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Abstract

This thesis addresses ventilation control strategies from the perspective of the oc-
cupant. The use of decentralized mechanical ventilation systems has grown sustain-
ably in the past ten years in Germany as a cost-effective solution to guarantee air
exchange in highly airtight renovated residential buildings. Even though occupant-
centered control strategies for residential ventilation are often neglected, they could
potentially improve the trade-off between energy efficiency, hygrothermal comfort,

and indoor air quality.

Window operation remains the primary occupant action to obtain fresh air. Existing
window opening models are reviewed and compared to real building measurements.
A real-time logistic regression analysis with a window opening detection algorithm
is investigated to learn about user preferences without deploying extra sensors. This
proposed method fails to grasp the occupant behavior properly when information
about user preferences is not available in advance. Therefore, feedback is required

to achieve the targeted individualization.

Market and scientific research has identified the lack of multivariable solutions and
occupant-centered approaches as the main gap in residential ventilation controllers.
Therefore, three main solutions are proposed: a comfort-oriented cost function, a
fuzzy demand-based controller and a self-learning controller based on a classification

algorithm.

These controllers target the indoor relative humidity and C'Os concentration. A
co-simulation approach can evaluate the performance of these solutions and their
impact on energy, comfort, and air quality. Full-automatic multivariable controllers
can provide around 13% primary energy savings compared to state-of-the-art strate-
gies without compromising comfort or air quality. The self-learning solution offers

a suitable individualization of the occupants’ preferences using their feedback.

The self-learning controller was implemented in a real building with decentralized
ventilation systems using a smart ventilation concept (Internet of Things-based).
The controller identified different occupant preferences in every room. Further anal-
ysis of user preferences indicates that fan noise and high relative humidities are key
triggers for the operation of ventilation systems in residential buildings. Smart so-
lutions were mentioned as one of the key aspects to increase the acceptance of the
system. In conclusion, occupant-centered control strategies achieve sufficient levels

of energy performance, hygrothermal comfort, and indoor air quality.
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Kurzfassung

Diese Arbeit befasst sich mit Liiftungsregelungsstrategien aus der Perspektive des
Bewohners. Der Einsatz dezentraler Liiftungssysteme ist in den letzten zehn Jahren
in Deutschland nachhaltig gewachsen, als kostengiinstige Losung zur Gewéhrleistung
des Luftaustausches in luftdicht sanierten Wohngebauden. Auch wenn nutzerorien-
tierte Regelungen oft vernachlassigt werden, konnten diese den Zielkonflikt zwischen
den betrachteten Aspekten Energieeffizienz, hygrothermischem Komfort und Raum-

luftqualitat verbessern.

Die Fenstercffnung bleibt den Bewohnern als primare Mafinahme zur Frischluftzu-
fuhr erhalten. Bestehende Fensteroffnungsmodelle werden iiberpriift und mit realen
Gebaudemessungen verglichen. Eine logistische Regressionsanalyse in Echtzeit mit
einem Algorithmus zur Erkennung der Fensteréffnung wird untersucht, um Nutzer-
praferenzen ohne den Einsatz zusatzlicher Sensoren zu erlernen. Diese vorgeschla-
gene Methode kann das Verhalten der Bewohner nicht richtig erfassen, wenn Infor-
mationen iiber Nutzerpraferenzen nicht im Voraus verfiighbar sind. Daher ist eine

Riickmeldung erforderlich, um die angestrebte Individualisierung zu erreichen.

Eine Markt- und wissenschaftliche Recherche identifizierte den Mangel an multivari-
ablen Losungen und nutzerorientierten Anséatzen als das vordingliche Defizit bei den
Wohnungsliiftungsregelungen. Daher werden die drei Losungen Komfort-orientierte
Kostenfunktion, ein Regler basierend auf einer Fuzzy-Logik und eine selbstlernende

Regelung auf Basis von einem Klassifizierungsalgorithmus untersucht.

Diese Regler zielen auf die relative Raumluftfeuchtigkeit und die Kohlendioxid-
konzentration ab. Ein Co-Simulationsansatz kann die Leistung dieser Losungen
bewerten. Vollautomatische, multivariable Regler kénnen im Vergleich zu modern-
sten Strategien rund 13% Primérenergieeinsparungen erzielen, ohne den Komfort
oder die Luftqualitidt zu beeintrachtigen. Die selbstlernende Losung bietet eine

geeignete Individualisierung der Nutzerpraferenzen anhand ihrer Riickmeldung.

Der selbstlernende Regler wurde in einem realen Gebaude mit dezentralen Liiftungs-
anlagen unter Verwendung eines intelligenten Liiftungskonzepts implementiert. Der
Regler identifizierte unterschiedliche raumindividuelle Préferenzen. Analysen der
Nutzerpréferenzen zeigen, dass Ventilatorgerausche und hohe relative Luftfeuchtig-
keiten wichtige Einfliisse fiir die Betriebsweise von Liiftungsanlagen sind. Intelli-
gente Losungen wurden als einer der Schliisselaspekte genannt, um die Akzeptanz
des Systems zu erhohen. Zusammenfassend lasst sich sagen, dass nutzerorientierte

Regelungen ein gutes Niveau in Bezug auf die drei Zielaspekte erreichen kénnen.
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1 Introduction

1 Introduction

1.1 Background

Residential building energy retrofit is necessary to accomplish the proposed energy
targets in the European Union. Between 2012 and 2016, yearly primary energy
savings of 1% were achieved and should increase towards 3% [72]. Ventilation heat
losses were always low in comparison to transmission heat losses through the en-
velope, but became relevant in low-energy and passive houses where the projected
ventilation and envelope heat losses are in a similar range [102]. Figure 1.1 illustrates

this evolution.

[ Ventilation heat loss [ Envelope heat loss
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Figure 1.1: Evolution of energy losses in residential buildings [102].

Airtightness is increased in retrofitted buildings, which affects the indoor environ-
mental conditions. In renovated multifamily buildings without ventilation in Slo-
vakia, increased levels of indoor contaminants were observed [82]. The occupants
perceived the indoor air quality as better before the renovation. This resulted also
in a higher prevalence of sick building syndrome (SBS) symptoms. Francisco et
al. [83] concluded that indoor air quality (IAQ) and health improved drastically
when building retrofits comply with appropriate residential ventilation standards.
This increasing attention to healthy indoor environments requires a response from
building and ventilation system commissioners [88]. Higher ventilation rates in resi-

dences can reduce negative health outcomes generally, and there are even minimum
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ventilation rates at which some health-related issues can be avoided [40]. In the
case of energy renovation, designing and installing mechanical ventilation systems
with heat recovery are required for ensuring the indoor environment quality and
maximizing energy savings [212]. In Germany, the standard DIN 1946-6 [58] covers
the design of ventilation measures, according to the building requirements. This
standard applies to every new residential building and to every renovated building
where ventilation-related changes were carried out. The ventilation concept assesses
both natural ventilation (window opening) and mechanical ventilation systems. The
main objectives of the ventilation concept are building protection as well as occu-
pant comfort and indoor air quality. In Europe, there is no standard that covers the
design of residential ventilation systems. However, there are comfort and air quality-
related european standards that suggest minimum ventilation rates per room and
per person to ensure indoor air quality, such as the DIN EN 15251 [59] and DIN EN
ISO 7730 [61]. The DIN EN 15251 has been updated in Germany to the DIN EN
16798-1 [60] (from the British standard BS EN 16798-1) but this has not been yet
extended to the rest of Europe.

1.2 Problem statement

The market for residential ventilation systems has grown in the last ten years at
an average pace of 4.2 % [110]. Specifically in Germany, decentralized ventilation
systems (DVS) gained relevance in both the market and scientific community. The
sales trend of ventilation systems in Germany is depicted in Figure 1.2 [110]. DVS
represented 17% of the total sales in 2012, and climbed to 36% in 2018, becoming
the market leader in sales in that year. In 2019, the latest version of the German
ventilation standard DIN 1946-6 included individual room ventilation for the first
time [58].
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Decentralized ventilation aims at providing room-individual airflow rates, which
can be controlled separately. Supply and exhaust airflow is present in every room
where these devices are installed, in contrast to centralized systems, where there
are fixed supply rooms (living room and bedrooms) and exhaust rooms (kitchen
and bathroom). An exemplary fagade-integrated decentralized ventilation system
(DVS) is illustrated in Figure 1.3. These units are usually equipped with a reversible
fan and a heat storage. A filter is included on the room side of the device. This
device operates alternating periodically in supply and exhaust mode (60 seconds

respectively). These devices are often referred to as ”push-pull” devices.

Figure 1.3: Exploded axonometric of a DVS [216]. 1 - Indoor panel. 2 - Reversible
fan. 3 - Heat storage system. 4 - Outdoor panel.
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Decentralized ventilation systems offer a cost-effective solution to guarantee air ex-
change in residential buildings. Maier et al. [143] report lower installation costs
by about 40-55% in comparison to centralized ventilation systems and air handling
units, respectively. As fagade-integrated systems provide fresh air directly from the
outdoor environment, the installation process is relatively simple since there is no
need for ducts. However, maintenance, limited filter options, and noise pollution are
known unresolved issues of these systems. Angsten et al. [16] summarizes the advan-
tages and drawbacks of decentralized ventilation. Merzkirch et al. [151] measured
different performance indicators regarding centralized and decentralized ventilation
systems. Decentralized ventilation systems have typically lower fan power consump-
tion, with heat recovery efficiencies around 70%. Short-circuit problems when two

devices are placed too close to each other were also recognized.

Furthermore, Gruner [91] concluded that when embodied energy is considered, de-
centralized systems show a trend to be more sustainable than centralized systems. In
addition, he showed that individual room control enables the improvement of indoor
air quality and user satisfaction. Smith [198] studied the impact of room-individual
control of ventilation systems on building moisture protection, concluding that the
removal of excess humidity in kitchens and bathroom was successful. Coydon [49]
conceptualized and developed an innovative dwelling-centralized ventilation solution
with individualized fans, highlighting the potential of a room-individual solution to
optimize energy consumption, hygrothermal comfort and TAQ. Angsten et al. [16]
identified the use of advanced control strategies with indoor environmental sensors

as one of the future trends for decentralized ventilation.

Despite the increasing interest in control strategies for ventilation systems in the
last years, there is still a need for research, especially regarding the relationship be-
tween comfortable and healthy indoor environments [43]. The most popular control
strategy in decentralized ventilation is called demand-controlled ventilation (DCV),
which is an open-loop controller where the fan speed is determined by a certain
sensor measurement [80]. This has already been identified as a solution to minimize
energy losses and ensuring mold growth protection [184], as well as guaranteeing
improvement of the TAQ [112]. Different versions of the same controller have been
published in recent years, although a lack of innovation can be identified [218]. Re-
cently, the Air, Infiltration and Ventilation Centre (AIVC) published their definition

of "smart ventilation” [66]:
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Smart ventilation: 7"Smart ventilation is a process to continually adjust the
ventilation system in time, and optionally by location, to provide the desired indoor
air quality benefits while minimizing energy consumption, utility bills and other

non-IAQ costs (such as thermal discomfort or noise).”

Moreover, a smart ventilation system should adjust the ventilation rates to be re-
sponsive to one or more of the following: occupancy, indoor and outdoor thermal and
air quality conditions, or electricity grid needs, among others. The occupant behav-
ior regarding the maunal operation of residential ventilation systems has been largely
ignored by the scientific community until recently. A review about occupant-centric
building and control design [168] showed plenty of available user-oriented solutions
in several fields, except for residential ventilation. According to another review [160],
controllers are being lately developed mostly reactive or predictive to presence or
comfort. The implementation of demand-based solutions based on the Internet of
Things (IoT) could enable adaptive control strategies to maximize IAQ in dwellings
[132]. This opens the door for potential user-centered solutions for decentralized

ventilation.

According to Wirth [224], balanced ventilation systems enable primary energy sav-
ings, but these can be undermined by the occupant behavior (OB). Users tend to
adjust the airflow levels to their individual needs, resulting in higher airflow levels
than designed. The impact of the occupant behavior concerning control of the in-
door environment and operation of ventilation systems has been stated as the top
research priority in this area [221]. As investigated by Gaetani et al. [86], a fit-for-
purpose modeling strategy can lead to successful design in buildings. Therefore, the
representation of the OB towards residential ventilation is key to the realization of

occupant-centered controllers for decentralized ventilation systems.

Nevertheless, there is a lack of research connecting user behavior and residential ven-
tilation. The AIVC published a report over ten years ago describing the occupant
attitudes towards ventilation [208]. Occupants generally reported a dissatisfaction
with their ventilation facilities, meaning there is a need for better solutions. Hasse-
laar [103] measured the ventilation running time in about 350 dwellings. He observed
that 14% of the apartments had the system turned off permanently, and in the rest,
the lowest ventilation level was set for an average of 17 hours. He concluded that the
industry focuses merely on meeting the minimum requirements and that the user
preferences are not considered. In another study, Park et al. [166] recognized the
high costs and difficulty of operation as the main reasons for not ventilating. This

indicates once again that the needs of the occupant should be involved in the design
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process, especially considering user interfaces.

1.3 Research questions

This work focuses exclusively on the following points:

Residential renovated multifamily buildings

Decentralized ventilation systems with decoupled heating systems

Central European zone focusing on Germany, as a requirement for the defini-

tion of occupant behavior models

Temperate climate without a dry season, as a representation of central euro-

pean climate, focusing on the winter season

This thesis tackles the lack of knowledge about the relationship between occupants
and residential mechanical ventilation. Understanding the needs of the users without
neglecting the sight of the manufacturer is the first step to develop the mentioned
occupant-centered solutions. The analysis of the occupant behavior towards ven-
tilation (natural and mechanical) will help to gain some insight into the targets
of a user-oriented system. Moreover, novel ventilation control strategies for resi-
dential buildings are proposed that are flexible enough to grasp the nature of the
occupant, while still meeting the minimum requirements of the regulations. The
implementation of ventilation controllers, and their connection to smart environ-
ments, is also examined. This thesis contributes to the integration of decentralized
residential ventilation systems into the smart appliances world, aiming at increasing

user acceptance, thus narrowing the gap between users and technology.

Based on the aspects mentioned above, the research questions can be defined as

follows:

Research Question 1: Which aspects should a residential ventilation control strat-

eqy consider to account for the occupant’s needs?

Research Question 2: To what extent does the window opening behavior provide

useful information for ventilation control strategies? How can this be represented?

Research Question 3: How do state-of-the-art control strategies for decentralized

ventilation systems perform? Can innovative occupant-centered control solutions
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provide an improvement regarding energy consumption, hygrothermal comfort and

indoor air quality?

Research Question 4: How is the performance of innovative occupant-centered
control strategies in a real-building implementation? Do they influence the accep-

tance of the user towards ventilation systems?

1.4 Structure and methodology

The four research questions are answered from Chapters 2 to 5. The general method-
ology is condensed into Figure 1.4. In Chapter 2, the requirements for residen-
tial mechanical ventilation systems are analyzed by reviewing existing models and
findings from the literature. The outcomes establish the foundations for designing
occupant-centered solutions. In Chapter 3, the occupants’ need for ventilation re-
lated to the window opening behavior is investigated. Window opening behavior
as the need for fresh air is studied. A method to infer the ventilation preferences
of the occupant without deploying extra sensors is proposed. The importance of
the user feedback is therefore highlighted. Afterward, a user behavior model for the
operation of mechanical ventilation systems is proposed. In Chapter 4, three mul-
tivariable occupant-centered control strategies are developed, based on the results
obtained in the first two research questions. To evaluate them, models of building,
occupant, and decentralized ventilation are developed, and simulation case studies
are then performed. A sensitivity analysis of the results is also carried out. The best
performing controller from these simulations is selected and implemented in a real
building case study under a smart ventilation scheme in Chapter 5. An apartment
is then equipped with decentralized ventilation systems and an IoT-based solution,
to implement the selected user-centered strategy from the previous chapter. Results
are collected to evaluate the performance of the controller, the ventilation system
and to further investigate the occupant behavior regarding residential mechanical
ventilation. Finally, Chapter 6 summarizes the findings of this thesis. Future rec-

ommendations for further research and potential application cases are discussed.
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2 Requirements and evaluation of residential decentralized ventilation

2 Requirements and evaluation of residential de-

centralized ventilation

The goal of this chapter is to discuss the different requirements to define an evalua-
tion method for ventilation control strategies. Housing associations, manufacturers,
and end users play different roles in this evaluation. In order to provide the foun-
dations for this analysis, the considered variables are described from a scientific
point of view. Following normative standards and current scientific research, perfor-
mance indicators are selected to evaluate the performance of residential mechanical

ventilation systems properly.

2.1 General aspects

Ventilation systems allow residential buildings to ensure an adequate air exchange
when natural ventilation is not enough. As mentioned before, efficient control sys-
tems are relevant to ensure indoor comfort and air quality, while minimizing the
energy consumption. Decentralized ventilation systems (DVS) allow a higher flexi-

bility, given the possibility of controlling the airflow in every room.

Ambient | DIN1946-6
temperature
Relative | | | | 1SO7730
humidity EN 16798-1
Wind ——% Weather — — Energy.
consumption
Thermal | | | Indoor air
losses quality
Ventilation
Infiltration [——»  Building control (OAEI——  Comfort
strategies
Heating | User L || .
behaviour ) behaviour Noise
Window | | || User
opening friendliness
Presence & L coss
activities

Figure 2.1: Overview of requirements for ventilation control systems.

Figure 2.1 shows an overview of the objectives, standards, and external influences of
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control strategies for ventilation systems. The objectives and standards are further
analyzed in this chapter. The influence of the occupant behavior on mechanical
ventilation is studied in Chapter 3. The weather and building influences are tackled
in Chapter 4.

In Germany, the standard DIN 1946-6 sets the requirements for air exchange in
residential buildings [58]. This norm describes different scenarios in which the fresh
air needs may be covered by natural ventilation as well as mechanical ventilation
systems (MV) and the building infiltration. As a definition, the total supply volume

flow rate of fresh air is the sum of the three aforementioned sources:

Vtot = me + Vwo + VMV (2.1)

being Vit the total volume flow rate, me the volume flow rate due to infiltration,
VWO the volume flow rate due to window opening, and VMV the volume flow rate
due to mechanical ventilation systems [58, p. 28, s. 6.1.1]. For the selection and
dimensioning of mechanical ventilation systems, the user-dependent volume flow

rate (window opening) must not be considered.

Taking into account the dimensioning of ventilation systems, one of the key contri-
butions of this norm is that it sets four different ventilation levels and their corre-

sponding minimum outdoor airflow supply in different operating conditions:

1. Ventilation for moisture protection: the ventilation level is a function of the
buildings’ thermal characteristics and the dwelling area. The goal is to pre-
vent structural damage due to mold growth. This ventilation rate must be

guaranteed at any time independent of occupants.

2. Reduced ventilation: this level covers the minimum hygienic standards, in

some cases by considering reduced humidity loads.

3. Nominal ventilation: ventilation to ensure the hygienic requirements as well

as building protection during occupant presence.

4. Intense ventilation: required ventilation level to cover the peak internal loads
(human activities) that might occur in residential indoor spaces. In this case,

the user-dependent ventilation must be considered.

As stated before, the calculation of the necessary outdoor airflow includes the air

exchange due to infiltrations and natural ventilation. This means the total fresh

10
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air supplied by a mechanical ventilation system is the remaining air that was not
provided by infiltration or window ventilation (for the infiltration estimation, wind

load, and seasonal variation assumptions are made).

In addition, the standard defines different control strategies for room-specific ven-
tilation systems [58, p .125, S 1.3.4]: permanent operation, controlled by time or
controlled by a specific sensor, such as temperature or relative humidity (RH).
A permanent operation does not guarantee high humidity loads removal. On the
other hand, a fixed time-dependent control strategy does not usually guarantee the
building protection and is therefore undesired. According to the standard, only the
relative humidity control strategy guarantees the removal of high humidity loads in
the indoor environment. It is a goal of this thesis to assess to what extent differ-
ent control strategies could optimize energy consumption, comfort, and indoor air
quality in the residential sector. In the following sections, reference values and per-
formance indicators regarding the objectives of a ventilation controller are discussed,
selected, and defined.

2.2 Energy consumption

In decentralized ventilation systems decoupled from heating systems, heating and
cooling energy is neglected, as these devices usually do not have such equipment. In
that sense, the heating energy consumption is considered through the heat losses due
to ventilation. Increasing the forced air exchange in a residential building will cause
higher heating energy losses. The heat losses due to ventilation represent the highest
energy consumption of residential mechanical ventilation systems [133]. To reduce
these losses, ventilation systems are typically equipped with heat recovery systems
(HRC), which provide a heat exchange interface between supply and exhaust air.

The second highest consumption is the electrical power consumption of the fans.

2.2.1 Heat recovery

Heat recovery systems are designed and adapted to the different ventilation systems
available on the market to reduce the heat losses due to ventilation. For example,
continuous ventilation systems are typically equipped with recuperative counter flow
heat exchangers which provide a heat transfer interface while at the same time
avoiding contact between the air streams. In the case of decentralized reversible

ventilation systems, most of them provide a regenerative heat storage system (typical
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2 Requirements and evaluation of residential decentralized ventilation

materials include ceramic, polymers, or metal) to store the heat in the exhaust phase
and release it during the supply phase. In this thesis, only ventilation systems with
heat recovery are examined. When considering the systems’ efficiency, different
definitions are used. A comparison of the different methodologies and their impact
on the resulting efficiencies is available in the literature [49]. For example, heat
recovery systems are mandatory in Passive House certification for ventilation systems
[169]. Their requirement includes a minimum efficiency of 75%. Their definition of
HRC efficiency is obtained by adding the heating energy required due to ventilation

losses to the heat release of the fan to the room.

In the case of continuous decentralized ventilation systems, the degree of temper-
ature change (Temperaturdnderungsgrad in German) ngrc.cont 18 usually adopted.
This indicator only takes into account the heating energy losses due to ventilation
and neglects others, such as enthalpy or fan power consumption. This indicator
assumes that the supply and exhaust mass flow rates are balanced and that the av-
erage temperatures are equivalent. Even though this indicator is valid for balanced
mechanical ventilation systems, the lack of normative foundations for alternating
systems and the simplicity of the calculation procedure makes this definition of the
heat recovery efficiency the most accepted one among manufacturers of DVS [149].
Coydon [49] developed a rule-based model to calculate the heat recovery efficiency
for alternating ventilation systems. To calculate this efficiency, information about
the status of the residential heating system is necessary, therefore it is impractical
for laboratory measurements and manufacturers. In this thesis, the degree of tem-
perature change ngrc.cont 1s used, defined in Equation 2.2. Ambient, room, and

ventilation supply temperatures are used.

Tsup - Tamb
ont — 2.2
"TH RO Cont Tr00m - Tamb ( )

The total heating energy loss due to ventilation (Qpeqtvent) used in this work is
calculated by integrating the heat flux losses due to ventilation after heat recovery
over time, defined in Equation 2.3. As mentioned before, the heat recovery efficiency
for continuous ventilation systems is used. The air properties are assumed constant
for dry air (puir = 1.2 kg/m?®, ¢pair = 1.005 J/kg - K).

Qheat,vent = / <Qheat,vent - QHRC’) dt =

= Pair * Vair : Cp,air . (Troom - Tamb) : (]- - nHRC,Cont)
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2.2.2 Fan energy consumption

The fan power is usually system specific and therefore difficult to generalize [133].
The norm DIN 1946-6 [58, p. 66, Eq. 34] defines the specific fan power index (SFP)
as the relationship between the nominal fan power (Pfap nom) and the nominal vol-

ume flow (Vf,m’,wm). The SFP is calculated in %—f

SFP = M (2.4)
fan,nom

According to the device certification procedure for ventilation systems of the Pas-
sivhaus Institute [169], the SFP should not be higher than 0.45. According to the
literature, the values in decentralized ventilation systems range from 0.1 to 0.35
[49, 150]. In these devices, fans are usually small, and a constant SEFP can be
assumed. This assumption is not valid when considering centralized ventilation sys-
tems. Some manufacturers calculate the SFP for different fan speeds. Ideally, the
hydraulic power of a fan varies with the cube of the rotational speed, according
to the affinity laws of pumps, if a constant fan efficiency is assumed. This does
not occur in reality, and models are available to calculate it for fans in centralized
systems [7]. The fan power is available in this thesis through measurements of the
SFP for different fan speeds (See Appendix A.3). Then, the energy consumption of
the fan (Ee, fqn) is calculated by integrating the instantaneous fan power over time,

and neglecting the influence of the fan heat losses on the supply air:

Pfan = Vign - SFP (2.5)

Eoulfan = / Pjan - dt (2.6)

2.2.3 Primary energy consumption

In this thesis, the total primary energy consumption due to ventilation Qpe yent is
calculated in kWh, pe, and defined in Equation 2.7. Assuming that the building
is heated using a gas boiler, the system primary energy consumption is calculated
given the heating energy losses due to ventilation (Qpeatvent) and the electrical en-
ergy consumption of the fan (Eq f.,), together with the corresponding primary en-
ergy factors and heating system efficiency. The primary energy factors and heating

system efficiency values are summarized in Table 2.1.
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f 1/Hs
Qpe,vent = fp,heat : i : Qheat,vent + fp,elec : Eel,fan (27)
Nheat,boil
Variable Definition Unit Value Source
Gas primary ener
fp,heat P Y &Y M 1.10 [29]
factor kW h, gas, Hi
Gas inferior-superior ;
Fraiyirs P kWh, gas, Hi 1.10 [225]
energy factor kW h, gas, Hs
Yearly mean boiler
Nheat,boil Y . . M 0.86 [225]
combustion efficiency EWh, gas, Hs
Electricity primar
Folee Y prmaty kWh, pe 1.47 [85]
energy factor EWh, el

Table 2.1: Assumed primary energy factors and heating system efficiency values.

2.2.4 Energy label

The European Commission implemented through the Commission Delegated Regu-
lation 1254/2014 supplementing Directive 2010/30/EU of the European Parliament
and the Council [71] an energy labeling method for residential ventilation units. To
classify a certain product considering its energy consumption, the Specific Energy

Consumption (SEC) is calculated according to the Annex VIII of the Regulation.

kWh
mZa’

This indicator is expressed in meaning the yearly energy consumed for venti-
lation per m? heated floor area of a dwelling or building. This indicator results in
an energy label from A+ (most efficient) to G (least efficient). This label is usually

informed together with nominal airflow and noise level protection.

This item becomes relevant due to its calculation: in the method, there is a non-
dimensional control factor, which assumes a certain value according to the control
system (from manual control to local demand control). This control factor affects
significantly the variation of the SEC and, hence, decide if a unit is labeled “more
energy efficient” simply by offering more sophisticated control strategies. For manu-
facturers, energy efficient control strategies can therefore become not only a tool to
reduce operating costs, but also a powerful argument for marketing purposes. For
example, a "manually regulated control” has an associated coefficient of 1, whereas

a "fully automatic control” receives a coefficient of 0.65, enhancing the energy label
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of a single device by one or two categories.

2.3 Indoor air quality

One of the key objectives of decentralized residential ventilation systems is to prop-
erly control the indoor air quality, in order to minimize the effects of contaminants
on the occupants. This section describes the studied consequences of poor IAQ for

humans and defines the target variables to measure it.

2.3.1 Mold growth protection

One of the key aspects of residential mechanical ventilation is ensuring protection
against mold growth. As mentioned before in Section 2.1, the norm DIN 1946-
6 [58, S. 8] establishes a minimum ventilation level for moisture protection, as a
function of the characteristics of the building, to prevent mold growth. The growth
of different kinds of fungi in residential buildings has severe negative effects both on
the materials and the occupants’ health, and building remediation does not eliminate
molds [173]. From the side of the housing associations, mold growth protection is

the most important feature of a residential ventilation system.

It is not a simple task to determine the critical moisture level for mold growth in
building materials [117]. In the World Health Organization guidelines for indoor air
quality [228], several authors and their investigations about mold growth in indoor
spaces are listed. These authors conducted on-site as well as laboratory experiments
to characterize the growth of several fungi species in different building construction
materials. In all cases, it was observed that the presence of mold is related to the
surface temperature of the material and the humidity content. Hence the importance
of appropriate air exchange in residential buildings is highlighted. Viitanen et al.
reported that mold fungi grow above an indoor relative humidity of 75% and within
a temperature range of 5-40 °C' [217]. This finding was confirmed later by Rowan et
al. [187]. Sedlbauer [192] developed a model based on fungi germination time, as a
function of the temperature and RH, defining characteristic curves for every type. In
his publication, different fungi types are grouped into three main categories: highly
pathogenic fungus, long exposure time pathogenic fungus, and economic fungus
(where no health hazard is found, but economic damage to the building might be
caused). The last two categories were found to have similar characteristic curves.
In this publication, it was defined that a global value below 70% RH leads to a safe
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mold-free building. This was confirmed by Moon and Augenbroe [156], who stated
that a global 80% RH is considered a reasonable limit to prevent mold growth.

To summarize, in this thesis a global threshold of 75% RH is assumed to assess
mold growth potential in humid rooms in residential buildings (such as bathrooms

or kitchens).

2.3.2 Health effects

Preventing mold growth is not the only health-related issue for ventilation systems.
In the last forty years, several studies reported that altering the indoor environmen-

tal quality can have different effects on the occupants’ health and wellbeing.

In one of the first studies relating health and indoor environment, Arundel et al. [19]
concluded that the indirect adverse health effects of relative humidity in buildings
are minimized when it is kept between 40 and 60%. This is relevant especially in
winter when higher air exchange rates can cause frequently a drop in the indoor RH
to levels below 30%. Figure 2.2 shows a summary of different reported health effects
and its dependency on the indoor relative humidity level. These results have been

the basis of many health-related effects studies in the last 30 years.
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Figure 2.2: Relative humidity and health effects - adapted from [19, F. 1].
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The relationship between bacteria and viruses and low relative humidities has been
studied for more than 70 years. Dunklin and Puck [65] identified in 1948 that
the slope of the atmospheric bacteria killing process is strongly influenced by the
relative humidity. This means an indoor environment with 50% RH would much
more quickly kill the airborne microorganisms than an environment with 20% or
80%. More recently, Lowen et al. [140] observed that Influenza virus has a varied
sensitivity to relative humidity. They concluded that most virus particles are stable
when relative humidity is below 30%, and transmission rate decays strongly around
50% RH. Ahlawat et al. [3] insisted on the strong correlation between the low RH

in indoor spaces and the airborne transmission of COVID-19.

Additionally, Fisk et al. [81] reported strong evidence that poor indoor environ-
ments can significantly influence rates of respiratory disease (like allergy and asthma
symptoms) and sick building syndrome (SBS). The sick building syndrome defini-
tion usually refers to a ”collection of nonspecific symptoms including eye, nose and
throat irritation, mental fatigue, headaches, nausea, dizziness and skin irritations,
which seem to be linked with occupancy of certain workplaces” [227]. Although
this concept was first studied in office buildings, it has also extended to residen-
tial buildings [88]. Besides the relative humidity, CO, concentration has been also
typically correlated with the occurrence of sick building syndrome. For instance,
Erdmann et al. [70] studied the relationship between carbon dioxide concentration
and sick building syndromes in office buildings. Their findings suggest that an in-
crease of 100 ppm in C'O, concentration is significantly associated with a 10 to 20%
higher probability of sore throat and wheeze symptoms. Other studies found asso-
ciations between poor IAQ (represented by C'O; and other contaminants) and other

symptoms, like tiredness and exhaustion, headache, mood change, or anxiety [219].

Furthermore, a large number of potential contaminants have been studied to deter-
mine their contribution to poor TAQ. In addition to the RH and C'O, concentration,
other substances were reported (which could be dangerous), such as volatile organic
compounds (VOC), particulate matter, formaldehyde, benzene, carbon monoxide,
nitrogen oxides, or radon, among others [48, 1]. The main indoor pollutant sources
are the occupant activities [212] as well as building or furniture materials [232]. In
some cities, outdoor air pollution is also significant, and filtering the outdoor air is
the main task of residential ventilation [40]. Ventilation control systems are only

able to reach outdoor air quality without additional filtering or air cleaning.

These listed pollutants require mostly complex measurement systems and state-of-

the-art sensors, to properly monitor their concentration in indoor environments. In
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that sense, C'Oy has always been widely accepted as an TAQ indicator, due to the
comparable lower measurement costs and its high correlation with other human-
related contaminants [6, 70]. Establishing relationships between C'Oy concentration

and health effects has always served this purpose.

Some authors studied the relationship between C'O, concentration and bioeffluents
or human odors as well. Haghighat et al.[97] compared the objective discomfort
effects caused by different variables (such as indoor temperature and humidity)
and contaminants (such as formaldehyde or VOC) to the human perception of this
discomfort in an office building. Results suggested that the analyzed building pre-
sented "sick” symptoms objectively, but the occupants’ complaints were associated
with perceived TAQ rather than measured parameters. The perceived IAQ of the
occupant is another key driver for actions regarding ventilation systems, and should

not be neglected while studying control strategies.

2.3.3 Indicators

The Air, Infiltration and Ventilation Center (AIVC) [53] recognized C' O as an TAQ
indicator because of its high correlation with other contaminants. The predicted
percentage dissatisfied or simply percentage dissatisfied (PD) is used in most mod-
els to evaluate the user satisfaction with the indoor air quality. This concept was
first introduced by Fanger to rate thermal comfort [76] and afterward extended to

indoor air quality [77]:

Percentage dissatisfied: “An estimation of how many people will find thermal
comfort conditions satisfactory. Considering indoor air quality, the dissatisfied are

those who found the air quality unacceptable.”

The European standard DIN EN 16798-1 takes into account the outdoor air pollu-
tion and suggests four IAQ categories based on the C'O; concentration above outdoor
level and the expected percentage dissatisfied, area, and type of room (bedroom and
living room) [60, p. 50, T. B.2.1.4-1]. Table 2.2 shows these categories. This is an
update of the standard DIN EN 15251 [59]. This standard has been extensively used
in the last ten years and can still be found in several publications since it has not
yet been updated at a European level. The air quality categories correspond to an
associated expected percentage of dissatisfied occupants, based on different studies.
Category IV is considered as inadmissible. Nevertheless, it should be mentioned

that these corresponding categories are for energetic calculations in continuous ven-
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tilation systems. A similar structure using North American guidelines can be found
in the US-standard ASHRAE 62 [9].

C' Oy above outdoors  C'O, above outdoors

Category . Expected PD [%]
living room [ppm] bedroom [ppm]
I 950 380 15
II 800 550 20
11 1350 950 30
IV >1350 >950 40

Table 2.2: Air quality categories from DIN EN 16798-1 [60, p. 51, T. B.2.1.4-2].

Furthermore, the IEA-EBC Annex 68 [1] reported long and short-term exposure
levels for different contaminants and suggested using an aggregation of the DALY
(Disability adjusted life year) and ELV (Exposure limit value) approach for multi-
contaminant evaluation. The DALY indicator estimates the equivalent number of
years lost from premature death and disability due to exposure to a certain con-
taminant, making it suitable for long-term exposure evaluation. On the other hand,
the ELV presents a simple approach by comparing an instantaneous measurement
of a contaminant with a certain threshold value, with only two possible outputs
(below or above). Turner et al. [206] suggested to use the DALY approach, but

monetarizing the outcome to compare the impact of different contaminants.

Coydon [49, p. 55, E. 76] used an absolute threshold for COy (1000 ppm) and inte-
grated over time the difference between the instantaneous concentration values and
this threshold whenever it is exceeded. The time integration is also recommended
by the Annex 68 [1] with the ELV approach. This approach is suitable to evaluate
sudden peaks of high exposure and its relative impact in comparison to long ex-
posure to slightly high concentrations. Therefore, it is used as the main indicator,
although the value of the C'O, threshold is further discussed.

This C'O, concentration threshold varies according to the source. According to the
AIVC [6], 100.000 ppm will lead to death. For occupational hygiene 5000 ppm is
the absolute limit. For TAQ purposes, between 1000 and 1500 is recommended.
The experts’ commission of Annex 68 [1] concluded that a 1250 ppm short-term
exposure is acceptable. The American standard ASHRAE 62 [9] takes 1000 ppm
as a valid limit. The German Ministry of Environment (Umweltbundesamt [207])
states that 1000 ppm is hygienically safe, between 1000 and 2000 is elevated and
above 2000 ppm is unacceptable. The DIN EN 16798-1 [60] suggests using 1350 ppm
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in bedrooms and 1750 ppm in living rooms as the acceptability threshold (assuming

400 ppm as the outdoor concentration).

Nevertheless, the occupant discomfort with the indoor environment can also be re-
lated to perception, rather than to measured unhealthy environments. This means
that an indicator related to this subjective perception should be included while con-
sidering ventilation control strategies. In that sense, Fanger [77] created an indicator
of perceived TAQ related to bioeffluents and human odors. The used measurement
unit is the decipol and was defined as ”the pollution caused by one standard person
(...) ventilated by 10 ﬁ of unpolluted air”[77, p. 3]. Fanger associated this per-
ceived air pollution with occupant dissatisfaction (% percentage dissatisfied - PD)
and ventilation rate. To build a relationship between discomfort and C'O,, the olf
unit must be related to the indoor concentrations, as shown in the European guide-
line for ventilation requirements [48]. Fanger fitted the PD values with the C'O;

concentration in a logarithmic equation, defined in Equation 2.8.

PDranger = 395 - exp (—15.15 - CO; %) (2.8)

Gunnarsen and Fanger [94] further studied the adaptation of the occupant to differ-
ent indoor environments. They concluded that adaptation improves the acceptabil-
ity of TAQ when it is polluted by human activities, though they might be neglected
if sufficient ventilation is assured. They extended the decipol-model in adapted and

unadapted environments.

Analogous to the decipol, Jokl [118] related human odor intensities with human
COy production in a new unit called decicarbdiox. Its scale is also logarithmic,
following the findings of Fanger [77]. Jokl introduced the concept of adaptation of
the occupant to the environment, by creating two different functions that associate
percentage dissatisfied and C'O, concentration (Equations 2.9 and 2.10). A summary

of the reviewed functions is shown in Figure 2.3.

PD okl,unad — 5.98 2.9

Jokl,unad = €XP ( + (55833) (2.9)
O, ~0.25

PDjoriaa = 5.98 2.10

Jokl,ad = €XP ( + (167353) ( )
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Figure 2.3: Comparison of available dissatisfaction models due to C'Oy concentra-

tion.

For unadapted persons optimal (PD=20%) and admissible (PD=30%) values are
1015 ppm and 1570 ppm. For adapted persons optimal (PD=20%) and admissible
(PD=30%) values are 2420 ppm and 4095 ppm. These models that correlate CO,

room concentration and user dissatisfaction are further referenced in chapter 4.3.

In this work, a general limit value of 1250 ppm is considered, following the recom-
mendation of the experts’ group in the Annex 68 [1], and used as the global threshold
in the Equation 2.11. This value corresponds to the inflection point, where almost
every studied model surpasses the 30% dissatisfaction threshold, which is usually
acknowledged as the admissible limit. Equation 2.11 defines the ACOs indicator (in
ppm), which is used to evaluate the performance of ventilation control strategies re-
garding indoor air quality. This indicator is only relevant when a room is occupied,

thus the integration is done over the total time when a room is occupied (occ).

Indoor relative humidity arises as an additional health-related indicator, and the
definition of the acceptability limits is explained in the next section together where

the relationship between relative humidity and hygrothermal comfort is described.

ACO, — Z mazx(0; COy — 1250)

(2.11)

occ
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2.4 Hygrothermal comfort
2.4.1 Influence of ventilation

Ventilation systems without HVAC integration are not primarily responsible for
the regulation of the indoor room temperature in winter. In countries where the
outdoor temperature is mostly below indoor temperature, summer night ventilation
can help reduce cooling loads [193]. Extremely high indoor temperatures are not
only responsible for discomfort, but also associated with sick building symptoms, as
mentioned before in Section 2.3.2. Nevertheless, residential ventilation systems can
contribute to improving the occupant’s comfort. The effect of balanced ventilation
systems with heat recovery on the indoor relative humidity is also considerable. In

this section, some of the most relevant publications on the subject are reviewed.

High indoor RH may add sensitivity to temperature changes. In residential buildings
without active cooling systems, the adaptive comfort model is suggested for the
evaluation of indoor thermal comfort [60]. Research stated that the adaptive comfort
model limits can be shifted when considering the relative humidity, suggesting that
comfort temperatures are lower when humidity is high [214]. The difference in
comfort temperatures between high and low humidity environments is as high as
4°C'. In another publication [204], the upper humidity limits to prevent respiratory
discomfort of occupants were studied (focusing more on summer conditions). The
upper limits as a function of the indoor temperature and relative humidity are
illustrated in Figure 2.4. This model includes air temperature and humidity (as
vapor pressure) to predict the percentage dissatisfied, and it was obtained out of
laboratory tests with occupants and their exposure to different conditions. Their
findings report that a change of 1°C' had the same effect on acceptability as a change
of 5% at 25°C. These findings were later confirmed in further studies [24, 119].
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Figure 2.4: Upper limit relative humidity and discomfort - adapted from [204].

On the other hand, extremely low values of indoor relative humidity are often as-
sociated with discomfort in winter. For instance, Sunwoo et al. [200] studied the
physiological response to low humidity values. Results showed that the dryness af-
fects the human body significantly for a RH below 30%, and becomes critical around
10%. Besides, occupants felt colder when exposed to 10% RH than 30 or 50%, at
the same room air temperature. This could have a direct effect on the manual con-
trol of heating systems. In another study, Wolkoff [226] illustrated the relationship
between different symptoms associated with dry environments. According to their

findings, dryness is present mainly in the throat, nose, eyes, and skin.

The incorrect design of ventilation systems can cause thermal discomfort to occu-
pants. Jokl studied this phenomenon and defined it as "unwanted local cooling of
the body. (...) Sensitivity to draft is greatest where skin is exposed at the head and
ankles”[119, p. 21]. Draft basically depends on the temperature of the airflow, the
mean air velocity, and the degree of turbulence. Therefore, the supply air temper-
ature acquires relevance to avoid local discomfort issues. Draft is usually included
in the international standards for thermal comfort and ventilation systems [11, 61].
For instance, in highly airtight buildings (i.e. passive houses) the occurrence of draft
has already been registered and can have consequences not only to the comfort of

the occupant but also economic consequences for landlords [55].

However, the focus of this thesis is on fagade-integrated decentralized ventilation

systems. Merckx et al. [148] compared the draft performance of three decentral-
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ized ventilation units using computational fluid dynamic (CFD) simulations. He
concluded that the draft risk is almost always low for decentralized ventilation sys-
tems, given the low air speeds in the room. These findings were later confirmed by
Horberg [107]. In her master thesis, air speeds and temperature were measured in
a test chamber with two facade-integrated decentralized ventilation systems in win-
ter conditions. It was found that draft risk can only occur at neck height (around
1.7 m), especially with cold supply air temperatures, but should not overcome the
10% dissatisfaction threshold. Wu et al. [229] also investigated the influence of the
supply air temperature, who concluded that there was no significant vertical room
temperature difference for mechanical ventilation systems, and confirmed that draft
can be only expected at the neck. Hence, it can be concluded that the draft risk for
decentralized systems is low, even for cold supply air temperatures, and will not be

further considered in this thesis.

2.4.2 Indicators

Regarding indoor hygrothermal comfort, room air temperature and relative humid-
ity are the essential indicators. However, residential ventilation systems are not
responsible for controlling the indoor room temperature. In that sense, the RH is

taken as the main comfort indicator in this thesis.

Coydon defines two equations for the upper and lower admissible humidity limits
[49, p. 55, E. 74-75], where again the difference between the instantaneous value of
the relative humidity is compared to a certain threshold, and integrated over the

total time of an occupied room:

max(0; RH — 70

ARHup,COydcm - Z ( occ ) (212)
max(0;40 — RH

AFi}Ilo,Coydon = Z ( ) (213)

occ

These equations are used in this thesis to analyze the performance of the venti-
lation systems in terms of the indoor RH, but with a redefinition of the selected
threshold values. To define these threshold values, the RH influence on health (Sec-
tion 2.3.2) must also be considered. The norm DIN EN 16798-1 defines three indoor
air categories for the humidification of air in centralized HVAC systems (Table 2.3).
Category IV is considered as inadmissible. Besides, the absolute humidity must be
kept under 12 k%. These results are the same in the standard ASHRAE 55 from the
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United States [11].

Category RH for RH for humidification
dehumidification [%] %)
I 50 30
II 60 95
I11 70 90
v >70 <20

Table 2.3: Categories for air humidification and dehumification, according to DIN

EN 16798-1 [60, p. 52, T. B.2.2-1].

Considering as well the mold growth protection and health issues (Section 2.3) as-
sociated with indoor RH values, two global acceptability thresholds are defined for
this thesis: 25 and 75%. The final indicators are calculated by integrating over time
the difference between these limits and the actual value as previously suggested.
Equations 2.14 and 2.15 describe these indicators. The indicator ARH,, is relevant
in the humid rooms (kitchen and bathroom), and the indicator ARH;, in the dry
rooms (bedrooms and living room) - in %. These indicators intend to consider the
effects of the indoor relative humidity in every analyzed aspect: building protec-

tion against mold growth, health effects on occupants, and humidity influence on

hygrocomfort.
max(0; RH — 75
ARH,, =Y ( — ) (2.14)
120 — RH
ARH, =" maz(0; 25 — RH) (2.15)

occ

The enhancement of thermal comfort in summer conditions through decentralized
ventilation falls out of scope in this thesis and is not contemplated. Draft rate is also
neglected in this study since the target of the ventilation control strategy would be
to minimize the airflow rate (already considered in the minimization of the energy
consumption), and is also strongly related to the dimensioning and positioning of

the devices in the room.
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2.5 Noise

Another central issue for decentralized ventilation systems is noise pollution. Manz
et al. [145, p. 46] concluded that the ”(...) most critical for successful applications
of single room ventilation units are the acoustic properties. Indoor sound pressure
levels of the investigated units are too high for many applications. Additionally,
because of the transmission of outdoor noise through the units, the applications
of the investigated units are limited to cases where a low (...) sensitivity of the
building occupant for noise exists. If the requirements are higher, sound reduction
in the units has to be increased”. Mahler et al. [141] studied the performance of
decentralized ventilation systems in 50 office buildings, and the highest number of
complaints recorded were due to noise. Lai et al. [130] surveyed 46 apartments in
China, discovering that high noise levels were the second most frequent reason not

to use residential mechanical ventilation.

Noise pollution in residential buildings can have different sources. First, there is the
noise produced directly by the fans of a ventilation device. This is usually due to
high air speed in the ducts or a wrong position of the fans. In fagade-integrated
decentralized ventilation systems, the fan is close to the occupants, and therefore the
risk of disturbance is considerably higher. If these change their direction periodically,
the whole process is often annoying to the human ear [49]. On the other hand, using
mechanical ventilation usually reduces the operation of windows, which is often

associated with outdoor noise pollution, especially in big cities.

A model developed by Rasmussen et al. [181] associated residential ventilation
noise levels with percentage dissatisfied. Noise levels over 30 dB(a) cause over 20%
dissatisfaction (Table 2.4). In addition, the Passive House Institute defines a limit of
25 dB(a) in bedrooms and 30 dB(a) in living rooms for the certification of ventilation
systems [169]. The standard DIN EN 16798-1 defines 40 dB(a) in living rooms and
35 dB(a) in bedrooms as the admissible limits [60, p. 55, T. 5-1].

Room class A B C D E F
Noise from building services [dB(a)] <20 <24 <28 <32 <36 <40
Occupant dissatisfaction [%)] <5 5 10 20 35 >50

Table 2.4: Class limits for residential HVAC systems’ noise [181].

Ohrstrém et al. [163] found significant differences in sleep disturbance for bedrooms

with and without ventilation systems. Following that trend, Boerstra et al. [25]
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2 Requirements and evaluation of residential decentralized ventilation

measured noise levels over 30 dB(a) in 86% of the studied bedrooms with mechanical
ventilation. The standard VDI 2081-1 calculates the sound pressure level (Ly4) of
a fan proportionally to the logarithm of the volume flow [215, p. 19, E. 13]:

Lya[dB(a)] =ox log(Vian) (2.16)

This equation corresponds to the noise measurements of Manz et al. [145]. Active
noise control is a task related to product development (design, shape, material selec-
tion, etc.), rather than to a controller. For a smart control system, noise control can
only be related to the volume flow control, as suggested in Equation 2.16. Therefore,
there will be no extra indicator that considers this aspect. Nevertheless, the noise is
considered indirectly through the device volume flow. A smart control system aims
at reducing the unnecessary air exchange rate, hence having an impact on every

indicator related to it (such as energy consumption and noise pollution).

2.6 User-friendliness

The ongoing problems between occupant behavior and smart technologies have al-
ready been stated in Chapter 1.2. In that sense, user-friendliness is another require-

ment for ventilation systems and a key aspect of a successful technology.

In a report of the AIVC [208], some key points were outlined to consider the occu-

pant’s needs in residential ventilation devices:

e The device must not only provide a solution (i.e. to mold growth) but must

be perceived by the user as useful.

e Fully automatic systems must adapt themselves to the current household.

Service failures, system bugs, or unwanted behavior are decisive for its use.

e Even the most advanced systems must be operable. For example, if a user

wants to turn the device off and it keeps running, the user will most probably
block it.

e A suitable user interface and feedback are crucial. A study suggests that

additional energy savings can be induced with adequate user feedback [45].

The industry focuses merely on meeting the requirements for building standards, and

are typically technology-oriented. Then, poor results in terms of user-friendliness

27



2 Requirements and evaluation of residential decentralized ventilation

can be expected. In general, there are insufficient studies about the relationship
between user and ventilation systems in residential buildings [103, 208]. The occu-
pant is not usually heard, and their needs might be different from the norm targets.
For instance, a recent study in China concluded that mechanical ventilation system
operation behavior differs greatly by resident and climate zone [235]. Maier [142]
carried out a survey about residential ventilation in Germany and found out that
several aspects are considered important to improve the user-friendliness: adjusta-
bility, multifunctionality, efficiency, low noise, and adequate user interfaces. In that
sense, bringing technology closer to the everyday user is a challenge that will be

further analyzed in this thesis.

2.7 Costs

The most relevant costs when designing residential mechanical ventilation systems
are the initial investment (devices and installation), operating, and maintenance
costs. Typically for mechanical ventilation systems, the heating energy losses due to
ventilation are added, since they are usually higher than the fan energy consumption.
Therefore, the annual operating cost can be defined (Equation 2.17) following the
publication of Evola et al. [73].

cost oy |[EUR] = c0Stpeat - Quent + €0ster - Etan, (2.17)

e cost,; is the electricity cost and costp.,; the heating cost, both in %

In addition, Evola et al. [73] performed a sensitivity analysis of different variables
in the operation costs of ventilation systems. To include all costs, the selected
performance indicator was the payback period. The most sensitive variables for the
cost structure are air exchange rate, price of natural gas (related to heating in Italy),

and initial investment cost.

In another study, Coydon [49] defined a holistic evaluation method for ventilation
systems, where the costs are one of the evaluated variables. Investment, mainte-
nance, and operation costs are considered here as well. In this case, a system com-
parison was carried out, concluding that decentralized facade-integrated systems

with a humidity-based control strategy have the lowest operating costs in Germany.

Furthermore, Merzkirch [149] performed a cost analysis comparing centralized, de-

centralized, and semi-centralized (centralized system with decentralized fans) venti-
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lation. Constant volume flow and demand-controlled ventilation are the considered
control strategies. For an apartment of 80 m? in a multifamily building, a semi-
centralized system with C'Os-based control has the lowest primary energy consump-
tion, followed by the decentralized systems. Volume flow, ventilation effectiveness,
and heat recovery efficiency pose a high sensitivity for this value. The costs for
these systems are high in comparison to a dwelling without ventilation. Merzkirch
estimates a payback period of around 30 years for these facilities. In this work, the
primary energy consumption of the ventilation systems was carefully studied, but
annual hourly-profiles for the cost calculations are assumed. In contrast, Evola et
al. [74] obtained different payback periods, of around two years for extract ven-
tilation and four years for balanced ventilation systems in Italy. In this case, the
authors simulated daily ventilation profiles, assumed a constant heat recovery effi-
ciency, and neglected summer ventilation. This last assumption drastically reduces
the annual costs associated with ventilation systems, therefore obtaining shorter
payback periods than reported by Merzkirch. In both studies, the selection of a

different controller only affects the operating costs.

A ventilation control strategy can only influence the operating costs. Similar to
noise, the operating costs are directly associated with the primary energy consump-
tion. Therefore, costs can be evaluated through the energy consumption and are

not directly considered in this thesis.

2.8 Summary

Residential decentralized ventilation systems and their control strategies must ac-
count for the valid regulatory framework, the required targets, and the influence of
the user at the same time. Through a literature review, the research question 1 can

be answered as through the following points:

Research Question 1: Which aspects should a residential ventilation control

strategy consider to account for the occupant’s needs?

e A ventilation control strategy must fulfill several requirements of hygrothermal
comfort, indoor air quality, and health. Energy efficiency must be ensured in
the development of these systems. An energy-efficient system is not only inter-
esting for the user due to potential savings, but also for the manufacturer, as
an additional sales argument. In this thesis, the primary energy consumption

(Qpevent) Telated to the heat losses due to ventilation and the fan energy con-
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sumption is considered as a suitable indicator to evaluate the energetic impact

of a residential ventilation control strategy.

e Regarding health and indoor air quality, relative humidity. and carbon dioxide
seem to be widely accepted indicators. RH is not only associated with building
protection (mold growth risk) but was also found to significantly affect the
propagation of viruses and bacteria outside certain ranges. Due to their high
correlation with human bioeffluents, C'Osy concentration arises as a common
solution for demand-controlled ventilation. Indoor room temperature is not
controlled by a mechanical ventilation system in winter but becomes a relevant

variable in summer to increase thermal comfort and reduce cooling loads.

e The integration over time of the values over a certain acceptability threshold
is used to define the indicators to evaluate the performance of decentralized

ventilation. These threshold values are:

— RH must ideally be kept between 40 and 60%. The acceptable limits are
25% and 75%.

— (COs concentration acceptability limit is set to be 1250 ppm.

e Other contaminants could be suitable variables to use in ventilation control
strategies. However, there is still a need for development of reliable and af-

fordable sensors, which could unlock new controlling technologies soon.

e Key aspects such as noise, user-friendliness, and costs should not be neglected,
as they play a key role to narrow the gap between user and technology. When
evaluating a controller, noise is proportional to the logarithm of the volume
flow, and operating costs are directly related to the associated energy con-

sumption.
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3 Window opening behavior and residential ventilation

3 Window opening behavior and residential ven-

tilation

The goal of this chapter is to analyze the relationship between user and technology
in the case of residential ventilation. Occupants have two main alternatives to
ventilate a building: opening a window (natural ventilation) or operating a fan
(mechanical ventilation). In that sense, window opening behavior could provide
information about the user ventilation preferences to the mechanical ventilation
control strategies without requiring direct feedback. Figure 3.1 shows a schematic

flow chart of the research steps in this chapter.

Window opening models as Sections
ventilation user feedback 3.1/3.2

Window opening Window opening
model selection clustering

Model vs.
Measurements Profile diversity

comparison

Data collection

Window opening real time

learning for each user Section 3.3

Real time logistic Real time window
regression opening detection <

User window opening
preferences without

window contact

User feedback is
necessary

Figure 3.1: Schematic flow diagram of research method in this chapter.

Section 3.1 provides a literature review on the subject and describes the existing
methods to model window opening behavior. In section 3.2, the representativity of
available window opening models is investigated. The aim is to study the suitabil-

ity of these models as a replacement for user feedback. A measurement campaign
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was carried out, and the window opening behavior in two apartments (selected us-
ing a novel clustering method) is compared to the available models. As the need
for individualized solutions arises, the possibility of learning the occupant ventila-
tion preferences without requiring additional sensors is studied in Section 3.3. A
real-time logistic regression scheme is proposed to identify window opening drivers,
together with an algorithm to estimate a window opening action from the available
indoor environmental sensors (as a potential replacement of window contacts). In
the end, the need for user feedback to provide an occupant-centered control strategy

is highlighted. The findings in this chapter are summarized in Section 3.4.

3.1 Modeling window opening behavior

This section deasl with the occupant window opening behavior models. The oc-
cupant behavior concerning window opening has been studied in depth, both in
residential and non-residential buildings. This section will summarize the most im-
portant publications and pick some models for further study. A complete review of

window opening modeling techniques is available in the literature [51].

Researchers have been trying to model the occupant behavior using different ap-
proaches to integrate them into building performance simulation more realistically.
The first efforts targeted office buildings. Fritsch et al. [84] developed one of the
first published models. They simulated the occupants’ window opening angle with
a Markov chain. Nicol et al. [162] simulated window opening a logistic regression
model dependent on the outdoor temperature. Besides, Herkel et al. [105] used also a
logistic regression model, depending on the outdoor and indoor temperature, season,
and occupancy patterns. The model developed includes the arrival and departure
of occupants into office spaces and the length of the opening. In addition, Rijal
et al. [185] developed a model regarding the adaptive thermal comfort algorithm,
based on the indoor and outdoor temperature. Haldi et al. [100] studied several
probabilistic approaches for window opening modeling. Their findings associated
occupancy profiles with action probabilities and integrated Bernoulli processes with
logit probabilities for window opening with Markov chains for occupancy. Moreover,
Yun et al. [233] integrate user interaction frequency types (active, medium, passive)

to categorize their opening probabilities.

Among the existing window opening models for residential buildings, a probabilistic
model based on indoor and outdoor environmental variables is the most popular

approach. For instance, Schweiker et al. [191] modeled the proportion of windows
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open, taking into account indoor and outdoor temperatures. Furthermore, Ander-
sen et al. [13] modeled opening and closing actions for building performance simu-
lation, using multivariable logistic regression. Moreover, Cali et al. [32] developed
a stochastic model to simulate opening and closing actions using data from over
300 windows. Jeong [115] studied the influence of different indoor activities (like
cleaning or cooking) in the window opening behavior. In recent years, more complex
modeling approaches were developed to improve the performance and generalization
of the previous approaches [33, 99, 146, 154].

Since logistic regression is the most popular approach to model window opening
behavior, three models using this technique in residential buildings are selected
and compared. Logistic regression is a simple classification method [180] based on
the concept of odds ratio (OdR - Equation 3.1). The odds ratio is defined as the
probability of an event happening (p) over the probability of not happening (1 — p).

p
OdR = —— 3.1
= (31)
The logarithm (or logit) of the odds ratio transforms an output of the range [0, 1]
into the entire real number range. When speaking of linearly separable data, the
output of the logit function can be fitted with linear regression. Hence, Equation

3.2 defines the logistic regression function:

log (%) = a+ Bozo + f171 + ... + By (32)

e « is the intercept

e [3; is the regression coefficient of the explanatory variable z;

Then, several different explanatory variables can be used to predict the state of
the window in different scenarios using logistic regression. The selected models are
described as follows, and their regression coefficients are listed in Table 3.1. They

are valid for every season in renovated residential buildings.

1. Schweiker et al. [191]: this model calculates the probability of observing an
open window, depending on the indoor and outdoor temperature. Measure-
ments were collected in two apartments in Switzerland in 5-minute time inter-
vals. The measured dwellings did not have any air-conditioning or mechanical

ventilation. The published model includes only living room windows.
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2. Andersen et al. [13]: in this case, window opening and closing actions were
modeled independently. Several indoor and outdoor environmental variables
were fitted to the model, as well as season or time. Measurements were col-
lected in Denmark in 10-minute time intervals, distinguishing between owned
or rented, with natural or mechanical ventilation. The obtained models are
divided into four groups. In this thesis, the model corresponding to rented
apartments with mechanical ventilation (group 4) is considered. The model

distinguishes between living rooms and bedrooms.

3. Cali et al. [32]: window opening and closing actions were modeled indepen-
dently. Measurements were taken in multifamily buildings in south Germany
with 1-minute time intervals, with over 300 windows measured for three years
in total. The only published coefficients correspond to the measurements in
the living rooms of one particular section of a building (B2E1) during the day,

where only exhaust ventilation was available.

Explanatory Schweiker et al. Andersen et al. Cali et al. [32]
variable [191] Neuchatel [13] Group 4 Living B2E1
Intercept 0.711 -3.56 -7.795

Troom [°C] -0.3077 -0.38 0.134

RH,oom [%] n.a. n.a. n.a.
COsroom™ n.a. 0.30 55115
T [°C] 0.3813 0.059 n.a.

RH pp (%] n.a. 0.029 n.a.
Solar rad. [IW/m?] n.a. 0.35 n.a.
Solar hours [h] n.a. 0.057 1n.a.
[uminance [lux] n.a. 0.026 n.a.

Table 3.1: Logistic regression coefficients of window opening for each explanatory
variable in three available models from the literature in winter (Solar rad. = solar
radiation, n.a. = not available). *Room C'O, concentration (Andersen et al. [13] in

[log(ppm)] and Cali et al. [32] in [ppm™1]).

Some of the key variables to predict window opening behavior used in these models
are taken to study the sensitivity of these models to changes in the explanatory
variables as follows. Only the variables present in more than one model are treated

(indoor and outdoor temperature and room C'O, concentration). The indoor RH is
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not present in any of these models. For the other variables, the following values are

assumed constant for the sensitivity analysis:

e Ambient RH = 70%

Solar radiation = 300 %

Solar hours = 7.5 hs

Illumination = 100 lux

Season = Winter

The following figures show the sensitivity of the models to the variation of the main
variables. Figure 3.2 depicts a comparison of indoor room and ambient tempera-

tures. C'Oy concentration is here assumed to be 750 ppm.
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Figure 3.2: Dependence of the different window opening models on the ambient

temperature at three different indoor room temperature levels.

The scales of the plot are widely diverse, being ambient temperature strongly rele-
vant only in the model of Schweiker et al. For instance, given an outdoor temperature
of 10 °C' and an indoor temperature of 21 °C’, the model of Schweiker et al. shows
a proportion of windows open of 0.14, and the other models an opening probability
of 1.2 E-10 and 3.3 E-3. Besides, the shape of the curves is contrasting: Andersen
et al. report a decreasing opening probability with increasing ambient tempera-
ture, Schweiker et al. the opposite, and Cali et al. constant values. Likewise, in

the models of Andersen et al. and Schweiker et al., the window opening increases
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when the room temperature decreases, while Cali et al. modeled exactly the con-
trary. The distinctive profiles repeat in Figure 3.3, for room temperature and C'O,

concentration. The ambient temperature is assumed to be 5 °C'.
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Figure 3.3: Dependence of the different window opening models on the C'Oy con-

centration at three different indoor room temperature levels.

These results might indicate that the obtained coefficients respond to a particular
behavior. Nevertheless, the reported coefficients are so diverse that it appears diffi-
cult to define which models are the most representative. These studies were carried
out in different countries in Europe, where different weather conditions may affect
the obtained models, as well as cultural background and psychological differences.
In the end, the models aim at providing a tool to integrate probabilistic window
opening in building simulation, and it is the task of the researcher to select the
suitable model for its purpose. Table 3.2 reflects a summary of the advantages and

drawbacks of each evaluated model.
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Schweiker et al. [191]

Andersen et al. [13]

Cali et al. [32]

Simple model with

two variables

e Opening and

closing separated

Opening and

closing separated

Only living room

model

e Bathroom and

kitchen ignored

n
)
oD
f—é e Only temperature- e 14 explanatory Over 300 windows
_%3 dependent variables measured
<
e Probabilistic e Dwellings with Time resolution
opening angle MYV included high
e Other influence e More complex for Data from a single
factors ignored BPS apartment
w0
f% e No time-related e Lower time Presence data
:% intercept resolution ignored
—
A

Time only as

b day77 or 7 Ilight”

Table 3.2: Advantages and drawbacks of the evaluated window opening models (MV

= mechanical ventilation. BPS = builing performance simulation).

This review of available models creates a basis to compare to building measurements
and helps to gain insight into the topic of window opening behavior in residential
buildings. In the next sections, these models are compared to real window opening

measurements to study the representativeness of different behaviors.

3.2 Representativeness of available models

This section aims at investigating the representativeness of the window opening
models. The selected probabilistic models are compared with real building mea-
surements. The data from different renovated apartments are clustered and diverse
profiles are identified. These measured window opening profiles are compared to
the selected window opening models from the previous section. The results of this

section are published partially in a scientific article [38].
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3.2.1 Data collection

Two measurement campaigns are considered for the study of the window opening
behavior in residential buildings. The first one was carried out between 2011 and
2013 in a 16-story multifamily building in Weingarten Quartier (Freiburg, Germany),
which was retrofitted to passive house standard [120]. This campaign was not carried
out within the framework of this thesis. The window opening was particularly
recorded in 27 dwellings over two years, in 6-minute time interval measurements.
Other variables, such as indoor room temperature, thermostat control, and whole-
dwelling power consumption, were also measured. The absence of data regarding
relative humidity and C'O, makes this data set inadequate to study the reliability
of the window opening models. This data is used to train the proposed clustering

algorithm in the next sections.

A second measurement campaign was carried out in winter 2018/2019 (138 days
- from November 2018 to April 2019), also in Weingarten Quartier, Freiburg. In
this case, ten apartments from retrofitted multifamily buildings were monitored,
only where a mechanical balanced ventilation system was available. The dwellings’
area range from 47 to 88 m? and have between one and three occupants. The
design air exchange rate was 0.45 h™!. Sensors were placed in the dry rooms -
bedroom and living room - to measure indoor temperature, relative humidity, and
C Oy concentration, and in the humid rooms - bathroom and kitchen - to measure
only indoor temperature and relative humidity. Window contacts were installed in
six of these ten apartments, resulting in a total of eighteen measured windows (six
living rooms, seven bedrooms, three kitchens, one bathroom, and one storeroom).

Table 3.3 summarizes the sensors’ properties.

Sensor Variable Range Accuracy

Temperature [°C]| 0-50 0.21

HOBO MX CO2  Relative humidity [%]  1-90 2
COs [ppm] 0-5000 50
Temperature [°C]| 0-50 0.35

HOBO U12 . .

Relative humidity [%] 10-90 2.5

HOBO UX90-001M State 0-1 -

Table 3.3: Sensors’ properties for the second measurement campaign.

Figures 3.4 and 3.5 illustrate an exemplary floor plan of two of the measured apart-

ments, which are analyzed in further sections as apartments 1 and 2 respectively,
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used in Sections 3.2.4 and 3.3. Apartment 1 has the smallest area among the mea-
sured ones (47 m?), and apartment 2 has the largest one (88 m?). Figures 3.6 and
3.7 show an example of the sensor placement in these dwellings. This data is used
to test the relationship of window opening behavior with other variables (such as

RH or C'O3). The mechanical ventilation operation was not measured.

ﬁ i

?:ﬂ::ﬂ:

Figure 3.4: Schematic floor plan in  Figure 3.5: Schematic floor plan in

apartment 1. Blue rooms are provided apartment 2. Blue rooms are provided
with supply air, and red rooms with ex-  with supply air, and red rooms with ex-

haust air. haust air.

Figure 3.6: Window contact placement. Figure 3.7: TAQ sensor placement.

3.2.2 Clustering method development

Clustering is the process of classifying data into different groups, aiming at finding
similarities among them. A cluster is defined as a subset of objects in the database
that belong to the same group. D’Oca et al. [63] concluded that clustering leads to
an appropriate characterization of the occupant behavior regarding window open-
ing. In this section, the window opening behavior of 27 measured apartments (first

measurement campaign) over two years will be clustered as a time series, aiming at
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obtaining distinctive behavioral profiles. This methodology is published in a scien-
tific article [38]. The main strengths and challenges of clustering as a process are
[153]:

e The attributes that differentiate one cluster from another are unknown and

have to be estimated

e The data is unlabeled. This means there is no objective data on how to
distinguish if one point belongs to a certain cluster or another one (except a

priori knowledge provided by domain experts)
e The more data, the more complex the problem becomes

e Algorithms are influenced strongly by noisy data, missing values, and out-

liers. Hence the importance of an appropriate pre-processing of the data is
highlighted

The innovation in this method lies on representing time series data with feature
vectors, rather than data points, and its application to occupant behavior data in
residential buildings. Instead of comparing a whole time series or an average profile
(shape-based clustering), predefined indicators represent the data in a multidimen-

sional space (feature-based clustering).

The shape-based process is faster (since only pre-processing of data is required to
perform the clustering), although being usually more computationally expensive
given the number of compared data points. On the other side, a feature-based
approach compares feature vectors, reducing the number of data points. The best
performing features are extracted typically from the a priori knowledge about the
data and statistical indicators [95]. The main advantage of this method lies in
the fast calculation process and its compatibility with other algorithms. A major
disadvantage is the potential loss of information in case of not carefully selecting the
mentioned features. Figure 3.8 shows the shape-based process with the whole time
series, and Figure 3.9 illustrates an exemplary features-based representation using

the same data.
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tion of the 27 apartments.
profiles for the 27 apartments.

Three types of features are considered: statistical (mean, standard deviation, kur-
tosis, and skewness, as defined in the literature [104]), time series decomposition-

related (seasonality and trend [220]), and behavior-related features [96], listed in
Table 3.4.

Feature Definition
Weekend score (WkS) > Xweek=Xweekend
X
Seasonal score (SS) D X summerX;X winter
Day-night score (DNS) S Xaay=Xnight
X
Hour change score (HCS) 3 Xn1=Xn
Xn
StCh
Average state changes (ACS) - ogh

Table 3.4: Definition of potential occupant-related features [96].

e X is the average value of a variable X

e StChgy, means changes of state per hour

To calculate the distance between the data points (features), the Euclidean distance

is selected, mainly due to its simplicity and popularity (Equation 3.3) [109].
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(3.3)

Researchers established in the last years that the use of conventional algorithms in
the clustering of static data generates results with acceptable quality and efficiency,
in terms of time and accuracy [2]. In this proposed method, the centroid-based
k-means algorithm was selected [180]. This algorithm is simple and understandable,

but the number of clusters is an input parameter and must be known beforehand.

In addition, the goodness of clustering must be evaluated. The Dunn Index (DI
- Equation 3.4) presents a widely-used measurement technique of cluster validity.
The DI presents the best performance regarding the k-means clustering procedure
[126].

_ : . d(ci7 Cj)
b= 21, {J={Einm {maxkl__nc(diam(ck)) }} (34)
d(ci7 Cj) = in {d(l’, y)} (35)
TEC;,YEC;
diam(c;) = max {d(z,y)} (3.6)
yeci

e 1. is the number of clusters
e d(x,y) is the euclidean distance between two elements

e ¢; is the centroid in cluster i

The Dunn index compares the distance between clusters (inter-comparison, to be
maximized) and the diameter of every cluster (intra-comparison, to be minimized).
Hence, a better clustering configuration means higher values of the Dunn index. The
chosen implementation of DI compares the distance between the two closest points
among clusters (minimum) with the maximum distance between cluster-centroids
altogether, which does not collide with single-dwelling clusters whose diameter is

zero. The working principle of this indicator is illustrated in Figure 3.10.
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Figure 3.10: Dunn index - Intercluster (two different cluster points x and y) and

intracluster (two points in the same group x; and z5) comparison.

Finally, a feature elimination procedure is carried out for every considered variable.
All possible combinations of features and number of clusters are tested. The result
with the highest DI is selected as the optimum solution. The whole procedure is

summarized in the following steps:

1. For a determined combination of features, calculate the minimal number of
clusters that explain a selected threshold of 80% of the variance applying the

k-means clustering method [180].

2. Calculate the Dunn index for the different number of clusters between the
obtained minimum and an imposed limit of 12 clusters, as it was considered

sensible for a total of 27 dwellings.

3. Selection of the best combination of features and number of clusters that result

in the highest Dunn index — a priori defined features are preferred [95].

4. Analysis of results and final selection of optimal combination considering Dunn

index, number of clusters, and number of features involved.

3.2.3 Clustering the measured window opening profiles

The clustering method was applied to monitoring data of the first campaign (Section
3.2.1). Window opening in the bedrooms is considered in 6-minute intervals. The
data is divided into training and test data sets. The training data corresponds to
the year 2013, and the test data to the year 2012 (the year 2011 was neglected due to
measurement errors). The training data is used to obtain the representative features
to characterize window opening behavior and validated using the test data. These

features are applied to the measurements of the second campaign, and distinctive
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behaviors in every room are selected and compared to the probabilistic window

opening models.

Data pre-processing is key to the success of this procedure. Firstly, the data corre-
sponding to absence periods was neglected by estimating the presence profile with
the instantaneous power consumption [34]. Secondly, faulty data (sensor errors)
were removed. Finally, the data is standardized by z-score normalization, using the

module provided in the scikit-learn package [172].

After pre-processing the data, the data is clustered several times, using all possible
feature combinations. The Dunn index was calculated iteratively for every possible
combination of the number of clusters and features, and the highest values are

presented in Table 3.5.

Features Clusters Dunn index
Mean, seasonality, skewness 3 1.8373
Mean, Hour-change score 8 1.8025
Mean, Hour-change score, Average state changes 8 1.7924
Mean, skewness 3 1.7773
Mean, seasonality, trend, skewness 3 1.7706

Table 3.5: Feature combinations with the highest Dunn index.

Results with fewer features are preferred for the sake of simplicity. The feature com-
bination with the highest Dunn index was discarded since a minimum of four clusters
was required. At least four clusters are needed to represent 80% of the variance. This
is illustrated in Figure 3.11, where a comparison of the variance explained between
whole time series and features-based clustering is presented for the second-best re-
sult in Table 3.5 (eight clusters). Therefore, the mean and hour-change scores were
selected as the features to represent the window opening behavior. The resulting
clusters with the training data set and the selected features are depicted in Figure

3.12.
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Figure 3.11: Percentage of variance explained with increasing number of clusters.
Comparison between features (Mean and Hour-change score) and whole time series
clustering procedure.
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Figure 3.12: Cluster structure for training data set of observed proportion of win-

dows open with features extraction. Dashed lines represent the daily mean profile

of every cluster.

Eight distinctive profiles are obtained:

e Cluster 1: almost no changes during the day, with around 50% window opening

(probably open in warm days and closed during cold ones).

e Cluster 2: open during the day and closed while sleeping.
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Cluster 3: almost always constantly open.

Cluster 4: almost always constantly closed.

Cluster 5: similar to Cluster 2 but with fewer changes between day and night

profile, and higher night mean.

Cluster 6: small changes and low mean value without a typical profile.

Cluster 7: closed during the day and open while sleeping.

Cluster 8: similar to Cluster 2 but with lower mean values during day.

The obtained cluster structure was labeled and learned using a supervised learning
algorithm to evaluate the quality of the obtained clusters (Support Vector Machines
classifier [26], described in the Appendix A.5). Given the training data where each
point has a corresponding label (cluster number), the objective of the problem is to
define a hyperplane that separates two points of different classes with a maximal
possible margin. The test data is classified using this algorithm, and the resulting
cluster structure is illustrated in Figure 3.13. Results showed that 19 out of 27
apartments were classified into the same category in traning and test data sets, and
those who changed presented as well a different profile, which is more compatible
with the newly assigned clusters. The clusters’ description with the training data
set suits the test data set as well. The DI for the test set is 1.5086, which is lower
than the original one (1.8025) as expected.
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open with features extraction and classification. Dashed lines represent the daily

mean profile of every cluster.

On the contrary, the whole time series clustering method shows significantly lower
Dunn index values. The highest Dunn index (1.0525) belongs to a six-cluster struc-
ture, which corresponds to 50% of the variance explained. Figure 3.14 shows the
resulting cluster structure of the whole time series with six clusters. Two clusters
are equivalent (Clusters 2 and 7 from features against Clusters 3 and 5 in whole
time series), while Cluster 7 from features-based clustering was split into two single-
dwelling categories (Clusters 3 and 4). The two remaining clusters present significant
differences from each other, although Cluster 1 has lower mean values. Cluster 6 is

highly diverse and appears difficult to understand.
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Figure 3.14: Cluster structure for training data set of observed proportion of win-
dows open with whole time series. Dashed lines represent the daily mean profile of

every cluster.

To summarize, the features clustering method presents the following advantages over
a whole time series method:

e Higher clustering accuracy and prediction, given by the higher Dunn index.

e The variance explained is significantly higher in features clustering.

e Features clustering is more computationally efficient, due to dimensionality

reduction.

In the following section, this procedure is applied to the second measurement cam-
paign in Weingarten, to select three dwellings from different clusters, and compared

to the probabilistic models described in Section 3.1.

3.2.4 Comparison of measurements and available models

In this section, the performance of probabilistic models is compared against mea-
sured building data. The data set belongs to the second measurement campaign
described in Section 3.2.1. Following the clustering procedure from the previous

section, the data from the living rooms are clustered. Two clusters in the living
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room data are obtained, illustrated in Figure 3.15. The measured window opening
profiles have lower average values than the ones from the first measurement campaign
in Section 3.2.3. The difference lies in the monitoring period: the first campaign
presents yearly measurements, while the second one only winter values, which are
typically lower. The living room behavior is selected since two of the three analyzed
window opening models report coefficients valid only for living rooms (Section 3.1).
The selected apartments are highlighted for every cluster. The average measured
indoor conditions in these rooms are illustrated in Figure 3.16. The diversity of the

indoor conditions confirm the diversity of the occupant behavior.
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Figure 3.15: Cluster structure for the daily average observed proportion of win-

dows open in the living rooms in the second measurement campaign. The selected

apartments are highlighted.
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Figure 3.16: Measured daily mean indoor conditions in the living room for the two

selected apartments.

Two different profiles were taken: the mean window opening (observed proportion
of windows open) and the average opening action (1 for opening a window, 0 for no
change), to be compared to the window opening models selected in Section 3.1. This
comparison is depicted in Figure 3.17, along with the average output of the selected
probabilistic models. The outdoor environmental variables for the probabilistic mod-
els are obtained using the Freiburg weather observations from the weather station

of the German Weather Service (Deutscher Wetterdienst) in the same period [56].
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Figure 3.17: Window opening model and measurements comparison for the selected

P
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apartments. The opening probability P,,cning is used for the black lines, and the

proportion of windows open (in %) for the colored lines.
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The results of the probabilistic models are similar for both apartments, even though
the indoor conditions profiles are different in the measured apartments. In apartment
1, a window opening in the morning is registered only by the model of Andersen et
al. (Group 3 - rented apartment without mechanical ventilation), which is valid for
naturally ventilated dwellings. The model of Schweiker et al. seems to predict well
the detected openings in the afternoon in apartment 1. In apartment 2, the window
was rarely opened during the measurement campaign. In this case, the models of
Andersen et al. group 4 and Cali et al. are more suitable, given their low opening
probabilities. For instance, the model of Andersen et al. group 4 yields between one
and five openings in the whole measurement period (two openings were recorded in

apartment 2).

Even though they simulate the stochasticity of the user, the probabilistic models
depend strongly on the indoor and outdoor conditions (in the case of Schweiker
et al. and Andersen et al.) and the time of the day (Andersen et al. and Cali
et al.). This is the main reason why they usually fail to represent the diversity
of the occupants. In the case of Schweiker et al., variables such as RH or C'O,
concentration were not measured, therefore ignored in the modeling process. The
other authors found that the correlation between indoor environmental variables

and window opening behavior was negligible and consequently excluded them.

This analysis could be extrapolated to other dwellings and other room types. Re-
sults show that these models sometimes fail to represent the wide spectrum of the
occupant behavior. The studied window opening models are not developed to rep-
resent diversity, but to obtain a generalized model for building simulation, therefore
they summarized data from several measurement campaigns into a single model. A
possible solution could be to explore other modeling techniques [99]. In this sec-
tion, it is concluded that the existing window opening models are not reliable to be
used as user feedback models for residential mechanical ventilation systems, as they
fail to represent the uniqueness of the user. In the next section, logistic regression
is applied to window opening behavior to understand the drivers that motivate an
opening act in every dwelling, rather than creating models suitable for its integration

in building performance simulation.
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3.3 Window opening behavior as user feedback for mechan-

ical ventilation

In this section, the window opening behavior from the point of view of mechanical
ventilation is explored. As stated by Hong et al. [106], drivers, needs, and actions
are closely related to the occupant behavior, and the needs of the user in case of
natural and mechanical ventilation are the same: obtaining fresh air. Figure 3.18

shows a flow diagram of the proposed analysis.

Section 3.3.1
Real time logistic
regression

User ventilation

preferences

Data collection Window opening

estimation

Section 3.3.2
Real time window
opening detection

CO:2
concentration L

Figure 3.18: Schematic flow diagram of research method in this section.

The window opening models available in the literature can build different occupant
profiles. However, they miss the singularity of the human, and even though there
are tendencies to certain behaviors, each user is distinctive. As seen in the previous
section, fitting an existing logistic regression model as user feedback for mechanical
ventilation might be possible, but it would lose the nuances of individuals. In this
section, a real-time logistic regression approach is presented to identify the drivers
for window opening in every room. Besides, a window opening detection algorithm
is proposed. The goal is to use available sensors in decentralized ventilation systems
to detect when an occupant opens a window and then create user profiles. The
result of the real-time logistic regression using the estimated window opening profile
is relevant to obtain user-oriented solutions for mechanical ventilation systems, given

that window contacts are usually not available in real buildings.
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3.3.1 Learning preferences using logistic regression

In this section, logistic regression is used to quantify the relative importance of the
different measured variables for the window opening behavior in residential build-
ings. This method was reported already in the literature for the window opening
behavior in offices [63]. Models were fitted using the scikit-learn package in Python
[172]. In this case, the model learns the window opening action related to indoor
and outdoor environmental variables and time (represented by six dummy catego-
rial variables), summarized in Table 3.6. For example, a dummy variable in the
morning (6 - 10 AM) takes a value of 1 when time is in that range, and 0 outside
it. The selected input parameters could be measured with the available sensors for

decentralized ventilation systems.

Indoor parameters Outdoor parameters Time-related parameters [96]

Temperature Temperature Early morning (06-10)
Relative humidity =~ Relative humidity Noon/Lunch time (10-14)
C' O, concentration Afternoon (14-18)

Evening (18-23)
Night (23-06)
Weekend

Table 3.6: Explanatory variables (input parameters) for the real-time logistic re-

gression.

The method consists of fitting a logistic regression every day at 00:00 hs during the
whole measurement period and observing the evolution of the obtained regression
coefficients. The main hypothesis in this method is that the absolute value of the
regression coefficients stabilizes after some time, meaning that the user behavior
is consistent. In this case, the window opening actions are learned to identify the

occupants need for fresh air.

The whole measurement period consists of 138 days. The input variables are nor-
malized to [0,1], making the coefficients comparable to each other. In this section,
an additional apartment from the second measurement campaign is analyzed (apart-
ment 3). It belongs to the same cluster as apartment 1, meaning the average window
opening profile is similar. Figure 3.19 shows the average window opening and open-

ing actions profile for Apartment 3.
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Figure 3.19: Daily average window opening and opening action profile for the Apart-

ments 1, 2, and 3, respectively.
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Figure 3.20: Real-time evolution of the logistic regression coefficients in Apartment

1. Complete figure in Appendix A.1.

Figure 3.20 shows the daily evolution of the regression coefficients for Apartment
1. It shows a strong influence of the indoor C'O, concentration as a driver for
window opening. All the other coefficients have a final absolute value below 1, while
COy is around 5. The regression coefficients become stable after day 50. From
day 30 on, C'O, concentration is the variable with the highest correlation with the

window opening. When considering the window opening models, Andersen et al.
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and Cali et al. considered C'Os relevant to predict window opening actions, which

is in agreement with these results.

In the case of Apartment 3 (Figure 3.21), the most important variable at the end
of the measurement period is the outdoor temperature. In this case, coefficients
show two stabilization levels: the first one after day 40, where the indoor RH has
the highest coefficient. The second one happens after day 90, where the coefficients
become reshaped, leading to changes in the final results. Indoor temperature be-
comes also more relevant after day 90. This occurs due to weather changes since
available window opening models for summer present a stronger influence of the
outdoor temperature (priority becomes cooling). Day 90 is February 12", and in

this particular year, outdoor temperatures above 20°C' were observed.
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Figure 3.21: Real-time evolution of the logistic regression coefficients in Apartment

3. Complete figure in Appendix A.1

This proposed method helps to identify the drivers for opening a window in res-
idential buildings. This information could be applied as a part of a mechanical
ventilation controller, in which the controlled variable is defined by observing the
main occupant drivers for window opening. This method is used in Section 5.4.1,
where the occupant behavior towards the operation of mechanical residential ventila-
tion systems is studied. The main limitation of this method is that a user feedback
system (in this particular case, window contacts) are required, which are seldom

available in residential apartments. The next section deals with this issue.
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3.3.2 A real-time window opening detection algorithm

Window contacts are necessary to build a detailed profile of the opening behavior,
but these sensors are hardly ever available in dwellings. Therefore, this section
proposes a real-time window opening detection algorithm that could complement

the logistic regression method.

Within the framework of a master thesis, Halden [98] proposed an innovative model
to detect window opening using Hidden Markov Models (HMM). The algorithm is
applied to a first order difference time series of the room absolute humidity or C'O,
concentration. Results show a better performance of using C'O, than with absolute
humidity, with total accuracies ranging from 89 to 96%. Yet this method has a
limitation: it was tested only in apartments without mechanical ventilation. The
impact of opening a window on the total air exchange rate is much higher without
mechanical ventilation, and therefore a hidden Markov model can predict the window
opening action. A study from Pereira et al. [174] detected different occupant actions
in residences by combining several indoor environmental variables (namely, indoor
and outdoor temperature, water vapor pressure, and C'O, concentration). One
of these detected actions is window opening, and accuracies higher than 99.5% are
reached when using indoor and outdoor water vapor pressure as input variables. This
study also presents some limitations: only one apartment was tested (no occupant
diversity, which questions its potential generalization), and this dwelling had only
mechanical extract ventilation. In addition, the two tested windows were located
in the bathroom, where usually high punctual moisture loads are observed. The

method was not applied to the ”dry” rooms (bedroom and living room).

In this thesis, a peak-detection algorithm is applied in the window opening detec-
tion in apartments where residential mechanical ventilation is present, based on the
smoothed z-score algorithm [28]. Tt is based on the principle of statistical dispersion
[174]. The state change detection is created by comparing every new measured data
point (real-time approach) with a certain calculated threshold. If this new point
overcomes the calculated threshold, a state change is detected. The measurements
are filtered with a moving average of the mean, and the threshold is calculated using
the moving average standard deviation. In this case, the input data are the first
order differences (FOD) of the room C'O, concentration, and only window opening

(not closing) signals are considered. The algorithm is described below in pseudocode.
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Z-score peak detection algorithm
if (y[i] — meanFilter[i — 1]) > thr x stdFilter|i — 1] then
window < 1
yrali] < 0.6 % yli] + 0.4 % ygaali — 1]
else

window < 0

yrieli] < yli]
end if
meanFilter[i] <— mean(ys[i — lag : i])
stdFilter|i] < std(ypu|i — lag : 1])

The involved variables are:

e y[i]: the input variable (CO; concentration first order difference) at time 7.

o yriy: the filtered input (if there is a signal detection, the filtered input is
considered as 0.6 of y[i] and 0.4 of y[i — 1).

e meankFilter: the mean of the filtered yg;; in the last lag periods.
e stdF'ilter: the standard deviation of the filtered y in the last lag periods.

e [ag: the number of periods considered when calculating moving averages, and

must be tuned for different signals.

e thr: the threshold number of stdFilter that detect successfully a state change,

and must be tuned for different signals.

Figure 3.22 presents the results of the detection algorithm on a sample day. The
evolution of the C'O, first order differences and the algorithm threshold are illus-
trated. The algorithm detected three openings, but only one was measured (the 6
AM opening is detected successfully). Two additional incorrect window openings
are identified around 18 hs. These could be corrected by adjusting the threshold
value thr, which will also affect the window opening detection on other days. The

definition of the thr and lag values for different apartments are explained as follows.
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Figure 3.22: Sample day for real-time window opening detection algorithm, using
the first order differences (FOD) of the CO, concentration as an input variable to

detect the opening.

This algorithm was tested with data of the living room in the three apartments
mentioned before. The thr and lag values were tuned to maximize the performance
of the algorithm. A higher thr value means that higher C'O, first order differences
are required to detect an opening. A higher lag value means that the moving mean
average is calculated using longer intervalls, affecting the C'Os first order differences
as well as the moving threshold value. To evaluate the performance of the algorithm,
indicators based on ”true positives” (T'P), "true negatives” (T'N), "false positives”
(F'P) and "false negatives” (F'N) are calculated [231]:

TP

TPR= (3.7)

Acc=Tp T JTU€ j: ?1\3[ Y FN (3:8)
TP+ TN

PPVZTP+TN1FP+FN (39)

Indyy, = FPTJF% (3.10)

TPR is the true positive rate, and Acc the overall accuracy. The predictive posi-
tive rate PPV evaluates the precision of the positive values obtained. The Ind,y

indicator (optimization indicator) was defined to evaluate the performance of the
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algorithm, in terms of true prediction over errors committed. After testing the
algorithm performance iteratively with different values of thr and lag, they are de-
fined with the highest Ind,, value. The results for the three tested apartments are
displayed in Table 3.7.

Indicator Apartment 1 Apartment 2 Apartment 3
Measured WO 698 2 236
Estimated WO 446 66 468

thr 3 5 3

lag 35 23 9
TPR 0.5318 0 0.1398
PPV 0.8251 0 0.1379
Acc 0.9798 0.9966 0.9679
Indy, 0.9154 0 0.0517

Table 3.7: Window opening (WO) real-time detection results in the three selected

apartments.

Apartment 1 yields a much higher Ind,, value than the other two. In the case
of Apartment 3, the detection results are worse than for apartment 1. Apartment
2 shows the worst results, even having a null TPR (no correct window opening
detections). The apartment with the lowest number of openings has the worst
performance, and the apartment with the highest number of openings shows the best
algorithm performance. However, this relationship does not follow a clear pattern
when fitting other rooms or apartments. Observing the logistic regression plots from
Section 3.3.1, the best results are the ones where the regression coefficient C'O, was
the highest. This emerges logically since the time series selected for the detection
was the room C'O, concentration (the selection of C'Os relies on the property that its
indoor concentration depends almost exclusively on occupants’ breath release). In

that sense, other variables should be considered as well when applying this algorithm.

Figure 3.23 depicts the estimated and measured average opening profiles, together
with the average measured proportion of windows opened. Even though there were
errors reported and low predictive values, the estimated opening action profiles
match well with the average real estimated profiles. This was expected for apartment
1, where the best indicators were obtained. However, in apartment 2 or 3, the results
appear to be also close to the real opening profile. This confirms the potential of this

approach in building a residential real-time window opening profile, especially if the
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occupants react to C'O, concentration as a key driver. However, better statistical

indicators should be achieved to confirm this potential.
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Figure 3.23: Real-time window opening detection results in the selected apartments

o
o
S

and comparison with the measured window opening and opening action profile.

To summarize, results show that the detection success depends on the degree of cor-
relation of the observed variable with the actual window opening (obtained through
logistic regression coefficients). A limitation of this method is that the variables thr
and lag must be tuned for a proper window opening detection. An implementation
of a dynamic threshold coefficient could potentially improve the results, although it
should be carefully studied to avoid overfitting to this particular data. A multivari-
able approach should be as well studied, as it could enhance the proposed model to

yield higher accuracies.

3.3.3 A combination of detection and preference learning

In this section, the window opening detection algorithm is combined with the logistic
regression scheme to learn the user preferences without needing window contacts.
The aim is to study if this solution could provide potential information gain regard-
ing user preferences for window opening replacing direct user feedback in residential

mechanical ventilation systems (but also extendable to HVAC systems).

The results are shown only for the Apartments 1 and 3 but can be extrapolated
to other apartments of the second measurement campaign. The real-time logistic
regression, described in Section 3.3.1, is applied using the estimated opening profile,

as a result of the detection algorithm from Section 3.3.2. The evolution of the re-
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gression coefficients is analyzed. Figures 3.24 and 3.25 depict a comparison between

fitting a regression with the real (left) and estimated openings (right) for Apart-

ment 1. The estimated regression coefficients are very similar to the real ones. In

this particular apartment, this method combination based on indoor environment

monitoring without a window contact leads to similar regression coefficients, and

the preferences of the user regarding the drivers to open a window in winter are

successfully estimated.
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Figure 3.24: Real-time evolution of the
logistic regression coefficients with mea-
sured window opening in Apartment 1.

Complete figure in Appendix A.1.
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Figure 3.26: Real-time evolution of the
logistic regression coefficients with mea-
sured window opening in Apartment 3.

Complete figure in Appendix A.1
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Figure 3.25: Real-time evolution of the
logistic regression coefficients with esti-
mated window opening in Apartment 1.

Complete figure in Appendix A.1.
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Figure 3.27: Real-time evolution of the
logistic regression coefficients with esti-
mated window opening in Apartment 3.

Complete figure in Appendix A.1

Figures 3.26 and 3.27 depict a comparison between fitting a regression with the real

(left) and estimated openings (right) for Apartment 3. In this case, the obtained

regression coefficients to predict window opening differ strongly between measured

and estimated opening actions. Similar to Figure 3.25, the estimated openings lead
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to a high relevance of the C'O, concentration in comparison to the other coefficients,
as it is used as the variable to estimate window opening. Other regression coeffi-
cients are also affected: the indoor relative humidity and the outdoor temperature,
which are the most relevant regression coefficients when fitting the measured open-
ing profile, have negative coefficients when fitting the estimated profile. This means
the influence of these variables when using estimated profiles is the opposite as when

using measured profiles.

To sum up, the reliability of this approach with the presented methods is question-
able. Information in advance about the occupants is needed to apply this method.
For instance, if the occupant window opening behavior is correlated with CO5 con-
centration (aApartment 1), this method can be successful. On the other hand, the
occupant behavior is modeled incorrectly if other variables are more relevant (Apart-
ment 3). This means the information obtained about the occupant ventilation pref-
erences using this method is not reliable to replace user feedback. The improvement
of the detection algorithm could lead to a reliable procedure to understand the win-
dow opening drivers of the occupant, and its applicability in mechanical ventilation

systems.

3.4 Summary

The occupant behavior is distinctive and diverse. Until now, research has made
little focus on its understanding and modeling regarding residential mechanical ven-
tilation systems, therefore the chapter focuses on window opening behavior models
(natural ventilation). Available probabilistic models are investigated and a method
is proposed to obtain information about the ventilation preferences from the window
opening behavior. Thus, the research question 2 can be answered as through the

following points:

Research Question 2: To what extent does the window opening behavior provide

useful information for ventilation control strategies? How can this be represented?

e There are different window opening models in the literature. The most popu-
lar ones propose an opening/closing action model based on logistic regression.
The explanatory variables are usually related to the indoor and outdoor envi-
ronment and time. Three models based on European residential buildings are

selected and analyzed.

e To better understand the time-related window opening behavior, a novel clus-

62



3 Window opening behavior and residential ventilation

tering method was developed, where features (based on statistical indicators)
are calculated to represent the distinctive behaviors. This method was applied
to measurements in renovated residential buildings, resulting in eight clusters.
Using a second measurement campaign, two apartments of different clusters
were selected and compared to the available probabilistic models. These mod-
els fail to represent the individual window opening behavior since they were
designed to integrate the stochasticity of occupants into building simulation.
Therefore, available probabilistic models are not suitable to be integrated as a
replacement for user feedback in mechanical ventilation systems. These models
are further used to represent window opening behavior in building simulation

in the next chapter.

A second approach was proposed using a real-time logistic regression-based
driver learning method, to understand what are the key occupant drivers to
open a window. The main assumption was that the regression coefficients
should stabilize over time and could be used to infer the user preferences
regarding ventilation. The evolution of the regression coefficients of three
measured apartments was studied. In this study, the regression coefficients
stabilize after day 40 and provide useful information about occupant window
opening drivers. This method is reliable to evaluate user ventilation prefer-
ences and is further used in Chapter 5. However, the main limitation is the
need for window contacts to measure window opening behavior. Therefore, a
real-time window opening detection algorithm in absence of a window sensor
is proposed. The developed method is based on a filtered z-score peak detec-
tion algorithm, in this case, applied to COs concentration. The combination
of this method with logistic regression could lead to a real-time estimation of
the occupants drivers for window opening behavior. Results show high accu-
racy in apartments where room C'Oy concentration is a key driver to window
opening, but poor results when the occupant behavior has a higher correlation
with other variables. Thus, information in advance about the user preferences

is required to obtain satisfactory results using this method.

Consequently, user feedback collection is mandatory to develop occupant-
centered solutions in residential ventilation systems. This is studied in the

next chapter.
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4 Innovative control strategies for decentralized

ventilation

This chapter focuses on residential decentralized ventilation systems and their con-
trol strategies. In Section 4.1, current solutions on the market and science are
reviewed, to gain an insight into how innovative controllers could impact this field.
A novel co-simulation scheme is developed to test the control strategies, described
in section 4.2. Moreover, in Section 4.3, three user-centered demand-controlled
strategies are proposed and portrayed: a cost function, a fuzzy-based, and a self-
learning scheme to represent the individualized needs of occupants. In Section 4.4,
two simulation test cases are carried out to investigate the performance of the pro-
posed occupant-centered control strategies regarding hygrothermal comfort, indoor
air quality, and energy consumption in residential buildings. A summary of the

findings in this chapter is available in Section 4.5.

4.1 State-of-the-art

In this section, the available control strategies for decentralized ventilation in the
market and scientific publications are reviewed. The aim is to define typical present
control strategies, which are used in the simulation as baseline cases to quantify the

potential savings of the proposed solutions.

4.1.1 Market research

Within the frame of this thesis, a market research of control strategies in decentral-
ized ventilation for residential buildings was carried out. Over sixty control systems
from more than thirty companies in Europe were summarized, focusing on the Ger-
man market, where decentralized ventilation has grown stronger than centralized
systems in the last years. Sales in Euros of decentralized ventilation systems repre-
sented 17% of the total sales in 2012 and grew to 37% in 2018 [110]. The control
strategies were taken into account only when room-individual control was available.

The key findings of this market analysis are summarized in the following points:

e There are usually three to eight available airflow levels. Maximum airflow

levels are between 30 and 60 mTS
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e Fully automated modes are often available as an option. The controlled vari-
ables are mostly indoor relative humidity (threshold between 65 and 80%) and
C'Os concentration (1000-1500 ppm). Room temperatures are often measured

but not controlled.
e Other available modes:

— Summer ventilation (by-pass without heat recovery)
— “Party” mode (intense ventilation)
— Long absence or holiday mode (minimum ventilation)

— Sleeping mode (minimum ventilation or off, targeting noise reduction)

Every device on the market offer a manually adjustable fan speed, fixed at predefined
levels. The first attempt to create an occupant-centric control for ventilation systems
was to estimate the required air exchange rate on typical days, leading to predefined
weekly programs. However, some occupants might have activity profiles or different
habits, making the predefined control schedules not suitable for them. Hence, a

closer user-technology relationship needs to be developed.

The automatic control strategies offered on the market are almost always an add-
on to decentralized ventilation systems. Most of them are commercialized under
denominations like “smart control”, and together with smart home devices. These
seldomly offer a connection between decentralized systems in different rooms. They
usually focus on individual room airflow, depending on the current room conditions
— the “demand-controlled ventilation” (DCV):

Demand-controlled ventilation: ”Demand-controlled ventilation is a feedback
control method to maintain indoor air quality that automatically adjusts the venti-
lation rate provided to a space in response to changes in conditions such as relative

humadity or carbon dioxide concentration.”

The key advantage of DCV is that it regulates the airflow by controlling the speed of
the fans, in contrast to most centralized systems, where dampers are usually present.
This feature enhances its energy-efficiency. A hysteresis cycle is usually included to
avoid sudden level changes surrounding a threshold value. An exemplary hysteresis
cycle is illustrated in Figure 4.1. In this case, a hysteresis cycle is present for the
control system when the relative humidity is between 45 and 50%. For instance,
when indoor activities cause a release of moisture loads, the relative humidity in

a room increases. When the relative humidity overcomes the threshold of 50%, a
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higher airflow level is required. When the airflow is high enough to compensate
for the moisture loads, the relative humidity starts decreasing. However, to avoid
instabilities around the 50% threshold value, a hysteresis of 5% is included. The

airflow level is reduced when the relative humidity is lower than 45%.

Level n
3. Hysteresis ¢ycle
Level 3 )
Level 2 \ > J
2. Higher
Level 1 ) ventilation level
1. Humidity loads

35 40 45 50 55 60 65
Relative humidity [%]

Figure 4.1: Working principle of a typical hysteresis cycle of a DCV in decentralized

ventilation systems.

Other DCV solutions are also available, such as linear relationships between the
volume flow and the target variable (for instance, RH or CO,). Currently, there is
a lack of innovation in decentralized control strategies. Most of the manufacturers
still sell DCV strategies as smart ventilation, even though they have been on the

market for more than ten years.
To summarize, two main gaps are identified from this research:
e Available smart DCV-based controllers handle only one variable at a time.

e User-centered solutions are represented in two forms: demand response to
a certain load type (moisture or C'O,) or a preprogrammed strategy (such
as "party” or "sleeping” modes). There is a clear lack of occupant-centric

solutions in residential ventilation.

4.1.2 Scientific research

Twenty-nine scientific papers were reviewed, related to some extent to ventilation

control strategies in the last twenty years. Ventilation systems with integrated
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heating were also reviewed since innovative control strategies for decentralized ven-
tilation have not yet been extensively studied (DVS were studied only in five of
these twenty-nine publications). The controllers were developed in residential, com-
mercial, or laboratory tests. The full table with the reviewed publications is in
the Appendix A.4. Additional information about ventilation control strategies is
available in scientific publications [160, 188, 195, 199, 218|

The controlled variables (output) for decentralized ventilation systems can be fan
speed (or volume flow), damper position, or fan direction, depending on the ana-
lyzed system. The input of the controllers is usually related to indoor and outdoor
environmental variables. Besides, sometimes these are used to predict the status
of other correlated variables (for instance, C'Oy concentration in a room and oc-
cupancy status). Figure 4.2 illustrates the percentage of publications where the

corresponding variable is controlled.

—— HVAC

Centralized
ventilation

Decentralized
ventilation

Other

Temperature

RH Other

CO, mbient

Presence

Figure 4.2: Proportion of publications that consider each input variable for dif-
ferent ventilation systems. The variable ” Ambient” summarizes different outdoor

environmental variables.

Regarding control strategies, decentralized systems seem to be always associated
with DCV schemes. These DCV reviewed controllers usually react to relative hu-
midity or CO, concentration. Other indoor contaminants (for instance, volatile
organic compounds, or benzene) are considered, although these publications remark

the need for better contaminant modeling. In this case, C'O, is widely accepted
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as it is correlated to the presence of the occupant. Other controllers are PI-based
(Proportional-Integral), where the airflow is controlled to keep a certain C'Os-based
setpoint. Other controllers propose to predict the occupant exposure degree to other
contaminants (for example, furniture contaminant release) and therefore minimize
this exposure through load shifting, such as shock ventilation before the occupant

arrives.

Centralized HVAC systems are a more frequent subject of study (because of their
complexity and savings potential associated with heating and cooling). Recently,
more advanced controllers, often machine learning-based, were developed. From
the analyzed 29 publications, only five study directly and 22 are applicable to de-
centralized ventilation systems. Figure 4.3 depicts the studied controller types for
different ventilation systems. Most of the publications that propose an advanced

control strategy are simulation studies, and there is a lack of experimental studies.

@3 DCV [ Set point PI/ PID [ Other
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Figure 4.3: Number or publications reviewed for each controller type and ventilation

system. Two publications review more than one system.

4.1.3 Reference control strategies

To conclude this review section about available control strategies for decentralized
ventilation, two main reference strategies are derived as a comparison basis for

innovative ventilation control systems.

1. A simple strategy, where the fan speed remains constant (around 0.4 air

changes per hour - ACH - which corresponds to reduced ventilation level ac-
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cording to the DIN 1946-6 [58]), representing an unaware user who does not
operate the ventilation system in residential multifamily buildings. The airflow

may be affected by the pressure difference between the room and the fagade.

2. A stepwise strategy, RH-controlled in humid rooms (bathroom and kitchen),

and COq-controlled for dry rooms (living room and bedroom), illustrated in

Figure 4.4.
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Figure 4.4: Baseline ventilation control strategy - ”Steps”.

4.2 Modeling and simulation

This section describes the approach to simulate the developed control strategies.
A novel co-simulation scheme combines the strengths of different simulation envi-
ronments. The included models (building, ventilation system, control strategy, and
internal loads) are described. The introduced models in this section are already
published in different scientific articles [34, 35, 36, 37].

4.2.1 Co-simulation

Different modeling techniques have their advantages and limitations. To prop-
erly simulate decentralized ventilation systems and the effectiveness of their control

strategies, the following characteristics must be fulfilled by the selected models:

e A single apartment must be modeled with single-room controllers for every

decentralized ventilation system.

e Air exchange between individual rooms and outdoor air must be simulated,

including humid air and trace substances (C'O,).
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e An alternating facade-integrated decentralized ventilation system with a reli-

able heat recovery model must be included.

e Wind pressure influence is not negligible in facade-integrated devices, and
therefore must be considered [152]. The fan curve is therefore key to simulate

the actual airflow as a function of the pressure difference.

e State-of-the-art and innovative control algorithms must be modeled and in-

cluded.

There is no single simulation software available that fulfills all the requirements.
Hence, a co-simulation approach is proposed, where the advantages of different en-
vironments are combined into a single simulation scheme. In this thesis, the building
and weather data are modeled in EnergyPlus 8.9.0 [50], which has great capabilities
regarding building physics. However, the modeling of independent fagade-integrated
ventilation systems (decoupled from heating and cooling) is not available. There-
fore, the DVS was modeled in Modelica 3.2.2 [147]. The integration of advanced
control systems takes place using Python 3.7 [209].

The models are connected through the Functional Mock-up Interface (FMI), where
every model is exported as an individual Functional Mock-up Unit (FMU). These
FMUs are afterward coupled in one particular environment or even through third-
party environments, such as Python. An FMU comes along with a set of C-functions,
according to the FMI standard (FMI Standard 1.0). The C-functions are provided
as binaries and are responsible for the information exchange between the different
simulation environments. The FMU coupling is performed in Python using the pack-
age PyFMI [15]. Figure 4.5 shows how the FMUs (slave models) interact with the
master algorithm and with the additional models (external input data and control
systems developed in python code). This coupling allows the integration of control
algorithms developed directly in Python code. A disadvantage of this coupling is

the lower simulation times.
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Figure 4.5: Co-simulation scheme developed for control algorithm testing.

4.2.2 Building model

A single dwelling of a typical German multifamily building (MFB) is proposed and
modeled. The characteristics are assumed based on the investigation from the
project "LowEx im Bestand” [68] and the interpretation of Rohrer [186]. Figure
4.6 illustrates the floor plan. The total area is 84.6 m?. The balcony was also con-
sidered, as it plays a role in shading (outdoor space). The dwelling is assumed to

be 5 m above ground level.
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Figure 4.6: Floor plan of the simulated apartment.

Regarding the thermal simulation assumptions, floor and ceiling were modeled as
adiabatic surfaces, as it is assumed that the stories below and above have similar
room temperatures, neglecting the heat flow between them. The thermal charac-
teristics are typical for a medium energy retrofitted building in Germany. Internal
mass due to furniture is neglected, given that the impact on peak loads is less than
5% [179]. Table 4.1 summarizes the relevant thermal properties of the simulated

reference dwelling.

Thermal properties of the dwelling Unit Value

Exterior wall m‘;_/K 0.23
Interior wall mZYK 1.30
Windows U-value mZVK 1.30
Windows frame factor - 0.80
Glazing SHGC - 0.70
Wall/window proportion - 4.17

Table 4.1: Simulated thermal properties of the dwelling.

The apartment is modeled with EnergyPlus 8.9.0 [50]. The air movement inside and
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outside the dwelling, as well as the infiltration and wind pressure, were simulated
applying the airflow network approach [27], illustrated on Figure 4.7, and already
validated in previous studies [67]. Every room is modeled as a single node, as well
as the air nodes on the surface of the external fagades. Each node represents a
closed volume, with air pressure as the state variable. Equivalent to an electrical
circuit, the pressure difference between two nodes creates an air movement. The flow
“resistance” determines the volume flow that is originated by this pressure difference,
becoming an airflow path. Typical airflow paths are windows, doors, cracks (or
any infiltration component), and orifices (including, for example, wall-integrated
openings or ventilation systems). The flow resistances are modeled using the effective
leakage area method [222] and using flow coefficients from the AIVC Technical Note
44 [164]. The outdoor nodes have static and dynamic (wind) pressure, which is
modeled using the procedure developed by Swami and Chandra [201]. Details about
the airflow network model and the selected coefficients are available in the Appendix

A2

=

Figure 4.7: Airflow network model of the dwelling. The circles represent the nodes

(room volumes or outdoor nodes) and the resistances (airflow paths) represent the

air exchange between nodes.

Regarding the infiltration, the recommendation of the Passive House Institute is
followed, suggesting a total air exchange rate of 0.5 h~! when the pressure difference

is 50 Pa [170]. The infiltration is distributed in every room and modeled using the
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effective leakage area (ELA) method [10]. Furthermore, the ventilation concept for
this dwelling is defined according to the norm DIN 1946-6 [58], explained in Section

2.1. The defined ventilation levels in the whole dwelling are:

Humidity protection = 27.4 %3

Reduced ventilation = 64.0 mT?’

e Nominal ventilation = 91.4 mT
e Intense ventilation = 118.9 ’%3

A total of eight decentralized ventilation systems are selected in the dwelling (two
in the bedroom and living room, one per room in the rest). Besides, the airflow
network model assumes a perfect air mixing (single node model) and ignores the
impact of air distribution in the room and potential short circuits in different system
configurations. Therefore, given that the ventilation systems are fagade-integrated,
a ventilation effectiveness profile as a function of the air exchange rate is considered
[127], which directly affects the supply and exhaust volume flows in every room. The
airflow network approach in EnergyPlus allows only balanced ventilation in every
room, which is a known limitation. It neglects the direct impact of the ventilation
supply and exhaust phases on the indoor conditions. The building model and its

validation are commented on further in the Appendix A.2.

4.2.3 Decentralized ventilation system

A fagade-integrated decentralized ventilation system with a reversible fan is mod-
eled. As mentioned in Section 1.2, this device operates alternating periodically in
supply and exhaust phase (60 seconds respectively) and usually consists of a re-
versible fan, heat storage, and filter. The ventilation system is modeled in Modelica
[147]. Figure 4.8 illustrates the model of the mentioned device, with all the corre-
sponding components (fan modeled as a double component for each flow direction,
heat recovery, and pressure drop). The model outputs are the volume flow rate and
heat recovered. These values are the result of a time integration over the simulation
period in Modelica. The details about the thermal behavior of the model and its
validation are described in the Appendix A.3.
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Figure 4.8: Decentralized ventilation system model in Modelica. The model includes
pressure drop components, fan model and heat storage model. The details of this

model are available in the Appendix A.3.

The modeled ventilation system can deliver up to 46 mT?’ at full speed (2750 RPM).
The hydraulic modeling follows the data reported in the literature [57]. Three
ventilation levels (associated with three different fan speeds) and the corresponding
volume flow of the system were measured while variating the pressure difference on
both sides of the fan. The four corresponding levels (for the reference steps DCV
strategy) are calculated interpolating the given volume flow rates and the fan speed.
The pressure difference between the facade and room affects the resulting airflows
of these devices [152]. This model represents the supply and exhaust airflow rates
properly by taking into account this pressure difference. Figure 4.9 depicts this
mentioned influence. The corresponding levels are adjusted as required by every
developed controller. The constant fan speed strategy corresponds to a 50% fan
speed (corresponding to 0.4 air changes per hour in the apartment). A ceramic
thermal mass represents the heat storage system. It has a cylindrical shape and
a honeycomb structure that increases the heat transfer surface for a better heat

recovery efficiency.
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Figure 4.9: Supply and exhaust volume flow given the fan speed and pressure dif-

ference between room and fagade.
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The fan power as a function of the fan speed is also reported in the literature [57].
Three fan speeds were measured with their corresponding fan power. The pressure
difference on both sides of the fan does not affect the power. Figure 4.10 shows the

adopted values to calculate the fan power.
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Figure 4.10: Interpolation of the fan power as a function of the fan speed. Measure-

ments are indicated with crosses.

4.2.4 Occupant behavior

The representation of the occupant behavior can affect the results in building perfor-
mance simulation largely. In this thesis, different methods are combined to obtain

a suitable model to evaluate residential ventilation control strategies.

Within the framework of a master thesis, Halden [98] developed an internal loads
model that includes heat, moisture, and C' O, loads. The high resolution of the model
(1-minute steps) allows testing the response of the ventilation system to rapid state
changes in the dwelling. The loads are modeled for each room individually. The
standard ISO 18523-2 [111] reports detailed occupancy and activity profiles for every
room type. The heat release of the appliances (assumed to be 95% of the consumed
power) is reported in the same source, and their use is assigned to the corresponding
activities. The human heat loads are taken from the publication of Ahmed et al.
[4]. The humidity release is also activity-dependent, and the values are taken from
Firlag et al. [79]. The human moisture release is also included. The cooking and
showering loads are adjusted and taken from TenWolde et al. [202]. Finally, the
C'O human loads are described in the publication of Persily et al. [176]. Table 4.2

summarizes these values.
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Category Convective heat [W] Humidity [¢] CO, [£]
1 Adult 79 45 14.4

1 Child 39 35 9
Lighting [27] 1.92 0 0
Washing machine 200 250 0
Dishwasher 200 0 0
Refrigerator 40 0 0
Cooking lunch 300 250 0
Cooking dinner 600 500 0
Showering 0 750 0
Plants 0 30 0

Table 4.2: Summary of the simulated internal loads.

The profiles are divided into weekdays and weekends. Figures 4.11, 4.12, 4.13 and
4.14 show the different internal loads profiles for a weekday. In simulation case
studies where the simulated time is longer than one week, the weekly profiles are

repeated periodically. The profiles are shifted slightly to simplify the visualization.
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Figure 4.11: Occupancy daily profile. Figure 4.12: Heat loads daily profile.
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Figure 4.13: Moisture loads daily profile.  Figure 4.14: C'O5 loads daily profile.

The window opening behavior is represented with two of the stochastic models that
are discussed in Section 3.1. The window interaction probability in each room is
modeled with logistic regression. The models of Schweiker et al. [191] and Andersen
et al. [13] (group 4) are selected. The model of Andersen et al. is used in every room
except the bathroom, where the model of Schweiker et al. is used. No model in the
literature is valid for bathroom windows. The window state is updated depending on
the output frequency of each model (5 minutes for Schweiker et al., and 10 minutes
for Andersen et al.). Besides, the door opening is simulated with the occupancy
status: every door remains open when the room is empty. This assumption leads to
door opening ratios from 50 to 85%, which are consistent with the findings of the
literature [208]. Window blinds are adjusted with an algorithm depending on the
solar irradiation (closed if irradiation is above 192 2) and the indoor temperature
(closed if the room temperature is above 23°C' during the day, and under 23°C' at
night) [18].

The heating system is not studied in this thesis and is modeled ideally and inde-
pendent of the ventilation system. A PID-controller returns the required heat to
maintain the desired temperature setpoints in every room (Table 4.3). The PID-
controller is tuned so that it responds quickly to the heating needs (Equation 4.1).
No manual adjustment of the heating system is considered. The heating setpoints
are taken from the DIN 1946-6 [58], but the values in the bedrooms are adjusted to

measured values in renovated buildings [31].

de(t)
dt

Qheat(t) = kp - e(t) + k; + /6(7') cdT + kg - (4.1)

° Qheat is the instantaneous heat flow rate of the heating system
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o ¢(t) = Ts, — Troom(t) is the temperature difference between setpoint and room
e k, = 60, proportional gain, non-dimensional
e k; = 30, integral gain, non-dimensional

e k; = 1, derivative gain, non-dimensional

Room Day [7-22h] Night [22-7h]
Bedroom and children rooms 21 18
Living 20 20
Kitchen 20 20
Bathroom 22 22

Table 4.3: Selected room temperature setpoints, in °C' [58].

4.2.5 User interaction with mechanical ventilation

In this section, a novel user interaction model with residential decentralized venti-
lation systems and its integration in building performance simulation is described.
Studies about the operation of mechanical ventilation systems are not widely avail-
able in the literature. This model aims to simulate the user response to different
discomfort situations, in particular, to test the performance of occupant-centered

control strategies.

There is only one publication that explicitly measured and investigated the occupant
behavior with residential mechanical ventilation systems. Ren et al. [183] measured
ten dwellings in the Netherlands for two years and inferred the user fan level selec-
tion from the fan power. They applied an exploratory analysis using clustering tech-
niques to understand the key drivers that motivate occupants to operate mechanical
ventilation systems. Results showed that there are four main groups: time-related
operations, indoor environment-related, indoor and outdoor environment-related,
and mixed factors-driven. Their conclusions are closely related to the results ob-
tained in similar exploratory analyses for window opening behavior in residential
buildings [63, 75].

79



4 Innovative control strategies for decentralized ventilation

4.2.5.1 Model assumptions and limitations

A user interaction model with mechanical ventilation is proposed, to represent the
response of the occupants to discomfort with the indoor environmental quality as
realistic as possible. According to Lai et al. [130], users might have different reasons
to ventilate their dwellings. Therefore, there is a need to develop a model to consider

the stochasticity of user behavior.

The main assumption under this model is that the user reacts only under uncom-
fortable conditions. The model neglects time-driven factors. Besides, the outdoor
conditions influence the usage of energy recovery ventilators in cold climates [130].
This model is developed for building simulation in winter conditions but does not

include weather-related variables as input.

Rather than providing a generalized validated occupant behavior model, this model
intends to create a tool to simulate the stochasticity of the user regarding the manual

operation of ventilation systems, focusing on its applicability in building simulation.

4.2.5.2 Artificial comfort profiles

As described in Section 2.3, the main variables used to control mechanical venti-
lation systems in winter conditions are the indoor relative humidity and the C'O,
concentration. The first step is to create artificial comfort profiles related to these
variables. Table 4.4 shows a suggestion for four comfort profiles, following the results
described on Sections 2.3.3 and 2.4.2. The profiles follow a normal probability dis-
tribution for the relative humidity and an inverted normal cumulative distribution
for the C'Os.

User comfort Mean RH StdDev RH Mean CO, StdDev CO»

type (rm) (0rH) (kcos) (0c0,)
Norm 45 12 1300 250
Less air 60 8 1600 100
More air 30 8 1000 100
Distracted 45 35 1000 2000

Table 4.4: Definition of the artificial user comfort profiles. Mean (x) and standard

deviation (o) characterize the probability distribution for each user type.

80



4 Innovative control strategies for decentralized ventilation

The “norm” profile follows the discomfort profiles suggested mainly in the DIN EN
16798-1 [60] norm. The “more” and “less” air profiles are deviations of the norm pro-
file within the desired limits (relative humidity values under 25% and over 75% lead
to unhealthy consequences). The lower standard deviation results in sharper profiles
than the "norm” occupant. The “distracted” profile is associated with occupants
who do not show a clear pattern and find themselves usually in comfortable condi-
tions, having thus a higher SD. Figure 4.15 shows these profiles and the associated

comfort probabilities.
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Figure 4.15: RH and CO, artificial comfort profiles given the probability distribu-
tions in Table 4.4.

4.2.5.3 User interaction algorithm

The interaction frequency of the user with the devices is also considered. A cor-
rect definition of this frequency is key for its application in building performance
simulation. The interaction probabilities are obtained from the values reported in
the literature [183]. Three profiles are modeled, following the scheme of Yun et al.
[233]. The probability of interacting with the mechanical ventilation system is cal-
culated by distributing the total interactions recorded in the present days (assuming

thirty-five days of absence for holidays). Table 4.5 summarizes these values.
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Frequency group  Total interactions Daily interactions . 10—m1‘n
Interactions
Passive 30 0.0455 3.1566E-4
Medium 200 0.3030 2.1043-3
Active 1150 1.7424 1.2100E-2

Table 4.5: Measured interaction frequencies with mechanical ventilation [183].

The user response is collected in votes, which are positive if the occupant wants
a higher air exchange rate and negative if the occupant prefers a lower one. Five

possible outputs are modeled, associating the user preference with a number:

e 7-27: The user wants much less air exchange

e 7-17: The user wants less air exchange

e 70”: The user is comfortable and gives no vote
e "+17: The user wants more air exchange

e "+27: The user wants much more air exchange

For example, if a user votes a ”7-27, it is assumed that the user would want two
ventilation levels less since the airflow is too high for this user at that moment

where the vote is placed.

Then, a probabilistic approach comparing the interaction frequencies with random
numbers was developed to simulate the interaction in every timestep. Figure 4.16
shows the structure of the model. In case of multivariable discomfort, a single vote is
drawn for each variable, and then a random number is drawn, to consider which vote
prevails (assigning an equal probability to each vote). A threshold of two standard
deviations above the mean is selected since 95% of the values lie within two standard

deviations in a normal distribution [104].
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Figure 4.16: Flow chart of the proposed model to simulate the interaction between

user and mechanical ventilation system, given the comfort profile.

The potential mechanical ventilation behavior in one measured building is simulated
to test the proposed model. The measurements belong to the second measurement
campaign reported in Section 3.2.1 during January 2019. The user votes were sim-
ulated, according to the different user comfort and activity profiles. Figure 4.17
shows the indoor RH and C'O, values in this period used to simulate the occupant

behavior towards mechanical ventilation.
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Figure 4.17: RH and CO, profile to test the proposed user interaction model.

Figure 4.18 left shows the comparison of an active, passive, and medium user, with
a norm comfort profile. Figure 4.18 right illustrates the comparison of a "norm”,
"more air”, and ”less air” occupant, with a medium interaction frequency profile. In
both cases, the model responds well to the defined artificial comfort profiles. This
model serves as a basis to test different innovative control strategies for decentralized

ventilation systems, especially in Section 4.4.2.
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Figure 4.18: Simulated user votes given the interaction frequency (left) and RH and
C'Oy comfort profile (right).
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4.3 User-centered control strategies

In this section, three novel controllers for decentralized ventilation systems are de-
scribed. They are tested in two simulation studies in Sections 4.4.1 and 4.4.2. The
controllers in this section are already partially published in different scientific ar-
ticles [36, 37]. The proposed solutions aspire to fill the gap identified in Section
4.1.1:

e Two fully automated multivariable DCV approaches are tested: cost-function

and fuzzy-based.

e An occupant-centric learning DCV system is proposed.

4.3.1 Cost function DCV

The first attempt to tailor the needs of the occupants to a decentralized control
strategy is to associate the dissatisfaction with the indoor RH and C'Oy with the
system fan speed. The norm DIN EN 16798-1 [60] suggests acceptable values for
both variables related to ventilation systems. For the RH, the norm defines ideal
values between 30 and 50%, having its peaks under 20% and above 70%. This shape
is approximated with a quadratic function. Furthermore, the acceptability values
related to C'Os concentration decrease with higher concentrations, and fits better
the upper tier of a logit function. This approximation is as well in line with the
CO, discomfort equations of Jokl [118].

The discomfort functions reported in the literature are converted into a DCV scheme.
It is proposed that the dissatisfaction (D) due to the RH is approximated with a
quadratic function. The C'O, concentration fits better with the upper tier of a logit
function. The Equations 4.2 and 4.3 define the proposed evaluation, and the figure
4.19 compares the state-of-the-art and new methods respectively. In these equations,
RH is the relative humidity in % and C'O, the carbon dioxide concentration in ppm.
The coefficients are selected to fit the dissatisfaction curve to the same shape as the

reported curves in the literature.
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Figure 4.19: Percentage dissatisfied (PD) functions for relative humidity (left) and
carbon dioxide concentration (right). Comparison of the proposed cost function and

the reviewed models in Chapter 2.

Dgyr = 0.05 - maz(0; abs(RH — 40) — 5)?) (4.2)
Dco, = 24+ 06 o (4.3)
1 1-—2
+ exp ( 150 )

These approximations are integrated into a demand-controlled ventilation scheme.
The control strategy in each room is lead by the variable with the highest dissatisfac-
tion (Equation 4.4). For instance, when the dissatisfaction due to relative humidity
is higher than due to CO,, the DCV is RH-driven, and vice versa. This controller
is named the cost function strategy (Costfun in the plots) since the fan speed is
calculated following the highest discomfort cost. Figure 4.20 shows a comparison
of this strategy with the previously defined reference steps function. This DCV
scheme is tested in a simulation study in Section 4.4.1. Additional key points of this

controller are:

e 100 % fan speed is selected with over 75% relative humidity, to increase the

importance of mold growth protection.

e Minimum fan speed is selected with below 20% relative humidity, to highlight

the relevance of health-related issues with dry environments.

e No dissatisfaction is registered when C'O is under 750 ppm.

D(RH, COQ) = max (DRH(RH), DCOQ(COQ)) (44)
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Figure 4.20: Cost function DCV strategies for RH (left) and C'Oy (right).

4.3.2 Fuzzy logic control

Another option is to control the fan speed by combining the values of RH and C'O,
into a single control strategy. Fuzzy logic is an approach to input processing that
allows for multiple variables to be processed at the same time and to obtain a single
output variable. Controllers based on fuzzy logic appear as a suitable solution when
the system cannot be easily modeled or controlled using classical control methods
due to the modeling complexity. A fuzzy approach is proposed, to seek a solution

to this three-cornered problem between energy consumption, hygrothermal comfort,
and TAQ.

Dounis et al. [64] developed already a thermal comfort-based fuzzy controller twenty-
five years ago to control natural ventilation depending on the outdoor temperature.
Besides, Kolokotsa et al. [125] designed a multivariable fuzzy system to optimize
thermal and visual comfort at the same time. Molina Solana et al. [155] controlled
a whole smart home system using fuzzy logic. Fuzzy controllers were also used to
control TAQ. For instance, Pitalia-Diaz et al. [177] reduced benzene concentrations
when using a fuzzy-controlled exhaust ventilation system. Jaradat et al. [113]
developed a multipollutant fuzzy-based control strategy. Jazizadeh et al. [114]
proposed an approach to learn the thermal occupant preferences and individualize
the heating system control using a self-adaptive fuzzy controller. Nevertheless, fuzzy

controllers have not been considered yet for residential ventilation devices.

The controller must foremost keep the indoor environment outside the inacceptable
range values, defined in Chapter 2. Figure 4.21 shows a workflow of the proposed
controller, where the instantaneous measurements are compared to the previously

defined limits. If these are outside those limits, then the control system must be
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overridden, so that the ventilation system reacts immediately and tries to keep them.

The imposed thresholds are:

o If RH >80%, then fan runs at full speed
o If RH <20%, then fan runs at minimum speed

e If COy >1800 ppm and RH >25%, then fan runs at full speed

Time=t+ At
| Yo
Data Override Set fan Output
. > —
collection No control speed control

|
|
Yes I
|
Input Fuzzification > Rule. » Defuzzification| |
control | evaluation I
|
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X(t) = {xru, xcoo} Fuzzy logic control

Figure 4.21: Fuzzy controller workflow.

These limits are slightly more flexible than defined in Chapter 2, because they
define the segment of action of the fuzzy controller. Then, if the values are within
those limits, the fuzzy controller is enabled. Even though there are recommended
values for the acceptance of the indoor environmental variables, the well-being of
the occupant is subjective and individual. Then, the controlled variables have a
fuzzy nature. The proposal of a fuzzy controller aims at bringing a mathematical
formulation of the problem rather than a unique optimal solution. Membership
functions for every variable are used to determine the degree of association of a
certain variable with a previously defined linguistic term (such as ‘warm’ or ‘cold’,
when representing thermal sensation). Fuzzy inference rules are necessary to build a
relationship between the different memberships. These and the corresponding fuzzy
rules are defined through expert knowledge of the dynamic behavior of the system.
The linguistic terms of every input variable (RH or CO;) are associated with the
controlled variable (fan speed) through fuzzy rules. The measured input variables (in

this case, RH and C'Oy concentration) are normalized (C'O, concentration between
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400 and 1800 ppm) and fuzzified through their previously developed membership

functions. The crossing points of the membership functions are selected:

e RH: 30 and 70%
o (C'Oy: 825 and 1250 ppm

e Fan speed: 33 and 67%
Each domain is described using three linguistic labels: “low”, “medium” and “high”,
for the indoor RH, and “excellent”, “acceptable” or “poor” for the room COs con-
centration. The fuzzification process calculates consequently the membership degree
;. j (probability of belonging to a certain category j for each input measurement ;)
using the sigmoid function (Equation 4.5). A sigmoid shape allows the fuzzy control

field to be smoother than using sharp-edged shapes, such as trapezoids.

1

=y (4.5)

Qi =

The fan membership function, necessary to calculate the fan output speed, is trape-
zoidal and divides the whole normalized fan speed range into three equal parts (low,
medium, and high). Figure 4.22 illustrates the three membership functions of the

controller.

The fuzzified inputs are interpreted based on a set of rules, which compose the fuzzy
inference engine. As explained before, fuzzy rules aim at describing the relationship
between the fuzzified linguistic terms of the input and output variables. In this
thesis, an expert knowledge-based system of rules is implemented, summarized in
Table 4.6. Because keeping the relative humidity inside the healthy limits (defined
in Chapter 2) is the first task of the controller, the CO, concentration is neglected

when the RH is not in its admissible range.

IF RH is Low OR (RH is Acceptable and C'O, is Excellent) THEN F'S is Low
IF RH is Acceptable AND COs is Acceptable THEN F'S is Medium
IF RH is High OR (RH is Acceptable and C'O, is Poor) THEN F'S is High

Table 4.6: Fuzzy rules for every fan output (F'S = Fan speed).
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Figure 4.22: Membership functions for the fuzzy controller. RH and C'O, are the

input variables x; and the fan speed is the output variable y,.

The minimum number of rules is the number of linguistic terms used to define
the output variable. The level of detail of these rules depends on the number of
categories used to describe the input and output variables [69]. Furthermore, the
inference engine interprets the degree levels of the inputs for each rule (ug) and
calculates the degree levels of each output (fan speed) category. In this case, the
used inference engine is the Mamdani max-min method [144]. The AND operator
is represented with the minimum and the OR operator with the maximum. The
fuzzy output of each rule (p, ) and the final aggregation (u,) are calculated. The
following equations describe, as an example, the calculation for fan speed low and

the final aggregation of the three fan categories:

90



4 Innovative control strategies for decentralized ventilation

KR, = Max (O'/RH,loun min (aRH,Acca aC’OQ,Exc)) (46)
Ho,Ry = min (H'RH,lowa aFan,Low) (47)
fto = max (KR, 1Ry, HRs) (4.8

Once the output degree for the three fan speed categories ji(0, R) is obtained, the
normalized fan speed y, is calculated using the centroid defuzzification method:

yo = 225 Hos (V) (4.9)

> o, (Y)
being Y; € 0,1 the normalized fan speed, j the number of evaluated points in the
output domain, and f,,(Y;) the membership degree at each point of the output
variable domain. The outcome of the whole process is illustrated in a 3D control
field in Figure 4.23. In principle, this field can be predefined, which makes the
fuzzy controller another variation of a DCV scheme, and highlights its robustness

and reliability. Together with the cost function controller, the fuzzy-based DCV is

tested in a simulation study in Section 4.4.1.
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Figure 4.23: Fan speed control field resulting of the fuzzy control strategy.

4.3.3 Self-learning DCV

In this section, an innovative learning control strategy for residential ventilation
systems is presented. This strategy is based on a DCV scheme, which can tailor itself
to the needs of the occupant. The control uses a comfort profile and a supervised
learning algorithm (requires training data) to predict the user vote by taking into

account the indoor environmental conditions.
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Learning systems gained popularity in the scientific world around buildings in the
last ten years. The primary optimization target has been the heating energy con-
sumption. For instance, Kastner et al. [121] developed a system that learns an
occupancy schedule for office buildings and uses it to optimize the heating energy
consumption with an artificial neural network. Daum et al. [52] defined a new
method to represent the thermal occupant preference, using curves based on logistic
regression. They concluded that the thermal preference could be learned success-
fully between 40 and 60 user feedback votes. Carreira et al. [39] simulated the
optimization of an HVAC system that learns the occupants thermal preference us-
ing a clustering algorithm. Results indicate that the system could successfully learn
and adapt itself to this individualization of the occupants’ preferences. Xu et al.
[230] developed a scheme to differentiate the individual thermal preferences in a
multi-occupant environment to tailor the HVAC controller. Learning schemes are
implemented already in real cases. Gunay et al. [93] developed a learning scheme to
optimize the temperature setpoint of a heating system. Commercial systems that
learn the thermal occupant preference and optimize the heating setpoint are already
available [161].

Other building systems have been studied as well and controlled with learning al-
gorithms. For example, Cheng et al. [44] created a satisfaction-based learning
controller for integrated light and blind control to tailor the illuminance levels to
the needs of the user. Park et al. [167] created a self-learning lighting controller.
Vazquez Canteli et al. [213] used a learning algorithm to adapt the demand re-
sponse behavior of residential electricity consumption to reduce energy costs. Lastly,
Ghahramani et al. [89] developed a learning algorithm for the occupant interaction
with their workspace (for example, working alone or with other people) using a

combination of wearable and environmental sensors.

Until now, no publication covers the application of learning systems to a residential
ventilation system. The next sections provide a full description of the proposed

control strategy.

4.3.3.1 Default comfort profile

The default comfort profile for the control system was built following the norm
comfort profile for the occupant behavior model, described in Section 4.2.5. This

profile should represent an average comfort profile for both RH and C'O,, while at
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the same time keeping the flexibility to adapt itself to new incoming data points

from the user feedback.
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Figure 4.24: RH ventilation preference Figure 4.25: C'O, ventilation preference

votes for the default comfort profile. votes for the default comfort profile.

Twelve ventilation preference votes for each variable were arbitrarily defined, to build
the comfort and TAQ profile. These votes give a total combination of 144 default
artificial user votes. These are shown in Figures 4.24 and 4.25, and the resulting
comfort profile is seen in Figure 4.26. This profile is considered the starting point

of the learning control strategy.

Comfort probability [-]

Figure 4.26: Resulting 3D field for the default comfort profile.

4.3.3.2 Algorithm selection

A key step to a successful learning DCV is the algorithm selection. With the help

of machine learning, the user preferences can be successfully captured and provide
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a proper solution to achieve better comfort, enhance the acceptance, and meet the

energy efficiency targets [39].

In this section, six popular classification algorithms are picked and compared. The
performance in terms of computational resources and the ability to learn the desired
profiles are tested. The best algorithm is then selected and applied in the learning
DCYV scheme. The preselected algorithms are:

Logistic regression (LogR)

Support vector machines with radial basis function kernel (SVM)

e Gaussian naive Bayes (NB)

Gaussian process classifier with Matérn kernel (GPC)

Decision tree classifier (DT

Random forests (RF)

The comparison was performed using the python package scikit-learn [172]. The
first approach was to learn the default comfort profile and to observe the resulting
predictions after learning. The performance indicators are accuracy (Acc), true posi-
tive rate (TPR), and positive predictive value (PPV), recommended in the literature
for the evaluation of learning algorithms [89]. These indicators are already defined
in Section 3.3.2. Accuracy evaluates the overall degree of closeness of predictions
with the actual labels. However, in algorithm tuning and selection in the context of
occupant behavior, the goal is to maximize the PPV while at the same time keeping

the TPR in an acceptable range. Table 4.7 summarizes the results.

Algorithm Acc TPR PPV
LogR 0.7783 0.7701 0.7525
SVM 0.9022 0.9011 0.8875

NB 0.7918 0.8138 0.8150
GPC 0.8694 0.8832 0.8825
DT 0.9000 0.8985 0.8825
RF 0.8856 0.8945 0.8875

Table 4.7: Selection of DCV algorithm: comparison of performance indicators for

every classification algorithm.
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From the table, support vector machines shows the best performance in comparison
to the other five algorithms. However, the difference in the values between support
vector machines and others is marginal. The logistic regression and naive Bayes
classifiers are discarded due to their poor performance, and a second comparison
was carried out. Daum et al. [52] suggested using the overlapping surface as a
learning indicator, being only valid for a single variable. This indicator is called
the learning rate (LR) and is defined by Equation 4.10. A value of one indicates
perfect learning of the comfort profile. The average of the learning rate is calculated
to combine both variables. Before entering the calculation procedure, the learned

profiles are rescaled so that the maximum comfort probability is always one.

LR(X) =1- / |pcomf,user(X) - pcomf,learn(X)|dX (410)
LR = =LRX) (4.11)
n

A simulation was carried out using the four artificial occupant comfort profiles for
RH and C'O,. The goal was to calculate the learning rate for the four preselected
algorithms and to compare them. The simulation was performed until the 150"
vote took place since it was assumed as a reasonable limit for a stabilized learned
profile. Table 4.8 shows the values of the learning rate for the indoor RH and C'O,

comfort profiles and the time consumption of the algorithm.

Algorithm Norm Less air More air ~ Distracted  Time [s]
SVM 0.8499 0.7334 0.7530 0.7374 9.95
RF 0.8472 0.6119 0.6436 0.6024 3.92
DT 0.6974 0.7611 0.6298 0.6003 1.70
GPC 0.7835 0.6796 0.7487 0.8153 234.45

Table 4.8: Selection of DCV algorithm: Combined learning rate results for every

tested classification algorithm for the learning DCV controller.

Two out of four learning indicators were best when using support vector machines
(SVM). This result discards the usage of random forests (RF) and decision trees
(DT) as possible learning algorithms, as their learning rate is significantly lower
than the other two. When comparing the computational resources, the support
vector machines took almost ten seconds to learn the profile, while the Gaussian
process classifier (GPC) procedure lasted almost four minutes. Hence, the support

vector machines (SVM) was selected to develop the DCV learning scheme. Figure
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4.27 shows the combined learning rate for this algorithm when simulating the four
synthetic profiles. The stabilization (the point where the value of learning rate stays
fairly constant) occurs between 60 and 80 user votes. This result agrees with the
publication of Daum et al. [52]. A detailed explanation of the mathematics behind
this algorithm is described in the Appendix A.5.
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Figure 4.27: Evolution of the combined learning rate using SVM.

4.3.3.3 Learning DCYV process

Once the algorithm is selected and tuned, and the starting profile is defined, the

learning procedure can take place. The learning process is executed as follows:

1. Initialize the algorithm and create the default comfort profile

2. If there is a new user vote, collect it together with the instant values of RH
and C 02

3. Append new votes to the previous ones
4. Check the date of the votes and erase the oldest ones
5. Check that the votes are inside the healthy limits. If not, correct them.

6. Update comfort profiles for control
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Figure 4.28: Workflow of the self-learning controller.

Figure 4.28 shows a flow chart of the learning scheme. A vote limit of 150 votes was
imposed, in line with the results of the previous section. Limiting the number of
votes creates a slower response of the system to the learning process when the vote

count reaches its limit. Because the oldest user votes are erased when reaching the
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vote limit, the learning process will never cause the comfort zone to be extremely
far away from the default profile. On the one hand, this reduces the possible indi-
vidualization of the control to “extreme” occupant preferences. On the other hand,
this limits possible inconsistencies of the user votes due to their stochastic nature
and non-desired comfort zones (such as too dry air or too humid air, which can
cause adverse health effects or promote mold growth in the dwelling). In addition,
analogous to the fuzzy controller, “healthy limits” are imposed, to avoid having in-
door environmental conditions which are rated as unacceptable by the norms and

the literature:

e If RH >80%, then fan runs at full speed
e If RH <20%, then fan runs at minimum speed

e If COy >1800 ppm and RH >25%, then fan runs at full speed

When the user gives feedback to the ventilation system, the control is overridden
for 30 minutes, and the airflow level is determined by the user’s choice. Otherwise,
the control system tries to predict the occupant comfort according to the learned
profiles and adjusts the airflow levels respectively. The whole sequence is described
in four steps:

1. Collect the instantaneous value for the controlled variables (RH, C'O,)

2. Predict the ventilation vote of the user according to the learned comfort profiles

3. Adjust the fan level according to this vote

4. When the occupant votes, adjust the fan level for 30 minutes to the voted fan

level

The resulting default control profile is illustrated in Figure 4.29. The colors are

associated with user vote predictions.
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Figure 4.29: Default control field of the self-learning controller. The colored areas

represent the prediction of the user vote.

Moreover, learning the artificial user profiles and their impact on the DCV control
field are illustrated in the Appendix A.6. The pictures represent the learning process
from 10 to 200 votes. An additional complete random profile shows the resilience of
the learning to random user profiles, highlighting its ability to keep the predefined

control shape.

4.4 Simulation case studies

In this section, two simulation studies are carried out.

1. A comparison of fully automated control strategies, to analyze the performance

of the proposed cost function and fuzzy logic controllers.

2. A simulation of the learning DCV scheme under different user comfort and

interaction frequency profiles.

The selected climate is representative of a European temperate climate without
a dry season and with warm summer (Cfb classification type [175]). This thesis
focuses on the performance of ventilation control strategies in winter conditions. The
selected simulation weeks are detailed in every subsection. All selected strategies are
applied in the co-simulation scheme (Section 4.2.1), taking advantage of the models

in Section 4.2.
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The performance indicators are already defined in Chapter 2. The energy consump-
tion is evaluated through the primary energy consumption Qpevent (Equation 2.7),
which takes into account the heating losses due to ventilation and the electricity
consumption of the fan. The indoor air quality is evaluated through the C'O, con-
centration using the indicator ACO, (Equation 2.11). The health-related issues and
humidity comfort are evaluated through the relative humidity, using the indicators
ARH,, (Equation 2.14) and ARH,, (Equation 2.15).

4.4.1 Multivariable fully automated control strategies

4.4.1.1 Methodology

In this section, the proposed user-centered fully automated multivariable control
strategies (cost function and fuzzy logic) are tested in a simulation case study. These
are compared to the control systems defined as baseline cases (constant fan speed

and steps DCV). These results are published partially in scientific articles [36, 37].

For the first analysis, a single week is simulated due to computational reasons since
the internal loads profile is modeled only for this period. In Section 4.4.1.2, the
performance of four fully-automated controllers in an average winter week is com-
pared. In Section 4.4.1.3, two controllers (steps and fuzzy-based DCV) are selected,
and the sensitivity to the ambient conditions is studied. Merzkirch [150] concluded
that the two variables that influence the most the primary energy consumption in
ventilation systems are the heat recovery efficiency and volume flow rate. From the
definition of the heat recovery efficiency in Section 2.2.1, and since the heat storage
is modeled component-based, the only variable left that affects the heat recovery
efficiency is the ambient temperature. Thus, cold and warm winter weeks are taken
into account as well. Besides, different algorithms control the fan speed. However,
the actual volume flow is sensitive to the wind pressure [152]. In this case, windy
and calm winter weeks are simulated. The mean ambient conditions in the whole
winter period are summarized in Table 4.9, together with the mean value of the
ambient conditions of every simulated week. Figure 4.30 shows the selected weeks

for the sensitivity analysis. Lastly, the results are discussed in Section 4.4.1.4.
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Winter Average Warm Cold Windy Calm

Unit season week week week week week

mean mean mean mean mean mean

Tomp °C 3.60 2.70 6.40 -5.28 3.08 3.41
RH % 80.15 67.76 80.41 71.64 81.51 87.19
AH kig 3.91 3.22 5.05 1.89 4.17 4.47
WS o 3.09 3.40 3.01 1.89 7.00 1.06

Table 4.9: Mean values of the weather conditions (ambient temperature, relative
humidity, absolute humidity and wind speed - WS) in the selected weeks for the

sensitivity analysis.
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Figure 4.30: Ambient conditions (left: ambient temperature, right: wind speed) in

the selected weeks of the winter season for the sensitivity analysis.

The sensitivity to internal loads is also investigated. In this study, the loads are
reduced and increased by 50%. A discussion of the obtained results is included at

the end of the section.

4.4.1.2 Results for an average week

Figure 4.31 illustrates the total air change rate in the dwelling on a single day. The
wind influence is observed in the constant speed strategy, which does not deliver a
constant airflow. Although the three DCV approaches are not equivalent, the general
trend of the required air exchange rate coincides, as it follows the simulated RH
and C'Oy internal loads profiles. The cost function strategy presents the smoothest
airflow rate changes. The piecewise steps control strategy is sometimes unstable

around the equilibrium point (threshold value between two different steps), even
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when including a hysteresis cycle. This instability is a disadvantage against the
other DCV controllers, which provide smooth airflow levels. The resulting air change

rates are within the typical values for renovated German multifamily buildings [68],

which are around 0.4 ACH.
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Figure 4.31: Total air exchange rate in a single day for the four controllers.

Some rooms of particular interest are selected to illustrate the comfort and TAQ
results. Figure 4.32 depicts the cumulative distribution of indoor RH and C'O,
concentration during occupancy. The high humidity values during showering in the
bathroom are present in the four cases. In the kitchen and bathroom, the constant
airflow strategy offers more extreme values on both sides (below 25% and above
75%). In the dry rooms, a similar pattern is observed in both RH and C'O; plots.
During occupancy, the bedroom has high C'O, internal loads, which results in a
higher airflow for the three DCV strategies, but also keeps these rooms drier. The
constant strategy fails to keep the C'O, concentration in the desired range in this
room. In the living room, the constant airflow strategy has values below 25% 30% of
the time. The three controllers reach the equilibrium state in a range of 1250-1500
ppm in the bedroom, as around 60% of the values during occupancy are in this
range (the fuzzy controller performs worse than the other ones in this room). In the
living room, the fuzzy strategy presents around 5% higher relative humidity values
on average than the steps controller. The C'O, concentration in the living room is

similar for the four analyzed controllers.
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Figure 4.32: RH and CO, cumulative distribution plots in selected rooms.

Table 4.10 summarizes the results of the key performance indicators for each sim-

ulated control strategy. The fuzzy controller has not recorded any instant of RH

below 20%, which highlights the importance of the imposed “healthy limits” rule

for the multivariable controllers. Even though the steps controller reacts to C'O,

concentration in the “dry” rooms, there are almost no registered points below the

25% threshold. In this particular case, the four controllers perform well regarding

dry environments.

103



4 Innovative control strategies for decentralized ventilation

Control  ARH,, [%] ARH,, [%] ACO; [ppm]| Qpevent [KWh]

Constant 1.16 9.47 120.59 65.42
Costfun 0.01 7.89 31.78 52.11
Fuzzy 0.00 7.76 58.49 46.53
Steps 0.05 7.67 41.74 56.25

Table 4.10: Summary of performance indicators for the simulated control strategies.

Moreover, the constant strategy overcomes more often the RH,, threshold, as ex-
pected (10% above the acceptable limit), but the reported values for the other
strategies are close (around 7.5%). These values are reduced to 1.5% when also
considering the absent period in the humid rooms (kitchen and bathroom), meaning
that the actual mold growth risk in the simulation is low. Besides, the duration of
the high RH values is never longer than an hour. A constant airflow strategy in
this case ensures mold growth protection successfully. Despite the differences, the
three DCV solutions are set to full speed when the indoor relative humidity is over
75-80%. The resulting window opening is never over 0.1%, therefore neglecting its
influence on the results. The three DCV strategies outperform slightly the constant

airflow strategy regarding the relative humidity.

The outcome for the ACOs is analogous. The constant strategy has an integrated
overshoot of almost 120 ppm against the considered threshold. This is also a conse-
quence of the chosen “unaware” fan level speed. The three DCV controllers improve

the TAQ performance significantly, being the cost function the best in this case.

Figure 4.33 shows the primary energy consumption associated with ventilation and
the potential savings related to the constant airflow strategy. When considering
the ventilation primary energy consumption, the fuzzy controller presents a saving
of 29% in comparison to the worst-case scenario (constant airflow). In comparison
to the smart state-of-the-art controller (steps), the cost function strategy provides
around 9% total primary energy savings, and the fuzzy controller reaches 18% sav-
ings (fan primary energy savings are 20%). However, the reported performance
indicators can be affected by different weather conditions or internal loads. The

next sections provide further insight into this topic.
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Figure 4.33: Primary energy savings of the proposed ventilation controllers. Con-

stant airflow strategy is taken as baseline case.

4.4.1.3 Sensitivity analysis

In this section, the results of the sensitivity analysis are presented, only compar-
ing the state-of-the-art smart steps strategy with the fuzzy-based DCV. Table 4.11
shows the results for the five simulated weeks regarding weather conditions. The
relative humidity indicators do not vary strongly between the simulated weeks, and
the difference between the controllers is minimal. The warm week presents a higher
ambient absolute humidity (see Table 4.9), and therefore the mold growth risk in-
creases for both controllers. Mold growth protection becomes relevant especially in
the humid days of the winter season. Dry environments are slightly present only in
the cold week for the steps strategy. The C'O, indicator is also not strongly affected,
and mostly stays in the range of the values presented in the last section (30-60). In
the warm and windy weeks, the fuzzy controller increases the air exchange rate in
comparison to the steps strategy, resulting in almost identical values for the C'O,
indicator. In the cold week, the fuzzy controller has a higher value (reducing the
air exchange rate to avoid dry environments) but is still considerably lower than the
value presented for the constant strategy in the last section (120 - see Table 4.10).
These results are a consequence of a general low sensitivity of the air exchange rate.
In the five simulated weeks, the mechanical air exchange rate remains fairly con-
stant, as well as the fan speed. In the windy week, the average fan speed is lower,

as the system takes advantage of the additional pressure difference, which causes
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higher volume flow rates at lower fan speeds. Baldini et al. [23] already identified
this advantage as a potential energy-saving strategy in decentralized ventilation.
The lower C'O, concentration in the windy week is explained through an increased
infiltration rate, as the mechanical air exchange rate remains fairly constant. The

fuzzy strategy provides energy savings in the five simulated weeks.

Average  Warm Cold Windy Calm

Control
week week week week week
Fuzzy 7.76 10.01 7.30 9.30 8.04
ARH,, [%]
Steps 7.67 9.89 7.23 9.12 7.91
Fuzzy 0.00 0.00 0.23 0.00 0.06
ARH,, [%]
Steps 0.05 0.00 2.92 0.00 0.76
Fuzzy 58.49 38.21 85.95 33.35 57.92
ACO, [ppm]
Steps 41.74 39.38 48.45 33.77 46.16

Fuzzy 46.53 36.86 08.82 47.08 46.25

Qpe,vent [kWh]
Steps 56.25 43.28 75.60 52.08 55.61

Fuzzy 900 928 873 898 924
FanRPM,, [¥]

Steps 1035 1057 1050 989 1059

Fuzzy 0.21 0.22 0.20 0.23 0.22
ACHmech [h_l]

Steps 0.27 0.27 0.28 0.27 0.28

Table 4.11: Summary of performance indicators in the different simulated weeks
for the weather sensitivity. In addition, average fan speed (FanRPM,,) and total

mechanical air exchange rate (AC' H,pee,) are considered.

This similarity among the obtained fan speeds lies on the importance of the indoor
environmental conditions for the controller behavior. Figure 4.34 illustrates the
discomfort in every room on a single day for the average week. The discomfort is
represented by the dissatisfaction functions, developed for the cost function strategy
in Section 4.3.1. In every room except the bathroom, the discomfort is almost
always higher due to C'Oy concentration than to relative humidity. The resulting
indoor C'O, levels are independent of the ambient conditions, where a constant
concentration of 400 ppm is assumed. The ambient humidity levels can have an
additional influence, especially on dry days, where the rooms with lower internal
loads present a low relative humidity, dropping under the acceptable threshold and
increasing the discomfort. Therefore, the sensitivity of the results to the internal

loads must be studied.
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Figure 4.34: Discomfort values due to RH and C'O; in every room in a single day

of the average week.

Three simulations of the average week with a global variation of the internal loads
(-50% and +50%) are performed. Table 4.12 summarizes the results. In this case,
every indicator in the table is strongly affected by the internal loads variation.
The relative humidity and C'O indicators become worse than the constant strategy
when the loads are increased or become negligible when the loads are reduced.
The average fan speed and resulting air exchange rate are also strongly affected,
which highlights the importance of the correct dimensioning of residential ventilation
systems, adjusting it to the needs of the occupants if possible. The performance
difference between both strategies for the RH indicator remains similar. The C'O,
indicator is more sensitive to internal loads variations. The fuzzy controller can
perform better than the steps strategy when the loads are reduced. In addition, the
fuzzy controller provides primary energy savings in the three simulated scenarios,

which are further analyzed.
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- 50% Internal + 50% Internal
Control No change
loads loads
F 3.49 7.76 10.52
ARH,, i
Steps 2.95 7.67 10.48
Fuzzy 0.34 0.00 0.00
ARH,,
Steps 0.63 0.05 0.01
Fuzzy 3.69 58.49 166.56
ACO,
Steps 5.77 41.74 106.83
0 Fuzzy 37.54 46.53 54.13
pevent Steps 41.87 56.25 67.71
Fuzzy 771 900 1005
FanRPM,,
Steps 825 1035 1194
Fuzzy 0.16 0.21 0.26
ACHmech
Steps 0.18 0.27 0.35

Table 4.12: Summary of performance indicators in the different simulated weeks for
the internal loads sensitivity. In addition, average fan speed (FanRPM,,) and total

mechanical air exchange rate (AC H,,.p,) are considered.
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Figure 4.35: Sensitivity of the primary energy savings of the fuzzy controller against

the steps controller for different simulated conditions.

Figure 4.35 shows the sensitivity of the primary energy consumption for the different
weather conditions and internal loads variation. In any case, the primary energy
savings of the fuzzy controller reported in the last section remain. These potential
savings are strongly affected by the ambient temperature and the internal loads and

are less sensitive to wind speed variations. Colder ambient conditions increase the
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savings potential, highlighting the importance of heat recovery to minimize heat
losses due to ventilation. Colder environments do not affect the fan power. The
fuzzy controller has almost a constant primary energy consumption in windy or
calm weeks (where the ambient temperature is similar). The internal loads have a
direct impact on the resulting air exchange rate, therefore affecting both heat losses
and fan power. Reducing the internal loads undermine also the potential energy
savings of the fuzzy controller. Lower loads require lower average fan speeds, for

both analyzed controllers. The next section discusses the obtained results.

4.4.1.4 Discussion

Adequate ventilation is necessary to ensure good IAQ and comfort in renovated
residential buildings, as well as minimizing energy consumption. Comfort-oriented
ventilation strategies do not only improve comfort, but also bring a significant energy
saving potential without compromising TAQ. At first glance, the cost function strat-
egy fits slightly better with the comfort standards, especially regarding the ACO,
indicator. This result appears logical since this controller was designed considering
occupant discomfort curves from Chapter 2, while the proposed fuzzy controller only
takes into account specific threshold values. The individualization of the occupant
preferences can significantly impact the indoor environmental quality since the ac-
ceptability of indoor conditions is subjective. This could be achieved by redefining
the fuzzy membership functions [199]. Thus, these results open the door to learning

DCYV systems, which are evaluated in the next section.

Furthermore, other acceptability thresholds for RH and C'O, could be taken into
account. However, the shape of the dissatisfaction equations as well as the member-
ship functions in the fuzzy controller were defined according to the limits reviewed in
Chapter 2. A redefinition of these functions must come together with a redefinition
of the performance indicators. This means the actual performance of the developed
controllers is relative to the proposed performance indicators in this thesis, which

are based on previous studies.

A known limitation of the present case study is that only winter conditions during
one week are tested. The sensitivity to ambient conditions confirmed that the fuzzy
controller provided in any case at least 10% energy savings in comparison to the
conventional smart steps controller, while the relative humidity and C'O indicators

are slightly worse as a consequence of lower air exchange rates. The resulting dissat-
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isfaction levels in every room (Figure 4.34) indicate that the assumption of a smart
state-of-the-art strategy, based on RH in the humid rooms and on C'O, in the dry
rooms is correct. The steps strategy provides most of the potential primary energy

savings while simultaneously improving the comfort and air quality indicators.

Moreover, the sensitivity analysis regarding internal loads confirms that the fuzzy
controller can provide energy savings with higher and lower loads. Other factors,
such as indoor temperature setpoints and window opening behavior, might affect the
obtained results. Raising these setpoints would correspondingly increase the heating
energy losses due to ventilation and would also produce lower indoor RH values.
Furthermore, occupant attitudes towards window opening are heterogeneous, hence
leading to high dissimilarities in measured profiles, as studied in Chapter 3. This
diversity could influence the indoor environment and the resulting fan speed profile.
In this particular study, the windows are open less than 1% of the time. Other

window opening models could be considered, which can lead to higher opening rates.

A question arises around the results for the calm and windy weeks. Mikola et
al. [152] concluded that the influence of pressure differences on the performance
of decentralized ventilation systems is not negligible. The results of the sensitivity
analysis for the wind speed show the contrary, as the windy week has the lowest
primary energy consumption for mechanical ventilation. This is a consequence of
the selected modeling approach. The airflow network approach in EnergyPlus mod-
els room-individual balanced ventilation and adds infiltration to compensate for the
system disbalance. This results in lower pressure differences between room and
facade. Thus, the effect of an advanced control strategy could be undermined as
the total air exchange rate in the dwelling would be dominated by the air move-
ment due to pressure difference. Besides, this additional infiltration caused by the
disbalance increases heat losses. In the windy week, the apartment needs for every
simulated strategy around three times higher heating energy to keep the selected
room temperature setpoints. Alzade investigated the impact of unbalanced airflow
rates in the performance of decentralized ventilation systems within the framework
of a master thesis [8]. He concluded that the energy savings of balanced decentral-
ized ventilation systems can reach up to 20%. In addition, unbalanced decentralized
ventilation results in higher supply airflow rates and lower supply temperatures,
where draft could become an issue. In this case, other modeling techniques should
be considered, where the air room distribution is investigated. A modeling approach
where individual supply and exhaust airflow rates are modeled individually could be

suitable to investigate the impact of unbalanced decentralized ventilation in every

110



4 Innovative control strategies for decentralized ventilation

room. Methods based on computational fluid dynamics (CFD) might also be an
appropriate tool for the assessment of room air distribution and its impact on draft
[203].

Fuzzy systems are a well proven technology and have been widely implemented in
other fields [114, 125, 155]. Therefore, the implementation of the proposed fuzzy

scheme in a real building is technically feasible but not included in this thesis.

4.4.2 Learning DCV using different user profiles

4.4.2.1 Methodology

In this section, a simulation case study about the proposed self-learning DCV strat-

egy is carried out. The analysis focuses on four key points:

e Section 4.4.2.2: Automatic control strategies performance (constant speed,
steps, fuzzy logic, and self-learning DCV) assuming a single user type. The
cost function strategy is left out, since its performance is worse than the fuzzy

logic, as concluded in the previous section.

e Section 4.4.2.3: Learning performance with different user comfort profiles,
against automatic strategies. The user comfort profiles and interaction model
are described in Section 4.2.5.2.

e Section 4.4.2.4: Influence of user interaction frequency profile: learning per-
formance with an active, medium, or passive user. These frequency profiles
are defined in Section 4.2.5.3.

e Section 4.4.2.5: Influence of a mixed comfort profile ("more air” in humid

rooms, and "less air” in the rest) on the performance of the self-learning DCV.

The simulation is implemented in the co-simulation scheme (Section 4.2.1), using
the models described in Section 4.2. The decentralized ventilation heat storage
model is replaced with a constant heat recovery efficiency of 70% to reduce the
simulation time. In this case, a period of three months is simulated (winter). The
ambient conditions are illustrated in Figure 4.36. The simulation time was selected
as a previous analysis of the implementation of this controller in Chapter 5. The

analysis of results is performed using the same indicators from the previous section,
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defined in Chapter 2. A discussion of the results in this analysis is included in
Section 4.4.2.6.
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Figure 4.36: Ambient conditions in the selected months for the simulation of the

self-learning control strategy:.

4.4.2.2 Control results for a single user type

The simulation results of four different automatic controllers are presented in this
section. The selected user comfort profile for the learning controller is a "norm” user
with medium interaction frequency. Figure 4.37 illustrates the total air exchange
rate in the dwelling. The profile is analogous to the previous section (Figure 4.31),
where the constant speed strategy shows an almost constant air exchange rate, and
the DCV controllers allocate the speeds according to the values of RH and COs.
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Figure 4.37: Total air exchange rate in a single day, after 75 days of learning.

Table 4.13 presents the simulation performance indicators. The four controllers
perform similarly considering the RH indicators. The learning strategy outperforms
somewhat the other two DCV controllers in TAQ, but significantly the constant speed

strategy. These results are in line with the previous analysis in Section 4.4.1.2.

Control  ARH,, (%] ARH,, [%] ACO; [ppm] Qpevent [KWh]

Constant 2.54 3.24 70.84 447.85
Fuzzy 2.16 1.82 19.46 369.15
Learning 2.10 1.31 8.72 390.73
Steps 2.27 1.59 14.58 383.23

Table 4.13: Summary of performance indicators for every simulated controller.

Furthermore, the results are analyzed further through the cumulative distribution
of the relative humidity and C'O, concentration during occupancy, where the un-
acceptable range is highlighted in red (Figure 4.38). As expected, the steps and
fuzzy strategies deliver almost identical distribution profiles since the resulting air
exchange profiles are similar. In the kitchen, the four controllers perform similarly.
In the bathroom, the constant speed strategy has a RH above 85% for 20% of
the occupied time, while the other controllers present almost no values above this
threshold. This value highlights the inability of the constant airflow strategy to
deal with high RH peak values since it is not demand-based. However, the values

shown in the cumulative distribution plot are when the rooms are occupied. In the
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bathroom, this occurs only 15% of the time, which means that the real mold risk
due to high RH is not high, even for the constant airflow strategy. Besides, the four
controllers keep the RH mostly above the lower limit. In the case of C'Oy concentra-
tion, the performance in the bedroom is diverse. The cumulative values above the
1250 ppm threshold are 0, 25, 50, and 75% for learning, steps, fuzzy and constant

speed, respectively. In this case, the learning strategy outperforms the other ones.
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Figure 4.38: RH and C'Oy cumulative distribution plots in relevant rooms for the

different simulated control strategies.

The fuzzy controller presents the lowest primary energy consumption. In this sce-
nario, the potential savings of the fuzzy and the learning controller with a ”norm”

user are almost negligible in comparison to a steps controller. The three DCV
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controllers provide between 16% and 19% primary energy savings compared to the

constant airflow strategy.
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Figure 4.39: Primary energy savings of the proposed controllers. Constant airflow

strategy is taken as baseline case.

To sum up, results show that smart control strategies in decentralized ventilation
systems have a significant impact on hygrothermal comfort, IAQ, and energy con-
sumption. The proposed controllers have the potential to improve the indoor en-
vironmental conditions without compromising the primary energy savings of the
state-of-the-art steps DCV. The learning DCV strategy has besides the possibility
of adapting itself to different occupant profiles, which is studied in the following

sections.

4.4.2.3 Learning results for different comfort profiles

The performance of the same four automatic controllers with different user comfort
profiles is characterized in this section. The selected user interaction frequency
profile is medium. The goal is to show how the learning system adapts itself to the
needs of the different users and to quantify (through performance indicators) the
degree of adaptation. The learning process is decentralized, which means that user

preferences are learned individually in every room.

Table 4.14 reveals the distribution of votes in every room for each simulation. In

Section 4.3.3.2, it was estimated that the learning process stabilizes after 60 votes.
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Taking into account the four user comfort profiles and the individual rooms, the
living room of the norm profile presents the highest number of votes (20), which
has not learned yet a stable profile. The total number of votes in each dwelling is

around 50, suggesting that a whole-dwelling learning approach might be suitable to

accelerate the learning process.

Votes Child 2 Child 1 Bedroom Living Kitchen Bathroom Total

Distracted 4 8 12 14 4 5 47
Less air 16 16 8 11 5 1 Y
More air 17 11 ) 11 7 4 b}
Norm 8 12 5) 20 5} 4 54

Table 4.14: Number of votes per room and user comfort profile, with medium inter-
action frequency.

Therefore, the simulation is carried out again with decentralized ventilation and
single-room DCV controllers, but a whole-dwelling learning scheme. The whole-
dwelling learning takes place under the assumption that there are no deviations in
the user preferences given the room type (for instance, this assumes that the comfort
profile in bedrooms and bathrooms are equivalent). Figure 4.40 shows the different

resulting air exchange rate profiles and Table 4.15 shows the performance indicators.
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Figure 4.40: Total air exchange rate in a single day with whole-dwelling learning
algorithm, after 75 days of learning.
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Control  ARH,, [%] ARH,, (%] ACO;z [ppm]| Qpevent [kKWh]

Distracted 2.16 1.30 8.50 399.28
Less air 2.00 1.52 25.92 359.25
More air 2.28 1.13 7.23 434.02

Norm 2.11 1.36 14.95 372.85

Table 4.15: Performance indicators for the learning DCV strategy with all user

comfort profiles and a whole-dwelling learning process.

Similar to the single-room learning results, the four controllers can handle the values
of the RH indicators independent of the different user comfort profiles. Low RH
values are mostly absent in all four cases. Larger differences are observed in the
CO, concentration and primary energy consumption. Figure 4.41 illustrates the

cumulative distribution for C'O, in different rooms for the simulated user profiles.
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Figure 4.41: C'Oy cumulative distribution plots in selected rooms with centralized

learning scheme for the different user comfort profiles.

The cumulative distribution of the C'Oy concentration reflects the impact of the
learning scheme: the ”less air” profile (especially in the bedroom) shows considerably
higher values than the others, even reaching 1500 ppm, while the "more air” profile

has a peak value of almost 1100 ppm.
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Figure 4.42: Primary energy consumption due to ventilation for the selected user

profiles. ”Norm” user is taken as baseline case.

The primary energy consumption of each selected user profile is distinctive for each
case (Figure 4.42): the resulting air exchange rate has a huge impact. The "less air”
comfort profile consumes 20% less energy than the "more air”. A distracted user
appears to consume 7% more than the norm profile. The relative differences among
user profiles for the fan energy consumption are similar to the relative differences

for the heating energy losses due to ventilation.

The differences of the performance indicators are due to the different learned DCV

control fields. Figures 4.43, 4.44, 4.45 and 4.46 show the finally learned profiles for

cach user comfort type after the whole simulation period (90 days) in the whole

dwelling. The profiles are in this case distinctive and well-defined. To summarize:
e the distracted user has a larger area of single-level changes (-1, +1).

e the less air user has a larger area of double negative changes (-2).

e the more air user has a larger area of single and double positive changes
(+1,+2).

e the norm user has a similar profile to the default profile (Figure 4.29).
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Figure 4.43: Learned profile for the ”dis-

tracted” user with whole-dwelling learn-
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Figure 4.44: Learned profile for the ”less
air” user with whole-dwelling learning

approach.
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Figure 4.46: Learned profile for the
"norm” user with whole-dwelling learn-

ing approach.

These learned DCV controllers gained information about the comfort status of the

occupant. However, the performance indicators (Table 4.15) are calculated with

global discomfort threshold values from the literature. For instance, the ”less air”

profile presents peak values of 1500 ppm, which is classified as uncomfortable (thresh-

old of 1250 ppm) but is within the assumed comfort range for this particular user.

Hence, assuming an admissible threshold of 30% PD (as seen in Section 2.3.3), the

discomfort time (defined as the percentage of the time outside the comfort limits) is

recalculated using the individual threshold values that lead to a comfort probability
of 30%. Table 4.16 shows the results for every comfort profile. The comfort profile

for the ”distracted” user covers the whole measurement spectrum and is therefore

excluded from this analysis.
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User profile RH,, [%] RH,, %] CO, [ppm]

Norm 26.22 63.78 1431
Less air 47.54 72.46 1652
More air 17.65 42.36 1052

Table 4.16: 30% PD threshold values for the artificial user comfort profiles.

Figures 4.47 and 4.48 show the discomfort time considering the individual profiles
for each control strategy. For the "more air” profile, the learning strategy provides
a substantial reduction of the time where the occupant is exposed to uncomfortable
conditions. The "less air” profile feels comfortable in higher RH values than the
other profiles (48 to 72%). The indoor RH is expected to have lower values in winter
conditions, resulting in a higher discomfort of the “less air” user. In the humid rooms
(kitchen and bathroom), the upper comfort threshold is briefly surpassed when
the resulting RH is high due to occupant activities. The "norm” profile performs
similarly for all the demand-based controllers. This appears logical, since the default
profiles for these controllers are based on literature values for comfort and TAQ. The
comfort limits are slightly tighter than the indicators defined in Chapter 2, but do
not shift the control field from the default one strongly. The results for the three
user comfort profiles confirm the success of the learning strategy. This adaptation
could be also translated to the membership functions in the fuzzy controller, which
can improve its performance regarding norm-defined comfort and indoor air quality
profiles. These results are independent of the indoor temperature since the same

setpoints are defined for every control strategy.
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Figure 4.47: Percentage of time outside  Figure 4.48: Percentage of time outside

the RH comfort range. the C'Oy comfort range.

To summarize, the self-learning DCV control strategy has the potential to adapt

itself to the different requirements of the user. In the next section, the influence of
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user interaction frequency is studied.

4.4.2.4 Influence of interaction frequency

The number of user votes influences the performance of the learning algorithm
strongly. In this section, three different user interaction frequency profiles are com-
pared, where the "more air” comfort profile is simulated with active, passive, and
medium users. It is expected that the control profile (and performance indicators)
of the passive user are closer to the "norm user” since the number of votes would
not be enough to learn a clear "more air” profile. On the other hand, the "active”
and "medium” users should have a control field where the 742" area is larger as a

result of the higher number of positive votes.

Table 4.17 exposes the number of votes in every room for each simulated profile.
Similar to the previous section, the centralization of the learning algorithm plays a
key role in the success of the learning DCV strategy. Given the number of votes,
it is expected that the single-room learning is only successful for the active user.
Moreover, the medium user should somewhat present distinctive profiles for the
rooms but can learn the comfort profile properly when performing a whole-dwelling
learning algorithm. The passive user has only six total votes, which is not enough to
obtain a shifted profile from the default one in any case, and similar results to the
distracted profile are expected for single-room learning. However, a whole-dwelling
learning algorithm can lead to better individualization for the medium interaction

profile since the total number of votes is close to the stabilization value of 60.

Votes  Child 2 Child 1 Bedroom Living Kitchen Bathroom Total

Active 65 H6 H4 69 21 26 291
Medium 17 11 5) 11 7 4 55
Passive 1 0 2 3 0 0 6

Table 4.17: Number of votes per room and user interaction frequency for the "more

air” comfort profile.
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Figure 4.49: Total air exchange rate in a single day with whole-dwelling learning,

after 75 days of learning.

Thus, the simulation is performed using a whole-dwelling learning approach. Figure
4.49 shows the daily air exchange profile after 75 simulation days. The active user

presents a higher air exchange rate profile than the other two in this case.

Figures 4.50, 4.51 and 4.52 illustrate the final profiles of the whole-dwelling learning
process. In this case, the three develop a bigger ”+2” area, meaning better learning
of the selected user comfort profile ("more air”). In this case, the medium profile
could shift the threshold values of the relative humidity between vote areas to the
left of the plot, meaning that the user wants a higher air exchange at lower relative
humidity values than a "norm” user (used to define the default control field). The
unorthodox shape for the active user in Figure 4.50 is explained by the lack of user
feedback points where the dark green area seems incomplete (around 50% and 1250

ppm). The passive user shows only a slight deviation from the default profile.
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Figure 4.50: Learned control field for the active user with whole-dwelling learning.
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Figure 4.51: Learned control field for the  Figure 4.52: Learned control field for the

medium user with whole-dwelling learn-  passive user with whole-dwelling learn-

ing. ing.

Table 4.18 displays similar performance indicators for the RH and C'O; in every
user frequency type. The whole-dwelling learning process enables a faster reaction
to a well-defined profile. The lowest energy consumption is obtained with the pas-
sive profile, as expected since a well-defined "more air” profile results in higher air
exchange rates (Section 4.4.2.3). The difference between an active and passive user
is around 10%. The three profiles present the highest energy consumption of all
the user comfort and frequency profiles analyzed in this section but remain some-
what lower than the constant speed strategy (Table 4.13). This shows that even
the passive profile gained some information about the user comfort profile and that
providing just a few votes may be enough to approximate the tendency of the user
preferences. This introduces the analysis in the next section, where a mixed com-
fort profile is simulated, and the impact of single-room and whole-dwelling learning

schemes is analyzed.
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Control ARH,, [%] ARH,, [%] ACO; [ppm] Qpevent [KWh]
Active 2.35 1.03 6.15 460.20
Medium 2.28 1.13 7.23 434.02
Passive 2.20 1.22 7.93 416.63

Table 4.18: Summary of performance indicators for the learning DCV strategy with

every user interaction frequency profile.

4.4.2.5 Learning results for a mixed comfort profile

In the last section, it was concluded that a whole-dwelling approach might provide a
faster solution to adapt the control field to the occupant’s needs. However, consistent
comfort and interaction profiles were assumed in every room. In this section, two
different comfort profiles for this dwelling are considered: the humid rooms (kitchen
and bathroom) have a "more air” profile, whereas the rest of the rooms present a
"less air” profile. An active user is assumed. The votes are simulated only once
and used in both cases. The contrast of these profiles and the influence on the
self-learning DCV control field is analyzed. Besides, the obtained results comparing

single-room and whole-dwelling approaches are described.

Table 4.19 shows the number of votes per room and type for the mixed comfort
profile. As expected, the "more air” profile causes a higher number of positive votes
in the humid rooms, and the "less air” profile causes a higher number of negative
votes in the rest. The time an occupant spends in the humid rooms is less than in

the rest, therefore resulting in a lower total number of interactions.

Votes Children 2 Children 1 Bedroom Living Kitchen Bathroom
+2 0 0 0 8 9 16
+1 0 3 1 0 7 5
-1 2 4 9 0 3 1
-2 54 58 49 79 2 0

Table 4.19: Number of votes per room and type for a mixed comfort profile.

Table 4.20 shows the performance indicators for both simulations. The prevalence
of negative votes in the dry rooms causes a higher result in the ARH,, indicator
for the whole-dwelling approach. In this case, the single-room scheme has a better
performance in humid rooms. The same results are observed for the indoor air
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quality indicator ACOy and the primary energy consumption. The presence of
"more air” profiles in two rooms causes higher energy consumption and a lower

ACO4 value for the single-room scheme.

Learning scheme ARH,, (%] ARH,, [%] ACO; [ppm] Qpevent kKWh]
Single-room 1.59 1.94 45.17 365.79
Whole-dwelling 3.23 1.72 153.72 335.61

Table 4.20: Performance indicators for the mixed comfort profile using single-room

and whole-dwelling learning schemes.

Figures 4.53 and 4.54 show two exemplary learned control fields, obtained in the
single-room simulation scheme. They belong to the bedroom and bathroom, re-
spectively, which have different comfort profiles. The influence of the selected user
profiles is recognized in every room, although the bathroom profile is not shifted

extremely from the default profile (there are only 16 ”+2” votes in the bathroom).
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Figure 4.53: Learned control field for the

single-room scheme in the bedroom.
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Figure 4.54: Learned control field for the

single-room scheme in the bathroom.

On the other hand, Figure 4.55 illustrates the learned control field obtained in the
whole-dwelling simulation scheme. This profile appears as an extreme version of the
"less air” profile, also studied in previous sections. This control field is a result of
a conflict between the two comfort profiles and the mixed learning scheme. Figure
4.56 illustrates the resulting learned comfort profile. In this case, two comfort zones
are identified: the first one with low CO; and RH values, corresponding to the
"more air” profile, and a second one for higher RH and C'O, values, corresponding
to the presence of the ”less air” profile. Even though the ”less air” user is simulated
in more rooms and has more votes, the "more air” profile is closer to the starting

profile and therefore has a bigger comfort probability. This analysis emphasizes the
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importance of a single-room learning scheme, even if it takes longer to learn the
desired profiles. The next section discusses the results obtained for the different

comfort and interaction user profiles.
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Figure 4.55: Learned control field for the  Figure 4.56: Learned 3D comfort profile

whole-dwelling scheme. for the whole-dwelling scheme.

90

4.4.2.6 Discussion

As reported in Section 4.3.3, some learning algorithms have already been applied
to different HVAC and building systems to address the trade-off between occupant
comfort and satisfaction, indoor air quality, and energy consumption. In that sense,
the proposed learning DCV control strategy is a first approach to tailor a residential

mechanical ventilation system to the needs of the occupants.

The building simulation scheme has some limitations, as discussed in Section 4.4.1.4.
In this section, constant heat recovery efficiency is assumed. In comparison to Sec-
tion 4.4.1, the potential energy savings of the fuzzy controller in comparison to the
steps controller are significantly lower, which is a consequence of the simplification
of the heat recovery modeling. In that sense, the self-learning DCV with the default
control field provides primary energy savings in the same range as the fuzzy and

steps controllers.

The limitations of this study are explained in this paragraph. The four considered
user profiles are not only artificial but also well-defined. This leads to well-defined
learned DCV schemes, which may be an uncommon case in reality. The lack of
data about user feedback in residential ventilation systems hinders the possibility
of studying it reliably. Furthermore, the assumed human diversity creates some
wasteful profiles as well, which result in relatively high energy consumption (for

instance, the "more air” user consumes more energy than the smart DCV baseline
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controller). In addition, the winter simulation strongly affects the learning process
since the most comfortable area of some user profiles never occurs. A ”less air”
user feels most comfortable at a RH of 60%, a value that is seldomly reached in
the living or bedrooms during the whole simulation period. The algorithm will not
obtain any feedback regarding comfortable areas in this particular case, influencing

the learning performance.

A fundamental point is that all user profiles began with the same default learning
DCYV control field. This means there is a period where the controller was not fully
individualized during the three simulated months, given the lack of votes. Longer
simulation periods will increment the difference between the performance indicators
for every user type, emphasizing the potential of the learning DCV strategy. An-
other option would be to perform the same simulation study changing the starting
DCYV profile with the learned one for every single user. However, this section aims
to assess the individualization of the learning DCV controller. This controller shows
resilience to complete random user profiles, highlighting its ability to offer an in-
dividual solution for every user without compromising mold growth protection and

potential health-related issues. These results are available in the Appendix A.6.

Moreover, a big question arises concerning whole-dwelling or single-room learning.
The first one can provide a faster learning scheme, under the assumption that the
occupant’s preferences are consistent in every room of the apartment, although room
singularities would be lost. Single-room learning might result in slower learning pro-
cesses but can capture the different profiles for different rooms. Assuming that an
occupant in a highly uncomfortable state is probably more willing to operate the
available control systems (HVAC), a single-room learning scheme is more suitable
to be tested in a real-building implementation. Results in Section 4.4.2.5 highlight
the importance of applying a single-room learning scheme on the modeling of mixed
comfort profiles. In this thesis, artificial comfort profiles were defined to test the
learning algorithm, under the assumption that an occupant would only operate the
mechanical ventilation system in uncomfortable indoor conditions. These profiles
are unlikely to be crisply well-defined in real buildings. The diversity of the occupant
behavior in different circumstances turns the single-room scheme into a suitable ap-
proach to preserve the individual preferences of the occupant in every room. This
suitability does not only apply to the behavior of different occupants (for example,
two bedrooms) but also for rooms with other purposes: kitchen, living room, and
bathroom. It is expected that the whole-dwelling approach is also not suitable when

considering diversity: number of occupants, different comfort profiles, even consider-
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ing different personanity traits and psychological aspects. Within the framework of
a master thesis, Maier [142] analyzed the different ventilation needs through a sur-
vey, confirming this diversity. A validated occupant behavior model geared towards

mechanical ventilation is needed to gain further insight into this topic.

Finally, the proposed self-learning user-centered solution has not yet been imple-
mented in a real building. A question arises regarding the occupant’s comfort pro-
files (if they are crisply well-defined, as the user model proposes) or if they have a
more random characteristic. Thus, the study of the real building implementation of

the learning DCV controller is addressed further in the next chapter.

4.5 Summary

Defining proper control strategies is a key to the success of decentralized ventilation
systems. Within the framework to integrate occupant-centric control strategies in
residential buildings, this chapter evaluates the performance of present and novel
controllers for residential decentralized ventilation, including the occupant interac-
tion with the systems. Simulation studies provide an insight into the optimization
of these systems before developing a real building application. Hence, the research

question 3 is answered through the following points:

Research Question 3: How do state-of-the-art control strategies for decentralized
ventilation systems perform? Can innovative occupant-centered control solutions
provide an improvement regarding enerqy consumption, hygrothermal comfort and

indoor air quality?

e A market and scientific research was carried out. As a result, two baseline
control strategies were defined, one with constant fan speed and a second one
representing current smart ventilation technologies (stepwise DCV). Two main
weaknesses were identified: only one variable at a time is controlled (either
RH or CO;) and there is a confirmed lack of occupant-centered strategies,

where diversity and individual preferences are considered.

e In contrast to the available DCV solutions, two innovative fully automated con-
trollers were developed, with the aim of looking for multivariable controllers
where both RH and CO, are considered together. The first one was a cost
function DCV, where the fan speed is determined by the variable which has
the highest dissatisfaction, given literature-related values. The seco