ws)
X [Mg (1, p2, p3, pa) > < O(ps, pa),
and
[dpi] = (25);1@5 0(Emax — Ei), (4.6)

is the phase-space volume element of the parton i. We do not show the dependence on the
electron momentum in Fi . The quantity Emay is a sufficiently large but otherwise arbitrary!
dimensionful parameter that provides an upper bound on energies of individual partons; its
role will become clear later. The factor AV in Eq. (4.5) includes all the relevant symmetry factors,
M is the matrix element described by the left-most Feynman diagrams in Fig. 4.2 and O is an
arbitrary infrared-safe observable. The notation (Finm(1,4)), indicates that the corresponding
cross section is fully-differential with respect to partonic momenta that appear as arguments of
the function F .

1 More specifically, Emax should be greater than or equal to the maximal energy that a final state parton can have
according to the momentum conservation constraint.
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5. The NLO computation

We turn to a discussion of how to compute the infrared-finite partonic differential DIS cross
section at NLO QCD using the nested soft-collinear subtraction scheme. We note that at this
order in the perturbative expansion, the procedure is equivalent to the FKS subtraction scheme
[42,43]. Nevertheless, it is worth discussing it since many concepts and notation necessary
for the NNLO computation can be illustrated and discussed already at NLO. Moreover, also
in NNLO computations we have to deal with NLO amplitudes and their singularities so that
understanding them is important.

At NLO, we obtain an infrared-finite partonic cross section by combining three contributions

doy, = doy + doy + d@'pdf . (5.1)

In Eq. (5.1) d&y describes the one-loop correction to a Born process, dd; describes the process
with an additional parton in the final state and dd,4¢ originates from the collinear renormaliza-
tion of parton distribution functions. At NLO both the quark-initiated and the gluon-initiated
channels contribute.

We begin with the discussion of the quark-initiated channel and first focus on the real

emission contribution!

q(p1) +e (p2) — e (p3) +q(ps) + 8(ps).- (5.2)
The relevant Feynman diagrams are shown in Fig. 5.1. In analogy to Eq. (4.4) we define?
25-dov = [[dps] Fun (14 150) = (Fin (10,4 150) ), (53)
where

Fim(1g,44(5¢) = N/[dPS] [dpa] 2m)?6D (p1+ pa — p3 — pa — ps)

X | MU (p1, p2, p3, pas ps)|> % O(p3, pa, ps) -

(5.4)

Phase-space volume elements [dp;_3 4 5] are given in Eq. (4.6). The factor AV in Eq. (5.4) includes
all the relevant symmetry factors, M® is the matrix element described by Feynman diagrams

IComputations for quark and anti-quark initiated processes are identical and we focus on the quark-initiated case.

2For simplicity we only show the momenta labels in function Fy . For the very same reason we do not show the
momenta labels of the electrons in function Fjj since they are not relevant for our discussion. Moreover we
further simplify the notation during the discussion of the quark channel by not writing the subscripts defining
the parton type. The bar in the argument of function F (- | -) separates momenta of partonic emissions that
develop singularities and momenta from partons present in the hard process.
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5. The NLO computation

=)
000000 Q
V00000
<

> q q

Fig. 5.1.: Feynman diagrams describing the single-real emission contribution to the quark initiated
channel q(p1) + e (p2) — q(p3) +e (pa) + g(ps) of deep-inelastic scattering in the NLO QCD
computation.

shown in Fig. 5.1 and O is an arbitrary infrared safe observable. Similar to the LO case,
the notation (Fim(1,4|5)), indicates that the corresponding cross section is fully-differential
with respect to partonic momenta that are shown as arguments of the function F . We will
proceed with the discussion of how infrared and collinear singularities can be extracted from
the function Frp(1,4 | 5) without integration over resolved phase space. This construction will

provide subtraction terms for the real emission process.

5.1. Subtractions

To obtain the subtraction terms, we perform the iterative subtraction of soft and collinear
singularities. We note that, since both singularities, soft and collinear, factorize in either the soft
or a collinear limit, we can chose the order in which we regulate them. We begin by regulating
soft singularities and introduce an operator Ss that extracts the leading Es — 0 singularity by

acting on the function F(1,415). Its action is defined as

Sa Fu(1,4]5) = S5 (A7 [ [dpallap

tree

x (2)* 6D (p1 + py — p3 — pa — p5) O(p3, pa, p5) | M (p1, P2, P3, Pas P5)|2> 655
=N / [dps][dpa] (27)*6@ (p1+ p2 — ps — ps) O(ps, pa)

i 3 2 tree 2
X E% Eglglo [E5 ‘Mnlo (Pll P2, P3, P4, P5)| ] .

As we discussed earlier, in the soft limit singularities factorize from the leading-order matrix
element. For the NLO QCD DIS matrix element squared we obtain [41]

E_]',iglo |:E52, | MR (p1, P2, P3, Pas P5) |2}

P1 - Pa
(p1-ps)(pa-ps

2
Es (5.6)

X | M€ (p1, p2, p3, pa) P
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5.1. Subtractions

where g, is the bare QCD coupling and Cr = 4/3 is the colour factor. Mj*® is the leading
order amplitude introduced in Eq. (4.5). Inserting the limit Eq. (5.6) into Eq. (5.5) we obtain

P1 - P4
Ss Fiam(1,45) = 2Cr ¢, X x Fm(1,4), (5.7)
419) 8507 (o1 ps)(pa - ps)
where Fp(1,4) is the leading order differential cross section defined in Eq. (4.5).
According to Eq. (5.5) soft gluons factorize from the matrix element, the infrared safe observ-
able and the energy-momentum conserving é-function. To extract the soft singularity, we insert

the identity operator I = [I — Ss| 4 Ss into the phase space and obtain

(Fim(1,415)) = ([I—Ss|Fim(1,415)) + (SsFim(1,4(5)) . (5.8)

In the first term on the right-hand side of Eq. (5.8) the soft singularity is regulated. In the second
term on the right-hand side (subtraction term) we only need the function Fz(1,4|5) in the
soft limit Eq. (5.7). Since the soft gluon completely decouples from the hard process, we can
analytically integrate over the phase space of the emitted gluons and compute the 1/€ poles
independent of the hard process. Note that, since the energy of the soft gluon is not bounded by
energy conservation anymore, integration over E5 extends up to Emax introduced in Eq. (4.6).
Since the left-hand side of Eq. (5.8) is Emax-independent, the explicit Eyax-dependence in the
analytic subtraction term needs to cancel with an implicit dependence on Enayx in the regulated
term through the definition of the phase space; independence of the full result on Epax provides
a useful check on the implementation of the subtraction scheme.

The soft-regulated term in Eq. (5.8) contains unregulated collinear singularities. We will now
discuss how to regularize them. In the collinear limits, two different singular configurations
exist if Ps || P1 or Ps || Pa. We would like to deal with one collinear singularity at a time. To this

end we introduce partition functions
1 =w’ +w*. (5.9)

The explicit form of the partition functions w> in Eq. (5.9) is not relevant as long as they possess
the following property

Csiw” =6, for i,je{1,4}, (5.10)

where Cs; are collinear operators that extract leading singularities in the collinear limits ps || p1
and Ps || Pa, respectively. These operators are introduced in analogy to the soft operator
S5 in Eq. (5.5).> The property Eq. (5.10) ensures that partition functions vanish in certain
collinear limits and, therefore, cancel corresponding singularities. For instance the product

w>'FMm(1,4]5) is finite in the collinear Ps || 74 limit. A possible choice of the partition functions

3Explicit formulas for the action of Cs;, with i € {1,4}, on Fy) are given in the analytic computation in Section 5.2
and in Appendix B.
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5. The NLO computation
in Eq. (5.9) is

54 51 . - o
W51:p51p+p54' w54:{?51p+P54' with ps; =1 —15 - 1;. (5.11)
In Eq. (6.11) #; are unit vectors that describe directions of momenta of the corresponding
partons.
To discuss collinear regularization, we go back to Eq. (5.8). The first term on the right-hand
side of Eq. (5.8) is regulated in the soft limit but still contains collinear singularities. We use
Eq. (5.9) to rewrite it as

([I—Ss5] Am(1,4]5)) = ([T — S5] w** Fm(1,415)) + ([I — S5] w™* Fm(1,4|5)), (5.12)

where, thanks to Eq. (5.10), the first term only contains the collinear singularity where ps || p1
and the second one the singularity where s || 4. As an example, we consider the first term
in Eq. (5.12) with the partition w’!. Using the collinear operator Cs; we introduce yet another
partition of unity I = [I — C51} + Cs1 and obtain

([I—Ss]w’'Fam(1,4]5))

5.13
= ([I - Cs1] [I = Ss]w” FLm(1,4(5)); + (Cs1[I — Ss|w’ Fum(1,415)) - 649

The subscript ¢ in the first term on the right-hand side of Eq. (5.13) indicates that this contribu-
tion is now fully regulated and contains no singularities and is fully differential with respect to

54

momenta p4 and ps. Repeating similar steps for the second partition w>* we arrive at the final

result

(Fim(1,415)), = (SsFim(1,415));+ ) (Csill — Ss]Fm(1,415)),

ic{1,4}
A(i) o 5i (5.14)
+ Z <Onlow FLM(1’4 | 5)>(5 4
ie{1,4}
where we introduced the notation
O = [I—Csi][I—Ss]. (5.15)

The third term on the right-hand side of Eq. (5.14) is finite in four dimensions making it
amenable to numerical calculation.* We want to emphasize that actions of all operators in
Eq. (5.15) on the function F \ are well-defined. Results can be found in Appendix B and are also
given explicitly in the following discussion. The first and the second terms on the right-hand

side of Eq. (5.14) are not finite in four dimensions and we continue with their computation.

4We demonstrate in Chapter 8 how to numerically evaluate such a formula.
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5.2. Analytic integration of the subtraction terms

5.2. Analytic integration of the subtraction terms

We now explain how to analytically integrate the subtraction terms on the right hand side of
Eq. (5.14) and extract the 1/¢€ poles explicitly.

5.2.1. Soft subtraction term

We begin with the soft subtraction term (SsFm(1,4|5)). It contains both soft and collinear
singularities that lead to a 1/€? pole upon integration over gluon momentum ps. The necessary
limit has already been given in Eq. (5.7). As we mentioned there, the soft gluon g(ps) decouples
from the function F ) and we can integrate over its phase space without any reference to the

hard matrix element. We find

Emax

(d-1)
P1- P4 _ / dEg dQ; 014
d = X , 5.16
/[ ps] (71 ps)(pa- ps) ElT2 2027071 15 pas (5.16)

with p;; = 1 —7i; - 7i; where we recall that 7i; ; are unit vectors that describe directions of parton
momenta p; and p; (so that p; - p; = E;E;p;;). The solid angle integral on the right-hand side of
Eq. (5.16) is given by [36]°

a0 y 1-2¢ e
l o _ 2 - n;: Ky (5.17)
2(2m) =1 pix pjk € |8m2T(1—e¢)] " 1
where
I2(1—¢)
K= [r(l—zeﬂ 7 2P (L1 - 61— 1) (5.18)

In Egs. (5.17, 5.18) 1;; = p;j/2 and 7F; is the Gauss hypergeometric function. An expansion of
the function Kj; in the dimensional regularization parameter € can be found in Eq. (A.22). The

energy integral on the right-hand side of Eq. (5.16) evaluates to

Emax
/ = ——Emax- (5.19)
142 max
J ESJr € 2¢ ™M@
Combining these, we obtain
P14 171 (4n) e -
/[dPS] E% 015 P45 - €72 |:87'[21"(1_€) (ZEmaX) 67714€K14' (520)

We combine Egs. (5.7, 5.20) and write the soft subtraction term as

(SsFiam(1,415)) = 2Cr [“;;’] (2Emax) 2 (18 K1y Fim(1,4)),. (5.21)

5We discuss how to compute such a integral in Appendix G.3.
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5. The NLO computation

In Eq. (5.21) we introduced the notation

2 €
gs,b (47T) :| , (5‘22)

s ] = [87t21"(1—e)

that provides a convenient starting point for a transition to the MS coupling constant. Indeed,

to leading order in «;, the following relation holds®
[agp] = [as] [1+ O(as)] ¢, (5.23)

where the quantity [«;] is defined through the renormalized coupling constant a ()

as] = [“52(77;) r(im_:)} : (5.24)

The final result for the soft subtraction term reads

(SsFim(1,4]5)) = 2Ck

u 4Er2nax - —€
[ei]( 12 ) (s KisFim(1,4)); -

(5.25)

We note that higher-orders of a; in Eq. (5.23) contribute (at least) to the NNLO correction of the
partonic cross section and are not included in Eq. (5.25). These contributions reappear in the
later NNLO discussion in the UV-renormalized virtual corrections.

5.2.2. Soft-regulated collinear subtraction term: initial state emission

As the next step, we study the soft-regulated collinear subtraction term
(Cs1[1 — Ss]Fim(1,415)), (5.26)

where the gluon momentum is taken in the collinear s || 1 limit. In this subtraction term the
soft singularity is already regulated. We therefore expect the highest pole to be 1/¢. Eq. (5.26)
has two contributions: one where the function Fy ) is taken in the collinear limit and another
one where it is taken in the soft-collinear limit. It is convenient to consider the two contributions
separately.

The singular soft-collinear limit can be easily obtained by considering Eq. (5.7) in the collinear
s || P1 limit. We obtain

(57)

. 1
CSISSFLM(1/4 ‘ 5) = lim SSFLM(1/4 | 5) = 2CF g?,b X ™ X FLM(L 4) . (527)
psllpa E5 015

The analytic integration can be done in full analogy to the calculation of the soft subtraction

Further details on the UV renormalization can be found in App. A.
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5.2. Analytic integration of the subtraction terms

term discussed earlier. We find

o=t 1 272 1 (4m) 1 [I%(1—e)
_ (5.28)
2(2m)d-1 p5 € |8m2T(1—¢€)| |T(1—2e)
We use the above result to obtain the integrated soft-collinear subtraction term
[“s,b] r2(1 — 6) -2
(Cs185Fm(1,4]5)) =2Cr 5 T 20) (2Emax) " (Fim(1,4)),- (5.29)

We now consider the collinear subtraction term (Cs1Fm(1,4]5)). Acting with Cs; on the
function F;, we obtain

FLM(Z-1,4)
Cs1Fim(1,415) = ¢, x Po(z) x —22 2 5.30
sifim(1,4(5) = g5, — 99(2) Z (5.30)
where
1+ 22
Pyy(z) = Cr T, —e(l—2z2)], (5.31)

is the splitting function describing a collinear splitting ¢ — g* + g. In the limit Eq. (5.29)
the notation Fp(z - 1,4) stands for the leading order cross section where the initial-state
momentum p; is rescaled by z = (E; — Es)/E;. The integration over the phase space of the

gluon g(ps) reads then

1 FLM(Z'1,4)

dps] —— Py (z) “2E 2
J1dps] S Py(2)

_ Emax (5.32)

a0l 1 e 1 Fim(z-1,4)

_ 5 x O/ dEs E} o Puy(2) .

2(2m)1 p1s

z

The required angular integral is found in Eq. (5.28). The integration over Es can be simplified.
We use z = (E; — Es)/Ej to write Es as Es = (1 — z) E; and obtain

EmaX
/dE El2 /dz E2-26(1 — 7)1 2, (5.33)

Zmin

where znin = 1 — Enax/ E1. Putting everything together we obtain the following result
(Cs1hm(1,4(5))

_[lxzb] Hzl_—zg] (2E1)~ /dz (1—2)%P,(z )<FL1\4(ZZ-1,4)>(5‘ (5.34)

We note that, by construction, Emax > E1, so that zmin < 0. For values z < 0 there is not enough

energy to produce final state particles. This implies that the integrand in Eq. (5.34) vanishes
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5. The NLO computation

for z < zmin because of the implicit energy-momentum conserving d-function in Fyp(z - 1,4).
We can therefore replace the lower integration boundary zmi, in Eq. (5.34) with zero without

changing the integral. Combining Egs. (5.29, 5.34) we write

o 2 —c 2 —€
(Cs1[I—Ss]Fm(1,4]5)) = —2Cr [252] [ﬁ(il_ 26” (42‘2"‘“) (Fm(1,4)),

(5.35)

In Eq. (5.35) we also expressed the coupling constant through the coupling constant renormal-
ized in the MS scheme using Eq. (5.24).

We now consider the soft z — 1 singularity that is present in Py;(z) in Eq. (5.35). In the
subtraction term Eq. (5.26) this soft singularity is regulated, so that the corresponding pole has
to cancel between collinear contributions to Eq. (5.35), given in Eq. (5.34), and soft-collinear
contributions, which are shown in Eq. (5.29). To extract the pole explicitly we divide the

splitting function Eq. (5.31) into a singular and a non-singular term. We find

1 2
(1-2)"2%P,(z) = (1 —2)"%Cy ;f —e(1—2)
z (5.36)
(1 — Z>_26 —2e
— 2CF17—Z + (1 - Z) qu’reg(Z) 7
where
Pyyreg(z) = —Cr[(1+2z) +e(1—2)]. (5.37)
The singular term in Eq. (5.36) is regulated using the plus prescription defined as
1 1
[ax @) g = [ dx f)lg(x) - (). (539)
0 0
This allows us to rewrite the z integration in Eq. (5.34) as
/ I3 1,4
/d 2 (1-2) 2Py(2) LM(ZZ' -4
1—Z —2¢ FLM(Z-l 4) ;
= 2Cp/d [ } ’ -|-2Cp/dz (1—2)717%¢ Fm(1,4) (5.39)
11—z |, z
1 1
F 1,4 =——
+ /dz (1—z) %Py reg(z) LM(ZZ) 2¢

0
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5.2. Analytic integration of the subtraction terms

In the second term on the right-hand side of Eq. (5.39) the 1/¢€ pole corresponding to the soft
singularity is explicit. The remaining z integrals are finite. We use Eq. (5.39) in Eq. (5.35) to

obtain the fully-regulated collinear subtraction term. We find the following result

(Cs1[I—Ss5]Fm(1,415)) = _[og,] {m_e)] <4E%> )

T —2¢)| \ 72
/ iz <2C [1‘2) €L+(1—z)‘?quq,reg@))<PLM(ZZ'1"")>(s (5.40)
—2Cr = [11:21__22” [(4Er2nax/yz)€2€_ (4E%/V2)T <FLM(1,4)>5.

Note that in Eq. (5.40) the 1/¢€? pole has canceled between soft-collinear and collinear contribu-
tions in Egs. (5.29, 5.35).

5.2.3. Soft-regulated collinear subtraction term: final state emission

We now study the soft regulated collinear subtraction term
(Csa[1 — Ss)Fim(1,415)), (5.41)

where the gluon momentum is taken in the collinear s || p4 limit. We consider the two terms in
Eq. (5.41) separately. Apart from the replacement p; — p4 where appropriate, the soft-collinear
limit is identical to the previously discussed case of the initial-state emission, c.f. Eq. (5.27).
Hence, the result for this contribution can be taken directly from Eq. (5.29). We find

(s p] [r2(1 —€)

(CsaSsFim(1,4]5)) = 2Cr - 5 I(1—2¢)

:| (2Emax)_26 <FLM<1/ 4)>5 . (5-42)

However, the collinear term in Eq. (5.41) is different. Indeed, the collinear limit reads

1
CssFim(1,415) = g2, x Py, (z) X Fim (1, - -4) , (5.43)

P4 P5
where Py, (z) is given in Eq. (5.31). In the Cs4 limit Eq. (5.43) the notation Fiy(1,z 7! - 4) stands
for the leading order cross section where the energy of the final-state momentum py is rescaled
with 1/z, where z = E4/ (E4 + Es). The integral over the phase space of the unresolved gluon

/[dp5] 14 1]7 29 (2) FLM<1/1‘4>

- Enn 5.44
~pdof g /dE5 52

1
e B —2¢ -
2(2m)31 pas . E4 Es™ Py (2) A (LZ 4>'

reads
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5. The NLO computation

The required angular integral is similar to the previous case; it can be taken from Eq. (5.28). To

compute the energy integral we use z = E4/ (E4 + E5) and write the gluon energy as

1—
Es=E, < - Z) ) (5.45)
so that

EmaxdE : d E

5 z 4
= . Zmin = . 5.46
0/ Ey4 / Z2 z E4 4+ Emax ( )

Zmin

Since Emax > 0 we find for the lower integration bound 0 < zyin < 1. For values z € [0, Zmin]
the energy of the outgoing quark is given by

1
Eout = - E4 >
4

Zmin “E4 = E4 + Emax 2 Emax- (5'47)
By construction, Enax is greater than the partonic center-of-mass energy of the collision, this
implies that for values z € [0, zmin| the integrand in Eq. (5.44) vanishes because of the energy-
momentum conserving §-function in Fz(1,z71 - 4). We can therefore set the lower integration
boundary to zero without affecting the value of the integral. We further use the fact that we
need to integrate over the phase space of the final-state quark g(p4) to absorb the factor 1/z.
We find

41

(d-1)
P4 2726/ d P4 5.48
(20 @128, - z 20 @28, (5.48)

Pa — 2z ps = /
Putting everything together, we rewrite the energy integral in Eq. (5.44) as
m“dE5 ) 1
/ F B Pu(@) FLM<1/Z'P4>

0

~ B [dzz ¥ (1-2)% Py (2) Fu(L4). (549)

RE= I

The anomalous dimension 'y 2 that we introduced in Eq. (5.49) is a particular case of the

following class of constants

&»
I||

/1 [ (1 —z) R P (2) —2CF(11__Z)Z_IT, (5.50)
0

that we will use in what follows. An expansion of the constant 'ygf; in the dimensional regular-

ization parameter € can be found in Appendix E.6. Putting Eq. (5.44) and Eq. (5.49) together,
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5.3. Virtual contribution and collinear renormalization

we obtain the following result

(CssFim(L,4]5)) = [“Zb] [?Zl—_ziﬂ BC; +7§§]<(2E4)2€FLM(1,4)>5. (5.51)

Finally, we combine Eq. (5.51) and the soft-collinear contribution Eq. (5.42) to obtain the
soft-regulated collinear subtraction term

(Csa[1 — Ss]Fim(1,415))

- 8 () )
e )t o 0

0

—2Cr

(5.52)

Note that, as expected, the 1/€? pole from the soft-collinear limit Eq. (5.42) cancels against the
1/€? pole in Eq. (5.51), so that Eq. (5.52) is of order 1/e.

We have computed all subtraction terms that appear in Eq. (5.14). We have therefore shown
how the real emission term in Eq. (5.1) can be written as the sum of a regulated (finite) term that
can be numerically integrated in four dimensions, and subtraction counterterms which have
explicit poles in 1/e€. This concludes our discussion of the real emission contribution and we
continue with the discussion of virtual corrections and collinear renormalization contributions

to the differential cross section Eq. (5.1).

5.3. Virtual contribution and collinear renormalization

We now turn to the remaining terms in Eq. (5.1), beginning with dd,. The pole structure of
the virtual corrections to the DIS process can be obtained from general formulas given in
references [51-53]; explicit calculation of the one-loop corrections is not required. For later
reference we define

25 - dor, = /PLV(1,,,4q) = (Fv(10.4)); (5.53)
with

Fiv(lg,44) =N / [dps][dpa] (27)% (p1 + p2 — p3 — pa)

e ) (5.54)
X 23%<Mff)ee M p)(Plrpz, p3, ps) X O(p3, pa) -

Eq. (5.54) is defined in accordance with Eq. (4.5) but it now contains the 1-loop amplitude
Mr1111000p (p1, P2, p3, pa) that corresponds to the Feynman diagram shown in Fig. 5.2. According
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5. The NLO computation

— > > —

Fig. 5.2.: Feynman diagram describing virtual corrections to the quark initiated channel g(p1) +
e (p2) = q(p3) + e~ (pa) of deep-inelastic scattering in the NLO QCD computation.

to references [51-53] we can write the singular structure of the function Fy(1,4) as

® ,
Fiv (15, 4) = 9 213 (€) Fi(1,4) + F (14,4,), 555)
where I (€) reads
R R T T
h(e) = ~Cr rr—g [€2+2€K % ) . (5.56)

The part Ffi%(1,4) is finite and requires an explicit calculation of the quark form factor; the
result is well-known, see e.g. Ref. [73].7 We use Egs. (5.55, 5.56) and write ddy, as

s 1 29 - € .
2s5-doy = —2Cr las] X [4-3} << P12P4) FLM(1q14q)> +<Flil\rf1(1q/4q)>5'
€ € 2 U 5

(5.58)

We now move on to the final term of Eq. (5.1), d0pqs, which is the collinear renormalization
contribution to the cross section. Parton distribution functions f;; in Eq. (4.2) are bare quantities
that need to be renormalized. This is done with the help of the following equation

fip = [(sij + “52(;‘)151.(].0) + O(af)] ® fi(u)- (5.59)

In Eq. (5.59) 151.5.0) are the leading order Altarelli-Parisi splitting functions [74]; they are collected
in Appendix E.4. The symbol ® in Eq. (5.59) stands for the convolution

1
[®f](2) = [ dxdy i(x)L1)IE—x). (5.60)
0

We insert Eq. (5.59) into Eq. (4.2) and rewrite it by separating the convolution with parton

"The finite part is not relevant for our discussion of IR poles. However, for completeness, we give it below

(FV (19,49)); = _% X 8Cr x (Fum(1g,4) ) - (5.57)
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5.4. Pole cancellation and the finite remainder

distribution functions. To order O(«a;) we obtain

1 1 1
dow = Y [ d i) doi+ X [ dx £l ) ("‘;fjj [azB02) d@-(z)) +0), (G61)
"o "o 0

where do; are the partonic cross sections that only contain virtual and real contributions. It
follows from Eq. (5.61) that the contribution to the NLO cross section that arises because of

renormalization of parton distribution functions reads

1
~as(p) 5(0) () g
dpar = 2L / dz P (z) dol°(z). (5.62)
0

We rewrite Eq. (5.62) in terms of the function Fy(1,4) and obtain

1
dog = S [ g, pO0) oy (FmG1a )
25 - dopar = T 0/dz 2 (2) . K

(5.63)

Note that the factor 1/z arises because of the flux factor in the definition of a cross section. Note
also that the only other contribution that includes the boosted matrix element Fyy(z - 1,4) and
that, therefore, can cancel the pole from the collinear renormalization contribution Eq. (5.63) is
in the collinear subtraction term Eq. (5.40). To further illustrate their similarity we note that

(1—z)"2%

26 [ U1

} + (1= 2) 2Py reg(z) = B (2) — 74 (1 — 2) + O(e), (5.64)
+

where v, = (3/2)Cr is the LO quark cusp anomalous dimension. Using Eq. (5.64) in the first
term on the right-hand side of Eq. (5.40) one can see immediately that the 1/€ pole of the
collinear subtraction term cancels the collinear renormalization contribution Eq. (5.63).

5.4. Pole cancellation and the finite remainder

At NLO results are simple enough to explicitly demonstrate cancellation of 1/€ poles and to
derive a finite formula for the fully differential cross section of the quark-initiated channel
Eq. (5.1). We first combine the real emission and the virtual contributions since we also need
the combination of these two terms when discussing the NNLO computation in Ch. 6. We

obtain

25 (doy +doy) = Y (O w ' Fim(L,4]5)), + (FV(L4)),
ie{1,4}

[“S] 1 4E12nax - —€ _ 1 é 2p1 - pa -
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5. The NLO computation

el [Fam] i ((5F) mo0),
e, Ll {r(il —26)]< (4E%ax/12) ¢ <4E22/y )€ — (4E3/p?) ¢ FLM<1,4)>
— LE €

/ (20 [B2] -0 o) (HEE) )

z

)

In Eq. (5.65) ’)%Z/ is the anomalous dimension given in Eq. (5.50) and Py reg(2) is the regular part
of the splitting function Py,(z) given in Eq. (5.37). Eq. (5.65) only has 1/€ poles that originate
from the collinear p5 || p; singularity. The finite result is obtained upon including collinear
renormalization Eq. (5.62). To this end, we expand Eq. (5.64) to first order in €. We find

_ »\—2e
2Cr [(111] X + (1= 2) > Prgreg(2)

— P\ (z) — 7, 6(1—2) — Pl (2) + O(e?),

(5.66)

where P, (z) is a generalized splitting function that we defined as

Pye(z) = Cr (4 [lnil__zz)} X +(1—2z)=2(1+2z)In(1 - z)) : (5.67)

Upon expansion of Eq. (5.65) in € we obtain the finite NLO partonic cross section

2s - doy, Onlo = Z <@i&o WSiFLM(lqu |5g)>5+ <F{i\r}(1q/4q)>(s

ic{14}
i e n (G ) o) (P,

0
<{2CFSﬁnax + ’yq} FLM(lq/4L]) >5 + O((—Z) .

(5.68)

The first term on the right-hand side of Eq. (5.68) is the fully regulated real emission. This
is the only piece with hard emission of a gluon in the final state. The second term is the
finite remainder from one-loop amplitude. The third and fourth terms are finite subtraction
counterterms. These terms are proportional to LO functions Fiy(1,4) and the “boosted” version
Fim(z-1,4). In Eq. (5.68) we defined the function Sﬂmax as

. 1 E E.E 107
Emax — 2 1 14 q
814 = le(l — 1714) — €2 + E In <E4) —1In 114 In <E2 > + a In M4, (5.69)

max
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5.5. Gluon channel

Sy
<

g OO0 > q g To0000 > q

Fig. 5.3.: Feynman diagrams describing the gluon channel of deep-inelastic scattering. They first
appear in the NLO QCD computation.

where 7, = (3/2)Cr is the LO quark cusp anomalous dimension. In Eq. (5.68) we further
defined a generalized anomalous dimension 1, as

13 21
'7:7 =Cr (2 - 3> . (5.70)

5.5. Gluon channel

At next-to-leading order in perturbative QCD also the gluon-initiated channel

g(p1) +e (p2) — e (p3) +q(ps) +d(ps), (5.71)

contributes to the DIS cross section. We will discuss this channel in what follows. Its analysis is
simpler than what is required for the quark channel. This is so because single quark emissions
do not develop soft singularities; for this reason we only have to regulate and extract collinear
singularities in the process Eq. (5.71). In addition, since the gluon channel needs to be included
at NLO QCD for the first time, no virtual contributions have to be considered. A glance at
contributing Feynman diagrams Fig. 5.3 shows that only initial-state collinear singularities may
appear. These collinear singularities get canceled by the collinear renormalization of parton

distribution functions. Hence, for the gluon channel we write the cross section as
doy, = doy + d@'pdf . (5.72)

In Eq. (5.72) dd; describes the differential cross section of the process in Eq. (5.71) and dopqs
originates from the collinear renormalization of parton distribution functions.

We begin our discussion of the gluon-initiated channel with the analysis of the real emission
contribution. As can be seen from diagrams Fig. 5.3 both quark and anti-quark can develop
collinear singularities. It is convenient to rewrite the matrix element in such a way that only

one singularity is present at a time. To accomplish this, we again introduce partition of unity

1=w) +wg. (5.73)
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5. The NLO computation

The partition functions wg, withi € {4,5}, in Eq. (5.73) need to possess the following property

Cilwéfl = dij, (5.74)
otherwise they are arbitrary. A possible choice is®
wgl =P wg,l =_P5 (5.75)

P14+ 015 P14+ P15

We rewrite the matrix element as

T 2 T 2 T 2
’Mt (1,4, 57)‘ = w?’Mt (1,4, 57)‘ + wél\Mt ee(lgf 407'517)’ (5.76)
= wy! “Mtree(lgf 49,57) | + [M" (14,57, 47) ﬂ ’ |

where in the last step we switched the momenta labeling of the quark and the anti-quark. We
now only have to consider the collinear ps || g1 limit, which corresponds to a quark becoming
collinear to the initial-state gluon in the first term, and an anti-quark becoming collinear to the
initial-state gluon in the second term.’ Following Eq. (5.3) we write

25-dov = [[dps] 0 Fung (Lg% 150) = (03 Fog (Lo 415,) ) (5.77)
where

Fimg (1g,4915¢) = N/[dPS] [dpa] (270)96' (p1+ p2 — p3 — pa — p5)

5.78
X [‘Mtree(lgr 49,57) ‘2 + [ M7 (15, 50, 49) ﬂ x O(ps, pa, ps) - o7
In Eq. (5.78) [dp;] is the phase-space volume element of the parton i defined in Eq. (4.6).
Note that, the mismatch between the actual g7 final-state vs. labels of momenta p4 and ps5 in
FLM,g (1 o4 ] Sq) indicates the “averaging” over quark-anti-quark final states.
We continue with the construction of the subtraction scheme for the gluon-initiated process.
Since we only have one collinear singularity to deal with, we write!’

(w3 Fimg(1,415)) = (Cs1 wy Fumg(1,415)) + ([I — Cs1] w3 Fmg(1,415)), - (5.79)

The second term on the right-hand side is fully regulated and can be integrated in four dimen-

sions. To simplify the subtraction term (Cs; wgl Fimg(1,45)), we need the action of operator

8The partition functions are not well defined in the kinematic case where all partons are collinear to each other.
However, this requires zero momentum transfer from the electron to the quark/gluon line and we do not
consider this (pathological) case.
9With this procedure we lose the information of whether a parton is a quark or an anti-quark. This is not restrictive
for any physics applications but makes the calculations easier.
19For simplicity we do not show the momenta labels of the electrons in the function FLm,g since they are not relevant
for our discussion.
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5.5. Gluon channel

Cs1 on the function Fiag(1,415). We find

F -1r,4
Z Pfg(Z) % M, (5.80)
PLYPS refon z

Cs1Fmg(1,4]5) = g2, x

where z = (E; — E5)/E; and the gluon-quark splitting function reads
Py (z) = Pge(z) = Tr [1 - 221(1__62)} . (5.81)
In the splitting function Eq. (5.81) Tk = 1/2. The splitting function P,;; can be obtained from
the splitting function Py,;. However, we note that the splitting function Py, which describes the

collinear splitting of an initial-state gluon into a quark-anti-quark pair, possesses an additional
e-dependence. To compute P;¢ we view the ¢ — ¢ splitting as

qg(E) = q(ZE)+¢((1-Z2"E), 7 = —— (5.82)
where an incoming quark with energy E = —E;(1 — z) splits into an outgoing quark with
energy z’E = zE; and a gluon with energy (1 — z’)E = —E;. In the situation described by

Eq. (5.82) summing over final-state and averaging over initial-state colour and polarizations
leads to the factor Cr/2. Doing the same for the splitting ¢ — g7 we find Tr/(d — 2), where
d — 2 is the number of physical gluon polarizations in d-dimensional space time. In addition we
have to add a relative minus sign that arises from the crossing of an odd number of fermions
between initial and final state. Hence, using P,,(z") with corrected colour and polarization

factors, we can describe this splitting as

2(1—¢e) \ 2 z!
Tr z—1 z 31) Tr 2z(1—2z)] _ Py(2)
Ce(l—¢) z z—1 z 1—€ z

(5.83)

7

which corresponds to our definition of the splitting function P,¢ in Eq. (5.81).
After this small interlude we continue with the integration of Eq. (5.80) over the unresolved
(anti-)quark momentum ps. We repeat the same steps as in the analysis of the initial-state

contribution to the quark channel in Section 5.2 and obtain

<C51FLM,g(1/4’5)>

Ja (M) g e (ANE 140

felaaty

(5.84)

To account for collinear renormalization contributions, we use Eq. (5.61) and select terms where
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5. The NLO computation

gluon parton distribution function appears. We obtain

27me z

1
A Fim(z 15,4
2s-d&pdf:"‘s(”) Y /dzp}g)(z)<m(sz)>.
felaqty 4

(5.85)

Finally, we combine Eq. (5.84) and Eq. (5.85) and obtain the final result for gluon-initiated

channel

2s - dbpyo = <@nlo,gFLM,g (1gr 4-!1 | 511)>

)

(1) 0/1 dz [p;gcz) +In <4§> Aq(?@] R <FLM(ZZlf4f)>5

+

(5.86)

In writing Eq. (5.86) we used that Pjg(z) = Pg(z) and defined

énlo,g = U - C51] . (587)
Splitting functions Pég and Iﬁggg) can be found in Eq. (E.24) and (E.20), respectively. The first
term on the right-hand side of Eq. (5.86) is the fully regulated real emission. This is the only
piece that contains the matrix element describing process ¢ +e~ — e~ + g3. The second
and third terms are finite subtraction counterterms that are proportional to the “boosted” LO
function Zfe (0.0} FEwm (z 17,4 f). Note that, due to the absence of a soft singularity in the gluon-
initiated process, there is no contribution proportional to the LO function F(1,4). The result
in Eq. (5.86) closes our discussion of NLO contributions to the differential cross section and we

continue with the discussion of NNLO contributions.
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6. The NNLO computation: quark-initiated
channels

In this chapter, we discuss the computation of NNLO QCD corrections to the DIS partonic cross
section using the nested soft-collinear subtraction scheme. As we already mentioned, at this
order in the a; expansion we need to combine four contributions to compute an infrared-finite
cross section. We write

da—nnlo = da—vv + da—rv + da—rr + da—pdf ’ (61)

where ddy, describes the two-loop virtual corrections to the elastic process g +e~ — e~ + ¢,
ddyy describes a one-loop correction to a process with one additional parton in the final state
(for example, g + e~ — e~ + g + g), d0yr describes a process with two additional partons in
the final state (for example, g +e~ — e~ + g+ ¢ + ¢) and d0,qr describes corrections to the
partonic cross section caused by the collinear renormalization of parton distribution functions.

We begin with the discussion of the double-real emission contribution dd;,. Similar to the
NLO QCD case discussed in Section 5, both quark-initiated processes q/§+e~ — e~ +q/§+
g+gandq/j+e — e +4q/§+4q + g and gluon-initiated processg+e¢~ — e~ +g+7+g
contribute at NNLO. We recall that at NNLO, two types of singularity arise which are not
present at NLO: double soft and triple collinear singularities. A quark in the final state does not
develop a soft singularity. Hence, only quark-initiated processes q/j+e¢~ — e~ +q/§+ g+ 8
contain genuine NNLO double-soft singularity in the limit when energies of both final-state
gluons vanish. Gluon-initiated processes only posses triple-collinear singularities and their
structure is much simpler. Indeed, the quark-initiated process with final state gluons g + e~ —
e~ + g + g + g contains all possible singularities, with the other partonic channels containing a
subset of these. For this reason, we focus on the partonic channel!

q(p1) +e (p2) — e (p3) +q(pa) +8(ps) +g(ps) - (6.2)

We outline the computation of the remaining partonic process 4 +e¢~ — e~ +g+4 + 7 in
Section 6.7 and gluon-initiated processes in Chapter 7. A detailed discussion of the quark-
initiated channel with gluons in the final state is sufficient to illustrate and discuss all the

peculiarities of the subtraction scheme, as well as the analytic integration of the subtraction
terms at NNLO QCD.

1Since computations for quark and anti-quark initiated channels are identical, we focus on the quark initiated
channel.
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6. The NNLO computation: quark-initiated channels
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Fig. 6.1.: Partonic currents that contribute to the quark channel Eq. (6.2) of the double-real emission
contribution of DIS. To obtain the complete Feynman diagrams for DIS they need to be contracted
with the the leptonic current. We only show labels i of external momenta p;. Abelian contributions
in the first line also need to be included in the amplitude with momenta of the two gluon emissions
exchanged p5 < pe.

Feynman diagrams that contribute to the quark-initiated process Eq. (6.2) are shown in

Fig. 6.1. Following the discussion in Section 5, we define?

25 - doy = / [dps][dpe] 0(Es — Es) Fum (14,44 154, 65) = (Fin (14,44 154,6¢) )5 (6.3)
where

Fim(14,44154,65) = N/[dP3] [dpa] (270)469 (p1+ p2 — p3 — pa— p5 — Pe)

X |MESE (p1, P2, P3, Pas P5, P6) > X O(p3, pa, ps, pe) -

(6.4)

The phase-space volume element [dp;] of the parton i is defined in Eq. (4.6). Emax plays the same
role as in the NLO QCD computation, see comments around Eq. (4.6) and the discussion of the
soft subtraction term in Eq. (5.8). In Eq. (6.3) we order two gluons in energy by introducing
6(Es — E¢). Hence, the only single-soft singularity that needs to be regularized is E; — 0
since E5 — 0 implies that both gluons ¢(ps) and g(ps) become soft. The factor N in Eq. (6.4)
includes all the relevant symmetry factors, [dps][dpa] is the phase-space of the hard process,
M is the matrix element, composed of Feynman diagrams shown in Fig. 6.1, and O is an
arbitrary infrared safe observable. We will proceed with the discussion of how infrared and
collinear singularities can be extracted from the function F (1,4 |5,6) without integration

over resolved phase space.

6.1. Subtractions

In this section we employ the nested soft-collinear subtraction scheme to regularize singularities

in the cross section Eq. (6.3) that describes partonic DIS process Eq. (6.2). Our goal is to extract

2For simplicity we do not show the momenta labels of the electrons in the function Fy ;.
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6.1. Subtractions

poles in the dimensional regularization parameter € without integrating over the resolved phase
space. We note that our construction follows the NLO discussion of quark-initiated processes
in Chapter 5. We treat soft and collinear singularities of the amplitude iteratively, starting with

soft ones.

Soft singularities

We begin by regulating the double-soft singularity. To this end we introduce an operator $ that
extracts the leading singularity in the limit Es ~ Eq — 0 by acting on the function F (1,4 |5,6).
Similar to the single-soft operator discussed in the context of the NLO QCD computation, its
action is defined by the following equation®

(SFm(1,4]5,6))

6.5
= /[d85] [dgs] 0(Es — Es) Eik(p1, pa, ps, pe) x (Fm(1,4));, ¢

where (Fim(1,4)) is the fully-differential cross section of the Born process g +e~ — e~ +4.
A complete definition of the double-soft limit, including the explicit form of the eikonal
function Eik(p1, pa, ps, ps), is given in Appendix B.2. The essence of Eq. (6.5) is that soft gluons
factorize from the hard matrix element squared [56], the infrared safe observable and the
energy-momentum conserving d-function. To extract the double-soft singularity we insert the
unity operator decomposed as I = [I — $] + $ into the phase space and write

(Fim(1,415,6)) = ([I — $]Fm(1,4]5,6)) + ($Fam(1,4]5,6)) . (6.6)

In the first term on the right-hand side of Eq. (6.6) the double-soft singularity is regulated. In
the second term the cross section is only needed in the double-soft limit Eq. (6.5). According to
Eqg. (6.5) soft gluons decouple from the hard process and the observable. For this reason, we can
analytically integrate the double eikonal function over the phase space of two emitted gluons.
This integration produces 1/€ poles that are independent of the hard process and the observable.
Further details of this integration will be given the next section. The double-soft regulated term
([I — $]Fm(1,4]5,6)) still contains unregulated single-soft and collinear singularities. We
will now discuss how to regularize them.

We begin with the single-soft singularity. Thanks to the energy ordering Es > Eg there is
only one single-soft singularity in the limit Es — 0. To regularize it, we introduce an operator
Se that extracts the leading single-soft singularity in the limit Es — 0 and insert the identity
operator I = [I — Sg| + Se into the first term on the right-hand side of Eq. (6.6). We find

([I-S$]Fm(1,4]5,6))

6.7
= ([I—S6|[I—$]|Fim(1,4]5,6)) + (Se[I — $| FLm(1,415,6)) . ©7)

As we will see in Section 6.2, in the subtraction term the gluon g(ps) decouples from the

3In what follows we drop the subscripts of the momentum labels, specifying the parton kind.
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6. The NNLO computation: quark-initiated channels

function Frp(1,4|5,6). We can analytically integrate over the unresolved phase space and
extract the 1/¢€ poles. The first term on the right-hand side of Eq. (6.7) is free of soft singularities,
but it still contains collinear singularities. We will now discuss how to regularize them.

Collinear singularities

Even for a relatively simple process such as deep inelastic scattering, a large number of singular
collinear kinematic configurations exist. To identify them we make use of the fact that in
physical gauges collinear singularities factorize on external legs. As can be seen from diagrams
Fig. 6.1 the amplitude possesses double-collinear singularities when ps || P, Pi=s6 || P1 and
Pi=s6 || Pa, as well as the genuine NNLO triple-collinear singularities when ps || P || i=1.4-
The collinear singularities overlap, and we would like to split the phase space in such a way
that in each region no overlapping singularities are present and we have to deal with only two

singularities at a time. To achieve that, we introduce partition functions*

1= w51,61 + w54,64 + w51,64 4 w54,61 , (68)

into the first term on the right-hand side of Eq. (6.7). The partition functions w>*%/ in Eq. (6.8)
are designed to dampen all but a few collinear singularities. Similar to the partition functions
introduced in the context of the NLO computation in Eq. (5.9), they should satisfy the following

conditions

lél‘r'n WOk ~ dij, lél‘r'n Wk~ Sy, 151|1|r161 WOk O, for i,jke {1,4}. (6.9)
1 1

Thanks to Eq. (6.9), the last two partition functions on the right-hand side of Eq. (6.8) only
posses double-collinear singularities whose regularization is NLO-like and we can regulate
these immediately.

As an example we consider the partitioning 51, 64. It contains two double-collinear singu-
larities: one where s || 1 and another where s || fs. We introduce operators Cs; and Cey
that extract leading singularities in these limits. To regulate these singularities we rewrite the

identity operator as
I=[I—-Cs]+Cs=[I—Ce[I—Cs1] + [Cs1+ Ces] — C51Cea, (6.10)
and insert Eq. (6.10) into the first term on the right-hand side of Eq. (6.7). We obtain

([I—S6][I—$] w** Fim(1,4]5,6))

= ([I - Ce4] [I = Cs1][I — S6] [I — $]w>**FLm(1,4]5,6)),
+ ([Cs1 + Cea] [I — Se| [I — $]w’ **Fm(1,415,6))
— (C51Cea [I — S| [I — $|w™ ** Fm(1,4]5,6)).

(6.11)

4Explicit formulas for a possible choice of the partition functions w>"®/ can be found in Appendix A.3. They are
taken from discussions of other processes in the context of the nested soft-collinear subtraction scheme [37,38]
and are adopted from Ref. [6].
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761 ;

51,61

Fig. 6.2.: Splitting of the angular phase space of partition w into regions with defined collinear
singularities. First sector on the right-hand side corresponds to sector 8() in Eq. (6.13). The second to
6(t). Sectors 6(°) and 8(%) where 175; > 7751 are not shown explicitly. Schematically they are given by
the displayed sectors but with direction of momenta 5 and 6 exchanged.

In the first term on the right-hand side of Eq. (6.11) all singularities are regulated and it can
be integrated in 4 dimensions for arbitrary infrared safe observables. We can integrate over
the unresolved phase space in the remaining two terms, and we present details of this in the
following sections. The partition 54, 61 is treated in an analogous way. However, the partitions
51, 61 and 54, 64 require more care.

To illustrate this, we consider partition 51, 61. It contains two double-collinear singularities
where 5 || 1 and Ps || P1, as well as the double-collinear singularity where ps || P, and the
triple-collinear singularity where ps || P || P1. The various double-collinear singularities can be
further separated by splitting the angular phase space of the two gluons into different regions.
We do this by introducing yet another partition of unity®

=< 22) +0(72 < < ) (< 22)

+0(%2° < p1s < p1o) = 01" + 01" +0[7 6",

(6.13)

where p;; = 1 —17; - 7i; is defined in Eq. (5.11). We will refer to the four contributions shown in
Eq. (6.13) as sectors; ordering of angles in the different sectors is shown schematically in Fig. 6.2
and the splitting of the angular phase space is shown in Fig. 6.3. In each partition and sector
the possible collinear singularities are uniquely defined and no overlaps occur. We will use this
observation to write down a fully-regulated double real contribution. We note that we use a
parametrization of the phase space that naturally implements this sector decomposition and
that was introduced in Ref. [6].

As an example, we consider sector (a). Thanks to Eq. (6.13) there are only two collinear
singularities: a double-collinear one where pg || 1 and a triple-collinear one where ps || ps || P1-
Introducing operators €; and Ce; that extract triple- and double-collinear singularities and

SIn Eq. (6.13) we slightly abused notation of 8-functions to obtain a simpler formula. For instance the second term
has to be understood as

0(55 < p16 <p1s) = 0(p1— 5" ) 0p1s — p1o).- (6.12)
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6. The NNLO computation: quark-initiated channels
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Fig. 6.3.: Sectors to isolate collinear singularities in the triple collinear case. Index i = 1,4 corresponds
to the index 7 in Eq. (6.51). Single double-collinear Cs; and C¢; along the coordinate axes, double-

collinear Csg appear only along the bisecting (dashed line), triple collinear in the origin.

subtracting them iteratively, we obtain from the first term on the right-hand side of Eq. (6.7)

([1= 6] [1 - 8]0\ w™ " Fiy(1,4]5,6) )

= ([1=Ca] [1 - @] [1 - 6] [1 - $]6/ 0™ Fin(1,4]5,6) )

+(Cor[1 = @1 [1 = S6] [1 - $]6/ 0™ Fiy(1,4]5,6) )

+ (€1 [1- 8] [1- $]6/w™ ¥ Fini(1,4]5,6) ) .

(6.14)

In sector (a) of the partition 51,61 all singularities are regulated. We can now proceed in a

similar way with the remaining partitions and sectors.

NNLO regulated differential cross section

To present a formula for the NNLO regulated differential cross section we need to introduce

additional operators that extract various soft and collinear singularities. The complete list of

such operators is presented below. It includes soft operators

$ Double-soft: Es ~ Eg — 0,
S¢ Single-soft: E¢ — 0,

and collinear operators

C; Triple-collinear: s || Ps || 7,
Csi,Csi Double-collinear: s || i, Po || Pi,

Cs¢ Double-collinear:  ps || P,

42
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6.1. Subtractions

with 7,j € {1,4}. Full definition of these operators can be found in Appendix B. Using these
operators, we write the fully-regulated contribution for the double-real emission cross section
as

(Fm(1,4]5,6)), = ($Fim(1,415,6)) + ([I — $]SsFim(1,4]5,6))

+ ) < — ][I — Se] {C5 WOl 4 CuI 4 <9i(ﬂ)c5i 4 91‘(C)C6i) w5i,6z}
ije{1,4}
# - x [dps][dpe| Fm(1, 4| 5,6)>

+ % ([1-8][1 - 5] [0 Cas + 61" Css] [dps] [dpelw™ Fin(1,45,6))

ie{14}
- Y < [I— $][I — S6] C5iCej[dps] [dps|w Fm(1,4 15, 6)> (6.17)

ije{14}

i#]

+ ¥ ([1-8][1-sd [0 ci[1 - Cs] + 0" @i [1 - Cae] + 01 T[T - Cai]

ie{14}

+01C;[1 - Css] | [dps][dpelw™Fuw(1,415,6) )

o) <Onnlo [dps][dpe]w™® Fum(1, 45, 6)>
ije{14}
7]
+ (O, ldpslidpele ™ Fin(1,415,6))
ie{14}

In Eq. (6.17) we used the following notations

Oniio = [1= 8] [I = Se] [ — Cgj] [I = Csi], (6.18)
Olo = [1— 8] [1 = S6] [1 - €] (611 = Csi] + 6" [1 - Csq]

(6.19)
+ 0 [T — Cei] + 6 [T — c56]) .

We refer to the first two terms on the right-hand side of Eq. (6.17) as the “double-soft” (first)
and the “double-soft-regulated single-soft” (second) subtraction terms. They are discussed in
Section 6.2. The third and fourth terms on the right-hand side of Eq. (6.17) contain contributions
where one of the gluons g(ps) or ¢(ps) is unresolved due to a collinear singularity. We refer
to these terms as the “single-unresolved” collinear subtraction terms; we discuss them in
Section 6.3. In the firth and the sixth term in Eq. (6.17) both gluons are unresolved. We refer
to these contributions as “double-unresolved” collinear subtraction terms. We discuss them
in Section 6.4. Finally, in the last two contributions in Eq. (6.17) all singularities are regulated.
They can be computed numerically in four dimensions for arbitrary infrared safe observables.
Further details of how this can be done are given in Chapter 8.

We continue with the discussion of the analytic computation of the subtraction terms; we
begin with the soft subtraction terms given by the first and second terms on the right-hand side
of Eq. (6.17).
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6. The NNLO computation: quark-initiated channels

6.2. Soft subtraction terms

In the regulated formula for the cross section Eq. (6.17) two soft subtraction terms are present:
the double-soft subtraction term (first term on the right-hand side of Eq. (6.17)) and the double-
soft regulated single soft subtraction term (second term on the right-hand side). The double-soft
subtraction term ($Fm(1,45,6)) was computed in Ref. [67].° It reads

4E2 —2€ N
<$FLM(1,4\5,6>>=[a5]2( ;;ax) <[cgzq;42eK§4+cAcFs;;quLM<1,4>>5, (6.20)

where the formula for the non-abelian contribution Sgéab) is provided in Appendix I.1. In what
follows we focus on the double-soft regulated single-soft subtraction term

([I—%)SeFim(1,4]5,6)). (6.21)
Since $ S¢ Fim = S5 Se Fim, we can rewrite Eq. (6.21) as
([I - $]SeFim(1,4]5,6)) = ([I — Ss5]SeFim(1,4]5,6)). (6.22)
The E¢ — 0 limit is given by [57]

2
Se Fu(1,4]5,6) = 522 [<ch —ca)- cA( P15, _pis )} Fiu(1,4]5). (623)
E¢ 016 P46 P16 P56 P46 056

Since the hard function Fy (1,4 | 5) is independent of the gluon momentum pg, we can integrate

over it. The required integral reads

1 014 < 015 045 > }
dpel = | (2Cr — )P 4 ¢ + : 6.24
/[ p(,] E% [( F A)Plé 046 A 016 P56 P46 P56 ( )

A similar integral has already appeared in the NLO computation, c.f. Eq. (5.17). The only
difference is that energy integration now goes from zero to Es. We find

Es

dEs E;*
/ = — : (6.25)
) Eé+2€ 2¢e

Accounting for that, we write the integral Eq. (6.24) as

/[dP6]S6PLM(1/4 15,6) = JusFim(1,4(5), (6.26)

where we introduced

149
Jas = | esf] [(ZCF — Ca)ms Ky +Ca [17;;&5 + ;74;I<45H (2Es5) . (6.27)

®Note that, in Ref. [67] the double-soft subtraction term is computed for arbitrary number of external partons.
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6.2. Soft subtraction terms

In Eq. (6.27) functions Kj; are given in Eq. (5.18). It follows from Egs. (6.22, 6.26) that

([I—8]SeFim(1,4]5,6)) = ([I — Ss|JuusFim(1,415)) -

(6.28)

The function Fp(1,4 | 5) describes the real emission process g(p1) +e~ (p2) — ¢ (p3) +q(pa) +
g(ps). It contains both soft and collinear singularities but the soft singularity Es — 0 has already

been regulated.

Fully-regulated single-soft subtraction term

We continue with regulating remaining collinear singularities in Eq. (6.28). To this end, we
follow the NLO procedure discussed in Chapter 5. To isolate collinear singularities we introduce

partition of unity
1=w"! +w™, (6.29)

and insert this expression into Eq. (6.28). The partition functions w® are defined in Eq. (5.11)
We further insert the identity operator written as I = [I — C;] + C; into the term that contains

the partition function w®. We find

([I—Ss] Jas Fm(1,415))
= Z <C5i [I — 55] ]145 wSi PLM(1/4 | 5)> + Z <@£30 ]145 w5i FLM(1/4 | 5)> ) (630)
{14} ie{14}

Note that collinear operators C;_; 4 and the operators (’A)glzol * in Eq. (6.30) have been already

used in the NLO discussion in Chapter 5 but, as emphasized by writing them to the left of the
function Jy45, they now act on J145 as well. The second term on the right hand-side of Eq. (6.30)
is free of singularities but it contains explicit 1/¢ poles, present in the function Ji45. These
poles need to cancel with similar NLO-like contributions that appear in e.g. the real-virtual

corrections.” We find®

. o _ _T(1+e)3(1—¢
CsiJi4s = lim Jig5 = [ séb] 2CF 1115 Kis +Ca 5° ( LA )

2F —2e )
psllpi € T(1—2€) (2E5)~*, (6.33)

7 At first glance it may seem like that the second term on the right-hand side of Eq. (6.30) depends on the explicit
form of the partition functions. However, since

YO8 w¥ = [(w™ +w™) — Csw® — Csgw™] [I— S5] = [I — Cs1 — Csa] [I— Ss], (6.31)
i=14

this term is indeed independent of the explicit form of the partition functions as long as they are chosen to
satisfy Eq. (5.10).
8To obtain the limit Eq. (6.33) we use

I2(1—e)

lim K;5 = lim ( [7 T(1+e)P(1—e)
pslpe =~ ms—0 \ [T(1—2e)

nieaFy (1, L1—el— m;)) S v st (6.32)
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6. The NNLO computation: quark-initiated channels

fori=1,4.

We now want to simplify the first term on the right-hand side of Eq. (6.30) and extract
remaining 1/¢€ poles by integrating over the unresolved phase space of g(P5). As can be seen
from Eq. (6.33) in the collinear limits the function ] 45 provides additional e-dependent powers
of Es, 1715 and 745 but otherwise integration over the phase space of the unresolved gluon g(ps)
is analogous to the NLO computation described in Section 5.2. For this reason in what follows
we only sketch the computation. More details can be found in Section 5.2.

We begin with the collinear ps || p; limit and consider collinear and soft-collinear contribu-
tions separately, starting with the latter. The required soft-collinear limit is known from the
NLO discussion, see Eq. (5.27). It reads

1
CSlsSPLM(114 ’ 5) = ZCF g?,b X EZ

X PLM(L 4) . (634)
5 F15

Using Eq. (6.34) together with the limit in Eq. (6.33), we find the integral over the phase space

of the unresolved gluon

2 Emax
, S5yl b _ dE
/[dp5] Cs1S5]145 w” Fom (1,4 | 5) = 2C S’be; x 27 / E1+Ze
0 b (6.35)
dolY T1+erB(1-¢)] 1
—2— |2C ‘K C — X F 1,4).
2(2m)i-1 { F1g Kia +Catys T(1—2¢) ]p15 x Frm(1,4)

The energy integral is given in Eq. (G.1). The angular integral has two contributions. The first
term in the square bracket in Eq. (6.35) is identical to the NLO case; the relevant result is given
in Eq. (5.28). The integral of the second term reads

(6.36)

dol 1 -2 [ 1 (4n)e ] {m —e)r(1- 26):|
2 ,

202m)-1 5 5 0 T T e |82 T(1 —e) 2T(1 - 3¢)

where we have used 7715 = p15/2. Combining the two results, we obtain

dol [ TA+er3(1-¢)] 1
——— |2Cr 14 K14 +Cy 77 :| —_—
)1 14 _

B 2*26 1 (4n)f ][, PP—e) T*(1—e)I(1+e€)
S {SNZF(l—e)][ FT(1—2¢) 2I(1 — 3¢) }

1’]1_4€K 1t Cy
Finally, we use this result to write the soft-collinear contribution as

[“s b]

(Cs1 S5 Juas w' Fum(1,415)) = 2Cr (2Emax)

(6.38)
r’2(1—e) . F4(1—€)F(1+€)
X < [ZCF F(l 2€>1714 K14+CA 21_,(1_36) :| FLM(1/4)>

We continue with the collinear contribution. To integrate over the phase space of the un-

resolved gluon we need the limit in Eq. (6.33) and the collinear g5 || p1 limit of the function
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Fm(1,4|5). It reads

1 FEm(z-1,4
—Lpy(2) x Fm(z-14), (6.39)

2
C51FLM(1;4 | 5) = &b X prep z

where z = (E; — Es5)/E;. The splitting function Py,(z) is defined in Eq. (5.31). Writing Es =
E1(1 — z), we obtain for the phase space integral’

5 1

(Csiw TisFim(1,4]5)) = — [“;f’] (251)745/012 (1—2) *Py(2)
: (6.40)
r’(1—e) . (1 —e)lr(1+e€)] Am(z-1,4)
8 < [ZCF T(1—2¢) 4 Kia t CA —3F 0 —3¢) ] z >

where we already integrated over the angular phase space using Eq. (6.37). Combining the
result in Eq. (6.40) with the soft-collinear contribution Eq. (6.38) we find

(Cs1[I — S5 Jusw® Fin(1,415))
[os)? r’(1—e) . (1 —e)T(1+¢)
&3 < [2CF (1 —2e) 14 KT Ca —5ra 75 ]

) [(LLE%) _ze/ldz (1—2)"*Py(2) Al 28 24C6F <4Er2nax>2€ FLM(L4)} >
0

2 z 2

(6.41)

Next, we consider the collinear ps || s limit described by the operator Css. The relevant term
in Eq. (6.30) reads

(Csa[I — Ss|w™ J1asFim(1,45)) . (6.42)

Following the established procedure, we compute the two contributions in Eq. (6.42) separately.
Thanks to the fact that 145 is symmetric under the exchange of p; and pa, the soft-collinear
contribution in this case is identical to Eq. (6.38). Hence, we write

[“s,b]z
4et

(ZEmax)i%

M(1—e)'(1+e)

(C54S5 Jias w™ Fum(1,4|5)) = 2Cr
(6.43)

We continue with the first term on the right-hand side of Eq. (6.42) where we need to consider

the collinear ps || P4 limit. It reads

1 1
CsyFim(1,4]5) = ¢?, x ——— Py, (2) F (1,-4), 6.44
safim(1,4[5) = g5y br e a0 (2) Fom (1, - (6.44)

9 Additional insights into the derivation of Eq. (6.40) can be found in the NLO discussion around Eq. (5.34).
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6. The NNLO computation: quark-initiated channels

where z = E4/(E4 + Es). The splitting function P, (z) can be found in Eq. (5.31). Using

Eq. (6.33) to construct the collinear limit of the function Ji45, we obtain

(Csa J1as w*Fm(1,4]5))

a 52; r 1+ 31— —2¢
- ek / [dps]qz% TfKus+ Ca it & r(i)— 2<e) 2y (6.45)

1 1
X P.(z) x F 1,--4 .
paps ) LM( z >>

Integration over the angular phase space of the gluon g(ps) is identical to the previous case; the

result can be borrowed from Eq. (6.37). To compute the energy integral over Es we follow the
NLO discussion in Section 5.2. We solve z = E4/ (E4 + Es) for Es and parameterize the gluon
energy as Es = E4(1 — z)/z. Furthermore, we rescale the four-momentum of a quark g(p4) as
pa — z - ps. Additional details can be found in the discussion of the NLO QCD case starting at
Eq. (5.45). With these manipulations we re-write Eq. (6.45) as

(Cs4 Juas w*Fin(1,415)) 21— z) Py (2)

(E.27) 2Ck (6.46)
: [46 7]

r’(1—e) _. (1 —e)F(1+¢) —de
X < [2Cp WU“ Ky +Ca 2T (1~ 3¢) ] (2E4) 74 PLM(1,4)>.

Together with the soft-collinear contribution Eq. (6.43) we obtain

(Cs4[1 = Ss] Juas w*Fm(1,415))

["(‘:]2 < {zc Gzil—_zg > s Kig +Ca <r4(12r_(f )_r(31€)+ 2 )]

A2 /12)-2€ _ (42 /12)- 4E2\ %
% [ZC ( max/‘u) e ( 4/‘11) z),qq ( ‘u > :|FLM(1/4)>‘

(6.47)

Finally, we combine everything and find the following result for the double-soft regulated

single-soft subtraction term
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6.3. Single-unresolved collinear subtraction terms

(Se[1— $]Fim(1,4]5,6)) = Y (O, Juas wFrn(1,4]5))
ic{1,4}
[as]? 2(1-e) _, T4(1—€e)T(1+e)
& < {‘ZCF T(1—2¢) Tt K~ 4 T 5ra 5 }

X {2CF<(4E‘%/‘MZ)_26 — (4B /1?) % n (4E3/p?) % — (4E12nax/,uz)_2€>

R 1,4
4e 4e wm(1,4)

AF2\ % AF2\ % Fiv(z-1,4
+’)’§3 ( “1/124> FLM(1/4> - <,‘1421> / dz qu,R4(Z)LM(Z)}> .

0

(6.48)

In Eq. (6.48) we introduced the following generalized splitting function

(1 _ Z)—ne

] —Cr(1—2z) ™ [(1+2z)+e(1-2)]. (6.49)
¥

NNLO cross sections receive contributions from final states with at most two additional
partons, each of which can become soft and/or collinear. It follows that the highest pole in € is
1/€*. In the subtraction term Eq. (6.48) the double-soft singularity is regularized. Hence, we
expect the highest pole in Eq. (6.48) to be 1/¢€. It is easy to see that this is indeed the case.

The only singularities in Eq. (6.48) are explicit poles in 1/¢. In the first term on the right-hand
side of Eq. (6.48) the operator O') regulates singularities of the NLO function Fim(1,4|5),
it is defined in Eq. (5.15). The 1/¢€ poles that appear in other contributions to Eq. (6.48) will
cancel with similar 1/€ poles from double-virtual, real-virtual and collinear renormalization
contributions. Note that this implies that the 1/¢ poles that are present in the factor J145 will
cancel with similar contributions that multiply regulated NLO differential cross section.

6.3. Single-unresolved collinear subtraction terms

We continue with the study of single-collinear subtraction terms in Eq. (6.17) where one of the
two gluons becomes collinear to another parton. We distinguish two such terms. In the first
one a gluon becomes collinear to either initial of final state quark (third term on the right-hand
side of Eq. (6.17)). It reads

> ([1-8][1- 56 [Csiw™™ + Cauo¥5 4 (60)Cs; + 61 Co; )™
ije{14} (6.50)
P x(dps]ldpsl (1, 4]5,6) ).

The second one is the contribution where the two gluons become collinear to each other (fourth
term on the right-hand side of Eq. (6.17)). It reads

Y < [1—$][1—Sq] [0@)(:56 + 9<d>c56} [dps][dpe|w S Fa(1,4] 5,6)> . (6.51)
ie{1,4}
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6. The NNLO computation: quark-initiated channels

We consider the different contributions to Eq. (6.50) and Eq. (6.51) individually, starting with
the initial-state splittings (i = 1 in Eq. (6.50)) in Section 6.3.1. We then discuss the final-state
splitting (i = 4 in Eq. (6.50)) in Section 6.3.2. Finally, we discuss the gluon splitting Eq. (6.51) in
Section 6.3.3.

6.3.1. Initial-state emission

We begin with discussing how to extract the 1/¢€ poles from the subtraction term

<[l — $] [I — 56] [C51w51'64 + C61w54’61 + (9(”)(:51 + Q(C) C61>w51,61}

(6.52)
x [dps][dpe| Fm(1, 4|5, 6)> )

where one of the two gluons is collinear to the initial-state quark g(p1 ). First, we note thatin a
collinear limit CijPLM(1,4 |5,6), withi € {5,6} and j € {1,4}, no dependence on the sum of
gluon energies Es + E¢ remains anywhere. Hence, after taking a limit where one of the gluons
becomes collinear to an external quark, the double-soft operator $ can be replaced with S5S¢.
This feature leads to simplifications in Eq. (6.52). Indeed, we find

S[I— 56| CiiFim(1,4|5,6) = [S5S6 — S556) CijFim(1,4]5,6) =0, (6.53)

which means that we can omit all terms that involve the $ operator in Eq. (6.52). We further
note that, double-collinear operators at NNLO are defined in such a way that they also act on

the phase space volume element. These limits are discussed in Appendix F.

51,64 54,61

We continue with the terms that contain double-collinear partitions w>"** and w

([1 = 8] | Co1w™™® + Corw™* | [dps) [dpe] Fin(1,415,6) ) (6.54)

Since collinear singularities factorize on external lines, this subtraction term is identical to the
case of colour-singlet production. We refer to the discussion of this process in Ref. [37] for more
details.! Both the collinear limits of Fim(1,415,6) and the integration over momentum of the
unresolved gluon follows the NLO discussion in Section 5.2 with additional constraints on its

energy. We obtain

< [I — 56} C51w51'64 [dp5] [dp6]FLM(1/4 ‘ 5, 6)>

1
=— [D:] /dz (1—2) > Py(z) <9(E1(1 —z) — Eg) x w§c(2E1) 72 [1 — 54 (6.55)
0

% PLM(Z . 1,4‘6)>
Z 7

10Note that in Ref. [37] the energy cut-off Emax was identified with the partonic center-of-mass energy. However,
for the contribution in question, this is not relevant because for initial-state emission energy integration is bound
by the energy-momentum conservation in the case of Cs5; and the energy ordering condition Eg < Es in the case
of C61 .
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6.3. Single-unresolved collinear subtraction terms

and

([I— S6] Cerw™*®! [dps|[dpe] FLm(1,4]5,6))

1
_ ] /dz (1—2) %Py(z) <9(Es —Ei(1-2)) x (2E1) 7% 54FLM(Z14’5)> (6.56)
€ 0 z
_ [“se]ch x (2Es) 2% (w3 Fin(1,4]5)),

where w3} and w§: are the single collinear limits of the partition functions

54 54,61 64 51,64
wy. = lim w>™*",  wi = lim w>**. (6.57)

psllpa psllipa

Explicit expressions for w3¢ and w§: can be found in Eq. (A.14). We keep the soft subtraction
implicit in Eq. (6.55) to enable easier extraction of remaining NLO singularities.

We combine Egs. (6.55, 6.56) and simplify the result. To this end, we rename 6 — 5 in
Eq. (6.55) and insert I = [I — Ss| + S5 in Eq. (6.56). We obtain!

{[I— Se] [c51w51f64 + C61w54'61} [dps][dpe]FLm(1,415,6))

1
_ [“s,b] « /dZ (1 N Z)_2€qu(2)<wdc(25 ) [1 . 55] FLM(Z ~Zl,4. | 5)>
0

€
(6.58)

FLM<Z . 1,4|5)>

zZ

1
B [a:b] x /dz (1- Z)Zepqq(z)<wg%:(2El)269(]55 —E1(1-2))5s
0

[D‘s,b] Cr
62

x (w3e(2E5) " *Fm(1,4]5)),

where we used 0(E; (1 —z) — E5) +6(Es — E1 (1 — z)) = 1. In the second term on the right-hand
side of Eq. (6.58) gluon g(ps) is taken in the soft limit. In this limit the gluon g(ps) decouples
from the function F y; and we can integrate over [dps| analytically. We obtain

/[dpzs]e(Es —E1(1—2)) w3 x S5 Fm(z-1,4]5)

Z
1 Fim(z-1,4
—2Cr g2, | dpslo(Es — Ex(1-2)) wit x o x FH (L8 g5
’ Ez  pi5p45 z
o Coe oe _oe1 FiM(z-1,4
_ch[ 4 Wae)s, [(2Emax) % = (2E1) (1 - 2) 2]LM(Z).

We note that we introduced the following notation to define the angular integral in Eq. (6.59)

(d-1)
272 [ 1 day 014
(0), = (- 3T = 0(0s), (6.60)
€ |8m°T 1 —€) 2( 271 ) 015045
U Note that in order to combine the terms it is crucial that the partition functions w5104 and w**01 are defined in

54,61

such a way that w°!®* becomes w upon exchanging ps with pg.
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6. The NNLO computation: quark-initiated channels

where the function O has a residual dependence on the partition functions. The angular
integral of the partition function (w3¢) 5. 18 computed in Appendix G. In Eq. (6.59) this function
multiplies 1/€ poles and it seems that this implies a dependence of the 1/€ poles on the chosen
partition function w*%*. We want to emphasize that this is not the case. We refer to the
discussion in Appendix H where we demonstrate this explicitly.

We use Eq. (6.59) to rewrite Eq. (6.58) in the following way

([1- 5} [1 — ] [c51w51f64 + Cero™! | [dps][dpe] Fiau(1,45,6))

/ dz (1—2) Ry (2 ><wdc<2E )21~ 5] FLM<zzl4|5>>

_2Cr [“”’ / dz (1—2) %Py, (z) (6.61)

X < [(ZEmax)_ze — (ZEl)_ZE(l — Z)—Ze] <w§é>s FLM(ZL4)>
’ )

z

e _
- Si L x (wt(2E5) 2 Fm(1,415)) .
The first and the last terms on the right-hand side of Eq. (6.61) still contain unregulated
singularities that arise when gluon g(ps) becomes soft or collinear. We need to regulate them,
but before we do so, it is useful to combine Eq. (6.61) with the contributions from the triple-

collinear partition w>16!

in Eq. (6.52). We discuss the computation of these contributions
below.

The relevant triple-collinear contributions are defined as
([1— 8] [1— 8] [0©)Cs1 +61)Cer | [dps][dps] ™" Fuwi(1,4]5,6) ). (6.62)

In addition to the partition functions w®®!, the contribution Eq. (6.62) depends on sectors (a)
and (c) that correspond to regions in the angular phase space of gluons g(ps) and g(ps) with
definite double-collinear singularities. The different phase space regions are shown in Fig. 6.3.
The double-collinear limits that appear in Eq. (6.62) coincide with the double-collinear limits
in Eq. (6.54). The integration over the unresolved phase space is (almost) identical. The only
difference is that instead of integrating over the full angular phase space we only integrate over

a given sector. For instance for sector (a) we find

(6.63)

- _2:6 {s;rg@;] (ﬁ)i = (% h (CSI[dQS])pl'
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6.3. Single-unresolved collinear subtraction terms

We obtain a similar result for sector (c)

© 1 _ ms) 1
/ (CarldQe])8" T = [ (CaaldOe])6 (’716_55>p16 (6.64)
_(ms) ! |
- (%) /(C51[d05]) 01

Another difference to the discussion of double-collinear partitions in Eq. (6.54) is that the limits

of the partition functions are now given by

wd! = lim w”®, wdl = lim w°o!, (6.65)

psllp1 psllp1

The result for the triple-collinear partition Eq. (6.62) can therefore be obtained from the result
for the double-collinear partition Eq. (6.61) with the replacement

—€
wi - wy (pf) - (6.66)

Combining the results of this procedure with Eq. (6.61), we find an expression for Eq. (6.52)

(11— 8)[1 = 56 [ C10™ + Cro™ + (6 Cs1 + 61 Cy ) ™|

x [dPS] [dpelFin(1,45,6))
-l /d 2) Pyy(= )<<wiﬁ+wf§ (215)_€><2E1)—2€[1_55]W>

/dz 2) % Pyy(2) ((ZEmax)*Ze — (2E;)7%(1 - Z)—2e>

X <<A61>55 PLM(ZZ. & >5

K e —2e
- b { (ot (5) ) B R0

(6.67)

In writing Eq. (6.67) we introduced the function

—€
Aot = w3t + (pf) w3l (6.68)

The first and the last terms on the right-hand side of Eq. (6.67) still contain unregulated collinear
and soft singularities. We discuss how to extract them in the next section.

Fully-regulated initial-state emission

In this section we regulate remaining singularities that are present in the NLO-like single real
emission contribution in the first and the last term on the right-hand side of Eq. (6.67). To
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6. The NNLO computation: quark-initiated channels

regulate the NLO singularities we follow the discussion in Chapter 5. The collinear limits of

2461 and wp! = Cg wl0! possess all the properties

the NNLO partition functions w3: = Cg1 w

that valid NLO partition functions should have. Therefore, they provide a proper partitioning

of NLO collinear singularities and allow us to deal with one collinear singularity at a time.
We begin our discussion with the last term on the right-hand side of Eq. (6.67). In analogy to

the NLO discussion, c.f. Eq. (5.14), we write

((witu (82) ) ) *Ru(1415))

= (s (wit v (52) ) 2B3) *Rul1419))
(11 s5] (Cnwt+Ca o (2) ) (2B *Fin(1,415))
+ (o wit+ 0% o (22) ] s *Ru(1419)) -

1)

(6.69)

The O] , operators are defined in Eq. (5.15). Computation of the subtraction terms is straight-
forward. For the soft subtraction term we obtain

/ [dps] S (wdc—i—wtc (%) ) (2Es) " Fum(1,4/5)

5 P dE dol —e

Dace gl x 27 [ g x [ sty <w3ﬁ+w?§ (22) )FLM(1,4)
' 5

2(27T)d_1 p15p45 4 (6 70)
B oo 2% [ 1 ()
T 4e N e |8m2T(1—e)| \"o/%

[“s,b]

=2C
Fye2

(2Emax) *(A61)s.Fm(1,4),

where Ag; was defined in Eq. (6.68). In case of the soft-regulated collinear subtraction term an
additional factor (2E5)~2¢ is present in comparison with to NLO computation. In case of the
initial-state emission an additional factor p; is present. Apart from this, the computation is
similar to the NLO one. For this reason, we will not describe it and only provide one additional
angular integral that is needed. It reads

015 €

dol p15>*€ 1 272 [ 1 (4n)f ] [26 I(1—e)l'(1-2e¢) (6.71)

22m) 1\ 4 - 8m2T(1—€)| |2 T(1-3e)
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6.3. Single-unresolved collinear subtraction terms
After following up the steps discussed in the context of the NLO computation, we find
—€
<C51 [I — 55] (%) (2E5)72€ wfcl FLM(1/4 ’ 5)>

_ _[“::,b] [22@(1 ;(el)zge; 26)] (2E1)~ /dz (1—2) *Py(z )<PLI\/[(ZZ.1'4)>(S (6.72)

R L {(zanax) e [UNCRITS

(Css [I— S5 (2Es) % w3t Fum(1,415))

= [“Z'b] Hzil_ Zeﬂv ((2E4) ™ Fm(1,4)), (6.73)
bl [P0 [ GBI )

This completes the extraction of the singularities in the last term of Eq. (6.67). Before
combining these formulas, we proceed with the extraction of the remaining singularities
in the first term on the right-hand side of Eq. (6.67). The soft singularity is already regulated

and we only have to regulate the collinear singularities. The relevant formula reads

1
0/ s (1-2) 2Ry (2)( [1 - 53] (it (42) ) o) 2 ME L))

z

1
_ / dz (1— 2) 2Py (2)
0

(6.74)
X <[1 — Ss) <C54 w3e + Co1 Wy <'OT) > (2E1)2€FLM(Z'21'4’5)>
" jdz (- Z)_ZGPW(Z)< <@nlo ol (B2) > (2151)—26FL1\4(Z'ZM‘5)>5'
0

To compute the subtraction term on the right-hand side of Eq. (6.74) we consider soft and
soft-collinear contributions separately. We begin with the soft-collinear contribution.
The soft-collinear limit is obtained from Eq. (5.27) with the replacement p; — z - p;. We find

1
C5i 55 FLM(Z -1,4 | 5) ZCF gsb X Ezp X FLM(Z 1 4.) (675)
5 Vi5

with i € {1,4}. The only dependence on z remains in the function F . Hence, we can integrate
over the unresolved phase space of the gluon ¢(ps) in full analogy with the NLO computation.
Using angular integral Eq. (6.71) for the initial-state emission and following steps that led to
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6. The NNLO computation: quark-initiated channels

Egs. (56.29, 5.42), we obtain

1

/ dz (1~ Z)_2€qu(z)<55 <c54 w3t + Cs1 wy) (’T’>_€>(2E1)—2€FU\4(Z'ZL4‘S)>
0

o 2(1 _ € _ _ 1.

2 2e/ Fim(z-1,4)
% (2Emax) % (2E1) <Z >5.

We continue with the collinear contributions to the first term on the right-hand side of
Eq. (6.74). For final-state emissions, we can re-use the NLO result in Eq. (5.51). We find

1

[z - Ry (o) witary e PE1A15))
0

> B 1
[P e [ g 67
0

X <(2E4)2€(2E1)2€w>5.

For terms that describe initial-state emissions, we need to compute

1
- R -1,4|5
/dz (1—2) % Py(z) <C51 w?! (@) LM(Z|)> . (6.78)
4 z

0
Here we need to take a bit more care since we now have to deal with convolutions of splitting
functions. The collinear limit of the cross section can be obtained from the NLO collinear limit
given in Eq. (5.30) with the replacement p; — z - p;. After straightforward manipulations, we

write it as
1 Z Fm(2-1,4)
Cst Am(z-1,415)=¢%, x —— P ()x 6.79
51 Fom( 15) = g5p orops 1\ 2 3 (6.79)
where we introduced

. zE1—E;s
Z= £ (6.80)
We solve the above equation for the energy of the unresolved gluon and obtain Es = E;(z — Z).

Integration over E5 becomes

Emax Z
/ dEsE1"2% / dz E22(z — 5)1-2% (6.81)
0 Zmin
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6.3. Single-unresolved collinear subtraction terms

with Zmin = (2E1 — Emax)/ E1. By construction Emax > Eq and z € [0,1], so that Zpyin < 0. For
values Z < 0 there is not enough energy to produce final-state particles. This implies that the
function Fp(Z - 1,4) vanishes because of the energy-momentum conserving d-function inside
it. We can therefore replace the lower integration boundary Zni, with zero, without affecting
the value of the integral as we have done previously. Using Eq. (6.71) to integrate over angular
phase space of the unresolved gluon, we obtain

zZ

[a0-ar 0 <c51 uf @)*e wmm>
0

Casp] [2°T(1 —¢)T
€ 2 1 —36

X/dz (1-2) Zquq / 2 Pyq <Z> X <FLM(Z'1'4)> .
5 Z 0 0

We can further simplify this result by integrating over z since the function F y does not depend
on it. We find

] 2E1)” (6.82)

N

/ CLZ (1—2) %P, (2) x (z— £) %P, C) - [P,?,?@Pgﬂ (2), (6.83)

where the convolution ® is defined in Eq. (5.60) and generalized splitting functions read
Pi¥(z) =z " (1 —z) %Py (2). (6.84)

The result for the integral Eq. (6.83) is given in Appendix E as an expansion in the dimensional

regularization parameter €. Upon relabeling Z — z in Egs. (6.82, 6.83), we obtain

/1 & (12 Ry(a) (ot (8) Ful 14190
0

Z
(6.85)

_ [azb] [22 r(1 ;(i)f(?; 2¢) } 2E;)- /dz P2 @ P2] (Z)<FLM(ZZ 1,4) >5.

We insert Egs. (6.70, 6.72, 6.73, 6.74, 6.76, 6.77, 6.85) into Eq. (6.69) and use the result to rewrite
the double-collinear subtraction term Eq. (6.67) as
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6. The NNLO computation: quark-initiated channels

(11— $][1 - 8¢] | Corw™ + Corw™! + (0)Cs1 +61)Cer ) ™ |

x [dps][dps]Fou(1,4]5,6))
1

- [0:] <4§>e/dz (1—2)7*Py(2) <[©Iﬁo wie + Oy wie <45>_6]

0
% PLM(Z . 1,4‘5)
z 5

—2C; [22]<[©i3>0w3‘i ) w3 <p15) ]<41522> FLM(1,4|5)>5
R ;35@5 () ()

1
X O/dz (1- z)—26qu(Z)<FLM(Z -1,4) >§

z

N [os)? [26F(1—e)1“(1—2€ ] <4E2> /d P2 & P (2 )<FLM(Z'1,4)>(S

e |2 I'(1-3e) z

) () e

2 )y —c ‘
X qu(z)< [ZCF (4Es/1%) 2€(4Emax/}l ) + rygfl <4E4> ] FLM(ZL4)>
5

2

0/1 [ <4E2) (41;321“)6 ) <4;2%>_ e ” _Z)zg] (1—2)"2P,(2)
X <<A61>55W>
 [w]?CE <4E3nax>2€ < [<A61>55 C2(1-¢) 2T(1-eI(l ;26)]FLM(1,4)>

2¢t 2 r(1- 2e) 2 TIr(1-3 5
[as)? [26T(1—€)T(1—2¢)] [4E? . Fm(z-1,4)
w2 o [ G ) /dz (-2 () (HELD)

[ ) () ),

(6.86)

We note that the result presented in Eq. (6.86) contains implicit soft poles in the splitting
functions. These poles can be conveniently extracted using plus prescriptions as soft regulators.
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6.3. Single-unresolved collinear subtraction terms

To illustrate this, consider

dz (1 —2z) " Py(z) F(z)

o

1 —ne
= /dz [2@“1_1 —Cr(1—2)*(1+z+ (1—-2)e)| F(z) (6.87)
0
1 —ne
- /dz [2CF [(1 If)z } - 2555(1 —2) = Cp(l—2) "™ (1 +z+ (1 -2z)e)| F(z),
0 +

where F(z) represent an arbitrary function that is regular at z = 1. Thanks to Eq. (6.87) we
write the splitting functions as

(1—2)"Py(z) = 2C; [(1_2)} S
+

1—-z ne (6.88)
—Cr(1—2z) "[1+z+(1—2)€].

The splitting function Eq. (6.88) contains three types of contributions: the first term on the
right-hand side is regulated using the plus prescription. The second term contains soft 1/¢
pole explicitly. The third term is finite for all z € [0, 1].

Using Eq. (6.88) in Eq. (6.86) it is straightforward to extract all 1/€ poles explicitly. Doing so,
we end up with only 1/€? poles since double-soft and single-soft singularities are regulated in
Eq. (6.86). In what follows we often define various splitting functions; they can be found in
Appendix E with all of their 1/€ poles shown explicitly.

6.3.2. Final-state emission

We now turn to the discussion of the single unresolved subtraction term

<[I — $] [I - 56] [C54w54,61 + Cou®l8* 4+ (g(a)c54 + 9(6)C64)w54,64}

(6.89)
x [dps][dpe] Fm(1, 4|5, 6)> )

where one of the two gluons g(ps) or ¢(ps) is collinear to the final-state quark q(p4). The double-
soft contribution in Eq. (6.89) vanishes, see the discussion at the beginning of Section 6.3.1. For
this reason, all terms proportional to operator $ in Eq. (6.89) can be omitted.

We begin the analysis of Eq. (6.89) by considering the following contribution from the double

collinear partition

([T — S6) Csa[dps] [dps]w** FLm(1,415,6)) - (6.90)
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6. The NNLO computation: quark-initiated channels

The required collinear limit reads

1 1
CssFinm(1,4]5,6) = ¢2, x ——— P, (z) X F <1,~4 6>, 6.91
safim(1,4[5,6) = g5 175 70 (2) X Fou| 1, - 4] (6.91)

where z = E4/(E4 + Es). Further steps are analogous to the NLO computations discussed in
Section 5.2. We remind that, as emphasized by writing the phase space measures of the two
gluons to the right of the operator Cs4 in Eq. (6.90), collinear limit of the phase space must be
taken. The only angular integral that is relevant in the collinear limit reads

1 c9 1[ 1 (4m)° Coe
/(C64[d06])p64 = 7z [WIﬂ—G)] 27, (6.92)

Following the NLO discussion and using Eq. (6.92) we obtain
< [I — 56] C54 [dp5] [d]%] 54’61PLM(1, 4 | 5, 6)>
_ "‘sb /dzz 2(1 — 2)72P, (2) (8((1 — 2)Ey — Eg)(2Es) % (6.93)

x wSL[1 — Se]Fm(1,46)),

w61
where wdc = hm~ 5[l W .

The second Contnbutlon in Eq. (6.89) that needs to be discussed is
([I = S] Coaw™**[dpe] Fim(1,4]5,6)) . (6.94)

The required limits are

1
CoaFim(1,415,6) = g2, X Py, (z) X Fim (1, — -4 \ 5) ,

P4 - Pe
CeaSeFrm(1,415,6) = 2Cr gs,b X

1 (6.95)
—— x Fm(1,415),
o - m(1,4[5)
where z = E4/ (E4 + E¢). Integration of limits in Eq. (6.95) over phase space of the gluon g(ps)

is analogous to the NLO computation discussed in Section 5.2.3. Using Eq. (6.92), we obtain

{[I — S6] Coaw®*[dps| Fim(1,415,6)) T2(1 - 2) %Py (2)

x (0(Es — (1 — z)E4) (2E4) w3 Fim(1,4 | 5)> (6.96)

14 _
— 2CF [zse'g]<wglc(2E5) ZSFLM(1,4 ’ 5)> .

To combine contributions given in Egs. (6.93, 6.96), we perform the same manipulations as in
the case of initial-state emission, see the discussion that led to Eq. (6.58). That is, we rename
6 — 5in Eq. (6.93) and insert I = [I — 55} + S5 into Eq. (6.96). The sum of Eq. (6.93) and
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6.3. Single-unresolved collinear subtraction terms
Eq. (6.96) then reads

([ - Sq] [c54w54 Ol 4 Couur®V 64} (dps][dpe] Fum(1,4]5,6))

- ["‘gb] [ZZC + m] ((2E) (1 — 53] il Fun(1,4] )
(6.97)
(1 2) Py (2) (B(Es — (1 2) Ea)(2E0) 7 S5 wlk Fow(1,45)
[‘Xs b]CF

— T<(2E5)‘2€ wi Fm(L,4(5)).

To arrive at Eq. (6.97) we used 1 = 0(Es — (1 — z)E4) + 6((1 — z) E4 — E5) and integrated over
z in the first term using Eq. (E.27). In the second term on the right-hand side of Eq. (6.97) the
gluon g(ps) must be taken in the soft limit. Since soft gluons decouple from the function F
we can integrate analytically over ps. We obtain

/[dp5] B(Es — (1— z)Eq)(2E4) 2 Ss w3l Fiy(1,4]5)

(d—1)
dEs dQ P14 _
=2C 2></70E z)Ey) X (2E4) 7% Fm(1,4
F &sp Eé+2€ ( 57 4 2 271, (d—1) P15945 wdc ( 4) LM( )
(-2 7B 660) 1 % (470)¢ 272 (131
2e € |8m2T(1—¢) c/Ss
=2Cr [2 2] (1-2)72 <wdc>5 (2E4)~* Fm(1,4), (6.98)

where we used Eq. (5.7) to extract the soft limit. The remaining z integration is performed with
the help of the following equation

/ dzz 2(1—z) % P, (z) 2 - [24? +92 } (6.99)

Finally, we use the results Egs. (6.98, 6.99) in Eq. (6.97), and write double-collinear contributions
to the subtraction term Eq. (6.89) as

< [I — S] [1 — 56] [C54w54'61 + C64w51'64} [dp5] [dpﬁ]FLM(l,él | 5, 6)>

= 2cp 1t (2 o) (o Guil), R0, 9),
(6.100)
[“Zb] [22CF +v ]((2154)25[1 — Ss) w3k Fm(1,4]5))

—2Cr [2 2]<(2E )72 w3l Fv(1,4]5)).

At this point we do not attempt to extract remaining NLO singularities in the second and
the third term on the right-hand side of Eq. (6.100). We find it convenient to do this after the
calculation of the contributions from the triple collinear partitions in Eq. (6.89), which depend
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6. The NNLO computation: quark-initiated channels

54,64

on the partition function w>*°*. The triple-collinear contribution reads

< [1—$][I- S| [94(”)@4 T 9§C)C64] [dps][dps] w4 Fra(1,4]5, 6)> . (6.101)

In addition to the partition functions wd4 64

we now have to consider angular sectors (a) and
(c). As discussed in the previous section, integration over phase space of unresolved gluons in
triple-collinear contributions is almost identical to the integration in case of double-collinear
contributions discussed earlier. The differences include restrictions of angular integrals to a
given sector and the presence of new limits of the partition functions. Accounting for these
differences, we obtain the triple-collinear contribution Eq. (6.101) from the double-collinear

contribution Eq. (6.100) by a simple replacement

—€
Wl (%) w3 (6.102)
We define
—€
Agy = 3§+("4ﬂ) w3, (6.103)

and write the full result as

<[1 - *S] [1 - 56] [C547/054'61 + C64w51'64 + <9§a)C54 + Qic)C@;) w54'64}

x [dps][dpe]Fim(1,4]5,6))

[Dé ’b]Z 2CF _
= 2Cr 2563 I +’y§§ ((2E4) 4 (Nea)ss Fim(1,4));
lasp] (2CF _2e 45\ €
+T e ‘|"Y§§ (2Ey) 2 [1— Ss5] wgi*’ (p4 ) wt5c4 Fim(1,4(5)
[0 “2¢ |, 51 P45\ 7€ 54
— 202 (2Es) 7 |wit + (—4 ) w3 | Fv(1,4]5) ).

(6.104)

Final-state emission fully regulated

In this section we extract the remaining 1/¢ singularities that are present in the NLO-like
single real emission contributions in the second and the third term on the right-hand side of
Eq. (6.104). We begin with the latter. It reads

[‘Xs,b]CF

—€2<<2E5)2€ [wii +wpt (22) _1 Fu(1,4] 5)> . (6.105)
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6.3. Single-unresolved collinear subtraction terms

Apart from the 1 <+ 4 replacement in the term in the square brackets in Eq. (6.105), it is identical

to a similar term in Eq. (6.69). Following the discussion around Eq. (6.69), we write

(oot (29 )
<s5 (wdc +wd ("4&) ) (2E5) 2 Fm(1,4] 5)>

+ <[1 — S5 (Q—,1 w3l + Csy w3 (pf) e) (2E5) 2 Fia(1, 4| 5)>

+ < |:@nlo wdc + @nlo (p:f) €:| (2E5>72€FLM(L4 ‘ 5)> : (6106)
é

Computation of the subtraction terms in Eq. (6.106) is analogous to the previously discussed
case of the initial-state emission, see Section 6.3.1. The only new element is the factor (p45/4) ¢

Repeating the calculation that led to Eq. (6.70) we find the soft subtraction term

<55 <wdc + ! (pf) ) (2E5)~% Fim(1,4] 5)>

Kg _
—2Cr 24 (2Bm) *(Be)s (1)) |
1)

(6.107)

and, in analogy to Egs. (6.72, 6.73), we obtain the collinear subtraction terms. They read

<C51 [I — 55] (2E5) wdc FLM<1 4 ‘ 5)>

o 2(1 — ; :
= Zb] H(ﬁl— 23] (282) 7 0/ dz (1 —Z)4€qu(2)<FLM(ZZ 1'4)> 5 (6.108)
o 2(1 —
- 26¢ Bl T 2 (Fia(1,4)s,

<c54 [1— S5] (2E5) % (%) w3 Fm(l, 4\5)>

— [D‘Zb] |:22€r(1 ;(i)f(?jL; 26):| 733 <(2E4)74€PLM(1,4)>5 (6.109)
[asp] [2°T(1—€)T(1—2€)] /[ (2Emax) % — (2E4) %
—2Cr e” [2 T(1 - 3e) ] < { I 4 } pLM(1,4)>5.

We continue with the discussion of the second term on the right-hand side of Eq. (6.104). The

soft singularity is already regulated. To regulate remaining collinear singularities we write

<(2E4)2€[1 — Ss] [wii + woe (pf)e] Fm(1,4] 5)>
= <(2E4>—2€[1—ss] [cm wit+Css it (B2) ] PLM<1,4\5)> (6.110)

+< [@nlo W +@n10 (pf) j (2E4)2€FLM(1,4]5)>_
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6. The NNLO computation: quark-initiated channels

The computation of the subtraction terms is straightforward if we follow the NLO discussion
in Section 5.2. We obtain

((2E4)7*Cs1 [I — Ss]wgc Fum(1,415)) = —[“j;b] [ ((1_63] (2E;)
/dz <2CF[ 1_Z> T T (1_2)_2€qu,reg(z)> <(2E4)_2€W> (6.111)

3
2(1 € —2e __ —2¢
o ZCF [Oézb] |:II:(§1_ 2€§:| |:<2Emax) 5 (2E1) :| <(2E4)_26FLM(1/ 4)>5 ,

<(2E4)_2€C54 [1— Ss] (%) w3 FLM(214\5)> _ o] [2;(1 —e)r(l- Ze)}

4 z € 1"(1 _ 36)
X ’)/3{?<(2E4)4€FU\/I(ZZ"1/4)>5 L 2Cs [oces] [22€r(1 ;(el)i(%; 2@} o112
—2e _ —2e¢ .
% <<2E4)2€ |:(2Emax) 5 (2E4) :| FLM(ZZ 1,4) >(5 ‘

Putting everything together we obtain a fully regulated version of the subtraction term in
Eq. (6.104). It reads

< [I — 55] [I — 56] [C54w54'61 + C64w51'64 -+ (Qia)C54 + QEC)C64)ZU54’64}

x [dps)(dpelFim(1,415,6) )

K 4E2/ 2\—€ __ 4E2/ 2\—€ 4E2 —€
= (oo BRI BRI gz (BF) ] ot 05 (%) o]

X FLM(1/4 ’ 5)>
é

[ ] 4E2..\ ° (4E3/ %)~ — (4Eqan /1)~ € 4E3\ ¢
yz 2Cr : e +7?]§ 724

?(1—€) 2°T(1—¢€)T(1—2€)
% [<A64>55 T T(1—2) 2 TI(1-3€) } FLM(1’4)>5
—2¢€

S E e[ sl (GR) ),
R (e (PG () o),
RS GR) o

2CF 22 4Ei _ ZCF 4E% \—2¢ FLM<Z-1,4)
([ (F) -Z(F) o],

(6.113)
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6.3. Single-unresolved collinear subtraction terms

Although it is not immediately apparent, the above equation contains at most 1/€? poles after

replacing the splitting functions with regulated versions that given in Appendix E.

6.3.3. Double-collinear Csq sectors

We continue with the last missing contribution to the single-unresolved subtraction terms

< [I — $] [1 — Sé] [Gi(b)C% -+ Gi(d)C%] [dp5] [dp(,]ZUSi’6iFLM(1,4 | 5, 6)> . (6.114)
ic{1,4}

We note that the collinear partons are always in the final state, in contrast to the scenarios
discussed in the previous two subsections, where the limits involved initial and final state
contributions. Hence, the double-collinear s || pg limit and the integration over the phase
space of the unresolved gluon is identical for the initial state (i = 1) and final state (i = 4)
partitions that contribute to Eq. (6.114).

For definiteness we discuss the partition 51, 61 and focus on sector (b) in what follows. The
required double-collinear limit is given by

CseFim(1,4]5,6)
(6.115)

= &%, X Pi (2) Fum(1,415+6) + P (2) K11 Fly (1,4[54+6)]

Ps - Pe [
where z = Es/(Es + Eg), so that gluon g(ps) becomes unresolved.!? We will refer to the
term in Eq. (6.115) that contains x| ,x 1vF 4 (1,415 + 6) as the “spin-correlated” contribution.
The last argument of the functions F and Fy; in Eq (6.115) refers to an on-shell gluon that
carries four-momentum ps¢ = (E5 + Eg) - 15 where n5 = ps ¥ /Es. The function F{‘K,[ (1,4|5+6)
describes the single-real emission contribution where the polarization vector of a gluon g(pse)
is removed from the matrix element. It is defined by the equation

Fm(1,4]5) = Z et (ps)el” (ps)Flyy (1,415) , (6.117)

where S/P\l (ps) is the polarization vector of a gluon with momentum ps and the sum over A has do
be understood in d dimensions. Hence, upon contracting F/y, (1,4 | 5) with the (d-dimensional)

metric tensor g, we obtain

—guw Fi\(1,4]5) = Fm(1,4]5). (6.118)

12Note that this is just a choice. Equivalently we could think about the gluon g(ps) that becomes unresolved. In
this case we have to choose z = E5/(Es + E¢) — E¢/(Es + E¢) = 1 — z. The splitting functions that appear in
Eq. (6.115) are invariant under this transformation

PR (1-2) =P (2), Ph(l—z)=PLz). (6.116)

65



6. The NNLO computation: quark-initiated channels

The splitting functions in Eq. (6.115) read

z +1—z
1—2z z

Pg(g) (z) =2Ca ( ) , Pé%(z) =4Cs(1—€e)z(1-2), (6.119)

where C4 = 3 is the relevant colour factor. The (normalized) vector x| =k / —ki in the
limit Eq. (6.115) is defined by the Sudakov decomposition of pe in terms of ps

Pe = aps+ Bps+ ki, (6.120)

where p5 = (E5, —ﬁ5).
We begin with the integration over the unresolved phase space in the second term on the
right-hand side of Eq. (6.115). The relevant contribution reads

Sep / [C56[dr75] [dl%]@l(b)] 0(Es — Ee)
1 (6.121)
x [I—$][I—Se] x M13;5,(2) X wie K1 k1ol (1,454 6)

where we introduced the notation wj, = lim,,, |, w*"°'. We find two factors in the integrand in
Eq. (6.121) that depend on the direction of the momentum ps. First, there is a factor 1/ (ps - ps)
that contains the collinear s || ps singularity. It only depends on the component of pe in the
direction of ps. Second, there is a tensor «; , , that only depends on components of ps trans-
verse to ps. These features allow us to average over directions of Kf[, if an appropriate phase
space parametrization is used. A comprehensive discussion of the phase space parametrization
that we employ and that has this property is given in Appendix F. Using that parametrization
and integrating over directions of the momentum ps, we obtain'?

tc

() [I’(l—e)F(l—i—Ze)} L [ a0 (Pls)_€< _@)6 .

2e I'(l1+e) 2(2m)d-1 \ 2 2
Emax EmaX

x [ dEsEY* [ dEGE}*6(Es — Eo)[1— ][I - S4] (6.122)
0 0
Pye(2)

1
E.E. [2FLM(1,4 |5+6) +eryr Fy (1,415 + 6)] ,

where rﬁp

is a vector that appears after averaging over directions of K’f. The explicit expression
for this vector can also be found in Appendix F.3.
We now consider the contribution of the first term on the right-hand side of Eq. (6.115) to

the subtraction term. In this term the dependence on the direction of momentum ps factorizes

13 A detailed discussion of the steps that lead to Eq. (6.122) is given in Appendix E.3.
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6.3. Single-unresolved collinear subtraction terms

entirely from the function F y and the angular integration becomes straightforward. We obtain

& / [C56[dr75][dr76]91(b)]

x [1—$][I - Se] x I;%ng) (z) x wi Fim(1,4 |5+ 6)
s p] [T(1 —€)T(1 +2¢) P15\ "€ (1 P15\ 1 (6.123)
2¢ T(1+e) % /[d”5] (7) (1 7) Wie
Emax (O)
Py’ (z
% / dE6 Eé_Zee(E5 — E6) [I — S} [I — S6:| %ié6)
0

Fim(1,4]5+6).

We use Egs. (6.122, 6.123) and write Eq. (6.121) as follows

< [1— $][1— S6]6\") Css[dps] [dpe)w™ ' Fy(1,4]5, 6)>
__led[ra-ora 2] g, 60y (122

2¢ I'(1+e¢) 2 2 (6.124)
EmaX

x / dE, ES120(Es — Eq) [I — $][1 — S| Ps6(1,4,5,6).
0

In Eq. (6.124) we introduced

E
Pse(1,4,5,6) = Ef [Pyg(z,€)FLm(1,4]5+6) + € Pyg(z) i riVFlyy (1,45 +6)],  (6.125)

where z = E5/(Es + E¢) and

1—z+ z
1—2z

1
Peg(z,€) = P (2) + =P (z) = 2Ca <

2°88 +z(1-2)(1 —e)) : (6.126)

Before continuing with the E¢ integration, we comment on the computation of the contribu-
tion of sector (d) in which gluons g(ps) and g(pe) switch their roles. In the angular phase space
this is accounted for by a minor change in the parametrization, see Appendix F. The integration
over the angular phase space of the unresolved gluon turns out to be identical to what we have
discussed in the context of sector (b). The only difference is the energy ordering that becomes
8(E¢ — Es), so that upon combining the contribution of sector (d) with the contribution of sector
(b), the energy ordering E¢ < Es in Eq. (6.124) disappears and we obtain

< [1—$][1—S4] [91(”) T 91(‘“} Cse[dps] [dpe]w™ S Fa(1, 4 | 5,6)>

Emax

_ [as] P15\ ¢ P15\ 1 —1-2¢ 6.127
= 5N [laps) (757) T (1-55) wie [ aEgE; (6.127)
0

x [I—$][I— S¢]Pss(1,4,5,6).
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6. The NNLO computation: quark-initiated channels

In Eq. (6.127) we defined

[(1—¢€)T(1+2¢)

Ne = —""Fn1¢

(6.128)

We now discuss how to integrate over Eg in Eq. (6.127). Because of the operator [I — $][I —
56} we need to consider four terms with different soft limits of the function Ps¢(1,4,5,6). The
required limits are discussed in Appendix C. The two limits that include single-soft operator S¢

read

SePs6(1,4,5,6) =2Ca Fim(1,4(5),

(6.129)
$S6Ps6(1,4,5,6) =2Ca SsFrm(1,415) .
Thanks to the above equations we can write
[I - $]S6 Pss(1,4,5,6) = 2Ca[I — Ss5) Fum(1,415). (6.130)

Finally we also need the double-soft $ limit of the function Ps¢(1,4,5,6). Note that the depen-
dence of the function F \; on energies Es and Eg reads Fiap(1,4 |54 6) = Fum(1,4 | (Es + Eg) - 115).
Hence, taking the double-soft limit corresponds to the limit Es + Es — 0. To emphasize this we
write S5 = $. As we will see later it is convenient to write

rﬁ)r(ul) _ w)r(vn +8w] — S, (6.131)

in the second term on the right-hand side of Eq. (6.125).
We contract Eq. (6.131) with F/y,(1,4|5+ 6) using Eq. (6.118) and write the double-soft

contribution as

[I— $]Ps6(1,4,5,6) = EZ [Pys(z,€) + € Pig(2)| [1 = Sss] Fum(1,4]5 +6)

E
e g Pl [rr) + 8] [1 = Sso] i (1,415 +6)]

(6.132)

Combining Eq. (6.132) with contributions in Eq. (6.130) we obtain

[I—S][I— Se]Ps6(1,4,5,6)

_ gz [ng(z,e) +e Png(z)} [ — Ss6) Fum(1,4|5 + 6)

E (6.133)
te Ef P (@) [rr + gy | [T — Sse] Fiaa(1,415+6)

—2Cys [I—Ss5]Fm(1,4]5).

We consider the three terms on the right-hand side of Eq. (6.133) separately, starting with the
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6.3. Single-unresolved collinear subtraction terms

FEs z
A A
P L 1
- ! 1) (11) i
3 o s °0 Frna wmnn > 56

Fig. 6.4.: Energy phase in the E5-Eg-plane (left) and after the substitution Eq. (6.135) in the Es¢-z-plane
(right) where Esq = E5 + Eg and z = E5/(Es + Eg). The energy phase space after the substitution is
split into two regions (I) and (II) that are integrated separately, see Eq. (6.136).

last one. Inserting it into Eq. (6.127) we find

Emax
! —€ € —1-
catgin [l (%) " (1=5)" [ az s 2= vk el

(6.134)

[s 0] P15\ € P15\ € _2¢
= —Ca 55 Ne (7) (1—7> Ex2 [I—Ss] wh Fm(1,4]5) ),

where we used Eq. (G.1) for the integration over E. We keep the operator [I — S5| unexpanded
to facilitate the extraction of the collinear singularities from this expression.

We continue with the discussion of the first and the second terms on the right-hand side of
Eq. (6.133). We would like to integrate over energies of the unresolved gluon(s). However, we
need to keep Es + E¢ fixed, but we can allow for arbitrary E5 and E¢ otherwise. To accomplish
this, we introduce Ess = E5 + Eg and z = E5/ Esq and write energies E;_5 ¢ as

E5 = ZE56, E6 = (1 — Z)E56 . (6135)

The integration domain over Es and Eg splits into two regions (see Fig. 6.4)

Emax  Emax Emax 1 2Epmax g
/ dEs / dEs — / dEsg E56/dZ—|— / dEse Esg / dz . (6.136)
0 0 0 0 Erox 1— Epax

= (D = (1)

We begin with the first term on the right-hand side of Eq. (6.133). Using the parametrization
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6. The NNLO computation: quark-initiated channels
Eq. (6.135) we write the contribution of region (I) as
‘Xs b P15 € P15\ € “1-2¢ . Ee L
— N, / ( - 7) dEg E; ' 7% X Es [ng(z,e) —|—eng(z)}
[[ — 556] wtc FLM(114 | 5+ 6)

1
= —MN / dzz %(1—2z)"* {ng(z,e) + ePgJé(z)} (6.137)

E max

(d-1)
dQ -
s (5) (-5) / dEss ELg *[1 — Ss6] wh Fua(1,4]5+6).

We rename Ess — Es, and rewrite the above equation as follows

["‘Ze]N [2CA+7 K(pzw)_( —";5) Es2 wl[1— Ss|Fum(l, 4\5)> (6.138)

The anomalous dimension 7§§ reads'*

V2 = /dz [zze(l — 2) % [Peg(z,€) + €PL (2)] — 2Ca (Z_ze G Z)_k)] . (6.139)
88 = 88\ & 88 z 1_2
An expansion of 'y§§ in € can be found in Appendix E.6.
We now discuss integration over region (IT). In this region Es¢ > Emax. Hence as long as
the remaining gluon is resolved, the integrand vanishes because of the energy-momentum
conservation. This implies that in region (II) we only have to consider terms that involve a

single-soft limit where the gluon g¢(ps¢) becomes unresolved. We find

Emax

e ) ' P15\ € (4 P15\€ —1-2¢Es 1
SN [laps] (57) T (1-52)" [ aBs B [Pulze) +e P(a)]
()
X wtc [I 556] FLM(l 4 | 54 6)

[as,]82, dol" P14 P15 € P15\ €
= 2C; 2SN x [ 25 L(P) (1P
i € 2(27‘()(d_1) P15 P45 @e ( ) ( )

2¢ 2 2 (6.140)
2E L
X / dEse E5g % / dzz (1 —2z)"% [ng(z,e) + ePng(z)] Fim(1,4)
Emax ]7@

— _2C; [Dés b] [2265 ( )](ZEmaX)_4€<A1136>55 PLM(114)/

4Note that in contrast to the anomalous dimension for quark splitting Eq. (5.50) the z integration over Pgq(z, €) in
Eq. (6.139) is divergent at the upper and lower integration bound. This is so because this functions contain both
soft singularities for Es — 0 or Eg — 0 corresponding to z — 0 and z — 1, respectively.
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6.3. Single-unresolved collinear subtraction terms

where we used Eq. (6.60) to integrate over directions of ps and defined

Ase = (pf) N (1—%>€, (6.141)

to write the result in a compact form. We also introduced a new quantity J¢(€) in Eq. (6.140). It
is defined as

Emax

2Emax Ese
E4e
() max / dEss Ec 14 / dzz 2 (1-2) 7% [Py(z,e) +ePL(z)] - (6142)
Emax 1 Fax

The expansion of d,(€) in € can be found in Appendix E.7. We combine contributions of region
(I) Eq. (6.137) and region (II) Eq. (6.140) and obtain the following result

R S () )

E max

_1-2¢E
X 0/ dEg Eg '™ Ef [ng(z,e) +€Png(Z)} [I— Ss6] Fm(1,4]5+6) 6143
-t [0z ( () (1- 5 B - sd119)
—2Cr [ ] 22664 (€)] (2Emax) ¢ (Alg)ss Fim(1,4) .

We now discuss the second term on the right-hand side of Eq. (6.133), which is the spin-
correlated contribution. It is given by the contribution of the second term on the right-hand side
of Eq. (6.133) to Eq. (6.127). Integration over phase space region (I) is identical to the previous
discussion. Using Eq. (6.137), we find

Emax

[“Sb N/ ‘”5 h 915 /dE E-172% x [ePl( )}

6.144
x M +g,w1 (1 Sso) wl F%(1,4]5+6) (6.144)

= e ((5) (0 ) B ks I+ s B L419)),

where we renamed Ess — Es. In Eq. (6.144) we used the anomalous dimension defined as

Ve = / dz z % (1 —z) > Pyy(z) . (6.145)

An expansion of 'ygig’n in € can be found in Appendix E.6.
We continue with the integration over region (II) defined in Eq. (6.136). As discussed
previously, in this region only the term with the single-soft operator contributes. The soft limit
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6. The NNLO computation: quark-initiated channels
is given by

Sse (1)1 + guv] Flp(1,4 |5+ 6)

B o ) (6.146)
- (,014 P15( P15) — 015) x Fim(1,4).
2EZ P45 P15035(2 — p15)

This limit is particular because it depends on the chosen phase space parametrization through
vector r;,l ). The derivation of Eq. (6.146) is discussed in Appendix C. However, pole cancellation
should happen independent of the phase-space parametrization. We can verify this by noticing
that the collinear Cs; limit of Eq. (6.146)1°

_ _ 2
12 (Pl4 P51 —pss) —pas)” i (6.147)
p45 P15P45(2 Plé) 5[11 p14

is finite. Note that in region (II) no soft singularity is present by construction since Es¢ > Emay,
see Fig. 6.4. Hence, there are no other 1/¢ factors in this contribution, so that this subtraction
term only contributes to the finite part in the € expansion. The phase space parametrization
dependence of the finite part of the subtraction counterterm is not a problem, as this corresponds
to a dependence of the fully-regulated term on the parametrization. This is analogous to the
dependence on Enax that we discussed earlier.

Integration over region (II) is straightforward. We obtain

E max

[os 5] P15\ € 015\ € 12 Eer |
- SN [l (57) T (1-5) / dEs Eg ™ x . [ePgy (2)]
(M (6.148)
X wie [ — Sse] [rir1) + gy Flpg (1,454 6)

= CF [‘xs,b] 5;_(6)(2Emax) —de <7’(1>y >p5 PLM(1/4),

where we introduced

N.(2Enp )i 25 T

5 (e) = ol / dEg E i 4 / dzz %(1—2) *PL(z), (6.149)
Emax 1—%&
67

in analogy to Eq. (6.142). An expansion of (Sgi (€) in € is given in Appendix E.7. To perform the
angular integral in Eq. (6.148) we used

1 dQ —e €
OEL VY — P15 _ P15
AR [8n2F1—€} /2 )@=1) <2) (1 2)

X [1 _ 2z (P14 - Plé(l — P16) — P16)° }
P64 P16036(2 — P16)

(6.150)

1570 find the result in Eq. (6.147) was the reason for writing the identity in Eq. (6.131). Had we not done so, we
would have obtained phase space parametrization dependent poles in multiple contributions whose cancellation,
independent from other IR poles, is peculiar to show.
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6.3. Single-unresolved collinear subtraction terms

We present the required finite part in the e-expansion of (r®" 1,(1)1/>p5 in combination with a
similar contribution from partition 54, 64 in Appendix H.

We combine contributions of regions (I) and (II), given in Eq. (6.137) and Eq. (6.140), respec-
tively, and obtain the following result for the spin-correlated contribution to the double-collinear
subtraction term Eq. (6.114)

(s 5] P15\ € P15\€ 4
— e [laps] (757) T (115wl
Emax
E
[ aE B e B0 Do) [ + ] [1 - Sl (1,415 +6
‘B (6.151)
/ .

= Bl (22)7 (1 £2) B k1 - ][5 + g F(1,419)

+ Cr (05?65 (€) (2Emax) ~* <r<l)“r<l>”>ps Fm(1,4).

Finally, we combine results shown in Eqgs. (6.134, 6.143, 6.151) and obtain
< [1-$][1- 4] [efb)c% + 91(‘”(:56} [dps][dpe]w™ 1 (1,4 5,6)>
—_C, ["2‘22] N€< (%)76 (1- "22) ;2 [1— Ss] wh Fiu(1,4] 5)>
["‘Sf ]N < (%22) - (1- pzﬁ) Es2 wl[1— S5 (6.152)
{ [ 0B Bar(1,415) +eri 1) + sl By (1,415) ) )

- 200 Bt (2B [28,(0)] (040 s Fun(1,9),

o+ Cr [ty 85 () (2Emax) “*( (r"r"), Fim(1,4)) .

Before discussing how to regulate the remaining singularities in Eq. (6.152), we provide a
similar result for the contribution of partition 54,64 in Eq. (6.114). The computation of the
subtraction terms is identical to the case of partition 51, 61 that we just discussed. We can obtain
the required result from Eq. (6.152) by simply replacing 1 <+ 4 everywhere. We then obtain the
following result for the subtraction term defined in Eq. (6.114)

< [1—$][1—S4] [95”(:56 + 9@(:56} [dps][dpe]w® S Fia (1,4 5,6)>
ie{1,4}
Qs 5\ ¢ i e i
= —Ca [26,3] Ne ¥ < (%) " (1- PZJ) Ex2 [I— S5] wi. pLM(1,4|5)>
ie{14}
T ()70 5)
ie{1,4
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6. The NNLO computation: quark-initiated channels

2C»y i)
X { [6 + @ﬂ Fim(1,415) + evg? [rird) + g Fi(1,415) }>

- 20r P s 9205 0)) 2Ban) (8t} Fna(1,9)),

o+ Cr [ 205 (€) (2Ema) (1) ,, Fun(1,4)) .

(6.153)

In Eq. (6.153) we defined the following combined integrals

<1"H7’V>p55 Z <r(i)P‘r(i)V>P5 , <A65>55: Z < 2)5>S5' (6154)
ic{1,4} ic{1,4}

We discuss them in Appendix H.

Fully-regulated double-collinear Cs¢ sectors

We continue with the discussion of how to regulate singularities that are implicit in the first and
second term on the right-hand side of Eq. (6.153) As we have seen previously, these singularities
are of the NLO type. Thanks to the operator [I — S5] the soft singularity is already regulated.
Moreover, functions w' ** provide proper partitioning of the phase space such that uniquely
defined collinear singularities appear in every sector.

We begin with the first term on the right-hand side of Eq. (6.153) Inserting I = [I — C5i] + Cs;
to extract and regulate collinear singularities, we obtain

e E ()7 () sk 15 sk ra19)

ie{1,4}
_ o las] —2¢ W (Pi5\ € (1 _Pi5B\C i
=—Cyu 2¢2 NeE 2% i6§4} @nk)( 2 ) (1 2 ) Wic FLM(1/4 | 5) 5 (6.155)
L) -2 < Pis\ —€ Pi5\€¢ i
—Cy ~—~N, Emai Cs; [l — 55] — - — ZUZC FLM(1/4 | 5) .
2e2 ¢ 1.6%} ( 2 ) < 2 ) k

As before, the first term on the right-hand side of Eq. (6.155) is finite and the singularities are

present in the subtraction term (second term in Eq. (6.155)). The latter can be computed with
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6.3. Single-unresolved collinear subtraction terms

the help of previous discussion. We obtain

~cable ¥ (cali-s (%) (1-%) e ruars)

ie{14}

o 2 € _ —
Y- [sz r(?i(;e) 26)]N€2€(2E“‘”) <[”‘”<2E4)

2¢3
2C
_ TGF (Z(ZEmaX)—Ze + (2E4)—26>] FLM(1’4)>5 (6.156)
[Dés'b]z 2 r(l — G)F(l - 26) € —2e —2e
T e [2 T(1-3¢) }Nez (2Emax) > (2E1)

z

1
x O/dz (1 —z)Zepqq(z)<FW(z'l"”>5.

We continue with the second on the right-hand side of Eq. (6.153). Similarly to Eq. (6.155),
we obtain

[0 Pis\ € Pis\€ p2e i
2 Ne L () (-5) B*old-s
ic{14}
C v
X {[A +7gg] Fim(1,45) 4+ evgg? [rird) + g Fln (1, 4|5)}>
[a b] Al =\ —€ ENE .
B 3 (00 (7)) m e
{é‘*} (6.157)
{ |2 78 (1,419 + e[ + gl H(1415) | )

L [l Pis 7 (1 _ P5\ p2e
by, 7 (el s (8) (1) B
ie{14}
C
{ |2 2 Fn1,415) + e it + g S (1,415) ).
We now discuss how to simplify the second term on the right-hand side of Eq. (6.157). We begin

with the soft-collinear contribution. The required Cs;Ss-limit of the spin-correlated amplitude
r/ry Fly(1,415) is computed in Appendix C. It reads

CsiSs 7)1 Fl\(1,4|5) = C5;S5 Fim(1,415) . (6.158)

It follows that the spin-correlated matrix element behaves like a regular NLO matrix element in
this limit, which, together with gVVFKKA(l, 4|5) = —Fm(1,4|5), implies that the second term
in the curly brackets vanishes in the soft-collinear limit. To compute the first term in the curly
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6. The NNLO computation: quark-initiated channels

brackets in the soft-collinear limit we follow the NLO discussion in Section 5.2 and obtain

5\ —€ 5\E | 2C
_[azséb]Ne Y <C5155 (p25> (1_%) E52€wic[ =242 }FLM(1 4\5)>

[ie{llf} (1—e)T(1—2€) (6459
. wsp)” [ 2°T(1—€)I'(1 —2€) | [2C4 2 e 4
= —2Cr [2 (1 30) ] [ + Vg | Ne2€(2Emax) " (Fum(1,4))s -

We continue with the discussion of the collinear contributions to the subtraction term.
We consider initial-state and final-state emissions separately. We begin with the initial-state
emission. The required Cs;-limit of the spin-correlated amplitude r,’r; F/y;(1,4 | 5) reads
Fm(z-1,4)

P (2) x SR, (6.160)

1) (1) pHV )
Cs1 Tu'Ty PLM(L4 | 5) = &b X P15

where z = (E; — E5)/E;. The splitting function in Eq. (6.160) reads

_Cr (1+2)?
> )

P (z) = - (6.161)

Note that the difference between the collinear limit Eq. (6.160) and the collinear limit of
Fm(1,4]5) in Eq. (5.30) is only a different splitting function. Therefore, conceptually, the
computation is identical to the NLO case discussed in Section (5.2). We obtain

sl (o (1) (1 12) Bl

X {[ZC +7gg] Fim(1,415) +evgg [y + gu] Fw(1, 4!5)}>

_ [asp)P[2°T (1 —e)T(1 —2e) . / 2
=52 |3 T(1 = 3¢) Ng2¢(2E1)~ dz(1—2z)

(6.162)

ZCA i PLM z- 1,4
X { [ + 7 — €7§g22] Pog(z) +evggPag - (2) } <( o ) >(5 :

We continue with the final-state emissions. The required Cs4-limit of the spin-correlated

amplitude ,,'r; /(1,4 | 5) reads

1 i 1
Csa 11 (1,4 5) = g2 % mPSE‘“(z) x Fim (1, . -4) , (6.163)

where z = E4/ (Es + E5). Apart from the different splitting function, the above limit is struc-
turally identical to the collinear Cs4 limit of Fia(1,415) in Eq. (5.43). Following the NLO
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6.3. Single-unresolved collinear subtraction terms

calculation outlined in Section (5.2), we obtain

(e ()"0 1)

2C
{ |22 2 Fun(1,415) + e et + gl i (1,415) )

[s ]2 [26 T(1 — €)T(1 — 2¢) 2Ca 2] [2CF
= 2a |7 Ta-3 V¥ o Tl end || T

(6.164)

2Cr

2+ ] 7 P 2ES) Fu(1,4)

In Eq. (6.164) we have used the anomalous dimension ,(e) defined in Eq. (5.50) and, in
addition, introduced its spin-correlated version

—4e

1
— — in (1—2)
Vopspin = — / [ (1 —z) P (z) - 2Cr | (6.165)
0

An expansion of 72, in the dimensional regularization parameter € can be found in Ap-
pendix E. Inserting subtraction terms in Egs. (6.159, 6.162, 6.164) into Eq. (6.157) and combining
with Egs. (6.153, 6.155, 6.3.3 we obtain a fully-regulated result of the single-unresolved subtrac-
tion terms in Eq. (6.114) as

Z <[1 — S] [1 — S(,] [Qi(b)c% + Gi(d)C%} [dp5] [dp6]w5i’6iFLM(1,4 ’ 5, 6)>
ie{14}

e B ¥ <@g;o (%5) " ( _gﬁ>€w;‘CFLM(1,4\5>>

ie{1,4}

e 2 (on ()70 5) ()

ie{14}

)

X {[ZCA%—’Ygg} Fin(1,4]5) + e 2 [ + g Fby (1, 4|5)}>
—Cy [;613 [22 I(1 ;(i)i(;e; 26)] N2 ( 4 Eﬁzlax ) e < {qu (4;2> 0!

L) () o)

[as]2 [26 T(1 — )T (1 — 2¢) . 4153nax (4B C
TCa % |2 T(1—3e) Ne2 I
1
X/dZ (1_2)_26qu(z)<FLM(ZZ 114)>
)
0

Lk [fm ;(?E(;e; zeq -~ (4:" ) / d2(1—2)2
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6. The NNLO computation: quark-initiated channels

ZCA i FLM VAN 1,4
| B2 B - e Pg(a) +evipn e [(PEA)

V4
[065]2 2€ F(l - G)F(l - 26‘) ZCA 22 L,22 ZCF 24
e |2 Ta—se NF e T % || 2 T

2Cr 4E2\ %
* [4e + vﬁé,spm] vég'”}< <24> Fiu(14)
M 5

e, [a5]2 [26 I(1—¢e)(1- 26)} [2(63A n 7;;} N.2¢ <4EIZnax> o (Fim(1,4))s

4e3 | 2 I'(1-—3e) ?
—2e
—2Cr [0:2]2 X [Zzeég(e)] (4552’21”) <(A65>s5 FLM(1/4)>5
2 —2e
+Cr [w5]262(€) (4]:;[“2‘2"‘) <(r"r”> N FLM(1,4)>(5.

(6.166)

This equation, together with the similar Egs. (6.86) and (6.104), completes the analysis of the
single-collinear terms in Eq. (6.17). The only singularities are present as poles in at most 1/¢2,
and all implicit divergences in Fy ) are regulated. We now proceed to the double-unresolved
terms in Eq. (6.17) in the next section.

6.4. Double-unresolved collinear subtraction terms

We continue with the discussion of the subtraction terms in Eq. (6.17) where both gluons
2(ps) and g(pe) are collinear to hard parton(s) and, therefore, are unresolved. There are two
contributions to be discussed. First, there are subtraction terms where the two gluons are

collinear to the same parton. They are described by the following subtraction terms

[1— 8] [1— 6] [0.7Ci[1 = C51) + 6/ {1 — Cse] + 07 Ci[1 - Co]
ie{1,4} (6.167)
+ Gi(d)(Ci[l - C56]} [dp5] [dpG]w5i'6iFLM(1,4 ’ 5, 6)> .

The corresponding contributions were computed in Ref. [68]. We provide the required formula
in Appendix L.

The second contribution corresponds to kinematic configurations where each of the gluons is
collinear to a different parton. The subtraction term reads

— Y {[I = S][I — Se|CsiCsj|dps] [dpe]w* I Fum (1,415, 6)> . (6.168)
ije{14}
i7]
We note that in this case the collinear limits and the integration over gluon angles are, effectively,
NLO-like. We elaborate on this observation below.

As we pointed out at the beginning of Section 6.3, upon taking a limit where a gluon becomes
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6.4. Double-unresolved collinear subtraction terms

collinear to an external hard quark, the double soft operator & becomes equivalent to the

strongly ordered limit S5S¢. It follows that
$[I — S6] CsiCojFm(1,4|5,6) = [S556 — S556] CsiCojFm(1,4|5,6) =0, (6.169)

and we can drop the double-soft contribution to the subtraction term Eq. (6.168). Next, we
rewrite the sum in Eq. (6.168) as follows

Y GsiCew® = Y CCran™t. (6.170)
ije{1,4} klc{5,6}
i#] kI

The required collinear limit can be written for generic / and k in the following way

Cr1CiuFim(1,415,6)

1 1 ) Fm(1—k4+1 (6.171)
= g4, X ———Pgq (z) X ———Pyy (%)) X L ( ) )
pP1- Pk pa - pi Zk

where z; = (Ey — Ex)/E1 and z; = E4/(Es+ E;). The splitting function Py,(z) is given
in Eq. (6.31). In Eq. (6.171) the double-collinear limit to the initial-state and the double-
collinear limit to the final-state factorize in terms of the known NLO double-collinear limits

Egs. (5.30, 5.43). Integrating over angles

a0 V11 A0V 1 o2 1 @n)E 1
/ Cklz d—1 X / Cl4 d—1 = 2 2 ’ (6172)
(27) Pk - 2(2m) 041 €2 |8m?T(1—e)

and inserting the limit Eq. (5.30) into the subtraction term Eq. (6.168) we obtain

— Y [I—$][I—Se]CraCualdpx][dpi]w *FLn(1,4]5,6)

k1€ {5,6)
k£l
Emax Emax
5 s 1-2¢ 1-2¢ 6.173
-5 ), 2 /dﬁﬁ /&55 0(Es — Es) (6173)
k1€{5,6} 0 0

k£l
1 Fm(1—k4+1)

1—S4|———P, P, .
X [ 6] E1E4EkEl qq (Zk) qq (Zl) Zk

To integrate over Es and Eg, we write the two terms of the sum in Eq. (6.173) explicitly. Upon
renaming 5 <> 6 in the term where k = 6 and [ = 5, we obtain a formula where momenta in the

function F\ appear in a unique way

E
wp2 g T dEsdEs . 5.
| ;’] 2t | G E B ES™ (1~ (s — Eq)Ss — 0(Es — Ex)Ss]

(6.174)

- FLM(l —5,4+ 6)
X qu (25) qu <Z6) 25 .
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6. The NNLO computation: quark-initiated channels

We proceed with the simplification of the three terms on the right-hand side of Eq. (6.174).
We begin with the term without soft operators S;,—5. We note that in this term no energy
ordering is present. Therefore integration over energies Es and Eg is identical to the NLO case.
For both integrals we follow steps described in Section 5.2 and obtain

Emax
[‘xs,b]Z —4 dEsdEs __oe > _ FMm(1-5,446)
_72 € / ?1?455 “Eg ““Pyq (2z5) Pyq (Z6) -

' . (6.175)
2 .

_ ey [22? + 73,3,] / dz (1—2) %Py (2) (2E1) % (2E,) 2 F(E 14

0

€? z

Next, we consider terms in Eq. (6.174) that contain the operator S¢. The required limits read

E
SeFim(1 —5,4+6) = Fum(1 —5,4),  SePyy (26) = 2Ck 1?4 . (6.176)
6

We rename z5 = z and use E5 = (1 — z)E; to trade Es integration for the z integration. We
obtain

E max

2
[Dés,b] « pl-2¢ / dE Eglfzee((l —2z)E; — Ep)
0

2Cr 2¢e2

: (6.177)

x O/ dz (1 — 2) 2P,y (2)(2Ey)

_2¢ PLM(Z . 1, 4)
z

Since, by construction, Emax > (1 — z)E; for z € [0, 1], the 0-function in Eq. (6.177) provides the
upper bound for the Eg integration for all values of z € [0, 1]. We obtain

(1=2)E, (1— Z)_ZG(ZE )—Ze
212 / dEg Eg17% = — —= 6.178)
0
Using integral Eq. (6.178) in Eq. (6.177) we find
aey]?. 4 T dEsdE Fim(1—5,4+6)
b —4 5 6 ~—2 —2 - LM Y
2722 € / E71E74E5 €E6 50(E5 — E(,)S(, X P‘M (25) qu (26) o
(6.179)

1
2 .
= —2Cp 2t] /dz (1—2z) %Py (2) (2E1)4€FLM(ZZL4).
0

Finally we consider the term in Eq. (6.174) that contains the operator Ss. The required limits
read

E
SsFim(1—5,4+6) = Fipm(1,4+6),  SsPy(z5) = —2Ck El . (6.180)
5
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6.5. Real-virtual contribution

According to Eq. (6.180) integration over Es factorizes from the function F . To integrate over
E¢ we follow the NLO discussion. Then, writing Es = E4(1 — z) /z and rescaling E; — z - Eg,
we obtain

7[%,;;]22_4 "dEs dEg Fm(1-54+6)

ES*E % — 0(Eg — E5)Ss % Py (25) Pyq (26)

€? 5 E1 E4 6 Z5
/dZ Z—Ze _ Zepqq( ) w 21-2€ / dEiS 266((1 _ Z)E4 _ E5)
(6.181)
_ [ZCF R ] _ (1 —z)72€(2E4) %€
% (2E4) " Fiw(1,4) de €
2C _
= 2Cr [2 3] [41” +2 ](2154) R m(1,4).

Inserting Eqgs. (6.175, 6.179, 6.181) into Eq. (6.174) we derive the following result for the subtrac-
tion term

— Y ([1-S][1- 56| CsiCei[dps] [dpelw™ Fim(1,45,6) )
ije{14}
<
2

5] [2CF 24 4E;\
=2C 2¢3 @ + ’)’qq ]/lz PLM(l, 4) 5

+[€2]<4;2> /dz (1—2)"%P,(2)

4E2/ —(1— 2€4E2/2
% <|:2CF( 4 H ) ( 2€Z> ( 1/H ) +’)’qq(2E4) :|

FLM(Z . 1,4)
z 5

(6.182)

We have now completed the regularization of IR singularities from the double-real corrections.
We have written these corrections in terms of manifestly finite terms and subtraction countert-
erms where the divergences appear as explicit poles in 1/¢. These poles will cancel against the
real-virtual, double-virtual, and collinear renormalization contributions. We will discuss these
in the following two sections.

6.5. Real-virtual contribution

In this section we consider the real-virtual contributions ddy to the partonic DIS cross section
Eq. (6.1). We focus on the quark-initiated channel

q(p1) +e (p2) — e (p3) +4q(pa) +8(ps) - (6.183)
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6. The NNLO computation: quark-initiated channels

5
.

Fig. 6.5.: Partonic currents that contribute to the quark channel Eq. (6.183) of the real-virtual contribu-
tion of DIS. To obtain the complete Feynman diagrams for DIS they need to be contracted with the
leptonic current. We only show labels i of external momenta p;. Grey circles stand for all possible
1-loop subdiagrams.

The gluon channel ¢ +e~ — e~ + g + g is discussed in Chapter 7. Feynman diagrams that
contribute to the matrix element are schematically shown in Fig. 6.5.

In analogy to Egs. (5.3, 5.4) we define a UV-renormalized contribution as

25 - doyy = / [dps] Fv(14,4415g) = (Fiv (14,44 |5¢) )5 (6.184)
where

Fiv (14,44 |5¢) = N/[dP3] [dpa] (27)?6D (p1+ p2 — p3 — pa— ps)

. (6.185)
X 2R (MR- M) (p1, p2, 3, pa ps) X O(ps, pa, ps) ,

Quantities that appear on the right-hand side of Eq. (6.185) are defined as in the NLO case with
the exception that the function Fyy is proportional to the interference of the tree-level amplitude
M€ with the one-loop amplitude Mlllilo(mp. The latter is composed of Feynman diagrams shown
in Fig. 6.5. Infrared and collinear 1/€ poles that appear in the UV renormalized amplitude are
given by Catani’s formula [51-53]. Following these references, we decompose Fyy(1,4|5) into

a divergent and finite parts
Fy(1,4|5) = HisFm(1,45) + Ky (1,4]5) . (6.186)

The operator T145 contains 1/€ poles, Fiam(1,415) is the Born cross section that can be found

in Eq. (5.4) and Ffin(1,45) is finite and contains no explicit 1/¢ poles. The operator [T} in
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6.5. Real-virtual contribution

Eq. (6.186) reads

Iijs = [u:,] Ki + ;) (Ca —2CrF)(2E1E4p14) ¢
(6.187)

— C: - Z) Ca ((2E1E6P61)_6 + (2E4Egpes) € COS(”‘?))} :

Additional singularities arise when we attempt to integrate the real-virtual contribution over
momenta of final-state partons. To understand this, we note that the real-virtual amplitudes are
singular in the same phase space regions as Born amplitudes. Hence, the needed subtractions
are identical to the NLO calculation at the operator level. We write

(Fv(1,415)); = (SsFy(1,4[5));+ Y (GCsi[l — SsJw® Fiv(1,4(5)),
ic {14}

+ ) <@§;Ow5iPLV(1,4\5)>5.
ie{1,4}

(6.188)

Operators @1(3 , that regulate soft and collinear singularities are given in Eq. (5.15) and w” are
the partition functions introduced in Eq. (5.9).
6.5.1. Soft subtraction term

We discuss how to simplify subtraction terms on the right-hand side of Eq. (6.188), starting
with the first term that describes the soft subtraction. The required soft limit reads [58-60]

S5 FLV(1/4 | 5) = 2Cp g?,b X (pl ‘ 5;)(};1 ‘ pS) X FLV(1/4)

2 5(1 — )3 ) I+e
_acpc, Spltsdl [ DU -1+ ¢) } y ze< P1-pa > (6.189)
et [I2(1—2e)I(1+2€) (P1-ps)(pa-ps)
X FLM(1/4) .

We note that Eq. (6.189) has two contributions: the first term on the right-hand side of Eq. (6.189)
contains one-loop hard matrix element and tree-level eikonal function. The second term on
the right-hand side of Eq. (6.189) contains the tree-level hard matrix element and one-loop
correction to the eikonal function. Note that this contribution is non-abelian.

Integration of the first term over gluon phase space is identical to the NLO case. To integrate
the second term over the phase space of the unresolved gluon we use the following integral

d—1 _
dOS D (g N 21 () ) g (6.190)
2(27T)d71 015045 € 872 F(l — 6) 14 14
where Ky is defined through
o TP(1-2¢) 1.3
Kz‘]’ = mﬂij+ €2F](1 +€l4€l1—-¢€1- 171]) . (6191)
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6. The NNLO computation: quark-initiated channels

An expansion of K14 in € can be found in Eq. (A.23). Putting everything together, we determine

the subtraction term

Xs 4E12nax - —
(Sshiv(1,4(5)) = 2Cr [ez] ( 2 ) (e KiaFiv(1,4)),

27 T5(1 — ~\T3 2 —2e ~
~20rCa S [ ari ) () O RuRa),

(6.192)

The function Fy(1,4) that appears in the first term on the right-hand side of Eq. (6.192)
corresponds to the one-loop cross section at NLO. It reads

3

s| (1 e, — i
Fv(1,4) = —2Cr [“6] (e + 2) (4E1E4) ‘i Fim(1,4) + F{l\r}(l,él). (6.193)

6.5.2. Collinear subtraction terms

Next we discuss soft-regulated collinear subtraction terms. They read

Y (Csi[I—Ss|w” Fy(1,4] 5));- (6.194)
ie{14}

We consider soft-collinear and collinear contributions individually and start with the soft-

collinear contribution. Applying the soft Ss limit in Eq. (6.189) to the cross section computed in
the collinear ps || p; limit we obtain

1
S5Csi Fv(1,4|5) = 2Cr g2, ¥ o X Fv(1,4)
5 Pi5

82, wsp] [ T5(1 — €)I3(1 +¢) .
o [r2(1 26T (1 + 2e)} X2 (

(6.195)

1+e
—2CFCA > X FLM(1/4)/

EZpi5
for i = 1,4. Integration over the unresolved phase space is straightforward. We find

" ‘(1-e
= ), (5sCsiFiv(1,4]5)); = —2Cr [eséb] H(il—zs

ie{14}
[ p)2 [T(1— €)T(1—2€) ][ T5(1 — e)T3(1 +€) (6.196)
2¢t { I'(1-3e) ] {1"2(1 —2e)I'(1+ 26):|

X (2Emax) " (Fm(1,4)); -

] (2Emax) > (FLv(L,4)),

+ CrCy

We continue with the calculation of the collinear contribution < [C51 wdl + C54w54] Fv(1,4] 5)>
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6.5. Real-virtual contribution

to the collinear subtraction term Eq. (6.194). The double-collinear limit Cs; reads [58-60]

1 Fv(z-1,4
6.197
&) I3(1—¢e)l(1+¢) woef 1 ”eploop( ) % Fm(z-1,4) ( :
8splhsb [(1—2e) p1-Ps 1 z ’

where z = (E; — Es)/E; and the one-loop splitting function P}IEOP(Z) is given in Eq. (E.17). The
Csy4 limit reads

1 1
CssFv(1,4]5) = ¢%, x ——Py,(z) X E (1,-4)
safiv(1,415) = g5 . pa(2) X Fv (1,

3(1 — 1+e
+ 85 s )] [r (1r(1€1r2(2)+ e)} x 27 cos( 7€) ( ! ) plooP (7) (6.198)

P4 - Ps
1
XFLM<1,'4.>,
z

where z = E4/(Es + Es). The factor cos(7te) comes from an analytical continuation of the loop

integral to the kinematic region where both p4 and ps are momenta of final-state particles.

Integration of Egs. (6.197, 6.198) over the gluon phase space is analogous to the NLO case
discussed in Section 5.2. To integrate the second term on the right-hand side of Eq. (6.198) over
Es, we define

1
Vigtoop = [ 227 (1 =2) *PeP(2). (6199)
0

We finally obtain

<[C51 + Csa) Fv(1,4] 5)>

_ sy [r2(1 - 6)} [22C€ L 735] <(2E4)‘2€Fw(1,4)>

e |T(1-2¢) s
Xs, 2 (1 —e)I(1+ s
— [ b] cos(n’e) (21*(;:)_ ée) €) 733,100p<5(2E4) 4 FLM(1/4)>5
N [“Z’b] Hzl—_e ]/ dz (1—z2) *Py(z ><(2E1)2€FLV(ZZ'1’4)>5 (6.200)
& : —€ € 00 _ z-1,
- Seb] [r (12r 1_31€+ }/d 2) Py (2 )<(2E1) ‘“PLM(Zm>5.

Putting Eq. (6.196) and Eq. (6.200) together we find the collinear subtraction term
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6. The NNLO computation: quark-initiated channels

Y (GCsi[I—Ss|w” Fy(1,4]5)),
ie{1,4}

- ] (1) )
2¢e

AL 401 _ ¢ c 2\ ~
_ [e]cos(ﬂe)r (12F(1 )_r(;e;‘ )')’33,1oop< <4:;4> FLM(1,4)>§

L )

o e ploop . / Fim(z1,4)
/dz (1-2) 3P1 p()< LML >5

z

) ()

()
[as]?
et

[ (1-era _26)] [ (1 —e)3(1+e) ] <4E?nax>2€ (Fim(1,4)),.

+CrCa T3 -

I2(1—2¢e)T(1+ 2¢)

(6.201)

The full real-virtual contribution is obtained by inserting the results for the subtraction terms
Egs. (6.192, 6.201) into Eq. (6.188).

6.6. Double-virtual contribution and collinear renormalization

In this section we describe the singular structure of the double-virtual contribution dé,. Similar
to the case of one-loop QCD amplitudes, the singular structure of two-loop QCD amplitudes is
known to be universal [54,55]. In accordance with Eq. (5.53) we define the UV-renormalized
contribution

2s - dffw = /Fva(lq,élq) = <Fva(1q,4q)>5 , (6202)
where

Fvv(144q) = N/[dpa][dIM] (27)?6@ (p1 + p2 — p3 — pa)

X || My P [P+ 2R (M - M2 | (1, pa, pa, pa) % O(pa, pa)

nnlo

(6.203)

In Eq. (6.203) M=loop (p1, P2, p3, pa) is the 2-loop contribution to the DIS process. We isolate IR

nnlo
divergences in Fyy using results of Refs. [54,55] and write it asl®

16For convenience we have split the non-singular finite part into two terms: function labeled with LV corresponds
to contributions from the 1-loop amplitude squared and the function labeled with LVV corresponds to contribu-
tions from the 2-loop amplitude multiplied with the tree-level amplitude. Their computation requires an explicit
calculation of the quark form factor; it can be found in Ref. [73]. Also not relevant for our discussion of IR poles,
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6.6. Double-virtual contribution and collinear renormalization

P (1 4,) = (w;(;‘))z <2p;£p4>26{<r(iey_ge)>2q%[€24 L6 +222}
()35 -)

11 8 72 91 172 12
CaCr| = - - - 14,4
Tha F< 1263 182 T 122 216e  48e | 2e )HFLM( ey

s (1)

+27r

[211(6) + 5O]Fﬁn(1qr4q) + Fla (1g,49) + FiVy (19,49)

(6.206)

where F{i\f;z is the finite remainder of the one-loop amplitude squared and Fif, is the finite
remainder of the interference between two-loop amplitude and tree-level amplitude. The
operator [;(€) in Eq. (6.206) is given in Eq. (5.56). The one-loop coefficient of the QCD p-
function, which appears in Eq. (6.206), reads

11

Po=-Ca— gTRNf/ (6.207)

where Tr = 1/2 and Ny is the number of massless quark flavors. Finally, note that the double-
virtual contribution Eq. (6.206) contains 1/¢€ poles that cancel against soft 1/€ poles from both
quark-initiated channels g+ e~ — e~ +q+g+gandg+e” — e +g+4q +7.

We continue with the discussion of the collinear renormalization contribution to the partonic
cross section Eq. (6.1). We find that renormalization of parton distribution functions leads to
the following contribution to the NNLO partonic cross section of the quark-initiated channel

O =

/ Ag dz'nlo( )
0

1
( ) (0) _4.p0) 5(1)

2¢e2 2€e

(6.208)

In Eq. (6.208) we introduced the NLO partonic cross section d-"° that is composed of virtual

for completeness, we give them below

2
4
(Five (1g,49) )5 = (752(77;)) x 16CE x (Fu(1,4))5, (6:204)
2 4
i () 2p1-p 51157 317t 10777 659
<FLVV(1'1’4‘7)>5 - ( 21 ) [CFC { 3 ln( HZ 1296 + 240 72 C (6.205)

255  117* 2972 4085 77?1 8 2py -
PR e e 1, 8y (2P
* CF{ 16 90 T 15@3} + CFNf{ 648 + 36 18€3 3 In ( 12 ) H x (Fm(1,4)); -
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6. The NNLO computation: quark-initiated channels
and real contributions only, so that
dOno = dSnio + d0par, with  dSn, = déy + do; . (6.209)

We note that it is given in Eq. (5.65) in term of the function Fy ;. The LO cross section 0y,(z) is
given in Eq. (4.4). The various splitting functions in Eq. (6.208) can be found in Appendix E.

We have derived all formulas relevant for the description of quark-initiated process g +e~ —
e~ + g+ g+ g with NNLO accuracy. However, if we combine all the contributions discussed
in this chapter, we will not obtain a finite formula. To obtain finite result for quark channels,
processes with additional g7-pair in the final state need to be considered. We discuss their
computation in the next chapter.

6.7. Quark-anti-quark emission

In this section we consider the partonic process

q(p1) +e (p2) — e (p3) +q(pa) +4'(p5) + 4 (ps), (6.210)

which describes the emission of a quark-anti-quark pair. It appears for the first time at NNLO
in the perturbative expansion of the partonic cross section. The major differences in dealing
with the process Eq. (6.210) to earlier discussion of quark-initiated processes with two gluon
emissions consists in (i) the fact that all three final state partons can carry “hard” momentum;
and (7i) that the hard process must be split into different contributions with defined behavior in
singular limits. We discuss consequences of these differences in the following.

To obtain the amplitude that describes the process Eq. (6.210), we need to sum over all
massless quark flavours g’ in the final states. To this end, we have to distinguish the case q # 4’
and g = ¢’ and we found it convenient to first define two master amplitudes!”

5 6 ) 6

Al(lq/4q/5q’/6q’) = 1 \'g/

(6.211)

Az(lq,4q,5q/,6q/) =1 0 + 1 OO § 6 .

VW
at

Note that the two amplitudes posses different sets of collinear singularities. .A; is singular if
D5 || Pe or Ps || Pe || Pi, withi € {1,4}. A, is singular if gy || ;1 or P | Pa || P1, with j € {5,6}.

17For simplicity we do not show the leptonic current in the Feynman diagrams and the sum over polarizations and
colours is understood implicitly.
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6.7. Quark-anti-quark emission

We continue with the construction of physical amplitudes from the master amplitudes
Eq. (6.211). The amplitude for the process g + ¢~ — ¢~ +q+¢q' + 7 for g # g’ reads'®

Agrq (1,4,5,6) = A1 (14,44,54,65) + A2(14,44,5¢, 67) - (6.212)

In case when g = g’ we have to take into account that we have two identical final-states and

add contributes where we switch their momenta. We obtain
Aq:q/(l,él, 5,6) = Aq¢q/(1,4, 5,6) + A#q/(l,S, 4,6). (6.213)

We use Egs. (6.212, 6.213) to write the full amplitude squared and sum over all massless quark
flavours in the final states. Upon straightforward re-labeling of parton momenta, we obtain the

following expression

; 1
Miee(1,4,5,6)" = 3 [Agzq(1,4,5,6) + 2| A4y (1,4,5,6)
q'#q ’
~Y [|A1(1,4,5,6)]2 + |A2<1,5,4,6>12} +Y 2R [A1(1,4,5,6) -A5(1,4,5,6>}
7 q

n %2% [A1(1,5, 4,6)A%(1,4,5,6) + A1 (1,5,4,6)A3(1,4,5,6) (6.214)

+ Ay(1,4,5,6)4%(1,5,4,6) + A2(1,4,5,6)A§(1,5,4,6)} .

We emphasize that the sum over quark flavour ¢’ in the first two terms on the right-hand side
of Eq. (6.214) includes also the initial-state quark flavour 4.

We split contributions to the matrix element squared |M{_(1,4,5,6)|? into the so-called

aas

“singlet”, “non-singlet” and interference contributions. The latter are finite and do not posses
any singularity. We define

1
|Mee(1,4,5,6)|* = Z |A1(1,4,5,6)* + 52?}%[«41(1, 5,4,6).A7(1,4,5,6)
q
+ Aq(1,5,4,6)A5(1,4,5,6) + Ax(1,4,5,6)A5(1,5,4,6) (6.215)

+ Ay(1,4,5,6)45(1, 5,4,6)] )

|MT(1,4,5,6)]* = Y[ Ax(1,5,4,6)?, (6.216)
q/

|Mfee(1,4,5,6)|* = Zz%[/t (1,4,5,6).45(1,4,5 6)] (6.217

int 7 Xy — 1\, %9, 2L, 2,9 . . )
q/

The separation of terms in Eq. (6.214) into the non-singlet (Eq. (6.215)) and singlet (Eq. (6.216))
contributions is motivated by their behavior in singular limits. In these limits, non-singlet
contributions are proportional to lower multiplicity matrix elements that describe processes
with the original initial-state quark of a flavour g. In this sense, the tree-level process q +e¢~ —
e~ + g+ g+ g and the one-loop corrected process g +e¢~ — e~ + g+ g, discussed in the

8Here, and in the following, we do not write quark flavours as subscript in the arguments of the amplitudes.
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6. The NNLO computation: quark-initiated channels

previous part of this chapter, are also classified as non-singlet contributions.

In contrast to this, singular limits of singlet contributions are proportional to matrix elements
squared that are summed over all massless initial-state (anti-)quark flavours. Note that this
behavior is similar to the gluon-initiated process to DIS, which we discussed in Section 5.5.

Since 1/ € pole cancellation happens independent of the hard matrix element, we can present
finite results for non-singlet contributions and singlet contributions separately. To this end,
according to the splitting of the amplitude Eqgs. (6.215, 6.217) we also split the double-real

contribution dd;, to the partonic cross section and write
doy, = doDs 4 dos, + doint. (6.218)

We discuss the first two contributions on the right-hand side in Eq. (6.218) in the following
sections. However, before that, we write the finite contribution as

25 - doint = / [dps][dps] Ef¥y(1,4,5,6) = (FRi(1,4,5,6)), (6.219)
where we defined

F(1,4,5,6) = N / [dps][dpa] (27)%6 (p1 + p2 — p3s — pa — p5 — Pe)

X | M (p1, p2, P3, P4 P, P6) > X O(p3, pa, ps, pe) -

(6.220)

We continue with non-singlet contributions in the next section.

6.7.1. Non-singlet contributions

We now discuss the non-singlet contribution to the cross section. It originates from Eq. (6.215).
Following previous discussion we write

2s - d@'ﬂ.s = /[dp5] [dpé]g(ES — E6)PLM,ns(1/4 | 5,6) = <FLM’n5(1,4 | 5, 6)> ’ (6221)
where we defined

Fimpns(1,415,6) = N/[dps] [dpa] (270)96 (p1+ p2 — p3 — pa — p5 — ps)
X |M1Jflrsee(1/4/ 5/ 6) |2 X @(PE’)/ P4, Ps, Pé) .

(6.222)

The many terms that contribute to the matrix element |M!¢|2, given in Eq. (6.215), possess
different singularities. The first term on the right-hand side of Eq. (6.215) is singular in the
double-soft ps ~ ps — 0 limit. It also possesses the double-collinear singularity when ps || 7
and/or triple-collinear singularities when ps || e || 1 or P5 || Pe || Pa. All limits of this term
are proportional to N¢. Other contributions to the non-singlet matrix element in Eq. (6.215)
only become singular in the triple-collinear limits when s || P || Pa and Ps || Pe || P1-

These singularities form a subset of singularities that the amplitude of the process g4 + e~ —
e~ + q + gg possesses. For this reason, we can regulate them in full analogy to the previous
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6.7. Quark-anti-quark emission

discussion in Section 6.1 and only remove operators in Eq. (6.17) that correspond to singularities
that are not present for the g4-final state. We write

(Fimpns(1,415,6)) = (SFimns(1,4]5,6))
+ ¥ ([1-8][0"Cs6 + 01" s [dps][dps]w™ Finno(1,45,6) )

ie{14}
+ ¥ (=816 + (6 +61) [1 - Cse] + 67| [dps)dps]
ie{14}
W Finns (1,415, 6) > (6.223)
ije{14}
i#]
+ Z <Onn10 dp5] [dp6] ol 6lPLMns(l 4 | 5, 6)>
i=1,4
where @nnlo and @r;]lo are defined in Egs. (6.18, 6.19).1°

The double-soft subtraction term (first term on the right-hand side in Eq. (6.223)) is computed
in Ref. [67], the triple-collinear subtractions terms (fourth and fifth terms on the right-hand side
of Eq. (6.223)) are computed in Ref. [68]. We collect results for these terms in the Appendix I.
Finally, there is a double-collinear subtraction terms (second term on the right-hand side of
Eq. (6.223)). The required limit is given in Appendix B. Integration over unresolved momenta
is performed in analogy with the previous discussion. We obtain

y < [1-$] [9,.(’”(156 + 6 c%} [dps) [dpe] 0 Fins (1,4 5,6)>
ie{14}

. [as] 2 A6 [ Pi5) € Pi5\ € 4E§ -
- _TeNez e‘ Z <Onlo (7) (1 N 7> ? wéc

ic{1,4}

< {18 (1,415) + evg 2 [rr) + gu] Ha(L, 4\5>}>
—2€

(5 e () -0

[ FEwm(z-1,4
X { ’ygq + 6’)";22] Pyy(z) — e'yqu'ZZP;gm(z) } <LM( ) >
I 5

[“s]z [2°T(1 —¢€)l'(1 —2¢) € 1] [2CF 24
T |3 Taose NE T TN || Y
2e

2C 4E2\ ~
[ rta i} () )
H P

19We note that the action of some operators present in Oglﬂo and @gﬁlo is zero. For instance since no single soft
singularity is present S¢Fi pmns(1,415,6) = 0.
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6. The NNLO computation: quark-initiated channels

(@2 [25T(1 — €)T(1—2€) | mpnr oo (4E2 0\
T e {2 T(1—3e) ]ngNez ( 2 ) (Fm(1,4))s

a]? 2 —2e
~20e B a0 () ((0e)s (1),

—Cr [“5]25;_ (€) (4.’222&1)() —2e < <r?’rv>p5 FLM(1r4)>5'

(6.224)

In Eq. (6.224) we defined the functions d,(€), 5; (€), 'yz,%l and 'yglq’zz which can all be found in
Appendix E. After combining this result with other non-singlet contributions derived earlier in
this chapter, all 1/€ poles cancel out and the final result is obtained. We present it in Section 6.6.

6.7.2. Singlet contributions

The singlet channel can be computed independent of the remaining quark-initiated contribu-
tions. It has a simple singular structure. First, it contains no soft-singularities and, therefore,
receives no double-virtual contributions. Second, only collinear singularities to the initial-state
momentum p; are present that cancel with contributions from collinear renormalization of
parton distribution functions. Since these poles have to be proportional to matrix elements
squared summed over all massless initial-state quark and anti-quark flavours q/4§ we can
isolate these terms in collinear renormalization contributions and obtain an IR finite result. We
write the singlet contribution to the partonic cross section as

dopn = Aoy +dog; - (6.225)

nlo

We begin with the double-real contribution. The singlet contribution contains a double-
collinear singularity that arises when ps || 71 and/or two triple-collinear singularities that
appear when ps || psa || 1 or Ps || Pe || P1- Similar to the double-collinear singularities in
the gluon-initiated channel, discussed in Section 5.5, the two triple-collinear singularities are

physically equivalent and we can deal with them at once by introducing the partition of unity

P16
P14 + P16

_ P (6.226)

1
w ,
014 + P16

— Al 61 : 41
1=w; +wy, with w;g

and rewriting the singlet amplitude Eq. (6.216) in the following way

|M;ree(1, 4’ 5, 6) |2 = wél |M;ree(1, 4/ 5/ 6) |2 + wgl |M;ree(1/4/ 5/ 6) |2
(6.227)
= wl[|ME(1,6,5,4)F + | ME**(1,4,5,6) 2.

In Eq. (6.227) in the last step we switched the momenta labeling of momenta p4 and ps. The
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6.7. Quark-anti-quark emission
contribution to the partonic cross section is then written as

25-des, = / [dps)[dpe]0(Es — E¢)wS' Fims(1,4]5,6) = (w§'Fms(1,415,6)),  (6.228)
where we defined

Fims(1,415,6) = N/[dPS] [dpa] (270)96' (p1+ p2 — p3 — pa — p5 — ps)

A (6.229)
X |IME(1,6,5,4)F + |ME*(1,4,5,6) 2| x O(ps, pa, ps, pe) -

Note that, although no soft singularities are present, we found it convenient to keep energy
ordering in Eq. (6.228). We also found it convenient to use the same partitioning and sectoring
of the angular phase space, which can be found in Section 6.1, as well as the same phase
space parametrization, see Appendix F. We follow the regularization procedure described in
Section 6.1 and write

<wglPLM,S(1,4 | 5, 6)> = < |:C51ZU51’64 + 9§a)C51w51'61:| [dp5] [dp6]FLM(1/4 | 5, 6)>
+ (€1 ([1- o]0 + 01" + 0 + 61" ) [dps] [dpelw™ ' Fiaa(1,4]5,6) )

+ ) <Ol(m1)o [dps)[dpe]w™ Fim(1,4]5, 6)> (6.230)
ij=14
i]

+ _Z:4< nnlo dp5 dPG] 51611:‘LM(1 4:|5 6)>

where we use definitions of OV . and o , as givenin Egs. (6.18, 6.19).

Required double-collinear and triple-collinear limits of the subtraction terms are given in
Appendix B. Triple-collinear subtraction terms were computed in Ref. [68] and we present them
result in Appendix I. In case of double-collinear subtraction terms, integration over unresolved

momenta can be done following earlier discussions. We find

(| Corw™® + 01" Cs10™ 1 [dps][dpe] FLm(1,415,6) )

o () az -0y g it 0 2 (25) ]
0

s Fimg (2 | 59) >§ L [22 ¢ ;g){(;; zeq (fj > =
/dz

F -1,,4
®P22]( )< LM(Z f f)> )
0 fe{qq} 4

z

(6.231)

20For details, see in particular the discussion around Eq. (6.82). In writing Eq. (6.231) we extended the definition in
p q & £q
Eq. (6.84) to arbitrary splitting functions.
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6. The NNLO computation: quark-initiated channels

The collinear renormalization contribution is obtained from Eq. (6.208) by selecting terms
that are proportional to the quark parton distribution function and the NLO cross section of
the process g+ e~ — e~ + g + g or the LO cross section of the process q/§+e~ — e~ +q/4
summed over all possible (anti-)quark flavours /3. The result reads

2 1 p (z) [p(o) ® p(O)] (z)
~S 14 ,S 89 ~lo
054 = ( S(”)) /dz Yy [ fosl S8 dop(z)

2
27T felad) 2¢e 2e

Xs

1
+ 2(;‘) [ dz B (2) ot (2).
0

(6.232)

Eq. (6.232) contains convolutions with quark-initiated and gluon-initiated cross sections. We
labeled them accordingly. doy,, . is the real emission contribution to the gluon-initiated NLO
cross section that is defined in Eq. (5.77). Upon combining Egs. (6.231, 6.232) we obtain the
final result that is presented Section 9.2.
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7. The NNLO computation: gluon-initiated

channel

In this chapter we consider gluon-initiated contributions to deep inelastic scattering. Such
processes appear first at next-to-leading order in the perturbative expansion of the partonic
cross sections. To obtain an infrared-finite contribution at NNLO we, therefore, do not need to

consider double-virtual contributions for gluon-initiated processes. We write
dOnnlo = d0ry + doy + d@—pdf ’ (7.1)

where do;, refers to a one-loop correction to process g + e~ — e~ + g + 4, do;, refers to a
process ¢ + e~ — e +q+ q+ g and di,qf contains corrections that originate in the collinear
renormalization of parton distribution functions.

We begin with the discussion of the double-real contribution to the partonic cross section

and note that only one partonic process

g(p1) +e (p2) — e (p3) +q(ps) +d(ps) +g(ps) , (7.2)

needs to be considered. The amplitude describing process Eq. (7.2) is built from Feynman
diagrams shown in Fig. 7.1. Both quark and anti-quark develop singularities if they become
collinear to the initial-state gluon. In full analogy with the NLO discussion in Section 5.5 we
rewrite the matrix element in such a way that only one of these collinear singularities is present
at a time. To this end we introduce partition of unity 1 = wgl + wgl, where partition functions
w'! are defined around Eq. (5.73), and write the matrix element squared as follows

| M (1,4, 5, 65) |* = w3t | MU (1g, 45, 55, 60) |* + wil [ MU (14, 4,, 55, 65) | 73)
= wgl [‘Mtree(lgr 44,55, 6g) ’2 + ‘Mtree(lg' 59,44, 6g) ﬂ ' |

We note that in the last step we switched the momenta labeling of the quark and the anti-quark.
In analogy to the discussion in previous sections we write!

25 - dbny = / [dps](dps) w3 Fiang (1o 4 150,6) = (0 Fiang (g 4 150,60) ) . 74)

INote that, the mismatch between the actual 44 final-state vs. labels of momenta p4 and ps in Amg (1g,44 |54, 64)
indicates the “averaging” over quark-anti-quark final states, see Eq. (7.3). For simplicity, we do not show these
labels in the following computation.

95



7. The NNLO computation: gluon-initiated channel

6 5 5 6 5 6
1 4 1@9.09&on E § 4 1@9.09&on § E 4
ft ft [t
6 5
1 4

1%

Fig. 7.1.: Partonic currents that contribute to the double-real emission contribution to the gluon-
initiated cross section. The shown set is not complete, all Feynman diagrams also need to be included
in the computation of the amplitude with inverted fermion line. To obtain the complete Feynman
diagrams for DIS they need to be contracted with the the leptonic current. We only show labels i of
external momenta p;.

where we defined

Fimg (1g, 4 154,65) = N/[dP3] [dpa) (270)46 D (py + p2 — p3 — pa— p5 — pe)

) (7.5)
X (| M= (1,4, 57, 60) [* + [ M7 (14,5, 47,65) [*] x O(ps, pa, ps, pe)

Note that for gluon-initiated contribution Eq. (7.4), we do not impose energy ordering for
momenta ps and pg. This is in contrast with the discussion of the process g +e~ — e~ + g+ gg
in Chapter 6. The reason is that the matrix element squared does not posses a single-soft
singularity in the Es — 0 limit.

The function wgl Fimg(1,415,6) possesses the following singularities. A soft singularity is
present when the energy of the gluon ¢(ps) vanishes. Double-collinear singularities develop

when ps || P1 or Ps || Piz145 and a triple-collinear singularity develops when ps || Ps || 71-

51
8

subset of singularities that the amplitude of the process g + ¢~ — e~ + g + g + g possesses. For

The singularities when s || P is removed by the function w}'. These singularities form a

this reason, we can regulate them in full analogy with what has been discussed in Section 6.1.
Removing all operators in Eq. (6.17) that do not lead to singular limits when considering the
process in Eq. (7.2), we write

<w§1PLM,g(1,4 | 5,6)>5 - <s6w§1PLM,g(1,4 5, 6)> T <PLS§ACS(1,4 | 5,6)>

+ (B (14156)) + ¥ (Ol [dps]dps]w™wl Fiagg(1,415,6) )

ic{14} o (7.6)
+ Z <@gg>lo,g [dPS][dpé]WSi’éjw?FLM,g(ll‘l\5,6)>5,
ije{14}
i#j
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7.1. Single-soft subtraction term

where we defined?

Ofthos = 1= 56l [1 — Cs][1 = Cy] @)

nnlo,g

On = [I1-S][I-C] ((9(“) [I—Csi] +6Y[I— Ces] + 6 [I — C]

nnlo,g

(7.8)
+ 0@ [ — c65]) .

Partition function w°-% and angular sectors (a,b, c,d) in Eq. (7.6) are defined in Eq. (6.8) and
Eq. (6.13), respectively. Double-collinear operators are defined to act on the phase space
volume element that is parametrized in the same way as in the discussion of the process
g+e — e +q+ gg except for the fact that energies Es and Eg are not ordered anymore.

The first three terms on the right-hand side in Eq. (7.6) describe various subtraction terms.
The first term on the right-hand side in Eq. (7.6) is the single-soft subtraction term, we show
results for this contribution in the following section. We discuss the second and the third term
on the right-hand side in Eq. (7.6), corresponding to the soft-regulated (Sr) single-unresolved
(Cs) and double-unresolved (Cd) collinear subtraction terms in Sections 7.2 and 7.3, respectively.
The subtraction terms can be obtained in an analogous way to the discussion in Chapter 6 and
we do not repeat the details here, but only show an outline and present the results.

7.1. Single-soft subtraction term

The first term on the right-hand side of Eq. (7.6) is the single-soft subtraction term. The
required limit of the function Fpy ¢ is given in Appendix B. Integration over unresolved gluon
momentum pg is performed in full analogy to process q +e~ — e~ + g + gg discussed in
Section 6.2. The result reads®

<S6w§1FLM,g(1,4\5,6)> - <[I — Cs1] 1545w§1pLM,g(1,4\5)>5

_ e 1
0o (4EP 7 (4ERe ) 2 Pl-e),
-5 721 2 O/dz (1—2) 2 Py(z) ( |2CF T(1—2¢) Ky

I*(1—e)l'(1+¢) Fim(z - 17, 45)
+Ca 2 (1 — 3¢) ’
fefaql 4
(7.9)
where we defined
— [0‘5] —€ —€ —€ 4E12nax -
]f45 =2 (2Cr — Ca)1ys Kys + Ca 115Ky g + 1115 KlS} 12 : (7.10)

2We note that in Egs. (7.7, 7.8) the operator €, and some of the double-collinear operators Cij do not contribute.
We kept these operators in Egs. (7.7, 7.8) to retain the symmetric notation.
3In writing Eq. (7.9) we used Pjg(z) = Pyq(z).
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7. The NNLO computation: gluon-initiated channel

In Eq. (7.9) the functions Fiamg(1,4|5) and Fv(1,4) are given in Egs. (5.78, 4.5), the splitting
function Py, can be found in Appendix E.1 and Kj; is defined in Eg. (5.18). We note that the
splitting function P, which describes the collinear splitting of an initial-state gluon into a
quark-anti-quark pair, includes a factor 1/(1 — €) that reflects the different number of gluon

and quark polarizations. For more details, we refer to the NLO discussion in Section 5.5.

7.2. Single-unresolved collinear subtraction terms

The second term on the right-hand side of Eq. (7.6) contains all soft-regulated single-unresolved
subtraction terms where one of the two emitted partons is collinear to another external parton.
It reads
(Fon(1,45,6)) = < [1— S [Cs1w™"®* + Crw™S! + (619 Csy + 01) Cep ) w™ "]
x [dps][dps]wd! Fumg(1,415,6))
(7.11)
+ < [I — 56] [C64w51'64 + 94(C)C64w54'64} [dp5] [dp6]wglFLM,g(1,4 | 5, 6)>

+ ¥ <[1—56] [9,(b>c56+95d)c56] [dp5][dp6]w5i'6iw§1FLM,g(1,4|5,6)>.
ie{14}

The first term on the right-hand side in the above equation describes initial-state splitting, the
second final-state splitting and the third the emission of two partons that are collinear to each
other. We discuss the three terms separately, starting with the first one.

Initial-state emission

We begin with the following contribution to Eq. (7.11)

< [ — S6] Cs120°"**[dps] [dpe]wy Fumg (1,45, 6>> : (7.12)

Calculating the limits using Eq. (B.11) in the appendix and following the discussion of a similar
limit at NLO given in Section 5.5, we find*

< U — Sé] C51w51'64[dp5] [dpdwglFLM,g(l,‘l | 5, 6)>

1 . (7.13)
= bl s T o) -2 () <[1—s5]wg§FLM(Z ey |5g)> .
)

fefaar ) z

We continue with the contribution of the angular sector () in the triple-collinear partition
51,61 in Eq. (7.11). Apart from the angular ordering 115 < 716/2 and a different partition
function, this term is identical to Eq. (7.12). Consequences of these differences are discussed

% In this equation we renamed gluon momentum pg — ps after integrating over unresolved phase space of the
collinear (anti-)quark.
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7.2. Single-unresolved collinear subtraction terms

around Eq. (6.63). The result reads*

1 _
e 4E2\ ¢
(11~ 5eJo® v Tapelapala Fiag (1415,6)) = 2L 37 faz (431)
felaty K (7.14)

x (1 —Z)_ZePfg(z) <[I— 55) <%)—e wfclpLM(Z . 1Zf,4f|58) >5-

We now show results for the term proportional to Cg; in Eq. (7.11); it describes the collinear
splitting of the incoming gluon to two gluons. The computation is similar to the discussion of
final state quark splitting in Section 5.2.2 but in case of gluons also spin correlations occur. We
discussed in Section 6.3.3 how to deal with these. We note that the phase space parametrization
used to describe ¢ — gg splitting can be found in Appendix F. We obtain

<[1 — S6]Ce1[dps][dpe] <w54'61 + Gl(c)w51'61> wglFLM,g(l,él |5, 6)>

Ca

_ V“Zb] [e ((2E1) 7% = (2Ema) ™) + 'yg(ZEl)_Ze]

—€ 7.15
x<[w3‘é+wf§<p451) }wglpLM,g<1,4|5)> (7.15)

0 _oe —e Fime(z-1,4|5)
| efb] E) > [ dz ng,RRz(z)< [wfé—l—wfcl (%) } W TS >

z

where we introduced generalized splitting functions

P2 kR, (2) = P,y (2) + Bod(1 — 2) = DY) (2) + O(e),

Pgg,RR,(2) = ZCA{ [(1_;)1%} . +(1—z)* <i +z(1—2z)— 2) } ,

and 7, is the LO gluon cusp anomalous dimension. Results shown in Egs. (7.13, 7.14, 7.15)

(7.16)

depend on NLO functions Fn(1,4 |5) and Fimg(1,4|5) that possess collinear and soft singu-
larities. We explain how to isolate them in what follows.

We begin by considering Eqs. (7.13, 7.14). The soft singularity of F\(1,4|5) is already
regulated by [I — Ss] and limits of partition functions w3 and w;! provide proper NLO
partitioning. Hence, we only need to include the partition of unity I = [I — Cs;] + Cs;, with
i € {1,4}, to obtain a fully-regulated contribution. We compute the subtraction terms in full
analogy to the NLO discussion in Chapter 5. We note that, small differences between these
computations are already discussed in the context of the process ¢ +e~ — e~ + g+ gg in
Chapter 6. The result reads

99



7. The NNLO computation: gluon-initiated channel

<[1 — ] (C51w51'64 + 01 Csy ™V 61) [dps][dps]w Fumg(1,4]5,6)

)
_ ](4;2> /dz (1—2)2P,(z )<[ O w3 4 <7715) wtc]

) ) () oo

2
felaat z €

% 2C (4Ei/‘u2) (4E12nax/‘uz)_€ + ﬁ 22 2 Fum (Z ) 1f’ 4f ’ 58)
F 2€ MZ 7‘1’1 z
f efq.q} 0

pace Lok [ff<1;<i>f<;€;2€>](§) <4im> /dz (- %p, )

x ) <FW(Z'1f’4f)>5_[“sF [Zer(l—e)l“(l—k)} <4E%) o

2 | o 2
f€{q 7 z € #

2 T(1-3€)

/dz (P22 PR](z) Y <FLM(Z'1f’4f)> .
1

felaa z

(7.17)

We note that operators @i{i , are defined in Eq. (5.15).

We continue with the contribution in Eq. (7.15). The function Frye(1,4 | 5) possesses only
one, fis || p1, singularity. In terms proportional to the partition function w3¢ this singularity
is regulated. For other contributions to Eq. (7.15), the subtraction terms are constructed in
analogy to the NLO discussion in Section 5.5. The major difference is that the momentum of an
incoming gluon is z-dependent. We explained in Chapter 6 how to deal with this situation. We

note that this gives rise to convolutions of splitting functions. We obtain

<[1 — S6]Ce1[dps][dps] <w54’61 + ch)w51'61)w§1FLM,g(1,4 |5, 6)>

[, BN/ ) — (4R, /i) | (4ER\C
_e[ZCA 2e +7g<ﬂ2> ]

X < |:w3§ + @nlo,g w?cl (%) :| wleLM,g(l,él ‘ 5)>(5
e 1
[os] (4EF\ 5 P51 s1Fimg(z-1,4(5)
-5 721 /dz PR, (z)( w3t + @nlog wl (T) wy . 5

R () oo

u
x[chMEW) OB/ (4152) } <FLM,q<§-L4>>J

100



7.2. Single-unresolved collinear subtraction terms

[as])? [26T(1— )T (1 —2¢)] [4E3
T [2 T(1—3¢) M;{

F -1,4
X<LM,q(Z ,)>
Z 5

The convolution of splitting functions in the last term on the right-hand side of Eq. (7.18) is

> /dz [Pyg Ry @ Pyg ) (2)

(7.18)

given in Appendix E.1.

Final-state emission

We now consider the contribution
([1 = S6] | Coaw™®* + 0/ Coaro™ | [dps] [dpe] ] Fimg(1,415,6) ), (7.19)

to Eq. (7.11), which describes the collinear splitting of a final-state (anti-)quark. We begin with
terms proportional to w>!%* in Eq. (7.19). We use the fact that functions P, and Pj; are identical
and write the collinear limit of the function F ;¢ in the following way

1
C64FLM,g(1z4 ‘ 5, 6) = gib X —- D1 po PW ( ) X FLMg< -4 ‘ 5) (7.20)

where z = E;/(E4 + Eg) and Py(z) is given in Eq. (5.31). This limit was discussed in Sec-
tion 5.2.3 (see Eq. (5.43)). Following the discussion there, we obtain
< [I — 56] [C64w51'64 + 9§C)C64w54'64} [dp5] [dpé]wglPLM,g(l, 4 | 5, 6)>

s 2E,) % — 2Emax 2e -
- Lol (oo B B ™ | moey o] [ugt 0 (49) ]

X wglFLM,g(1,415)>.

To regulate the remaining collinear ps || p; singularity in the function Fing(1,4(5) in
Eq. (7.21) we insert the partition of unity I = [I — C51] + Cs; to the right-hand side of Eq. (7.21).

51 51 1

Looking at the subtraction term that contains the operator Cs;, we note that limgz, 5 wy: w

Psll 1
Cs1 w54 = 0 and that the term in the square brackets only depends on the final-state momentum
pa. Hence, computation of this term is identical to the computation of the NLO subtraction
term Eq. (5.84). We use the NLO result in Eq. (5.84) and write the fully-regulated contribution

as

101



7. The NNLO computation: gluon-initiated channel

< 1 — 56 [C64w51 /64 + 9 C w54 64} [dp5] [dp6]w FLMg(l 4 | 5 6)>
2 2 — —€
<|:2CF 4E /V (4Emax/y ) + <4E4> ,)/22:|
2

2¢ ‘uz 99

—€
nlo gwdc + wtc (PXS) :| wglFLM’g(l,ﬁl ‘ 5)>
0
1

Sl (), [eo-omne

o [, BRI B (350 - g B 10y
)

X

(7.22)

Double-collinear Csq sectors

The last missing contribution to the single-unresolved subtraction term in Eq. (7.11) describes a
kinematic configuration where an emitted gluon and (anti-)quark are collinear to each other. It
reads

y < [1— ] [ei(b)c% + 95‘”&4 [dps][dps]w* w3 Fra (1,415, 6)> . (7.23)

ie{14}

The collinear limit reads

1
CosFimg(1,415,6) = 83, % P Pyq (z) x Fimg(1,4]5+6), (7.24)

where z = Es5/(Es + Eg). Integration over angular phase space depends on the adopted phase
space parametrization; it can be found in Appendix F. We obtain

/[C56[d06] (0 +0)]— L

056
_1[ 1 (4n)° ] [r(1 —or( +2e)} I (7.25)
€8T (1—e¢) I'(1+e¢) i5) -

Note that the integral Eq. (7.25) depends on p;5 because of the angular ordering in sectors (b)
and (d). We find

{Z } < [1— Sq] [9@(:56 + 9,.<d>c56] [dps][dpsw S w Fag (1,415, 6)>
ie{14

—€ € —2 _ max 2
P (B ] o

ie{1,4}

X 1155 (1= 1115)° wicwy Fivg(1, 4] 5)> :
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7.3. Double-unresolved collinear subtraction terms

The function Fimg(1,45) in Eq. (7.26) contains a singularity when ps || 1. However, for
i = 4 this singularity is regulated by w{., which vanishes in this limit, and we only have to
regulate this singularity for i = 1. This is done in full analogy to the NLO case discussed in
Section 5.5. We obtain the final result

Z < [I — 56] [Qi(b)C% + Qi(d)C56:| [dp5] [dpﬁ]WSi’6iwglFLM/g(1,4 | 5, 6)>

ic{1,4}
_ [a] [T =e)T(1+2€)] 0 (4E2/p%)~ — (4Eaa/12) ™ | [4EE\ "
S - “ ()

X (énlo,gnlge(l - 7715)€wt1<: + ﬂ4€€(1 - 1745)6ch> w?PLM,g(ll4 ‘ 5)>
5

1
(1 61 +1€+ 26)] [er(l ;(61)5(;5 2e) ] 92 / dz (1 —z) % Py(z)

<[ (4E2/p2)~2€(1 — z) 72 — (4E2 /%)~ (4E3nax/ﬂz)*€
42
W

4e
—2€

+(3F) ma-a] g B

)

(7.27)

7.3. Double-unresolved collinear subtraction terms

The third term on the right-hand side in Eq. (7.6) refers to soft-regulated double-unresolved
subtraction terms, where both emissions are collinear to another parton. It reads

(Fv9(1,4|5,6)) = <[1 — S¢] [Gl(a)(cl [1 = Car] + 0”1 [1 — Cs] + 60,71 [1 - Cz1]
+ Gl(d)(& [1— CSéH [dps] [dpé]wm’&wglFLM,g(l"l | 5'6)> (7.28)

— < [I — 56] C51C64 [dp5] [dp(,]w5l'64w§1FLM,g(1,4 | 5, 6)> .

We note that contributions to Eq. (7.28) from the triple-collinear partition 51,61 were computed
in Ref. [68] and we only provide the required formula in Appendix I. In the following we
consider the contribution from the double-collinear sector 51, 64, which is given by the following

term

— < [ — S6] Cs1Cea[dps][dps|w” w3 Fum g (1,45, 6>> : (7.29)

Computing the corresponding limits and integrating over the phase space, we find
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7. The NNLO computation: gluon-initiated channel

Ut

1’0’0‘0‘0‘0‘0‘® 4 1

Fig. 7.2.: Partonic currents that describe real-virtual corrections to the gluon-initiated DIS cross section.
The shown set is not complete, all Feynman diagrams also need to be included in the computation of
the amplitude with inverted fermion line. To obtain the complete Feynman diagrams for DIS they
need to be contracted with the the leptonic current. We only show labels i of external momenta p;.

— < [I — 56] C51C64 [dp5] [dpé]w51'64w§1FLMlg(1,4 ‘ 5, 6)>

4F?

-8 fe (5
feladt

4F2 /y?)—€ — (4E2 2)—€ 4E2\ ~€ -1¢,4
><<[2C1:( 4/.“) 2(_5 ax/ W) +<}/{24> vsg]FLM(ZZf f)>
)

) (1—2) 2Py ()

(7.30)

7.4. Real-virtual contribution

In this section we consider the one-loop corrections to the process g + e~ — e~ + g7. Feynman
diagrams that describe this process are shown in Fig. 7.2. Following the discussion in Section 5.5

we define the UV-renormalized contribution as
25 dony = / [dps] w3 Frye(1,4]5) = <w§1FLV,g(1,4 | 5)>5 , (7.31)
where
Fvg(1,4]5) = N/[dps] [dpa] (270)%6') (p1+ p2 — p3 — pa— ps)
x |2R(ME" - Mo™) (1, P2, pa, pas ps) + 2R (Miges™ - Myd ™) (pr, pay pa s, pa) | 732)
x O(p3, pa, ps) -

UV divergences of the one-loop amplitude MrlliLOOp follow from the Catani formula [51-53].
We use it to split Fry ¢ (1,4 |5) into a part that contains explicit 1/¢€ poles and a finite part. We

write®

Fvg(1,4]5) = Iy¥ Fmg(1,4]5) + Fv,(1,4]5), (7.33)

5Note that this is only possible because the UV 1/¢ poles are symmetric under the exchange of momenta between
two final-state quarks or anti-quarks.
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7.4. Real-virtual contribution

where

Iy = [“es] [(i + i) (Ca —2Cr)(2E4Eqpag) € cos(rte)
(7.34)

1 3
_ CA( + = 1 + ,y2g> ((2E1E4p14)_6 + (2ElE6P16)_6>] :

We now consider the IR singularities of the function Fry¢(1,45). By construction, the only
singularity is a collinear one that corresponds to the 5 || 71 limit.° To regulate this singularity,

we write

(w0 Ry g(1,415)) = ([1 = Co1] 0] Fivg(1,415)) + (Corwd'Fivg(1,4]5)) . (7.35)
The collinear splitting g — g7 at one-loop order is described by the following formula [58-60]

FL\/(Z . 1f’4f)

Cs1Fimg(1,415) = g3 X : Y, Prl(z) x ~ + g2plasp]
P1-ps fefaat (7.36)
PO Ir0+e)], pe (1 ) ploop () o (2 1 dy)
I'(1-2e¢) p1-Ps fe{a.q) z

where z = (E; — E5)/E;. Analogous to Eq. (6.197), the first term on the right-hand side of
Eq. (7.36) contains the tree-level splitting functions Ps,(z). Integrating over momenta ps of this
contribution is performed analogously to the NLO discussion in Section 5.5 and the result can
be taken from Eq. (5.84). The second term contains additional powers of the scalar product p;".
The required integral is given in Eq. (6.71). It also contains additional powers of E;  that lead to
additional powers of (1 —z) ¢, after writing Es = E;(1 — z). Apart from this, integration of the
second term on the right-hand side of Eq. (7.36) over gluon momentum ps is again analogous
to the NLO discussion. The result reads

<C51w51FLVg(1/4|5)>
B o (8) 0 g g (e

felaq}

B [as e] [F4(12;16_31€+€ ]0/1 < 1) 5(1—2)3?6%7}13}2013(2) <FLV(Z'Zlf’4f)>5.

(7.37)

Note that the function Fry also contains explicit loop-induced IR poles. We extract them using
Eq. (7.33).

© We note that, individual diagrams shown on the very right in Fig. 7.2 are also singular in the collinear 7y || 75
limit. However, to compute the amplitude squared such contributions are multiplied by the tree-level amplitude
that is not singular in this collinear configuration. As a result, the divergence is not strong enough and can be
integrated.
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7. The NNLO computation: gluon-initiated channel

7.5. Collinear renormalization

Finally, we show results for the collinear renormalization contribution dé,4¢. Selecting terms in

Eq. (6.208) that are proportional to the gluon parton distribution function we obtain

1 B0 50) o, p0) 50) o, p(0)
25 dings = (=) v I PR [P @ Pl 2P e Pl
pAET A\ T2 ] 2¢ 2¢2 f
1
o A ~nlo D) ~nlo
+ 52(7’;) / [pgg(z) doi(z) + B (z) doy! (z)]
0
(7.38)

In writing Eq. (7.38) we used [P}g) ® 151;2)] (z) = [15;2) ® 15,1(2)} (z). Eq. (7.38) is the last ingredient
required to describe the gluon-initiated contributions to the NNLO QCD DIS cross section.
Upon combining double-real contribution in Eq. (7.6) with real-virtual contributions in Eq. (7.35)
and contribution from collinear renormalization in Eq. (6.208) we find that the poles cancel and
we are left with a finite remainder of the subtraction terms and regulated cross sections. This

result is presented in Section 9.3.

106



8. Numerical computation of regulated

contributions

In Chapters 6 and 7 we explained how singular contributions to the NNLO partonic DIS
cross sections can be regulated. We also discussed the analytic integration of the subtraction
terms over unresolved phase space. In this chapter we would like to describe how regulated
contributions derived in previous sections, can be integrated numerically over resolved phase
space to obtain NNLO predictions for any infrared-safe observable in 4-dimensional space
time.

As an example, consider the double-real emission process g +e¢~ — e~ +q+ g+ g. The
cross section of this process, written in terms of the regulated matrix element and subtraction
terms, is shown in Eq. (6.17). The only regularized contribution that depends on the full matrix

element of the above process reads

Y ([1-8][1—S6] [1 - Cgj] [1 — Csi] [dps][dpelw™ Fum (1,44 55, 65) ),
i,j=14
i#]

+ ¥ (-8 -s1-C] ((9(“) [1— Cei] + 001 — Csg) 8.1)

+0©[1—Cs] +6W[1 - c56]) [dps][dps]w®® Fim (14,44 | 54, 65) >5 :
For the sake of clarity, we focus on the contribution of sector (a) to the second term on the

right-hand side of Eq. (8.1). When written explicitly, this contribution reads

([1=8][1 = 86] [1 - ©1] [1 — Ce] [dps][dpe]6™ ™ Fing (14,4, |5, 6) >5
— [ [1-8][1 - 8] [1 - ©1][1 - Car] [dps][clplo(Es — Es)6"” (82)
x w P Fv (10,44 | 5g,65)
where
Fim (144155, 65) = N / [dps][dpa) (270)*8Y) (p1+ p2 = p3 — pa — ps — pe)

X |MESE (p1, P2, P3, Pas P5, P6)|> X O(p3, pa, ps, pe) -

(8.3)

The contribution Eq. (8.2) is infrared-finite because of subtraction and partition functions.
Hence, all objects including the phase space volume elements [dp;], the matrix element M

and the observable O can be computed in four dimensions. All required limits of the function
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8. Numerical computation of regulated contributions

Fm are collected in Appendix B. Partition function w61

is given in Appendix A.3. To compute
functions Fp numerically we require matrix elements for three processes g +e~ — e~ +q +
§+8 qg+e —e +g+gandg+e — e +¢g. These matrix elements can be computed
using formulas for vector boson currents 0 — V*+4q+43,0 - V*+g4+4J+gand 0 —

V* +q+ 3 + g + g provided in Ref. [70-72].

8.1. Phase space parametrization in sector (a)

We begin by describing the parametrization of phase space that enables Monte Carlo integration.
We found it convenient to work in the center-of-mass (COM) frame of the colliding quark g(p1)
and the electron e~ (p2). Hence we first generate a variable x € [0, 1] and write s = x - s;; where
sy is the COM energy squared of the hadron-electron collision. The momenta p; and p, then

read!

S S
p1= i(LO,O,l), p2 =

5 (1,0,0,—1). (8.4)

o5

Radiation phase space

We continue generating momenta of the two gluons. Therefore, we use a particular parametriza-
tion of the two gluon phase space for computing subtraction terms introduced in Ref. [7]. We
show details of the parametrization in Appendix F.2. For the current discussion we need this
parametrization in four dimensions.

We generate variables x1, x2 € [0,1] and write gluons energies Es and Eg as [7]
Es = x1Emax, Ee = x1x2Emax - (85)

We note that this automatically implements the energy ordering Es > Eg. The double-soft limit
corresponds to x; — 0 at fixed x, and the single-soft limit to x, — 0 at fixed x;. We continue
to generate variables x3,x4,A € [0,1] and write scalar products 77;; = (1 — 7; - 7i;) /2 in the

following way [7]?

X3X4 x3(1 — x4/2)?

s = X3, Hie = T' 56 = m- (8.7)

The triple-collinear limit corresponds to x3 — 0 at fixed x4 and the double-collinear limit to
x4 — 0 at fixed x3. We further generate an azimuthal angle ¢s € [0,27]. The gluon momenta

1We have chosen the beam axis along the z-direction.
2The function N in Eq. (8.7) reads

N(x3, x4, 1) = 14 x5(1 — 2x3) —2(1 — 24) /x4 (1 — x3) (1 — 2334 . (8.6)
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8.1. Phase space parametrization in sector (a)

ps and pg are then computed according to the following equations [7]

p5 = X1 Emax - (1, sin 05 cos ¢s, sin 65 sin @5, cos 05) ,

P6 = X1X2Emax - (1,8in 06 cos(gs + @s6 ), sin 06 sin(¢s + ¢s6), cos b)) , (8.8)
where
cosfs =1—2x;, sinfs=/1— cos?0s,
cosfg =1—x3x4, sinfg = m/ (8.9)
and

sin g — 2\ /A1 = A)(1—x4/2) , COS @55 = im' (8.10)

N(X3, X4/2, )L)
In Eq. (8.10) cos ¢4 is chosen negative if the following condition is satisfied

2(1 — x4/2)?

NGxa/za) (2 +xal=2w) >0, (811)

and otherwise positive. The phase space volume element in this parametrization reads
[dps][dpe]6(Es — Eg)0\ = x:fxzxgws(g)(x;;, x4,A) X dxg dxp dxz dxg dA ds, (8.12)

(@)

where the function Ws,’ is a weight given by

. 2E (1—x4/2
W5(6)(x3/ xXq, M) ( +/2)

T 272) A - A) N(x3, x/2,A)

The double-collinear operator Cg; in Eq. (8.2) is defined such that it acts on the phase space

(8.13)

volume element and therefore on the weight Wse(x3, x4, A). Hence, in contributions to Eq. (8.2)
that contain the operator Cs1, we have to compute a weight given by limy, o Wse(x3, x4, A) =
W56 (X3, O, )t) .

Born phase space

Once the four-momenta of the two gluons are generated, it remains to generate the “Born
phase space” element [dp3][dps] x (277)*6™*) (Q — ps — ps), where Q = p1 + p2 — p3 — ps. We
remove the energy-momentum conserving J-function by integration over the three-momentum
of the outgoing electron e~ (p3) and the energy E4 of outgoing quark g(p4). For the direction of
momentum p, we generate a polar angle 64 € [0, 7] and an azimuthal angle ¢4 € [0,27]. In

this parametrization, momenta p3 and p4 are given by

p3=p1+p2—Ps—P5—Ps,

(8.14)
pa = Eq - (1,8in 604 cos @4, sin 04 sin ¢4, cos by) ,
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8. Numerical computation of regulated contributions

with

5= 2\/5 (E5 + E(,) + 2E5E6p56

E
! 2\/s — 2(Espas + Eopas)

(8.15)

For the Born phase space element we find

[dps][dpa] x (277)*6W(Q — p5 — ps) = dcos by dpy x Wiy (Es, Es, Ee, 045, 016) » (8.16)

where the function W4 in Eq. (8.16) reads

E4
Espss + Eepas)|

Wiy (Es, Es, Ee, P45, 016) = 2(2171) X 25 =2 (8.17)

Note that p3, E4 and the weight W34 depend, through ps and pg, on the integration variables
{x1, x2, x3, x4 }, which parametrize energies and angles of the emitted gluons. Soft and collinear
operators in Eq. (8.2) act on the energy-momentum conservation condition. Hence, taking
Fim(1,4]5,6) in the double-soft $ limit is equivalent to the computation of p3, E4 and weight
Wiss with x; = 0. Similarly, Fipm(1,415,6) in the double-collinear Cg; limit is obtained by
computing p3, E4 and weight W54 with x4 = 0 etc. It is easy to see that, upon doing that, we
obtain proper limits of the Born phase space. We elaborate on this in the next section.

8.2. Evaluation of the cross section

We now discuss how different contributions to the right-hand side of Eq. (8.2) are computed.
We split Eq. (8.2) into 16 pieces, each describing a particular combination of soft and collinear
limits. Therefore, we expand operator [I — $| [I — S¢| [ — C1] [1 — Ce1] and find

[I—8][I—Se|[I—C1][1— Cal]
=1-8—-5—C1 —Cg1 + 5S¢+ SC1 + SCg1 + S¢C1 + S6Cq1 + C1Cg1 (8.18)
—$S56C1 — $56C41 — SC1Cq1 — S¢C1Co1 + $56C1Cq1 -

Upon using the parametrization of the phase space discussed in Section 8.1, all these limits are
made explicit in terms of various limits in {x1, x, x3, x4 } variables. Inserting the phase space

parametrization shown in the previous section into Eq. (8.2) we obtain

([1=8][1=S6] [1 - ©1][1 — Cen] [dps][dpel6® @™ Fing(1,4]5,6))

= / dx; dxy dxg dxy dA dcos 84 X x:l”xzxg,
(8.19)
X { [I—=S][I—Se|[I—C1][1—Ce1]Wsa(Es Es, E61P451P46)Wé2)(x3/ x4, A)

51,61 ( tree

X w 015,045, 016, P46, P56) |Mnn10(}91, P2, P3, P4, Ps, Pe) |2@(P3, P4, Ps, Pe)} .
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8.2. Evaluation of the cross section

We note that the operators in Eq. (8.19) act on everything to the right of them, which includes
weights, partition functions, amplitudes, and observable. We now discuss explicitly how some
of these contributions are computed numerically.

We begin by considering the term in Eq. (8.18) that is proportional to the identity operator I.
For each phase space point given by a set of eight generated variables {x1, x2, x3, x4, A, 04, Pa, @5 }
we first compute momenta p5 and ps with Eq. (8.8) and direction of p4 with Eq. (8.14). We then
compute energy E4 according to Eq. (8.15). If we find E4 < 0, the current phase space point is
not valid for the identity contribution; in this case we set Eq. (8.19) to zero and continue with
remaining contributions shown in Eq. (8.18). If we find E4 > 0, we compute p3 with Eq. (8.14)
and again check if E3 > 0. In case we also pass the second test, we compute weights Wy, Wég) ,
5161 observable O and matrix element squared | M |2 numerically. The
full contribution to Eq. (8.19) reads

partition function w

IFm(1,4]56) — X?XZX3{W34(E4, Es, E¢, pas, P46)W5(2) (x3,x4,A)

51,61 (

X w 015, 045, 016, P46, 056) X | M (p1, P2, P3, P4, 5, P6) |2 (8.20)

x O(p3, pa, s, ]96)}-

Consider now a second contribution for the same phase space point. One of the terms that
needs to be subtracted from Eq. (8.20) is $Fm(1,4|5,6). Momenta ps, p and direction of py
are identical to the case IFp(1,4|5,6). However, E4 and ps need to be computed at x; = 0,
which corresponds to the double-soft limit. We find

s —2+/s (Es + Eg) + 2E5E4ps6
2+/s — 2(E5pa5 + Eepas)

= pf = Ef - (1, sin 64 cos @4, sin B4 sin ¢4, cos O4)

E} =

5
2

X1 =0

(821)
= pi= (P1+P2—Pf—P5—P6)‘x120:P1+P2—Pf-

Note that in the double-soft case the conditions E3 > 0 and E4 > 0 are always fulfilled and there

is no need to check them explicitly.?> We further compute weights Wsy4, Wég), partition function

w10l observable O with x; = 0 and p1, p2, 1is, g and pf, pf. We show these formulas in the

final result in Eq. (8.23). The required matrix element squared | M |? reads*

L tim (xt 1MES5,12) ~ Eik(p1, pS, ps, ps ) (Mféee(m,m pS pi) ]2 L (822

xl x1—0

31t is easy to see from the independence of pg and pf in Eq. (8.21) on variables {x, x3,x4} that this statement
is true for all terms in Eq. (8.18) that contain the double-soft operator $ in combination with arbitrary other
operators.

“The double-soft eikonal function Eik(p1, p4, ps, ps) in Eq. (8.22) can be found in Appendix B.2. We write a
proportional sign because we neglect the strong coupling constant.
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8. Numerical computation of regulated contributions

Hence, the double-soft contribution becomes

SFMm(1,4]5,6) — x3xax3 {W34(Ef, 0,0, 045, 16) Wse(x3, X4, A)

*11 (015, 045, 016, 016, 056) X Eik (m, pi, s, Pé) )Mféee (m, p2, P3P} ) ]2 (8.23)

X @<P§/Pi’;>}-

As the last example, consider a term where both the double-soft operator $ and the double-

X w

collinear operator Cq; act on Fia(1,4|5,6). Again, momenta ps, ps and direction of p4 are
identical to the case IFp(1,45,6). To compute energy E4 and ps we use Egs. (8.14, 8.15) at

x1 = x4 = 0 and obtain

ESCa _ S 2+/s (E5 + Eg) + 2E5E6pse _ Vs
4 2y/s = 2(Espas + Eepss) | g,—x,—0
- pfcél — Efcﬁl - (1, sin 64 cos ¢4, sin B4 sin ¢4, cos O4) (8.24

$

= P o = (Pl +p2— Pfcﬂ —ps— Pe) 5Ca1

=p1+p2—py
=0

X1=X

Again there is not need to check Ez > 0 and E4 > 0. We then compute weights Ws4, Wi,
partition function w16l observable O at x; = x4 = 0. The matrix element squared in the

double-soft double-collinear limit is given by

1
—— lim (x%x4 | Mtee 2)

X%X4 x1,X4—0 nnlo
$Cq1 (8.25)
P1- Py tree $C, $C, 2
~4Ct < M= (pr, pa, 5 P3|
E2p16 (p1 - ps) (P3 < - ps) ° ( )

Hence, the double-soft double-collinear contribution to Eq. (8.19) reads

$Ce1Fim(1,4|5,6) — x‘;’xzxs{WM (Efcﬂ, 0,0, 045, 914) W5(Z) (x3,0,A)

5Ce1
P1- Py

E2p16 (p1- ps) (P~ - ps)
% ‘Mfgee (Pl; P2, pgcml Pfcm) ‘2 x @ (p:;scell pr(,l) } )

w51,6l (

(8.26)

X 015, 045, 0, 014, Pls) X 4C12:

The remaining 13 contributions, that appear in Eq. (8.18), are dealt with in the same way.
Finally, we sum all contributions accounting for relative signs according to Eq. (8.18). The result
is a numerical value of the differential cross section for a given phase space point. We repeat
this procedure for all other sectors and partitions as well as for double-virtual and real-virtual
contributions and subtraction terms. We present results from an numerical implementation that
uses the Vegas algorithm [69] and follows the described procedure in the following chapter.
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0. Results and their validation

In Chapters 5-7, we discussed the extraction of IR singularities from the double-real, real-
virtual, double-virtual, and collinear renormalization contributions to the NNLO corrections,
and presented analytic formulas for each of them. In this chapter, we will show the IR finite
results that we obtained upon combining these formulas, and discuss how the analytic formulas
for the subtraction terms were validated.

At NNLO we obtain an infrared finite result if we combine the quark-initiated processes
g+e —e +g+ggandqg+e — e +q+q'q. Wesplit this processes into finite, non-singlet
and singlet contributions.! The finite contribution reads

25 - Aoy ine = (N (14,44, 5¢.67) )5/ 9.1)

where F1% is defined in Eq. (6.220). Since remaining non-singlet and singlet contributions
depend on different matrix elements, each of them is individually infrared finite. We present
results for non-singlet (singlet) contributions in Section 9.1 (9.2) respectively. We also obtain an
infrared finite result if we compute the gluon-initiated process g+e~ — e~ +q+ 4§+ gand
we show results for this process in Section 9.3. We discuss how we validated these results in
Section 9.4.

9.1. Non-singlet contributions to the quark channel

We split the finite non-singlet cross section into terms with defined highest multiplicity in the
final states and write

S e S A AT 9.2)
where dﬁ;ﬁl&j are contributions that contain matrix elements of the processes g +e¢~ — e~ +
g+ggandg+e —e +qg+47, dﬁ;ﬁls‘,’zj are contributions that contain Born and one-loop
matrix elements of the process g +e¢~ — e~ 4+ g+ gand d&;?mls(,)lj are contributions that contain

Born, one-loop and two-loop matrix elements of the process g + e~ — e~ + g. with up to two

1We refer to the discussion of the channel g + e~ — ¢~ + g+ ¢’ + 7 in Chapter 7 where we define singlet and
non-singlet contributions. Note that, the channel g +e¢~ — e~ + g + g + g purely contributes to the non-singlet
part.
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loop corrections. The results read

25-domioy = Y- (O, [dps][dpelw™ [ Fou (14,49 | 54, 64)
ije{14}

i#j + FMns (1qr4q | 5q g ,6 )} > (9.3)

+ Z <Onnlo [dps)[dpe]w™® [PLM(1Q'4Q | 5¢,6¢) + Fimns (1g,44 | 5¢7,6 )} >(5r

ie{1,4}
/dz <

ie{14}

<4E2> 561} pq(q)(z) } Fum (Z 1,44 15) >‘5

]/l ya
LRSS <@;30w5f{ (2Cr — Ca) Sf + Ca(SE +SE) + 7+ 04)

ie{14}

2s - dAmﬁlsozl_ Z <©lo 51Fﬁn(lq/4q|5g)>
[ln

X {P;q(z) +

- Es
+ Z Alé] {’)’] + ZCF In <E]>:| } FLM(1q14q | 5g) >5

je{145}

Kg v
+ 2(75) ’}’kl,g Z <[I — SS] [I — C51] |: 2g‘m/:| wtCF]]jM (16]’4 ‘5g)>
ic{1,4}

25 - doPny = (Fivy (1g,:49) )5 + (B (1,49) )
1 .
s 4E2 R Ffm -1 ,4
40 oo (o (2
) 1 z 5
max in 0‘5( ) 2
27]; {ZCF 81E4 + ')’q}< f ( L])>5 + ( 271_; > <{AnS(E1/E4/ Emax; 7]14)

+ CF ((5kl/g<ryrv>p5 - 5g<A64>g5 + r’)‘//q(E4, Emax) <A64>./§I5) } FLM (1q’ 4‘7)>
)

(9.5)

le
+< > /dZ <{CF qu El/ maxs 2 )<A61> +7;15(E1/E4/Emax/7714/2)}

% FLM(Z‘1q14q)> .
0

z

The functions 7Tys and Ans can be found in Appendix J.1. NNLO functions Fp(1,4|5,6) and
Fimns(1,4]5,6) are defined in Egs. (6.4, 6.222), NLO functions Fin(1,45), Fi3,(1,4|5) are
defined in Egs. (5.4, 6.117), the finite remainder of the real-virtual contribution F{‘{,‘ is defined
in Eq. (6.186), the LO function F(1,4) is defined in Eq. (4.5) and one-loop and two-loop
finite remainders F{i%(1,4), Fin, (1,4) and F&rf‘z (1,4) are implicitly defined in Egs. (5.58, 6.206).
Explicit expressions for vectors ), with i € {1,4}, can be found in Appendix F.3. NNLO
operators @&1 , and @g}fl , are defined in Egs. (6.18, 6.19) and the NLO operator @1(3 , is defined
in Eq. (5.15). Partition functions w®"®/ can be found in Appendix A.3.

The Altarelli-Parisi splitting function 15,1(2 ) and the generalized splitting function P, can be
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9.2. Singlet contributions to the quark channel

found in Appendices E.4 and E.5. In Eq. (9.4) we used notations 7; and C; where 7; = 7,4(7¢)
and C; = Cp(Cj,) if i labels a quark(gluon) where 7, and v, are the LO quark and gluon cusp

anomalous dimensions given by

11 2

3
Yq = ECF/ Yg = ZCA - gTRNﬁ (9.6)

The generalized anomalous dimension ; can be found in Appendix E.
In the NLO infrared-finite result Eq. (5.68) we defined the function Sﬁmx, see Eq. (5.69). In
the NNLO result in Eq. (9.4) we introduced a generalization S 5 of this function as

. L Y VR | E. E.E.
Sij = Lial =) = -+ 2Z]+21n2<E;> _ln”ifln< 1;2]>
9.7)

1]y Einji vj Einj
+2[Ciln(Ei +len E]‘ ,

where A;; = 1 if partons i and j are both in the initial or both in the final state and A;; = 0

otherwise. 7; and C; in Eq. (9.7) are defined above Eq. (9.6). The quantities Ag]- are remainders

of partitions functions defined as

X ‘ i X ' 1js
Al =—wfIn <’75> , Ms=- Y wlhn <> , ©.9)
2 iy A=)

withi € {1,4}. We discuss the computation of the only partition-dependent functions (A;;)5.

and (r*r"),, in Appendix H. In addition we defined another generalized energy-dependent
splitting function

Pag(2 E1, Emax) = —CF{ZDl (z) —(1+2z)In(1—z) +1In < b ) [Z'DQ(Z) —(1+2z)

max

£ 9.9)
—|—5(1—z)ln< ! )]},
Emax
and anomalous dimension
~ 7 3 E,4 > ( E4
E,; E =C ——i—ln( >—ln < )] 9.10
,)/q( ! max) F { 4 2 Emalx Emax ( )

9.2. Singlet contributions to the quark channel

We continue with the results of the quark singlet contributions. As in the case of non-singlet

contributions, we split the cross section as follows

~nnlo __ jannlo ~nnlo ~nnlo
dogs® = doys+dog o5 +doger - (9.11)
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9. Results and their validation

We obtain for the contributions on the right-hand side of Eq. (9.11) the following results

2s-donls = 3 ([09[1—Ca] + 001+ 01 [1 - Cs] + 01|

ie{14}
x [dps][dps] [I - C;]w™* Fims(1,4,5, 6)> (9.12)
+ Y ([I—Csi][I - Cgj][dps][dpe]w’® Fims(1,4,5,6)),,
ije{1,4}
i#]
2
25 - dopes = < — Gs1] {73/ (z) [ln <4le> —Aél]pg(g)(z)}
(9.13)
" Fim(z - 1gr4qc7 | 559)
z 5
2 1
F -1¢,4
2s-dopi = (8) [axmens) ¥ <LM(ZZ”)> ~ 014
0 felaqy g

The function 7s can be found in Appendix J.2. The NNLO function Fi (1,4, 5, 6) is defined
in Eq. (6.229), the NLO function Fiye(1,45) is defined in Eq. (5.78) and the LO functions
Fim(1,4) is defined in Eq. (4.5). The splitting function pg(g) and the generalized splitting function
Pg, can be found in Appendix E.4 and E.5. The functions A;j are shown in Eq. (9.8).

9.3. Gluon channel

We now show result for the contributions from the gluon-initiated process g +e¢~ — e~ +q7+g.
Again, we write the cross section as follows

oo = doTye + doT3e + dome. (-15)

The three terms on the right-hand side read

25 - dAImIO = ‘ 24 <Onnlog dp5] [dpe]w5i’6jFLM (1gr 4!117 | 517‘1'68) ><5
i,j=
= (9.16)

+ Z <OAr(11)110,g [dp5] [dp6]w5i/6iPLM (1g/ 4qq | Sqq/ 6g) >(5 ’
i=14

1
254030 = ([1~ G Y (1 g 530)s + 520 % [ aa( O
2n ie{14} )

x{P;,g(z)+[1n <4yEz> AL ]Pq(g)(z)} 5 PLM(Z'lsz4f|5g) >5

felaq}
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9.4. Numerical validation of the subtraction terms

n "‘52(;‘) O/ldz <[1 ~ Cs1] {Pég(z) n [m (ﬁ) - Agl] p0) (z)} 9.17)

FEwm(1,,4 -|5- Xs
o M(gzqq W)>§+2(7?<[I—C51]{(2CF—CA)Sf5maX

X Em X
+CA(SIP™ + S +29,+ Y. A [% +2C; In ( e ﬂ }
ic{145} i

X Fum (g, 44q | 5qq)>§f

1 .
~nnlo X 4E7 4 Ffm z-1z,4
25 - dogh© = 52(75) /dz {P[;g(z) +1In (;) égo)(z)} ) <LV( . ! f)>
0 K fefany s

2 1
Ng ! = ’4
+ (2(75)> 0/<7}(E1/E4/Emaxr7714fz> Z LM(fo)> ‘

felaqt 4

(9.18)

The function 7y is given in Appendix J.3. The NNLO function Fimg(1,4|5,6) is defined in
Eq. (7.5), NLO functions Fn(1,4 |5) and Fimg(1,45) are defined in Egs. (5.4, 5.78) and the
LO function Fip(1,4) and the one-loop finite remainder Ffi?(1,4) are defined in Egs. (4.5, 5.54).
NNLO operators OV and O are defined in Egs. (7.8, 7.7) and the NLO operator @ﬁi o 18

nnlo,g nnlo,g

defined in Eq. (5.15). Partition functions w?’6j are given in Appendix A.3. All the (generalized)
splitting functions and anomalous dimensions can be found in Appendix E, functions Afj are

shown in Eq. (9.8) and 7; and C; are understood as in the previous sections.

9.4. Numerical validation of the subtraction terms

In what follows we describe how we checked finite remainders of the subtraction terms
presented in the previous sections. It is possible to check these terms numerically by comparing
them to known NNLO QCD corrections to the inclusive cross sections for deep-inelastic
scattering process P + e~ — ¢~ + X. For comparison we use the program HOPPET [9,76,77]
where analytic formulas for DIS NNLO QCD coefficient functions [64-66] are implemented.
Since our goal is to check analytic results for the subtraction terms and not to discuss DIS
phenomenology, we only implement the simplest setup of our fully differential description that
allows a thorough check of the subtraction formulas. We describe this setup below.

We consider initial states that contain a single quark flavour and/or a gluon. For the sake
of definiteness, we have chosen this quark to be an up-quark. In the final state, we allowed
for contributions from 5 massless quark flavours (2 up, 3 down). We consider DIS process
mediated by a virtual photon.

We use the following parameters for numerical evaluation. We chose the hadronic center-of-
mass energy to be /s = 100 GeV. To avoid on-shell photon exchange, we restrict momentum
transfer g2 = —Q? from electron to proton to the interval 10GeV < Q < 100 GeV. We use the
NNPDE3.0 PDF set [78] as implemented in LHAPDF [79]. We use values of the strong coupling
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9. Results and their validation

NLO, quark NLO, gluon

# (GeV) numeric (pb) analytic (pb) # (GeV) numeric (pb) analytic (pb)
50 59.1(2) 59.0 50 -222.6(1) -222.6
200 143.5(2) 143.3 200 -373.2(1) -373.1

Tab. 9.1.: Results obtained for different choices of the factorization and renormalization scale,
1 € {50GeV,200GeV}. Both parton distribution functions and the strong coupling are still
evaluated at y = 100 GeV.

constant provided by NNPDEFE. We set the renormalization and factorization scales to a fixed
value u = pr = pr = Qmax = 100GeV.
We write the inclusive partonic cross sections as

Onnlo = Olo + Z [Aanlo,i + AO—nnlo,i] + O((X?) s (919)
ic{qg}

and present results for LO, NLO and NNLO contributions separately.
At LO, we find?

oo™ =1418.89(1) pb, of' = 1418.89pb, (9.20)

where the superscript num indicates results obtained numerically from the fully differential
description using the nested soft-collinear subtraction scheme and the superscript an indicates
the result obtained by using HOPPET. We note that the agreement between the numerical and
the analytic LO results in Eq. (9.20) is prefect.

For the NLO contributions, we obtain

Adpin = 101.16(4) pb, Aoy, = 101.12pb,  (quark-initiated) (9.21)
and
Aoyige = —297.90(1) pb, nlo,g = —297.91pb.  (gluon-initiated) (9.22)

We observe that the agreement is better than a permill, and within the Monte Carlo integration
error which is of the same magnitude. In order to check the scale dependence of our NLO
results, we also used different values for the renormalization and factorization scales y €
{50GeV, 200 GeV}, for which we find a similar level of agreement, see Table 9.1.

We continue with the discussion of the NNLO contribution. Analytic results for quark-
initiated channels are available for singlet and non-singlet contributions separately. To stress-

test our formulas as much as possible, we split the fully differential calculation in the same

2Analytical results are obtained from a direct integration of analytic DIS coefficient functions. However, we do not
show Monte Carlo errors of this computations because this error is always negligible.
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9.4. Numerical validation of the subtraction terms

NNLO, quark, singlet NNLO, quark, non-singlet
1 (GeV) numeric (pb) analytic (pb) i (GeV) numeric (pb) analytic (pb)
50 3.87(1) 3.86 50 9.16(3) 9.18
200 16.47(2) 16.47 200 40.1(3) 40.2
NNLO, gluon
# (GeV) numeric (pb) analytic (pb)
50 -79.9(4) -79.6
200 -225.2(4) -224.8

Tab. 9.2.: Results obtained for different choices of the factorization and renormalization scale,
u € {50GeV, 200 GeV}. We show results for quark-initiated and gluon-initiated contributions
to the NNLO total cross section. Singlet and non-singlet quark-initiated contributions are
shown individually. We use Ny = 5.

way3

AUnnlo,q = Ao, nnlo,q,ns + AO—rmlo,q,s ’ (923)

and compare the two contributions separately. To check the dependence of the non-singlet con-
tribution on the number of light flavours N¢, we computed N¢-dependent and N¢-independent
contributions separately. Our results read

Aghum _ [33_1(2) —2.18(1) - Nf] pb, Ao = [33.1 —217. Nf] pb, (9.24)

nnlo,q,ns nnlo,q,ns

and for the singlet contribution

Aoc™m™ —919(2)pb, Ac™ . =9.18pb. (9.25)

nnlo,q,s nnlo,q,s

For gluon-initiated process we find

Aaﬁl‘é‘,g = —142.4(4) pb, Aaﬁﬁlorg = —142.7pb. (9.26)

We note that the agreement is at the level of a few permill, and the numerical and analytic
results are always compatible within the error. We also computed the contributions shown in
Egs. (9.24-9.26) for other choices of the scale y and found a similar level of agreement. Some
numerical results that illustrate these checks are collected in Table 9.2. However, to be certain
that we do not miss deviations in contributions that are too small to be noticed in the full results
shown in Egs. (9.24-9.26) and Table 9.2, we have also computed the coefficients of In" (4?) for

3We also defined a, by construction, finite contribution in Eq. (6.220). Note that this contribution vanishes when
computing inclusive quantities and is, therefore, not further discussed.
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9. Results and their validation

NNLO, quark, singlet, In" (42 /1i3)

n  numeric (pb) analytic (pb)

0 9.16(2) 9.18
1 4.54(1) 455
2 0.514(1) 0.513

Tab. 9.3.: Results obtained for individual coefficients of In" (u?/ y%), n € {0,1,2}, for the choice
po = 100GeV, in the quark-singlet contribution. Note that, given this choice of o, for
i = 100 GeV the only non-vanishing logarithm is given for n = 0 and this coefficient should
therefore coincide with the total result obtained in Eq. (9.25), which is indeed true.

NNLO, gluon, Epax = 11+ /s

n double-real subtractions real-virtual total (pb)

1 2.1(1) -141.2(4) 0.898(1) -142.4(4)
2 -8.7(2) -135.0(4) -142.7(4)
3 -12.7(2) -131.0(4) -142.8(4)
4 -15.3(2) -128.1(4) -142.5(4)
5 -17.4(2) -126.0(4) -142.5(4)

Tab. 9.4.: Results obtained for NNLO gluon-initiated contributions for different values of the
parameter Epyax. We chose Emax = 71 - /s to be a multiple n = {1,2,3,4,5} of the partonic
center-of-mass energy /s = 100 GeV. For comparison, the HOPPET (analytic) value is given
by Ac??, . = —142.7GeV. In the second, third and fourth column we show the results

nnlo,g
split into regularized double-real contributions, integrated subtractions and regularized

real-virtual contributions. The Enax-independent total result for Aa;‘lfllé‘/ 2 is shown in the last
column. The real-virtual contribution is Emax independent and we only show one value for
n = 1. However, it can be seen nicely how the double-real contribution, which implicitly
depends on Enayx, decreases while the subtractions contribution, which explicitly depends on
Emax, increases by the same amount with growing Emax.

n € {0,1,2} individually. We obtained permill agreement for all coefficients. We show such
results in the case of quark singlet contribution, in Table 9.3.

We recall that, in the construction of the subtraction terms we introduced an explicit energy
cut-off Enax into the phase-space volume element of final-state particles. Subtraction terms do
explicitly depend on the parameter Enay, but this dependence has to cancel with an implicit
Emax dependence in the regulated resolved contributions that are computed numerically so
that the physical result is Enax-independent. To check that this is the case, we varied Emax in
the numerical implementation and found a remarkably stable result. As an example, we show
results for the gluon-initiated contribution for various values of Epax in Table 9.4.

We note that we also compared numerical and analytic results for coefficients of individual
colour factors that appear in different partonic channels and found a permill agreement for
all of them. Hence, we believe that extensive checks described above establish the validity of
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9.4. Numerical validation of the subtraction terms

subtraction terms derived in this thesis.

Finally, we comment on the numerical efficiency of our implementation. All results presented
in this chapter are computed to permill precision and required O (1000) CPU hours of running.
It is certainly possible to improve on the numerical efficiency by, for example, optimizing the
parametrization of the Born phase space. However, for phenomenology, the NNLO contributions
to the partonic cross sections do not need to be known with permill precision. Since intended
permill precision on the full NNLO total cross section Eq. (9.19) corresponds to a few percent
precision on the NNLO contributions, the latter can be computed much faster. Indeed, we find
that we can get permill precision on the total cross section Eq. (9.19) already after ~ 50 CPU

hours.
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10. Conclusion

In this thesis we applied the nested soft-collinear subtraction scheme to the description of deep
inelastic scattering process through NNLO in perturbative QCD. This is the first application of
this subtraction scheme to a situation where colour charged particles appear both in initial and
tinal states at leading order. As such, these results provide an important building block that
will enable application of the nested subtraction scheme to arbitrary processes at the LHC.

As the name suggests, the nested soft-collinear subtraction is built on the premise that
nested subtraction of soft and collinear limits is sufficient to regulate all singularities in real
emission matrix elements that appear in NNLO QCD computations. Since soft and collinear
limits of QCD amplitudes are universal, all singularities of real emission matrix elements
can be described independent of hard matrix elements. Together with Catani’s formula for
virtual corrections, which likewise describes infrared poles of loops amplitudes using universal
building blocks, results for infrared divergences of real emission processes allow for an explicit
demonstration of the cancellation of infrared and collinear singularities independent of hard
matrix elements. After infrared and collinear subtraction is done, real emission matrix elements
become finite in four-dimensional space time and can be used to compute arbitrary infrared-
safe observables. In this thesis this program was carried out for deep inelastic scattering but
we expect that the results of this thesis can be used to explicitly demonstrate the cancellation of
infrared and collinear singularities at NNLO QCD for arbitrary hard scattering processes at the
LHC.

The two main results of this thesis are i) analytic formulas that provide integrated subtraction
terms for the deep inelastic scattering process; and ii) a formula for regulated fully-differential
partonic cross sections for DIS that admits straightforward numerical implementation. The
analytic formulas were validated through a comparison of the results of our computation and
the known formulas that describe inclusive NNLO QCD corrections for partonic cross sections
in DIS. We have carried out such a comparison for all partonic channels and for different color
factors, using different numerical values for input parameters, and found excellent agreement
in all cases. This makes us confident that they are correct. We note that, for fully-differential
descriptions of complex LHC processes with high multiplicities, efficient numerical evaluation
is necessary and our implementation of the subtraction terms is quite promising. Indeed,
we observed that we obtain permill precision on the NNLO total cross section oy, Wwhich
corresponds to a few percent precision on the NNLO QCD contribution Acyy,, after running
for only O(50) CPU hours.

Thanks to the fact that singularities of QCD amplitudes are independent of hard matrix

elements, the obtained analytic formulas for subtractions are, to a large extend, universal and
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10. Conclusion

can be used to construct subtractions for more complex processed. They can be directly applied
to any DIS-like process with one parton in the initial state and one parton in the final state. In
computations of processes with higher numbers of external momenta the results obtained in
this thesis serve as important building blocks.

The nested soft-collinear subtraction scheme has already been used to describe production
and decay of colour-singlet states [37,38] through NNLO QCD. At leading order these processes
contain colour charged particles only in initial or final states. The subtraction terms for NNLO
QCD corrections to deep-inelastic scattering, which are presented in this thesis, allow us to
extend this subtraction scheme to processes that also involve partons both in initial and in
final states. This is a crucial step in extending the nested soft-collinear subtraction scheme to

arbitrary processes at the LHC.
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A. Definitions and Notation

In this appendix we collect definitions and notations that are used in the main text.

A.1. Renormalized strong coupling constant

We often express intermediate results in terms of the following quantity

= [0 - B ]

where a;, = 8?,17 / (47) is the bare QCD coupling constant. The relation between bare and MS
QCD coupling constants reads

_ () Bo

s pSe = as () p* {1 e + O(ocf)] . (A.2)

In Eq. (A.2) u is the renormalization scale. Also, we use

Se = (4m)e €7, By = %CA - %TRNf, (A.3)

Ca =3, Tr = 1/2. Nr stands for the number of massless quark flavours. We also use

os] = |1 52120 1 02 (A
where
_ [as(p) e
[as] = [ 7 l“(l—e)] : (A.5)

A.2. Four-momenta and scalar products

The momentum p; of a massless parton i is written as

1 -
ply = E; nf, n; = <ﬁ> , n? =1. (A.6)
1
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A. Definitions and Notation

The light-like vector 7! can be written as

1 0
n?:t”—ke?, tz<6>, ei:<q>.
1

The product of two four-momenta p; and p; is written as
pi-p; = EiE; (1 — ;- 11j) = EiE; p;j = 2E;Ejn;j,
with

o Pij
pij =1—1;-1j, 771']':%-

A.3. Partition functions and angular sectors

(A7)

(A.8)

(A.9)

In this appendix we collect various partition functions introduced in NLO and NNLO QCD

computations.

A.3.1. NLO partition functions
At NLO we use

Ol = P Wt = P15 ) wgl _ _ Pu ) w§1 _ _ P15 )
015 + P45 015 + P45 014 + P15 P14 + P15

where p;; are defined in Eq. (A.9).

A.3.2. NNLO partition functions
For NNLO calculation, we use

51,61 54,64 51,64 54,61
1=w + w + w + w ,

where

5161 _ 054064 015 P16 5464 015016 P46 045
WOl = 14+ 5 , Wt = 14 L6 | P55 )
dsde < d5641 d5614> dsde < d5641 d5614>

5164 _ P45016056 5461 _ P15046056

w4 = , = .
dsdedse14 dsdedsean

In Eq. (A.12) we use the notations

di—s56 = p1i + Pai, ds614 = P56 + P15 + P16, d5641 = P56 + P45 + P16 -
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A.3. Partition functions and angular sectors

Partition functions Eq. (A.12) evaluated in different double-collinear limits read

2 2
Wi = lim v = (p 16 > , wihe = lim wl = <p45 )

psllp1 P16 + P46 pollps P15 + P45
) ) (A.14)
W = lim v = (p46 ) , whe = lim w*o! = <p15 ) .
psllpa P16 1 P46 psllp1 015 + P45
For the required limits of the triple-collinear partition 51, 61 we find
61 _— 1: 51,61 P46 P16
w lim v = ———( 1+ > ,
e pslp 016 + P46 ( P16 + P46
51 _ 1 51,61 P45 015
W~ = lim w* = ——— 1—1—), A.15
€7 pelm P15 1 P45 < 015 + P45 ( )
2
2
whe = lim w0 = (()45> <1+ Pl5>
psllpe 015 + P45 015 + P45
For the triple-collinear partition 54, 54 we obtain
w8k = lim w% = P16 (1 + mﬁ) )
pslipa 016 + P46 P16 + P46
54 _ 1 54,64 P15 045
wre = lim w*** = ———— 1—1—), A.l6
Te Pellpa 015 + P45 ( 015 + P45 ( )
2
2
wTC = lim w**®* = (p15 > <1 + . > .
pslipe 015 + P45 015 1 045
We also use
wil = _ P16 el P (A.17)

P14 + P16 s P14+ P16

A.3.3. Triple-collinear angular sectors

In the triple-collinear partitions 57,6, i € {1,4}, we split the angular phase space into sectors
(a) - (d). They are defined by the partition of unity

1=0 46" +6 0, (A.18)

with
0 =0 (5 ~me) 67 =0 (s = 7) 6 (75 i) A19
d=o(bn), @ zoln- B, 7

where i = 1,4 depending on the triple-collinear partition w>*® in which sectoring Eq. (A.18) is

introduced.
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A. Definitions and Notation

A.4. Angular dependent functions K;; and K;;

We used the following functions

1-'2(1 — 6) 1+e
Ky = |Firag | MR L b1 =1 —ny),

R, [r2(1—26)}7

1+3e 1 el — ..
ey | Fi(l+el+e6l—el—y;).

1

in Egs. (5.17, 6.190). The e-expansions of K;; and KZ-]- read [75]

2 In(1 — 17;;) In*(17;7)

2| _ T : 5[
Kijzl—i—e —Z—Fle(l—mj) + € —Zln(ﬂ”)—f— 5

4
+ In(#7;)Liz (1 — #4j) + Lis (1 — #7;5) + Lis (1735) — 353] +et [ _ T

40
2 In(1—n;;) In®(;;)  In*(n37) 72 In®(1i)
T o ij mij) 1ij T Mij

X Liz(l — T]l]) —+ ln(ﬂi]‘)Lig,(l — 771]) + 11’1(171']'>Li3 (771])

~ti(1- ) - alntn)| + 0,

i

2772

Kz'j =1+¢° |: 3 +4Lip (1 — 1’]1']')] + € [ —277? 11’1(1’]1']') + 611’1(1 — 771']') 11’1(171']')2

+121In(7;)Liz (1 — 1) + 4Li3 (1 — ;) + 12Li3 (7)) — 28@’3}

46 11’1(1 — 171) 11’13(1],“) 511’14(1],“)
ln2(17ij)+ 3] 1/ < ]

Lot C2mt 1470
9 3

2
+ ( - 8% + 181n2(17ij)>L12(1 — i) 4+ 2Li3 (1 — 73)
+ 20 11’1(771']')Li3 (1 — 171]) + 36 11’1(1’]1']')Li3 (171]) — 16Li4 (1 — 171])

—20Liy (1 — 171) — 16Li4 (773) — 2033 In(17;j) | + O(€°).
ij

A.5. Plus-prescription [ - |+ and convolution ®

The plus prescription | - | is defined as

1
[ ax ) g0 = [ dx f)lg(x) — ().
0

0
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A.5. Plus-prescription | - |4 and convolution ®

We defined a class of functions regularized with the plus prescriptions as

Dy(z) = [“ﬂg;z)] B (A.25)

The symbol ® is defined as the convolution

1
i@ f](2) = [ dxdy AL~ x). (A.26)
0
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B. Singular limits of tree-level functions F,,,

This appendix is a collection of all singular limits of the NLO and NNLO QCD tree-level

amplitudes that contribute to the DIS partonic cross section.

B.1. Single-soft limit: Sg

The single-soft limits read

SsEiai(1,,4, |5,) = 2CF @2, x P1 P4 % Fin(1,,4,), B.1
5 LM( q q’ g) F 8sp (p1-ps)(ps - ps) LM( q q) (B.1)
S6FLM(1q/4q ’5(‘;'/ 6g) = g?,b X |:(2CF - CA)514(6) +Cy (Sl5(6) + S45(6)):| (B 2)
X FLM(1q14q ‘ 5g) ’
SeFimg (1,44 |55, 65) = g2, X {(ZCF —Ca)S14(6) +Ca (515(6) + 545(6))} (B3)
X FLM(1g14q ‘ 5@) ,
where
pi- pj
Sii(k) = . (B.4)
i = Py )
B.2. Double-soft limit: $
The required double-soft limit reads
SFm(1g, 44|54, 65) = o) [4C%514(5)514(6) + CaCr[2514(5,6) — 511(5,6) 55
B.5

- 544(5,6)}} x Fim(1,,4,),

SFimns (1,44 154,64) = 855 TRCF[2114(5,6) — 111(5,6) — 114(5,6)] X Fim(14,44),  (B.6)
where S;;(k) is defined in Eq. (B.4) and

2p; - pj
(px - ) (pi - (P + 1)) (P - (P + p1))
(pi-p)(pj-p) + (Pi-p)(pj-pi) ((1—e 1.
(pi- (px + ) (pj - (pc+p1)) ((m-mV 2% (k’l>>’

Sij(k, 1) = S5 (k, 1) —
(B.7)
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B. Singular limits of tree-level functions F;,,

s0 pi- Pj 1 1
Sk D) = P i <(Pi'Pk)(Pj'Pl) * (Pi'Pl)(pj’Pk)>

2 (B.8)
B (pi - pj)
(pi - Pe)(pj - ) (pi )(P] p1)’
%mD:@f MJP)( ) (pj - pi) = (pi- i) (P p1) (B9)

(Pe - p)?(pi- (pk+Pl))(Pj'(Pk+Pl))
B.3. Double-collinear limit: Cj;

In this section we collect double-collinear limits. Note that in this appendix we do not show the
splitting functions. These are collected in Appendix E. Further note that dots in the argument
of functions Frv and F v ¢ indicate further momenta that may be present.

Initial-state collinear radiation: Cj

The required double-collinear limits to the initial-state momentum p; read

1 Fim(z- 1444 --)
Cs1Fim (14,440 |5e,...) = @2, X ———DPoy(z) X , B.10
siFim (19,49 |5+ ) = 85y — 79(2) ~ (B.10)
1 FLM(Z~1,4 ’)
CoiFimg (1o 4 150 ) =82y % Y ——Ppy(2) — , (B.11)
felamy PLP3
1 FLM, z-1 ,4 |5
CsyFims (19,49 54, 69) = 82, X ————DPgq(z) % o2 1o dy ‘7), (B.12)
p1-ps z
with z = (E; — Es)/E; and
1 FLM(Z'1,4 |5)
Ce1Fim (14,44 | 50,6,) = §> A R VA B.13
s1Fim (19,44 | 5, 65) 8s,b><p1 e Pyq(z) x z (B.13)
1 EN(z-1,,4,15
CerFimg (1,44 154, 65) = g?{bxipl'mpggw(z)x v Zg g "), (B.14)

with z = (E; — E¢)/E;. All splitting functions can be found in Appendix E.1.

Final-state collinear radiation: Cj,

The required limits for final-state splitting read

1 1
CsaFim (14,40 |5q,...) =¢%, x —— P Eml1,=-4,]...), B.15
54LM(q q15¢ ) 8s,b><p4'p5 aq (2) X LM(qZ g ) ( )
with z = E4/(E4 + E5) and
» 1 1
C64PLM(111/411|5g/6g):gs,bxmpqq(Z)XPLM 1q,g-4q|5g , (316)

1 1
C64FLM,g(1gr4q |5qr6g) = 83,17 X m Pyq (z) x Fimg <1gr - -4y |5q> ’ (B.17)
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B.4. Triple-collinear limit: C;
with z = E4/(E4 + Es). The splitting function Py,(z) is given in Eq. (E.1).

Radiation of collinear partons: Csg

Finally, we also need the double-collinear limit where two radiated partons are collinear to
each other. The required limits read

CseFim(1q,44 | 5¢,64) = gg,b X

ps - [Pg(g)(z) Fim(1g,44 |55 + 6g)
5" Pe (B.18)

+ P (2) KLk Lo (10,4 55+ 6)
1 1
CseFimg (g, 44 |5g,6¢) = g2 X ——— Pgg (z) X Fimg <1g,4q = -5q> , (B.19)

Ps5 - Pe
1

P Poquv (2) X Fiy (1,49 15+6) (B.20)

Cs6Fimns (19,44 |59, 69) = &2 X

with z = Es/(Es + Eg). The last arguments of the Fiy functions in Eq. (B.18) have to be
understood as gluons that carry momentum pss = (Es + Eg) - n5 where ns = ps/Es. The
function F{lf\/,[ (1q, 4, \ Sg) describes the single-real emission contribution F (1 044 | Sg) where
the polarization vector of the gluon g(ps) is removed from the matrix element. x is a vector
parametrizing the transverse direction of ps with respect to the direction of ps , it is defined in
Eq. (6.120). The splitting functions Pg(g) (z) and Pge(2) in Eq. (B.18) can be found in Appendix E.

B.4. Triple-collinear limit: C;

We now present limits where three partons become collinear to each other.

Initial-state collinear radiation: C;

For two gluons that are emitted collinear to initial-state quark g(p1), we obtain

2
2
(ClFLM(lqz4q ‘ 5g/6g) = gib X () ngq<Z5,Z6,Z> X FLM(Z . 1q,4q) . (821)
In Eq. (B.21) we defined the (combined) scalar product

S156 = —2P1 - P5 — 2P1 - P6 +2P5 - Ps, (B.22)

and the momentum fractions

Eq E;

(B.23)

The triple collinear splitting function can be found in Appendix E.2.
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B. Singular limits of tree-level functions F;,,

Final-state collinear radiation: C4

For two gluons that are emitted collinear to final-state quark g(p4), we obtain

2
2 1
((:4FLM(1q/4q |5g, 6g) = g?,b X (S456> ngq(25,Z6,Z) X FLM (111/ E . 4q> , (824)

where momentum fractions zs, z¢ and z are defined as

E4 Ei
=, i—56 = &/ - B.25
ST R+ Es+E T T B+ Es+Ee (B.25)
B.5. Strongly ordered double-soft limit: S¢$
We find
$SeFim(Lg,4q | 5g,6¢) = 2Cr 5y X [(2Ck — Ca)S14(6) + Ca(S15(6) + Su5(6))] S14(5) (8.26)
X FLM (1q,4q) ’
where S;;(k) can be found in Eq. (B.4).
B.6. Strongly ordered triple collinear limit: C;;C;
Initial-state collinear radiation: Cj;C,
For the double-collinear limits to initial-state quark g(p1), we obtain
CnC1Fm (14,44 | 54,6¢) = &5 ¥ AN Pyq(z)Pyg(2) % ——, (B.27)
with j € {5,6} and
Cs1C1Fmg (1,44 |54, 64) = 83,17 x ) Pre(2) Prg(2)
retaay 2P Ps)(p1-pe) (B.28)
(2215, 4y)
2z ’
The momentum fractions z and zZ read
El_Ej _ E1—E5—Eg
- = 2 B.2
z E Z E (B.29)

Final-state collinear radiation: Cj3Cy

For the double-collinear limits to final-state quark q(p4), we obtain

z

(P1-ps5)(p1-Pe

_ 1
Cj4C4FLM(1q/4q |5g, 6g) = g;{h X ) qu(Z)qu (Z) X FLM <1q, E . 411) (830)
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B.7. Single-soft double-collinear limit: S¢Cj;

with j € {5,6} and the momentum fractions

z= , =0
E4—|—E]‘ E4+ Es5 + Eg

(B.31)

The limit: C5C;

Finally we also need the triple-collinear limit where the two gluons become collinear first.
Starting with the limit Eq. (B.18) and approaching the triple-collinear limit, we obtain

1 0) -

Cse@C1Fim(1s, 4y | 5e,6,) = g%, x x{p< 2)P (2

s6C1Fim (19,44 | 5g, 65) = 85 (15 po) (p1 - Ps6) o8 (2)Pygq(2)
1, 4z 2 ) Am(z-1,4) (8.32)

+§ng(z) —Cr 1—Z+1_Z[KJ_-KJ_] + Ppq(2) X ==,
with momentum fractions
_ Es . Ei—Es—Eg _1

Z—m, Z—T, p56—z Ps . (B33)

In Eq. (B.32) k1, is the vector parametrizing the transverse direction of p to the direction of ps.
Similarly, & , is the vector parametrizing the transverse direction of ps¢ to the direction of p;.
In our phase space parametrization, c.f. Appendix F, we obtain [« - & | 2=

We find for the strongly ordered triple-collinear limit to the final-state momentum p4

1 (0) -
CseC1FiMm (14,40 | 5e,64) = g% x x{p 2)P (2
(14,44 |55, 6¢) 8s,b (15 po)(p1 - Pse) og (2)Pyq(2)
1 4z Fm(z-1,4) (B.34)
- Z _ 92 - Mz 1,
+2P;:g(2)|:—CF<1—Z+ 1_Z[KJ_-KJ_] ) +qu(z)}} X ==,
with momentum fractions
Es _ E4 1
_ , — S =~ . ps. B.35
z Es + Eq z E4s+ Es + Eg¢ Ps6 z Ps ( )
B.7. Single-soft double-collinear limit: S¢C;;
The limit of a soft-collinear gluon reads
5 1
CSiSSFLM(lq/4q ’5g, .. ) = ZCF gs,b X W X FLM(lq/4q ’ . ) , (B36)
5 Mi5

where i € {1,4}. If the soft and collinear gluons are different the limit is given by the product
of the two NLO-like limits. We obtain

Cs1S6Fim (14,44 | 54, 64)

- 1 Fim(z-1,,4
= 2Cr g2, x P1 P4 X Pyy(z) ¥ M

(p1-pe)(pa-ps)  Pp1-P5 z

(B.37)
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B. Singular limits of tree-level functions F;,,

with z = (E; — Es)/E;. The final state limit reads

Cs4SeFim (14,4 | 5¢, 6¢)
) > (B.38)
4,).

. 1
= 2CF ¢* x P1P4 X P..(z) X K (1,~
P& (o1 pe)(pa-pes)  pa-ps ra(2) X Fua| 1g z

with z = E4/(E4 + Es). The splitting function Py,(z) in Egs. (B.37, B.38) is defined in Eq. (E.1).

B.8. Single-soft triple-collinear limit: S¢C;

For initial-state emission we obtain

1 [2Ck—-C C C
C1S¢Fm (117/417 | 5g, 6g) — g;{b % |: F A + A A :|

= +
E; | p1s5p16 P15056  P16056 (B.39)
1 Fm(z 15,4 '
X EiEs Pyy(z) x —
with z = (E; — Es)/E;. For final-state emission we find
1 [2CF—Cy Ca Ca
C4SsFim (14,4, 5,,6 :4><[ + + ]
4SeFim (1q,47 | 5g, 65) = 85 EZ| pa5p46 045056 P16056 (B.40)

1 1

with z = E4/(E4 + Es). The splitting function Py,(z) in Egs. (B.39, B.40) is defined in Eq. (E.1).

B.9. Double-soft triple-collinear limit: $C;

Taking the double-soft limit of the triple-collinear splitting function Py, c.f. Eq. (B.21) and the

explicit formulas around Eq. (E.13), we obtain

SCi1Fhm (1q/ 4, | 5¢/ 6g)

§ (B.41)
= gep X |:C12T 5 [(2/5156>2Pg(§2)] + CaCr$ [(2/5156)2P§gi}b)H x Fim(14,44)
where
§[(2/5156) 7P| = 3y, (B.42)
E5ES p15016

7 171 1 1 [1 1
{2750 B =400~V + | e | o
25565156 556 [ Z6515 25516 556256 | S15  S16
1 1 z Z 1 1 1
_ o [5+6_6]+~ [ n ] (B.43)
5155162526 5156556256 | 26 ~ Z5 5156256 [ 26515  Z5516

1 [ 1 1 H
— = P + N .
51562526 | S15 516
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B.10. Double-soft double-collinear limit: $C;;

Momentum fractions in Eq. (B.43) are defined as

E;

L s =z5+7z. B.44
Es+Eo—FE 0= 57T% (B44)

Zi=56 =
The relevant scalar products read
s56 = 2E5Eeps6, S15 = —2E1Esp15, S15 = —2E1Eep16, 5156 = S15 + S16 - (B.45)

In Eq. (B.43) f56,1 is the double-soft limit of the spin correlated structure t5¢ given in Eq. (E.15).
It reads

%5516 — 26515 (B.46)

E561 =
’ Z5 + Z¢

B.10. Double-soft double-collinear limit: $Cj;

These limits read

1 p1- P4
S$CeiFim(14,4,|5¢,65) = 4C2 g¥, x X x Fiv(14,4,), B.47
siFLm (1g,44 | 5g, 6) F 8sb E2pis . (p1-ps)(pa-ps) M (1g,44) (B.47)

1 P1-Pa
$Cs; 14,4, |54, 6,) = 4C2 ¢*, X X X Fim (14,44) , B.48
5FLM(q q| g g) F8spb Eépls (Pl'P6)(P4‘P6) LM(q q) ( )

fori € {1,4}. We also need the limit $Cs; it is given in Section C.

B.11. Strongly ordered double-soft double-collinear limit: $S,C;;

These limits read

1 P1- Pa
$S¢Ce;i 1,,4,|5,,6,) = 4C% ¢, x X x Fm(1,,4,), B.49
6 61FLM( q 11| g 8) F&sb E(szié (p1-ps)(pa - ps) LM( q ‘7) ( )

1 p1 - pa
$S6CsiFim (15,44 | 5y, 6,) = 4C3 g%, x X x Fim(1g,4;),  (B.50
oCaiFun(la 4 195, 66) = 4CE 8o X o X o pe) (pa-pey ~ Tllorde) - (B30

fori € {1,4}. We also need the limit $Cs; it is given in Section C.

B.12. Strongly-ordered double-soft triple-collinear limit: $S¢C;

The required strongly ordered double-soft triple-collinear limit follows immediately from the
Ss limit of Egs. (B.39, B.40). For i € {1,4}, we obtain

S65CiFim (1q/4q ’ 5¢, 6g>
1 [2Cr—Cy . Ca Cy (B.51)

=2Cr g%, x + x Fm(1,,44) -
P& EZE2 | pispic Pi5056  Pi6P56 (1 4)
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B. Singular limits of tree-level functions F;,,

B.13. Single-soft strongly ordered triple-collinear limit: S¢C;;C;
Considering Egs. (B.36, B.37) in the triple-collinear limits €; we obtain

C1CinSeFim (14,44 | 54, 64)

1 Fm(z - 14,44) (B.52)

X P Z X 7 ie 516 7
EZpis  Pp1-ps (2) b4 {5,6}

= 2Cr g X

with z = (E; — E5)/E;. From the triple-collinear limit €4 of Egs. (B.36, B.38) we obtain

C4CisSeFim(14,44 | 5¢,6¢)
1 1
S
E¢ps6  Pa-Pps5

(B.53)

1 .
=2Cp gib X qu(z) X Fim <1q, E . 411) , 1eE {5,6} ,
with z = E4/(E4 + Es). The splitting function Py,(z) in Egs. (B.52, B.53) is defined in Eq. (E.1).

B.14. Double-soft strongly-ordered triple-collinear limit: $C;C;; and

$Cs;Cs;j
For the double-soft strongly ordered triple-collinear limit we find
1
$CiCjiFim(1q,4q | 55, 65) = 4CF gf,b X o —— X Fin(lg 4) (B.54)
E5ES psipsi

fori € {1,4} and j € {5,6}. In case that gluons g(ps) and g(pe) are collinear to different

partons we obtain
1
$CsiCoiFim (14,44 | 54,64) = 4CF 82, X —5o—— x Fum(14,44) (B.55)
ESE§ psips

fori,j € {1,4}, withi # j.

B.15. Strongly-ordered double-soft strongly-ordered triple-collinear
limit: SSgCiCji

The strongly ordered double-soft strongly ordered triple-collinear limits of two gluon emissions

read

SeSC;iCjiFin (14,44 | 54,64) = 4CF g2 X x Fm(1q,44) (B.56)

E3EZ0i50i6

S6SCiCs6Fim (14,44 | 54,64) = 4CACF g5 ¥ x Fm(1q,44), (B.57)

E3EZ0isp056
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B.15. Strongly-ordered double-soft strongly-ordered triple-collinear limit: $S¢C;C;;

fori € {1,4} and j € {5,6}. In addition we need for the double-collinear partitions

1
S6$CsiCoiFim(1g,4q | 5g,6¢) = 4CF 8o X —5—— X Fim(14,4q) (B.58)
EsEGpispje

fori,j e {1,4} withi # j.
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C. Singular limits of tree-level functions F/y,

In this appendix we calculate the required single-soft and double-collinear limits of the spin-
correlated amplitude r§j>r$)FfK4(lq,4q |5¢), with i € {1,4}, for arbitrary angles between the
hard emitters q(p1) and q(pa).

We first present the required limits. The single-soft limit reads

Ss 1 1 Fin (14,44 155)

1 P14 2 (p1a—p15(1 —pss) — P45)2> (©1)
=C 2<1+2 -—+ Fum(14,4q) -
F&sp E2 P15045 P45 P15035(2 — p15) (lar4)
We also use
S5 [ri' 1)) + guv] Fip (14,44 | 5¢)
1 2 (p1a—p15(1 —pss) — P45)2> (€2)
—C §<1__|_ Fwm(1,,4,).
F & Eg 045 P15P4215(2 _ P15) LM( q ‘7)

To obtain the limit in Eq. (C.2) we used —g, Fl3;(1,4]5) = Fm(1,4|5) and the limit in
Eq. (B.1). Note that, by construction, the eikonal function in Eq. (C.2) is not singular in the
Ps || 71 limit. The limits with 7 are obtained by exchanging 1 <+ 4 in the eikonal factors on the
right-hand side of Egs. (C.1, C.2).

The collinear ps || p; limit reads

2
1 14z FLM(Z-1,4)
2
C51rﬂrVF{lI]\//[(1q14q |5g) - gs,bCF X 2E%P15 (1 Z) X o ’ (C3)

where z = (E; — E5)/E; and for the collinear ps || P4 limit we obtain

2
1 1+z 1
2
CsarurvFly (14,44 15¢) = §2,CrF X T z( - Z) X Fim (1q, - -4,,) , (C.4)
where z = E4/(E4 + Es). Finally, considering Eq. (C.1) in a collinear ps || p; limit we obtain

. 1
CsiSs i1y Flng(1,4|5) = 2Cr 2, % B o x Fm(1,4) = Cs:Ss Fom(1,45) . (C.5)
5 i5

In the following we explain how the above limits can be computed. We begin by calculating
the single-soft limit Eq. (C.1) in Section C.1. We continue with the double-collinear ps || 7; limit
Eq. (C.3) in Section C.2. We note that the computation of the double-collinear ps || s limit is

analogous to the computation of the collinear ps || 71 limit and, therefore, it is not discussed.
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C. Singular limits of tree-level functions Fjy,

C.1. Computation of the single-soft limit

In this section we compute the soft limit
Ss ) Fiy(1,415) . (C.6)

The soft limit of the single gluon emission amplitude is determined by the eikonal current

I M
o Py _ P1 . (C7)
P4 -ps  P1-Ps5
Therefore
1[nf W 7[ny nY
SsFih(1,4]5)=C 2[4—1H4—1F 1,4), C.8
shim(1L,4(5) F &b E2loss pisloss  pis 1m(1,4) (C.3)
where n!' = p!'/E;. Upon contracting Eq. (C.8) with rﬁ})rf,” we obtain
v TOLM SVE2 045 P15 015045

To simplify the first term on the right-hand side of Eq. (C.9) we use explicit parametrization
of vectors nf and rV*. As explained in Appendix F, they read'

nk = t" + cos O15m} + sin 150", (C.10)
" = sin 6156{1 — COS B]Sb‘u ’ |

where cos 015 = 1 — p15 and vector b*, with b?> = —1, parametrizes components of ps that are
transversal to momentum py; hence b - n; = b - e; = 0. We need to compute scalar products
(n1-r) and (ng - r). For the latter we invert Eq. (C.10) and express b* in terms of nk and e}. We

obtain

pH— ng — tV'— cos 9158? = b= —(1 — p45) —l— cos 915(1 - p14) . (C.11)
sin 615 sin 615

We then use
n4'61:—(1—p14), TZ]~€1:—1, 1’11'19:0, (C12)

and write scalar products in the first term on the right-hand side of Eq. (C.9) in the following

! The used parametrization for vector r¥ is the one of angular sector (b). However, the calculation with the
parametrization that we find for sector (d) is identical, since they only differs by a global minus sign (and
relabeling 5 with 6). From now on we do not show the superscript (1) of vector r;} "in the computation.
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C.2. Computation of the double-collinear limits

way

Mgt Nq-T

045 P15
_ sinB5(n4 - €3) — cos fi5(n3 - b) _sin 615(ny1 - e3) — cos O15(n1 - b)
P45 P15 (C.13)
__sin 025(1 — p14) + cos O15(— (1 — pas) + cos 015(1 — p14)) n sin 015 '
sin 15045 015
_ (1 — p14) — COS 915(1 — p45) + sin 915
sin 015045 P15
Squaring this expression, we find
(714 room '7>2 14 Py 2 n (14 —P15§1 — P15) — Pa5)’ ' (C.14)
P45 P15 015045 P45 p15055(2 — p15)
We use Eq. (C.14) in Eq. (C.9) and obtain the following result
S5 rﬁ)ﬂ(/l)Fﬁ/{(lw‘Lq | 5g)
1 P14 2 (p1a — p15(1 — pas) — pas)? (C.15)
=C 2<1+2 -+ Fm(1,,44) -
P&k EZ P15045 045 015035(2 — p15) (L, 4)

C.2. Computation of the double-collinear limits

In this section we compute the double-collinear limit C51r;})r(vl)FﬁV/[(l,4 |5). The vector r
possesses the following properties?

1’2:—1, r~p5:(), (C.16)

which follow from Eq. (C.10). It is well-known that for physical polarizations of gluons, only
diagrams that describe emission of gluon g(ps) off the quark line with momentum p; develop
collinear ps || g1 singularity. Thanks to Eq. (C.16) r* can be considered a particular physical
gluon polarization so the same holds.

We write the amplitude describing the radiation of gluon g(ps) of initial-state quark g(p;)

3
Asing = 1,i, s = M*L%z(igslb'y”n’i)r},us(l) . (C.17)
’ 1-6 (p1—ps)

2From now on we do not show the superscript (1) of vector r;} ' in the computation.
3We write the amplitude as Asing to emphasize that it only contains singular contributions in the collinear (ps || f1)
limit.

as
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C. Singular limits of tree-level functions Fjy,

In Eq. (C.17) i, j,a are colour labels, s, r are spin labels and M is a matrix in the Dirac directly
related to the hard process. T” are Gell-Mann matrices.
Upon squaring amplitude Eq. (C.17) and summing over colours and spins of external partons

we obtain

1 e
Z |Asing|2 = gib X (CETADE X Te[T*T*| xTr[(p1 — ps)Pp1P(p1 — p5)M+M] . (C.18)
i,j,als pl_p5) ) T

=Cr

The structure inside the remaining trace can be simplified to*

(p1 — Ps)?p17 (1
= (p1—ps)P[2(p1-1) — PP1] (P1 — P5) (C.20)
=2(p1-7)(p1 — ps)?(p1 — ps) + (P1 — Ps)p1(p1 — Ps) -

The second term on the right-hand side of Eq. (C.20) can be further simplified to

(P1 — P5)p1(p1 — Ps) = pspips = Ps[2(p1 - ps) — Psp1] = 2(p1- ps)Ps .- (C.21)

Making use of the transversality of the vector r#, we re-write the first term on the right-hand
side of Eq. (C.20) as

(P1— Ps)P(p1 — Ps) = (P — P5) [2(r- (p1 — ps)) —(P1 — P5)7]
Tr/.pl_/

o ” (C.22)
=2(r-p1) (1 — ps) — (pr— ps)°7
=2(r-p1)(P1 — Ps) +2(p1 - ps)?,
Using Egs. (C.21, C.22) in Eq. (C.20) we write the amplitude squared in Eq. (C.18) as
1 At oA
Y |Asing|* = 2Crg2) % o5 % | 2(p1 - 1)*Te[(p1 — ps) M M]
ijas (2(p1- ps)) €23)

+ (p1-ps)(p1 - 1) Te[PMTM] + (p1 - PS)Tr[ﬁSWM]} :

We now consider the collinear (75 || 71) limit. Since the denominator scales like (p; - p5)? ~
p2,, only terms in the numerator that are proportional to ps; contribute to the limit. Terms
proportional to pg;, with n > 1, are finite upon integration over the unresolved phase space
and can be dropped. First we study the scalar product p; - r. Using the explicit form of vector

4Using the anti-commutation relation of the y matrices we write

pk = pukuyt'y” = puky (281" — 7'y =2(p - k) — kp,

(C.19)
pp=(p-p).
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C.2. Computation of the double-collinear limits
r* in Eq. (C.10) we find
(pl : 7’) =E (eg — t”)(sin 051 x €3y — COos f51 X by) = —E;sinfs . (C.24)

We use the result in Eq. (C.24) and compute the required singular contribution of scalar products
(p1-7)?and (p1 - p5)(p1 - r) in Eq. (C.23). We obtain

(p1-7)% = E2sin® 05, = E2(1 — cos 051 )(1 4 coss1) = E2051(2 — ps51) T 2F3051, (C.25)
1

pslip

and

NI

(p1-ps)(p1-1) = —EfEsp158iny5 o (p15)2. (C.26)
5 1

From Eq. (C.26) follows that the second term on the right-hand side of Eq. (C.23) does not
contribute to the singular limit and we can neglect it. Using Eq. (C.25) in the first term on the
right-hand side of Eq. (C.23) we obtain the singular limit of the amplitude

C51 Z ‘Asing‘z

i,j,a,5

1
_ 2 2
= 285 X (2E1Es5p51)2 x [4E1p51 <

1 Ei  Es Ey—Es\ . ~pos
=Crg?y X ——— X |[4— Tr[p MM .
F&sb > 2E1E5p51 8 [ Es * E; — EJ 8 < Eq ) rlpn ]

Ey1—Es

At A E PN
) Tr[py MM + E1E5p51E—‘Z’Tr [p1 M M)

(C.27)

The trace Tr [ p1 Mt ]\71] in Eq. (C.27) is the colour and spin summed amplitude squared of the
hard process. We introduce Es = E;(1 — z) and use completeness relation

z-p1 =Zﬂi(Z'P1)ui(2'P1) (C.28)
to write the trace as
Tr[p1M'M] = %Tr[(z - p1)MTM]

1 - 1 ) (C.29)
= - L IMui(z - p)l' [Mui(z - pr)] = —[MIg=(z - p1, pa) [,

In Eq. (C.29) M{™* is the colour and spin summed matrix element of the hard process. Finally,
in Fp notation Eq. (C.27) reads

2
1 1+z FLM(Z-lq,4q))
Carry 1V Fiyg (14,44 | 55) = 2Cr g2 X s <1 — Z) X . : (C.30)

145






D. Singular limits of one-loop functions Fy

In this appendix we collect the singular limits one-loop amplitudes.

D.1. Single-soft limit: Ss

The single-soft limit reads

1° P4
S5 Fuv (19,49 | 55) = 2Cr g2 % (r1 - ;95)(1:94 5) Fiv (1g,49)

gg,b[zxs,b] (1 —e)l3(1+e¢) ] " 2_€< p1- pa >1+€ (D.1)
e [T?(1-2e)T(1+2¢) (p1-ps)(pa-ps)

X PLM(1q14q) .

—2CrCy

D.2. Double-collinear limits: Cs;

The double-collinear limits to the initial read

1 Fv(z-1,4
Cs1Fiy (14,44 | 55) = 855 X Pyq(z) % UG
p1-ps z D2)
I3(1—e)I(1+¢) /1 N\ Fim(z 14,49 '
2 7—¢€ oop 9/
+gs,b [‘Xs,b] |: F(l — 26) :| X (}91 - }95> qu (Z) X - ,

where z = (E; — Es)/E; and

1
CssFiy (1g,47155) = 855 % Pyq(z) x v <1q/ p -4q>

P4-P5
3(1 —
+ 87 (s p) X [1" (1r<1e)_1”2(2)—|— e)} x 27¢ cos(7te) (

1
X FLM(lq/Z 4q> s

where z = E;/ (Es + Es). The tree-level splitting function Py,(z) and the one-loop splitting func-

1+el
P4-P5> PP(z) (D3

tion P;ZOP (z) are given in Eq. (E.1) and Eq. (E.17), respectively. For gluon-initiated contributions
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D. Singular limits of one-loop functions Fry

we find
Fy(z-1;,4
C51FLM/g(1gf4q ‘ 5@) = g?,b X Z Pfg<z> X (fo) +g§,b[“$,b]
P1°P5 refam D)
r3(1—€)r(1 +€)} - ( 1 >”€ PP () Fim(z - 15, 4f) '
~ PR f —
[(1-2e) Piovs)  ln 0 z

where z = (E; — Es)/E;. Splitting functions Py, (z) and P}(:;p(z) are given in Egs. (E.2, E.18).

D.3. Soft-collinear limits: S;Cs;

The required soft-collinear limit reads

1
S5Csi Fiv (14,44 | 54) = 2Cr g2, x 2on S Fiv(14,44)

5 Pi5

2 1+e
Soplasy] [ T5(1 —e)3(1 +¢) (1
2CrCa =0 I2(1—2e)I(1 +2¢)] 2 E2 pis X Fum(ly.4)

(D.5)

forie {1,4}.
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E. Splitting functions

In this appendix we collect various splitting functions for collinear limits in tree- and one-loop
amplitudes, as well as Altarelli-Parisi splitting functions as arising in collinear renormalization

of the parton distribution functions.

E.1. Double-collinear tree-level splitting functions

Here we collect required splitting functions for double-collinear splittings. In case of quarks

they are given by
1422 in Cr (1+2)?
Pula) = Ce | 102 —1-2)| , B = GEF, (E1)
2z(1 — 14 (1—2)?
Pye(z) = Tr [1 - Zi_eZ)] , Peq(z) =Cr [(zz) - 62} , (E2)

Formulas for anti-quarks are identical, for instance Pjy(z) = Py (2). In case of splitting gluons

spin-correlations occur. The required splitting functions read

P (z) = 2C4 [—g’“’ (12_2 ;1 ;Z> +2(1—e)z(1 - z)xﬁ;q] , (E.3)
Py (z) = Tr [—g"" —4z(1 - 2)k x ], (E.4)
where
K
i = ——, K =ap'+ppr+K|. (E.5)

In Egs. (E.3, E4) k, parametrizes the transverse momentum of a collinear gluon with mo-
mentum k to a gluon with momentum p = (Ep, §), where p = (E,, —p). We also use the
decomposition of the splitting function in Egs. (E.3, E.4) that read

0

Pl (z) = —PYg" + PL(2)x! (E.6)
0

Pl (z) = —Py)g" + P (2)x k', (E.7)

149



E. Splitting functions

where

pO z 1-z Liy) —
gg_ZCA<1 Z—I— . ), Peo(z) =4Ca(1 —€)z(1 —z2),

(E.8)
P =Tr, Pi(z) = —4Tgz(1—2z).

Inside of an integral over z € [0, 1] the following relations hold

(1—2) " Py(z) = —&(5(1 —z) —Cr[(1+2z)+€(1—2)] +2Cp [(11__22_%] , (B9
+

(-2 = o - U (2] -5

_ e<8 [h‘il__zz)] 2z 3)in(1 z)) + 0(62)] .

(E.10)

Since Eq. (E.9) is finite, its expansion to arbitrary orders in € is straightforward.

Convolutions of splitting functions

We use

Nl‘ [N}

1<%

— [ (1-2) 2(1+z—2Dy(z ))+16D1(z)—2§25(1—z)
—(

~ ~ _ z
P2 @ P ( 2) Py (2) x (2-2) Py ()

E.11
SO ) (142)

x {27* —16In*(1 — z) + (Inz — 2) Inz — 4Lix(z) }
—166(1 — z)§3> + 0(62):| ,

[Pog kR, @Pygrl(z) = TrPo[1 — 2z 4+ 22° + €( — 14+ 2(—1+ 2z — 22?)

4+ z(7+31z))
z

14+2z)(8In(1—-2z) —Inz) +e<

x In(1—z)) + O(e?)] + CaTr [(1 —2)(

1 2n?
+2((1-2(1—-2)z)In(1 —z) +Inz+4zlnz) + € — 373

2 46z 207z 1324 47222

20z _ —6In(1— .
3 . 6In(1 — z) (E.12)
_16ln(l-z

2 —
% ) —32zIn(1—2) + 124212(12) —6In*(1 —z)

2
8Inz 0zlnz — 44z3lnz

+12zIn*(1 —z) —10Inz —

—2In*z+ (8 + 322)Liz(z)> + O(ez)] :
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E.2. Triple-collinear tree-level splitting functions

E.2. Triple-collinear tree-level splitting functions

The splitting function Pyg,(z1, 22, 23) for the g — g* + g + ¢ splitting is taken from Ref. [56] to
be

b b
Pggq(z1,22,23) = CEP, é?gl% + CFCAP§?§22,3 , (E.13)
with the abelian part
2 2 2., .2
S 14z z7+z
p@b) 123 3 _ 21 2 _e(1+e
§18245 2513523 : 2122 ¢ Z122 (1+e)
1- 1—2)3 1—
+ Slﬁ Z3( Zl) + ( ZZ) + €2(1 _|_ 23) _ €(Z% + ZIZZ + Z%) 22 (E14)
513 2122 2123

+(1—e)[€—(1—e):ﬂ}+(1<—>2),

and the non-abelian part

(nab) t%zlg 1 € 5%23 (1—23)%2(1 —¢€) + 223
P, (1—e¢)

818243 — % * 4 2 2512513 Z2
2 B . 2 . 2 _
N z5(1—€) +2(1 —2z2)] sy 2 (1 —23)°(1 —€) +225 +e(1—e)
1—z; 4513523 2122
) [(1 o) z1(2 — 221 +27) — 22(6 — 622 + 23) n 2623(21 2z) ZZ} (E.15)
2517 z2(1 — z3) 221 - 23)
A-z)i+d-z  (20-2)(2-z)
2201 — - It
+ 251, [( €) (1= 25) € (1 — 23) Z1 — 2
_ - 3 2 2
_23(1 z1) + (1 —2p) +€(1_Z2)<Z1+Zz_€>}}+(1<—>Z).
Z1Zp 2122

The spin-correlated structure in Eq. (E.15) reads

ZiSik — ZiSik  Zi — Zj
L L s AP (E.16)

E.3. One-loop splitting functions

Required one-loop splitting functions read [58-60]"

2
Pii™(2) = Pyy(z2) {CA {— 617 + ln(le—z) + % — Lip(z) — ln(lz—z)
+€<1 In(1-2) (722 N ln2(16— z) In(l —Zz) lnz) Lis(a)

Inz 1 In’z

—Liz(1 —z) +€3>] + (Ca —2CF) {— — t5t - + Lip(1 —z) (E.17)

I This formula is given in the tHV-regularization scheme [80].
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E. Splitting functions

2 3 B 2
—|—€<1—Tglnz— 1“62  In@ 2z)ln : +Li3(z)+L13(1—z)—§3>]}

+ 2@ { (Ca+ (cam2c) (-3 - )} o,

PP (2) = Py (2) {CA [ - e% - 1n€z +Lip(1 —z) +€Liz(1 — z)}
+(Ca —2CF) [ln(l - ZZ —In(z) | 7;2 - 1“2(12_2) ~Lip(1 - z) .
re(- P -2+ 0= )]} o
- P;‘geW(Z){(CA +(Ca— ZCF))Z(ll_Ze)} +0(e?),
where
PIeW = Cp [z(ljzz)] B [1 - 1 :z] : (E.19)

E.4. Altarelli-Parisi splitting functions

In this appendix, all needed leading and next-to-leading order Altarelli-Parisi splitting func-
tions, their convolutions and generalizations are collected. We further show LO cusp anomalous

dimensions and generalizations.

Leading order splitting functions

The required leading order Altarelli-Parisi splitting functions are [74]

P (z) = Cr -2170(2) —(1+2)+ % o(1— 2)} ,
0

PO (z) = Tr [+ (1—2)7],
1+ (1— 2)2} (E.20)
——

P (2) = 2C4 [Do(z) + % t+z(1—z)— z} +Bod(1—2z),

where the function Dy(z) is defined in Eq. (A.25).
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E.4. Altarelli-Parisi splitting functions

Next-to-leading order splitting functions

The required next-to-leading order Altarelli-Parisi splitting functions are [74]

17 117? >5<1_Z)

2
P;;’)V( ) = CaCr (697 7;) Dy(z) + < 3§3+—+ 5
(1+22)In*(z) (5224 17)In(z) = 53 —187z
2(1—z) 6(1—z) TR Z)Cz]
— CFTRNf[ )+ <é + 2”) —2)+ 2 (13?1{)21?(2) N 4(13— z)
_ 0(z+1 ) 3 —z—l A1y
] +Cr [(6@4— )(5(1 ) (14 z)In?(2) o

(222 —22—) () 2(1+z)in_(lz—z)ln() 5(1_2)},

1—2z
;V(Z) _Cr (2c§ —Ca) [1141222 <ln2(z) —4Lip(—z) —4In(z +1)In(z) — 7;2>

(
99,
+4(1—-2)+2(z+1) ln(z)] ,

2
Piak(z) = CFTR[—SZ‘Z+ <8§+5z+1> 1n(z)+6z+§(z)—(Z+1)1n2(2)—2}-

Convolutions of splitting functions

We also need various convolutions of splitting functions

p p 9 2
By @ Pi)] (2) = [8D1<z) 4 6Dp(z) + (4 _ 3”2) -2~ 3,

—4(1—|—z)ln(1—z)—(5—|—z)},

_pbgg()) @15;2)_ (z) = CrTr {1 + ?jiz —z- %Zz +2(1+2z2) lnz] ,
-pq(g) ® pq(g)- (z) = CeTg {22 — % +2(1—-2z +222) In(1—2)—(1-2z +4zz) Inz|
50 & p9) (2) = T [ﬁo(l — 22 427%) +CA<— % +2(1-2z422%) In(1 - 2)

4
+82+3Z+(2+8z)lnz—|—1>].

(E.22)
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E. Splitting functions

The sum of the last two convolutions in Eq. (E.22) reads

p 5 3122 4
D [Pq(,?) ®P>52)} (z) = BoTr[Z* + (1 — 2)%] + CaTr [1 _ TZ +8zt
x€{q,8}
+2[z+ (1 -2)*]| In(1 —z) +2(4z +1) ln(z)] 1 CrTR [ —3245,-2 (E.23)

+2[z24+ (1 —2z)*] In(1 —z) — [32" + (1 — 2)*] In(z) + g 22+ (1— z)z]] :

E.5. Generalized splitting functions
We defined a number of generalized splitting functions as
Pyq(z) = Cp[4D1(2) + (1 —2) = 2(1 +2) In(1 - 2)],

Pag(2) = Te[2(z* + (1= 2)*) In(1 - 2) + 22(1 - 2)],

(1 2) (E.24)
+(1—-z
! = 2( —— | In(1 -
Peq(z) = Cr [z + < . ) n( z)] ,
1
Pyge(z) = Ca [47)1(2) +4 <z +2z(1-2z2)— 2) In(1— z)] :
E.6. (Generalized) anomalous dimensions
The LO quark and gluon cusp anomalous dimensions read
3 11 2
Yq = ECF’ Ts = ZCA - gTRNf' (E.25)
We find it convenient to define various generalizations. We define
, 13 21 , 67 27m? 23
M=Crlg 7)) =g T ) T o RN
c. 2 (E.26)
A
Thig = 737 + gTRNf;
and the € dependent quantities
i (1—z)me
nm — —ne —me
0
_ 3 1 7m 5n nm? (E.27)
—CF[2+€<2+4+4‘3>
2 2 2
+ € <1Z + 15;11 + % + 4mn + 9% - mzn —2n(m+ n)§3> + (’)(63)] ,
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E.6. (Generalized) anomalous dimensions

1
24 ——[d —26(1 _ )—46Pspin( ) —2C M
'qu,sp'm Z|z z qq \Z F 1—2z

0 (E.28)

1 3 2m®\ (261 7m ;
1
_ _ 1
r)/;;,loop = /dZ Z 36(1 - Z) BGPQZOP(Z)
0
1 3 1 772 9772
= - — 4+ - -1 — ] — —+1
CA[ 263 262+6< 0+ 12) 65+ 16 (E.29)
781  457% 837 , 1/-15 472
+€<—2+ 3 + 240 +81€3>+O(6 ):|+CF|:€<6+6)
2 4
—31+712+4463+e<— %+ 39: +8;T+66C3> +O(€2)] :
and
22 1 2 2 L % (-z7*
e et s ] a2 )
) (E.30)

9 3

11 (131 47'[2> €2<16O4_227T2

:CA[3+€ > g —3253)+O<e3>]

1
_ _ 2 14 164 4m?
r)/é_glzz — /dZ Z 26(1 - Z) zepg{_g(z) = CA |:3 + 6? +€2<27 — 9) -+ O(€3):| . (E31)
0

as well as

1
72 = / dz 272(1 — 2) % [Py (z,€) + €P& (2)]
0

2 26 ,(320 4m? ;
—TR|:3+€9+€<27 9>+O(€):|,

(E.32)

1
_ _ 2 20 224 477?
’)/glqaz = - /dZ 4 26(1 - Z) ZEPqu(Z) = CA |:3 +€§ +€2(27 — 9) + 0(63):| . (E33)
0
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E. Splitting functions

E.7. Integrals over splitting functions

We use
2E Fpax
N E4€ max 56
g (e) mas / dEse E5/' % / dzz %(1—z)7% {ng(z,e)—i—eP;g(z)}
Emax 1— EE";ZX
131 22 11 1541 1172 In2 (E.34)
=Cy|l -+ 4" In2 - +4
A[ 72 "6 6 +€( 216 T 18 6 CS)
9607 12572 77t 117%In2 77
2 3
— In2+ - —=.,72%
+€< o1 T o1 T T2t 53)—1—(9(6)],
Emax
Ne(2Ema)t ~ ™ 7
5;;(6) =—— / dEe; E' % / dz 2_26(1—2)_2€P;g(z)
Emax 1— Eé“ax (E35)
67
13  In2
=Calg 5 0],
and
Emax
N E4€ 2Emax E56
bp(e) = —mx / dEse E5/' % / dzz (1 —2z)"%* [qu(z,e) +ePgJé(z)}
Emax ]—EEH;;X
23 In2 @_52+351n2_21n22 (E.36)
Rl7z2 73 108 9 36 3
373 572 67In2 m2In2 47In?2 2In®2 7
2 3
= - — _Z O ,
e <81 216 " 54 3 36 3 3€3) +0(e )]
Emax
2E max Eg7
N (2Ema )*
5j(e) = —76( > ax) / dEg; E6_71_4e / dz z‘ze )_2€P;7(z)
Emax 1— Eén;;" (E37)
13 In2
=iz -5 +0),

where N, is defined in Eq. (6.128) and P;j(z,€) = Pl.(.O) (z) + Pj(z)/Z.
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F. Phase space parametrization

In this appendix the parametrization that is used in this calculation is presented. To calculate
the collinear subtraction term analytically it is crucial that the d- dimensional phase space
is parametrized in such a way that it has a simple factorized behavior in the double- and
triple-collinear limits.

We separate energy and angular phase of real emissions with momenta ps and pe by writing

[dps][dps] = dE5 EX 2 dEg Ef %€ x [dQs][dQs), (F.1)
where
dQEd_l)

is the element of a (d — 1)-dimensional solid angle of parton i.

We discuss the parametrization of the angular phase space [d()5][d()] in double-collinear
partitions 57,6/, with i, j € {1,4} and i # j, in Section F.1 and in triple-collinear partitions 5i, 61,
with i € {1,4}, in Section F.2.

F.1. Double-collinear partitions 51,67, i,j € {1,4}, i # j

We consider double-collinear partitions 5i, 6f, with i,j € {1,4} and i # j. Directions of momenta
ps and pe are parametrized independently and in the same way. For the sake of definiteness
we show the parametrization of ps for which the collinear singularity (75 || 7;) is present. The

direction is written as
nk = t" + coss el +sin6s b*, (E.3)

with e; = (0, 7;) is the direction of hard momentum p; and ¢ = (1,0). The vector b* is chosen in

such a way that
t-b=e¢-b=0. (F4)
Given this choice, the angular phase space is written as

dQ(dfz)
[dOs] = W ds [175(1— 115)] ¢, (F5)
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E. Phase space parametrization

where 175 = 17,5 = (1 — cos 65) /2.
We require the phase space in the double-collinear limit Cs;. It reads

dQ(de)

2yt s 15 (F6)

[CsidQs] =

F.2. Triple-collinear partitions 5i,6i, i € {1,4}

In this section we present the parametrization of [dQs][d()¢] in triple-collinear partitions 5i, 6i,
with i € {1,4}. The following parametrization is taken from Ref. [6]. We use the notation
defined in Appendix A.2 for four-momenta.

Directions of the momenta are written as

n?; = t" + cos 05 ng + sin 65 b, (E7)
nk = t" 4 cos b e + sin 6 (cos ¢ b" + sin g a'*) , |

with e; = (0,7;),t = (1,0) and i € {1,4}, depending on the considered partition w**%. The

vectors a* and b* are chosen in such a way that
t-b=e-b=0, t-a=e-a=b-a=0. (E.8)
Given this choice, the angular phase space volume element is written as

[dQ56] = [dQ5 [dQ6]

]
(d-2) 3~ (d-3) 1-2¢ F9
= dQZ d?d” 5—[15(1 —15)] “[176(1 — 176)] € s _11762| s dte dlA , )
26e(27r)2= Dt—2¢ [A(1—A)]ate

where 175 = 175 = (1 — cos 05) /2, 116 = 1is = (1 — cos6s)/2 and A is related to 756 through

2 o — 2A(1 — _ s —nel?
sin® ¢ =2A(1 — A)yse, 156 = ) . (F.10)

In Egs. (F.9, F.10) we also used

D = 1j5 + 116 — 20js776 +2(2A — 1)y /s116(1 — 175) (1 — 1) - (F11)

In the triple-collinear partitions 5, 6i the angular phase space is split into four sectors, see
Fig. 6.3; they are labeled with (a) - (d). In the different sectors we use

X3X
(a) 75 =x3, 776:%/
X4

(b) 5 = X3, e = X3 1-—),
@ X3%4 ; x< 2) (F.12)

5— —Q(x 6 — X3,

2
) 15=x(1-2), pe=1x
2
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E2. Triple-collinear partitions 5i,6i,i € {1,4}

The parametrization Eq. (F.12) is chosen to ensure consistency with the angular ordering in the
different sectors. Since 775 and 74 enter Eq. (F.9) in a symmetric way we obtain the same result
for the phase space in sectors (a) and (c) as well as in sectors (b) and (d).

For sectors (4, ¢) we obtain

e 112 (d-2) §(d-3)
[dg%gmc)]:[ 1 (47) Hr (1 e)]xdﬂh da!

82T (1—¢€)| [T(1—2¢) Qd-2 (43 (F13)
dxs dxy dA (25 6F<a,c)>*e 4FOO 2y '
xé+2€ lel—i-Ze 7-[[)\(1 . )\)]%+€ € 0 3
In Eq. (F.13) we introduced
(a,c) _ (1 - X3)(1 - X3X4/2)(1 - x4/2)2 (a,c) _ 1-— X4/2
F, = E = E14
€ ZN(X3, X4, )L)z ! 0 2N(x3,x4/2, A) ! ( )
with
N(x3, x4 A) = 1+ xa(1 — 2x3) — 2(1 — 2/\)\/x4(1 —x3)(1 - xaxa).- (F15)

We require the phase space element in double-collinear limits that are present in sectors (a) and
(c). In parametrization Eq. (F.12) they correspond to the limit x4 — 0. The relevant limits read
. 1—x3 . (a,c) 1

lim F%) = =222 1im F*) = . F.1
x:glo € 2 ! x:E}O 0 2 ( 6)
We continue with sectors (b, d). Using parametrizations Eq. (F.12) in the phase space Eq. (F.9)
we obtain

€ 2 2(1 _ (d-2) (d-3)
40256 60 :[ 1 (4n) )] [r (1 e)] dof? dol

s72T(1—¢)| |T(1—2¢)] * [Ql-2] [QW-3)] F17)
dxs dxy dA (bd)\ € ,-(bd) 2 2 '
256F;" 4F " x5xy,
P T ) R
In Eq. (F.17) functions Fe(b’d) and Féb’d) are defined as
pOd) — (1= x3)(1 —xa/2)(1 = x3(1 = 24/2))  Loa) _ 1 (F18)
‘ AN (x3,1—x4/2, 1) T 4N (x3,1—x4/2,1)"

where N is defined in Eq. (F.15). In sectors (b, d) the double-collinear (ps || ps) singularity is
present. In this parametrization #5¢ reads

2
X3X4 X3X4
= —_— T ————
T56 = AN(,1— xA) x>0 16A(1—1x3)
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E. Phase space parametrization

Hence, the double collinear limit is, similarly to sectors (4, ¢), given by x4 — 0. With the limits

. (bd) 1
lim Fy"/ = 716(1 Ay (F.20)

. (bd)
xl:go Fe - 26727 x4—0

we can write Eq. (F.17) in the x4 — 0 limit as

lim [dQss0'09]

x4—0
[1 (4m)¢ J[T(1—e)l(1+42e) e e
- [8712 r(1- e)} [ Tire) ) 140t (1= se) (F21)
(d-3)
< dA an dX4

Q=] 21756 P

In Eq. (F21) we already rewrote integration over b and x3 to obtain [d()ss] that corresponds
to the angular phase space element of the combined direction ps + ps after taking the double
collinear Csg limit. We also defined the normalized volume element

_ [ TA+er(1-¢) 1
"= [F(l +2¢)I(1 —26)] A=A da, (F22)

with
/dA:l’ /dA/\lezef /d/\(l—)\)zl_zze. (F23)

F.3. Unresolved phase space integral in the Csg limit

In this section we discuss the phase space parametrization dependent integration over unre-
solved phase space in the double-collinear subtraction term Eq. (6.114). We consider sector (b);
the relevant limit is written in Eq. (6.115).

We begin with the integration over the second term on the right hand side of Eq. (6.115). The
relevant parametrization dependent integral is given in Eq. (6.121). The integral in question
reads

w 1
gz,b /(C56 [dQ5] [dQé]Q(b)) KLII,[KJJ/F{M <1l4 ’ Z . 5> . (F.24)

P5 - Pe

Vector « is defined around Eq. (6.120) and the properties of function F/}, are discussed around
Eq. (6.118).
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E3. Unresolved phase space integral in the Cse limit

In the phase space parametrization Eq. (F.21) integral Eq. (F.24) reads

v 1
& [ (Calds]ianalo®) ey (1411 5)

Ps - Pe
Ir(1—e)I'(1+ 26)} 1 / _ / doxy
= |a dQ £ (1— x| ——=
[ s,b] |: F(l T+ 6) EsEq [ 56] 771,56( 771,56) / xi+2€ (F.25)
dQ (d-3) B 1
/dA | s F' (1,4]56) , =5

where the last argument of function F/y; has to be understood as gluon that carries momentum
ps6 = (Es + Eg) - n56. In this parametrization, the vector x| reads’

K| =a'vV1—A+ VA with r* = sinfys el — cos 045 b . (F.26)

We can further average over directions of x| . We find

(d— 3)
(1K) = /dAdQ K = _%‘oﬂf + ertr?. (F.27)

where ¢'" is the metric tensor of the space tangential to pss. Contracting Eq. (F.27) with
F4;(1,4]56) we obtain

1 1
{ — Eg; + eryrv] Fly(1,4]56) = E1:LM(1,4 156) + eryry Fiyy(1,4]56). (F.28)

Using Eqgs. (F.27, E28) to rewrite Eq. (F.25) we obtain

1
b v
o /(C56[d05][d06]9( ) D5 e K1 Lo Hyg <1,4 1~ 5>

] [F(l —e)T(1+ 26)] 1
2e I'(1+e€) EsEg

[140se) 151 = mse)* (F29)
X BFLM(1,4|56) + eryry F{’I\VA(L4|56)] .

We now consider the integration of the first term on the right-hand side of Eq. (6.115) over
the angular phase space of the unresolved momentum. In this case the direction of the gluon
g(pe) completely factorizes from the function Fy . Hence, after employing parametrization
Eq. (E21) we use

40
/dA_l, /W_l, (F.30)
1For completeness, in sector (d) we find # = — sin 14 eil + cos 614 bH.
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E. Phase space parametrization

we immediately obtain

gib/ (Cs6[d2s][d26)0") pS%Pé Fim <1,4!l.5>
_ Lol [F(l — )T (1+2¢)

1 (F31)
2¢ T(1+e) ] EaEq /[d056]17£§6(1 — 11,56) FLm (1,4 56) .

Using the results in Egs. (F.29, F.31) we write the contribution of sector (b) to the subtraction
term Eq. (6.114) as

<[1 — $][1 — S6]6®) Csg[dps) [dps )08 Fip (1, 4| 5,6)>

LY [F(l —e)I'(1+ 26):|
2 I'(l1+e)

(F.32)

Es
x /[dpS]wgcxgeu - x3)€/dE6 E-172[1 — §) [I — S| Pss(1,4,5,6),
0

where we defined

E
Pss(1,4,5,6) = Ef [ng(z,e)FLM(1,4|5 +6) + €Poy (z,k )rur Flvg(1,4]5+ 6)} . (E33)

and

1—2z z

Peg(z,€) = P (z) + %Pg{g(z) = 2Cy4 ( - e)) . (F34)
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G. Some phase space integrals

In this appendix we collect phase space integrals that appear regularly throughout the calcula-

tion.

G.1. Energy integrals

Required energy integrals read

Emax ) 1 E—ne
—ne max
/ dE; B} 71, = ——max
E; ne
0
Emax
B 1 E—n€ _ E—ne
dEi Ezl neiz _ _ “min max
E: ne
Emin

G.2. Angular integrals
For the d-dimensional solid-angle element we use the notations

dQ[(]dfl)

[dQy,] = W .

We define the solid angle volume in (d — 1)-dimensions as

oy [ dQE=2) 1 (4m)¢
(0] = 202m)a1 [87’(2 F(l—e)]'

Basic integrals read

/[ko]1:_zZ€[ 1 (4n)F ] [Fz(l—e)},

Oki e |8mT(1—e¢€)] [T(1—2e)
Pij _ _21—26 1 (47.[)6 e
/[dﬂk] pxipyj € [8mT(1—e) i K

where p;; and 7;; are defined in Appendix A.2 and

I2(1—¢)

. 1+e I A I
KZ]_[F(l—Ze)}mf Fi(LL1—61—15).

(G.1)

(G.2)

(G.3)

(G.4)

(G.5)

(G.6)

(G.7)
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G. Some phase space integrals

An expansion of Kj; in the dimensional regularization parameter € is given in Eq. (A.22).

In addition we need several variations of integrals Egs. (G.5, G.6). A generic variation reads

1
,6 1 de 2) 1 2dx 1

/[ko] _/ 1—6/ € 1+e
2(2 “2 / [4x(1 — x)]€ x

27¢T(1—e)I(1—2e) (G.8)
2 T(1-3e)
272 1 (47)¢ ([2°T(1—e)T(1—2€)
[8712 r(1-— e)] [2 I(1— 3e) ’

€

where in the first step we parametrized 7 relative to 7i; and used the substitution x = (1 —
cos 6;) /2.
Other required variations depend on the phase space parametrization, see Appendix F, and

sector decomposition, see Appendix A.3.3. We use

1 2771 (4n)
/ [Cri dOx] o € [8712 ri- e)} ’ (G9)
and
1ji 1 171 (@4n)° | _.
/9 <77ki < 2> [Ckidﬂk]pfki = —E [87121"(1 —6):| pji . (G.]O)

G.3. Generic solid angle integrals

In this appendix we collect various generic angular integrals that do not appear directly but
are required indirectly, for instance in the computation of partitioning dependent integrals in
Appendix H. These integrals read

[dO] 1 iepe TA—el(l+a—e)
- a—2€ > _
/[Q( 27 pf, =2 X Tota—2e ¢ With Re(w) > -1, (G.11)
/ A 1 a2, T —e—0)T(1—e—p)
[Q@-2)] P’fquq T(2— (a+p) —2e) G12)
X 2Fi(w, B;1— €1 —112),
[qu] 1 _ nl—a—2e rz(l —G) a1 “‘3
| ] G =2 T2 X2F1<2’2+2’2 1—’712)- (G13)
Moreover, we require
x=1+¢€, pB=1,
[dOYy] 1
- , for x=e, =2, (G.14)
/ [QU=2] pf (p1g + p2q)F p
xn=-1+€, B=3.
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G.3. Generic solid angle integrals

Result for these integrals read

/ [dQy] 1 _ _2—262,1,26 {26 [(1—e)l(1- 26):|
d—2 1+e _
[Q( )] plq (p1q+p2q) € 2 r(l 36) (G15)
3
X oFy (1,1+§;1 - el —7712> ,
/ [dOY,] 1 _ e [26 [(1—2e)(1— e)]
[Q(d—Z)] piq(p]q + qu)z 2 r(l - 36) (G 16)
€ 3 34 3e 3 33 3
X [2F1<111‘|‘2/1 - 5611 —7712) + 1_3€2F1<1/2+2,2 - 56,1 —7712>] ’
/ [dOy] 1 2k {z r(1-era —zeq
(6] o T5€(pyy + pay)3 2 I'(1-3e)
X [ %— Z) % Fy <1,1+ g;l . ge;l —;712>
(G.17)
+§><1_€2><F 1§+f.§_§€.1_
2 1 3¢ ¥y % T2
3 €(2+e) €., 3
+Z X > e X oFq (1,2—1—2,2— 56,1 7712)] .

All integrals in Egs. (G.11-G.17) can be computed along similar lines and we show some of
the computations below. As a first example we consider the integral Eq. (G.13). We parametrize
the direction 7i; with respect to 7i; + 7i2.To this end, we introduce a normalized vector

P i + o
=
Lo

, with L3, =2(2—p12), (G.18)
and write the denominator of the integrand in Eq. (G.13) as
p1g +p2q = 1= (g - 7i1) + 1 = (iig - 1i2) = 2 — La(idg - 1i12) - (G.19)

We use cos 8 = *q - 7i1p and integrate over the remaining 4 — 2 directions. We obtain

/ [dQy] 1
[Q=2)] (p1g + p2q)*

= O] X / 22701 /1dC059 (sinf) m (G.20)

=1

1
1
— 1— 29— -
/1dcos(9[ cos” 0] 2= Lycos®’
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G. Some phase space integrals
where d = 4 — 2e was used. We substitute

1 1
¢ = HTCOSQ = /dc059 [1— cos?0] ™ =2 x 2—2€/dg FE(1-6)",  (G21)
-1 0

in the remaining integral on the right-hand side in Eq. (G.20) and obtain

/ [dQy] 1
[QE=2)] (14 + p2q)*

1
—2€ —€ —€ 1
=2x272 O/dtf E°(1-2¢) 2 — L1z cos 02 (G.22)

1 —a
= (2+ L) " x2x Z*ZG/dC ¢(1-¢)" [1 - <2i{_‘2212> C] '
0

We use the integral representation of the hypergeometric function [81]
e
¢ b—1 c—b-1 —a
F CZ2) = tt 1t 1-—t R R 2
Fil0,b:62) = T 0/ol (1- (1~ 1), Re(c) >Re(h) >0, (G23)
with

2Ly
- 24+ Lip !

a=wn, b=1—-¢, c=2-2¢, (G.24)

and re-write the integral on the right-hand side of Eq. (G.22) as

Jazea-pfi- () SR o (w1 -62-20,2 ).
0

2+ Lyp 2+ Ly
(G.25)
The above result can be further simplified. With the help of the identity [81]
Fy(a,b;2b;2) = (1 - 5)_“ SINCN (ESR ST 1 S (G.26)
201\, U, &0, - 2 211 ) 5’ 5’ ’ .
we can write the hypergeometric function in Eq. (G.25) in the following form
2L
Fi(2,1—¢€2—2¢;
21 ( 2+ L14>
Ko m—a x1l «3 L3, C
_ al 4> tu 27
(2+ L1a)* x 2 ><2F1<2,2+2,2 € (G.27)
L)t x 2t xR (S %5 g
= 14 21{ 575 T 575 , 14
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G.3. Generic solid angle integrals

We combine this result with Egs. (G.22, G.25) we find for the final result

[d06] 1 _ nl-a—2¢ 1-'2(1 — (—J) & 1 ﬁ% PO I
/ Q2] (061 + pea)* 2 “T—2e) “Hilga Ty —&l-ma).
(G.28)
As second and last example, we consider the integral Eq. (G.16). It reads
[dOy] 1 .
m , with a=e, pB=2. (G.29)
/ [Q(d72)] plq(plq + qu)'B

Parts of the calculation can be done for generic « and B. We begin with introducing Feynman
parameters [82] to combine the denominators!

/ [dQY] 1
[QU=2] p q(qu +029)F

;

CTEHB) [y g et [ 199 1

- T(a)T(B) o/d (1—x) /[Q(d—Z)] [xp1g + (1 — x)(p1g + p2q)]* P (G.30)
P@HB) [ oty op [ 14O 1

‘r<a>r<ﬁ>0/ dr - Pt f [Q@2]] Jorg + (1 x)pg TP

Similar to our previous discussion we combine vectors in the denominator to obtain a single

scalar product. We write

P1q+(1—x)P2q: [1_ﬁq'ﬁl]+(1_x)[1_ﬁq'ﬁ2}

(G.31)
=14+ (1—x) — iy - [fiy + (1 — x)iig] = (2 — x) — Ly (7 - i),

where we introduced a vector 7, and the function L,, that possess the following properties
i2=1 and L2 = [ii;+ (1 —x)7ip)?
=14 (1—x)>+2(1 — x) (A1 - #12) (G.32)

= (2 — x)z — 2(1 — x)pu .

We first consider the angular integral on the right-hand side in Eq. (G.30). We parametrize 7,
with respect to the direction i, and write cos 0 = 7, - 7. The integral then becomes

/ [dQy] 1
[Q(d_z)] [qu +(1- x)PZq]“+ﬁ

R S / dQ-2) / deosg 1L —cos? 0] € (G.33)
- [Qd-2)] 2(27)@-1) 1 [(2—x) — Lycosf]*+F "

=1

!Note that for the application of Feynman parameters in the first step we need Re(a) > 0 and Re(8) > 0.
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G. Some phase space integrals

This integral can be rewritten into the integral representation of the hypergeometric function.
Therefore we substitute
1 o 1 1
¢ = % N /dcose [1— cos?6] ¢ — 2 x 2*2€/d§ FE1-8),  (G34)
-1 0

in the integral in Eq. (G.33). We obtain
[1—cos?0] €

/dcos@ [(2—x) — Ly cos 0]x+h
- (G.35)

Caaeexeny ot fasgaoo o (32 )
0

We use Eq. (G.23) witha =a + B, b =1— e and ¢ = 2(1 — €) to write Eq. (G.35) in terms of a
hypergeometric function. We find

0/1' ae -0 1= (3o ) -

(G.36)
I2(1—e) 2L,
="y ,F 1—e2(1—€);—2™ ).
T(2—2¢) 2 1<“+ﬁ’ &2( €)'2—x+Lx>
We re-write this result, using the identity Eq. (G.26), as
2L
Fila+p1—-62(1—¢); 77—
2—x+ Ly
+Bp1 a+p 3 L2 (G-37)
—(2—x) B2 — atp o b O e Tx
@-x - Ly an (PR D1 2B g o )

Together with Egs. (G.30, G.33, G.35) we obtain for the full integral, before integration over

Feynman parameter x, the following result

/ [dQYy] 1
[QU=2)] pf (p1g + p2q)F
_ T(1—¢) T(a+p)

—2¢€
TTR 20 T@r(p) (G38)

1
w101 _ N\B-1(n _ N—a—p a+p 1 atp3 o 2(1-x)
xo/dxx (1—x)P7"(2—x) 2F1< > at 5 €1 2—x P12 | -

To continue, from this point on we consider the particular values « = € and = 2 for the
powers of the denominators in the integrand in Eq. (G.38). To perform the Feynman parameter
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G.3. Generic solid angle integrals

integration we use the Mellin-Barns integral representation of the hypergeometric function [83]

I'(c)
T'(@a)T'(b)T(c—a)l(c—D)
| e (G.39)
x5 / dtT(a+ T (b+HT(c —a—b—HI(—1)(1 —z2),

—i0c0

oF1(a,b;c;z) =

which applied to the hypergeometric function on the right-hand side of Eq. (G.38) reads

2te3+e3 1—x _ 3ex27%*  T(3-¢)
2F1< 22 2 9l s )2"12)__ m [(1-3e)T(2+e¢)
;e 2 e 3+ 1% \! (G.40)
- t
xzm/dtr< . +t> <2+t> (—1—2¢ — )T (—1) <(2_x)2> (2012)" .
—100
Inserting this representation into Eq. (G.38) we obtain
/ [dQy] 1 B [(1—e) (_3€2X2_2€>
[Qd-2)] Pfq<P1q+P2q>2 I'(1-3e)I'(1+e€) VT
X /dx T 1-x)2—x)"%¢
0
1T 2 3+e 1—x \!
€ - t
x5 l/dtl"( : +t>F< : +t)F( 1-2¢ — )T t)<(2_x)2> (2012)" .
(G41)

In this form integration over Feynman parameter x can be done with any computer algebra
system. We find

1
/dx 1 1—-x)2—x)2°¢ < 1—x > /dx 26711 — x) I+ (2 — )22
0

27T AT (14 €e)[(24 1)
ef(2+e+t)

(G.42)

1
2F1<e,2—|—e—|—2t;2—|—e—|—t;2>.

The hypergeometric function on the right-hand side in Eq. (G.42) can be expressed in terms
of standard I'-functions with the help of the identity [81]

NI

b1 mr(frz“) 1 1
L ) R (r( w(1+3) T ))' G4
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G. Some phase space integrals
Applied to the hypergeometric function in Eq. (G.42) we obtain

1
2F (6,2+€+2t;2+e+t;2>

_ 7mir@+e+t) ( 1 - 1 ) (G44)

1+t TETE+5+1) T(HETA+5+1)

We collect everything that depends on the variable t , and use again Eq. (G.39) to write the

remaining integral over ¢ in terms of hypergeometric functions. We use

e € 3, €
o [T =26~ Hr(-HT(1+ 1 (mi(g; ) _ r(zr(ﬁ;; t)> (1—(1—g12))’

—ico

(G.45)

We combine this formula with Egs. (G.41, G.42, G.44) and obtain the following final result

/ [dOy] 1 _ 9—2—4e [2€F(1 —2e)l(1- 6)]
[Q(d—Z)] piq(plq_Fqu)Z 2 r(l _36)
€ 3 3+3e 3 €3 3
X |:2F1 (1,1+ 5,1 — 56,1 —1’]12) + 1- 3¢ X oFq <1,2—|—3 X 55 — 56,1 —7]12)] .
(G.46)
G.4. Generic solid angle integral identities
The following integral identities have proven to simplify computations. We used
0 | 1 1 1
/ Q] [ 7! ] =~ [1dQ,] - / dO,] ———, (G47)
Pq + P2 PPz 2 Pq1Pq2 (Pq1 + Pg2)
1
[0 ) [ — / Q] - / [dQy,] . (G.A48)
/ P (qu +op)” pqlp}ﬂ* ¢ " i€ (o + pg2)
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G.4. Generic solid angle integral identities

To prove Eq. (G.47) consider the integral
1 Qg1 + Pg2 21
Jazsh = [lae] < L >
0Pq1042 Oq1 + Pq2 0Pq1042

2 2
1 1
Pq1 + P2/ Pg1Pq2 Pq1t0q2/) Pg1P42

(G.49)
+/[dQ 20qipp2 1
i (oq1 + 042)? Pg1042

2
qu 1 1
2 foog (LY g1
40| Pq1t P2/ Pg1Pq2 1] (qu+Pq2)2

In the last step we have used that because we are integrating over all directions of 7i, we

can exchange the two directions #;_1 » without changing the result of the integral. Identity
Eq. (G.48) can be obtained upon straightforward manipulations. We write

1
dQ,| ———0F
/[ 2 o1 (pg1 +Pq2)pq2

1 1 1
= d0O €+€:|_/dQ s —€
/[ ! {pql(Pq“quZ)pq PqZ(quJFPqZ)pqz 40 Pq2(Pq1+Pq2)pq2
1
= [1dQy] ———— e{+] /d
/[ 2 (qu +pq2)p qu qu p;;e g1 +Pq2) (G.50)
_ M
Pq10q2
1 1
-~ fia0,) L fao, |
/ ! quP}E ‘ P},ﬁr “(pq1 + pqg2)
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H. Partitioning-dependent integrals

In this appendix we collect integrals that depend on the choice of partition functions. We

defined them as

271 aol v oy,
(O)s; = <_ € [87121“ 1—¢ ]) 2(27r)([@-1) p15045 0l0s), (HD

where O has a residual dependence on the partitioning and contains no further singularities
for e — 0. Explicit formulas for the partition functions are given in Appendix A.3.2. For these,

the required integrals read

3 In2 2 In%2 1
A = (A = el == -21 2(——12+ —
< 61>55 < 64>55 2 < ) n7]14> 5 n 4 Zm
14+ /11— 2
win (= UL +1n1714—1n21n1714+731n 4 (H.2)
1—\/1—7’]14 2 2

5.
+ JLia(1 =) ) + (),

. 2
(Asg)s, = 1 —2eInny + € <L12((1 —114)?) +21In 1714 — 5 ) +0(e%), (H.3)

where

. N (H.4)
Asg = Z wic(l ;715, > .

ic{1,4} o
We also use the O(€?) coefficient of (Ag1)s, and (Ase)s, defined as 1/ 2(Ae1)s, and 1/2(Ase)5.,
respectively. These functions read

2 1+/1—
(Ae)2 = —m* —2In2 + "2 LI (e 4
° 2 V1—114

T—= 1= (H.5)
+1In#yy —2In21In 714 4+ 310 534 + 5Lix (1 — 1114),
. 4
(Ase)s, = 2Lip ((1 — n1a)?) +41In% 1714 — 5 (H.6)

—7714'
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H. Partitioning-dependent integrals

Finally, we defined the following finite integral

430 [(m Dy r<">>2 ny -1y ] '
G — / — -2 wh., H.7)
() s ie{zl}4} 27 N -5 N4 s (ny-n5)(ng -ns) | 9 (

where n!' = p!'/E; and vectors r;;) depend on the phase space parametrization and are defined
in Appendix F. The result for this integral reads

1
2 — 114

(r'r")ps = 2[ —1-In(2- 1714)} . (H.8)

Only the order O(€?) coefficient of the integrals in Eqgs. (H.2, H.3) depends on the explicit
form of the partition functions. In the following chapter we show how to expand the integrals
without using explicit formulas for the partition functions. In Appendix H.2 we demonstrate
how these integrals can be computed.

H.1. Generic expansions of the (- )g_ integrals

We discuss how to expand integrals in Eqgs. (H.2, H.3) without using explicit formulas for the

partition functions. As an example we consider!

"2 [dQS] 014 54 51 (P15 €
(De1)s; = —€2 /[Q(d_z)] P (wdc+wtc ( 1 ) : (H.9)

We need this integral up to O(e?) where only terms of O(e2) contribute to the finite part of
the subtractions. Since the integral on the right-hand side in Eq. (H.9) is multiplied with € we
require the integral itself only to order O(e).

The integral in Eq. (H.9) has two contributions. We first consider the second term, which is
proportional to the partition function w;!. The partition function regulates the singularity in
the Ps || Pa limit. We subtract the p5 || p1 singularity and write

[dQS] 014 51 (P51 —€
/[Q(d_z)] ;015{345wtC ( 4 )

A ) g e T (1)

The first term on the right-hand side of Eq. (H.10) depends on the partition function. It is finite

(H.10)

and, therefore, contributes to order O(e”) of the final result. However, dependence on the
partition function should appear first at order O(e). To make this manifest, we use

=[] o

INote that this integral is calculated exact in Appendix H.2 for the chosen partitioning given in Appendix A.3.2.

174



H.1. Generic expansions of the (- )s, integrals
in Eq. (H.10) and obtain
/ [dOs]  p1a (P )
[QE=2)] 15045 wi 4
dﬂs 1 [ P15 HPM 51 ]
= — | | = -1 H.12
o () ) et (H.12)
dQ5 014 51 [dQ5] 1 [d05] P15 —€ 1
+ / Wi — / — 4+ / — —.
] pspss [QE=2)] p15 [Q@-2)] ( 4 ) 015

The second term on the right-hand side of Eq. (H.12) is the only one that depend on the partition

function and contributes to lower orders in the € expansion. However, we can combine this
term with the first term in Eq. (H.9) and use the following relation

wi+wy =1, (H.13)

which follows independently of the chosen partitioning from the Cg; limit of Eq. (A.11). We

obtain

[dQs]  pu 61 64 (Poa) €
/[Q(d—Z)] 016046 Wye + W (T)

[ [dQs] 1 [ rpea\ € Hpmwf’f 3 ] [dOs]  p1g
N / [QU=2)] pye [( 4 ) ! P16 ! +/ [Q@-2)] p16046 (H14)

[dQ] 1 " [dﬂ] 0 - 1
_/[Q(dSZ)] p46+/ [Q(dfz)] (%) 016

The first term on the right-hand side of Eq. (H.14) still depends on the partitioning. However,

it is regulated and by constructions contributes first at O(e).
All arising integrals in Eq. (H.14) that do not depend on the partition function are given in
Egs. (G.5, G.6, G.8). The result reads

[dOs]  pu [dOs] 1 [dOs]  pes— 1
/[Q(d‘z)] P16P46_/[0(d‘2)] P46+/[Q(d‘2)] (%> Pas

H.15
B 2*25 =K I2(1—e¢) 2°T(1—e)I(1 —2¢) ( )
- Mt v 00 T2 T T—3e) |
Combining Eqs. (H.9, H.14, H.15) we obtain the final result
e I?(1—¢) ['(1—¢e)l(1-—2e)
(Be1)ss = 2my Kua = [r(1 P } [ T(1— 3¢) }
dQ) ] € P14
o 226 [ 5 |: _1:||: 51_1:|.
¢ [Q@=2)] p15 ( ) 045 Yie
(H.16)

We perform similar manipulations to the integral (Ase)s, and obtain
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H. Partitioning-dependent integrals

r2(1—e)} +o- [

<A56>55 = 77;;[(14 — |:1"(1_2) 1—'(1 — e)F(l — 25):|

2? (1—36)
L e RS P [Con
f

014 1 P15
X | —w
[945 tc( ]

(H.17)

We note that, since dependence in the partition function appears first at O(e?), Egs. (H.16, H.17)
prove the independence of IR 1/€ poles in the subtraction terms on the chosen partition

functions.

H.2. Computation of the (- ), integrals

We now demonstrate how to compute the (- )g, integrals. We begin with the integral (Ag1)s,
in Eq. (H.9) that can be computed exact. We consider contributions that are proportional to

double-collinear and triple-collinear partition functions separately, and write

(Bo1)s, <w3§>55+<wtc (%) €>S : (H.18)

We start with the first term on the right-hand side of Eq. (H.18) and use the explicit form of
the partition function in Eq. (A.14). We find

dQs] P15 > pus
wi) = —ezze/ [ < > : H.19
< d°>55 [QE=2)] \ p15+ps5/) p15045 (H19)
With the help of the identity in Eq. (G.47) we obtain
1 [dQs]  p14 [dQs] P14
54\ _ o2 [/ _/ . H.20
<wdc>55 “ 2 [Q@=2)] p15045 [Q=2)] (p15 + p45)? ( :

The first integral on the right-hand side of Eq. (H.20) can be found in Eq. (G.6) and the second
in Eq. (G.13). The final result reads

<w3‘i> = 1114 Kua + €73 Kug, (H.21)
where we have defined
_ r’(1—e) , 33
Kyu=——"2pltSF (1,52 —1 — ) H.22
14 F(Z — 26) 17]4 2171 < 7 2/ 2 €, 7714) ( )

The triple-collinear contribution to Eq. (H.18) can be computed in the same way, using
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H.2. Computation of the (- )s, integrals

identities and integrals presented in Appendix G. We obtain

@2 () )2 s m3)

3 3 1+ 3 3 3 (129)
€ € €
x oFy (1,1+ 5,1 - Eell —7712> — <2€1 _3€>2F1 (1;2 + 55" Ee'l —7712> } .
We combine Eqgs. (H.21, H.23) and obtain the following result
2°T(1—¢)T(1—2¢) €
(Be1)ss = 1114 Kia + €y Kua + [2 (1_36 }74{< 2>
€ 3 3 1+e€ 3 €3
X2F1(1,1+2,1—2€,1—7’]12)—< ) (/2 /2 " 1_]712>}
(H.24)

We discuss the computation of the function (Ase)s, in Eq. (H.3). It reads

o2 [ 1] pua g P15\ P15\€
<A56>55 N 62 /[Q(d—Z)] p15p45wtc< 2 > < 2 ) ’ (HZS)

This integral is more complicated then the one discussed above and we compute it as an
expansion in €. We require Eq. (H.25) up to order O(e?). Hence, we have to compute the
following integral to order O(e)

[dOs]  p1a 1 (P15 €[, P15\€
/[Q(dZ)] p15p45wtc (7) (1 7) ' (H26)

To this end, we follow the discussion in the previous section and use
(7)) (-5
-5 0= )+ () (127)
[ le- e [0-5) -]
to re-write the integral Eq. (H.26) as
[ poe () (-5

)]
_ / [dOs]  pu s
[QE=2)] p15p45

([ 0= [y -] ).

(H.28)
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H. Partitioning-dependent integrals

Since

{(1—‘?)6—1} 0, (H.29)
5|1
the first and the second term on the right-hand side of Eq. (H.28) are regulated and therefore
finite. By construction, the first term contributes first at O(€?). Since we need the integral only
up to O(e) there is no need to calculate this part of the integral. The second term contributes
first at O(e) hence it only contributes to the finite part of the calculation while the third term
contains the singularity in € and the finite part of the integral Eq. (H.28).
We begin with the following contribution to Eq. (H.28)

[dQs]  puu 1 (p15\°€
/[Q(dz)] p15p45wtc< 2 )

_/ dQ5 014 ( 045 )2 |:1+2pl5:| (@)*6
[QE=2)] p15045 \ 15 + P45 P15 + 045 2

/ dQs P14 (P15 + pa5) — P15 [1 " 2015 ] (@)‘e
B 2 + 2
P15 <p15 —+ p45) 015 045

_ dQS P14 L Pu _ 2pupis (@ ) €
Q-] (015 + pa5) 2 30 (5 :
P15 (P15 +015)  (p15+ps5)° (015 + Pa5)

These integrals are calculated in Sec. G.3, see Egs. (G.15, G.16, G.17). Inserting these results into

(H.30)

Eq. (H.30) we obtain for the integral

/ o ek ()
e [ e[ 2

3 ¢3 3 (H.31)
+3 ><1_3 X2F1<1,2+2,2—2 /1_7]14>
3 2+e€ € 3
E 2_3€><2F1(1/2+2/ _E /1_1714>:|
Expanding in € we obtain
B ezze/ [dQs]  p1a ! (pﬁ) —e
O(d-2) “\2
() prepss (H.32)

1 1 3.
= 5 — 611’1(1714) — 62 [2 + % — 11’1(1714)2 — Ele(l — 1114):| + O(€3) .

Next, we need to compute

[dQ5] 014 015\ €
/ ) p15p45wgc[<1 _ 7) —1} . (H.33)

This integral is more complicated. However, by construction, this integral is regulated and we
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H.2. Computation of the (- )s, integrals

only need the leading contribution in €. We expand it in € and find
[dOs]  pua 1 [ P15\¢
/ [Q(d72)] p15p45 wtc <1 2 ) 1

1 (3) P14 < 045 >2 ( 2p15 ) p15
=eXx — x [dQ 1+ —— |In{1— +0
“Ton / ® p150a5 \ P15 + P15 P15 + P45 n ( ) CoF

where we already used the explicit form of the partition function w{. in Eq. (A.15). The rational

(H.34)

part of the integrand in Eq. (H.34) can be further simplified. We write

P14 < P45 >2<1+2915>
P15045 \ P15 + P45 P15 + P45 (H.35)

B P14 <1 P15 > <1 2015 >
= - P )
p15(015 + pa5) P15 + P45 P15 + P45

Note that after using Eq. (H.35) in Eq. (H.34) the dependence on pys is given by powers of

1/(ps1 + pas). To compute this integral, we parametrize 7i5 with respect to the direction ;.
Given this choice, the logarithm in Eq. (H.34) becomes independent of the azimuthal angle @5

and we can integrate over it using well known formulas
1, n=0,
1
/d§05 (p‘[—h— =27 X (az — bZ)i% n-=1, (H36)

cos ¢5)"
a(a® —b*)"2, n=2.

After integration over ¢s, only squares of sinfs appear. As a result, the dependence on
integration variable 65 is given through square roots of polynomials of cos 65 that can be
rationalized and integrated. We obtain

3 [ 208 B uln (1-53)

2 n Liz(1 — 114) (H.37)
T 14 2(1 — 114 -
— G + g 2;714 —+ > L12( 1+ 7714) .
Together with the result in Eqgs. (H.25, H.32) an Eq. (H.28) we write the final result as
1 Li (1 —1714))
<A56>S5 = 5 - 6111(7’]14) - €2 5 T - 111(1714)2 — 5 + O(€3> .
(H.38)

Finally, we note that the finite integral (r#r"),, in Eq. (H.7) can be computed following the
previous discussion of Eq. (H.34).
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. Subtraction terms

In this appendix we collect required double-soft and triple-collinear subtraction terms whose
computation in not discussed in this thesis. They are computed in Refs. [67,68] in a general

case and we report required formulas for the case of DIS.

1.1. Double-soft subtraction terms

The UV-renormalized double-soft subtraction term for two soft gluons reads

4E2 —2¢
($Fim(1g, 49 155,65)) = [as]? (;;) (|CF2m 2K+ CaCr SE | Fun(10,47)) (L)

where Kj4 is given in Eq. (A.20) and the non-abelian coefficient Sg;,ab) reads [67]

/[ 1111
Sgréa _<{2€4+€3Lz—1n(1714)
2 16]

1 . 11 11
t3 [Zle(l — 1a) +1In®(714) — < In(na) + 5 In2— 7 — -

1 . . 11 . 2
+ [6L13(7714) + 2Li3 (1 — 1714) + (2 In(1714) + 3> Lir(1 — 1714) — = In°(1714)

3
11 22 w32
+ (311‘1(1 — 1114) + 6) 11'12(;714) — <3 In2+ o 9> 11'1(1714)
45 11, ., 11 , 137 217
g g2 g = g in2 54]

_ 4HPL({=1,0,0,1}, 714) — 7 HPL({0,1,0,1}, 114 + %Cig (2arcsin (\/7i7))

L /1— 1714Siz3(\2/;sin (vma)) +2Lig (1 — 1714) — 14Lig(1714) + 4Lig <1 n 1714)
oL (igi) +2Li <m> FLig(1—72) + [101n(1714) —41n (1+qu4) + 131]
x Liz(1 —114) + {14 In(1 —114) +2In(1714) +41In (14 1714) + 232} Liz(7714)
+4In(1 — 714)Lis(—y14) + gug(l — 11a) — 4Lin(1 — y14)Lin(—112) (1.2)
4 [7ln(1 — 4 In(4) — () — o + % In2 — 1%1} Lin(1 — 114)
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1. Subtraction terms

In*(1714) n In* (14 114)

2
—+ |:37T —411’1(1 — 1714 11’1 7714 L12 7714 3 6

4 11
— 11’13(1714) |:3 11’1 1-— 7714 + :| + 11’1 1’]14 |:711’1 (1 — 7714) 3 ln(l — 1714)

7% 22 32 712

17 99
+ €3 |: 11’1(1714) —11 11’1(1 — 1714) - ln (1 -+ 7714) - — ln2 — :| + 11’1(7714)

[—mln(l—m) L 2y B BTy 2—208]—12Li4 G)

2 3 18 9 27
143 , In*2 =2 , 1, 125 5 22,5
ﬁon——z +71n2—€ 12+216 91 2
L 17 434 649

2
181 2—1—?1 n2— ST+O( )} XFLM(1q14q)>5~

The counter term for a soft quark-anti-quark pair reads [67]

AE2. \FT 1 (4m)E 1P 1
_ 2 X
(SFonns (lg:491%6)) = CeNyTi o] < e > [87r21"(1 —e)} T 33

+ el [2 n(ni) — §1n2 + 12} 1 {— %Liz(l —11a) — §1n2(7714) +1In(114)

><( 93>++1 22+%1 2—];2:]—§Ci3(2arcsin(x/ﬂ))

21— 114Si E/icsln (vina)) %Liy,(l ) — gLiS(UM) (1.3)
+ Lip(1 — 714) {299 gl 2} +gln3(m4) +In*(114) {— gln(l — 114)

—§1n2+193} +1n(1714)[—§1n 2—?1 2+9 —1—107] +9§3+2%1n2
_glrﬁz—%ﬂz 3951 22_%1 2+%+O( )} X FLM,ns(lq,4q)>§.

In Egs. (1.2, 1.3) HPL({4ay, . .., a, }, z) are harmonic polylogarithms [84] and the Clausen func-

tions are defined as

Liy(e?) + Liy (e~ %)

Liy(e?) — Liy(e™%)
2 ’ ‘

Ciy(z) = 5

Siy(z) = (14)
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I.2. Triple-collinear subtraction terms

1.2. Triple-collinear subtraction terms

Quark-initiated processes

The UV-renormalized triple-collinear counter terms for the process g +e~ — e~ + g+ gg
read [68]

< [I1—$][I— S [9@«:1[1 — Cs1] + 00 C1[1 — Cs6] + 09T [1 — Cg1]
E2 —2¢ 1
+oC 1 - c56]} [dps][dpe]w™ 5 Fin (1g, 4, | 54, 6g)> = [a]? <u;> / dz (L5)
0

Fm(z 1,4
X <[R§2g +RY (Dy(z) — 4eD1(z) + O(€?)) + RY4(1 _Z)} y LM(Zqu)> ,
o

and
< [1—$][I— Se] [9(“>«:4[1 — Csa] + 0O C4[1 — Csg] + 0 Cy[1 — Coa]

+ 0 C4[1 — Cse] | [dps][dpelew™* Fina (14,44 |54, 6) ) (L6)

2\ —2€
— [0(5]2< (fé) Rﬁ%)g X FLM(1QI4Q)> .

)

Functions R are decomposed into different colour factors

(i) _ 2, (i),na
R{5,+,reg} - CPR{(S,a—i-,reg} + CFCAR{5,+,reg} ’ (17)
where Rﬁ{%i} = Rgﬁa} = 0. The coefficients read [68]
ma 1 2 7
1] 1571  117%> 3 2 11 32 7% 11In2
ma _ 2| _ = 03+ —In2+ —1In?(2 S
Rs e[ 216 36 TRt 2ty I+ {5+ 3
Emax 1, 4. 176 4 79  117%\ . ,
—— -2 (= In?2
><1r1<E1 )} 121r12 9 In 9+ B n 0
51373 4 913 + 16572 64 72 22In2\ . 5 { Emax '
In2+ [ — — = 1
+ 108 net (9 5t )™ g
1173 383 2272 5 n2 2, Emax
e S —11In*(2) + —= — =®In2 ) 1 Ole),
+(2 54 9 n(2) 4+ 5= =32 )In{ == )+ Ofe)
4 2
RPA = _% In2 + O(e), (1.10)
mna 1 [11 w32 2, 14272 1172
RY" =2 §1n2—g+? —11In"2 — In2 —703+ +224+0(e), (L11)
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1. Subtraction terms

reg 4z —1)

2% (=363 + 33 +4m?) —2 (33 +2m?) z— 6003 +33  7(z—1)
+ +
6(z—1) 2
(3(z—1)z— 7% (322 +5))
3(z—1) Inz (112)

2 3 -
R“)Ia:i(—Zj;lln2lnz—|—(1—z)ln2+ "+ )hnzz—zlmz+3(z2 )

In%2

+ (—6z+ 7 (z+1) +6) In2+

(92 +19) 7(z+1)

2

Z. 2 3 2 (% +7) 2

~|—21n z+ 12(1—2) In”z 4 1 In 21nz+2(1_z)1n21nz
+(3z—1)In2Inz+6(1 —z)In(1 —z) —4(1 —z)In(1 —z)In2

+ (—2(2—1—1)1112— Wlnz—&) Lip(z) + (2(3:2_—’1—5)> Liz(z) + O(e),

2 2
ruwna _ L[ (67 —61)z —152+76_11(z+1)1n2+(

(
e € [ 36(z—1) 6 12(z—1)
z2 z2
+ §(1t2 In(1—-z)Inz+ (Jl—i__z))Lh(z)}
3 (2%(4803 — 119) — 46z — 3603 + 165) + 7% (—502> + 12z + 12)
+ 36(z —1)

((61 — 67%) 22 415z — 76) (4922 457z — 20)

9(z—1) 36(z—1)
2(22+1) (z—1) (1122 +2)
= In*1-z1 In(1 — =

o1 In zlnz+-— n(l—z)lnz+ 8(1—2)
2(2+1) 22(z+1) (2 +1)
z—1 3 4(z—1)
11(z+1), 5. (1122+42) (=722 + 6z + 4> 4+ 1)
— T In*2+4+ " n2l
L R A Tr s 6(1—z)

2 2 2 2 _
(2(2 +1) ln(l—z)+2(z 1)y, FHY 252 6z+7> Lin(2)

nz

In(1—2z)+

In”z (1.13)

In(1—2z)Inzln2+ In(1—2z)In2+ In(1—2z)In’z

In2

z -1 z-1 T 2E—1) T T ez —1)
+ <2(ZZ+1)) Liz(1—2z)+ ((Zz—i_l)) Liz(z) + O(e),

z—1 2(1—2)
131 9In2 m2In2 715 772  17In2 631n%2
Wa _ |2 4 707 2 Sl 2ln2 —
reg e[l6+ g 3 §3}+ » 30 s M 16 L14)
772 1n% 2 '
—"T“Hmnzgﬁ()(e),

(4)na _ —
R 108 8 1 T3 T E,

1 1015 72 11ln2 72In2 11?2 Emax
reg _6 - +ln

a 32 N 12 _ 11In2 N Bg 2281 11972 N 1737 _ 1247In2
9 6 3 g °3 48 144 480 108
161 19In2 11 , ,. 176In*2 In*2 Emax
~—m?In2 — — —7%In%2 — — 1 .
Tt 36 12" 9 12 T\, (115)
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I.2. Triple-collinear subtraction terms

383 22 , 1 25 _ 2 1 2 ( Emax
><<54 97r +3ln2 37r In2—-11In"2 + 2§3>+ln E,
64 1 , 22 (1 2503 13

The non-singlet contributions read

([1- ][0 + (6 + 6 ) [1 - Cs6] + 6] [dps][dpe]
ie{1,4}

X WS F (1,45, 6)>

E2\ 2 (1.16)
= [a]? (é) / dz < [Rygg,ns + RV, (Do(z) — 4eDi(2) + O(e?)) + R (1 — z)]
0

FLM zZ- 1 /4 E2 o
> (qq)> + [“s]2< <V§> Ri‘?g,nsFLM(1‘J'4‘1)> :
1

z 5
Split into different colour factors the functions R" read

, Cr(Ca — 2Cr) ., |
(@) _ “F(MA F) pa)l (),2
R{(S,—i—,reg},ns - 2 R{5,+,reg},ns + NfCFTRR{(S,-i-,reg},ns / (L17)

where R<{4§,i+} . =0, withi e {1,2},and Rf{lg’i} -« = 0. The coefficients read [68]

Rl _ L[ (14 2%) +3(8 — 15z +7z%) (—5+2z%)Inz
reens e 12(1 —2z2) 4(1-2)
(14+2)In(1—z)Inz  (1+22)In*z (14 2%)Liy(z)
2(1—2) - 4(1-2) 2(1—2)
(m* (142%) +3(8—15z+72%))In2  (7* (1+2%) +3 (8 — 15z +72%))
B 3(—1+2z) B 3(—1+2z)
(66 — 57z —39z% +4m* (1+2%)) Inz N (=5+2z%)In2Inz
12(—1+z) 14z
2(1+2z%)In2In(1 —z)Inz N 2(1+2%)In(1 —z)*Inz
—1+42z —1+z
(—25+12z+42*)Inz*>  (1+2z°)In2Inz*> (1+2z%)In(1—z)Inz?
8(—1+2z) B 14z N 4(—1+2z2)
2) 11 53
— m —2(1+2)InzIn(1+z) —2(1+ z)Lix(—2)
2(1+2%)InzLip(—z) (=134 6z+2*)Lir(z) 2(1+2%)1In2Liy(z)
B —1+z B 2(—1+2z) —1+z
N 2(1+2%)In(1 —z)Liz(z) 3(1+2%)InzLir(z) 3 (1+z?)PolyLog(3,1 — z]

xIn(l—z)—

_ %(1 —2)In(1—2)Inz +

+ (1.18)

14z 2(=1+2z) —1+z
4(1+2%)Lis(—z) = 9(1+2%) Lis(z)
—1+z 2(-1+2)
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1. Subtraction terms

2 (11— 6z+2%) +3 (=1 — 62+ 603 +2z*(7 + 6{3))

- 12(-1+2) +0(e),
275  ? E 10  4In2 509 977>
m,2 __ A 2 max e i
Rons = [108 g —2In 2““( E; >(9 T3 )] 108t 216
265In2  572In2  59In*2  64In>2 Enmax 83 872 4In2
B B _ S0, o 2ns 1.19
54 5 TT9 Tt +IH<E1>< 7t 3 (119
E 20 8In2\ 11
2 . 2 max <Y onte el
+41In 2) In ( E, >(9+ 3 ) 2C3+(9(€),
1[ 10 4In2] 4
RYZ = e[_ 5 - ;‘} — §(16+n2) +41n*2 + O(e), (1.20)
1713 7z 2In2 2zIn2 (1+z*)Inz] In2
m2 _ |2 = T —
Ryegns 6[18+18+ 5 T3 tT3a-g } 3 ( >tz
4(1+2%)Inz (7—6z—522)Inz  (1422)In’z
- ) — - - 121
B1+2)In(l—z2) = =5 —; ) 9(1=2) 2(1=2) (12D
4(3(1 4 z%)Lia(z) — m222)  29(1+2z) 2
+ 51— 2) + 5 —5(13—|—7Z)h’1(1—2)—|—0(€),
w1 1 g_nj o +@_5n2+7n4_131n2+n21n2
regns o |8 1716 6 45 2 (122)
39 '
—7€3—4C3h‘12+0(€),
1[329 E 10 2773 35m%  43In2
@2 _ |27 max
RE2, [108+1 n2- 212+ 1n <E4 )(9 4+ 2In z)] L
1372In2  32In%2  64In°2 Ermax 83 812 4In2 5
3 _ % ot 1.23
5 T 9 t o +ln<E4>< 7+t ——3 tin 2) (1.23)
E 20 8In2\ 19
2 max e Yare -
+1In <E4>< 5 3 >+6€3+(’)(e),

The triple-collinear counterterm for the singlet contribution reads [68]
(€1 ([1=Ca1]0f" + 01 + 0 + (") [dps] [dpe]0™ ' Fines (14, 4y 15,6 )

_ 1
E2\ % 1[5 13 5z 1322 In2 2In2 1
_ 2 (=1 I e e e e -
—C]:TR [Dés] (;Ll) O/dZ{ |:2 92 > + — 9 ) 3 +2 1 2

2 | 41 1 1 1
+§zzln2—%—%—Ezlnz—anInz—zanInz—%—Ezln z}
_ 4Lip(—z) (2+3 322 + 278
@)~ 2 4o 4zin2 io(=2) (2432 + 327+ 22°)
3z 3 3z
_E_f+197+87t2_412+7tzz_8922_471222_711n2+gﬂ21n2
18 3 '27z ' 9z 18 3 27 9 6 3
61ln2 71 2 61 7In’2  7In’2 7
2 zIn2 In2 — —z%In2 —2zIn%2
92 + 6 +37rzn 9z n2-+ n + 32 4zn
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I.2. Triple-collinear subtraction terms

- §z2 In22 — 10In(1 — z) + 5‘21“(1_2) +10zIn(1 —z) — 593‘22 In(1 — z)
EMZI;S_Z) —2zIn2In(1 —z) — gzzlrﬂln(l —2)+

+g In —I—&—I—6lnz+2nzlnz+%z lnz+6ln21nz+M
3 9z 3 9 3z

4 7 7
+6zIn2Inz + gzzanInz—l— §1n221nz—|— Ezln221n2—|—2ln(1 —2)Inz

_ 2 2
- 4ln(13zz)lnz —2zIn(l—z)Inz + %zzln(l —z)Inz+ 111: 25 412 z

+2In2In(1—z) + 191nz

(1.24)

1 |
—i——gzln z—|—3z Inz+3In2In%z + 3zIn21n? z—|—5 2 Z+gzln3z

SIINIEE)  goinzin(142) - S2nzin(1 +2)

3z
—4Li3(z) — 4zLi3(z) +4{3 + 423 + (’)(e)}

> <PLM(Z 'Zlff4f) >6'

fe{aq}

—4InzIn(1+z) —

Gluon-initiated process

There is only the initial state triple-collinear counterterm for the gluon-initiated process. It
reads

([1=S6]C1 011 = Car] + 01" [1 = Cs] + 61/ [1 = Cs1]

+0,"[1 - C56H [dps]ldps]o™ 0] Fiag(1,415,6))

E2 —2¢e E 1 ,4
= [as]? <y > /dz CIRWZ + CFCARE } y <LM(Zfo)> -
5

fe{aql

(1.25)

where [68]

RWA —

s +3(222—2z+1)1n(1—z) In2

1 871222 — 8?2z — 152+ 472 — 3
€ 12

—972 111z —
Zlnzln2 4+ —2 +2 27512

+ (—222 +Zz—1)ln(1—z)lnz+
47> — 6z +3
e

2 Emax

—3(1—-2z+2z°)In21n T

1

N —3m%2% +122{3 + 3%z — 24z — 6{3 — 7T
3

In®z — Zlnz - (222 —2z+41) Lix(z)

—9(222-2z+1)In*1—zIn2

19 (22 —2z+1)
2
+4 (222 —2z+1)In(1—z)In2In2 + (182> — 22z 4+ 7) In(1 — z) In2 (1.26)

+4 (22 -2z +1)In*1—zInz — In(1 —z)In?2
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1. Subtraction terms

222 —2z+41 —
(Zzz—'—)ln(l —2)Inz+1In(1 —z)Inz+ 7(2241)lnzlr122

N 3 — 4m?z% + 4%z + 15z — 2712 In(1-2) + 5722 — 71z + 32
3 4
—8z2+14z -7
2
—47%2% — 11722 + 87?2 + 150z — 471% — 27 —2822 +38z—19
In2 + In” z
6 12
_ 2.2 2, _ 2
(82;—9) In? 2 + 32m°z* + 407 iz 21z — 20t* 49 Inz

+ (In2 (822 =12z +6) + (=22 + 2z — 1) (Inz — 4In(1 — z)) — 2) Lix(2)
+ (82 — 8z +4) Liz(1 — z) + (142> — 18z + 9) Lis(z)
+3(1 — 2z 4 22%) In2In? (Emax/ E1)

In%2

In®zIn242(z+2)Inzln2

_|_

_ 2
+1In <Em"‘x> (19(1 22+27) In*(2) +6(1 — 2z 4 22%) In(1 — z) In2 4 3In2

Eq 2
2713 (1 — 2z + 222
-2 N o),
3
Rma _ 1 [—671223 — 6723 + 37%2% + 8122 — 31?2 — 27z + 13
reg € 9Z

+ (222 =2z+1)In(1 —z)In2+ (222 =2z + 1) In(1 — z) Inz

4 — 3123 + 2472
—(222+22+1)1n(1+z)1nz—|—(4z+1)lnzln2+ 3127 + 242 +3Zln2

6z
12z +1

6z+1

+ In’z +

—(1-2z+2z*)In21n (Em‘“ﬂ
Eq

+ ((82> + 8z +4) (In(1 —z) +1n2) + (22 — 6z + 1) Inz) Lip(—z)

+ ((—82z° +8z —4)In(1 —z) — 8(z — 3)zIn2 — 4zInz) Lix(2)
447% 1+ 4822 4152 + 8 2273 49622 — 3z + 20
+ I () + T ()

— (1822 = 2z +9) Liz(1 — z) + (102 + 26z + 5) Liz(—2)

+ (42 + 4z + 2) <3Li3 <1Z+Z> +Liz(1— zz)> + (32z 4 4) Liz(z)

E
+ (1 -2z +22%) In21n? (g‘)
1

2

(7(1 —2z4222)
1

188

Inz — (222 42z 4 1) Lip(—z) + (222 — 2z + 1) Lix(2)

(1.27)

In2 +2(1—2z+22%)In(1 — z) —|—1> In21In (%_?”) + Of(e).



J. Finite contributions of subtractions

In this appendix we collect finite contributions of the subtraction terms.

J.1. Quark non-singlet contributions

Regular matrix element: F(1,4)

For A, we define
Ans(E1, Ea) Emax, ha) = CF A + CpCa A% + CeNf AL, J.1)

with

E E; 4E?
Al =Lip(1— 61n’ (1> +81n? () +3In ( >
s = Lip( 7714){ E, E. "
E E E
+1In <El> <—81n <E ! ) —|—41n1714+6> + (—8Inns — 6)In (E ! >
4 max max

2
+61m714—27r2+20}+1n<E ) {ln< b ) (—121n21714—1n2(2)+4n>
E4 Emax 3

4E?
+91n? 1714+3(1n (2) +1) +Inny <3ln< 2 ) — 2772 +13> +12g3—2n2}

, (E 1, , 3 (4E2 E
+1In <E4 41n? 1714+2(ln (2)+13)+§ln 7 —4Inn4ln E

2 E
+31n1714—573T}+1n( ! >{—151n 1714—71n(

E max

)
4F? s 4F?
1 1 L) p4n? -2 S - —t
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J. Finite contributions of subtractions
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J.1. Quark non-singlet contributions
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Here, HPL({ay, ..., a4}, z) are harmonic polylogarithms [84] and the Clausen functions Ci,(z)
and Si, (z) are given in Eq. (1.4).
Boosted matrix element: Fm(z-1,4)

For 7,5 we define
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J. Finite contributions of subtractions

2(z2+1)Inz

+1In(1-2) <—z—|— 1

—5) —6(z+1)In* (1 —2)

(322 +1)In’z
2(z—1)

+Li2(1—7714)<—22—4(Z+1)ln< b )—2(z+1)1n (‘fj)

E max

+ L)

—10) —4(z+1)In®(1—2) + 5

—8(z+1)In(1—2)+2 | +D1(z)( 8In E Inns —161n b In 714
E4 Emax
4E2 4E2
4

2
+ 16Lin (1 — 1714) — 872 + 26> + (4(2 +1) + 4(7‘“)1”) Lir(—z)

z—1
z2 — 52\ 1n (1 — 2 , o
+Liz(z)(2(i_15) 2(z+1)ln<4;2>+(3 52)_11(1 >+(2j_1>11 )
(922 +1)Lis(1—z)  8(z2+ 1)Lis(—z) (1 —32%) Lis(2)
* 1—z B z—1 + ~ 1

Eq 4E? 4E2 2 (E1 4E?
+Do(z){4ln(E4>lnm4ln(‘u )+6ln17141n<y )+21 <E4)1n (ptz)
107t 4F2 E, 4F2 2
+(1 3 >ln<y )—i—l <Emax> < 81n1714ln(y )—i—l (2)
4772 4E? E AF?
—|—41n2;714_3>—|—3] 2<y2> <81 <Em1ax>+4l <l‘l/t >>L12(1—1714)

(1-1122) g3
t 1653} LT

(e (VB (7
7;5—1)0(2)( 6ln<y2 + 3 In

9 H
2 2
- 2(1O4+9ln2)> +Di(2) < 2 (‘”521) _2m 134) ~2p,)
)

—2,

27 3 3 9 3
4E2\ [ (22 +1)In*(z) (522+17)In(z) 1 1
1 ~(10—-77 1
+n<y2>( 5ot s +9(0 z)+67'c(z+)
11 (722 — 12z 4 27) In*(z)

+3(

Z2 n3Z Z2 n(z Z
7(124(;1111)( = <( tl—)i ( )+11(3+1 >1n2(1_z)

L0 (z2+1) Liz(1 —z) L4 (z2 +1) Liz(—2) L4 (22 +1) Lis(2)

z—i—l)ln(l—z))—i—l e

z—1 z—1 z—1
2 0 2 _
1 Lis(—2) (-2(2 j_l)ll ) —2(z—|—1)> +Liz(z)<2(4z3 . EZJ 1)
Z2+1)In(1—-2z) (22+1)In(z) 7—-112%) ¢
+( z)—l +( 1—)2 >+<2(z—1))3

192



n

J.1. Quark non-singlet contributions
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J. Finite contributions of subtractions

J.2. Quark singlet contributions

For quark singlet contributions we defined
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J.3. Gluon contributions

For 7T, in gluon-initiated contributions we define
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J.3. Gluon contributions
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J. Finite contributions of subtractions
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Abbreviations

LO Leading order

NLO  Next-to-leading order

NNLO Next-to-next-to-leading order

QCD (perturbative) Quantum Chromodynamics
MS Modified minimal subtraction scheme

SM Standard Model of particle physics

IR Infrared

[OAY Ultraviolet

DIS Deep-inelastic scattering

LHC Large Hadron Collider

CERN  European Organization for Nuclear Research
FKS Frixione-Kunszt-Signer

COM Center-of-mass
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