HIGH-TEMPERATURE SUPERCONDUCTORS

J. Hänisch and S. C. Wimbush

The following tables list selected physical properties of most known high-temperature superconductors as of the date of compilation in 2020. The classification as a "high-temperature" superconductor is open to some degree of ambiguity. Naming was driven by excitement at the prospect of operation above the boiling point of liquid nitrogen (~77 K). However, the reality of superconductor applications today is that few can operate in this regime, while it is clearly illogical to exclude closely related materials of the same family that fall below such an arbitrary cut-off. Instead, we adopt here the classification that a "high-temperature" superconductor is a non-BCS type superconductor that is thereby able to operate beyond the BCS temperature limit of ~30 K. Until relatively recently, this limited the known materials to cuprate compounds; however, this has now been extended first by magnesium diboride and then by the extensive families of iron-based superconductors. We do not, however, include all unconventional superconductors, intentionally excluding those isolated examples and families where no related material is able to superconduct at an elevated temperature. Notably, this excludes all the so-called "heavy fermion" superconductors thus far discovered. For the same reason, we also exclude the organic superconductors, which are featured elsewhere in this volume.

The high-temperature superconductors are presented here in a series of tables, one for each distinctly identifiable family. Table 1 lists the detailed superconducting properties of a select number of materials drawn from families that have been studied in depth due to either importance or accessibility. Table 2 contains the "214" phases including (La,Ba)₂CuO₄, which was the original 1986 Bednorz and Müller discovery of high-temperature superconductivity. Here are also found the rare examples of electron-doped cuprates. Table 3 presents the rare-earth barium cuprates, including the most famous of the high-temperature superconductors, YBa₂Cu₃O₇. These materials are the core constituents of so-called second-generation commercial high-temperature superconducting wires. Table 4 supplements these materials with derivatives having missing rare-earth planes, while Tables 5 and 6 feature two distinct homologous series of cuprates based on Hg, Tl, Pb, Bi, and others, of which Bi₂Ba₂Ca₂Cu₃O₁₀ is the material used in the production of first-generation commercial high-temperature superconducting wires. Tables 7 and 8 move from the cuprates to the chalcogenide and pnictide families of iron-based superconductors, respectively, and Table 9 contains the few other non-cuprate high-temperature superconductors known, including MgB₂.

In compiling and modernizing these data tables, we have sought to be comprehensive in our coverage of the known materials, but selective in the properties to include. In guiding the latter selection, we aim to feature only those properties that are of genuine stand-alone use as figures of merit or in a comparative sense. Because no mere table of data can hope to adequately convey the nuances of materials as complex in structure and properties as the high-temperature superconductors, we avoid qualifications and list in each case the best value to which we have access. This matter of judgment must be supplemented by the reader referring in each case to a primary source to validate the entry. Lattice parameters have been rounded to four decimal places as a compromise between accuracy and generality. Critical temperatures are given to two significant figures for the same reason. The data given in Table 1 are ranges or averages of the most reliable values found in the literature.

These tables are current through 2020 and constitute a complete revision and update of previous data. The data listed here are compiled from a large number of sources spanning the primary literature. Individual references for each datum are too numerous to list. Secondary sources, as listed under the references, have been used to ensure the accuracy and completeness of the work.

References

- 1. Harshman, D. R. and Mills Jr., A. P., Phys. Rev. B 45, 10684, 1992.
- 2. Rao, C. N. R. et al., Supercond. Sci. Technol. 6, 1, 1993.
- Martienssen, W. and Warlimont, H., Ed., Springer Handbook of Condensed Matter and Materials Data, Springer, Berlin and Heidelberg, Germany, 2005.
- 4. Narlikar, A. V., Ed., *Frontiers in Superconducting Materials*, Springer, Berlin and Heidelberg, Germany, 2005.
- 5. Chu, C. W. et al., Physica C 514, 290, 2015.
- 6. Hosono, H. et al., Sci. Technol. Adv. Mater. 16, 033503, 2015.
- 7. Hosono, H. and Kuroki, K., *Physica C* 514, 399, 2015.
- 8. Naito, M. et al., Physica C 523, 28, 2016.
- 9. Kleiner, R. and Buckel, W., Superconductivity: An Introduction, Third Edition, Wiley-VCH, Weinheim, Germany, 2016.

TABLE 1. Detailed Superconducting Properties of Selected High-Temperature Superconductors

		Coheren	ce lengths	Penetrat	ion depths		Critica	l fields	
Mol. form.	$T_{\rm c}^{\rm max}/{ m K}$	ξ_{ab}/nm	$\xi_{\rm c}/{\rm nm}$	λ_{ab}/nm	$\lambda_{\rm c}/\mu{ m m}$	B_{c1}^{ab}/mT	B_{c1}^{c}/mT	$B_{\rm c2}{}^{\rm ab}/{ m T}$	B_{c2}^{c}/T
La _{1.85} Sr _{0.15} CuO ₄	39	2.2±0.1	0.06-0.3	219±10	<5	7	30	84±6	70±10
$Nd_{1.85}Ce_{0.15}CuO_{4-\delta}$	30	7.0±1.0	0.23	76±5				>100	7±1
YBa₂Cu₃O _{7-δ}	93	1.5	0.14-0.3	90±10	0.64	3-5	30-50	240±25	150±30
YBa ₂ Cu ₄ O ₈	81	1.9	0.2 - 1.1	130-200	0.16	34	17-32		90
$(Cu_{0.5}C_{0.5})Ba_2Ca_3Cu_4O_{11+\delta}$	117	1.6	1.0	120	0.22	26	63	195	121
HgBa ₂ CuO _{4+δ}	97	2.1	1.2	120-200	0.45	8.2	12.9	125	70-100
HgBa ₂ CaCu ₂ O _{6+δ}	127	1.5 ± 0.1	0.4	190	0.83	21	50		110-170
HgBa ₂ Ca ₂ Cu ₃ O _{8+δ}	135	1.3±0.1		180±30	3.5	5-10	35±10	350±50	100-200

		Coheren	ce lengths	Penetrat	ion depths		Critica	al fields	
Mol. form.	$T_{\rm c}^{\rm max}/{ m K}$	ξ_{ab}/nm	$\xi_{ m c}/{ m nm}$	λ_{ab}/nm	$\lambda_{ m c}/\mu{ m m}$	B_{c1}^{ab}/mT	B_{c1}^{c}/mT	$B_{\rm c2}{}^{\rm ab}/{ m T}$	B_{c2}^{c}/T
$Tl_2Ba_2CuO_{6+\delta}$	92	5	0.2	170±10	2.0		6	300	65
$Tl_2Ba_2CaCu_2O_{8+\delta}$	119	3	0.7	$180 {\pm} 40$	>25	60	28	>120	>100
$Tl_2Ba_2Ca_2Cu_3O_{10+\delta}$	128	1-3	< 0.09	196±10	>20			200	>75
$Bi_2Sr_2CaCu_2O_{8+\delta}$	96	0.8-0.9	≤0.05	150 ± 20	10-40	0.25-0.5	6-10	>250	220 ± 30
$Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$	110	0.6-0.9	0.02-0.09	120±10	1.0	0.94	54	>250	184
$Fe_{1+\delta}Se$	8.5	4.7	2.8	400			2.5	25	15
FeSe _{0.5} Te _{0.5}	15	2.8	3.0	460±100	1.1±0.3	2.2	4.5	42	45
(Li,Fe)OHFeSe	42	2.7	0.24	200	1.8		4.5	98	67
LiFeAs	18	$4.4{\pm}0.4$	1.8±0.2	200	0.25	16	19	30	24
$LaFeAsO_{1-x}F_x$	26	2.8	$1.0 {\pm} 0.1$	310			6	63	42
$NdFeAsO_{1-x}F_x$	47	2.2 ± 0.2	$0.4{\pm}0.1$	200		18	25	130	70
$Ba_{0.6}K_{0.4}Fe_2As_2$	38	1.6	0.75	200				90	75
Ba(Fe _{0.92} Co _{0.08}) ₂ As ₂	22	2.45	$1.4{\pm}0.1$	200			20	65	55
$BaFe_2(As_{0.7}P_{0.3})_2$	31	2.3	1.3 ± 0.2	300			63	90	60
CaKFe ₄ As ₄	35	1.83 ± 0.03	1.87 ± 0.06	100		120	25	95	102
MgB ₂	39	10±1	2.0±0.2	85±6	0.09 ± 0.01	35±5		17±2	$3.0 {\pm} 0.5$

TABLE 2. Crystal Structures and Critical Temperatures of the Infinite Layer and "214" High-Temperature Superconductors

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
0011, i.e., infinite layer structures	P4/mmm (BaCuO ₂ structure)		
$Sr_{1-x}CuO_2$	a = 0.3927, c = 0.3435	60	
$Sr_{1-x}Ca_xCuO_2$	a = 0.3902, c = 0.3350	110	$x_{\rm max} = 0.3$
$Sr_{1-x}Ba_xCuO_2$	a = 0.3922, c = 0.343	90	$x_{\rm max} = 0.1$
$Sr_{1-x}La_xCuO_2$	a = 0.3951, c = 0.3409	42	$x_{\rm max} = 0.1$
Sr _{1-x} Pr _x CuO ₂	a = 0.3942, c = 0.3391	43	$x_{\rm max} = 0.12$
Sr _{1-x} Nd _x CuO ₂	a = 0.3935, c = 0.3413	45	$x_{\rm max} = 0.12$
$Sr_{1-x}Sm_xCuO_2$	a = 0.3942, c = 0.3391	42	$x_{\rm max} = 0.1$
0201, i.e., "214" T structures	I4/mmm (K ₂ NiF ₄ structure)		
$La_2CuO_{4+\delta}$	a = 0.379, c = 1.319	0	
$La_2CuO_{4+\delta}$	Bmab; <i>a</i> = 0.5345, <i>b</i> = 0.5433, <i>c</i> = 1.3252	42	
$La_2CuO_4F_x$	Phase uncertain	35	
$(Ca_{1-x}Na_x)_2CuO_2Cl_2$	a = 0.3855, c = 1.510	26	$x_{\rm max} = 0.04$
$(La_{1-x}Na_x)_2CuO_4$	a = 0.3775, c = 1.3170	30	$x_{\rm max} = 0.3-0.5$
$(La_{1-x}K_x)_2CuO_4$	a = 3.7683, c = 1.3259	41	
$(La_{1-x}Rb_x)_2CuO_4$	a = 0.3878, c = 1.3276	22	
$(La_{1-x}Ca_x)_2CuO_4$	Cmca; <i>a</i> = 0.5341, <i>b</i> = 0.5359, <i>c</i> = 1.3170	24	$x_{\rm max} = 0.05$
$(La_{1-x}Sr_x)_2CuO_4$	a = 0.3779, c = 1.3226	39	$x_{\rm max} = 0.075$
$(La_{1-x}Ba_x)_2CuO_4$	a = 0.3779, c = 1.323	28	
0021, i.e., "214" T' structures	I4/mmm (Nd ₂ CuO ₄ structure)		
$(La_{1-x}RE_x)_2CuO_{4+\delta}$		up to 21	Thin films; RE = Y, Lu, Sm, Eu, Gd, Tb
$(La_{1-x}Ce_x)_2CuO_{4-\delta}$	a = 0.4007, c = 1.244	30	Electron-doped, $x_{\text{max}} = 0.065$
$(\Pr_{1-x}Ce_x)_2CuO_{4-\delta}$		17	Electron-doped
$Pr_{1-x}Ce_{0.15}Sr_{x}CuO_{3.94}$	a = 0.396, c = 1.216	21	Electron-doped, $x_{\text{max}} = 0.06$
$(Nd_{1-x}Ce_x)_2CuO_{4-\delta}$	a = 0.3947, c = 1.2078	30	Electron-doped, $x_{\text{max}} = 0.075$
$Nd_2CuO_{4-\delta}F_y$	a = 0.3951, c = 1.2115	25	Electron-doped, $x_{max} = 0.2$
$(\mathrm{Sm}_{1-x}\mathrm{Ce}_x)_2\mathrm{CuO}_{4-\delta}$		15	Electron-doped
$(Eu_{1-x}Ce_x)_2CuO_{4-\delta}$		13	Electron-doped, $x_{\text{max}} = 0.075$ -0.085
0222, i.e., "214" T* structures	P4/nmm (alternating T and T')		
$La_{1-x/2}Eu_{1-x/2}Sr_{x}CuO_{4}$	a = 0.3871, c = 1.2597	25	$x_{\rm max} = 0.14$
$(Nd,Sr,Ce)_2CuO_4$	a = 0.3856, c = 1.2484	25	
$SmLa_{1-x}Sr_{x}CuO_{4-\delta}$		33	$x_{\rm max} = 0.15$

TABLE 3. Crystal Structures and Critical Temperatures of the $RE_2Ba_4Cu_{5+n}O_{13+n}$ Series of
High-Temperature Superconductors

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
123 (<i>n</i> = 1)	Pmmm		
YBa ₂ Cu ₃ O ₇₋₈	<i>a</i> = 0.3820, <i>b</i> = 0.3885, <i>c</i> = 1.1676	93	
YSr ₂ Cu ₃ O _{7-δ}	P4/mmm, <i>a</i> = 0. 3786, <i>c</i> = 1.1386	63	
YCa ₂ Cu ₃ O _{7-δ}	a = 0.3643, b = 0.3838, c = 1.1759	84	
$La_{1+x}Ba_{2-x}Cu_3O_{7-\delta}$	a = 0.3885, b = 0.3938, c = 1.1817	93	x > 0.25 for phase stability
CeBa ₂ Cu ₃ O _{7-δ}	Forms $BaCeO_3$ due to tetravalent Ce	_	
$Pr_{1+r}Ba_{2-r}Cu_{3}O_{7-\delta}$	a = 0.3866, b = 0.3933, c = 1.1724	0	x > 0.15 for phase stability
$Nd_{1+x}Ba_{2-x}Cu_{3}O_{7-\delta}$	<i>a</i> = 0.3878, <i>b</i> = 0.3913, <i>c</i> = 1.1753	94	x > 0.1 for phase stability
PmBa ₂ Cu ₃ O _{7-δ}	Not synthesized due to radioactive Pm	_	
SmBa ₂ Cu ₃ O _{7-δ}	a = 0.3902, b = 0.3844, c = 1.1725	95	
EuBa ₂ Cu ₃ O _{7-δ}	a = 0.3897, b = 0.3838, c = 1.1707	95	
$GdBa_2Cu_3O_{7-\delta}$	a = 0.3895, b = 0.3835, c = 1.1699	95	
TbBa ₂ Cu ₃ O _{7-δ}	Forms BaTbO ₃ by Ba-Tb intermixing	_	
TbSr ₂ Cu _{2.7} Mo _{0.3} O _{7-δ}	P4/mmm, <i>a</i> = 0.3871, <i>c</i> = 1.15784	80	Mo necessary for phase stability
DyBa ₂ Cu ₃ O _{7-δ}	<i>a</i> = 0.3887, <i>b</i> = 0.3825, <i>c</i> = 1.1686	93	
HoBa ₂ Cu ₃ O _{7-δ}	a = 0.3885, b = 0.3819, c = 1.1677	93	
ErBa ₂ Cu ₃ O _{7-δ}	<i>a</i> = 0.3878, <i>b</i> = 0.3813, <i>c</i> = 1.1664	93	
TmBa ₂ Cu ₃ O _{7-δ}	<i>a</i> = 0.3875, <i>b</i> = 0.3809, <i>c</i> = 1.1666	90	
YbBa ₂ Cu ₃ O _{7-δ}	a = 0.3871, b = 0.3802, c = 1.1658	90	Multiphase due to small Yb ion
$LuBa_2Cu_3O_{7-\delta}$	a = 0.387, b = 0.380, c = 1.169	93	Mostly multiphase due to small Lu ion
247 $(n = 2)$	Ammm		
$Y_2Ba_4Cu_7O_{15\text{-}\delta}$	a = 0.3854, b = 0.3874, c = 5.040	55	
$Pr_2Ba_4Cu_7O_{15-\delta}$	a = 0.3892, b = 0.3902, c = 5.081	10	
$N_d 2Ba_4 Cu_7 O_{15-\delta}$	a = 0.3894, b = 0.3901, c = 5.079	40	
$Eu_2Ba_4Cu_7O_{15-\delta}$	a = 0.3879, b = 0.3886, c = 5.039	45	
$Gd_2Ba_4Cu_7O_{15-\delta}$	a = 0.3872, b = 0.3879, c = 5.036	45	
$Dy_2Ba_4Cu_7O_{15-\delta}$	a = 0.3864, b = 0.3879, c = 5.039	50	
Ho ₂ Ba ₄ Cu ₇ O _{15-δ}	a = 0.3857, b = 0.3879, c = 5.040	55	
$Er_2Ba_4Cu_7O_{15-\delta}$	a = 0.3847, b = 0.3873, c = 5.044	55	
$Yb_2Ba_4Cu_7O_{15\text{-}\delta}$	a = 0.381, b = 0.386, c = 5.045	86	
124 (<i>n</i> = 3)	Ammm		
YBa ₂ Cu ₄ O ₈	a = 0.3840, b = 0.3870, c = 2.7231	81	
$LaBa_2Cu_4O_8$	a = 0.3854, b = 0.3874, c = 2.710	?	Superconductivity not reported
CeBa ₂ Cu ₄ O ₈	No reports on phase formation	—	
PrBa ₂ Cu ₄ O ₈	a = 0.3884, b = 0.3903, c = 2.7293	0	
NdBa ₂ Cu ₄ O ₈	Small volume fraction, multiphase	~57	
PmBa ₂ Cu ₄ O ₈	Not synthesized due to radioactive Pm	?	
SmBa ₂ Cu ₄ O ₈	a = 0.3872, b = 0.3886, c = 2.7308	69	
EuBa ₂ Cu ₄ O ₈	a = 0.3865, b = 0.3884, c = 2.7279	78	
GdBa ₂ Cu ₄ O ₈	a = 0.3863, b = 0.3881, c = 2.7259	74	
TbBa ₂ Cu ₄ O ₈	Single synthesis attempt	?	Superconductivity not reported
DyBa ₂ Cu ₄ O ₈	a = 0.3846, b = 0.3873, c = 2.7237	77	
HoBa ₂ Cu ₄ O ₈	a = 0.3840, b = 0.3870, c = 2.7221	80	
ErBa ₂ Cu ₄ O ₈	a = 0.3837, b = 0.3869, c = 2.7230	78	
$TmBa_2Cu_4O_8$	a = 0.3827, b = 0.3864, c = 2.718	79	
YbBa ₂ Cu ₄ O ₈	a = 0.3846, b = 0.3871, c = 2.7231	80	
$Yb(Ba_{0.8}Sr_{0.2})_2Cu_4O_8$	a = 0.3805, b = 0.3855, c = 2.7072	83	Sr improves phase stability
$(Yb_{0.95}Ca_{0.05})Ba_2Cu_4O_8$	a = 0.3822, b = 0.3853, c = 2.7175	85	Ca improves phase stability
LuBa ₂ Cu ₄ O ₈	a = 0.3844, b = 0.3871, c = 2.7225	82	

TABLE 4. Crystal Structures and Critical Temperatures of the $RE_nBa_mCu_{n+m}O_{2(n+m+1)}$ Series
of High-Temperature Superconductors

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
<i>n</i> = 2	Pmm2		
$YBa_2Cu_3O_{7-\delta}$	a = 0.3820, b = 0.3885, c = 1.1676	93	cf. Table 3 (123 compounds)
	Pmmm		
YBa ₃ Cu ₄ O ₉₋₈	a = 0.3802, b = 0.3885, c = 1.5256	88	
YBa ₄ Cu ₅ O _{11-δ}	a = 0.3802, b = 0.3865, c = 1.9382	91	
YBa ₅ Cu ₆ O _{13-δ}	a = 0.3801, b = 0.3891, c = 2.2944	85	
<i>n</i> = 3	Pmm2		
Y ₃ Ba ₅ Cu ₈ O ₁₈	<i>a</i> = 0.3888, <i>b</i> = 0.3823, <i>c</i> = 3.1013	102	
Nd ₃ Ba ₅ Cu ₈ O ₁₈	<i>a</i> = 0.3922, <i>b</i> = 0.3862, <i>c</i> = 3.5211	95	
Sm ₃ Ba ₅ Cu ₈ O ₁₈	a = 0.3899, b = 0.3852, c = 3.5146	97	
Eu ₃ Ba ₅ Cu ₈ O ₁₈	<i>a</i> = 0.3864, <i>b</i> = 0.3888, <i>c</i> = 3.113	66	
Gd ₃ Ba ₅ Cu ₈ O ₁₈	a = 0.3851, b = 0.3877, c = 3.112	97	
Dy ₃ Ba ₅ Cu ₈ O ₁₈	a = 0.3833, b = 0.3867, c = 3.1025	81	
Ho ₃ Ba ₅ Cu ₈ O ₁₈	a = 0.3832, b = 0.3875, c = 3.101	84	
(Yb _{0.6} Sm _{0.4}) ₃ Ba ₅ Cu ₈ O ₁₈	a = 0.3891, b = 0.3829, c = 3.1209	88	Sm required for phase stability
$\mathrm{Y_{3}Ba_{8}Cu_{11}O_{24}}$	a = 0.3814, b = 0.3885, c = 4.2699	91	
<i>n</i> = 4	Pmm2		
$Y_2Ba_3Cu_5O_{11-\delta}$	<i>a</i> = 0.3820, <i>b</i> = 0.3868, <i>c</i> = 1.8930	92	
$Gd_2Ba_3Cu_5O_{11-\delta}$	<i>a</i> = 0.3882, <i>b</i> = 0.3874, <i>c</i> = 1.9355	16	
$Y_2Ba_5Cu_7O_{15\text{-}\delta}$	a = 0.3832, b = 0.3851, c = 2.8683	98	
$Y_2Ba_5Cu_8O_{17-\delta}$	a = 0.3871, b = 0.3848, c = 2.7160	105	Extra CuO ₂ layer
$Y_2Ba_5Cu_9O_{19\text{-}\delta}$	a = 0.3821, b = 0.3898, c = 2.3320	94	Extra CuO_2 layers
<i>n</i> > 4	Pmm2		
$Gd_5Ba_7Cu_{12}O_{26-\delta}$	<i>a</i> = 0.3868, <i>b</i> = 0.3876, <i>c</i> = 4.6507	22	
$Y_5Ba_8Cu_{13}O_{28\text{-}\delta}$	a = 0.3819, b = 0.3897, c = 5.0461	91	
$Y_7Ba_{11}Cu_{18}O_{38\text{-}\delta}$	a = 0.3824, b = 0.3880, c = 6.9870	91	
Y ₁₃ Ba ₂₀ Cu ₃₃ O _{68-δ}	a = 0.3815, b = 0.3878, c = 12.8116	89	

TABLE 5. Crystal Structures and Critical Temperatures of the $M_mAE_2Ca_{n-1}Cu_nO_{2+m+2n}$ (M = B, Cu, Au, Hg, Tl, Pb, Bi; AE = Ca, Sr, Ba, La) Series of High-Temperature Superconductors

Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
I4/mmm		
a = 0.385, c = 1.46	85	Thin film; cf. Table 2 (T structures)
a = 0.385, c = 2.20	103	
a = 0.385, c = 2.83	126	
a = 0.385, c = 4.04	117	
a = 0.3879, c = 1.471	90	
a = 0.3861, c = 2.108	120	
a = 0.3856, c = 2.745	105	
a = 0.3860, c = 3.382	90	
a = 0.3764, c = 1.2548	70	
a = 0.3795, c = 1.2507	95	cf. Table 2 (T structures)
Fmmm; <i>a</i> = 0.5394, <i>b</i> = 0.5513, <i>c</i> = 1.3468	46	
a = 0.386, c = 2.04	70	
a = 0.3902, c = 2.1085	100	
a = 0.387, c = 2.216	80	
<i>a</i> = 0.386, <i>c</i> =2.72	90	
a = 0.386, c = 3.40	70	
a = 0.3821, c = 1.953	60	$x_{\rm max} = 0.075$
a = 0.3821, c = 1.9599	60	$x_{\rm max} = 0.2$
a = 0.3827, c = 1.942	45	$x_{\rm max} = 0.2$
	Structure (lattice parameters in nm) I4/mmm a = 0.385, c = 1.46 a = 0.385, c = 2.20 a = 0.385, c = 2.20 a = 0.385, c = 2.83 a = 0.385, c = 4.04 a = 0.3861, c = 2.108 a = 0.3860, c = 3.382 a = 0.3764, c = 1.2548 a = 0.3764, c = 1.2548 a = 0.3795, c = 1.2507 Fmmm; $a = 0.5394, b = 0.5513, c = 1.3468$ a = 0.386, c = 2.04 a = 0.3902, c = 2.1085 a = 0.386, c = 2.216 a = 0.386, c = 3.40 a = 0.3821, c = 1.953 a = 0.3821, c = 1.9599 a = 0.3827, c = 1.942	Structure (lattice parameters in nm) T_c^{max}/K I4/mmm $a = 0.385, c = 1.46$ 85 $a = 0.385, c = 2.20$ 103 $a = 0.385, c = 2.83$ 126 $a = 0.385, c = 4.04$ 117 $a = 0.3879, c = 1.471$ 90 $a = 0.3861, c = 2.108$ 120 $a = 0.3866, c = 2.745$ 105 $a = 0.3860, c = 3.382$ 90 $a = 0.3764, c = 1.2548$ 70 $a = 0.3795, c = 1.2507$ 95Fmmm; $a = 0.5394, b = 0.5513, c = 1.3468$ 46 $a = 0.386, c = 2.04$ 70 $a = 0.386, c = 2.1085$ 100 $a = 0.386, c = 2.72$ 90 $a = 0.386, c = 3.40$ 70 $a = 0.3821, c = 1.953$ 60 $a = 0.3821, c = 1.9599$ 60 $a = 0.3827, c = 1.942$ 45

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
12(n-1)n(m-1)	P4/mmm		
$\frac{12(n-1)n(m-1)}{PSr(C_0,C_0,C_0,C_0,C_0,C_0,C_0,C_0,C_0,C_0,$	a = 0.2821 $a = 1.2854$	75	
$DSI_2Ca_2Cu_3O_9$	u = 0.3621, c = 1.3634	110	
$BSr_2Ca_3Cu_4O_{11}$	a = 0.3830, c = 1.7082	110 85	
$\frac{\text{DSI}_2\text{Ca}_4\text{Cu}_5\text{O}_{13}}{\text{C}_2\text{D}_2\text{C}_4\text{Cu}_5\text{O}_{13}}$	u = 0.3837, c = 2.022	0.5	
$CuBa_2Ca_2Cu_3O_9$	Not synthesized in pure form	-	
$(Cu_{0.5}C_{0.5})Ba_2Ca_2Cu_3O_9$	a = 0.3859, c = 1.4766	118	
$CuBa_2Ca_3Cu_4O_{11+\delta}$	Not synthesized in pure form	-	
$(Cu_{0.5}C_{0.5})Ba_2Ca_3Cu_4O_{11+\delta}$	a = 0.3855, c = 1.7930	117	
Au(Ba,La)CuO _{5+δ}	Pmmm; $a = 0.3798$, $b = 0.3851$, $c = 0.8575$	19	
$AuBa_2(Y_{1-x}Ca_x)Cu_2O_7$	Pmmm; $a = 0.3826$, $b = 0.3850$, $c = 1.2075$	84	$x_{\rm max} = 0.4$
AuBa ₂ Ca ₂ Cu ₃ O ₉	Pmmm; $a = 0.3812$, $b = 0.3856$, $c = 1.5443$	30	
$\frac{\text{AuBa}_2\text{Ca}_3\text{Cu}_4\text{O}_{11}}{2}$	Pmmm; $a = 0.3827$, $b = 0.3851$, $c = 1.8494$	99	
$HgSr_2CuO_{4+\delta}$	Not synthesized in pure form	-	
$(Hg_{1-x}Mo_x)Sr_2CuO_x$	a = 0.3787, c = 0.8844	78	$x_{\rm max} = 0.15$
$(Hg_{0.9}Re_{0.1})Sr_2CuO_x$	a = 0.378, c = 0.884	66	$x_{\text{max}} = 0.15$
$HgBa_2CuO_{4+\delta}$	a = 0.3883, c = 0.9513	97	
$HgBa_2CaCu_2O_{6+\delta}$	a = 0.3853, c = 1.2637	127	
$HgBa_{2}Ca_{2}Cu_{3}O_{8+\delta}$	a = 0.3850, c = 1.5784	135	
$HgBa_{2}Ca_{3}Cu_{4}O_{10+\delta}$	a = 0.3854, c = 1.9006	127	
$HgBa_2Ca_4Cu_5O_{12+\delta}$	a = 0.3851, c = 2.2136	110	
$HgBa_2Ca_5Cu_6O_{14+\delta}$	a = 0.3851, c = 2.5251	107	
$HgBa_2Ca_6Cu_7O_{16+\delta}$	a = 0.3851, c = 2.8406	89	
$HgBa_2Ca_7Cu_8O_{18+\delta}$	a = 0.3847, c = 3.1583	<90	
$TlSr_2CuO_{5-\delta}$	Pmmm; <i>a</i> = 0.3661, <i>b</i> = 0.3793, <i>c</i> = 0.899	0	
$(Tl_{0.5}Pb_{0.5})Sr_2CuO_{5\pm\delta}$	a = 0.3736, c = 0.9022	60	
$Tl(Sr,Ba)_2CuO_{5-\delta}$	a = 0.3805, c = 0.9120	43	
Tl(Sr,La) ₂ CuO ₅	a = 0.37, c = 0.9	40	
$TlSr_2CaCu_2O_7$	a = 0.3797, c = 1.2092	55	
$(Tl_{0.5}Pb_{0.5})Sr_2CaCu_2O_7$	a = 0.3802, c = 1.2107	85	
$TlSr_2(Ca_{0.5}Y_{0.5})Cu_2O_7$	a = 0.380, c = 1.210	90	
$(Tl_{0.5}Pb_{0.5})Sr_2(Ca_{0.8}Y_{0.2})Cu_2O_7$	a = 0.3808, c = 1.2014	107	
TlBa ₂ CuO _{5-δ}	<i>a</i> = 0.3859, <i>c</i> = 0.9261	9.5	
$Tl(Ba_{0.6}La_{0.4})_2CuO_5$	a = 0.3848, c = 0.9091	52	
TlBa ₂ CaCu ₂ O ₇	a = 0.3857, c = 1.2754	103	
TlBa ₂ Ca _{1-x} Y _x Cu ₂ O ₇	a = 0.3850, c = 1.265	86	$x_{\rm max} = 0.25$
TlBa ₂ Ca ₂ Cu ₃ O ₉	a = 0.385, c = 1.59	130	
$TlBa_2Ca_3Cu_4O_{11}\\$	a = 0.385, c = 1.91	122	
$TlBa_2Ca_4Cu_5O_{13}\\$	a = 0.385, c = 2.23	117	
PbSr ₂ CuO _{5-δ}	Tetragonal; <i>a</i> = 0.381, <i>c</i> = 0.881	40	Thin film
PbSr ₂ CaCu ₂ O ₇	Orthorhombic; <i>a</i> = 0.381, <i>b</i> = 0.383, <i>c</i> = 1.21	70	
PbSr ₂ Ca ₂ Cu ₃ O ₉	Pseudotetragonal; $a = 0.3834$, $c = 1.529$	122	
PbSr ₂ Ca ₃ Cu ₄ O ₁₁	Not synthesized in pure form	_	
$(Pb_{0.6}Sr_{0.3}Cu_{0.1})Sr_2(Ca,Sr)_3Cu_4O_{11}$	a = 0.3833, c = 1.8442	107	
22(n-1)n (m=2)	I4/mmm		
Cu ₂ Ba ₂ Ca ₂ Cu ₂ O ₂ .	Not synthesized in pure form	_	
(C_{11}, C_{22}) Ba ₂ Ca ₂ Cu ₁ O ₁₀	P4/mmm; a = 0.3855, c = 2.187	113	Extra BaO laver
$(Cu_{0.5}C_{0.5})_2 Ba_3 Ca_3 Cu_4 O_{13}$	P4/mm; a = 0.3857, c = 2.5067	~110	Extra BaO laver
$\frac{1}{10.5 - 0.5 - 0.5 - 0.5}$	Unstable		
$H_{\sigma}B_{2}(Y C_{2})C_{1}O$	a = 0.3855 $c = 2.894$	45	
$(H_{\sigma_1}-T]_{,,1}) R_2 (Y - C_2) C_{H_{\sigma_2}} O_{\sigma_2}$	a = 0.386 c = 2.99	1 3 84	r = 0.4: $T = 12$ K for $r = 0$
$(\Pi_{0,7}\Pi_{0,3/2}Da_2(\Pi_{1-x}Ca_x)Cu_2O_{8-\delta})$ (Hq. T].).Ba Ca Cu O	a = 0.3840 $c = 3.569$	45	$n_{\rm max} = 0.7, 1_{\rm c} = 12$ K 101 $\lambda = 0$
$(H_{\sigma_{1}}, T_{\sigma_{1}}, T_{\sigma_{2}}, T_{\sigma_{2}$	a = 0.3845 $c = 4.206$	114	
$\frac{1150.6110.4/2Da_2Ca_3Cu_4O_{12}}{TLDa_2Ca_3Cu_4O_{12}}$	<i>u</i> = 0.3013, <i>t</i> = 1.200	117	
$II_2 Ba_2 CUO_{6+\delta}$	a = 0.3866, c = 2.3239	92	
$T_{2}Da_{2}CaCu_{2}O_{8+\delta}$	a = 0.3855, c = 2.9318	119	
TI Pa Ca Cu O	u = 0.5050, c = 5.500	120	
$1_2 Da_2 Ca_3 Cu_4 O_{12+\delta}$	u = 0.3301, c = 4.199	117	

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
$Pb_2(Sr,La)_2Cu_2O_6$	$P222_1; a = 0.5333, b = 0.5421, c = 1.2609$	32	
$Pb_2Sr_2(Y_{1-x}Ca_x)Cu_3O_8$	Cmmm; <i>a</i> = 0.5393, <i>b</i> = 0.5431, <i>c</i> = 1.5733	80	
$Pb_2Sr_2La_{0.5}Ca_{0.5}Cu_3O_8$	Cmmm; <i>a</i> = 0.5435, <i>b</i> = 0.5463, <i>c</i> = 1.5817	70	
$\overline{\text{Bi}_2\text{Sr}_2\text{CuO}_{6+\delta}}$	Cmmm; <i>a</i> = 0.5361, <i>b</i> = 0.5370, <i>c</i> = 2.4369	9	
$Bi_2(Sr_{1-x}La_x)_2CuO_{6+\delta}$	Cmmm; <i>a</i> = 0.5417, <i>b</i> = 0.5381, <i>c</i> = 2.439	33	$x_{\rm max} \approx 0.2$
$Bi_{1.6}Pb_{0.4}Sr_{1.6}La_{0.4}CuO_{6+\delta}$		39	
$Bi_2Sr_2CaCu_2O_{8+\delta}$	Fmmm; <i>a</i> = 0.5413, <i>b</i> = 0.5411, <i>c</i> = 3.091	96	
$Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$	Fmmm; <i>a</i> = 0.539, <i>b</i> = 0.539, <i>c</i> = 3.71	110	
$(Bi_{0.8}Pb_{0.2})_2Sr_2Ca_2Cu_3O_{10+\delta}$	Fmmm; <i>a</i> = 0.5413, <i>b</i> = 0.5413, <i>c</i> = 3.710	110	Pb stabilizes phase formation
$Bi_2Sr_2Ca_3Cu_4O_{12+\delta}$		47	Thin film
$Bi_2Sr_2(Ln_{1-x}Ce_x)_2Cu_2O_{10+y}$	Cmma; <i>a</i> = 0.55, <i>b</i> = 0.55, <i>c</i> = 1.79	~25	$Ln = $ Sm, Eu, Gd; $x_{max} = 0.15$

TABLE 6. Crystal Structures and Critical Temperatures of the $M_m AE_2 RE_s Cu_2 O_{4+m+2s}$ (M = Fe, Co, Cu, Ga, Nb, Ru, Tl, Pb, Bi, AE = Sr, Ba, RE = Rare-Earth or Ca, Sr) Series of High-Temperature Superconductors

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
12s2			
$FeSr_2YCu_2O_{6+\delta}$	Ortho; <i>a</i> = 0.5409, <i>b</i> = 0.5458, <i>c</i> = 2.292	60	
$FeSr_2NdCu_2O_{6+\delta}$	P4/mmm; <i>a</i> = 0.3843, <i>c</i> = 1.1458	50	
$CoSr_2(Y_{1-x}Ca_x)Cu_2O_{7-\delta}$	Ima2; <i>a</i> = 0.540, <i>b</i> = 0.541, <i>c</i> = 2.253	40	
CuSr ₂ YCu ₂ O _{7-δ}	P4/mmm, <i>a</i> = 0. 3786, <i>c</i> = 1.1386	63	$YSr_2Cu_3O_{7-\delta}$, cf. Table 3 (123 compounds)
$(Cu_{1-x}Au_x)Sr_2YCu_2O_{7-\delta}$	P4/mmm; <i>a</i> = 0. 394, <i>c</i> = 1.201	80	
$(Cu_{0.75}Mo_{0.25})Sr_2YCu_2O_{7+\delta}$	P4/mmm; <i>a</i> = 0.3815, <i>c</i> = 1.15	88	
$(Cu_{0.75}Mo_{0.25})Sr_2(Ce_{0.50}Y_{0.50})_2Cu_2O_{9+\delta}$	I4/mmm; <i>a</i> = 0.3825, <i>c</i> = 1.40	58	
$(Cu_{0.75}Mo_{0.25})Sr_2(Ce_{0.67}Y_{0.33})_3Cu_2O_{11+\delta}$	P4/mmm; <i>a</i> = 0.3829, <i>c</i> = 1.68	55	
$(Cu_{0.75}Mo_{0.25})Sr_2(Ce_{0.75}Y_{0.25})_4Cu_2O_{13+\delta}$	I4/mmm; <i>a</i> = 0.3828, <i>c</i> = 1.98	55	
Cu(Ba,Eu) ₂ (Ce,Eu) ₂ Cu ₂ O ₉	I4/mmm; <i>a</i> = 0.386, <i>c</i> = 2.848	62	
$GaSr_2(Y_{1-x}Ca_x)Cu_2O_{7-\delta}$	Ima2; <i>a</i> = 0.539, <i>b</i> = 0.548, <i>c</i> = 2.275	70	
$(Ga_{1-y}Cu_y)Sr_2(Y_{1-x}Ca_x)Cu_2O_7$	Pmmm; <i>a</i> = 0.539, <i>b</i> = 0.548, <i>c</i> = 2.281	50	
$(Nb_{1-x}Cd_x)Sr_2EuCu_2O_{8-\delta}$	P4/mmm, <i>a</i> = 0.3874, <i>c</i> = 1.1629	43	$x_{\rm max} = 0.2$
RuSr ₂ YCu ₂ O _{8-δ}	P4/mbm; <i>a</i> = 0.3820, <i>c</i> = 1.1518	39	Ferromagnetic superconductor
$RuSr_2SmCu_2O_{8-\delta}$	P4/mbm; <i>a</i> = 0.3852, <i>c</i> = 1.156	12	Ferromagnetic superconductor
$RuSr_2EuCu_2O_{8-\delta}$	P4/mbm; <i>a</i> = 0.3843, <i>c</i> = 1.155	36	Ferromagnetic superconductor
$RuSr_2GdCu_2O_{8-\delta}$	P4/mbm; <i>a</i> = 0.3838, <i>c</i> = 1.153	45	Ferromagnetic superconductor
$RuSr_{2}[(Eu,Gd)_{0.7}Ce_{0.3}]_{2}Cu_{2}O_{10-\delta}$	I4/mmm; <i>a</i> = 0.3844, <i>c</i> = 2.8615	35	Ferromagnetic superconductor
$TaSr_2(Gd_{1+x}Ce_{1-x})_2Cu_2O_9$	I4/mmm, <i>a</i> = 0.3858, <i>c</i> = 2.881	30	$x_{\rm max} = 0.6$
$TlBa_2(Eu_{1-x}Ce_x)_2Cu_2O_9$	I4/mmm, <i>c</i> = 3.05	40	
(Pb,Cu)(Sr,Eu) ₂ (Eu,Ce) ₂ Cu ₂ O ₉	I4/mmm; <i>a</i> = 0.3837, <i>c</i> = 2.901	25	
$(Bi_{0.4}Pb_{0.35}Cu_{0.05})Sr_2(Y_{0.5}Ca_{0.5})Cu_2O_{7+\delta}$	P4/mmm; <i>a</i> = 0.3819, <i>c</i> = 1.181	102	
22s2	P4/nmm		cf. Table 5 (2212 compounds)
$Bi_2Sr_2(Y_{1-x}Ce_x)_2Cu_2O_{10}$	a = 0.3836, c = 1.785	20	<i>x</i> = 0.18
$Bi_2Sr_2(Nd_{1-x}Ce_x)_2Cu_2O_{10}$	a = 0.3881, c = 1.793	14	<i>x</i> = 0.18
$Bi_2Sr_2(Sm_{1-x}Ce_x)_2Cu_2O_{10}$	a = 0.3863, c = 1.790	16	x = 0.18
$Bi_2Sr_2(Eu_{1-x}Ce_x)_2Cu_2O_{10}$	a = 0.3854, c = 1.788	27	x = 0.18
$Bi_2Sr_2(Gd_{1-x}Ce_x)_2Cu_2O_{10}$	a = 0.3851, c = 1.788	34	x = 0.18
$Bi_2Sr_2(Dy_{1-x}Ce_x)_2Cu_2O_{10}$	<i>a</i> = 0.3844, <i>c</i> = 1.787	27	x = 0.18
$Bi_2Sr_2(Ho_{1-x}Ce_x)_2Cu_2O_{10}$	a = 0.3840, c = 1.786	24	<i>x</i> = 0.18

TABLE 7. Crystal Structures and Critical Temperatures of the Chalcogenide Fe-Based Superconductors

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{\rm K}$	Comments
11	P4/nmm (PbO structure)		
FeS	a = 0.3680, c = 0.5031	4.5	
$FeSe_{1-x}S_x$	a = 0.377, c = 0.552	11	
$Fe_{1+\delta}Se$	a = 0.3762, c = 0.5502	8.5	β-FeSe
Fe _{1-r} Cr _r Se	a = 0.3773, c = 0.5524	12	$x_{\rm max} = 0.02$

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
Fe _{1-x} Nb _x Se		14	$x_{\rm max} = 0.04$
$\text{FeSe}_{1-x}\text{Te}_x$	a = 0.3798, c = 0.6038	15	$x_{\rm max} = 0.4-0.6$
FeTe	a = 0.3825, c = 0.6291	0	Antiferromagnetic
$FeTe_{1-x}S_x$	a = 0.3812, c = 0.6244	9.4	$x_{\rm max} = 0.06-0.12$
122	I4/mmm (ThCr ₂ Si ₂ structure)		
$Li_xFe_2Se_2$	a = 0.3775, c = 1.704	44	
$Na_xFe2Se_{2-\delta}$	a = 0.3785, c = 1.7432	46	
$K_x Fe_2 Se_2$	Multiphase	40	
$(Tl_{1-x}K_x)Fe_{2-y}Se_2$	a = 0.388, c = 1.405	31	$x = 0.25-0.46, y_{\text{max}} = 0.12-0.22$
Rb _x Fe _{2-y} Se ₂		33	
$Cs_xFe_{2-y}Se_2$	a = 0.3850, c = 1.5647	30	
$Ca_xFe_2Se_2$	Multiphase	~40	
$Sr_xFe_2Se_2$	Multiphase	38	
$Ba_{x}Fe_{2}Se_{2-\delta}$	a = 0.3778, c = 1.6843	40	
$Eu_xFe_2Se_2$	Multiphase	40	
$Yb_xFe_2Se_2$	Multiphase	42	
Intercalated FeSe			
$(C_2H_8N_2)_x$ FeSe	Amma; <i>a</i> = 0.3865, <i>b</i> = 0.3897, <i>c</i> = 2.1700	30	
$(C_4H_4N_2O_2S)_{0.3}$ FeSe	c = 1.55	48	
$(C_{40}H_{54}O_{27})_{0.3}$ FeSe	<i>c</i> = 1.45	45	
(Li,Fe)OHFeSe	P4/nmm; <i>a</i> = 0.378, <i>c</i> = 0.930	42	
$A_x(NH_3)_yFe_2Se_2$	I4/mmm	up to 44	$A = \mathbf{L}\mathbf{i}$, Na, K , Cs
$\operatorname{Li}_{x}(\operatorname{NH}_{2})_{y}(\operatorname{NH}_{3})_{1-y}\operatorname{Fe}_{2}\operatorname{Se}_{2}$	I4/mmm; <i>a</i> = 0.3825, <i>c</i> = 1.6527	43	$x_{\rm max} = 0.6, y_{\rm max} = 0.2$
$\operatorname{Li}_{x}[(\operatorname{CH}_{2})_{n}(\operatorname{NH}_{2})_{2}]_{y}\operatorname{Fe}_{2}\operatorname{Se}_{2}$	I4/mmm	up to 41	n = 1, 2, 3
$\operatorname{Na}_{x}[(\operatorname{CH}_{2})_{n}(\operatorname{NH}_{2})_{2}]_{y}\operatorname{Fe}_{2}\operatorname{Se}_{2}$	I4/mmm	up to 47	n = 1, 2, 3
$\operatorname{Sr}_{x}[(\operatorname{CH}_{2})_{n}(\operatorname{NH}_{2})_{2}]_{y}\operatorname{Fe}_{2}\operatorname{Se}_{2}$	I4/mmm	up to 37	n = 1, 2, 3

TABLE 8. Crystal Structures and Critical Temperatures of the Pnictide Fe-Based Superconductors

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{\rm K}$	Comments
111	P4/nmm (anti-PbFCl structure)		
LiFeP	a = 0.3692, c = 0.6031	~6	
LiFeAs	a = 0.3772, c = 0.6357	18	
Na _{1-δ} FeAs	a = 0.3949, c = 0.7040	15	
$Na(Fe_{1-x}Co_x)As$	c = 0.704	20	$x_{\rm max} = 0.3$
112	P21/m		
CaFeAs ₂		0	
$(Ca_{1-x}RE_x)FeAs_2$		up to 43	<i>RE</i> = La , Pr, Nd, Sm, Eu, Gd
$(Ca_{1-x}RE_x)Fe(As_{1-y}Sb_y)_2$		up to 47	<i>RE</i> = La , Ce, Pr, Nd
EuFeAs ₂		0	
$Eu(Fe_{1-x}Ni_x)As_2$	a = 0.3987, b = 0.3908, c = 1.0645	18	$x_{\rm max} = 0.4$
$(Eu_{1-x}La_x)FeAs_2$	a = 0.3980, b = 0.3900, c = 1.0643	11	$x_{\rm max} = 0.15$
1111	P4/nmm (ZrCuSiAs structure)		
LaOFeP	a = 0.3964, c = 0.8512	~4	
LaOFeAs _{1-x} P _x		11	$x_{\rm max} = 0.25$ and 0.7
La _{1-x} OFeP	a = 0.3961, c = 0.8506	~7	$x_{\rm max} = 0.1$
LnOFeP		~4	Ln = Pr, Nd
(Sr _{1-x} RE _x)FeAsF		up to 56	<i>RE</i> = La, Nd, Sm
Sr(Fe _{1-x} Co _x)AsF	a = 0.4002, c = 0.8943	~4	$x_{\rm max} = 0.125$
(Ca _{1-x} RE _x)FeAsH		up to 47	RE = La, Sm
$Ca(Fe_{1-x}Co_x)AsH$	a = 0.382, c = 0.822	24	$x_{\rm max} = 0.15$
$Ca(Fe_{1-x}Co_x)AsF$	a = 0.3880, c = 0.8552	22	$x_{\rm max} = 0.1$
Ca(Fe _{1-x} Ni _x)AsF	a = 0.3879, c = 0.8578	15	$x_{\rm max} = 0.05$
$CaFeAs(F_{1-x}H_y)$	a = 0.3896, c = 0.8669	29	$x_{\rm max} \approx 0.3$

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
YFeAsO ₁₋₈	a = 0.3842, c = 0.8303	47	
LaFeAsO _{1-δ}	a = 0.4026, c = 0.8719	28	
CeFeAsO _{1-δ}	a = 0.3995, c = 0.8631	39	
PrFeAsO _{1-δ}	a = 0.3963, c = 0.8572	48	
NdFeAsO _{1-δ}	a = 0.3943, c = 0.8529	53	
PmFeAsO _{1-δ}	Not synthesized due to radioactive Pm	_	
SmFeAsO _{1-δ}	a = 0.3922, c = 0.8452	53	
EuFeAsO _{1-δ}	Not reported	-	
$GdFeAsO_{1-\delta}$	a = 0.3891, c = 0.8393	54	
$TbFeAsO_{1-\delta}$	a = 0.3878, c = 0.8353	52	
$DyFeAsO_{1-\delta}$	a = 0.3863, c = 0.8322	51	
$HoFeAsO_{1-\delta}$	a = 0.3846, c = 0.8295	50	
YFeAsO _{1-r} F _r		10	$x_{\rm max} = 0.1$
$LaFeAsO_{1-x}F_x$	<i>a</i> = 0.4036, <i>c</i> = 0.8739	26	
CeFeAsO _{1-x} F _x	a = 0.3989, c = 0.8631	41	$x_{\rm max} = 0.16$
$PrFeAsO_{1-x}F_x$	a = 0.3967, c = 0.8561	47	$x_{\rm max} = 0.15$
$NdFeAsO_{1-x}F_x$	a = 0.3954, c = 0.8540	47	$x_{\rm max} = 0.15$
$PmFeAsO_{1-x}F_x$	Not synthesized due to radioactive Pm	-	
$SmFeAsO_{1-x}F_x$	a = 0.3934, c = 0.8468	58	$x_{\rm max} = 0.2$
SmFeAsF	a = 0.3940, c = 0.8503	56	
$EuFeAsO_{1-x}F_x$		11	$x_{\rm max} = 0.15$
$GdFeAsO_{1-x}F_x$	a = 0.3915, c = 0.8457	40	$x_{\rm max} = 0.25$
$TbFeAsO_{1-x}F_x$	a = 0.3860, c = 0.8332	51	$x_{\rm max} \approx 0.1$
$DyFeAsO_{1-x}F_x$	a = 0.3843, c = 0.8284	46	$x_{\rm max} \approx 0.1$
$HoFeAsO_{1-x}F_x$	a = 0.3830, c = 0.8270	36	$x_{\rm max} \approx 0.1$
Gd _{1-x} Th _x FeAsO	a = 0.3916, c = 0.8439	56	$x_{\text{max}} = 0.2$
Tb _{1-x} Th _x FeAsO	a = 0.3903, c = 0.8413	52	$x_{\rm max} = 0.2$
La(Fe _{1-x} Co _x)AsO	<i>a</i> = 0.4035, <i>c</i> = 0.8724	13	$x_{\rm max} = 0.06$
$Sm(Fe_{1-x}Co_x)AsO$	a = 0.3939, c = 0.8467	17	$x_{\rm max} = 0.1$
LaFeAsO _{1-x} H _x	<i>a</i> = 0.399, <i>c</i> = 0.865	33	$x_{\rm max} = 0.36$
CeFeAsO _{1-x} H _x	a = 0.397, c = 0.861	48	$x_{\rm max} = 0.25$
$NdFeAsO_{1-x}H_x$		54	
$SmFeAsO_{1-x}H_x$	a = 0.391, c = 0.845	56	$x_{\rm max} = 0.22$
$GdFeAsO_{1-x}H_x$	a = 0.389, c = 0.840	54	$x_{\rm max} = 0.1$
$DyFeAsO_{1-x}H_x$		52	$x_{\rm max} = 0.17$
$ErFeAsO_{1-x}H_x$	a = 0.3822, c = 0.8281	41	$x_{\rm max} = 0.05$
ThFeAsN	a = 0.4037, c = 0.8526	30	Undoped superconductor
122	I4/mmm (ThCr ₂ Si ₂ structure)		
NaFe ₂ As ₂	Metastable <i>a</i> = 0.3809, <i>c</i> = 1.2441	25	
$(Ce_{0.5-r}Na_{0.5+r})Fe_{2}As_{2}$	a = 0.3841, c = 1.2239	26	$x_{\rm max} = 0.3$
$(Pr_{0.5-x}Na_{0.5+x})Fe_2As_2$	a = 0.3839, c = 1.2193	25	$x_{\rm max} = 0.25$
AFe ₂ As ₂		up to 3.8	$A = \mathbf{K}$, Rb, Cs
(Ca ₁ "Na ₂)Fe ₂ As ₂	a = 0.3841, c = 1.22	33	$x_{max} = 0.66$
$(Ca_{1,r}RE_r)Fe_2As_2$		up to 49	$RE = La, Ce, \mathbf{Pr}$
$Ca(Fe_{1,r}M_r)_2As_2$		up to 20	$M = \mathbf{Co}$, Ni, Rh, Pd, Ir
$CaFe_2(As_{1-x}P_x)_2$	a = 0.390, c = 1.165	15	$x_{\rm max} = 0.05$
$(Sr_1 A_r)Fe_2As_2$		up to 37	A = Na, K, Cs
$(Sr_1 La_2)Fe_2As_2$	a = 0.395, c = 1.21	22	$x_{\text{max}} = 0.3$. Thin film; metastable
$Sr(Fe_1, M_r)_2As_2$		up to 24	M = Co, Ni, Ru, Rh, Pd, Ir , Pt
$SrFe_2(As_{1-x}P_x)_2$	a = 0.390, c = 1.21	33	$x_{\rm max} = 0.35$
$(Ba, A) Fe_{a}As_{a}$		up to 38	$A = \text{Na. } \mathbf{K}. \text{ Rb}$
$(Ba_1, RE_2)Fe_2As_2$		up to 22	$RE = \mathbf{La}$, Ce, Pr, Nd
$Ba(Fe_1 M_r)_2 As_2$		up to 24	M = Co, Ni, Ru, Rh, Pd. Ir. Pt
$BaFe_2(As_{1,r}P_r)_2$		31	$x_{\rm max} = 0.32$
Ba ₂ Ti ₂ Fe ₂ As ₄ O	a = 0.4028, c = 2.7344	21	Intergrowth of BaFe ₂ As ₂ and BaTi ₂ As ₂ O
LaFe ₂ As ₂	a = 0.3938, c = 1.1714	12	
(La05-Na-)FeaAsa	a = 0.3841, c = 1.2325	27	$x_{\rm max} = 0.3$
$(La_{0.5,x}Na_{x}K_{0.5})Fe_{2}As_{2}$	a = 0.3850, c = 1.321	23	$x_{\rm max} = 0.25$
· · · · · · · · · · · · · · · · · · ·			

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
$(Eu_{1-x}A_x)Fe_2As_2$		up to 35	$A = Na$, K , $x_{max} = 0.5$, antiferromagnetic
$(Eu_{0.78}La_{0.27})Fe_2As_2$		13	Antiferromagnetic
$\operatorname{Eu}(\operatorname{Fe}_{1-x}M_x)_2\operatorname{As}_2$			M = Co, ${\bf Ir},$ Ru, Rh, antiferromagnetic
$\operatorname{EuFe}_2(\operatorname{As}_{1-x}\operatorname{P}_x)_2$	a = 0.389, c = 1.1835	30	$x_{\rm max} = 0.3$, antiferromagnetic
1144 (2×122)	P4/mmm		
(La,Na)RbFe ₄ As ₄	a = 0.3861, c = 1.326	26	
(La,Na)CsFe ₄ As ₄	a = 0.3880, c = 1.360	24	
CaKFe ₄ As ₄	a = 0.3866, c = 1.2817	35	
$CaRbFe_4As_4$	<i>a</i> = 0.3876, <i>c</i> = 1.3104	35	
CaCsFe ₄ As ₄	a = 0.3891, c = 1.3414	32	
$SrRbFe_4As_4$	a = 0.3897, c = 1.3417	35	
$SrCsFe_4As_4$	a = 0.3910, c = 1.3729	37	
$BaCsFe_4As_4$	Possibly 122 structure	26	
EuRbFe ₄ As ₄	a = 0.3889, c = 1.330	36	
EuCsFe ₄ As ₄	a = 0.3901, c = 1.361	35	
12442 (122+2×1111)	I4/mmm		
KGd ₂ Fe ₄ As ₄ O ₂	a = 0.3897, c = 3.0670	37	
KTb ₂ Fe ₄ As ₄ O ₂	a = 0.3886, c = 3.0621	37	
KDy ₂ Fe ₄ As ₄ O ₂	a = 0.3874, c = 3.0598	37	
KHo ₂ Fe ₄ As ₄ O ₂	a = 0.3866, c = 3.0597	36	
RbSm ₂ Fe ₄ As ₄ O ₂	a = 0.3921, c = 3.1381	36	
$RbGd_2Fe_4As_4O_2$	a = 0.3901, c = 3.1343	35	
RbTb ₂ Fe ₄ As ₄ O ₂	a = 0.3890, c = 3.1277	35	
RbDy ₂ Fe ₄ As ₄ O ₂	a = 0.3879, c = 3.1265	34	
RbHo ₂ Fe ₄ As ₄ O ₂	a = 0.3869, c = 3.1242	34	
CsNd ₂ Fe ₄ As ₄ O ₂	a = 0.3949, c = 3.223	35	
CsSm ₂ Fe ₄ As ₄ O ₂	a = 0.3926, c = 3.2124	35	
CsGd ₂ Fe ₄ As ₄ O ₂	a = 0.3907, c = 3.2051	33	
CsTb ₂ Fe ₄ As ₄ O ₂	a = 0.3895, c = 3.1982	33	
CsDy ₂ Fe ₄ As ₄ O ₂	a = 0.3888, c = 3.1961	33	
CsHo ₂ Fe ₄ As ₄ O ₂	a = 0.3876, c = 3.1949	33	
KCa ₂ Fe ₄ As ₄ F ₂	a = 0.3868, c = 3.1007	33	
RbCa ₂ Fe ₄ As ₄ F ₂	a = 0.3872, c = 3.1667	30	
$CsCa_2Fe_4As_4F_2$	a = 0.3881, c = 3.2363	28	
BaTh ₂ Fe ₄ As ₄ (N _{0.7} O _{0.3}) ₂	<i>a</i> = 0.3989, <i>c</i> = 2.9853	30	
42214 ("221"+2×1111)	I4/mmm		
Pr ₄ Fe ₂ As ₂ Te ₂ ₂₀ O ₄	a = 0.4016, c = 2.9857	25	
$Sm_4Fe_2As_2Te_{0.02}O_4$	a = 0.3964, c = 2.9509	25	
$Sm_4Fe_2As_2Te_{0.72}O_{4-y}F_y$	a = 0.3960, c = 2.9268	40	
$Gd_4Fe_2As_2Te_{0.90}O_4$	a = 0.3935, c = 2.9369	25	
$Gd_4Fe_2As_2Te_{0.92}O_{4-y}F_y$	<i>a</i> = 0.3936, <i>c</i> = 2.9350	45	
10-3-8 and 10-4-8	PĪ		
(Ca, RE FeAs), Pt As	a = 0.8749, b = 0.8753, c = 1.0714	up to 33	$x_{max} = 0.14$
$(CaFe_{1}, M, As)_{10}Pt_{2}As_{8}$		up to 15	$M = \mathbf{Co}$, Ni, Pd, Pt
(CaFeAs), Pt.As	a = 0.8755 $b = 0.8764$ $c = 1.0690$	35	
$(CaFe_1 Ir As)_{10}Ir As_0$	P4/n; a = 0.8732; c = 1.0391	16	
(Our c1-x11x1 t0)101141 t08	1 1/11/14 = 0.07.02, 0 = 1.0071	10	
32522	I4/mmm		
$Ca_3Al_2O_5Fe_2P_2$	a = 0.3715, c = 2.5236	16	
Ca ₃ Al ₂ O ₅ Fe ₂ As ₂	a = 0.3742, c = 2.6078	30	
$Ca_{n+1}(Mg,Ti)nO_yFe_2As_2$		up to 47	$n = 3, 4; y \approx 3n-1$
$Ca_{n+1}(Sc,Ti)nO_yFe_2As_2$	0.4070	up to 42	$n = 3, 4, 5; y \approx 3n-1$
$Sr_3Sc_2O_5Fe_2As_2$	a = 0.4069, c = 2.6876	0	
$Sr_4(Sc, 11)_3O_8Fe_2As_2$	0.4100 0.0055	28	
$Ba_3Sc_2O_5Fe_2As_2$	a = 0.4133, c = 2.8355	0	
Ba ₄ Sc ₃ O _{7.5} Fe ₂ As ₂	a = 0.4123, c = 3.7565	11	

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$	Comments
42622	P4/mmm		
$Ca_4Al_2O_6Fe_2P_2$	a = 0.3693, c = 1.4927	17	
$Ca_4Al_2O_6Fe_2As_2$	a = 0.3713, c = 1.5404	28	
Ca ₅ (Al,Ti) ₃ O ₉ Fe ₂ As ₂		39	
Ca ₆ (Al,Ti) ₄ O ₁₂ Fe ₂ As ₂		36	
$Ca_8(Mg,Ti)_6O_{18}Fe_2As_2$		40	
Sr ₄ Sc ₂ O ₆ Fe ₂ P ₂	a = 0.4016, c = 1.5543	17	
$Sr_4V_2O_6Fe_2As_2$	a = 0.3930, c = 1.5673	37	
Sr ₄ (Mg,Ti) ₂ O ₆ Fe ₂ As ₂	a = 0.3935, c = 1.5952	39	

TABLE 9. Crystal Structures and Critical Temperatures of Other Non-Cuprate High-Temperature Superconductors

Mol. form.	Structure (lattice parameters in nm)	$T_{\rm c}^{\rm max}/{ m K}$
MgB_2	P6/mmm; <i>a</i> = 0.3074, <i>c</i> = 0.3534	39
Ba _{0.6} K _{0.4} BiO ₃	$Pm\overline{3}m; a = 0.4287$	32