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ABSTRACT: We develop a methodology for calculating,
analyzing, and visualizing nuclear magnetic shielding densities
which are calculated from the current density via the Biot−Savart
relation. Atomic contributions to nuclear magnetic shielding
constants can be estimated within our framework with a Becke
partitioning scheme. The new features have been implemented in
the GIMIC program and are applied in this work to the study of
the 1H and 13C nuclear magnetic shieldings in benzene (C6H6)
and cyclobutadiene (C4H4). The new methodology allows a visual
inspection of the spatial origins of the positive (shielding) and
negative (deshielding) contributions to the nuclear magnetic
shielding constant of a single nucleus, something which has not
been hitherto easily accomplished. Analysis of the shielding densities shows that diatropic and paratropic current-density fluxes yield
both shielding and deshielding contributions, as the shielding or deshielding is determined by the direction of the current-density
flux with respect to the studied nucleus instead of the tropicity. Becke partitioning of the magnetic shieldings shows that the
magnetic shielding contributions mainly originate from the studied atom and its nearest neighbors, confirming the localized
character of nuclear magnetic shieldings.

1. INTRODUCTION

Second-order magnetic properties such as nuclear magnetic
shieldings, indirect spin−spin coupling constants, and magnet-
izabilities are usually calculated by using the gradient theory of
electronic structure calculations as the second derivative of the
electronic energy with respect to the external magnetic
perturbation(s) in the limit of vanishing perturbation(s).1−4

However, the elements of the nuclear magnetic shielding and
magnetizability tensors can also be obtained as second
derivatives of the magnetic interaction energy, which can be
written as an integral over the scalar product of a current
density caused by a magnetic perturbation and the vector
potential of the second magnetic perturbation.5−7 The current
density JB(r) induced by an external magnetic field Bor the
current density J r( )mI induced by the nuclear magnetic
moment mI of nucleus Iis formally defined as the real part
( ) of the mechanical momentum density

J r r p A r r( ) ( )( ( )) ( )B m B m/ /I I= − [Ψ* − Ψ ] (1)

where p = −i∇ is the momentum operator and Ψ(r) is a
complex wave function because of the vector potential of the
magnetic perturbation AB(r) or A r( )mI . As will be discussed in
later in this work, the magnetic properties evaluated within this
scheme have no reference to the magnetic gauge origin if the
current density is gauge origin independent, as is the case in

our GIMIC approach8−11 as well as in the ipsocentric
approach.12−16

While the end results of the gradient-theory and the
integration approaches are the same, the method based on
integration can be used for providing additional information
about orbital and spatial contributions to a given magnetic
property. For instance, magnetizabilities, which are usually
calculated using gradient theory as the second derivative of the
electronic energy with respect to the external magnetic field,
can also be obtained as the second derivative of the magnetic
interaction energy expressed in terms of the current density
induced by the magnetic field17−19
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As we have recently discussed in ref 19, eq 2 can be used to
extract information about the spatial contributions to
components of the magnetizability tensor.
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The nuclear magnetic shielding tensor for nucleus I, in turn,
is determined by the second derivative of the magnetic
interaction energy with respect to the external magnetic field B
and the nuclear dipole moment mI. The shielding tensor can
then be calculated from the current density induced by the
external magnetic field JB(r) and the vector potential of the
nuclear magnetic moment A r( )mI

B m
J r A r r( ) ( ) d

I

B m

B
m

2

0
0

I

I

∫σ = − ∂
∂ ∂

·αβ
β =

=
α

(3)

Alternatively, the shielding tensor can be calculated from the
current density induced by the nuclear magnetic moment and
the vector potential of the external magnetic field AB(r) and
the current density induced by the nuclear magnetic moment
J r( )mI of nucleus I5,17,18,20

B m
J r A r r( ) ( ) d

I

m B

B
m
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0
0

I
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∫σ = − ∂
∂ ∂

·αβ
β =

=
α

(4)

Equation 3 is typically used in computations since picking the
expression with JB(r) means that the current density has to be
computed only for the three components of the external
magnetic field instead of the 3N components of the magnetic
dipole moments of N nuclei. However, efficient algorithms
have also been developed by using eq 4, as the localized nature
of the current densities induced by nuclear magnetic moments
allows for powerful use of screening and parallelization.21,22

Because the current density JB(r) induced by an external
magnetic field is a function of the strength of the external
magnetic field, differentiation of the magnetic interaction
energy yields the first derivative of the current density with
respect to the external magnetic field (∂JB(r)/∂B), which is the
current-density susceptibility tensor (CDT) induced by the
external magnetic field.18,23 Analogously, the differentiation
with respect to the nuclear magnetic moment acts only on the
vector potential of the nuclear magnetic moment, yielding

A r m( )/ I
mI∂ ∂ , since only that term in eq 3 depends on the

nuclear magnetic moment. The dot product of these two
quantities, ∂JB(r)/∂B and A r m( )/ I

mI∂ ∂ , is a scalar function
known as the nuclear magnetic shielding density.5−7 The
spatial distribution of the shielding density provides detailed
information about the origin of the individual elements of the
nuclear magnetic shielding tensor as well as the shielding
constants.15,24−28

Further information about the magnetic shielding density
can be obtained from the individual orbital contributions to
the magnetic shieldings15 and shielding functions. Dividing the
magnetic shielding density into positive and negative parts as
well as into orbital contributions shows the spatial origins of
the shielding and deshielding contributions to the shielding
tensor and the isotropic shielding constants.27,29 Thus,
calculations of magnetic shielding densities provide a rigorous
physical basis for interpreting nuclear magnetic resonance
(NMR) chemical shifts.
In this work, we develop a methodology for analyzing spatial

contributions to nuclear magnetic shielding constants. We
apply the methods to the hydrogen and carbon nuclei in
benzene (C6H6) and cyclobutadiene (C4H4), which are test
cases representing aromatic and antiaromatic hydrocarbons,
respectively. Next, we present the underlying theory in section

2.1 and continue in section 2.2 with the employed numerical
methods. Then, in section 2.3, we describe the computational
methods. We discuss the magnetic shielding densities of the
studied molecules in section 3 and summarize our study and
form our main conclusions in section 4.

2. METHODS

2.1. Theory. The vector potential A r( )mI in international
standard (SI) units arising from the nuclear magnetic dipole
moment mI of nucleus I can be chosen as

A r m
r R
r R

( )
4 I

I

I

m 0
3

I
μ
π

= ×
−

| − | (5)

where RI is the position of the Ith nucleus and μ0 is the
vacuum permeability.30 Similarly, the vector potential AB(r) of
an external static magnetic field is

A r B r R( )
1
2

( )O
B = × −

(6)

where RO is the chosen magnetic gauge origin. The magnetic
flux density B and the magnetic dipole moment mI are
uniquely defined by the vector potentials AB(r) and A r( )mI ,
whereas the reverse does not hold since all the vector
potentials of the form A′ = A + ∇f(r) generate the same
magnetic field B, as ∇ × ∇f(r) = 0 for any smooth function
f(r).
Even though exact solutions of the Schrödinger equation are

gauge invariant, the use of finite one-particle basis sets
introduces a gauge dependence in quantum chemical
calculations of magnetic properties. The CDT can be made
gauge origin independent by using gauge-including atomic
orbitals (GIAOs), also called London atomic orbitals (LAOs).
The GIAOs are defined as8,31,32

r r( ) e ( )B R R ri( )/2 (0)Oχ χ=μ μ
− ×[ − ]·μ

(7)

where i is the imaginary unit and χμ
(0)(r) is a standard

Gaussian-type basis function centered at Rμ. The use of GIAOs
eliminates the gauge origin from the expression we use for
calculating the CDT (∂Jα

B(r)/∂Bβ):
8,10,11
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In eq 8, D is the density matrix in the atomic orbital basis,
∂D/∂B are the magnetically perturbed density matrices, ϵαβγ is
the Levi−Civita symbol, h̃(r) denotes the magnetic interaction
operator without the |r − RI|

−3 denominator with

h r
m

r R p
( )

( )
I

I
∂ ̃
∂

= − ×
(9)

and

h r
m B

r R r R 1 r R r R
( ) 1

2
( ) ( ) ( )( )

I
O I O I

2∂ ̃
∂ ∂

= [ − · − − − − ]

(10)
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and RI is the position of nucleus I. Finally, the nuclear
magnetic shielding tensor of nucleus I, σαβ

I , can be calculated
from eqs 3 and 5 as

r R J

Br R

r

4

( )
I I

I

B
0

3∫∑σ
μ
π

= − ϵ
−

| − |

∂

∂αβ
γδ

αδγ
δ δ γ

β (11)

It is important to note that all terms that contain the gauge
origin RO cancel in eq 8, making the CDT calculation as well as
eq 11 independent of the gauge origin. Analogously, all terms
in eq 8 containing the nuclear position RI also cancel,
eliminating explicit references to the coordinates of the nucleus
I from the current density (the physical implicit dependence
still remains). As a result, the integrated second-order magnetic
properties have no reference to the gauge origin or the nuclear
coordinates.
The Biot−Savart expression in eq 11 has advantages over the

corresponding second-derivative expression. Contributions to
the tensor elements can be visually interpreted by plotting the
positive and negative parts of the integrand separately, yielding
information about shielding and deshielding contributions to
the elements of the magnetic shielding tensor. For example, in
a system with a ring current, the σzz

I contribution given by

y R J

B
x R J

Br R

r

r R

r
r

4
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dI Iy
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∂
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∂
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jjjjjjj
y

{

zzzzzzz
(12)

will consist of both positive and negative shielding contribu-
tions due to the relative direction of the current density with
respect to the investigated atom I.11,33

The Biot−Savart expression in eq 11 can be calculated by
quadrature when the CDT is known. Because established
gradient-theory implementations of NMR shielding constants
are typically used to compute the CDT, the shielding constants
from eq 11 do not provide any new physical information;
however, the numerically evaluated shielding constants can be
compared to the analytically evaluated values to assess the
accuracy of the numerical integration of the Biot−Savart
expressions, which is useful for applications to other second-
order magnetic properties. For instance, a similar approach has
recently been used to calculate and assess the accuracy of
magnetizabilities from new density functional approximations,
even though analytical methods to calculate the magnetizability
tensor were not available in the used program.19

2.2. Implementation. A numerical integration scheme for
calculating spatial contributions to nuclear magnetic shieldings
has been implemented into the freely available GIMIC
program.34 The atomic contributions to the magnetic
shieldings are obtained by quadrature over atomic domains
generated by the NUMGRID library,35 which is based on the
use of Becke’s multicenter scheme.36 The atomic domains
were determined with the Becke partitioning scheme,36

employing the iteration order k = 3 in the construction of
the cutoff function as suggested by Becke. The radial
integration points of the atom-centered grids are generated
as suggested by Lindh et al.,37 and Lebedev’s angular grids are
used.38 The CDT is constructed in GIMIC with eq 8 from the
density matrix, the magnetically perturbed density matrices,
and basis set information obtained from Turbomole39

calculations of NMR shielding constants.
2.3. Computational Methods. The molecular structures

of C6H6, C4H4, and B3N3H6 were optimized with Turbomole39

version 7.5 employing the B3LYP density functional,40−42 the
def2-TZVP basis set,43 and the m5 quadrature grid;44,45 the
optimized molecular structures are given in the Supporting
Information. Nuclear magnetic resonance (NMR) shielding
constants were also calculated with Turbomole at the same
level of theory by using GIAOs.31,32,46,47 In the NUMGRID
calculations, 21042 grid points were used for each carbon and
19234 grid points for each hydrogen.
The B3LYP/def2-TZVP level of theory has been found to

yield good agreement compared to second-order Møller−
Plesset (MP2) theory for the 1H NMR magnetic shielding in
tetramethylsilane (TMS, Si(CH3)4), as the 13C shielding in
TMS reproduced by the method deviates by only 7% (roughly
12 ppm) from the one obtained at the MP2/def2-TZVP and
MP2/def2-TZVPP levels of theory.48 Although we are aware
that these results are not fully converged to the complete basis
set limit, especially for the carbon shieldings,49 the B3LYP/
def2-TZVP level of theory suffices for our present purposes of
illustrating the spatial origins of magnetic shieldings: the
accurate reproduction of 13C shieldings is known to be
challenging,50 and the functional error is likely of the same
order of magnitude as the basis set truncation error.
The methods presented in section 2.2 and their GIMIC

implementation, however, can be applied in combination with
any basis set or level of theory for which the density and
perturbed density matrices are available. Basis set truncation
errors for the def2-TZVP shieldings and their effects on the
atomic contributions will be discussed in section 3.3, showing
that the truncation errors in def2-TZVP only affect the
contribution to the shielding of the same atom, whereas the
contributions to the shieldings of the other atoms are
reproduced accurately in the def2-TZVP basis set.

3. RESULTS AND DISCUSSION
3.1. Benzene. The magnetic shielding density for the 1H

NMR shielding in Figure 1a shows that the main shielding

contribution in the molecular plane originates from the outer
regions of the molecular electron density, where the diatropic
ring current is strong.11,33 Deshielding contributions arise close
to the hydrogen nucleus and close to its adjacent (ipso) carbon.
Shielding and deshielding contributions also arise from the
valence electrons of the ipso and the nearest-neighbor (ortho)
carbon atoms due to their local atomic current-density fluxes.
All carbons have both shielding and deshielding contributions

Figure 1. zz component of the magnetic shielding density of the (a)
1H NMR shielding and (b) 13C NMR shielding in the molecular plane
of C6H6. The shielding contributions are shown in blue and the
deshielding contributions in red in the range [−0.2; 0.2].
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for 1H arising from the core electrons due to atomic current
densities around the nucleus.
The two core contributions cancel almost completely

because the atomic current density has the same strength on
both sides of the nucleus, and the relative distance to the
positive (shielding, blue) and negative (deshielding, red) areas
from the studied hydrogen nucleus is almost the same for the
carbon atoms in the meta and para positions.
The zz contribution to the magnetic shielding density in the

molecular plane for a 13C nucleus in Figure 1b has an onion-
like shell structure of shielding and deshielding contributions.
The shielding contribution close to the nucleus arises from the
core electrons, whereas the valence electrons deshield the
nucleus. In the next shell, the shielding contribution originates
from the diatropic ring current that flows on the outer side of
the molecular ring near the hydrogen as well as from the
paratropic ring current inside the C6H6 ring. The atomic
current density in the valence orbitals of the ortho carbon
atoms also contributes to the 13C shielding on closer side of
the ortho carbon, while the contributions are deshielding on
the remote side.
The ring-current contribution to the nuclear magnetic

shielding constants can be analyzed by plotting the spatial
distribution of the σzz component to the nuclear magnetic
shielding density. The zz component of the 1H NMR shielding
density calculated in a plane 1 a0 above the molecular plane is
shown in Figure 2a. The diatropic ring current flowing on the

outside of the hydrogen shields the hydrogen nucleus. The ring
current on the other side of the ring also shields it, while the
diatropic ring current flowing on the inside of the hydrogen is
deshielding. The paratropic ring current inside the C6H6 ring
deshields the hydrogen nucleus on the remote half of the ring,
whereas inside the ipso carbon atom the paratropic ring current
shields the hydrogen nucleus. The sign of the shielding
contributions depends on the direction of the current density
with respect to the studied nucleus according to the Biot−
Savart expression in eq 12.
The ring-current contribution to the 13C NMR shielding is

seen in Figure 2b, where shielding contributions appear along
the outer perimeter of the carbon ring. The paratropic ring
current inside the C6H6 ring leads to a shielding contribution
near the studied carbon atom, whereas it is deshielding on the
remote interior part of the ring. The deshielding contribution

in the vicinity of the studied carbon originates from the
diatropic ring current passing on the inside of the carbon atom.
The absolute value of the nuclear magnetic shielding density

is illustrated by using a contour surface in Figure 3, where blue

represents the shielding density of the hydrogen atom, while
yellow is used to illustrate the shielding of the carbon atom.
Figure 3 reveals that the shielding density near the ortho atoms
contributes significantly, whereas the more distant atoms have
negligible contributions, as expected due to the |r − RI|

−3

denominator in the vector potential of mI.
Atomic contributions to the isotropic nuclear magnetic

shielding constants can be analyzed by integration over atomic
subdomains, yielding a compact representation of the spatial
distribution of the shielding density. In this work, the atomic
subdomains are defined by the Becke partitioning,36 as
discussed in section 2.2. Even though Becke partitioning was
originally aimed for efficient numerical integration of density
functionals, it has been shown to be useful for e.g. constructing
mathematically well-based Pipek−Mezey orbital localization
techniques,51,52 and with a careful choice of the partitioning
function it yields chemically sound atomic charges and bond
orders.53 The decomposition depends on the partitioning, i.e.,
the choice for the atomic weight functions. The original Becke
partitioning yields a rough idea of the atomic decomposition of
the shielding density; more sophisticated atomic decomposi-
tions are left to further work.
The resulting atomic contributions to the 1H NMR and 13C

NMR magnetic shieldings of C6H6 are given in Tables 1 and 2,
respectively. These data suggest that the main contributions to
the shielding originate from the vicinity of the studied atom

Figure 2. zz component of the magnetic shielding density of the (a)
1H NMR shielding and (b) 13C NMR shielding of C6H6 calculated 1
a0 above the molecular plane. The shielding contributions are shown
in blue and the deshielding contributions in red in the range [−0.2;
0.2].

Figure 3. Absolute value of the magnetic shielding density of the 1H
NMR shielding (blue) and 13C NMR shielding (yellow) in C6H6
represented as contours with isovalue 4.8. The ipso atoms have the
largest contributions.

Table 1. Atomic Contributions to the 1H NMR Shielding of
C6H6 Calculated at the B3LYP/def2-TZVP Level of Theory

domain total positive negative percentage

ipso Ca 1.48 5.24 −3.76 6.11%
ortho C 0.64 1.43 −0.79 2.64%
meta C 0.52 0.77 −0.25 2.16%
para C 0.42 0.63 −0.21 1.74%
ipso Hb 18.97 20.33 −1.36 78.13%
ortho H 0.29 0.36 −0.07 1.19%
meta H 0.17 0.17 −0.00 0.71%
para H 0.15 0.15 −0.00 0.61%
total 24.28 31.83 −7.54 100.00%

aIpso C is the carbon connected to the studied hydrogen nucleus.
bIpso H is the studied hydrogen nucleus.
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and its nearest neighbors, which is utilized when using local
methods to calculate nuclear magnetic shielding constants.21,22

The contribution to the 1H NMR shielding from the atomic
domain of the studied hydrogen is 78.13% of the total
shielding, while the contribution assigned to each ipso carbon
is 6.11%. Contributions from all other atoms are in the interval
of [0.61, 2.64]%. The contribution to the 13C NMR shielding
from the studied carbon is 70.49%. The ipso hydrogen and
ortho carbons contribute with 5.61% and 7.00%, respectively,
whereas the 13C NMR contributions from the rest of the atoms
are in the interval of [0.49, 2.08]%.
As a side note, although the molecular structure of borazine

(B3N3H6) is similar to that of benzene, a previous study of
shielding densities suggested that borazine is nonaromatic.15

However, a follow-up study showed that B3N3H6 does sustain
a diatropic ring current, although its strength is only 25% of
that in C6H6.

54 A comparison of the zz contribution to the
shielding densities of C6H6 and B3N3H6 (shown in the
Supporting Information) reveals that B3N3H6 has a similar but
weaker ring-current contribution to the shielding density as for
C6H6. Thus, B3N3H6 cannot be considered to be nonaromatic.
3.2. Cyclobutadiene. The zz contribution to the 1H NMR

shielding density in the molecular plane of C4H4 shown in
Figure 4a is similar to the one for C6H6 in Figure 1a. Even
though C4H4 is antiaromatic, it sustains a diatropic ring current
along the outer edge of the molecule outside the hydrogen
giving rise to a similar shielding contribution outside the
hydrogen like in C6H6.

33 The ring current is paratropic inside
the ring as in C6H6. Deshielding contributions appear at the
hydrogen nucleus as well as at the ipso and ortho carbons due

to local current densities. The atomic current density in the
core of the carbon atoms leads to shielding and deshielding
contributions that practically cancel, as for C6H6.
The contributions to the 13C magnetic shielding density in

the molecular plane of C4H4 in Figure 4b also remind of those
for C6H6. The onion structure of the alternating shielding and
deshielding contributions around the studied carbon atom
originates from current densities with different flux directions
in the vicinity of the atom. The diatropic atomic current
density in its core orbitals, the diatropic ring current flowing on
the outside of hydrogen atom, and the paratropic ring current
inside the C4H4 ring shield the carbon nucleus, whereas the
atomic current density of the valence orbitals deshields it.
In contrast, the magnetic shielding density in a plane 1 a0

above (or below) the molecular plane of C4H4 differs
completely from the one for C6H6 because C6H6 sustains a
diatropic ring current in the π orbitals, while the current
density of C4H4 is paratropic there. The

1H and 13C magnetic
shielding densities of C4H4 in Figures 5a and 5b show that the

diatropic ring current along the outer edge of the molecule
leads to a shielding contribution to 1H NMR and 13C NMR
shieldings. The strong paratropic ring current which resides
mainly inside the molecular ring leads to a shielding
contribution to 1H NMR in the closer half of the ring and a
deshielding contribution from the remote part of the ring due
to the different directions of the current-density fluxes relative
to the studied hydrogen nucleus.
The deshielding contribution to the 13C NMR shielding

from the paratropic ring current dominates above the ring on
the inside of it. A small shielding area is seen in Figure 5b,
where the relative direction of the paratropic ring current leads
to magnetic shielding. The paratropic ring current on the
outside of the studied carbon deshields the carbon nucleus.
The diatropic ring current along the outer edge of the molecule
results in a weak shielding contribution in the vicinity of the
hydrogen atom.
The absolute value of the nuclear magnetic shielding density

is illustrated by using a contour surface in Figure 6, again
showing that the most significant contributions arise from the
ipso atoms, with some contributions from the ortho atoms.
The atomic contributions to the 1H NMR and 13C NMR

magnetic shieldings of C4H4 are given in Tables 3 and 4,
respectively. Table 3 shows that 70.98% of the 1H NMR
shielding of C4H4 originates from the atomic domain of the

Table 2. Atomic Contributions to the 13C NMR Shielding of
C6H6 Calculated at the B3LYP/def2-TZVP Level of Theory

domain total positive negative percentage

ipso Ca 35.17 107.15 −71.97 70.49%
ortho C 3.49 4.96 −1.47 7.00%
meta C 1.04 1.56 −0.52 2.08%
para C 0.74 1.19 −0.45 1.48%
ipso Hb 2.80 2.81 −0.01 5.61%
ortho H 0.65 0.66 −0.01 1.30%
meta H 0.30 0.30 −0.00 0.59%
para H 0.24 0.24 −0.00 0.49%
total 49.90 126.35 −76.44 100.00%

aIpso C is the studied carbon nucleus. bIpso H is the hydrogen
connected to the studied carbon nucleus.

Figure 4. zz component of the magnetic shielding density of the (a)
1H NMR shielding and (b) 13C NMR shielding in the molecular plane
of C4H4. The shielding contribution is shown in blue and the
deshielding contribution in red in the range [−0.2; 0.2].

Figure 5. zz component of the magnetic shielding density of the (a)
1H NMR shielding and (b) 13C NMR shielding of C4H4 calculated 1
a0 above the molecular plane. The shielding contribution is shown in
blue and the deshielding contribution in red in the range [−0.2; 0.2]
in (b).
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studied hydrogen. The contribution from the ipso carbon is
24.98%. The rest of the atoms contribute with less than 3.66%.
The contributions from the para carbon and the ortho carbon
with a formal single bond to the studied carbon are even
negative.
The contribution to the 13C NMR shielding from the

studied carbon is 87.50%. The ipso hydrogen contributes with
6.69%, and the ipso carbon with a formal double bond to the
studied carbon contributes with 7.71%. Contributions to 13C
NMR from the rest of the atoms are small. The contributions
from the ortho carbon with a formal single bond to the studied

carbon and the carbon in the para position are also in this case
negative.

3.3. Basis Set Dependence. We investigated the basis set
truncation error in the def2-TZVP basis set with additional
calculations using the fully uncontracted pc-n (unpc-n)
polarization consistent basis sets series55 and their augmented
versions.56 The basis set study was performed with Gaussian,57

and all basis sets were obtained from the Basis Set Exchange.58

The full set of results is shown in the Supporting Information.
The resulting B3LYP complete basis set estimates from the

quintuple-ζ unpc-4 set, which has a 11s6p3d2f1g and
18s11p6d3f2g1h composition for H and C, respectively, were
found to be 42.35 and 24.03 ppm for the 13C and 1H NMR
shieldings, respectively, for C6H6. For C4H4, the shieldings are
30.15 and 25.72 ppm, respectively. The def2-TZVP values for
13C in C6H6 and C4H4 are 49.90 and 37.16 ppm, which are
13.13 and 7.01 ppm from the unpc-4 values. The 1H NMR
shieldings of 24.28 and 25.93 ppm agree well with the unpc-4
values, with differences of just 0.25 and 0.21 ppm.
Because of the noticeable basis set truncation error for the

carbon shieldings, additional calculations were performed with
the generally contracted pc-n basis sets,55 their newer versions
based on segmented contractions59 (pcseg-n) and special-
izations thereof to the reproduction of nuclear magnetic
shieldings60 (pcSseg-n), as well as with the Karlsruhe def2
family of basis sets.43 The pcseg-3 basis set59 was found to
yield excellent agreement with the unpc-4 values: the pcseg-3
basis set yields 13C and 1H shieldings of 30.09 and 25.64 ppm
for C4H4 and 42.89 and 23.96 ppm for C6H6, respectively.
Because of the good accuracy of the pcseg-3 basis set, spatial

decompositions for C4H4 and C6H6 were recomputed in this
basis; the decompositions are shown in the Supporting
Information. Comparison of these data to the values in Tables
2 and 4 shows that basis set truncation error in def2-TZVP
significantly affects only the shielding contribution from the
ipso carbon, while the shielding contributions from the other
atoms are strikingly similar, differing only up to 0.05 ppm for
C4H4 and 0.03 ppm for C6H6. This strongly suggests that the
differences originate from orbitals localized to the ipso carbon,
that is, an insufficient flexibility in the semicore region of the
def2-TZVP basis set of carbon. Because the truncation error
changes significantly the absolute nuclear magnetic shielding of
the studied carbon, this also affects the relative percentages of
the atomic contributions. Similar conclusions can also be made
for the hydrogen shieldings by comparison of the data in the
Supporting Information to Tables 1 and 3: the largest change
(0.27 ppm) originates from the ipso hydrogen, while the
contributions from all other atoms are negligible: less than 0.05
ppm for C6H6 and less than 0.03 ppm for C4H4.

4. SUMMARY AND CONCLUSIONS
We have implemented methods for calculating and visualizing
nuclear magnetic shielding densities in the GIMIC program.
Studies of the shielding densities of benzene (C6H6) and
cyclobutadiene (C4H4) show that the direction of the current-
density flux relative to the studied nucleus determines whether
the current density shields or deshields the nuclear magnetic
moment. The paratropic ring current in the molecular plane
within the C6H6 and C4H4 rings shields the studied nucleus
when the current flows in the vicinity of the nucleus, while the
current becomes deshielding on the remote side of the ring.
The paratropic ring current inside the ring is much weaker in
the aromatic benzene molecule than in the antiaromatic

Figure 6. Absolute value of the magnetic shielding density of the 1H
NMR shielding (blue) and 13C NMR shielding (yellow) in C4H4
represented as contours with isovalue 7. The ipso atoms have the
largest contributions.

Table 3. Atomic Contributions to the 1H NMR Shielding of
C4H4 Calculated at the B3LYP/def2-TZVP Level of Theory

domain total positive negative percentage

ipso Ca 6.48 8.52 −2.05 24.98%
ortho Cb −0.15 0.81 −0.97 −0.59%
ortho Cc 0.95 1.83 −0.88 3.66%
para C −0.44 0.42 −0.87 −1.71%
ipso Ha 18.41 19.47 −1.06 70.98%
ortho Hb 0.22 0.24 −0.03 0.83%
ortho Hc 0.30 0.32 −0.02 1.17%
para H 0.18 0.18 −0.00 0.70%
total 25.93 31.80 −5.86 100.00%

aIpso is the studied atom or its nearest neighbor. bMoiety with a
single bond to the ipso carbon. cMoiety with a double bond to the ipso
carbon.

Table 4. Atomic Contributions to the 13C NMR Shielding of
C4H4 Calculated at the B3LYP/def2-TZVP Level of Theory

domain total positive negative percentage

ipso Ca 32.51 106.93 −74.41 87.50%
ortho Cb −0.73 1.74 −2.47 −1.96%
ortho Cc 2.66 5.38 −2.71 7.17%
para C −1.16 0.92 −2.09 −3.13%
ipso Ha 2.49 2.51 −0.03 6.69%
ortho Hb 0.45 0.46 −0.01 1.22%
ortho Hc 0.61 0.61 −0.00 1.64%
para H 0.32 0.33 −0.00 0.87%
total 37.16 118.90 −81.74 100.00%

aIpso is the studied atom or its nearest neighbor. bMoiety with a
single bond to the ipso carbon. cMoiety with a double bond to the ipso
carbon.
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cyclobutadiene molecule. Benzene sustains a strong diatropic
ring current in the π orbitals above and below the molecular
ring, which results in shielding contributions to the 1H NMR
and 13C NMR shieldings. However, the ring current passing
the ipso carbon deshields the 1H nuclear magnetic moment
because it is a diatropic ring current near the studied 1H
nucleus that flows on the inside of it. The same holds for the
13C NMR shielding. However, the diatropic ring current
passing on the inside of the carbon is weaker and leads only to
a small deshielding contribution.
The 1H NMR and 13C NMR shielding densities in the

molecular plane of C4H4 are similar to the ones of C6H6,
whereas 1 a0 from the molecular plane the shielding densities
are completely different. C4H4 sustains a strong paratropic ring
current in the π orbitals inside the ring, whereas the ring
current in C6H6 is diatropic and flows mainly on the outside of
the carbon ring.
Calculations of atomic contributions to the nuclear magnetic

shielding constants using Becke’s partitioning show that the
largest contributions originate from the ipso atoms and its
nearest neighbors. The ipso carbon contributes with 70.49%
and 87.50% to the 13C NMR shielding of C6H6 and C4H4,
respectively. The contribution from the ipso hydrogen to the
1H NMR shielding is 78.13% and 70.98% for C6H6 and C4H4,
respectively. Even for small molecules like C4H4 and C6H6,
contributions from more distant atoms are only a few percent,
which is utilized in local methods to calculate nuclear magnetic
shielding constants.
Although the B3LYP/def2-TZVP level of theory was used

for the most part of the present work, the methods presented
herein can also be used with larger basis sets and post-
Hartree−Fock levels of theory. We repeated the analysis in the
pcseg-3 basis set, which we found to yield shielding constants
in good agreement with our complete basis set estimates,
which showed that most of the deficiencies in the def2-TZVP
data originate from the atom under study, while the
contributions from all other atomic domains are essentially
already converged in def2-TZVP.
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(52) Jónsson, E. Ö.; Lehtola, S.; Puska, M.; Jónsson, H. Theory and
Applications of Generalized Pipek−Mezey Wannier Functions. J.
Chem. Theory Comput. 2017, 13, 460−474.
(53) Salvador, P.; Ramos-Cordoba, E. Communication: An
approximation to Bader’s topological atom. J. Chem. Phys. 2013,
139, 071103.
(54) Du, D.; Sundholm, D.; Fliegl, H. Evaluating Shielding-Based
Ring-Current Models by Using the Gauge-Including Magnetically
Induced Current Method. J. Chin. Chem. Soc. 2016, 63, 93−100.
(55) Jensen, F. Polarization consistent basis sets: Principles. J. Chem.
Phys. 2001, 115, 9113−9125.
(56) Jensen, F. Polarization consistent basis sets. III. The importance
of diffuse functions. J. Chem. Phys. 2002, 117, 9234−9240.
(57) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J.
A.; Stratmann, R. E.; Burant, J. C.; et al. Gaussian 09, Revision A.02;
Gaussian, Inc.: Pittsburgh, PA, 2016. The full reference is given in the
Supporting Information.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c10884
J. Phys. Chem. A 2021, 125, 1778−1786

1785

https://dx.doi.org/10.1016/j.cplett.2004.11.044
https://dx.doi.org/10.1016/j.cplett.2004.11.044
https://dx.doi.org/10.1021/acs.jcim.0c01136
https://dx.doi.org/10.1021/acs.jcim.0c01136
https://dx.doi.org/10.1021/acs.jcim.0c01136
https://dx.doi.org/10.1016/S0079-6565(99)00021-7
https://dx.doi.org/10.1063/1.5025046
https://dx.doi.org/10.1021/acs.jctc.0c01190
https://dx.doi.org/10.1021/acs.jctc.0c01190?ref=pdf
https://dx.doi.org/10.1063/1.4705281
https://dx.doi.org/10.1063/1.4705281
https://dx.doi.org/10.1063/1.4705281
https://dx.doi.org/10.1063/1.3526315
https://dx.doi.org/10.1063/1.3526315
https://dx.doi.org/10.1063/1.4801084
https://dx.doi.org/10.1063/1.4801084
https://dx.doi.org/10.1063/1.4801084
https://dx.doi.org/10.1063/1.1679845
https://dx.doi.org/10.1063/1.1679845
https://dx.doi.org/10.1021/ol048332m
https://dx.doi.org/10.1021/ol048332m
https://dx.doi.org/10.1016/j.cplett.2004.04.022
https://dx.doi.org/10.1016/j.cplett.2004.04.022
https://dx.doi.org/10.1002/mrc.1536
https://dx.doi.org/10.1002/mrc.1536
https://dx.doi.org/10.1002/jcc.25095
https://dx.doi.org/10.1002/jcc.25095
https://dx.doi.org/10.1039/C8CP07343K
https://dx.doi.org/10.1039/C8CP07343K
https://dx.doi.org/10.1039/B312289C
https://dx.doi.org/10.1039/B312289C
https://dx.doi.org/10.1063/1.4954402
https://dx.doi.org/10.1063/1.4954402
https://dx.doi.org/10.1063/1.4954402
https://dx.doi.org/10.1080/00268977400100711
https://dx.doi.org/10.1080/00268977400100711
https://dx.doi.org/10.1021/ja00179a005
https://dx.doi.org/10.1021/ja00179a005
https://dx.doi.org/10.1021/ja00179a005
https://dx.doi.org/10.1021/jp9029776
https://dx.doi.org/10.1021/jp9029776
https://github.com/qmcurrents/gimic
https://github.com/qmcurrents/gimic
https://doi.org/10.5281/zenodo.1470276
https://doi.org/10.5281/zenodo.1470276
https://dx.doi.org/10.1063/1.454033
https://dx.doi.org/10.1063/1.454033
https://dx.doi.org/10.1007/s002140100263
https://dx.doi.org/10.1007/s002140100263
https://dx.doi.org/10.1063/5.0004635
https://dx.doi.org/10.1063/5.0004635
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c10884/suppl_file/jp0c10884_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c10884/suppl_file/jp0c10884_si_001.pdf
https://dx.doi.org/10.1063/1.464913
https://dx.doi.org/10.1063/1.464913
https://dx.doi.org/10.1103/PhysRevB.37.785
https://dx.doi.org/10.1103/PhysRevB.37.785
https://dx.doi.org/10.1103/PhysRevB.37.785
https://dx.doi.org/10.1021/j100096a001
https://dx.doi.org/10.1021/j100096a001
https://dx.doi.org/10.1039/b508541a
https://dx.doi.org/10.1039/b508541a
https://dx.doi.org/10.1039/b508541a
https://dx.doi.org/10.1063/1.469408
https://dx.doi.org/10.1063/1.469408
https://dx.doi.org/10.1007/s002140050244
https://dx.doi.org/10.1007/s002140050244
https://dx.doi.org/10.1007/s002140050244
https://dx.doi.org/10.1063/1.476258
https://dx.doi.org/10.1063/1.476258
https://dx.doi.org/10.1063/1.476258
https://dx.doi.org/10.1021/acs.jctc.7b01115
https://dx.doi.org/10.1021/acs.jctc.7b01115
https://dx.doi.org/10.1021/acs.jctc.7b01115
https://dx.doi.org/10.1021/acs.jctc.7b01115
https://dx.doi.org/10.1039/b505546f
https://dx.doi.org/10.1039/b505546f
https://dx.doi.org/10.1021/ct400780f
https://dx.doi.org/10.1021/ct400780f
https://dx.doi.org/10.1063/1.1574314
https://dx.doi.org/10.1063/1.1574314
https://dx.doi.org/10.1021/ct401016x
https://dx.doi.org/10.1021/ct401016x
https://dx.doi.org/10.1021/acs.jctc.6b00809
https://dx.doi.org/10.1021/acs.jctc.6b00809
https://dx.doi.org/10.1063/1.4818751
https://dx.doi.org/10.1063/1.4818751
https://dx.doi.org/10.1002/jccs.201500027
https://dx.doi.org/10.1002/jccs.201500027
https://dx.doi.org/10.1002/jccs.201500027
https://dx.doi.org/10.1063/1.1413524
https://dx.doi.org/10.1063/1.1515484
https://dx.doi.org/10.1063/1.1515484
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c10884/suppl_file/jp0c10884_si_001.pdf
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c10884?ref=pdf


(58) Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.;
Windus, T. L. New Basis Set Exchange: An Open, Up-to-Date
Resource for the Molecular Sciences Community. J. Chem. Inf. Model.
2019, 59, 4814−4820.
(59) Jensen, F. Unifying General and Segmented Contracted Basis
Sets. Segmented Polarization Consistent Basis Sets. J. Chem. Theory
Comput. 2014, 10, 1074−1085.
(60) Jensen, F. Segmented Contracted Basis Sets Optimized for
Nuclear Magnetic Shielding. J. Chem. Theory Comput. 2015, 11, 132−
138.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c10884
J. Phys. Chem. A 2021, 125, 1778−1786

1786

https://dx.doi.org/10.1021/acs.jcim.9b00725
https://dx.doi.org/10.1021/acs.jcim.9b00725
https://dx.doi.org/10.1021/ct401026a
https://dx.doi.org/10.1021/ct401026a
https://dx.doi.org/10.1021/ct5009526
https://dx.doi.org/10.1021/ct5009526
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c10884?ref=pdf

