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Abstract

This thesis addresses ventilation control strategies from the perspective of the oc-

cupant. The use of decentralized mechanical ventilation systems has grown sustain-

ably in the past ten years in Germany as a cost-effective solution to guarantee air

exchange in highly airtight renovated residential buildings. Even though occupant-

centered control strategies for residential ventilation are often neglected, they could

potentially improve the trade-off between energy efficiency, hygrothermal comfort,

and indoor air quality.

Window operation remains the primary occupant action to obtain fresh air. Existing

window opening models are reviewed and compared to real building measurements.

A real-time logistic regression analysis with a window opening detection algorithm

is investigated to learn about user preferences without deploying extra sensors. This

proposed method fails to grasp the occupant behavior properly when information

about user preferences is not available in advance. Therefore, feedback is required

to achieve the targeted individualization.

Market and scientific research has identified the lack of multivariable solutions and

occupant-centered approaches as the main gap in residential ventilation controllers.

Therefore, three main solutions are proposed: a comfort-oriented cost function, a

fuzzy demand-based controller and a self-learning controller based on a classification

algorithm.

These controllers target the indoor relative humidity and CO2 concentration. A

co-simulation approach can evaluate the performance of these solutions and their

impact on energy, comfort, and air quality. Full-automatic multivariable controllers

can provide around 13% primary energy savings compared to state-of-the-art strate-

gies without compromising comfort or air quality. The self-learning solution offers

a suitable individualization of the occupants’ preferences using their feedback.

The self-learning controller was implemented in a real building with decentralized

ventilation systems using a smart ventilation concept (Internet of Things-based).

The controller identified different occupant preferences in every room. Further anal-

ysis of user preferences indicates that fan noise and high relative humidities are key

triggers for the operation of ventilation systems in residential buildings. Smart so-

lutions were mentioned as one of the key aspects to increase the acceptance of the

system. In conclusion, occupant-centered control strategies achieve sufficient levels

of energy performance, hygrothermal comfort, and indoor air quality.
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Kurzfassung

Diese Arbeit befasst sich mit Lüftungsregelungsstrategien aus der Perspektive des

Bewohners. Der Einsatz dezentraler Lüftungssysteme ist in den letzten zehn Jahren

in Deutschland nachhaltig gewachsen, als kostengünstige Lösung zur Gewährleistung

des Luftaustausches in luftdicht sanierten Wohngebäuden. Auch wenn nutzerorien-

tierte Regelungen oft vernachlässigt werden, könnten diese den Zielkonflikt zwischen

den betrachteten Aspekten Energieeffizienz, hygrothermischem Komfort und Raum-

luftqualität verbessern.

Die Fensteröffnung bleibt den Bewohnern als primäre Maßnahme zur Frischluftzu-

fuhr erhalten. Bestehende Fensteröffnungsmodelle werden überprüft und mit realen

Gebäudemessungen verglichen. Eine logistische Regressionsanalyse in Echtzeit mit

einem Algorithmus zur Erkennung der Fensteröffnung wird untersucht, um Nutzer-

präferenzen ohne den Einsatz zusätzlicher Sensoren zu erlernen. Diese vorgeschla-

gene Methode kann das Verhalten der Bewohner nicht richtig erfassen, wenn Infor-

mationen über Nutzerpräferenzen nicht im Voraus verfügbar sind. Daher ist eine

Rückmeldung erforderlich, um die angestrebte Individualisierung zu erreichen.

Eine Markt- und wissenschaftliche Recherche identifizierte den Mangel an multivari-

ablen Lösungen und nutzerorientierten Ansätzen als das vordingliche Defizit bei den

Wohnungslüftungsregelungen. Daher werden die drei Lösungen Komfort-orientierte

Kostenfunktion, ein Regler basierend auf einer Fuzzy-Logik und eine selbstlernende

Regelung auf Basis von einem Klassifizierungsalgorithmus untersucht.

Diese Regler zielen auf die relative Raumluftfeuchtigkeit und die Kohlendioxid-

konzentration ab. Ein Co-Simulationsansatz kann die Leistung dieser Lösungen

bewerten. Vollautomatische, multivariable Regler können im Vergleich zu modern-

sten Strategien rund 13% Primärenergieeinsparungen erzielen, ohne den Komfort

oder die Luftqualität zu beeinträchtigen. Die selbstlernende Lösung bietet eine

geeignete Individualisierung der Nutzerpräferenzen anhand ihrer Rückmeldung.

Der selbstlernende Regler wurde in einem realen Gebäude mit dezentralen Lüftungs-

anlagen unter Verwendung eines intelligenten Lüftungskonzepts implementiert. Der

Regler identifizierte unterschiedliche raumindividuelle Präferenzen. Analysen der

Nutzerpräferenzen zeigen, dass Ventilatorgeräusche und hohe relative Luftfeuchtig-

keiten wichtige Einflüsse für die Betriebsweise von Lüftungsanlagen sind. Intelli-

gente Lösungen wurden als einer der Schlüsselaspekte genannt, um die Akzeptanz

des Systems zu erhöhen. Zusammenfassend lässt sich sagen, dass nutzerorientierte

Regelungen ein gutes Niveau in Bezug auf die drei Zielaspekte erreichen können.
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1 Introduction

1 Introduction

1.1 Background

Residential building energy retrofit is necessary to accomplish the proposed energy

targets in the European Union. Between 2012 and 2016, yearly primary energy

savings of 1% were achieved and should increase towards 3% [72]. Ventilation heat

losses were always low in comparison to transmission heat losses through the en-

velope, but became relevant in low-energy and passive houses where the projected

ventilation and envelope heat losses are in a similar range [102]. Figure 1.1 illustrates

this evolution.
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Figure 1.1: Evolution of energy losses in residential buildings [102].

Airtightness is increased in retrofitted buildings, which affects the indoor environ-

mental conditions. In renovated multifamily buildings without ventilation in Slo-

vakia, increased levels of indoor contaminants were observed [82]. The occupants

perceived the indoor air quality as better before the renovation. This resulted also

in a higher prevalence of sick building syndrome (SBS) symptoms. Francisco et

al. [83] concluded that indoor air quality (IAQ) and health improved drastically

when building retrofits comply with appropriate residential ventilation standards.

This increasing attention to healthy indoor environments requires a response from

building and ventilation system commissioners [88]. Higher ventilation rates in resi-

dences can reduce negative health outcomes generally, and there are even minimum

1



1 Introduction

ventilation rates at which some health-related issues can be avoided [40]. In the

case of energy renovation, designing and installing mechanical ventilation systems

with heat recovery are required for ensuring the indoor environment quality and

maximizing energy savings [212]. In Germany, the standard DIN 1946-6 [58] covers

the design of ventilation measures, according to the building requirements. This

standard applies to every new residential building and to every renovated building

where ventilation-related changes were carried out. The ventilation concept assesses

both natural ventilation (window opening) and mechanical ventilation systems. The

main objectives of the ventilation concept are building protection as well as occu-

pant comfort and indoor air quality. In Europe, there is no standard that covers the

design of residential ventilation systems. However, there are comfort and air quality-

related european standards that suggest minimum ventilation rates per room and

per person to ensure indoor air quality, such as the DIN EN 15251 [59] and DIN EN

ISO 7730 [61]. The DIN EN 15251 has been updated in Germany to the DIN EN

16798-1 [60] (from the British standard BS EN 16798-1) but this has not been yet

extended to the rest of Europe.

1.2 Problem statement

The market for residential ventilation systems has grown in the last ten years at

an average pace of 4.2 % [110]. Specifically in Germany, decentralized ventilation

systems (DVS) gained relevance in both the market and scientific community. The

sales trend of ventilation systems in Germany is depicted in Figure 1.2 [110]. DVS

represented 17% of the total sales in 2012, and climbed to 36% in 2018, becoming

the market leader in sales in that year. In 2019, the latest version of the German

ventilation standard DIN 1946-6 included individual room ventilation for the first

time [58].

2
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Figure 1.2: Evolution of residential ventilation market (2012-2018) in Germany [110].

Decentralized ventilation aims at providing room-individual airflow rates, which

can be controlled separately. Supply and exhaust airflow is present in every room

where these devices are installed, in contrast to centralized systems, where there

are fixed supply rooms (living room and bedrooms) and exhaust rooms (kitchen

and bathroom). An exemplary façade-integrated decentralized ventilation system

(DVS) is illustrated in Figure 1.3. These units are usually equipped with a reversible

fan and a heat storage. A filter is included on the room side of the device. This

device operates alternating periodically in supply and exhaust mode (60 seconds

respectively). These devices are often referred to as ”push-pull” devices.

Figure 1.3: Exploded axonometric of a DVS [216]. 1 - Indoor panel. 2 - Reversible

fan. 3 - Heat storage system. 4 - Outdoor panel.
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Decentralized ventilation systems offer a cost-effective solution to guarantee air ex-

change in residential buildings. Maier et al. [143] report lower installation costs

by about 40–55% in comparison to centralized ventilation systems and air handling

units, respectively. As façade-integrated systems provide fresh air directly from the

outdoor environment, the installation process is relatively simple since there is no

need for ducts. However, maintenance, limited filter options, and noise pollution are

known unresolved issues of these systems. Angsten et al. [16] summarizes the advan-

tages and drawbacks of decentralized ventilation. Merzkirch et al. [151] measured

different performance indicators regarding centralized and decentralized ventilation

systems. Decentralized ventilation systems have typically lower fan power consump-

tion, with heat recovery efficiencies around 70%. Short-circuit problems when two

devices are placed too close to each other were also recognized.

Furthermore, Gruner [91] concluded that when embodied energy is considered, de-

centralized systems show a trend to be more sustainable than centralized systems. In

addition, he showed that individual room control enables the improvement of indoor

air quality and user satisfaction. Smith [198] studied the impact of room-individual

control of ventilation systems on building moisture protection, concluding that the

removal of excess humidity in kitchens and bathroom was successful. Coydon [49]

conceptualized and developed an innovative dwelling-centralized ventilation solution

with individualized fans, highlighting the potential of a room-individual solution to

optimize energy consumption, hygrothermal comfort and IAQ. Angsten et al. [16]

identified the use of advanced control strategies with indoor environmental sensors

as one of the future trends for decentralized ventilation.

Despite the increasing interest in control strategies for ventilation systems in the

last years, there is still a need for research, especially regarding the relationship be-

tween comfortable and healthy indoor environments [43]. The most popular control

strategy in decentralized ventilation is called demand-controlled ventilation (DCV),

which is an open-loop controller where the fan speed is determined by a certain

sensor measurement [80]. This has already been identified as a solution to minimize

energy losses and ensuring mold growth protection [184], as well as guaranteeing

improvement of the IAQ [112]. Different versions of the same controller have been

published in recent years, although a lack of innovation can be identified [218]. Re-

cently, the Air, Infiltration and Ventilation Centre (AIVC) published their definition

of ”smart ventilation” [66]:

4
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Smart ventilation: ”Smart ventilation is a process to continually adjust the

ventilation system in time, and optionally by location, to provide the desired indoor

air quality benefits while minimizing energy consumption, utility bills and other

non-IAQ costs (such as thermal discomfort or noise).”

Moreover, a smart ventilation system should adjust the ventilation rates to be re-

sponsive to one or more of the following: occupancy, indoor and outdoor thermal and

air quality conditions, or electricity grid needs, among others. The occupant behav-

ior regarding the maunal operation of residential ventilation systems has been largely

ignored by the scientific community until recently. A review about occupant-centric

building and control design [168] showed plenty of available user-oriented solutions

in several fields, except for residential ventilation. According to another review [160],

controllers are being lately developed mostly reactive or predictive to presence or

comfort. The implementation of demand-based solutions based on the Internet of

Things (IoT) could enable adaptive control strategies to maximize IAQ in dwellings

[132]. This opens the door for potential user-centered solutions for decentralized

ventilation.

According to Wirth [224], balanced ventilation systems enable primary energy sav-

ings, but these can be undermined by the occupant behavior (OB). Users tend to

adjust the airflow levels to their individual needs, resulting in higher airflow levels

than designed. The impact of the occupant behavior concerning control of the in-

door environment and operation of ventilation systems has been stated as the top

research priority in this area [221]. As investigated by Gaetani et al. [86], a fit-for-

purpose modeling strategy can lead to successful design in buildings. Therefore, the

representation of the OB towards residential ventilation is key to the realization of

occupant-centered controllers for decentralized ventilation systems.

Nevertheless, there is a lack of research connecting user behavior and residential ven-

tilation. The AIVC published a report over ten years ago describing the occupant

attitudes towards ventilation [208]. Occupants generally reported a dissatisfaction

with their ventilation facilities, meaning there is a need for better solutions. Hasse-

laar [103] measured the ventilation running time in about 350 dwellings. He observed

that 14% of the apartments had the system turned off permanently, and in the rest,

the lowest ventilation level was set for an average of 17 hours. He concluded that the

industry focuses merely on meeting the minimum requirements and that the user

preferences are not considered. In another study, Park et al. [166] recognized the

high costs and difficulty of operation as the main reasons for not ventilating. This

indicates once again that the needs of the occupant should be involved in the design

5
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process, especially considering user interfaces.

1.3 Research questions

This work focuses exclusively on the following points:

� Residential renovated multifamily buildings

� Decentralized ventilation systems with decoupled heating systems

� Central European zone focusing on Germany, as a requirement for the defini-

tion of occupant behavior models

� Temperate climate without a dry season, as a representation of central euro-

pean climate, focusing on the winter season

This thesis tackles the lack of knowledge about the relationship between occupants

and residential mechanical ventilation. Understanding the needs of the users without

neglecting the sight of the manufacturer is the first step to develop the mentioned

occupant-centered solutions. The analysis of the occupant behavior towards ven-

tilation (natural and mechanical) will help to gain some insight into the targets

of a user-oriented system. Moreover, novel ventilation control strategies for resi-

dential buildings are proposed that are flexible enough to grasp the nature of the

occupant, while still meeting the minimum requirements of the regulations. The

implementation of ventilation controllers, and their connection to smart environ-

ments, is also examined. This thesis contributes to the integration of decentralized

residential ventilation systems into the smart appliances world, aiming at increasing

user acceptance, thus narrowing the gap between users and technology.

Based on the aspects mentioned above, the research questions can be defined as

follows:

Research Question 1: Which aspects should a residential ventilation control strat-

egy consider to account for the occupant’s needs?

Research Question 2: To what extent does the window opening behavior provide

useful information for ventilation control strategies? How can this be represented?

Research Question 3: How do state-of-the-art control strategies for decentralized

ventilation systems perform? Can innovative occupant-centered control solutions

6
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provide an improvement regarding energy consumption, hygrothermal comfort and

indoor air quality?

Research Question 4: How is the performance of innovative occupant-centered

control strategies in a real-building implementation? Do they influence the accep-

tance of the user towards ventilation systems?

1.4 Structure and methodology

The four research questions are answered from Chapters 2 to 5. The general method-

ology is condensed into Figure 1.4. In Chapter 2, the requirements for residen-

tial mechanical ventilation systems are analyzed by reviewing existing models and

findings from the literature. The outcomes establish the foundations for designing

occupant-centered solutions. In Chapter 3, the occupants’ need for ventilation re-

lated to the window opening behavior is investigated. Window opening behavior

as the need for fresh air is studied. A method to infer the ventilation preferences

of the occupant without deploying extra sensors is proposed. The importance of

the user feedback is therefore highlighted. Afterward, a user behavior model for the

operation of mechanical ventilation systems is proposed. In Chapter 4, three mul-

tivariable occupant-centered control strategies are developed, based on the results

obtained in the first two research questions. To evaluate them, models of building,

occupant, and decentralized ventilation are developed, and simulation case studies

are then performed. A sensitivity analysis of the results is also carried out. The best

performing controller from these simulations is selected and implemented in a real

building case study under a smart ventilation scheme in Chapter 5. An apartment

is then equipped with decentralized ventilation systems and an IoT-based solution,

to implement the selected user-centered strategy from the previous chapter. Results

are collected to evaluate the performance of the controller, the ventilation system

and to further investigate the occupant behavior regarding residential mechanical

ventilation. Finally, Chapter 6 summarizes the findings of this thesis. Future rec-

ommendations for further research and potential application cases are discussed.
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2 Requirements and evaluation of residential decentralized ventilation

2 Requirements and evaluation of residential de-

centralized ventilation

The goal of this chapter is to discuss the different requirements to define an evalua-

tion method for ventilation control strategies. Housing associations, manufacturers,

and end users play different roles in this evaluation. In order to provide the foun-

dations for this analysis, the considered variables are described from a scientific

point of view. Following normative standards and current scientific research, perfor-

mance indicators are selected to evaluate the performance of residential mechanical

ventilation systems properly.

2.1 General aspects

Ventilation systems allow residential buildings to ensure an adequate air exchange

when natural ventilation is not enough. As mentioned before, efficient control sys-

tems are relevant to ensure indoor comfort and air quality, while minimizing the

energy consumption. Decentralized ventilation systems (DVS) allow a higher flexi-

bility, given the possibility of controlling the airflow in every room.

Ventilation 
control 

strategies
Objectives

Standards

Influences

Noise

Costs

Comfort

User 
friendliness

ISO 7730
EN 16798-1

Energy 
consumption

User 
behaviour

Presence & 
activities

BuildingInfiltration

Thermal 
losses

Weather

Ambient 
temperature

Relative 
humidity

Wind

Heating 
behaviour

Indoor air 
quality

DIN 1946-6

Window 
opening

Figure 2.1: Overview of requirements for ventilation control systems.

Figure 2.1 shows an overview of the objectives, standards, and external influences of
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2 Requirements and evaluation of residential decentralized ventilation

control strategies for ventilation systems. The objectives and standards are further

analyzed in this chapter. The influence of the occupant behavior on mechanical

ventilation is studied in Chapter 3. The weather and building influences are tackled

in Chapter 4.

In Germany, the standard DIN 1946-6 sets the requirements for air exchange in

residential buildings [58]. This norm describes different scenarios in which the fresh

air needs may be covered by natural ventilation as well as mechanical ventilation

systems (MV) and the building infiltration. As a definition, the total supply volume

flow rate of fresh air is the sum of the three aforementioned sources:

V̇tot = V̇inf + V̇WO + V̇MV (2.1)

being V̇tot the total volume flow rate, V̇inf the volume flow rate due to infiltration,

V̇WO the volume flow rate due to window opening, and V̇MV the volume flow rate

due to mechanical ventilation systems [58, p. 28, s. 6.1.1]. For the selection and

dimensioning of mechanical ventilation systems, the user-dependent volume flow

rate (window opening) must not be considered.

Taking into account the dimensioning of ventilation systems, one of the key contri-

butions of this norm is that it sets four different ventilation levels and their corre-

sponding minimum outdoor airflow supply in different operating conditions:

1. Ventilation for moisture protection: the ventilation level is a function of the

buildings’ thermal characteristics and the dwelling area. The goal is to pre-

vent structural damage due to mold growth. This ventilation rate must be

guaranteed at any time independent of occupants.

2. Reduced ventilation: this level covers the minimum hygienic standards, in

some cases by considering reduced humidity loads.

3. Nominal ventilation: ventilation to ensure the hygienic requirements as well

as building protection during occupant presence.

4. Intense ventilation: required ventilation level to cover the peak internal loads

(human activities) that might occur in residential indoor spaces. In this case,

the user-dependent ventilation must be considered.

As stated before, the calculation of the necessary outdoor airflow includes the air

exchange due to infiltrations and natural ventilation. This means the total fresh
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2 Requirements and evaluation of residential decentralized ventilation

air supplied by a mechanical ventilation system is the remaining air that was not

provided by infiltration or window ventilation (for the infiltration estimation, wind

load, and seasonal variation assumptions are made).

In addition, the standard defines different control strategies for room-specific ven-

tilation systems [58, p .125, S I.3.4]: permanent operation, controlled by time or

controlled by a specific sensor, such as temperature or relative humidity (RH).

A permanent operation does not guarantee high humidity loads removal. On the

other hand, a fixed time-dependent control strategy does not usually guarantee the

building protection and is therefore undesired. According to the standard, only the

relative humidity control strategy guarantees the removal of high humidity loads in

the indoor environment. It is a goal of this thesis to assess to what extent differ-

ent control strategies could optimize energy consumption, comfort, and indoor air

quality in the residential sector. In the following sections, reference values and per-

formance indicators regarding the objectives of a ventilation controller are discussed,

selected, and defined.

2.2 Energy consumption

In decentralized ventilation systems decoupled from heating systems, heating and

cooling energy is neglected, as these devices usually do not have such equipment. In

that sense, the heating energy consumption is considered through the heat losses due

to ventilation. Increasing the forced air exchange in a residential building will cause

higher heating energy losses. The heat losses due to ventilation represent the highest

energy consumption of residential mechanical ventilation systems [133]. To reduce

these losses, ventilation systems are typically equipped with heat recovery systems

(HRC), which provide a heat exchange interface between supply and exhaust air.

The second highest consumption is the electrical power consumption of the fans.

2.2.1 Heat recovery

Heat recovery systems are designed and adapted to the different ventilation systems

available on the market to reduce the heat losses due to ventilation. For example,

continuous ventilation systems are typically equipped with recuperative counter flow

heat exchangers which provide a heat transfer interface while at the same time

avoiding contact between the air streams. In the case of decentralized reversible

ventilation systems, most of them provide a regenerative heat storage system (typical
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2 Requirements and evaluation of residential decentralized ventilation

materials include ceramic, polymers, or metal) to store the heat in the exhaust phase

and release it during the supply phase. In this thesis, only ventilation systems with

heat recovery are examined. When considering the systems’ efficiency, different

definitions are used. A comparison of the different methodologies and their impact

on the resulting efficiencies is available in the literature [49]. For example, heat

recovery systems are mandatory in Passive House certification for ventilation systems

[169]. Their requirement includes a minimum efficiency of 75%. Their definition of

HRC efficiency is obtained by adding the heating energy required due to ventilation

losses to the heat release of the fan to the room.

In the case of continuous decentralized ventilation systems, the degree of temper-

ature change (Temperaturänderungsgrad in German) ηHRC,Cont is usually adopted.

This indicator only takes into account the heating energy losses due to ventilation

and neglects others, such as enthalpy or fan power consumption. This indicator

assumes that the supply and exhaust mass flow rates are balanced and that the av-

erage temperatures are equivalent. Even though this indicator is valid for balanced

mechanical ventilation systems, the lack of normative foundations for alternating

systems and the simplicity of the calculation procedure makes this definition of the

heat recovery efficiency the most accepted one among manufacturers of DVS [149].

Coydon [49] developed a rule-based model to calculate the heat recovery efficiency

for alternating ventilation systems. To calculate this efficiency, information about

the status of the residential heating system is necessary, therefore it is impractical

for laboratory measurements and manufacturers. In this thesis, the degree of tem-

perature change ηHRC,Cont is used, defined in Equation 2.2. Ambient, room, and

ventilation supply temperatures are used.

ηHRC,Cont =
Tsup − Tamb
Troom − Tamb

(2.2)

The total heating energy loss due to ventilation (Qheat,vent) used in this work is

calculated by integrating the heat flux losses due to ventilation after heat recovery

over time, defined in Equation 2.3. As mentioned before, the heat recovery efficiency

for continuous ventilation systems is used. The air properties are assumed constant

for dry air (ρair = 1.2 kg/m3, cp,air = 1.005 J/kg ·K).

Qheat,vent =

∫ (
Q̇heat,vent − Q̇HRC

)
· dt =

= ρair · V̇air · cp,air · (Troom − Tamb) · (1− ηHRC,Cont)
(2.3)
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2 Requirements and evaluation of residential decentralized ventilation

2.2.2 Fan energy consumption

The fan power is usually system specific and therefore difficult to generalize [133].

The norm DIN 1946-6 [58, p. 66, Eq. 34] defines the specific fan power index (SFP )

as the relationship between the nominal fan power (Pfan,nom) and the nominal vol-

ume flow (V̇fan,nom). The SFP is calculated in W ·h
m3 .

SFP =
Pfan,nom

V̇fan,nom
(2.4)

According to the device certification procedure for ventilation systems of the Pas-

sivhaus Institute [169], the SFP should not be higher than 0.45. According to the

literature, the values in decentralized ventilation systems range from 0.1 to 0.35

[49, 150]. In these devices, fans are usually small, and a constant SFP can be

assumed. This assumption is not valid when considering centralized ventilation sys-

tems. Some manufacturers calculate the SFP for different fan speeds. Ideally, the

hydraulic power of a fan varies with the cube of the rotational speed, according

to the affinity laws of pumps, if a constant fan efficiency is assumed. This does

not occur in reality, and models are available to calculate it for fans in centralized

systems [7]. The fan power is available in this thesis through measurements of the

SFP for different fan speeds (See Appendix A.3). Then, the energy consumption of

the fan (Eel,fan) is calculated by integrating the instantaneous fan power over time,

and neglecting the influence of the fan heat losses on the supply air:

Pfan = V̇fan · SFP (2.5)

Eel,fan =

∫
Pfan · dt (2.6)

2.2.3 Primary energy consumption

In this thesis, the total primary energy consumption due to ventilation Qpe,vent is

calculated in kWh, pe, and defined in Equation 2.7. Assuming that the building

is heated using a gas boiler, the system primary energy consumption is calculated

given the heating energy losses due to ventilation (Qheat,vent) and the electrical en-

ergy consumption of the fan (Eel,fan), together with the corresponding primary en-

ergy factors and heating system efficiency. The primary energy factors and heating

system efficiency values are summarized in Table 2.1.
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2 Requirements and evaluation of residential decentralized ventilation

Qpe,vent = fp,heat ·
fHi/Hs
ηheat,boil

·Qheat,vent + fp,elec · Eel,fan (2.7)

Variable Definition Unit Value Source

fp,heat
Gas primary energy

factor

kWh, pe

kWh, gas,Hi
1.10 [29]

fHi/Hs
Gas inferior-superior

energy factor

kWh, gas,Hi

kWh, gas,Hs
1.10 [225]

ηheat,boil
Yearly mean boiler

combustion efficiency

kWh, heat

kWh, gas,Hs
0.86 [225]

fp,elec
Electricity primary

energy factor

kWh, pe

kWh, el
1.47 [85]

Table 2.1: Assumed primary energy factors and heating system efficiency values.

2.2.4 Energy label

The European Commission implemented through the Commission Delegated Regu-

lation 1254/2014 supplementing Directive 2010/30/EU of the European Parliament

and the Council [71] an energy labeling method for residential ventilation units. To

classify a certain product considering its energy consumption, the Specific Energy

Consumption (SEC) is calculated according to the Annex VIII of the Regulation.

This indicator is expressed in kWh
m2·a , meaning the yearly energy consumed for venti-

lation per m2 heated floor area of a dwelling or building. This indicator results in

an energy label from A+ (most efficient) to G (least efficient). This label is usually

informed together with nominal airflow and noise level protection.

This item becomes relevant due to its calculation: in the method, there is a non-

dimensional control factor, which assumes a certain value according to the control

system (from manual control to local demand control). This control factor affects

significantly the variation of the SEC and, hence, decide if a unit is labeled “more

energy efficient” simply by offering more sophisticated control strategies. For manu-

facturers, energy efficient control strategies can therefore become not only a tool to

reduce operating costs, but also a powerful argument for marketing purposes. For

example, a ”manually regulated control” has an associated coefficient of 1, whereas

a ”fully automatic control” receives a coefficient of 0.65, enhancing the energy label
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2 Requirements and evaluation of residential decentralized ventilation

of a single device by one or two categories.

2.3 Indoor air quality

One of the key objectives of decentralized residential ventilation systems is to prop-

erly control the indoor air quality, in order to minimize the effects of contaminants

on the occupants. This section describes the studied consequences of poor IAQ for

humans and defines the target variables to measure it.

2.3.1 Mold growth protection

One of the key aspects of residential mechanical ventilation is ensuring protection

against mold growth. As mentioned before in Section 2.1, the norm DIN 1946-

6 [58, S. 8] establishes a minimum ventilation level for moisture protection, as a

function of the characteristics of the building, to prevent mold growth. The growth

of different kinds of fungi in residential buildings has severe negative effects both on

the materials and the occupants’ health, and building remediation does not eliminate

molds [173]. From the side of the housing associations, mold growth protection is

the most important feature of a residential ventilation system.

It is not a simple task to determine the critical moisture level for mold growth in

building materials [117]. In the World Health Organization guidelines for indoor air

quality [228], several authors and their investigations about mold growth in indoor

spaces are listed. These authors conducted on-site as well as laboratory experiments

to characterize the growth of several fungi species in different building construction

materials. In all cases, it was observed that the presence of mold is related to the

surface temperature of the material and the humidity content. Hence the importance

of appropriate air exchange in residential buildings is highlighted. Viitanen et al.

reported that mold fungi grow above an indoor relative humidity of 75% and within

a temperature range of 5-40 ◦C [217]. This finding was confirmed later by Rowan et

al. [187]. Sedlbauer [192] developed a model based on fungi germination time, as a

function of the temperature and RH, defining characteristic curves for every type. In

his publication, different fungi types are grouped into three main categories: highly

pathogenic fungus, long exposure time pathogenic fungus, and economic fungus

(where no health hazard is found, but economic damage to the building might be

caused). The last two categories were found to have similar characteristic curves.

In this publication, it was defined that a global value below 70% RH leads to a safe
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2 Requirements and evaluation of residential decentralized ventilation

mold-free building. This was confirmed by Moon and Augenbroe [156], who stated

that a global 80% RH is considered a reasonable limit to prevent mold growth.

To summarize, in this thesis a global threshold of 75% RH is assumed to assess

mold growth potential in humid rooms in residential buildings (such as bathrooms

or kitchens).

2.3.2 Health effects

Preventing mold growth is not the only health-related issue for ventilation systems.

In the last forty years, several studies reported that altering the indoor environmen-

tal quality can have different effects on the occupants’ health and wellbeing.

In one of the first studies relating health and indoor environment, Arundel et al. [19]

concluded that the indirect adverse health effects of relative humidity in buildings

are minimized when it is kept between 40 and 60%. This is relevant especially in

winter when higher air exchange rates can cause frequently a drop in the indoor RH

to levels below 30%. Figure 2.2 shows a summary of different reported health effects

and its dependency on the indoor relative humidity level. These results have been

the basis of many health-related effects studies in the last 30 years.

Bacteria
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Viruses

Fungi

Mites

Respiratory
 infections

Allergic Rhinitis
 and Asthma

Chemical
 interactions

20 40 60 80
Relative humidity [%]

Ozone
 production

Figure 2.2: Relative humidity and health effects - adapted from [19, F. 1].
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The relationship between bacteria and viruses and low relative humidities has been

studied for more than 70 years. Dunklin and Puck [65] identified in 1948 that

the slope of the atmospheric bacteria killing process is strongly influenced by the

relative humidity. This means an indoor environment with 50% RH would much

more quickly kill the airborne microorganisms than an environment with 20% or

80%. More recently, Lowen et al. [140] observed that Influenza virus has a varied

sensitivity to relative humidity. They concluded that most virus particles are stable

when relative humidity is below 30%, and transmission rate decays strongly around

50% RH. Ahlawat et al. [3] insisted on the strong correlation between the low RH

in indoor spaces and the airborne transmission of COVID-19.

Additionally, Fisk et al. [81] reported strong evidence that poor indoor environ-

ments can significantly influence rates of respiratory disease (like allergy and asthma

symptoms) and sick building syndrome (SBS). The sick building syndrome defini-

tion usually refers to a ”collection of nonspecific symptoms including eye, nose and

throat irritation, mental fatigue, headaches, nausea, dizziness and skin irritations,

which seem to be linked with occupancy of certain workplaces” [227]. Although

this concept was first studied in office buildings, it has also extended to residen-

tial buildings [88]. Besides the relative humidity, CO2 concentration has been also

typically correlated with the occurrence of sick building syndrome. For instance,

Erdmann et al. [70] studied the relationship between carbon dioxide concentration

and sick building syndromes in office buildings. Their findings suggest that an in-

crease of 100 ppm in CO2 concentration is significantly associated with a 10 to 20%

higher probability of sore throat and wheeze symptoms. Other studies found asso-

ciations between poor IAQ (represented by CO2 and other contaminants) and other

symptoms, like tiredness and exhaustion, headache, mood change, or anxiety [219].

Furthermore, a large number of potential contaminants have been studied to deter-

mine their contribution to poor IAQ. In addition to the RH and CO2 concentration,

other substances were reported (which could be dangerous), such as volatile organic

compounds (VOC), particulate matter, formaldehyde, benzene, carbon monoxide,

nitrogen oxides, or radon, among others [48, 1]. The main indoor pollutant sources

are the occupant activities [212] as well as building or furniture materials [232]. In

some cities, outdoor air pollution is also significant, and filtering the outdoor air is

the main task of residential ventilation [40]. Ventilation control systems are only

able to reach outdoor air quality without additional filtering or air cleaning.

These listed pollutants require mostly complex measurement systems and state-of-

the-art sensors, to properly monitor their concentration in indoor environments. In
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that sense, CO2 has always been widely accepted as an IAQ indicator, due to the

comparable lower measurement costs and its high correlation with other human-

related contaminants [6, 70]. Establishing relationships between CO2 concentration

and health effects has always served this purpose.

Some authors studied the relationship between CO2 concentration and bioeffluents

or human odors as well. Haghighat et al.[97] compared the objective discomfort

effects caused by different variables (such as indoor temperature and humidity)

and contaminants (such as formaldehyde or VOC) to the human perception of this

discomfort in an office building. Results suggested that the analyzed building pre-

sented ”sick” symptoms objectively, but the occupants’ complaints were associated

with perceived IAQ rather than measured parameters. The perceived IAQ of the

occupant is another key driver for actions regarding ventilation systems, and should

not be neglected while studying control strategies.

2.3.3 Indicators

The Air, Infiltration and Ventilation Center (AIVC) [53] recognized CO2 as an IAQ

indicator because of its high correlation with other contaminants. The predicted

percentage dissatisfied or simply percentage dissatisfied (PD) is used in most mod-

els to evaluate the user satisfaction with the indoor air quality. This concept was

first introduced by Fanger to rate thermal comfort [76] and afterward extended to

indoor air quality [77]:

Percentage dissatisfied: ”An estimation of how many people will find thermal

comfort conditions satisfactory. Considering indoor air quality, the dissatisfied are

those who found the air quality unacceptable.”

The European standard DIN EN 16798-1 takes into account the outdoor air pollu-

tion and suggests four IAQ categories based on the CO2 concentration above outdoor

level and the expected percentage dissatisfied, area, and type of room (bedroom and

living room) [60, p. 50, T. B.2.1.4-1]. Table 2.2 shows these categories. This is an

update of the standard DIN EN 15251 [59]. This standard has been extensively used

in the last ten years and can still be found in several publications since it has not

yet been updated at a European level. The air quality categories correspond to an

associated expected percentage of dissatisfied occupants, based on different studies.

Category IV is considered as inadmissible. Nevertheless, it should be mentioned

that these corresponding categories are for energetic calculations in continuous ven-
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tilation systems. A similar structure using North American guidelines can be found

in the US-standard ASHRAE 62 [9].

Category
CO2 above outdoors

living room [ppm]

CO2 above outdoors

bedroom [ppm]
Expected PD [%]

I 550 380 15

II 800 550 20

III 1350 950 30

IV >1350 >950 40

Table 2.2: Air quality categories from DIN EN 16798-1 [60, p. 51, T. B.2.1.4-2].

Furthermore, the IEA-EBC Annex 68 [1] reported long and short-term exposure

levels for different contaminants and suggested using an aggregation of the DALY

(Disability adjusted life year) and ELV (Exposure limit value) approach for multi-

contaminant evaluation. The DALY indicator estimates the equivalent number of

years lost from premature death and disability due to exposure to a certain con-

taminant, making it suitable for long-term exposure evaluation. On the other hand,

the ELV presents a simple approach by comparing an instantaneous measurement

of a contaminant with a certain threshold value, with only two possible outputs

(below or above). Turner et al. [206] suggested to use the DALY approach, but

monetarizing the outcome to compare the impact of different contaminants.

Coydon [49, p. 55, E. 76] used an absolute threshold for CO2 (1000 ppm) and inte-

grated over time the difference between the instantaneous concentration values and

this threshold whenever it is exceeded. The time integration is also recommended

by the Annex 68 [1] with the ELV approach. This approach is suitable to evaluate

sudden peaks of high exposure and its relative impact in comparison to long ex-

posure to slightly high concentrations. Therefore, it is used as the main indicator,

although the value of the CO2 threshold is further discussed.

This CO2 concentration threshold varies according to the source. According to the

AIVC [6], 100.000 ppm will lead to death. For occupational hygiene 5000 ppm is

the absolute limit. For IAQ purposes, between 1000 and 1500 is recommended.

The experts’ commission of Annex 68 [1] concluded that a 1250 ppm short-term

exposure is acceptable. The American standard ASHRAE 62 [9] takes 1000 ppm

as a valid limit. The German Ministry of Environment (Umweltbundesamt [207])

states that 1000 ppm is hygienically safe, between 1000 and 2000 is elevated and

above 2000 ppm is unacceptable. The DIN EN 16798-1 [60] suggests using 1350 ppm
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in bedrooms and 1750 ppm in living rooms as the acceptability threshold (assuming

400 ppm as the outdoor concentration).

Nevertheless, the occupant discomfort with the indoor environment can also be re-

lated to perception, rather than to measured unhealthy environments. This means

that an indicator related to this subjective perception should be included while con-

sidering ventilation control strategies. In that sense, Fanger [77] created an indicator

of perceived IAQ related to bioeffluents and human odors. The used measurement

unit is the decipol and was defined as ”the pollution caused by one standard person

(...) ventilated by 10 l
s

of unpolluted air”[77, p. 3]. Fanger associated this per-

ceived air pollution with occupant dissatisfaction (% percentage dissatisfied - PD)

and ventilation rate. To build a relationship between discomfort and CO2, the olf

unit must be related to the indoor concentrations, as shown in the European guide-

line for ventilation requirements [48]. Fanger fitted the PD values with the CO2

concentration in a logarithmic equation, defined in Equation 2.8.

PDFanger = 395 · exp (−15.15 · CO−0.252 ) (2.8)

Gunnarsen and Fanger [94] further studied the adaptation of the occupant to differ-

ent indoor environments. They concluded that adaptation improves the acceptabil-

ity of IAQ when it is polluted by human activities, though they might be neglected

if sufficient ventilation is assured. They extended the decipol-model in adapted and

unadapted environments.

Analogous to the decipol, Jokl [118] related human odor intensities with human

CO2 production in a new unit called decicarbdiox. Its scale is also logarithmic,

following the findings of Fanger [77]. Jokl introduced the concept of adaptation of

the occupant to the environment, by creating two different functions that associate

percentage dissatisfied and CO2 concentration (Equations 2.9 and 2.10). A summary

of the reviewed functions is shown in Figure 2.3.

PDJokl,unad = exp

(
5.98 +

(
CO2

55833

)−0.25)
(2.9)

PDJokl,ad = exp

(
5.98 +

(
CO2

167353

)−0.25)
(2.10)
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Figure 2.3: Comparison of available dissatisfaction models due to CO2 concentra-

tion.

For unadapted persons optimal (PD=20%) and admissible (PD=30%) values are

1015 ppm and 1570 ppm. For adapted persons optimal (PD=20%) and admissible

(PD=30%) values are 2420 ppm and 4095 ppm. These models that correlate CO2

room concentration and user dissatisfaction are further referenced in chapter 4.3.

In this work, a general limit value of 1250 ppm is considered, following the recom-

mendation of the experts’ group in the Annex 68 [1], and used as the global threshold

in the Equation 2.11. This value corresponds to the inflection point, where almost

every studied model surpasses the 30% dissatisfaction threshold, which is usually

acknowledged as the admissible limit. Equation 2.11 defines the ∆CO2 indicator (in

ppm), which is used to evaluate the performance of ventilation control strategies re-

garding indoor air quality. This indicator is only relevant when a room is occupied,

thus the integration is done over the total time when a room is occupied (occ).

Indoor relative humidity arises as an additional health-related indicator, and the

definition of the acceptability limits is explained in the next section together where

the relationship between relative humidity and hygrothermal comfort is described.

∆CO2 =
∑ max(0;CO2 − 1250)

occ
(2.11)
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2.4 Hygrothermal comfort

2.4.1 Influence of ventilation

Ventilation systems without HVAC integration are not primarily responsible for

the regulation of the indoor room temperature in winter. In countries where the

outdoor temperature is mostly below indoor temperature, summer night ventilation

can help reduce cooling loads [193]. Extremely high indoor temperatures are not

only responsible for discomfort, but also associated with sick building symptoms, as

mentioned before in Section 2.3.2. Nevertheless, residential ventilation systems can

contribute to improving the occupant’s comfort. The effect of balanced ventilation

systems with heat recovery on the indoor relative humidity is also considerable. In

this section, some of the most relevant publications on the subject are reviewed.

High indoorRH may add sensitivity to temperature changes. In residential buildings

without active cooling systems, the adaptive comfort model is suggested for the

evaluation of indoor thermal comfort [60]. Research stated that the adaptive comfort

model limits can be shifted when considering the relative humidity, suggesting that

comfort temperatures are lower when humidity is high [214]. The difference in

comfort temperatures between high and low humidity environments is as high as

4◦C. In another publication [204], the upper humidity limits to prevent respiratory

discomfort of occupants were studied (focusing more on summer conditions). The

upper limits as a function of the indoor temperature and relative humidity are

illustrated in Figure 2.4. This model includes air temperature and humidity (as

vapor pressure) to predict the percentage dissatisfied, and it was obtained out of

laboratory tests with occupants and their exposure to different conditions. Their

findings report that a change of 1◦C had the same effect on acceptability as a change

of 5% at 25◦C. These findings were later confirmed in further studies [24, 119].
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Figure 2.4: Upper limit relative humidity and discomfort - adapted from [204].

On the other hand, extremely low values of indoor relative humidity are often as-

sociated with discomfort in winter. For instance, Sunwoo et al. [200] studied the

physiological response to low humidity values. Results showed that the dryness af-

fects the human body significantly for a RH below 30%, and becomes critical around

10%. Besides, occupants felt colder when exposed to 10% RH than 30 or 50%, at

the same room air temperature. This could have a direct effect on the manual con-

trol of heating systems. In another study, Wolkoff [226] illustrated the relationship

between different symptoms associated with dry environments. According to their

findings, dryness is present mainly in the throat, nose, eyes, and skin.

The incorrect design of ventilation systems can cause thermal discomfort to occu-

pants. Jokl studied this phenomenon and defined it as ”unwanted local cooling of

the body. (...) Sensitivity to draft is greatest where skin is exposed at the head and

ankles”[119, p. 21]. Draft basically depends on the temperature of the airflow, the

mean air velocity, and the degree of turbulence. Therefore, the supply air temper-

ature acquires relevance to avoid local discomfort issues. Draft is usually included

in the international standards for thermal comfort and ventilation systems [11, 61].

For instance, in highly airtight buildings (i.e. passive houses) the occurrence of draft

has already been registered and can have consequences not only to the comfort of

the occupant but also economic consequences for landlords [55].

However, the focus of this thesis is on façade-integrated decentralized ventilation

systems. Merckx et al. [148] compared the draft performance of three decentral-
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ized ventilation units using computational fluid dynamic (CFD) simulations. He

concluded that the draft risk is almost always low for decentralized ventilation sys-

tems, given the low air speeds in the room. These findings were later confirmed by

Hörberg [107]. In her master thesis, air speeds and temperature were measured in

a test chamber with two façade-integrated decentralized ventilation systems in win-

ter conditions. It was found that draft risk can only occur at neck height (around

1.7 m), especially with cold supply air temperatures, but should not overcome the

10% dissatisfaction threshold. Wu et al. [229] also investigated the influence of the

supply air temperature, who concluded that there was no significant vertical room

temperature difference for mechanical ventilation systems, and confirmed that draft

can be only expected at the neck. Hence, it can be concluded that the draft risk for

decentralized systems is low, even for cold supply air temperatures, and will not be

further considered in this thesis.

2.4.2 Indicators

Regarding indoor hygrothermal comfort, room air temperature and relative humid-

ity are the essential indicators. However, residential ventilation systems are not

responsible for controlling the indoor room temperature. In that sense, the RH is

taken as the main comfort indicator in this thesis.

Coydon defines two equations for the upper and lower admissible humidity limits

[49, p. 55, E. 74-75], where again the difference between the instantaneous value of

the relative humidity is compared to a certain threshold, and integrated over the

total time of an occupied room:

∆RHup,Coydon =
∑ max(0;RH − 70)

occ
(2.12)

∆RHlo,Coydon =
∑ max(0; 40−RH)

occ
(2.13)

These equations are used in this thesis to analyze the performance of the venti-

lation systems in terms of the indoor RH, but with a redefinition of the selected

threshold values. To define these threshold values, the RH influence on health (Sec-

tion 2.3.2) must also be considered. The norm DIN EN 16798-1 defines three indoor

air categories for the humidification of air in centralized HVAC systems (Table 2.3).

Category IV is considered as inadmissible. Besides, the absolute humidity must be

kept under 12 g
kg

. These results are the same in the standard ASHRAE 55 from the
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United States [11].

Category
RH for

dehumidification [%]

RH for humidification

[%]

I 50 30

II 60 25

III 70 20

IV >70 <20

Table 2.3: Categories for air humidification and dehumification, according to DIN

EN 16798-1 [60, p. 52, T. B.2.2-1].

Considering as well the mold growth protection and health issues (Section 2.3) as-

sociated with indoor RH values, two global acceptability thresholds are defined for

this thesis: 25 and 75%. The final indicators are calculated by integrating over time

the difference between these limits and the actual value as previously suggested.

Equations 2.14 and 2.15 describe these indicators. The indicator ∆RHup is relevant

in the humid rooms (kitchen and bathroom), and the indicator ∆RHlo in the dry

rooms (bedrooms and living room) - in %. These indicators intend to consider the

effects of the indoor relative humidity in every analyzed aspect: building protec-

tion against mold growth, health effects on occupants, and humidity influence on

hygrocomfort.

∆RHup =
∑ max(0;RH − 75)

occ
(2.14)

∆RHlo =
∑ max(0; 25−RH)

occ
(2.15)

The enhancement of thermal comfort in summer conditions through decentralized

ventilation falls out of scope in this thesis and is not contemplated. Draft rate is also

neglected in this study since the target of the ventilation control strategy would be

to minimize the airflow rate (already considered in the minimization of the energy

consumption), and is also strongly related to the dimensioning and positioning of

the devices in the room.
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2.5 Noise

Another central issue for decentralized ventilation systems is noise pollution. Manz

et al. [145, p. 46] concluded that the ”(...) most critical for successful applications

of single room ventilation units are the acoustic properties. Indoor sound pressure

levels of the investigated units are too high for many applications. Additionally,

because of the transmission of outdoor noise through the units, the applications

of the investigated units are limited to cases where a low (...) sensitivity of the

building occupant for noise exists. If the requirements are higher, sound reduction

in the units has to be increased”. Mahler et al. [141] studied the performance of

decentralized ventilation systems in 50 office buildings, and the highest number of

complaints recorded were due to noise. Lai et al. [130] surveyed 46 apartments in

China, discovering that high noise levels were the second most frequent reason not

to use residential mechanical ventilation.

Noise pollution in residential buildings can have different sources. First, there is the

noise produced directly by the fans of a ventilation device. This is usually due to

high air speed in the ducts or a wrong position of the fans. In façade-integrated

decentralized ventilation systems, the fan is close to the occupants, and therefore the

risk of disturbance is considerably higher. If these change their direction periodically,

the whole process is often annoying to the human ear [49]. On the other hand, using

mechanical ventilation usually reduces the operation of windows, which is often

associated with outdoor noise pollution, especially in big cities.

A model developed by Rasmussen et al. [181] associated residential ventilation

noise levels with percentage dissatisfied. Noise levels over 30 dB(a) cause over 20%

dissatisfaction (Table 2.4). In addition, the Passive House Institute defines a limit of

25 dB(a) in bedrooms and 30 dB(a) in living rooms for the certification of ventilation

systems [169]. The standard DIN EN 16798-1 defines 40 dB(a) in living rooms and

35 dB(a) in bedrooms as the admissible limits [60, p. 55, T. 5-1].

Room class A B C D E F

Noise from building services [dB(a)] <20 <24 <28 <32 <36 <40

Occupant dissatisfaction [%] <5 5 10 20 35 >50

Table 2.4: Class limits for residential HVAC systems’ noise [181].

Öhrström et al. [163] found significant differences in sleep disturbance for bedrooms

with and without ventilation systems. Following that trend, Boerstra et al. [25]
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measured noise levels over 30 dB(a) in 86% of the studied bedrooms with mechanical

ventilation. The standard VDI 2081-1 calculates the sound pressure level (LW4) of

a fan proportionally to the logarithm of the volume flow [215, p. 19, E. 13]:

LW4[dB(a)] =∝ log(V̇fan) (2.16)

This equation corresponds to the noise measurements of Manz et al. [145]. Active

noise control is a task related to product development (design, shape, material selec-

tion, etc.), rather than to a controller. For a smart control system, noise control can

only be related to the volume flow control, as suggested in Equation 2.16. Therefore,

there will be no extra indicator that considers this aspect. Nevertheless, the noise is

considered indirectly through the device volume flow. A smart control system aims

at reducing the unnecessary air exchange rate, hence having an impact on every

indicator related to it (such as energy consumption and noise pollution).

2.6 User-friendliness

The ongoing problems between occupant behavior and smart technologies have al-

ready been stated in Chapter 1.2. In that sense, user-friendliness is another require-

ment for ventilation systems and a key aspect of a successful technology.

In a report of the AIVC [208], some key points were outlined to consider the occu-

pant’s needs in residential ventilation devices:

� The device must not only provide a solution (i.e. to mold growth) but must

be perceived by the user as useful.

� Fully automatic systems must adapt themselves to the current household.

Service failures, system bugs, or unwanted behavior are decisive for its use.

� Even the most advanced systems must be operable. For example, if a user

wants to turn the device off and it keeps running, the user will most probably

block it.

� A suitable user interface and feedback are crucial. A study suggests that

additional energy savings can be induced with adequate user feedback [45].

The industry focuses merely on meeting the requirements for building standards, and

are typically technology-oriented. Then, poor results in terms of user-friendliness
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can be expected. In general, there are insufficient studies about the relationship

between user and ventilation systems in residential buildings [103, 208]. The occu-

pant is not usually heard, and their needs might be different from the norm targets.

For instance, a recent study in China concluded that mechanical ventilation system

operation behavior differs greatly by resident and climate zone [235]. Maier [142]

carried out a survey about residential ventilation in Germany and found out that

several aspects are considered important to improve the user-friendliness: adjusta-

bility, multifunctionality, efficiency, low noise, and adequate user interfaces. In that

sense, bringing technology closer to the everyday user is a challenge that will be

further analyzed in this thesis.

2.7 Costs

The most relevant costs when designing residential mechanical ventilation systems

are the initial investment (devices and installation), operating, and maintenance

costs. Typically for mechanical ventilation systems, the heating energy losses due to

ventilation are added, since they are usually higher than the fan energy consumption.

Therefore, the annual operating cost can be defined (Equation 2.17) following the

publication of Evola et al. [73].

costop[EUR] = costheat ·Qvent + costel · Efan (2.17)

� costel is the electricity cost and costheat the heating cost, both in EUR
kWh

In addition, Evola et al. [73] performed a sensitivity analysis of different variables

in the operation costs of ventilation systems. To include all costs, the selected

performance indicator was the payback period. The most sensitive variables for the

cost structure are air exchange rate, price of natural gas (related to heating in Italy),

and initial investment cost.

In another study, Coydon [49] defined a holistic evaluation method for ventilation

systems, where the costs are one of the evaluated variables. Investment, mainte-

nance, and operation costs are considered here as well. In this case, a system com-

parison was carried out, concluding that decentralized façade-integrated systems

with a humidity-based control strategy have the lowest operating costs in Germany.

Furthermore, Merzkirch [149] performed a cost analysis comparing centralized, de-

centralized, and semi-centralized (centralized system with decentralized fans) venti-
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lation. Constant volume flow and demand-controlled ventilation are the considered

control strategies. For an apartment of 80 m2 in a multifamily building, a semi-

centralized system with CO2-based control has the lowest primary energy consump-

tion, followed by the decentralized systems. Volume flow, ventilation effectiveness,

and heat recovery efficiency pose a high sensitivity for this value. The costs for

these systems are high in comparison to a dwelling without ventilation. Merzkirch

estimates a payback period of around 30 years for these facilities. In this work, the

primary energy consumption of the ventilation systems was carefully studied, but

annual hourly-profiles for the cost calculations are assumed. In contrast, Evola et

al. [74] obtained different payback periods, of around two years for extract ven-

tilation and four years for balanced ventilation systems in Italy. In this case, the

authors simulated daily ventilation profiles, assumed a constant heat recovery effi-

ciency, and neglected summer ventilation. This last assumption drastically reduces

the annual costs associated with ventilation systems, therefore obtaining shorter

payback periods than reported by Merzkirch. In both studies, the selection of a

different controller only affects the operating costs.

A ventilation control strategy can only influence the operating costs. Similar to

noise, the operating costs are directly associated with the primary energy consump-

tion. Therefore, costs can be evaluated through the energy consumption and are

not directly considered in this thesis.

2.8 Summary

Residential decentralized ventilation systems and their control strategies must ac-

count for the valid regulatory framework, the required targets, and the influence of

the user at the same time. Through a literature review, the research question 1 can

be answered as through the following points:

Research Question 1: Which aspects should a residential ventilation control

strategy consider to account for the occupant’s needs?

� A ventilation control strategy must fulfill several requirements of hygrothermal

comfort, indoor air quality, and health. Energy efficiency must be ensured in

the development of these systems. An energy-efficient system is not only inter-

esting for the user due to potential savings, but also for the manufacturer, as

an additional sales argument. In this thesis, the primary energy consumption

(Qpe,vent) related to the heat losses due to ventilation and the fan energy con-
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sumption is considered as a suitable indicator to evaluate the energetic impact

of a residential ventilation control strategy.

� Regarding health and indoor air quality, relative humidity. and carbon dioxide

seem to be widely accepted indicators. RH is not only associated with building

protection (mold growth risk) but was also found to significantly affect the

propagation of viruses and bacteria outside certain ranges. Due to their high

correlation with human bioeffluents, CO2 concentration arises as a common

solution for demand-controlled ventilation. Indoor room temperature is not

controlled by a mechanical ventilation system in winter but becomes a relevant

variable in summer to increase thermal comfort and reduce cooling loads.

� The integration over time of the values over a certain acceptability threshold

is used to define the indicators to evaluate the performance of decentralized

ventilation. These threshold values are:

– RH must ideally be kept between 40 and 60%. The acceptable limits are

25% and 75%.

– CO2 concentration acceptability limit is set to be 1250 ppm.

� Other contaminants could be suitable variables to use in ventilation control

strategies. However, there is still a need for development of reliable and af-

fordable sensors, which could unlock new controlling technologies soon.

� Key aspects such as noise, user-friendliness, and costs should not be neglected,

as they play a key role to narrow the gap between user and technology. When

evaluating a controller, noise is proportional to the logarithm of the volume

flow, and operating costs are directly related to the associated energy con-

sumption.
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3 Window opening behavior and residential ven-

tilation

The goal of this chapter is to analyze the relationship between user and technology

in the case of residential ventilation. Occupants have two main alternatives to

ventilate a building: opening a window (natural ventilation) or operating a fan

(mechanical ventilation). In that sense, window opening behavior could provide

information about the user ventilation preferences to the mechanical ventilation

control strategies without requiring direct feedback. Figure 3.1 shows a schematic

flow chart of the research steps in this chapter.

Model vs. 
Measurements 

comparison

Window opening 
clustering

Real time window 
opening detection

User window opening 
preferences without 

window contact

Real time logistic 
regression 

Data collection

User feedback is 
necessary

Window opening
model selection

Window opening models as 
ventilation user feedback

Window opening real time 
learning for each user

Profile diversity

Need for individualized 
solution

Sections 
3.1 / 3.2

Section 3.3

Figure 3.1: Schematic flow diagram of research method in this chapter.

Section 3.1 provides a literature review on the subject and describes the existing

methods to model window opening behavior. In section 3.2, the representativity of

available window opening models is investigated. The aim is to study the suitabil-

ity of these models as a replacement for user feedback. A measurement campaign
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was carried out, and the window opening behavior in two apartments (selected us-

ing a novel clustering method) is compared to the available models. As the need

for individualized solutions arises, the possibility of learning the occupant ventila-

tion preferences without requiring additional sensors is studied in Section 3.3. A

real-time logistic regression scheme is proposed to identify window opening drivers,

together with an algorithm to estimate a window opening action from the available

indoor environmental sensors (as a potential replacement of window contacts). In

the end, the need for user feedback to provide an occupant-centered control strategy

is highlighted. The findings in this chapter are summarized in Section 3.4.

3.1 Modeling window opening behavior

This section deasl with the occupant window opening behavior models. The oc-

cupant behavior concerning window opening has been studied in depth, both in

residential and non-residential buildings. This section will summarize the most im-

portant publications and pick some models for further study. A complete review of

window opening modeling techniques is available in the literature [51].

Researchers have been trying to model the occupant behavior using different ap-

proaches to integrate them into building performance simulation more realistically.

The first efforts targeted office buildings. Fritsch et al. [84] developed one of the

first published models. They simulated the occupants’ window opening angle with

a Markov chain. Nicol et al. [162] simulated window opening a logistic regression

model dependent on the outdoor temperature. Besides, Herkel et al. [105] used also a

logistic regression model, depending on the outdoor and indoor temperature, season,

and occupancy patterns. The model developed includes the arrival and departure

of occupants into office spaces and the length of the opening. In addition, Rijal

et al. [185] developed a model regarding the adaptive thermal comfort algorithm,

based on the indoor and outdoor temperature. Haldi et al. [100] studied several

probabilistic approaches for window opening modeling. Their findings associated

occupancy profiles with action probabilities and integrated Bernoulli processes with

logit probabilities for window opening with Markov chains for occupancy. Moreover,

Yun et al. [233] integrate user interaction frequency types (active, medium, passive)

to categorize their opening probabilities.

Among the existing window opening models for residential buildings, a probabilistic

model based on indoor and outdoor environmental variables is the most popular

approach. For instance, Schweiker et al. [191] modeled the proportion of windows
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open, taking into account indoor and outdoor temperatures. Furthermore, Ander-

sen et al. [13] modeled opening and closing actions for building performance simu-

lation, using multivariable logistic regression. Moreover, Cal̀ı et al. [32] developed

a stochastic model to simulate opening and closing actions using data from over

300 windows. Jeong [115] studied the influence of different indoor activities (like

cleaning or cooking) in the window opening behavior. In recent years, more complex

modeling approaches were developed to improve the performance and generalization

of the previous approaches [33, 99, 146, 154].

Since logistic regression is the most popular approach to model window opening

behavior, three models using this technique in residential buildings are selected

and compared. Logistic regression is a simple classification method [180] based on

the concept of odds ratio (OdR - Equation 3.1). The odds ratio is defined as the

probability of an event happening (p) over the probability of not happening (1− p).

OdR =
p

1− p
(3.1)

The logarithm (or logit) of the odds ratio transforms an output of the range [0, 1]

into the entire real number range. When speaking of linearly separable data, the

output of the logit function can be fitted with linear regression. Hence, Equation

3.2 defines the logistic regression function:

log

(
p

1− p

)
= α + β0x0 + β1x1 + ...+ βnxn (3.2)

� α is the intercept

� βi is the regression coefficient of the explanatory variable xi

Then, several different explanatory variables can be used to predict the state of

the window in different scenarios using logistic regression. The selected models are

described as follows, and their regression coefficients are listed in Table 3.1. They

are valid for every season in renovated residential buildings.

1. Schweiker et al. [191]: this model calculates the probability of observing an

open window, depending on the indoor and outdoor temperature. Measure-

ments were collected in two apartments in Switzerland in 5-minute time inter-

vals. The measured dwellings did not have any air-conditioning or mechanical

ventilation. The published model includes only living room windows.
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2. Andersen et al. [13]: in this case, window opening and closing actions were

modeled independently. Several indoor and outdoor environmental variables

were fitted to the model, as well as season or time. Measurements were col-

lected in Denmark in 10-minute time intervals, distinguishing between owned

or rented, with natural or mechanical ventilation. The obtained models are

divided into four groups. In this thesis, the model corresponding to rented

apartments with mechanical ventilation (group 4) is considered. The model

distinguishes between living rooms and bedrooms.

3. Cal̀ı et al. [32]: window opening and closing actions were modeled indepen-

dently. Measurements were taken in multifamily buildings in south Germany

with 1-minute time intervals, with over 300 windows measured for three years

in total. The only published coefficients correspond to the measurements in

the living rooms of one particular section of a building (B2E1) during the day,

where only exhaust ventilation was available.

Explanatory

variable

Schweiker et al.

[191] Neuchâtel

Andersen et al.

[13] Group 4 Living

Cal̀ı et al. [32]

B2E1

Intercept 0.711 -3.56 -7.795

Troom [◦C] -0.3077 -0.38 0.134

RHroom [%] n.a. n.a. n.a.

CO2,room* n.a. 0.30 -551.15

Tamb [◦C] 0.3813 0.059 n.a.

RHamb [%] n.a. 0.029 n.a.

Solar rad. [W/m2] n.a. 0.35 n.a.

Solar hours [h] n.a. 0.057 n.a.

Illuminance [lux] n.a. 0.026 n.a.

Table 3.1: Logistic regression coefficients of window opening for each explanatory

variable in three available models from the literature in winter (Solar rad. = solar

radiation, n.a. = not available). *Room CO2 concentration (Andersen et al. [13] in

[log(ppm)] and Cal̀ı et al. [32] in [ppm−1]).

Some of the key variables to predict window opening behavior used in these models

are taken to study the sensitivity of these models to changes in the explanatory

variables as follows. Only the variables present in more than one model are treated

(indoor and outdoor temperature and room CO2 concentration). The indoor RH is
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not present in any of these models. For the other variables, the following values are

assumed constant for the sensitivity analysis:

� Ambient RH = 70%

� Solar radiation = 300 W
m2

� Solar hours = 7.5 hs

� Illumination = 100 lux

� Season = Winter

The following figures show the sensitivity of the models to the variation of the main

variables. Figure 3.2 depicts a comparison of indoor room and ambient tempera-

tures. CO2 concentration is here assumed to be 750 ppm.

5 0 5 10 15
0.0

0.2

0.4

0.6

Pr
op

or
tio

n 
of

 w
in

do
w

s 
op

en
 [-

] Schweiker - 2012

Troom = 18 C Troom = 21 C Troom = 24 C

5 0 5 10 15
Tamb [ C]

1

2

3

4

5

P o
pe

ni
ng

 [-
]

1e 10 Andersen - 2013

5 0 5 10 15

2.5

3.0

3.5

4.0

4.5

5.0

P o
pe

ni
ng

 [-
]

1e 3 Calì - 2016

Figure 3.2: Dependence of the different window opening models on the ambient

temperature at three different indoor room temperature levels.

The scales of the plot are widely diverse, being ambient temperature strongly rele-

vant only in the model of Schweiker et al. For instance, given an outdoor temperature

of 10 ◦C and an indoor temperature of 21 ◦C, the model of Schweiker et al. shows

a proportion of windows open of 0.14, and the other models an opening probability

of 1.2 E-10 and 3.3 E-3. Besides, the shape of the curves is contrasting: Andersen

et al. report a decreasing opening probability with increasing ambient tempera-

ture, Schweiker et al. the opposite, and Cal̀ı et al. constant values. Likewise, in

the models of Andersen et al. and Schweiker et al., the window opening increases
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when the room temperature decreases, while Cal̀ı et al. modeled exactly the con-

trary. The distinctive profiles repeat in Figure 3.3, for room temperature and CO2

concentration. The ambient temperature is assumed to be 5 ◦C.
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Figure 3.3: Dependence of the different window opening models on the CO2 con-

centration at three different indoor room temperature levels.

These results might indicate that the obtained coefficients respond to a particular

behavior. Nevertheless, the reported coefficients are so diverse that it appears diffi-

cult to define which models are the most representative. These studies were carried

out in different countries in Europe, where different weather conditions may affect

the obtained models, as well as cultural background and psychological differences.

In the end, the models aim at providing a tool to integrate probabilistic window

opening in building simulation, and it is the task of the researcher to select the

suitable model for its purpose. Table 3.2 reflects a summary of the advantages and

drawbacks of each evaluated model.
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Schweiker et al. [191] Andersen et al. [13] Cal̀ı et al. [32]
A

d
va

n
ta

ge
s

� Simple model with

two variables

� Only temperature-

dependent

� Probabilistic

opening angle

� Opening and

closing separated

� 14 explanatory

variables

� Dwellings with

MV included

� Opening and

closing separated

� Over 300 windows

measured

� Time resolution

high

D
ra

w
b
ac

k
s

� Other influence

factors ignored

� No time-related

intercept

� Only living room

model

� More complex for

BPS

� Lower time

resolution

� Bathroom and

kitchen ignored

� Data from a single

apartment

� Presence data

ignored

� Time only as

”day” or ”night”

Table 3.2: Advantages and drawbacks of the evaluated window opening models (MV

= mechanical ventilation. BPS = builing performance simulation).

This review of available models creates a basis to compare to building measurements

and helps to gain insight into the topic of window opening behavior in residential

buildings. In the next sections, these models are compared to real window opening

measurements to study the representativeness of different behaviors.

3.2 Representativeness of available models

This section aims at investigating the representativeness of the window opening

models. The selected probabilistic models are compared with real building mea-

surements. The data from different renovated apartments are clustered and diverse

profiles are identified. These measured window opening profiles are compared to

the selected window opening models from the previous section. The results of this

section are published partially in a scientific article [38].
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3.2.1 Data collection

Two measurement campaigns are considered for the study of the window opening

behavior in residential buildings. The first one was carried out between 2011 and

2013 in a 16-story multifamily building in Weingarten Quartier (Freiburg, Germany),

which was retrofitted to passive house standard [120]. This campaign was not carried

out within the framework of this thesis. The window opening was particularly

recorded in 27 dwellings over two years, in 6-minute time interval measurements.

Other variables, such as indoor room temperature, thermostat control, and whole-

dwelling power consumption, were also measured. The absence of data regarding

relative humidity and CO2 makes this data set inadequate to study the reliability

of the window opening models. This data is used to train the proposed clustering

algorithm in the next sections.

A second measurement campaign was carried out in winter 2018/2019 (138 days

- from November 2018 to April 2019), also in Weingarten Quartier, Freiburg. In

this case, ten apartments from retrofitted multifamily buildings were monitored,

only where a mechanical balanced ventilation system was available. The dwellings’

area range from 47 to 88 m2 and have between one and three occupants. The

design air exchange rate was 0.45 h−1. Sensors were placed in the dry rooms -

bedroom and living room - to measure indoor temperature, relative humidity, and

CO2 concentration, and in the humid rooms - bathroom and kitchen - to measure

only indoor temperature and relative humidity. Window contacts were installed in

six of these ten apartments, resulting in a total of eighteen measured windows (six

living rooms, seven bedrooms, three kitchens, one bathroom, and one storeroom).

Table 3.3 summarizes the sensors’ properties.

Sensor Variable Range Accuracy

HOBO MX CO2

Temperature [◦C] 0-50 0.21

Relative humidity [%] 1-90 2

CO2 [ppm] 0-5000 50

HOBO U12
Temperature [◦C] 0-50 0.35

Relative humidity [%] 10-90 2.5

HOBO UX90-001M State 0-1 -

Table 3.3: Sensors’ properties for the second measurement campaign.

Figures 3.4 and 3.5 illustrate an exemplary floor plan of two of the measured apart-

ments, which are analyzed in further sections as apartments 1 and 2 respectively,
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used in Sections 3.2.4 and 3.3. Apartment 1 has the smallest area among the mea-

sured ones (47 m2), and apartment 2 has the largest one (88 m2). Figures 3.6 and

3.7 show an example of the sensor placement in these dwellings. This data is used

to test the relationship of window opening behavior with other variables (such as

RH or CO2). The mechanical ventilation operation was not measured.

Figure 3.4: Schematic floor plan in

apartment 1. Blue rooms are provided

with supply air, and red rooms with ex-

haust air.

Figure 3.5: Schematic floor plan in

apartment 2. Blue rooms are provided

with supply air, and red rooms with ex-

haust air.

Figure 3.6: Window contact placement. Figure 3.7: IAQ sensor placement.

3.2.2 Clustering method development

Clustering is the process of classifying data into different groups, aiming at finding

similarities among them. A cluster is defined as a subset of objects in the database

that belong to the same group. D’Oca et al. [63] concluded that clustering leads to

an appropriate characterization of the occupant behavior regarding window open-

ing. In this section, the window opening behavior of 27 measured apartments (first

measurement campaign) over two years will be clustered as a time series, aiming at
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obtaining distinctive behavioral profiles. This methodology is published in a scien-

tific article [38]. The main strengths and challenges of clustering as a process are

[153]:

� The attributes that differentiate one cluster from another are unknown and

have to be estimated

� The data is unlabeled. This means there is no objective data on how to

distinguish if one point belongs to a certain cluster or another one (except a

priori knowledge provided by domain experts)

� The more data, the more complex the problem becomes

� Algorithms are influenced strongly by noisy data, missing values, and out-

liers. Hence the importance of an appropriate pre-processing of the data is

highlighted

The innovation in this method lies on representing time series data with feature

vectors, rather than data points, and its application to occupant behavior data in

residential buildings. Instead of comparing a whole time series or an average profile

(shape-based clustering), predefined indicators represent the data in a multidimen-

sional space (feature-based clustering).

The shape-based process is faster (since only pre-processing of data is required to

perform the clustering), although being usually more computationally expensive

given the number of compared data points. On the other side, a feature-based

approach compares feature vectors, reducing the number of data points. The best

performing features are extracted typically from the a priori knowledge about the

data and statistical indicators [95]. The main advantage of this method lies in

the fast calculation process and its compatibility with other algorithms. A major

disadvantage is the potential loss of information in case of not carefully selecting the

mentioned features. Figure 3.8 shows the shape-based process with the whole time

series, and Figure 3.9 illustrates an exemplary features-based representation using

the same data.
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Figure 3.8: Daily mean observed window

opening (proportion of windows open)

profiles for the 27 apartments.
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Figure 3.9: Features point representa-

tion of the 27 apartments.

Three types of features are considered: statistical (mean, standard deviation, kur-

tosis, and skewness, as defined in the literature [104]), time series decomposition-

related (seasonality and trend [220]), and behavior-related features [96], listed in

Table 3.4.

Feature Definition

Weekend score (WkS)
∑ Xweek−Xweekend

X

Seasonal score (SS)
∑

Xsummer−Xwinter

X

Day-night score (DNS)
∑ Xday−Xnight

X

Hour change score (HCS)
∑ Xh+1−Xh

Xh

Average state changes (ACS)
∑ StChgh

8760

Table 3.4: Definition of potential occupant-related features [96].

� X is the average value of a variable X

� StChgh means changes of state per hour

To calculate the distance between the data points (features), the Euclidean distance

is selected, mainly due to its simplicity and popularity (Equation 3.3) [109].
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d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (3.3)

Researchers established in the last years that the use of conventional algorithms in

the clustering of static data generates results with acceptable quality and efficiency,

in terms of time and accuracy [2]. In this proposed method, the centroid-based

k-means algorithm was selected [180]. This algorithm is simple and understandable,

but the number of clusters is an input parameter and must be known beforehand.

In addition, the goodness of clustering must be evaluated. The Dunn Index (DI

- Equation 3.4) presents a widely-used measurement technique of cluster validity.

The DI presents the best performance regarding the k-means clustering procedure

[126].

DI = min
i=1...nc

{
min

j=i+1...nc

{
d(ci, cj)

maxk=1...nc(diam(ck))

}}
(3.4)

d(ci, cj) = min
x∈ci,y∈cj

{d(x, y)} (3.5)

diam(ci) = max
x,y∈ci

{d(x, y)} (3.6)

� nc is the number of clusters

� d(x, y) is the euclidean distance between two elements

� ci is the centroid in cluster i

The Dunn index compares the distance between clusters (inter-comparison, to be

maximized) and the diameter of every cluster (intra-comparison, to be minimized).

Hence, a better clustering configuration means higher values of the Dunn index. The

chosen implementation of DI compares the distance between the two closest points

among clusters (minimum) with the maximum distance between cluster-centroids

altogether, which does not collide with single-dwelling clusters whose diameter is

zero. The working principle of this indicator is illustrated in Figure 3.10.
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Figure 3.10: Dunn index - Intercluster (two different cluster points x and y) and

intracluster (two points in the same group x1 and x2) comparison.

Finally, a feature elimination procedure is carried out for every considered variable.

All possible combinations of features and number of clusters are tested. The result

with the highest DI is selected as the optimum solution. The whole procedure is

summarized in the following steps:

1. For a determined combination of features, calculate the minimal number of

clusters that explain a selected threshold of 80% of the variance applying the

k-means clustering method [180].

2. Calculate the Dunn index for the different number of clusters between the

obtained minimum and an imposed limit of 12 clusters, as it was considered

sensible for a total of 27 dwellings.

3. Selection of the best combination of features and number of clusters that result

in the highest Dunn index – a priori defined features are preferred [95].

4. Analysis of results and final selection of optimal combination considering Dunn

index, number of clusters, and number of features involved.

3.2.3 Clustering the measured window opening profiles

The clustering method was applied to monitoring data of the first campaign (Section

3.2.1). Window opening in the bedrooms is considered in 6-minute intervals. The

data is divided into training and test data sets. The training data corresponds to

the year 2013, and the test data to the year 2012 (the year 2011 was neglected due to

measurement errors). The training data is used to obtain the representative features

to characterize window opening behavior and validated using the test data. These

features are applied to the measurements of the second campaign, and distinctive
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behaviors in every room are selected and compared to the probabilistic window

opening models.

Data pre-processing is key to the success of this procedure. Firstly, the data corre-

sponding to absence periods was neglected by estimating the presence profile with

the instantaneous power consumption [34]. Secondly, faulty data (sensor errors)

were removed. Finally, the data is standardized by z-score normalization, using the

module provided in the scikit-learn package [172].

After pre-processing the data, the data is clustered several times, using all possible

feature combinations. The Dunn index was calculated iteratively for every possible

combination of the number of clusters and features, and the highest values are

presented in Table 3.5.

Features Clusters Dunn index

Mean, seasonality, skewness 3 1.8373

Mean, Hour-change score 8 1.8025

Mean, Hour-change score, Average state changes 8 1.7924

Mean, skewness 3 1.7773

Mean, seasonality, trend, skewness 3 1.7706

Table 3.5: Feature combinations with the highest Dunn index.

Results with fewer features are preferred for the sake of simplicity. The feature com-

bination with the highest Dunn index was discarded since a minimum of four clusters

was required. At least four clusters are needed to represent 80% of the variance. This

is illustrated in Figure 3.11, where a comparison of the variance explained between

whole time series and features-based clustering is presented for the second-best re-

sult in Table 3.5 (eight clusters). Therefore, the mean and hour-change scores were

selected as the features to represent the window opening behavior. The resulting

clusters with the training data set and the selected features are depicted in Figure

3.12.
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Figure 3.11: Percentage of variance explained with increasing number of clusters.

Comparison between features (Mean and Hour-change score) and whole time series

clustering procedure.

Figure 3.12: Cluster structure for training data set of observed proportion of win-

dows open with features extraction. Dashed lines represent the daily mean profile

of every cluster.

Eight distinctive profiles are obtained:

� Cluster 1: almost no changes during the day, with around 50% window opening

(probably open in warm days and closed during cold ones).

� Cluster 2: open during the day and closed while sleeping.
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� Cluster 3: almost always constantly open.

� Cluster 4: almost always constantly closed.

� Cluster 5: similar to Cluster 2 but with fewer changes between day and night

profile, and higher night mean.

� Cluster 6: small changes and low mean value without a typical profile.

� Cluster 7: closed during the day and open while sleeping.

� Cluster 8: similar to Cluster 2 but with lower mean values during day.

The obtained cluster structure was labeled and learned using a supervised learning

algorithm to evaluate the quality of the obtained clusters (Support Vector Machines

classifier [26], described in the Appendix A.5). Given the training data where each

point has a corresponding label (cluster number), the objective of the problem is to

define a hyperplane that separates two points of different classes with a maximal

possible margin. The test data is classified using this algorithm, and the resulting

cluster structure is illustrated in Figure 3.13. Results showed that 19 out of 27

apartments were classified into the same category in traning and test data sets, and

those who changed presented as well a different profile, which is more compatible

with the newly assigned clusters. The clusters’ description with the training data

set suits the test data set as well. The DI for the test set is 1.5086, which is lower

than the original one (1.8025) as expected.
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Figure 3.13: Cluster structure for test data set of observed proportion of windows

open with features extraction and classification. Dashed lines represent the daily

mean profile of every cluster.

On the contrary, the whole time series clustering method shows significantly lower

Dunn index values. The highest Dunn index (1.0525) belongs to a six-cluster struc-

ture, which corresponds to 50% of the variance explained. Figure 3.14 shows the

resulting cluster structure of the whole time series with six clusters. Two clusters

are equivalent (Clusters 2 and 7 from features against Clusters 3 and 5 in whole

time series), while Cluster 7 from features-based clustering was split into two single-

dwelling categories (Clusters 3 and 4). The two remaining clusters present significant

differences from each other, although Cluster 1 has lower mean values. Cluster 6 is

highly diverse and appears difficult to understand.
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Figure 3.14: Cluster structure for training data set of observed proportion of win-

dows open with whole time series. Dashed lines represent the daily mean profile of

every cluster.

To summarize, the features clustering method presents the following advantages over

a whole time series method:

� Higher clustering accuracy and prediction, given by the higher Dunn index.

� The variance explained is significantly higher in features clustering.

� Features clustering is more computationally efficient, due to dimensionality

reduction.

In the following section, this procedure is applied to the second measurement cam-

paign in Weingarten, to select three dwellings from different clusters, and compared

to the probabilistic models described in Section 3.1.

3.2.4 Comparison of measurements and available models

In this section, the performance of probabilistic models is compared against mea-

sured building data. The data set belongs to the second measurement campaign

described in Section 3.2.1. Following the clustering procedure from the previous

section, the data from the living rooms are clustered. Two clusters in the living
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room data are obtained, illustrated in Figure 3.15. The measured window opening

profiles have lower average values than the ones from the first measurement campaign

in Section 3.2.3. The difference lies in the monitoring period: the first campaign

presents yearly measurements, while the second one only winter values, which are

typically lower. The living room behavior is selected since two of the three analyzed

window opening models report coefficients valid only for living rooms (Section 3.1).

The selected apartments are highlighted for every cluster. The average measured

indoor conditions in these rooms are illustrated in Figure 3.16. The diversity of the

indoor conditions confirm the diversity of the occupant behavior.

Figure 3.15: Cluster structure for the daily average observed proportion of win-

dows open in the living rooms in the second measurement campaign. The selected

apartments are highlighted.
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Figure 3.16: Measured daily mean indoor conditions in the living room for the two

selected apartments.

Two different profiles were taken: the mean window opening (observed proportion

of windows open) and the average opening action (1 for opening a window, 0 for no

change), to be compared to the window opening models selected in Section 3.1. This

comparison is depicted in Figure 3.17, along with the average output of the selected

probabilistic models. The outdoor environmental variables for the probabilistic mod-

els are obtained using the Freiburg weather observations from the weather station

of the German Weather Service (Deutscher Wetterdienst) in the same period [56].

Figure 3.17: Window opening model and measurements comparison for the selected

apartments. The opening probability Popening is used for the black lines, and the

proportion of windows open (in %) for the colored lines.
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The results of the probabilistic models are similar for both apartments, even though

the indoor conditions profiles are different in the measured apartments. In apartment

1, a window opening in the morning is registered only by the model of Andersen et

al. (Group 3 - rented apartment without mechanical ventilation), which is valid for

naturally ventilated dwellings. The model of Schweiker et al. seems to predict well

the detected openings in the afternoon in apartment 1. In apartment 2, the window

was rarely opened during the measurement campaign. In this case, the models of

Andersen et al. group 4 and Cal̀ı et al. are more suitable, given their low opening

probabilities. For instance, the model of Andersen et al. group 4 yields between one

and five openings in the whole measurement period (two openings were recorded in

apartment 2).

Even though they simulate the stochasticity of the user, the probabilistic models

depend strongly on the indoor and outdoor conditions (in the case of Schweiker

et al. and Andersen et al.) and the time of the day (Andersen et al. and Cal̀ı

et al.). This is the main reason why they usually fail to represent the diversity

of the occupants. In the case of Schweiker et al., variables such as RH or CO2

concentration were not measured, therefore ignored in the modeling process. The

other authors found that the correlation between indoor environmental variables

and window opening behavior was negligible and consequently excluded them.

This analysis could be extrapolated to other dwellings and other room types. Re-

sults show that these models sometimes fail to represent the wide spectrum of the

occupant behavior. The studied window opening models are not developed to rep-

resent diversity, but to obtain a generalized model for building simulation, therefore

they summarized data from several measurement campaigns into a single model. A

possible solution could be to explore other modeling techniques [99]. In this sec-

tion, it is concluded that the existing window opening models are not reliable to be

used as user feedback models for residential mechanical ventilation systems, as they

fail to represent the uniqueness of the user. In the next section, logistic regression

is applied to window opening behavior to understand the drivers that motivate an

opening act in every dwelling, rather than creating models suitable for its integration

in building performance simulation.
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3.3 Window opening behavior as user feedback for mechan-

ical ventilation

In this section, the window opening behavior from the point of view of mechanical

ventilation is explored. As stated by Hong et al. [106], drivers, needs, and actions

are closely related to the occupant behavior, and the needs of the user in case of

natural and mechanical ventilation are the same: obtaining fresh air. Figure 3.18

shows a flow diagram of the proposed analysis.

Data collection

User ventilation 
preferences

Section 
3.3.3

CO2 
concentration

Window opening 
estimation

Section 3.3.1
Real time logistic 

regression

Section 3.3.2
Real time window 
opening detection

Figure 3.18: Schematic flow diagram of research method in this section.

The window opening models available in the literature can build different occupant

profiles. However, they miss the singularity of the human, and even though there

are tendencies to certain behaviors, each user is distinctive. As seen in the previous

section, fitting an existing logistic regression model as user feedback for mechanical

ventilation might be possible, but it would lose the nuances of individuals. In this

section, a real-time logistic regression approach is presented to identify the drivers

for window opening in every room. Besides, a window opening detection algorithm

is proposed. The goal is to use available sensors in decentralized ventilation systems

to detect when an occupant opens a window and then create user profiles. The

result of the real-time logistic regression using the estimated window opening profile

is relevant to obtain user-oriented solutions for mechanical ventilation systems, given

that window contacts are usually not available in real buildings.
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3.3.1 Learning preferences using logistic regression

In this section, logistic regression is used to quantify the relative importance of the

different measured variables for the window opening behavior in residential build-

ings. This method was reported already in the literature for the window opening

behavior in offices [63]. Models were fitted using the scikit-learn package in Python

[172]. In this case, the model learns the window opening action related to indoor

and outdoor environmental variables and time (represented by six dummy catego-

rial variables), summarized in Table 3.6. For example, a dummy variable in the

morning (6 - 10 AM) takes a value of 1 when time is in that range, and 0 outside

it. The selected input parameters could be measured with the available sensors for

decentralized ventilation systems.

Indoor parameters Outdoor parameters Time-related parameters [96]

Temperature Temperature Early morning (06-10)

Relative humidity Relative humidity Noon/Lunch time (10-14)

CO2 concentration Afternoon (14-18)

Evening (18-23)

Night (23-06)

Weekend

Table 3.6: Explanatory variables (input parameters) for the real-time logistic re-

gression.

The method consists of fitting a logistic regression every day at 00:00 hs during the

whole measurement period and observing the evolution of the obtained regression

coefficients. The main hypothesis in this method is that the absolute value of the

regression coefficients stabilizes after some time, meaning that the user behavior

is consistent. In this case, the window opening actions are learned to identify the

occupants need for fresh air.

The whole measurement period consists of 138 days. The input variables are nor-

malized to [0,1], making the coefficients comparable to each other. In this section,

an additional apartment from the second measurement campaign is analyzed (apart-

ment 3). It belongs to the same cluster as apartment 1, meaning the average window

opening profile is similar. Figure 3.19 shows the average window opening and open-

ing actions profile for Apartment 3.
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Figure 3.19: Daily average window opening and opening action profile for the Apart-

ments 1, 2, and 3, respectively.
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Figure 3.20: Real-time evolution of the logistic regression coefficients in Apartment

1. Complete figure in Appendix A.1.

Figure 3.20 shows the daily evolution of the regression coefficients for Apartment

1. It shows a strong influence of the indoor CO2 concentration as a driver for

window opening. All the other coefficients have a final absolute value below 1, while

CO2 is around 5. The regression coefficients become stable after day 50. From

day 30 on, CO2 concentration is the variable with the highest correlation with the

window opening. When considering the window opening models, Andersen et al.
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and Cal̀ı et al. considered CO2 relevant to predict window opening actions, which

is in agreement with these results.

In the case of Apartment 3 (Figure 3.21), the most important variable at the end

of the measurement period is the outdoor temperature. In this case, coefficients

show two stabilization levels: the first one after day 40, where the indoor RH has

the highest coefficient. The second one happens after day 90, where the coefficients

become reshaped, leading to changes in the final results. Indoor temperature be-

comes also more relevant after day 90. This occurs due to weather changes since

available window opening models for summer present a stronger influence of the

outdoor temperature (priority becomes cooling). Day 90 is February 12th, and in

this particular year, outdoor temperatures above 20◦C were observed.
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Figure 3.21: Real-time evolution of the logistic regression coefficients in Apartment

3. Complete figure in Appendix A.1

This proposed method helps to identify the drivers for opening a window in res-

idential buildings. This information could be applied as a part of a mechanical

ventilation controller, in which the controlled variable is defined by observing the

main occupant drivers for window opening. This method is used in Section 5.4.1,

where the occupant behavior towards the operation of mechanical residential ventila-

tion systems is studied. The main limitation of this method is that a user feedback

system (in this particular case, window contacts) are required, which are seldom

available in residential apartments. The next section deals with this issue.
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3.3.2 A real-time window opening detection algorithm

Window contacts are necessary to build a detailed profile of the opening behavior,

but these sensors are hardly ever available in dwellings. Therefore, this section

proposes a real-time window opening detection algorithm that could complement

the logistic regression method.

Within the framework of a master thesis, Halden [98] proposed an innovative model

to detect window opening using Hidden Markov Models (HMM). The algorithm is

applied to a first order difference time series of the room absolute humidity or CO2

concentration. Results show a better performance of using CO2 than with absolute

humidity, with total accuracies ranging from 89 to 96%. Yet this method has a

limitation: it was tested only in apartments without mechanical ventilation. The

impact of opening a window on the total air exchange rate is much higher without

mechanical ventilation, and therefore a hidden Markov model can predict the window

opening action. A study from Pereira et al. [174] detected different occupant actions

in residences by combining several indoor environmental variables (namely, indoor

and outdoor temperature, water vapor pressure, and CO2 concentration). One

of these detected actions is window opening, and accuracies higher than 99.5% are

reached when using indoor and outdoor water vapor pressure as input variables. This

study also presents some limitations: only one apartment was tested (no occupant

diversity, which questions its potential generalization), and this dwelling had only

mechanical extract ventilation. In addition, the two tested windows were located

in the bathroom, where usually high punctual moisture loads are observed. The

method was not applied to the ”dry” rooms (bedroom and living room).

In this thesis, a peak-detection algorithm is applied in the window opening detec-

tion in apartments where residential mechanical ventilation is present, based on the

smoothed z-score algorithm [28]. It is based on the principle of statistical dispersion

[174]. The state change detection is created by comparing every new measured data

point (real-time approach) with a certain calculated threshold. If this new point

overcomes the calculated threshold, a state change is detected. The measurements

are filtered with a moving average of the mean, and the threshold is calculated using

the moving average standard deviation. In this case, the input data are the first

order differences (FOD) of the room CO2 concentration, and only window opening

(not closing) signals are considered. The algorithm is described below in pseudocode.
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Z-score peak detection algorithm

if (y[i]−meanFilter[i− 1]) ≥ thr ∗ stdF ilter[i− 1] then

window ← 1

yfilt[i]← 0.6 ∗ y[i] + 0.4 ∗ yfilt[i− 1]

else

window ← 0

yfilt[i]← y[i]

end if

meanFilter[i]← mean(yfilt[i− lag : i])

stdF ilter[i]← std(yfilt[i− lag : i])

The involved variables are:

� y[i]: the input variable (CO2 concentration first order difference) at time i.

� yfilt: the filtered input (if there is a signal detection, the filtered input is

considered as 0.6 of y[i] and 0.4 of y[i− 1).

� meanFilter: the mean of the filtered yfilt in the last lag periods.

� stdF ilter: the standard deviation of the filtered y in the last lag periods.

� lag: the number of periods considered when calculating moving averages, and

must be tuned for different signals.

� thr: the threshold number of stdF ilter that detect successfully a state change,

and must be tuned for different signals.

Figure 3.22 presents the results of the detection algorithm on a sample day. The

evolution of the CO2 first order differences and the algorithm threshold are illus-

trated. The algorithm detected three openings, but only one was measured (the 6

AM opening is detected successfully). Two additional incorrect window openings

are identified around 18 hs. These could be corrected by adjusting the threshold

value thr, which will also affect the window opening detection on other days. The

definition of the thr and lag values for different apartments are explained as follows.
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Figure 3.22: Sample day for real-time window opening detection algorithm, using

the first order differences (FOD) of the CO2 concentration as an input variable to

detect the opening.

This algorithm was tested with data of the living room in the three apartments

mentioned before. The thr and lag values were tuned to maximize the performance

of the algorithm. A higher thr value means that higher CO2 first order differences

are required to detect an opening. A higher lag value means that the moving mean

average is calculated using longer intervalls, affecting the CO2 first order differences

as well as the moving threshold value. To evaluate the performance of the algorithm,

indicators based on ”true positives” (TP ), ”true negatives” (TN), ”false positives”

(FP ) and ”false negatives” (FN) are calculated [231]:

TPR =
TP

TP + FN
(3.7)

Acc =
TP + TN

TP + TN + FP + FN
(3.8)

PPV =
TP + TN

TP + TN + FP + FN
(3.9)

Indopt =
TP

FP + FN
(3.10)

TPR is the true positive rate, and Acc the overall accuracy. The predictive posi-

tive rate PPV evaluates the precision of the positive values obtained. The Indopt

indicator (optimization indicator) was defined to evaluate the performance of the
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algorithm, in terms of true prediction over errors committed. After testing the

algorithm performance iteratively with different values of thr and lag, they are de-

fined with the highest Indopt value. The results for the three tested apartments are

displayed in Table 3.7.

Indicator Apartment 1 Apartment 2 Apartment 3

Measured WO 698 2 236

Estimated WO 446 66 468

thr 3 5 3

lag 35 23 9

TPR 0.5318 0 0.1398

PPV 0.8251 0 0.1379

Acc 0.9798 0.9966 0.9679

Indopt 0.9154 0 0.0517

Table 3.7: Window opening (WO) real-time detection results in the three selected

apartments.

Apartment 1 yields a much higher Indopt value than the other two. In the case

of Apartment 3, the detection results are worse than for apartment 1. Apartment

2 shows the worst results, even having a null TPR (no correct window opening

detections). The apartment with the lowest number of openings has the worst

performance, and the apartment with the highest number of openings shows the best

algorithm performance. However, this relationship does not follow a clear pattern

when fitting other rooms or apartments. Observing the logistic regression plots from

Section 3.3.1, the best results are the ones where the regression coefficient CO2 was

the highest. This emerges logically since the time series selected for the detection

was the room CO2 concentration (the selection of CO2 relies on the property that its

indoor concentration depends almost exclusively on occupants’ breath release). In

that sense, other variables should be considered as well when applying this algorithm.

Figure 3.23 depicts the estimated and measured average opening profiles, together

with the average measured proportion of windows opened. Even though there were

errors reported and low predictive values, the estimated opening action profiles

match well with the average real estimated profiles. This was expected for apartment

1, where the best indicators were obtained. However, in apartment 2 or 3, the results

appear to be also close to the real opening profile. This confirms the potential of this

approach in building a residential real-time window opening profile, especially if the
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occupants react to CO2 concentration as a key driver. However, better statistical

indicators should be achieved to confirm this potential.

Figure 3.23: Real-time window opening detection results in the selected apartments

and comparison with the measured window opening and opening action profile.

To summarize, results show that the detection success depends on the degree of cor-

relation of the observed variable with the actual window opening (obtained through

logistic regression coefficients). A limitation of this method is that the variables thr

and lag must be tuned for a proper window opening detection. An implementation

of a dynamic threshold coefficient could potentially improve the results, although it

should be carefully studied to avoid overfitting to this particular data. A multivari-

able approach should be as well studied, as it could enhance the proposed model to

yield higher accuracies.

3.3.3 A combination of detection and preference learning

In this section, the window opening detection algorithm is combined with the logistic

regression scheme to learn the user preferences without needing window contacts.

The aim is to study if this solution could provide potential information gain regard-

ing user preferences for window opening replacing direct user feedback in residential

mechanical ventilation systems (but also extendable to HVAC systems).

The results are shown only for the Apartments 1 and 3 but can be extrapolated

to other apartments of the second measurement campaign. The real-time logistic

regression, described in Section 3.3.1, is applied using the estimated opening profile,

as a result of the detection algorithm from Section 3.3.2. The evolution of the re-
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gression coefficients is analyzed. Figures 3.24 and 3.25 depict a comparison between

fitting a regression with the real (left) and estimated openings (right) for Apart-

ment 1. The estimated regression coefficients are very similar to the real ones. In

this particular apartment, this method combination based on indoor environment

monitoring without a window contact leads to similar regression coefficients, and

the preferences of the user regarding the drivers to open a window in winter are

successfully estimated.
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Figure 3.24: Real-time evolution of the

logistic regression coefficients with mea-

sured window opening in Apartment 1.

Complete figure in Appendix A.1.
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Figure 3.25: Real-time evolution of the

logistic regression coefficients with esti-

mated window opening in Apartment 1.

Complete figure in Appendix A.1.
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Figure 3.26: Real-time evolution of the

logistic regression coefficients with mea-

sured window opening in Apartment 3.

Complete figure in Appendix A.1
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Figure 3.27: Real-time evolution of the

logistic regression coefficients with esti-

mated window opening in Apartment 3.

Complete figure in Appendix A.1

Figures 3.26 and 3.27 depict a comparison between fitting a regression with the real

(left) and estimated openings (right) for Apartment 3. In this case, the obtained

regression coefficients to predict window opening differ strongly between measured

and estimated opening actions. Similar to Figure 3.25, the estimated openings lead
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to a high relevance of the CO2 concentration in comparison to the other coefficients,

as it is used as the variable to estimate window opening. Other regression coeffi-

cients are also affected: the indoor relative humidity and the outdoor temperature,

which are the most relevant regression coefficients when fitting the measured open-

ing profile, have negative coefficients when fitting the estimated profile. This means

the influence of these variables when using estimated profiles is the opposite as when

using measured profiles.

To sum up, the reliability of this approach with the presented methods is question-

able. Information in advance about the occupants is needed to apply this method.

For instance, if the occupant window opening behavior is correlated with CO2 con-

centration (aApartment 1), this method can be successful. On the other hand, the

occupant behavior is modeled incorrectly if other variables are more relevant (Apart-

ment 3). This means the information obtained about the occupant ventilation pref-

erences using this method is not reliable to replace user feedback. The improvement

of the detection algorithm could lead to a reliable procedure to understand the win-

dow opening drivers of the occupant, and its applicability in mechanical ventilation

systems.

3.4 Summary

The occupant behavior is distinctive and diverse. Until now, research has made

little focus on its understanding and modeling regarding residential mechanical ven-

tilation systems, therefore the chapter focuses on window opening behavior models

(natural ventilation). Available probabilistic models are investigated and a method

is proposed to obtain information about the ventilation preferences from the window

opening behavior. Thus, the research question 2 can be answered as through the

following points:

Research Question 2: To what extent does the window opening behavior provide

useful information for ventilation control strategies? How can this be represented?

� There are different window opening models in the literature. The most popu-

lar ones propose an opening/closing action model based on logistic regression.

The explanatory variables are usually related to the indoor and outdoor envi-

ronment and time. Three models based on European residential buildings are

selected and analyzed.

� To better understand the time-related window opening behavior, a novel clus-
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tering method was developed, where features (based on statistical indicators)

are calculated to represent the distinctive behaviors. This method was applied

to measurements in renovated residential buildings, resulting in eight clusters.

Using a second measurement campaign, two apartments of different clusters

were selected and compared to the available probabilistic models. These mod-

els fail to represent the individual window opening behavior since they were

designed to integrate the stochasticity of occupants into building simulation.

Therefore, available probabilistic models are not suitable to be integrated as a

replacement for user feedback in mechanical ventilation systems. These models

are further used to represent window opening behavior in building simulation

in the next chapter.

� A second approach was proposed using a real-time logistic regression-based

driver learning method, to understand what are the key occupant drivers to

open a window. The main assumption was that the regression coefficients

should stabilize over time and could be used to infer the user preferences

regarding ventilation. The evolution of the regression coefficients of three

measured apartments was studied. In this study, the regression coefficients

stabilize after day 40 and provide useful information about occupant window

opening drivers. This method is reliable to evaluate user ventilation prefer-

ences and is further used in Chapter 5. However, the main limitation is the

need for window contacts to measure window opening behavior. Therefore, a

real-time window opening detection algorithm in absence of a window sensor

is proposed. The developed method is based on a filtered z-score peak detec-

tion algorithm, in this case, applied to CO2 concentration. The combination

of this method with logistic regression could lead to a real-time estimation of

the occupants drivers for window opening behavior. Results show high accu-

racy in apartments where room CO2 concentration is a key driver to window

opening, but poor results when the occupant behavior has a higher correlation

with other variables. Thus, information in advance about the user preferences

is required to obtain satisfactory results using this method.

� Consequently, user feedback collection is mandatory to develop occupant-

centered solutions in residential ventilation systems. This is studied in the

next chapter.

63



4 Innovative control strategies for decentralized ventilation

4 Innovative control strategies for decentralized

ventilation

This chapter focuses on residential decentralized ventilation systems and their con-

trol strategies. In Section 4.1, current solutions on the market and science are

reviewed, to gain an insight into how innovative controllers could impact this field.

A novel co-simulation scheme is developed to test the control strategies, described

in section 4.2. Moreover, in Section 4.3, three user-centered demand-controlled

strategies are proposed and portrayed: a cost function, a fuzzy-based, and a self-

learning scheme to represent the individualized needs of occupants. In Section 4.4,

two simulation test cases are carried out to investigate the performance of the pro-

posed occupant-centered control strategies regarding hygrothermal comfort, indoor

air quality, and energy consumption in residential buildings. A summary of the

findings in this chapter is available in Section 4.5.

4.1 State-of-the-art

In this section, the available control strategies for decentralized ventilation in the

market and scientific publications are reviewed. The aim is to define typical present

control strategies, which are used in the simulation as baseline cases to quantify the

potential savings of the proposed solutions.

4.1.1 Market research

Within the frame of this thesis, a market research of control strategies in decentral-

ized ventilation for residential buildings was carried out. Over sixty control systems

from more than thirty companies in Europe were summarized, focusing on the Ger-

man market, where decentralized ventilation has grown stronger than centralized

systems in the last years. Sales in Euros of decentralized ventilation systems repre-

sented 17% of the total sales in 2012 and grew to 37% in 2018 [110]. The control

strategies were taken into account only when room-individual control was available.

The key findings of this market analysis are summarized in the following points:

� There are usually three to eight available airflow levels. Maximum airflow

levels are between 30 and 60 m3

h
.
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� Fully automated modes are often available as an option. The controlled vari-

ables are mostly indoor relative humidity (threshold between 65 and 80%) and

CO2 concentration (1000-1500 ppm). Room temperatures are often measured

but not controlled.

� Other available modes:

– Summer ventilation (by-pass without heat recovery)

– “Party” mode (intense ventilation)

– Long absence or holiday mode (minimum ventilation)

– Sleeping mode (minimum ventilation or off, targeting noise reduction)

Every device on the market offer a manually adjustable fan speed, fixed at predefined

levels. The first attempt to create an occupant-centric control for ventilation systems

was to estimate the required air exchange rate on typical days, leading to predefined

weekly programs. However, some occupants might have activity profiles or different

habits, making the predefined control schedules not suitable for them. Hence, a

closer user-technology relationship needs to be developed.

The automatic control strategies offered on the market are almost always an add-

on to decentralized ventilation systems. Most of them are commercialized under

denominations like “smart control”, and together with smart home devices. These

seldomly offer a connection between decentralized systems in different rooms. They

usually focus on individual room airflow, depending on the current room conditions

– the “demand-controlled ventilation” (DCV):

Demand-controlled ventilation: ”Demand-controlled ventilation is a feedback

control method to maintain indoor air quality that automatically adjusts the venti-

lation rate provided to a space in response to changes in conditions such as relative

humidity or carbon dioxide concentration.”

The key advantage of DCV is that it regulates the airflow by controlling the speed of

the fans, in contrast to most centralized systems, where dampers are usually present.

This feature enhances its energy-efficiency. A hysteresis cycle is usually included to

avoid sudden level changes surrounding a threshold value. An exemplary hysteresis

cycle is illustrated in Figure 4.1. In this case, a hysteresis cycle is present for the

control system when the relative humidity is between 45 and 50%. For instance,

when indoor activities cause a release of moisture loads, the relative humidity in

a room increases. When the relative humidity overcomes the threshold of 50%, a
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higher airflow level is required. When the airflow is high enough to compensate

for the moisture loads, the relative humidity starts decreasing. However, to avoid

instabilities around the 50% threshold value, a hysteresis of 5% is included. The

airflow level is reduced when the relative humidity is lower than 45%.

35 40 45 50 55 60 65
Relative humidity [%]

Level 1

Level 2

Level 3

...

Level n

1. Humidity loads

2. Higher 
ventilation level

3. Hysteresis cycle

Figure 4.1: Working principle of a typical hysteresis cycle of a DCV in decentralized

ventilation systems.

Other DCV solutions are also available, such as linear relationships between the

volume flow and the target variable (for instance, RH or CO2). Currently, there is

a lack of innovation in decentralized control strategies. Most of the manufacturers

still sell DCV strategies as smart ventilation, even though they have been on the

market for more than ten years.

To summarize, two main gaps are identified from this research:

� Available smart DCV-based controllers handle only one variable at a time.

� User-centered solutions are represented in two forms: demand response to

a certain load type (moisture or CO2) or a preprogrammed strategy (such

as ”party” or ”sleeping” modes). There is a clear lack of occupant-centric

solutions in residential ventilation.

4.1.2 Scientific research

Twenty-nine scientific papers were reviewed, related to some extent to ventilation

control strategies in the last twenty years. Ventilation systems with integrated
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heating were also reviewed since innovative control strategies for decentralized ven-

tilation have not yet been extensively studied (DVS were studied only in five of

these twenty-nine publications). The controllers were developed in residential, com-

mercial, or laboratory tests. The full table with the reviewed publications is in

the Appendix A.4. Additional information about ventilation control strategies is

available in scientific publications [160, 188, 195, 199, 218]

The controlled variables (output) for decentralized ventilation systems can be fan

speed (or volume flow), damper position, or fan direction, depending on the ana-

lyzed system. The input of the controllers is usually related to indoor and outdoor

environmental variables. Besides, sometimes these are used to predict the status

of other correlated variables (for instance, CO2 concentration in a room and oc-

cupancy status). Figure 4.2 illustrates the percentage of publications where the

corresponding variable is controlled.
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Ambient

Other
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Figure 4.2: Proportion of publications that consider each input variable for dif-

ferent ventilation systems. The variable ”Ambient” summarizes different outdoor

environmental variables.

Regarding control strategies, decentralized systems seem to be always associated

with DCV schemes. These DCV reviewed controllers usually react to relative hu-

midity or CO2 concentration. Other indoor contaminants (for instance, volatile

organic compounds, or benzene) are considered, although these publications remark

the need for better contaminant modeling. In this case, CO2 is widely accepted
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as it is correlated to the presence of the occupant. Other controllers are PI-based

(Proportional-Integral), where the airflow is controlled to keep a certain CO2-based

setpoint. Other controllers propose to predict the occupant exposure degree to other

contaminants (for example, furniture contaminant release) and therefore minimize

this exposure through load shifting, such as shock ventilation before the occupant

arrives.

Centralized HVAC systems are a more frequent subject of study (because of their

complexity and savings potential associated with heating and cooling). Recently,

more advanced controllers, often machine learning-based, were developed. From

the analyzed 29 publications, only five study directly and 22 are applicable to de-

centralized ventilation systems. Figure 4.3 depicts the studied controller types for

different ventilation systems. Most of the publications that propose an advanced

control strategy are simulation studies, and there is a lack of experimental studies.
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Figure 4.3: Number or publications reviewed for each controller type and ventilation

system. Two publications review more than one system.

4.1.3 Reference control strategies

To conclude this review section about available control strategies for decentralized

ventilation, two main reference strategies are derived as a comparison basis for

innovative ventilation control systems.

1. A simple strategy, where the fan speed remains constant (around 0.4 air

changes per hour - ACH - which corresponds to reduced ventilation level ac-
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cording to the DIN 1946-6 [58]), representing an unaware user who does not

operate the ventilation system in residential multifamily buildings. The airflow

may be affected by the pressure difference between the room and the façade.

2. A stepwise strategy, RH-controlled in humid rooms (bathroom and kitchen),

and CO2-controlled for dry rooms (living room and bedroom), illustrated in

Figure 4.4.
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Figure 4.4: Baseline ventilation control strategy - ”Steps”.

4.2 Modeling and simulation

This section describes the approach to simulate the developed control strategies.

A novel co-simulation scheme combines the strengths of different simulation envi-

ronments. The included models (building, ventilation system, control strategy, and

internal loads) are described. The introduced models in this section are already

published in different scientific articles [34, 35, 36, 37].

4.2.1 Co-simulation

Different modeling techniques have their advantages and limitations. To prop-

erly simulate decentralized ventilation systems and the effectiveness of their control

strategies, the following characteristics must be fulfilled by the selected models:

� A single apartment must be modeled with single-room controllers for every

decentralized ventilation system.

� Air exchange between individual rooms and outdoor air must be simulated,

including humid air and trace substances (CO2).
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� An alternating façade-integrated decentralized ventilation system with a reli-

able heat recovery model must be included.

� Wind pressure influence is not negligible in façade-integrated devices, and

therefore must be considered [152]. The fan curve is therefore key to simulate

the actual airflow as a function of the pressure difference.

� State-of-the-art and innovative control algorithms must be modeled and in-

cluded.

There is no single simulation software available that fulfills all the requirements.

Hence, a co-simulation approach is proposed, where the advantages of different en-

vironments are combined into a single simulation scheme. In this thesis, the building

and weather data are modeled in EnergyPlus 8.9.0 [50], which has great capabilities

regarding building physics. However, the modeling of independent façade-integrated

ventilation systems (decoupled from heating and cooling) is not available. There-

fore, the DVS was modeled in Modelica 3.2.2 [147]. The integration of advanced

control systems takes place using Python 3.7 [209].

The models are connected through the Functional Mock-up Interface (FMI), where

every model is exported as an individual Functional Mock-up Unit (FMU). These

FMUs are afterward coupled in one particular environment or even through third-

party environments, such as Python. An FMU comes along with a set of C-functions,

according to the FMI standard (FMI Standard 1.0). The C-functions are provided

as binaries and are responsible for the information exchange between the different

simulation environments. The FMU coupling is performed in Python using the pack-

age PyFMI [15]. Figure 4.5 shows how the FMUs (slave models) interact with the

master algorithm and with the additional models (external input data and control

systems developed in python code). This coupling allows the integration of control

algorithms developed directly in Python code. A disadvantage of this coupling is

the lower simulation times.
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Figure 4.5: Co-simulation scheme developed for control algorithm testing.

4.2.2 Building model

A single dwelling of a typical German multifamily building (MFB) is proposed and

modeled. The characteristics are assumed based on the investigation from the

project ”LowEx im Bestand” [68] and the interpretation of Rohrer [186]. Figure

4.6 illustrates the floor plan. The total area is 84.6 m2. The balcony was also con-

sidered, as it plays a role in shading (outdoor space). The dwelling is assumed to

be 5 m above ground level.
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Figure 4.6: Floor plan of the simulated apartment.

Regarding the thermal simulation assumptions, floor and ceiling were modeled as

adiabatic surfaces, as it is assumed that the stories below and above have similar

room temperatures, neglecting the heat flow between them. The thermal charac-

teristics are typical for a medium energy retrofitted building in Germany. Internal

mass due to furniture is neglected, given that the impact on peak loads is less than

5% [179]. Table 4.1 summarizes the relevant thermal properties of the simulated

reference dwelling.

Thermal properties of the dwelling Unit Value

Exterior wall W
m2·K 0.23

Interior wall W
m2·K 1.30

Windows U-value W
m2·K 1.30

Windows frame factor - 0.80

Glazing SHGC - 0.70

Wall/window proportion - 4.17

Table 4.1: Simulated thermal properties of the dwelling.

The apartment is modeled with EnergyPlus 8.9.0 [50]. The air movement inside and
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outside the dwelling, as well as the infiltration and wind pressure, were simulated

applying the airflow network approach [27], illustrated on Figure 4.7, and already

validated in previous studies [67]. Every room is modeled as a single node, as well

as the air nodes on the surface of the external façades. Each node represents a

closed volume, with air pressure as the state variable. Equivalent to an electrical

circuit, the pressure difference between two nodes creates an air movement. The flow

“resistance” determines the volume flow that is originated by this pressure difference,

becoming an airflow path. Typical airflow paths are windows, doors, cracks (or

any infiltration component), and orifices (including, for example, wall-integrated

openings or ventilation systems). The flow resistances are modeled using the effective

leakage area method [222] and using flow coefficients from the AIVC Technical Note

44 [164]. The outdoor nodes have static and dynamic (wind) pressure, which is

modeled using the procedure developed by Swami and Chandra [201]. Details about

the airflow network model and the selected coefficients are available in the Appendix

A.2

Figure 4.7: Airflow network model of the dwelling. The circles represent the nodes

(room volumes or outdoor nodes) and the resistances (airflow paths) represent the

air exchange between nodes.

Regarding the infiltration, the recommendation of the Passive House Institute is

followed, suggesting a total air exchange rate of 0.5 h−1 when the pressure difference

is 50 Pa [170]. The infiltration is distributed in every room and modeled using the
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effective leakage area (ELA) method [10]. Furthermore, the ventilation concept for

this dwelling is defined according to the norm DIN 1946-6 [58], explained in Section

2.1. The defined ventilation levels in the whole dwelling are:

� Humidity protection = 27.4 m3

h

� Reduced ventilation = 64.0 m3

h

� Nominal ventilation = 91.4 m3

h

� Intense ventilation = 118.9 m3

h

A total of eight decentralized ventilation systems are selected in the dwelling (two

in the bedroom and living room, one per room in the rest). Besides, the airflow

network model assumes a perfect air mixing (single node model) and ignores the

impact of air distribution in the room and potential short circuits in different system

configurations. Therefore, given that the ventilation systems are façade-integrated,

a ventilation effectiveness profile as a function of the air exchange rate is considered

[127], which directly affects the supply and exhaust volume flows in every room. The

airflow network approach in EnergyPlus allows only balanced ventilation in every

room, which is a known limitation. It neglects the direct impact of the ventilation

supply and exhaust phases on the indoor conditions. The building model and its

validation are commented on further in the Appendix A.2.

4.2.3 Decentralized ventilation system

A façade-integrated decentralized ventilation system with a reversible fan is mod-

eled. As mentioned in Section 1.2, this device operates alternating periodically in

supply and exhaust phase (60 seconds respectively) and usually consists of a re-

versible fan, heat storage, and filter. The ventilation system is modeled in Modelica

[147]. Figure 4.8 illustrates the model of the mentioned device, with all the corre-

sponding components (fan modeled as a double component for each flow direction,

heat recovery, and pressure drop). The model outputs are the volume flow rate and

heat recovered. These values are the result of a time integration over the simulation

period in Modelica. The details about the thermal behavior of the model and its

validation are described in the Appendix A.3.
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Figure 4.8: Decentralized ventilation system model in Modelica. The model includes

pressure drop components, fan model and heat storage model. The details of this

model are available in the Appendix A.3.

The modeled ventilation system can deliver up to 46 m3

h
at full speed (2750 RPM).

The hydraulic modeling follows the data reported in the literature [57]. Three

ventilation levels (associated with three different fan speeds) and the corresponding

volume flow of the system were measured while variating the pressure difference on

both sides of the fan. The four corresponding levels (for the reference steps DCV

strategy) are calculated interpolating the given volume flow rates and the fan speed.

The pressure difference between the façade and room affects the resulting airflows

of these devices [152]. This model represents the supply and exhaust airflow rates

properly by taking into account this pressure difference. Figure 4.9 depicts this

mentioned influence. The corresponding levels are adjusted as required by every

developed controller. The constant fan speed strategy corresponds to a 50% fan

speed (corresponding to 0.4 air changes per hour in the apartment). A ceramic

thermal mass represents the heat storage system. It has a cylindrical shape and

a honeycomb structure that increases the heat transfer surface for a better heat

recovery efficiency.
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Figure 4.9: Supply and exhaust volume flow given the fan speed and pressure dif-

ference between room and façade.
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The fan power as a function of the fan speed is also reported in the literature [57].

Three fan speeds were measured with their corresponding fan power. The pressure

difference on both sides of the fan does not affect the power. Figure 4.10 shows the

adopted values to calculate the fan power.
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Figure 4.10: Interpolation of the fan power as a function of the fan speed. Measure-

ments are indicated with crosses.

4.2.4 Occupant behavior

The representation of the occupant behavior can affect the results in building perfor-

mance simulation largely. In this thesis, different methods are combined to obtain

a suitable model to evaluate residential ventilation control strategies.

Within the framework of a master thesis, Halden [98] developed an internal loads

model that includes heat, moisture, and CO2 loads. The high resolution of the model

(1-minute steps) allows testing the response of the ventilation system to rapid state

changes in the dwelling. The loads are modeled for each room individually. The

standard ISO 18523-2 [111] reports detailed occupancy and activity profiles for every

room type. The heat release of the appliances (assumed to be 95% of the consumed

power) is reported in the same source, and their use is assigned to the corresponding

activities. The human heat loads are taken from the publication of Ahmed et al.

[4]. The humidity release is also activity-dependent, and the values are taken from

Firlag et al. [79]. The human moisture release is also included. The cooking and

showering loads are adjusted and taken from TenWolde et al. [202]. Finally, the

CO2 human loads are described in the publication of Persily et al. [176]. Table 4.2

summarizes these values.
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Category Convective heat [W ] Humidity [ g
h
] CO2 [ l

h
]

1 Adult 79 45 14.4

1 Child 39 35 9

Lighting [ W
m2 ] 1.92 0 0

Washing machine 200 250 0

Dishwasher 200 0 0

Refrigerator 40 0 0

Cooking lunch 300 250 0

Cooking dinner 600 500 0

Showering 0 750 0

Plants 0 30 0

Table 4.2: Summary of the simulated internal loads.

The profiles are divided into weekdays and weekends. Figures 4.11, 4.12, 4.13 and

4.14 show the different internal loads profiles for a weekday. In simulation case

studies where the simulated time is longer than one week, the weekly profiles are

repeated periodically. The profiles are shifted slightly to simplify the visualization.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

O
cc

up
an

cy

Children 2
Children 1

Bedroom
Living

Kitchen
Bathroom

Figure 4.11: Occupancy daily profile.
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Figure 4.12: Heat loads daily profile.

77



4 Innovative control strategies for decentralized ventilation

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time [h]

0

200

400

600

H
um

id
ity

 lo
ad

s 
[g

/h
]

Children 2
Children 1

Bedroom
Living

Kitchen
Bathroom

Figure 4.13: Moisture loads daily profile.
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Figure 4.14: CO2 loads daily profile.

The window opening behavior is represented with two of the stochastic models that

are discussed in Section 3.1. The window interaction probability in each room is

modeled with logistic regression. The models of Schweiker et al. [191] and Andersen

et al. [13] (group 4) are selected. The model of Andersen et al. is used in every room

except the bathroom, where the model of Schweiker et al. is used. No model in the

literature is valid for bathroom windows. The window state is updated depending on

the output frequency of each model (5 minutes for Schweiker et al., and 10 minutes

for Andersen et al.). Besides, the door opening is simulated with the occupancy

status: every door remains open when the room is empty. This assumption leads to

door opening ratios from 50 to 85%, which are consistent with the findings of the

literature [208]. Window blinds are adjusted with an algorithm depending on the

solar irradiation (closed if irradiation is above 192 W
m2 ) and the indoor temperature

(closed if the room temperature is above 23◦C during the day, and under 23◦C at

night) [18].

The heating system is not studied in this thesis and is modeled ideally and inde-

pendent of the ventilation system. A PID-controller returns the required heat to

maintain the desired temperature setpoints in every room (Table 4.3). The PID-

controller is tuned so that it responds quickly to the heating needs (Equation 4.1).

No manual adjustment of the heating system is considered. The heating setpoints

are taken from the DIN 1946-6 [58], but the values in the bedrooms are adjusted to

measured values in renovated buildings [31].

Q̇heat(t) = kp · e(t) + ki +

∫
e(τ) · dτ + kd ·

de(t)

dt
(4.1)

� Q̇heat is the instantaneous heat flow rate of the heating system
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� e(t) = Tsp− Troom(t) is the temperature difference between setpoint and room

� kp = 60, proportional gain, non-dimensional

� ki = 30, integral gain, non-dimensional

� kd = 1, derivative gain, non-dimensional

Room Day [7-22h] Night [22-7h]

Bedroom and children rooms 21 18

Living 20 20

Kitchen 20 20

Bathroom 22 22

Table 4.3: Selected room temperature setpoints, in ◦C [58].

4.2.5 User interaction with mechanical ventilation

In this section, a novel user interaction model with residential decentralized venti-

lation systems and its integration in building performance simulation is described.

Studies about the operation of mechanical ventilation systems are not widely avail-

able in the literature. This model aims to simulate the user response to different

discomfort situations, in particular, to test the performance of occupant-centered

control strategies.

There is only one publication that explicitly measured and investigated the occupant

behavior with residential mechanical ventilation systems. Ren et al. [183] measured

ten dwellings in the Netherlands for two years and inferred the user fan level selec-

tion from the fan power. They applied an exploratory analysis using clustering tech-

niques to understand the key drivers that motivate occupants to operate mechanical

ventilation systems. Results showed that there are four main groups: time-related

operations, indoor environment-related, indoor and outdoor environment-related,

and mixed factors-driven. Their conclusions are closely related to the results ob-

tained in similar exploratory analyses for window opening behavior in residential

buildings [63, 75].
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4.2.5.1 Model assumptions and limitations

A user interaction model with mechanical ventilation is proposed, to represent the

response of the occupants to discomfort with the indoor environmental quality as

realistic as possible. According to Lai et al. [130], users might have different reasons

to ventilate their dwellings. Therefore, there is a need to develop a model to consider

the stochasticity of user behavior.

The main assumption under this model is that the user reacts only under uncom-

fortable conditions. The model neglects time-driven factors. Besides, the outdoor

conditions influence the usage of energy recovery ventilators in cold climates [130].

This model is developed for building simulation in winter conditions but does not

include weather-related variables as input.

Rather than providing a generalized validated occupant behavior model, this model

intends to create a tool to simulate the stochasticity of the user regarding the manual

operation of ventilation systems, focusing on its applicability in building simulation.

4.2.5.2 Artificial comfort profiles

As described in Section 2.3, the main variables used to control mechanical venti-

lation systems in winter conditions are the indoor relative humidity and the CO2

concentration. The first step is to create artificial comfort profiles related to these

variables. Table 4.4 shows a suggestion for four comfort profiles, following the results

described on Sections 2.3.3 and 2.4.2. The profiles follow a normal probability dis-

tribution for the relative humidity and an inverted normal cumulative distribution

for the CO2.

User comfort

type

Mean RH

(µRH)

StdDev RH

(σRH)

Mean CO2

(µCO2)

StdDev CO2

(σCO2)

Norm 45 12 1300 250

Less air 60 8 1600 100

More air 30 8 1000 100

Distracted 45 35 1000 2000

Table 4.4: Definition of the artificial user comfort profiles. Mean (µ) and standard

deviation (σ) characterize the probability distribution for each user type.
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The “norm” profile follows the discomfort profiles suggested mainly in the DIN EN

16798-1 [60] norm. The “more” and “less” air profiles are deviations of the norm pro-

file within the desired limits (relative humidity values under 25% and over 75% lead

to unhealthy consequences). The lower standard deviation results in sharper profiles

than the ”norm” occupant. The “distracted” profile is associated with occupants

who do not show a clear pattern and find themselves usually in comfortable condi-

tions, having thus a higher SD. Figure 4.15 shows these profiles and the associated

comfort probabilities.
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Figure 4.15: RH and CO2 artificial comfort profiles given the probability distribu-

tions in Table 4.4.

4.2.5.3 User interaction algorithm

The interaction frequency of the user with the devices is also considered. A cor-

rect definition of this frequency is key for its application in building performance

simulation. The interaction probabilities are obtained from the values reported in

the literature [183]. Three profiles are modeled, following the scheme of Yun et al.

[233]. The probability of interacting with the mechanical ventilation system is cal-

culated by distributing the total interactions recorded in the present days (assuming

thirty-five days of absence for holidays). Table 4.5 summarizes these values.
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Frequency group Total interactions Daily interactions
10-min

interactions

Passive 30 0.0455 3.1566E-4

Medium 200 0.3030 2.1043-3

Active 1150 1.7424 1.2100E-2

Table 4.5: Measured interaction frequencies with mechanical ventilation [183].

The user response is collected in votes, which are positive if the occupant wants

a higher air exchange rate and negative if the occupant prefers a lower one. Five

possible outputs are modeled, associating the user preference with a number:

� ”-2”: The user wants much less air exchange

� ”-1”: The user wants less air exchange

� ”0”: The user is comfortable and gives no vote

� ”+1”: The user wants more air exchange

� ”+2”: The user wants much more air exchange

For example, if a user votes a ”-2”, it is assumed that the user would want two

ventilation levels less since the airflow is too high for this user at that moment

where the vote is placed.

Then, a probabilistic approach comparing the interaction frequencies with random

numbers was developed to simulate the interaction in every timestep. Figure 4.16

shows the structure of the model. In case of multivariable discomfort, a single vote is

drawn for each variable, and then a random number is drawn, to consider which vote

prevails (assigning an equal probability to each vote). A threshold of two standard

deviations above the mean is selected since 95% of the values lie within two standard

deviations in a normal distribution [104].
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Figure 4.16: Flow chart of the proposed model to simulate the interaction between

user and mechanical ventilation system, given the comfort profile.

The potential mechanical ventilation behavior in one measured building is simulated

to test the proposed model. The measurements belong to the second measurement

campaign reported in Section 3.2.1 during January 2019. The user votes were sim-

ulated, according to the different user comfort and activity profiles. Figure 4.17

shows the indoor RH and CO2 values in this period used to simulate the occupant

behavior towards mechanical ventilation.
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Figure 4.17: RH and CO2 profile to test the proposed user interaction model.

Figure 4.18 left shows the comparison of an active, passive, and medium user, with

a norm comfort profile. Figure 4.18 right illustrates the comparison of a ”norm”,

”more air”, and ”less air” occupant, with a medium interaction frequency profile. In

both cases, the model responds well to the defined artificial comfort profiles. This

model serves as a basis to test different innovative control strategies for decentralized

ventilation systems, especially in Section 4.4.2.
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Figure 4.18: Simulated user votes given the interaction frequency (left) and RH and

CO2 comfort profile (right).
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4.3 User-centered control strategies

In this section, three novel controllers for decentralized ventilation systems are de-

scribed. They are tested in two simulation studies in Sections 4.4.1 and 4.4.2. The

controllers in this section are already partially published in different scientific ar-

ticles [36, 37]. The proposed solutions aspire to fill the gap identified in Section

4.1.1:

� Two fully automated multivariable DCV approaches are tested: cost-function

and fuzzy-based.

� An occupant-centric learning DCV system is proposed.

4.3.1 Cost function DCV

The first attempt to tailor the needs of the occupants to a decentralized control

strategy is to associate the dissatisfaction with the indoor RH and CO2 with the

system fan speed. The norm DIN EN 16798-1 [60] suggests acceptable values for

both variables related to ventilation systems. For the RH, the norm defines ideal

values between 30 and 50%, having its peaks under 20% and above 70%. This shape

is approximated with a quadratic function. Furthermore, the acceptability values

related to CO2 concentration decrease with higher concentrations, and fits better

the upper tier of a logit function. This approximation is as well in line with the

CO2 discomfort equations of Jokl [118].

The discomfort functions reported in the literature are converted into a DCV scheme.

It is proposed that the dissatisfaction (D) due to the RH is approximated with a

quadratic function. The CO2 concentration fits better with the upper tier of a logit

function. The Equations 4.2 and 4.3 define the proposed evaluation, and the figure

4.19 compares the state-of-the-art and new methods respectively. In these equations,

RH is the relative humidity in % and CO2 the carbon dioxide concentration in ppm.

The coefficients are selected to fit the dissatisfaction curve to the same shape as the

reported curves in the literature.
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Figure 4.19: Percentage dissatisfied (PD) functions for relative humidity (left) and

carbon dioxide concentration (right). Comparison of the proposed cost function and

the reviewed models in Chapter 2.

DRH = 0.05 ·max(0; abs(RH − 40)− 5)2) (4.2)

DCO2 = −24 +
66

1 + exp

(
1− CO2

450

) (4.3)

These approximations are integrated into a demand-controlled ventilation scheme.

The control strategy in each room is lead by the variable with the highest dissatisfac-

tion (Equation 4.4). For instance, when the dissatisfaction due to relative humidity

is higher than due to CO2, the DCV is RH-driven, and vice versa. This controller

is named the cost function strategy (Costfun in the plots) since the fan speed is

calculated following the highest discomfort cost. Figure 4.20 shows a comparison

of this strategy with the previously defined reference steps function. This DCV

scheme is tested in a simulation study in Section 4.4.1. Additional key points of this

controller are:

� 100 % fan speed is selected with over 75% relative humidity, to increase the

importance of mold growth protection.

� Minimum fan speed is selected with below 20% relative humidity, to highlight

the relevance of health-related issues with dry environments.

� No dissatisfaction is registered when CO2 is under 750 ppm.

D(RH,CO2) = max (DRH(RH), DCO2(CO2)) (4.4)
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Figure 4.20: Cost function DCV strategies for RH (left) and CO2 (right).

4.3.2 Fuzzy logic control

Another option is to control the fan speed by combining the values of RH and CO2

into a single control strategy. Fuzzy logic is an approach to input processing that

allows for multiple variables to be processed at the same time and to obtain a single

output variable. Controllers based on fuzzy logic appear as a suitable solution when

the system cannot be easily modeled or controlled using classical control methods

due to the modeling complexity. A fuzzy approach is proposed, to seek a solution

to this three-cornered problem between energy consumption, hygrothermal comfort,

and IAQ.

Dounis et al. [64] developed already a thermal comfort-based fuzzy controller twenty-

five years ago to control natural ventilation depending on the outdoor temperature.

Besides, Kolokotsa et al. [125] designed a multivariable fuzzy system to optimize

thermal and visual comfort at the same time. Molina Solana et al. [155] controlled

a whole smart home system using fuzzy logic. Fuzzy controllers were also used to

control IAQ. For instance, Pitalúa-Dı́az et al. [177] reduced benzene concentrations

when using a fuzzy-controlled exhaust ventilation system. Jaradat et al. [113]

developed a multipollutant fuzzy-based control strategy. Jazizadeh et al. [114]

proposed an approach to learn the thermal occupant preferences and individualize

the heating system control using a self-adaptive fuzzy controller. Nevertheless, fuzzy

controllers have not been considered yet for residential ventilation devices.

The controller must foremost keep the indoor environment outside the inacceptable

range values, defined in Chapter 2. Figure 4.21 shows a workflow of the proposed

controller, where the instantaneous measurements are compared to the previously

defined limits. If these are outside those limits, then the control system must be
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overridden, so that the ventilation system reacts immediately and tries to keep them.

The imposed thresholds are:

� If RH >80%, then fan runs at full speed

� If RH <20%, then fan runs at minimum speed

� If CO2 >1800 ppm and RH >25%, then fan runs at full speed
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Figure 4.21: Fuzzy controller workflow.

These limits are slightly more flexible than defined in Chapter 2, because they

define the segment of action of the fuzzy controller. Then, if the values are within

those limits, the fuzzy controller is enabled. Even though there are recommended

values for the acceptance of the indoor environmental variables, the well-being of

the occupant is subjective and individual. Then, the controlled variables have a

fuzzy nature. The proposal of a fuzzy controller aims at bringing a mathematical

formulation of the problem rather than a unique optimal solution. Membership

functions for every variable are used to determine the degree of association of a

certain variable with a previously defined linguistic term (such as ‘warm’ or ‘cold’,

when representing thermal sensation). Fuzzy inference rules are necessary to build a

relationship between the different memberships. These and the corresponding fuzzy

rules are defined through expert knowledge of the dynamic behavior of the system.

The linguistic terms of every input variable (RH or CO2) are associated with the

controlled variable (fan speed) through fuzzy rules. The measured input variables (in

this case, RH and CO2 concentration) are normalized (CO2 concentration between

88



4 Innovative control strategies for decentralized ventilation

400 and 1800 ppm) and fuzzified through their previously developed membership

functions. The crossing points of the membership functions are selected:

� RH: 30 and 70%

� CO2: 825 and 1250 ppm

� Fan speed: 33 and 67%

Each domain is described using three linguistic labels: “low”, “medium” and “high”,

for the indoor RH, and “excellent”, “acceptable” or “poor” for the room CO2 con-

centration. The fuzzification process calculates consequently the membership degree

αi,j (probability of belonging to a certain category j for each input measurement xi)

using the sigmoid function (Equation 4.5). A sigmoid shape allows the fuzzy control

field to be smoother than using sharp-edged shapes, such as trapezoids.

αi,j =
1

(1 + e−a(xi−c))
(4.5)

The fan membership function, necessary to calculate the fan output speed, is trape-

zoidal and divides the whole normalized fan speed range into three equal parts (low,

medium, and high). Figure 4.22 illustrates the three membership functions of the

controller.

The fuzzified inputs are interpreted based on a set of rules, which compose the fuzzy

inference engine. As explained before, fuzzy rules aim at describing the relationship

between the fuzzified linguistic terms of the input and output variables. In this

thesis, an expert knowledge-based system of rules is implemented, summarized in

Table 4.6. Because keeping the relative humidity inside the healthy limits (defined

in Chapter 2) is the first task of the controller, the CO2 concentration is neglected

when the RH is not in its admissible range.

IF RH is Low OR (RH is Acceptable and CO2 is Excellent) THEN FS is Low

IF RH is Acceptable AND CO2 is Acceptable THEN FS is Medium

IF RH is High OR (RH is Acceptable and CO2 is Poor) THEN FS is High

Table 4.6: Fuzzy rules for every fan output (FS = Fan speed).
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Figure 4.22: Membership functions for the fuzzy controller. RH and CO2 are the

input variables xi and the fan speed is the output variable yo.

The minimum number of rules is the number of linguistic terms used to define

the output variable. The level of detail of these rules depends on the number of

categories used to describe the input and output variables [69]. Furthermore, the

inference engine interprets the degree levels of the inputs for each rule (µR) and

calculates the degree levels of each output (fan speed) category. In this case, the

used inference engine is the Mamdani max-min method [144]. The AND operator

is represented with the minimum and the OR operator with the maximum. The

fuzzy output of each rule (µo,R) and the final aggregation (µo) are calculated. The

following equations describe, as an example, the calculation for fan speed low and

the final aggregation of the three fan categories:
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µR1 = max (αRH,low, min (αRH,Acc, αCO2,Exc)) (4.6)

µo,R1 = min (µRH,low, αFan,Low) (4.7)

µo = max (µR1 , µR2 , µR3) (4.8)

Once the output degree for the three fan speed categories µ(o,R) is obtained, the

normalized fan speed yo is calculated using the centroid defuzzification method:

yo =

∑
Yj · µo,j(Yj)∑
µo,j(Yj)

(4.9)

being Yj ∈ 0, 1 the normalized fan speed, j the number of evaluated points in the

output domain, and µoj(Yj) the membership degree at each point of the output

variable domain. The outcome of the whole process is illustrated in a 3D control

field in Figure 4.23. In principle, this field can be predefined, which makes the

fuzzy controller another variation of a DCV scheme, and highlights its robustness

and reliability. Together with the cost function controller, the fuzzy-based DCV is

tested in a simulation study in Section 4.4.1.
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Figure 4.23: Fan speed control field resulting of the fuzzy control strategy.

4.3.3 Self-learning DCV

In this section, an innovative learning control strategy for residential ventilation

systems is presented. This strategy is based on a DCV scheme, which can tailor itself

to the needs of the occupant. The control uses a comfort profile and a supervised

learning algorithm (requires training data) to predict the user vote by taking into

account the indoor environmental conditions.
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Learning systems gained popularity in the scientific world around buildings in the

last ten years. The primary optimization target has been the heating energy con-

sumption. For instance, Kastner et al. [121] developed a system that learns an

occupancy schedule for office buildings and uses it to optimize the heating energy

consumption with an artificial neural network. Daum et al. [52] defined a new

method to represent the thermal occupant preference, using curves based on logistic

regression. They concluded that the thermal preference could be learned success-

fully between 40 and 60 user feedback votes. Carreira et al. [39] simulated the

optimization of an HVAC system that learns the occupants thermal preference us-

ing a clustering algorithm. Results indicate that the system could successfully learn

and adapt itself to this individualization of the occupants’ preferences. Xu et al.

[230] developed a scheme to differentiate the individual thermal preferences in a

multi-occupant environment to tailor the HVAC controller. Learning schemes are

implemented already in real cases. Gunay et al. [93] developed a learning scheme to

optimize the temperature setpoint of a heating system. Commercial systems that

learn the thermal occupant preference and optimize the heating setpoint are already

available [161].

Other building systems have been studied as well and controlled with learning al-

gorithms. For example, Cheng et al. [44] created a satisfaction-based learning

controller for integrated light and blind control to tailor the illuminance levels to

the needs of the user. Park et al. [167] created a self-learning lighting controller.

Vazquez Canteli et al. [213] used a learning algorithm to adapt the demand re-

sponse behavior of residential electricity consumption to reduce energy costs. Lastly,

Ghahramani et al. [89] developed a learning algorithm for the occupant interaction

with their workspace (for example, working alone or with other people) using a

combination of wearable and environmental sensors.

Until now, no publication covers the application of learning systems to a residential

ventilation system. The next sections provide a full description of the proposed

control strategy.

4.3.3.1 Default comfort profile

The default comfort profile for the control system was built following the norm

comfort profile for the occupant behavior model, described in Section 4.2.5. This

profile should represent an average comfort profile for both RH and CO2, while at
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the same time keeping the flexibility to adapt itself to new incoming data points

from the user feedback.
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Figure 4.24: RH ventilation preference

votes for the default comfort profile.
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Figure 4.25: CO2 ventilation preference

votes for the default comfort profile.

Twelve ventilation preference votes for each variable were arbitrarily defined, to build

the comfort and IAQ profile. These votes give a total combination of 144 default

artificial user votes. These are shown in Figures 4.24 and 4.25, and the resulting

comfort profile is seen in Figure 4.26. This profile is considered the starting point

of the learning control strategy.
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Figure 4.26: Resulting 3D field for the default comfort profile.

4.3.3.2 Algorithm selection

A key step to a successful learning DCV is the algorithm selection. With the help

of machine learning, the user preferences can be successfully captured and provide
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a proper solution to achieve better comfort, enhance the acceptance, and meet the

energy efficiency targets [39].

In this section, six popular classification algorithms are picked and compared. The

performance in terms of computational resources and the ability to learn the desired

profiles are tested. The best algorithm is then selected and applied in the learning

DCV scheme. The preselected algorithms are:

� Logistic regression (LogR)

� Support vector machines with radial basis function kernel (SVM)

� Gaussian näıve Bayes (NB)

� Gaussian process classifier with Matérn kernel (GPC)

� Decision tree classifier (DT)

� Random forests (RF)

The comparison was performed using the python package scikit-learn [172]. The

first approach was to learn the default comfort profile and to observe the resulting

predictions after learning. The performance indicators are accuracy (Acc), true posi-

tive rate (TPR), and positive predictive value (PPV), recommended in the literature

for the evaluation of learning algorithms [89]. These indicators are already defined

in Section 3.3.2. Accuracy evaluates the overall degree of closeness of predictions

with the actual labels. However, in algorithm tuning and selection in the context of

occupant behavior, the goal is to maximize the PPV while at the same time keeping

the TPR in an acceptable range. Table 4.7 summarizes the results.

Algorithm Acc TPR PPV

LogR 0.7783 0.7701 0.7525

SVM 0.9022 0.9011 0.8875

NB 0.7918 0.8138 0.8150

GPC 0.8694 0.8832 0.8825

DT 0.9000 0.8985 0.8825

RF 0.8856 0.8945 0.8875

Table 4.7: Selection of DCV algorithm: comparison of performance indicators for

every classification algorithm.
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From the table, support vector machines shows the best performance in comparison

to the other five algorithms. However, the difference in the values between support

vector machines and others is marginal. The logistic regression and naive Bayes

classifiers are discarded due to their poor performance, and a second comparison

was carried out. Daum et al. [52] suggested using the overlapping surface as a

learning indicator, being only valid for a single variable. This indicator is called

the learning rate (LR) and is defined by Equation 4.10. A value of one indicates

perfect learning of the comfort profile. The average of the learning rate is calculated

to combine both variables. Before entering the calculation procedure, the learned

profiles are rescaled so that the maximum comfort probability is always one.

LR(X) = 1−
∫
|pcomf,user(X)− pcomf,learn(X)|dX (4.10)

LR =

∑
LR(Xi)

n
(4.11)

A simulation was carried out using the four artificial occupant comfort profiles for

RH and CO2. The goal was to calculate the learning rate for the four preselected

algorithms and to compare them. The simulation was performed until the 150th

vote took place since it was assumed as a reasonable limit for a stabilized learned

profile. Table 4.8 shows the values of the learning rate for the indoor RH and CO2

comfort profiles and the time consumption of the algorithm.

Algorithm Norm Less air More air Distracted Time [s]

SVM 0.8499 0.7334 0.7530 0.7374 9.95

RF 0.8472 0.6119 0.6436 0.6024 3.92

DT 0.6974 0.7611 0.6298 0.6003 1.70

GPC 0.7835 0.6796 0.7487 0.8153 234.45

Table 4.8: Selection of DCV algorithm: Combined learning rate results for every

tested classification algorithm for the learning DCV controller.

Two out of four learning indicators were best when using support vector machines

(SVM). This result discards the usage of random forests (RF) and decision trees

(DT) as possible learning algorithms, as their learning rate is significantly lower

than the other two. When comparing the computational resources, the support

vector machines took almost ten seconds to learn the profile, while the Gaussian

process classifier (GPC) procedure lasted almost four minutes. Hence, the support

vector machines (SVM) was selected to develop the DCV learning scheme. Figure
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4.27 shows the combined learning rate for this algorithm when simulating the four

synthetic profiles. The stabilization (the point where the value of learning rate stays

fairly constant) occurs between 60 and 80 user votes. This result agrees with the

publication of Daum et al. [52]. A detailed explanation of the mathematics behind

this algorithm is described in the Appendix A.5.

Figure 4.27: Evolution of the combined learning rate using SVM.

4.3.3.3 Learning DCV process

Once the algorithm is selected and tuned, and the starting profile is defined, the

learning procedure can take place. The learning process is executed as follows:

1. Initialize the algorithm and create the default comfort profile

2. If there is a new user vote, collect it together with the instant values of RH

and CO2

3. Append new votes to the previous ones

4. Check the date of the votes and erase the oldest ones

5. Check that the votes are inside the healthy limits. If not, correct them.

6. Update comfort profiles for control
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7. Continue until new votes come
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Figure 4.28: Workflow of the self-learning controller.

Figure 4.28 shows a flow chart of the learning scheme. A vote limit of 150 votes was

imposed, in line with the results of the previous section. Limiting the number of

votes creates a slower response of the system to the learning process when the vote

count reaches its limit. Because the oldest user votes are erased when reaching the
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vote limit, the learning process will never cause the comfort zone to be extremely

far away from the default profile. On the one hand, this reduces the possible indi-

vidualization of the control to “extreme” occupant preferences. On the other hand,

this limits possible inconsistencies of the user votes due to their stochastic nature

and non-desired comfort zones (such as too dry air or too humid air, which can

cause adverse health effects or promote mold growth in the dwelling). In addition,

analogous to the fuzzy controller, “healthy limits” are imposed, to avoid having in-

door environmental conditions which are rated as unacceptable by the norms and

the literature:

� If RH >80%, then fan runs at full speed

� If RH <20%, then fan runs at minimum speed

� If CO2 >1800 ppm and RH >25%, then fan runs at full speed

When the user gives feedback to the ventilation system, the control is overridden

for 30 minutes, and the airflow level is determined by the user’s choice. Otherwise,

the control system tries to predict the occupant comfort according to the learned

profiles and adjusts the airflow levels respectively. The whole sequence is described

in four steps:

1. Collect the instantaneous value for the controlled variables (RH, CO2)

2. Predict the ventilation vote of the user according to the learned comfort profiles

3. Adjust the fan level according to this vote

4. When the occupant votes, adjust the fan level for 30 minutes to the voted fan

level

The resulting default control profile is illustrated in Figure 4.29. The colors are

associated with user vote predictions.
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Figure 4.29: Default control field of the self-learning controller. The colored areas

represent the prediction of the user vote.

Moreover, learning the artificial user profiles and their impact on the DCV control

field are illustrated in the Appendix A.6. The pictures represent the learning process

from 10 to 200 votes. An additional complete random profile shows the resilience of

the learning to random user profiles, highlighting its ability to keep the predefined

control shape.

4.4 Simulation case studies

In this section, two simulation studies are carried out.

1. A comparison of fully automated control strategies, to analyze the performance

of the proposed cost function and fuzzy logic controllers.

2. A simulation of the learning DCV scheme under different user comfort and

interaction frequency profiles.

The selected climate is representative of a European temperate climate without

a dry season and with warm summer (Cfb classification type [175]). This thesis

focuses on the performance of ventilation control strategies in winter conditions. The

selected simulation weeks are detailed in every subsection. All selected strategies are

applied in the co-simulation scheme (Section 4.2.1), taking advantage of the models

in Section 4.2.
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The performance indicators are already defined in Chapter 2. The energy consump-

tion is evaluated through the primary energy consumption Qpe,vent (Equation 2.7),

which takes into account the heating losses due to ventilation and the electricity

consumption of the fan. The indoor air quality is evaluated through the CO2 con-

centration using the indicator ∆CO2 (Equation 2.11). The health-related issues and

humidity comfort are evaluated through the relative humidity, using the indicators

∆RHup (Equation 2.14) and ∆RHlo (Equation 2.15).

4.4.1 Multivariable fully automated control strategies

4.4.1.1 Methodology

In this section, the proposed user-centered fully automated multivariable control

strategies (cost function and fuzzy logic) are tested in a simulation case study. These

are compared to the control systems defined as baseline cases (constant fan speed

and steps DCV). These results are published partially in scientific articles [36, 37].

For the first analysis, a single week is simulated due to computational reasons since

the internal loads profile is modeled only for this period. In Section 4.4.1.2, the

performance of four fully-automated controllers in an average winter week is com-

pared. In Section 4.4.1.3, two controllers (steps and fuzzy-based DCV) are selected,

and the sensitivity to the ambient conditions is studied. Merzkirch [150] concluded

that the two variables that influence the most the primary energy consumption in

ventilation systems are the heat recovery efficiency and volume flow rate. From the

definition of the heat recovery efficiency in Section 2.2.1, and since the heat storage

is modeled component-based, the only variable left that affects the heat recovery

efficiency is the ambient temperature. Thus, cold and warm winter weeks are taken

into account as well. Besides, different algorithms control the fan speed. However,

the actual volume flow is sensitive to the wind pressure [152]. In this case, windy

and calm winter weeks are simulated. The mean ambient conditions in the whole

winter period are summarized in Table 4.9, together with the mean value of the

ambient conditions of every simulated week. Figure 4.30 shows the selected weeks

for the sensitivity analysis. Lastly, the results are discussed in Section 4.4.1.4.
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Unit

Winter

season

mean

Average

week

mean

Warm

week

mean

Cold

week

mean

Windy

week

mean

Calm

week

mean

Tamb
◦C 3.60 2.70 6.40 -5.28 3.08 3.41

RHamb % 80.15 67.76 80.41 71.64 81.51 87.19

AHamb
g
kg

3.91 3.22 5.05 1.89 4.17 4.47

WS m
s

3.09 3.40 3.01 1.89 7.00 1.06

Table 4.9: Mean values of the weather conditions (ambient temperature, relative

humidity, absolute humidity and wind speed - WS) in the selected weeks for the

sensitivity analysis.
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Figure 4.30: Ambient conditions (left: ambient temperature, right: wind speed) in

the selected weeks of the winter season for the sensitivity analysis.

The sensitivity to internal loads is also investigated. In this study, the loads are

reduced and increased by 50%. A discussion of the obtained results is included at

the end of the section.

4.4.1.2 Results for an average week

Figure 4.31 illustrates the total air change rate in the dwelling on a single day. The

wind influence is observed in the constant speed strategy, which does not deliver a

constant airflow. Although the three DCV approaches are not equivalent, the general

trend of the required air exchange rate coincides, as it follows the simulated RH

and CO2 internal loads profiles. The cost function strategy presents the smoothest

airflow rate changes. The piecewise steps control strategy is sometimes unstable

around the equilibrium point (threshold value between two different steps), even
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when including a hysteresis cycle. This instability is a disadvantage against the

other DCV controllers, which provide smooth airflow levels. The resulting air change

rates are within the typical values for renovated German multifamily buildings [68],

which are around 0.4 ACH.
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Figure 4.31: Total air exchange rate in a single day for the four controllers.

Some rooms of particular interest are selected to illustrate the comfort and IAQ

results. Figure 4.32 depicts the cumulative distribution of indoor RH and CO2

concentration during occupancy. The high humidity values during showering in the

bathroom are present in the four cases. In the kitchen and bathroom, the constant

airflow strategy offers more extreme values on both sides (below 25% and above

75%). In the dry rooms, a similar pattern is observed in both RH and CO2 plots.

During occupancy, the bedroom has high CO2 internal loads, which results in a

higher airflow for the three DCV strategies, but also keeps these rooms drier. The

constant strategy fails to keep the CO2 concentration in the desired range in this

room. In the living room, the constant airflow strategy has values below 25% 30% of

the time. The three controllers reach the equilibrium state in a range of 1250-1500

ppm in the bedroom, as around 60% of the values during occupancy are in this

range (the fuzzy controller performs worse than the other ones in this room). In the

living room, the fuzzy strategy presents around 5% higher relative humidity values

on average than the steps controller. The CO2 concentration in the living room is

similar for the four analyzed controllers.

102



4 Innovative control strategies for decentralized ventilation

20 40 60 80 100
Kitchen RH [%]

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e 
di

st
rib

ut
io

n 
[-]

Constant Costfun Fuzzy Steps

20 40 60 80 100
Bathroom RH [%]

0.0

0.2

0.4

0.6

0.8

1.0

20 30 40 50 60
Bedroom RH [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

[-]

20 30 40 50 60
Living RH [%]

0.0

0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000
Bedroom CO2 [ppm]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

[-]

500 1000 1500 2000
Living CO2 [ppm]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.32: RH and CO2 cumulative distribution plots in selected rooms.

Table 4.10 summarizes the results of the key performance indicators for each sim-

ulated control strategy. The fuzzy controller has not recorded any instant of RH

below 20%, which highlights the importance of the imposed “healthy limits” rule

for the multivariable controllers. Even though the steps controller reacts to CO2

concentration in the “dry” rooms, there are almost no registered points below the

25% threshold. In this particular case, the four controllers perform well regarding

dry environments.
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Control ∆RHlo [%] ∆RHup [%] ∆CO2 [ppm] Qpe,vent [kWh]

Constant 1.16 9.47 120.59 65.42

Costfun 0.01 7.89 31.78 52.11

Fuzzy 0.00 7.76 58.49 46.53

Steps 0.05 7.67 41.74 56.25

Table 4.10: Summary of performance indicators for the simulated control strategies.

Moreover, the constant strategy overcomes more often the RHup threshold, as ex-

pected (10% above the acceptable limit), but the reported values for the other

strategies are close (around 7.5%). These values are reduced to 1.5% when also

considering the absent period in the humid rooms (kitchen and bathroom), meaning

that the actual mold growth risk in the simulation is low. Besides, the duration of

the high RH values is never longer than an hour. A constant airflow strategy in

this case ensures mold growth protection successfully. Despite the differences, the

three DCV solutions are set to full speed when the indoor relative humidity is over

75-80%. The resulting window opening is never over 0.1%, therefore neglecting its

influence on the results. The three DCV strategies outperform slightly the constant

airflow strategy regarding the relative humidity.

The outcome for the ∆CO2 is analogous. The constant strategy has an integrated

overshoot of almost 120 ppm against the considered threshold. This is also a conse-

quence of the chosen “unaware” fan level speed. The three DCV controllers improve

the IAQ performance significantly, being the cost function the best in this case.

Figure 4.33 shows the primary energy consumption associated with ventilation and

the potential savings related to the constant airflow strategy. When considering

the ventilation primary energy consumption, the fuzzy controller presents a saving

of 29% in comparison to the worst-case scenario (constant airflow). In comparison

to the smart state-of-the-art controller (steps), the cost function strategy provides

around 9% total primary energy savings, and the fuzzy controller reaches 18% sav-

ings (fan primary energy savings are 20%). However, the reported performance

indicators can be affected by different weather conditions or internal loads. The

next sections provide further insight into this topic.
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Figure 4.33: Primary energy savings of the proposed ventilation controllers. Con-

stant airflow strategy is taken as baseline case.

4.4.1.3 Sensitivity analysis

In this section, the results of the sensitivity analysis are presented, only compar-

ing the state-of-the-art smart steps strategy with the fuzzy-based DCV. Table 4.11

shows the results for the five simulated weeks regarding weather conditions. The

relative humidity indicators do not vary strongly between the simulated weeks, and

the difference between the controllers is minimal. The warm week presents a higher

ambient absolute humidity (see Table 4.9), and therefore the mold growth risk in-

creases for both controllers. Mold growth protection becomes relevant especially in

the humid days of the winter season. Dry environments are slightly present only in

the cold week for the steps strategy. The CO2 indicator is also not strongly affected,

and mostly stays in the range of the values presented in the last section (30-60). In

the warm and windy weeks, the fuzzy controller increases the air exchange rate in

comparison to the steps strategy, resulting in almost identical values for the CO2

indicator. In the cold week, the fuzzy controller has a higher value (reducing the

air exchange rate to avoid dry environments) but is still considerably lower than the

value presented for the constant strategy in the last section (120 - see Table 4.10).

These results are a consequence of a general low sensitivity of the air exchange rate.

In the five simulated weeks, the mechanical air exchange rate remains fairly con-

stant, as well as the fan speed. In the windy week, the average fan speed is lower,

as the system takes advantage of the additional pressure difference, which causes
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higher volume flow rates at lower fan speeds. Baldini et al. [23] already identified

this advantage as a potential energy-saving strategy in decentralized ventilation.

The lower CO2 concentration in the windy week is explained through an increased

infiltration rate, as the mechanical air exchange rate remains fairly constant. The

fuzzy strategy provides energy savings in the five simulated weeks.

Control
Average

week

Warm

week

Cold

week

Windy

week

Calm

week

∆RHup [%]
Fuzzy 7.76 10.01 7.30 9.30 8.04

Steps 7.67 9.89 7.23 9.12 7.91

∆RHlo [%]
Fuzzy 0.00 0.00 0.23 0.00 0.06

Steps 0.05 0.00 2.92 0.00 0.76

∆CO2 [ppm]
Fuzzy 58.49 38.21 85.95 33.35 57.92

Steps 41.74 39.38 48.45 33.77 46.16

Qpe,vent [kWh]
Fuzzy 46.53 36.86 58.82 47.08 46.25

Steps 56.25 43.28 75.60 52.08 55.61

FanRPMav [%]
Fuzzy 900 928 873 898 924

Steps 1035 1057 1050 989 1059

ACHmech [h−1]
Fuzzy 0.21 0.22 0.20 0.23 0.22

Steps 0.27 0.27 0.28 0.27 0.28

Table 4.11: Summary of performance indicators in the different simulated weeks

for the weather sensitivity. In addition, average fan speed (FanRPMav) and total

mechanical air exchange rate (ACHmech) are considered.

This similarity among the obtained fan speeds lies on the importance of the indoor

environmental conditions for the controller behavior. Figure 4.34 illustrates the

discomfort in every room on a single day for the average week. The discomfort is

represented by the dissatisfaction functions, developed for the cost function strategy

in Section 4.3.1. In every room except the bathroom, the discomfort is almost

always higher due to CO2 concentration than to relative humidity. The resulting

indoor CO2 levels are independent of the ambient conditions, where a constant

concentration of 400 ppm is assumed. The ambient humidity levels can have an

additional influence, especially on dry days, where the rooms with lower internal

loads present a low relative humidity, dropping under the acceptable threshold and

increasing the discomfort. Therefore, the sensitivity of the results to the internal

loads must be studied.
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Figure 4.34: Discomfort values due to RH and CO2 in every room in a single day

of the average week.

Three simulations of the average week with a global variation of the internal loads

(-50% and +50%) are performed. Table 4.12 summarizes the results. In this case,

every indicator in the table is strongly affected by the internal loads variation.

The relative humidity and CO2 indicators become worse than the constant strategy

when the loads are increased or become negligible when the loads are reduced.

The average fan speed and resulting air exchange rate are also strongly affected,

which highlights the importance of the correct dimensioning of residential ventilation

systems, adjusting it to the needs of the occupants if possible. The performance

difference between both strategies for the RH indicator remains similar. The CO2

indicator is more sensitive to internal loads variations. The fuzzy controller can

perform better than the steps strategy when the loads are reduced. In addition, the

fuzzy controller provides primary energy savings in the three simulated scenarios,

which are further analyzed.
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Control
- 50% Internal

loads
No change

+ 50% Internal

loads

∆RHup

Fuzzy 3.49 7.76 10.52

Steps 2.95 7.67 10.48

∆RHlo

Fuzzy 0.34 0.00 0.00

Steps 0.63 0.05 0.01

∆CO2

Fuzzy 3.69 58.49 166.56

Steps 5.77 41.74 106.83

Qpe,vent

Fuzzy 37.54 46.53 54.13

Steps 41.87 56.25 67.71

FanRPMav

Fuzzy 771 900 1005

Steps 825 1035 1194

ACHmech

Fuzzy 0.16 0.21 0.26

Steps 0.18 0.27 0.35

Table 4.12: Summary of performance indicators in the different simulated weeks for

the internal loads sensitivity. In addition, average fan speed (FanRPMav) and total

mechanical air exchange rate (ACHmech) are considered.
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Figure 4.35: Sensitivity of the primary energy savings of the fuzzy controller against

the steps controller for different simulated conditions.

Figure 4.35 shows the sensitivity of the primary energy consumption for the different

weather conditions and internal loads variation. In any case, the primary energy

savings of the fuzzy controller reported in the last section remain. These potential

savings are strongly affected by the ambient temperature and the internal loads and

are less sensitive to wind speed variations. Colder ambient conditions increase the
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savings potential, highlighting the importance of heat recovery to minimize heat

losses due to ventilation. Colder environments do not affect the fan power. The

fuzzy controller has almost a constant primary energy consumption in windy or

calm weeks (where the ambient temperature is similar). The internal loads have a

direct impact on the resulting air exchange rate, therefore affecting both heat losses

and fan power. Reducing the internal loads undermine also the potential energy

savings of the fuzzy controller. Lower loads require lower average fan speeds, for

both analyzed controllers. The next section discusses the obtained results.

4.4.1.4 Discussion

Adequate ventilation is necessary to ensure good IAQ and comfort in renovated

residential buildings, as well as minimizing energy consumption. Comfort-oriented

ventilation strategies do not only improve comfort, but also bring a significant energy

saving potential without compromising IAQ. At first glance, the cost function strat-

egy fits slightly better with the comfort standards, especially regarding the ∆CO2

indicator. This result appears logical since this controller was designed considering

occupant discomfort curves from Chapter 2, while the proposed fuzzy controller only

takes into account specific threshold values. The individualization of the occupant

preferences can significantly impact the indoor environmental quality since the ac-

ceptability of indoor conditions is subjective. This could be achieved by redefining

the fuzzy membership functions [199]. Thus, these results open the door to learning

DCV systems, which are evaluated in the next section.

Furthermore, other acceptability thresholds for RH and CO2 could be taken into

account. However, the shape of the dissatisfaction equations as well as the member-

ship functions in the fuzzy controller were defined according to the limits reviewed in

Chapter 2. A redefinition of these functions must come together with a redefinition

of the performance indicators. This means the actual performance of the developed

controllers is relative to the proposed performance indicators in this thesis, which

are based on previous studies.

A known limitation of the present case study is that only winter conditions during

one week are tested. The sensitivity to ambient conditions confirmed that the fuzzy

controller provided in any case at least 10% energy savings in comparison to the

conventional smart steps controller, while the relative humidity and CO2 indicators

are slightly worse as a consequence of lower air exchange rates. The resulting dissat-
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isfaction levels in every room (Figure 4.34) indicate that the assumption of a smart

state-of-the-art strategy, based on RH in the humid rooms and on CO2 in the dry

rooms is correct. The steps strategy provides most of the potential primary energy

savings while simultaneously improving the comfort and air quality indicators.

Moreover, the sensitivity analysis regarding internal loads confirms that the fuzzy

controller can provide energy savings with higher and lower loads. Other factors,

such as indoor temperature setpoints and window opening behavior, might affect the

obtained results. Raising these setpoints would correspondingly increase the heating

energy losses due to ventilation and would also produce lower indoor RH values.

Furthermore, occupant attitudes towards window opening are heterogeneous, hence

leading to high dissimilarities in measured profiles, as studied in Chapter 3. This

diversity could influence the indoor environment and the resulting fan speed profile.

In this particular study, the windows are open less than 1% of the time. Other

window opening models could be considered, which can lead to higher opening rates.

A question arises around the results for the calm and windy weeks. Mikola et

al. [152] concluded that the influence of pressure differences on the performance

of decentralized ventilation systems is not negligible. The results of the sensitivity

analysis for the wind speed show the contrary, as the windy week has the lowest

primary energy consumption for mechanical ventilation. This is a consequence of

the selected modeling approach. The airflow network approach in EnergyPlus mod-

els room-individual balanced ventilation and adds infiltration to compensate for the

system disbalance. This results in lower pressure differences between room and

façade. Thus, the effect of an advanced control strategy could be undermined as

the total air exchange rate in the dwelling would be dominated by the air move-

ment due to pressure difference. Besides, this additional infiltration caused by the

disbalance increases heat losses. In the windy week, the apartment needs for every

simulated strategy around three times higher heating energy to keep the selected

room temperature setpoints. Alzade investigated the impact of unbalanced airflow

rates in the performance of decentralized ventilation systems within the framework

of a master thesis [8]. He concluded that the energy savings of balanced decentral-

ized ventilation systems can reach up to 20%. In addition, unbalanced decentralized

ventilation results in higher supply airflow rates and lower supply temperatures,

where draft could become an issue. In this case, other modeling techniques should

be considered, where the air room distribution is investigated. A modeling approach

where individual supply and exhaust airflow rates are modeled individually could be

suitable to investigate the impact of unbalanced decentralized ventilation in every
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room. Methods based on computational fluid dynamics (CFD) might also be an

appropriate tool for the assessment of room air distribution and its impact on draft

[203].

Fuzzy systems are a well proven technology and have been widely implemented in

other fields [114, 125, 155]. Therefore, the implementation of the proposed fuzzy

scheme in a real building is technically feasible but not included in this thesis.

4.4.2 Learning DCV using different user profiles

4.4.2.1 Methodology

In this section, a simulation case study about the proposed self-learning DCV strat-

egy is carried out. The analysis focuses on four key points:

� Section 4.4.2.2: Automatic control strategies performance (constant speed,

steps, fuzzy logic, and self-learning DCV) assuming a single user type. The

cost function strategy is left out, since its performance is worse than the fuzzy

logic, as concluded in the previous section.

� Section 4.4.2.3: Learning performance with different user comfort profiles,

against automatic strategies. The user comfort profiles and interaction model

are described in Section 4.2.5.2.

� Section 4.4.2.4: Influence of user interaction frequency profile: learning per-

formance with an active, medium, or passive user. These frequency profiles

are defined in Section 4.2.5.3.

� Section 4.4.2.5: Influence of a mixed comfort profile (”more air” in humid

rooms, and ”less air” in the rest) on the performance of the self-learning DCV.

The simulation is implemented in the co-simulation scheme (Section 4.2.1), using

the models described in Section 4.2. The decentralized ventilation heat storage

model is replaced with a constant heat recovery efficiency of 70% to reduce the

simulation time. In this case, a period of three months is simulated (winter). The

ambient conditions are illustrated in Figure 4.36. The simulation time was selected

as a previous analysis of the implementation of this controller in Chapter 5. The

analysis of results is performed using the same indicators from the previous section,

111



4 Innovative control strategies for decentralized ventilation

defined in Chapter 2. A discussion of the results in this analysis is included in

Section 4.4.2.6.
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Figure 4.36: Ambient conditions in the selected months for the simulation of the

self-learning control strategy.

4.4.2.2 Control results for a single user type

The simulation results of four different automatic controllers are presented in this

section. The selected user comfort profile for the learning controller is a ”norm” user

with medium interaction frequency. Figure 4.37 illustrates the total air exchange

rate in the dwelling. The profile is analogous to the previous section (Figure 4.31),

where the constant speed strategy shows an almost constant air exchange rate, and

the DCV controllers allocate the speeds according to the values of RH and CO2.
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Figure 4.37: Total air exchange rate in a single day, after 75 days of learning.

Table 4.13 presents the simulation performance indicators. The four controllers

perform similarly considering the RH indicators. The learning strategy outperforms

somewhat the other two DCV controllers in IAQ, but significantly the constant speed

strategy. These results are in line with the previous analysis in Section 4.4.1.2.

Control ∆RHlo [%] ∆RHup [%] ∆CO2 [ppm] Qpe,vent [kWh]

Constant 2.54 3.24 70.84 447.85

Fuzzy 2.16 1.82 19.46 369.15

Learning 2.10 1.31 8.72 390.73

Steps 2.27 1.59 14.58 383.23

Table 4.13: Summary of performance indicators for every simulated controller.

Furthermore, the results are analyzed further through the cumulative distribution

of the relative humidity and CO2 concentration during occupancy, where the un-

acceptable range is highlighted in red (Figure 4.38). As expected, the steps and

fuzzy strategies deliver almost identical distribution profiles since the resulting air

exchange profiles are similar. In the kitchen, the four controllers perform similarly.

In the bathroom, the constant speed strategy has a RH above 85% for 20% of

the occupied time, while the other controllers present almost no values above this

threshold. This value highlights the inability of the constant airflow strategy to

deal with high RH peak values since it is not demand-based. However, the values

shown in the cumulative distribution plot are when the rooms are occupied. In the
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bathroom, this occurs only 15% of the time, which means that the real mold risk

due to high RH is not high, even for the constant airflow strategy. Besides, the four

controllers keep the RH mostly above the lower limit. In the case of CO2 concentra-

tion, the performance in the bedroom is diverse. The cumulative values above the

1250 ppm threshold are 0, 25, 50, and 75% for learning, steps, fuzzy and constant

speed, respectively. In this case, the learning strategy outperforms the other ones.
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Figure 4.38: RH and CO2 cumulative distribution plots in relevant rooms for the

different simulated control strategies.

The fuzzy controller presents the lowest primary energy consumption. In this sce-

nario, the potential savings of the fuzzy and the learning controller with a ”norm”

user are almost negligible in comparison to a steps controller. The three DCV
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controllers provide between 16% and 19% primary energy savings compared to the

constant airflow strategy.
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Figure 4.39: Primary energy savings of the proposed controllers. Constant airflow

strategy is taken as baseline case.

To sum up, results show that smart control strategies in decentralized ventilation

systems have a significant impact on hygrothermal comfort, IAQ, and energy con-

sumption. The proposed controllers have the potential to improve the indoor en-

vironmental conditions without compromising the primary energy savings of the

state-of-the-art steps DCV. The learning DCV strategy has besides the possibility

of adapting itself to different occupant profiles, which is studied in the following

sections.

4.4.2.3 Learning results for different comfort profiles

The performance of the same four automatic controllers with different user comfort

profiles is characterized in this section. The selected user interaction frequency

profile is medium. The goal is to show how the learning system adapts itself to the

needs of the different users and to quantify (through performance indicators) the

degree of adaptation. The learning process is decentralized, which means that user

preferences are learned individually in every room.

Table 4.14 reveals the distribution of votes in every room for each simulation. In

Section 4.3.3.2, it was estimated that the learning process stabilizes after 60 votes.
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Taking into account the four user comfort profiles and the individual rooms, the

living room of the norm profile presents the highest number of votes (20), which

has not learned yet a stable profile. The total number of votes in each dwelling is

around 50, suggesting that a whole-dwelling learning approach might be suitable to

accelerate the learning process.

Votes Child 2 Child 1 Bedroom Living Kitchen Bathroom Total

Distracted 4 8 12 14 4 5 47

Less air 16 16 8 11 5 1 57

More air 17 11 5 11 7 4 55

Norm 8 12 5 20 5 4 54

Table 4.14: Number of votes per room and user comfort profile, with medium inter-

action frequency.

Therefore, the simulation is carried out again with decentralized ventilation and

single-room DCV controllers, but a whole-dwelling learning scheme. The whole-

dwelling learning takes place under the assumption that there are no deviations in

the user preferences given the room type (for instance, this assumes that the comfort

profile in bedrooms and bathrooms are equivalent). Figure 4.40 shows the different

resulting air exchange rate profiles and Table 4.15 shows the performance indicators.
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Figure 4.40: Total air exchange rate in a single day with whole-dwelling learning

algorithm, after 75 days of learning.
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Control ∆RHlo [%] ∆RHup [%] ∆CO2 [ppm] Qpe,vent [kWh]

Distracted 2.16 1.30 8.50 399.28

Less air 2.00 1.52 25.92 359.25

More air 2.28 1.13 7.23 434.02

Norm 2.11 1.36 14.95 372.85

Table 4.15: Performance indicators for the learning DCV strategy with all user

comfort profiles and a whole-dwelling learning process.

Similar to the single-room learning results, the four controllers can handle the values

of the RH indicators independent of the different user comfort profiles. Low RH

values are mostly absent in all four cases. Larger differences are observed in the

CO2 concentration and primary energy consumption. Figure 4.41 illustrates the

cumulative distribution for CO2 in different rooms for the simulated user profiles.
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Figure 4.41: CO2 cumulative distribution plots in selected rooms with centralized

learning scheme for the different user comfort profiles.

The cumulative distribution of the CO2 concentration reflects the impact of the

learning scheme: the ”less air” profile (especially in the bedroom) shows considerably

higher values than the others, even reaching 1500 ppm, while the ”more air” profile

has a peak value of almost 1100 ppm.
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Figure 4.42: Primary energy consumption due to ventilation for the selected user

profiles. ”Norm” user is taken as baseline case.

The primary energy consumption of each selected user profile is distinctive for each

case (Figure 4.42): the resulting air exchange rate has a huge impact. The ”less air”

comfort profile consumes 20% less energy than the ”more air”. A distracted user

appears to consume 7% more than the norm profile. The relative differences among

user profiles for the fan energy consumption are similar to the relative differences

for the heating energy losses due to ventilation.

The differences of the performance indicators are due to the different learned DCV

control fields. Figures 4.43, 4.44, 4.45 and 4.46 show the finally learned profiles for

each user comfort type after the whole simulation period (90 days) in the whole

dwelling. The profiles are in this case distinctive and well-defined. To summarize:

� the distracted user has a larger area of single-level changes (-1, +1).

� the less air user has a larger area of double negative changes (-2).

� the more air user has a larger area of single and double positive changes

(+1,+2).

� the norm user has a similar profile to the default profile (Figure 4.29).
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Figure 4.43: Learned profile for the ”dis-

tracted” user with whole-dwelling learn-

ing approach.
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Figure 4.44: Learned profile for the ”less

air” user with whole-dwelling learning

approach.
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Figure 4.45: Learned profile for the

”more air” user with whole-dwelling

learning approach.
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Figure 4.46: Learned profile for the

”norm” user with whole-dwelling learn-

ing approach.

These learned DCV controllers gained information about the comfort status of the

occupant. However, the performance indicators (Table 4.15) are calculated with

global discomfort threshold values from the literature. For instance, the ”less air”

profile presents peak values of 1500 ppm, which is classified as uncomfortable (thresh-

old of 1250 ppm) but is within the assumed comfort range for this particular user.

Hence, assuming an admissible threshold of 30% PD (as seen in Section 2.3.3), the

discomfort time (defined as the percentage of the time outside the comfort limits) is

recalculated using the individual threshold values that lead to a comfort probability

of 30%. Table 4.16 shows the results for every comfort profile. The comfort profile

for the ”distracted” user covers the whole measurement spectrum and is therefore

excluded from this analysis.
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User profile RHlo [%] RHup [%] CO2 [ppm]

Norm 26.22 63.78 1431

Less air 47.54 72.46 1652

More air 17.65 42.36 1052

Table 4.16: 30% PD threshold values for the artificial user comfort profiles.

Figures 4.47 and 4.48 show the discomfort time considering the individual profiles

for each control strategy. For the ”more air” profile, the learning strategy provides

a substantial reduction of the time where the occupant is exposed to uncomfortable

conditions. The ”less air” profile feels comfortable in higher RH values than the

other profiles (48 to 72%). The indoor RH is expected to have lower values in winter

conditions, resulting in a higher discomfort of the “less air” user. In the humid rooms

(kitchen and bathroom), the upper comfort threshold is briefly surpassed when

the resulting RH is high due to occupant activities. The ”norm” profile performs

similarly for all the demand-based controllers. This appears logical, since the default

profiles for these controllers are based on literature values for comfort and IAQ. The

comfort limits are slightly tighter than the indicators defined in Chapter 2, but do

not shift the control field from the default one strongly. The results for the three

user comfort profiles confirm the success of the learning strategy. This adaptation

could be also translated to the membership functions in the fuzzy controller, which

can improve its performance regarding norm-defined comfort and indoor air quality

profiles. These results are independent of the indoor temperature since the same

setpoints are defined for every control strategy.
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Figure 4.47: Percentage of time outside

the RH comfort range.
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Figure 4.48: Percentage of time outside

the CO2 comfort range.

To summarize, the self-learning DCV control strategy has the potential to adapt

itself to the different requirements of the user. In the next section, the influence of

120



4 Innovative control strategies for decentralized ventilation

user interaction frequency is studied.

4.4.2.4 Influence of interaction frequency

The number of user votes influences the performance of the learning algorithm

strongly. In this section, three different user interaction frequency profiles are com-

pared, where the ”more air” comfort profile is simulated with active, passive, and

medium users. It is expected that the control profile (and performance indicators)

of the passive user are closer to the ”norm user” since the number of votes would

not be enough to learn a clear ”more air” profile. On the other hand, the ”active”

and ”medium” users should have a control field where the ”+2” area is larger as a

result of the higher number of positive votes.

Table 4.17 exposes the number of votes in every room for each simulated profile.

Similar to the previous section, the centralization of the learning algorithm plays a

key role in the success of the learning DCV strategy. Given the number of votes,

it is expected that the single-room learning is only successful for the active user.

Moreover, the medium user should somewhat present distinctive profiles for the

rooms but can learn the comfort profile properly when performing a whole-dwelling

learning algorithm. The passive user has only six total votes, which is not enough to

obtain a shifted profile from the default one in any case, and similar results to the

distracted profile are expected for single-room learning. However, a whole-dwelling

learning algorithm can lead to better individualization for the medium interaction

profile since the total number of votes is close to the stabilization value of 60.

Votes Child 2 Child 1 Bedroom Living Kitchen Bathroom Total

Active 65 56 54 69 21 26 291

Medium 17 11 5 11 7 4 55

Passive 1 0 2 3 0 0 6

Table 4.17: Number of votes per room and user interaction frequency for the ”more

air” comfort profile.
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Figure 4.49: Total air exchange rate in a single day with whole-dwelling learning,

after 75 days of learning.

Thus, the simulation is performed using a whole-dwelling learning approach. Figure

4.49 shows the daily air exchange profile after 75 simulation days. The active user

presents a higher air exchange rate profile than the other two in this case.

Figures 4.50, 4.51 and 4.52 illustrate the final profiles of the whole-dwelling learning

process. In this case, the three develop a bigger ”+2” area, meaning better learning

of the selected user comfort profile (”more air”). In this case, the medium profile

could shift the threshold values of the relative humidity between vote areas to the

left of the plot, meaning that the user wants a higher air exchange at lower relative

humidity values than a ”norm” user (used to define the default control field). The

unorthodox shape for the active user in Figure 4.50 is explained by the lack of user

feedback points where the dark green area seems incomplete (around 50% and 1250

ppm). The passive user shows only a slight deviation from the default profile.
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Figure 4.50: Learned control field for the active user with whole-dwelling learning.
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Figure 4.51: Learned control field for the

medium user with whole-dwelling learn-

ing.
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Figure 4.52: Learned control field for the

passive user with whole-dwelling learn-

ing.

Table 4.18 displays similar performance indicators for the RH and CO2 in every

user frequency type. The whole-dwelling learning process enables a faster reaction

to a well-defined profile. The lowest energy consumption is obtained with the pas-

sive profile, as expected since a well-defined ”more air” profile results in higher air

exchange rates (Section 4.4.2.3). The difference between an active and passive user

is around 10%. The three profiles present the highest energy consumption of all

the user comfort and frequency profiles analyzed in this section but remain some-

what lower than the constant speed strategy (Table 4.13). This shows that even

the passive profile gained some information about the user comfort profile and that

providing just a few votes may be enough to approximate the tendency of the user

preferences. This introduces the analysis in the next section, where a mixed com-

fort profile is simulated, and the impact of single-room and whole-dwelling learning

schemes is analyzed.
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Control ∆RHlo [%] ∆RHup [%] ∆CO2 [ppm] Qpe,vent [kWh]

Active 2.35 1.03 6.15 460.20

Medium 2.28 1.13 7.23 434.02

Passive 2.20 1.22 7.93 416.63

Table 4.18: Summary of performance indicators for the learning DCV strategy with

every user interaction frequency profile.

4.4.2.5 Learning results for a mixed comfort profile

In the last section, it was concluded that a whole-dwelling approach might provide a

faster solution to adapt the control field to the occupant’s needs. However, consistent

comfort and interaction profiles were assumed in every room. In this section, two

different comfort profiles for this dwelling are considered: the humid rooms (kitchen

and bathroom) have a ”more air” profile, whereas the rest of the rooms present a

”less air” profile. An active user is assumed. The votes are simulated only once

and used in both cases. The contrast of these profiles and the influence on the

self-learning DCV control field is analyzed. Besides, the obtained results comparing

single-room and whole-dwelling approaches are described.

Table 4.19 shows the number of votes per room and type for the mixed comfort

profile. As expected, the ”more air” profile causes a higher number of positive votes

in the humid rooms, and the ”less air” profile causes a higher number of negative

votes in the rest. The time an occupant spends in the humid rooms is less than in

the rest, therefore resulting in a lower total number of interactions.

Votes Children 2 Children 1 Bedroom Living Kitchen Bathroom

+2 0 0 0 8 9 16

+1 0 3 1 0 7 5

-1 2 4 9 0 3 1

-2 54 58 49 79 2 0

Table 4.19: Number of votes per room and type for a mixed comfort profile.

Table 4.20 shows the performance indicators for both simulations. The prevalence

of negative votes in the dry rooms causes a higher result in the ∆RHup indicator

for the whole-dwelling approach. In this case, the single-room scheme has a better

performance in humid rooms. The same results are observed for the indoor air
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quality indicator ∆CO2 and the primary energy consumption. The presence of

”more air” profiles in two rooms causes higher energy consumption and a lower

∆CO2 value for the single-room scheme.

Learning scheme ∆RHup [%] ∆RHlo [%] ∆CO2 [ppm] Qpe,vent [kWh]

Single-room 1.59 1.94 45.17 365.79

Whole-dwelling 3.23 1.72 153.72 335.61

Table 4.20: Performance indicators for the mixed comfort profile using single-room

and whole-dwelling learning schemes.

Figures 4.53 and 4.54 show two exemplary learned control fields, obtained in the

single-room simulation scheme. They belong to the bedroom and bathroom, re-

spectively, which have different comfort profiles. The influence of the selected user

profiles is recognized in every room, although the bathroom profile is not shifted

extremely from the default profile (there are only 16 ”+2” votes in the bathroom).
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Figure 4.53: Learned control field for the

single-room scheme in the bedroom.
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Figure 4.54: Learned control field for the

single-room scheme in the bathroom.

On the other hand, Figure 4.55 illustrates the learned control field obtained in the

whole-dwelling simulation scheme. This profile appears as an extreme version of the

”less air” profile, also studied in previous sections. This control field is a result of

a conflict between the two comfort profiles and the mixed learning scheme. Figure

4.56 illustrates the resulting learned comfort profile. In this case, two comfort zones

are identified: the first one with low CO2 and RH values, corresponding to the

”more air” profile, and a second one for higher RH and CO2 values, corresponding

to the presence of the ”less air” profile. Even though the ”less air” user is simulated

in more rooms and has more votes, the ”more air” profile is closer to the starting

profile and therefore has a bigger comfort probability. This analysis emphasizes the

125



4 Innovative control strategies for decentralized ventilation

importance of a single-room learning scheme, even if it takes longer to learn the

desired profiles. The next section discusses the results obtained for the different

comfort and interaction user profiles.
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Figure 4.55: Learned control field for the

whole-dwelling scheme.
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Figure 4.56: Learned 3D comfort profile

for the whole-dwelling scheme.

4.4.2.6 Discussion

As reported in Section 4.3.3, some learning algorithms have already been applied

to different HVAC and building systems to address the trade-off between occupant

comfort and satisfaction, indoor air quality, and energy consumption. In that sense,

the proposed learning DCV control strategy is a first approach to tailor a residential

mechanical ventilation system to the needs of the occupants.

The building simulation scheme has some limitations, as discussed in Section 4.4.1.4.

In this section, constant heat recovery efficiency is assumed. In comparison to Sec-

tion 4.4.1, the potential energy savings of the fuzzy controller in comparison to the

steps controller are significantly lower, which is a consequence of the simplification

of the heat recovery modeling. In that sense, the self-learning DCV with the default

control field provides primary energy savings in the same range as the fuzzy and

steps controllers.

The limitations of this study are explained in this paragraph. The four considered

user profiles are not only artificial but also well-defined. This leads to well-defined

learned DCV schemes, which may be an uncommon case in reality. The lack of

data about user feedback in residential ventilation systems hinders the possibility

of studying it reliably. Furthermore, the assumed human diversity creates some

wasteful profiles as well, which result in relatively high energy consumption (for

instance, the ”more air” user consumes more energy than the smart DCV baseline
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controller). In addition, the winter simulation strongly affects the learning process

since the most comfortable area of some user profiles never occurs. A ”less air”

user feels most comfortable at a RH of 60%, a value that is seldomly reached in

the living or bedrooms during the whole simulation period. The algorithm will not

obtain any feedback regarding comfortable areas in this particular case, influencing

the learning performance.

A fundamental point is that all user profiles began with the same default learning

DCV control field. This means there is a period where the controller was not fully

individualized during the three simulated months, given the lack of votes. Longer

simulation periods will increment the difference between the performance indicators

for every user type, emphasizing the potential of the learning DCV strategy. An-

other option would be to perform the same simulation study changing the starting

DCV profile with the learned one for every single user. However, this section aims

to assess the individualization of the learning DCV controller. This controller shows

resilience to complete random user profiles, highlighting its ability to offer an in-

dividual solution for every user without compromising mold growth protection and

potential health-related issues. These results are available in the Appendix A.6.

Moreover, a big question arises concerning whole-dwelling or single-room learning.

The first one can provide a faster learning scheme, under the assumption that the

occupant’s preferences are consistent in every room of the apartment, although room

singularities would be lost. Single-room learning might result in slower learning pro-

cesses but can capture the different profiles for different rooms. Assuming that an

occupant in a highly uncomfortable state is probably more willing to operate the

available control systems (HVAC), a single-room learning scheme is more suitable

to be tested in a real-building implementation. Results in Section 4.4.2.5 highlight

the importance of applying a single-room learning scheme on the modeling of mixed

comfort profiles. In this thesis, artificial comfort profiles were defined to test the

learning algorithm, under the assumption that an occupant would only operate the

mechanical ventilation system in uncomfortable indoor conditions. These profiles

are unlikely to be crisply well-defined in real buildings. The diversity of the occupant

behavior in different circumstances turns the single-room scheme into a suitable ap-

proach to preserve the individual preferences of the occupant in every room. This

suitability does not only apply to the behavior of different occupants (for example,

two bedrooms) but also for rooms with other purposes: kitchen, living room, and

bathroom. It is expected that the whole-dwelling approach is also not suitable when

considering diversity: number of occupants, different comfort profiles, even consider-
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ing different personanity traits and psychological aspects. Within the framework of

a master thesis, Maier [142] analyzed the different ventilation needs through a sur-

vey, confirming this diversity. A validated occupant behavior model geared towards

mechanical ventilation is needed to gain further insight into this topic.

Finally, the proposed self-learning user-centered solution has not yet been imple-

mented in a real building. A question arises regarding the occupant’s comfort pro-

files (if they are crisply well-defined, as the user model proposes) or if they have a

more random characteristic. Thus, the study of the real building implementation of

the learning DCV controller is addressed further in the next chapter.

4.5 Summary

Defining proper control strategies is a key to the success of decentralized ventilation

systems. Within the framework to integrate occupant-centric control strategies in

residential buildings, this chapter evaluates the performance of present and novel

controllers for residential decentralized ventilation, including the occupant interac-

tion with the systems. Simulation studies provide an insight into the optimization

of these systems before developing a real building application. Hence, the research

question 3 is answered through the following points:

Research Question 3: How do state-of-the-art control strategies for decentralized

ventilation systems perform? Can innovative occupant-centered control solutions

provide an improvement regarding energy consumption, hygrothermal comfort and

indoor air quality?

� A market and scientific research was carried out. As a result, two baseline

control strategies were defined, one with constant fan speed and a second one

representing current smart ventilation technologies (stepwise DCV). Two main

weaknesses were identified: only one variable at a time is controlled (either

RH or CO2) and there is a confirmed lack of occupant-centered strategies,

where diversity and individual preferences are considered.

� In contrast to the available DCV solutions, two innovative fully automated con-

trollers were developed, with the aim of looking for multivariable controllers

where both RH and CO2 are considered together. The first one was a cost

function DCV, where the fan speed is determined by the variable which has

the highest dissatisfaction, given literature-related values. The second one was

a fuzzy-based DCV. Membership functions are as well defined with literature
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discomfort values. Both solutions provide primary energy savings compared

to the baseline strategies (29% compared to the constant airflow strategy and

18% compared to the steps strategy, in an average winter week). A state-

of-the-art steps strategy already provides a significant improvement in energy

efficiency, hygrothermal comfort, and indoor air quality. Fuzzy DCV provides

higher energy efficiency while keeping the IAQ and hygrothermal comfort re-

sults among the same values of the other DCV studied. A sensitivity analysis

regarding weather conditions confirmed the primary energy savings potential

of the fuzzy-based DCV in different winter scenarios. The resulting air ex-

change rate is more sensitive to the occupant’s indoor activities than to exter-

nal conditions. Another simulation approach is necessary to properly evaluate

the impact of high wind speeds on the resulting air exchange rate and draft.

Fuzzy logic controllers are already a well-proven technology and have been

implemented successfully in several control systems across different areas.

� Tackling the lack of user-oriented solutions, a learning DCV strategy was

proposed, where the user comfort profile regarding RH and CO2 is learned

through a supervised learning algorithm. Default comfort profiles were de-

fined using the literature methods reviewed in Chapter 2. To test the user

diversity for mechanical ventilation in building simulation, four different user

comfort models (with RH and CO2 as input variables) and three user interac-

tion models (active, medium, and passive) were developed and integrated into

a probabilistic model, which allows having a time-dependent occupant behav-

ior model that simulates the manual selection of the ventilation level. This

user model for the operation of residential ventilation systems was applied to

the learning strategy to characterize its performance and learning capabili-

ties. The learning stabilizes for all user types after 60 votes. In almost every

case, this controller achieves an individualized comfort improvement without

resigning energy-efficiency. Single-room and whole-dwelling learning schemes

were tested. Whole-dwelling learning provides a faster response for passive

and medium users (interaction frequency) but loses the potential behavior di-

versity in different room types when assuming a mixed comfort profile. Given

the artificial comfort profiles, different comfort types affect the potential pri-

mary energy consumption up to 20% without compromising the RH and CO2

indicators. The learning DCV provides a solution for occupant-centered res-

idential decentralized ventilation controllers that can adapt itself to different

user profiles. Its real-building implementation is covered in the next chapter.
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5 Real building case study: Energy Smart Home

Lab

This chapter reports the implementation of the self-learning demand-controlled ven-

tilation strategy in a real building, which is a living lab. A brief description of the

selected building is first provided in Section 5.1. The planning and implementation

are also detailed in Section 5.2. Moreover, different hypotheses and test analyses

are presented. The performance of the proposed self-learning controller is analyzed

in Section 5.3. In addition, a lessons-learned section is included with general rec-

ommendations about field implementations of occupant-centered strategies in de-

centralized ventilation. In Section 5.4, the interaction between occupant behavior

and decentralized ventilation systems is studied. A summary of the findings in this

chapter is available in Section 5.5.

5.1 General aspects

In this study, the self-learning DCV controller was implemented and investigated

for three months in a test apartment in Karlsruhe, Germany. In the literature,

some studies already covered the implementation of self-learning systems for other

technologies, but not yet for ventilation systems [44, 93, 167]. The apartment is

called Energy Smart Home Lab (ESHL) and was built within the framework of

the MeRegioMobil Project [182]. It has two bedrooms, a main room (combining the

living room and kitchen), and a bathroom, with a total area of 60 m2. An additional

room contains the technical systems, but the occupants do not have access to this

room. Figures 5.1 to 5.4 show the test facility.

Figure 5.1: Living room area. Figure 5.2: Bedroom 1.
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Figure 5.3: Kitchen area. Figure 5.4: Outdoor view.

Two students (25-30 years old, one male, one female) occupied the apartment from

the 02.03.2020 to 31.05.2020. Decentralized ventilation systems were installed in

the dwelling, together with a special user interface. Each device switches the airflow

direction every 60 seconds and has a ceramic heat recovery system, as explained

in Section 4.2.3. The study aims to implement the proposed learning DCV control

strategy and to study the occupant behavior regarding mechanical ventilation in

residential buildings. The proposed ventilation concept fits the definition of the

AIVC regarding smart ventilation systems mentioned in Chapter 1 [66].

5.2 Implementation and design

5.2.1 Ventilation concept

Decentralized alternating ventilation systems were installed in the test environment,

with the following properties:

� Fan nominal speed = 2750 RPM

� Fan maximum airflow = 41 m3

h

� Ceramic heat regenerator (ηHRC,eff = 0.81)

� Reversible DC Fan (SPI = 0.17 W ·h
m3 )

� Direction change every 60 seconds

The ventilation requirements of the dwelling were calculated applying the norm DIN

1946-6 [58], as described in Section 2.1. The total ventilation requirements depend

on the total dwelling area (ADw):
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V̇tot = fLSt
(
−0.002A2

Dw + 1.15 + ADw + 20
)

(5.1)

� fLSt is a coefficient to define each ventilation level, in m3

h·m2

In addition, the infiltration is estimated (6 m3

h
), since there were no previous mea-

surements available, following table 10 in the norm [58, p. 29, T. 10]. Having a con-

servative approach by neglecting natural ventilation, the factors fLSt were obtained

from table 6 [58, p. 25, T. 6] for a building with high occupancy (low occupancy is

for single-family houses). The four ventilation levels were obtained subtracting the

infiltration from the total air requirements (Equation 5.1). Given the floor plan of

the apartment, it was decided to install one device per room (living area and kitchen

were considered separately), having a total of five devices. Since the bathroom fan

would only operate at its lowest level and in full exhaust speed when the light is

turned on, the required ventilation levels were divided over four devices. These levels

are defined for continuous ventilation systems. In alternating ventilation systems,

half of the fans are supply phase, and the other half in the exhaust phase. Thus,

each device must contribute half of the requirements at every level. Besides, there is

a limitation: the minimum airflow rate is higher than the calculated one for humid-

ity protection, and the maximum airflow rate is slightly lower than the dimensioned

one for intense ventilation. A summary of these calculations is available in Table

5.1.

Ventilation

level

Total

required

V̇flow

Mechanical

ventilation

V̇flow

DVS V̇flow

from DIN

1946-6

DVS

installed

V̇flow

Fan speed

[%]

Humidity

protection
22.2 16.2 8 10 20*

Reduced

ventilation
51.8 45.8 23 23 50*

Nominal

ventilation
74.0 68.0 34 34 75*

Intense

ventilation
96.3 90.3 45 41 100

Table 5.1: Ventilation levels (in m3

h
) defined according to the system dimensioning

procedure in DIN 1946-6 [58].*The bedrooms had additional 5% speed in level 2 and

3 to compensate the pressure losses of the extra sensors installed.
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Figure 5.5 shows a floor plan of the dwelling with the placement of the ventilation

devices, the central controller, and user interfaces.

Technical
room

Central 
controller

Human machine 
interface

Decentralized 
ventilation system

Figure 5.5: Floor plan of the Energy Smart Home Lab. The placement of the DVS,

user interfaces and central controller is indicated.
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Figure 5.6: Flow diagram of the implemented controller.

As this experiment aims to test the field implementation of the learning DCV

scheme, a special rule-based controller was developed. The workflow is illustrated

in Figure 5.6. In automatic mode, the same controller as described in Section 4.3.3

was implemented, where a classification algorithm (support vector machines) pre-

dicts the user preferences towards the airflow levels. The user operation data are
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collected, and the algorithm learns how the occupant behaves concerning the indoor

relative humidity and CO2 concentration. The fans provide a minimum air exchange

rate (humidity protection) and cannot be switched off. The controller is applied in-

dividually in every room, to grasp the different user preferences. The controller is

overridden in three scenarios:

� When the kitchen extractor hood is on, the fans are turned off to avoid fan

damage (the exhaust airflow rate of the hood is the double of the sum of all

ventilation systems)

� When the bathroom light is on, the bathroom fan operates in full speed exhaust

mode, and all the other fans operate in 25% speed and supply mode, to avoid

spreading of odors in the dwelling.

� When the user operates the system, the selected fan level stays for 20 minutes.

The user can override this selection again.

5.2.2 Electronic set up and monitoring

The installation of the devices must be complemented with an adequate electronic

set up for a successful implementation of a machine learning-based controller. In

this case, an IoT-based approach was chosen. As defined by Walker et al. [218],

”smart ventilation allows building managers or homeowners to integrate information

from many sources to make informed and intelligent decisions about efficient and

effective ventilation”. IoT-based systems allow this information integration and have

the potential to implement intelligent ventilation controllers efficiently [132]. The

general scheme is depicted in Figure 5.7.

Every device has a human-machine-interface (HMI), where the fan, user interface,

and environmental sensors are connected. A microcontroller (Node MCU ESP32
®) collects the data from installed indoor environmental sensors and user interface,

and sends the control signal to the fan. This communication procedure happens

every minute or when the user operates the fan. The microcontroller communicates

with the central controller (Raspberry Pi 4B ®) through WiFi, whereas the room-

individual controller operates as a service. The Raspberry Pi receives the data from

the decentralized microcontroller, stores it, runs the control algorithm, and returns

the decision to the microcontroller, which then sends the corresponding signal to

the fan. The whole centralized controller is programmed in python 3.7 [209]. The
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data exchange takes place every minute, although the learning only occurs every ten

minutes. Figure 5.8 illustrates the developed board.

Human machine 
interface

Smart residential 
ventilation

Central 
controller

User feedbackIEQ sensors

Microcontroller

Occupant 
behavior

Figure 5.7: IoT Scheme for the learning controller implementation.

Figure 5.8: Developed board for the learning controller implementation.

Several indoor envionmental sensors were installed to collect data every minute,

which are connected to every microcontroller. These sensors are positioned within

the user interface at chest height (1.5 m), close to the ventilation device in every
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room. The measured variables include room temperature, relative humidity, CO2

(combined in a single sensor), and VOC concentration, together with the rotary

encoder for the user feedback. Due to the positioning, the heat released by the

microcontroller altered the room temperature and relative humidity readings, which

required a sensor calibration (the indoor room temperature was measured with an

offset of around 7◦C). In addition, both bedrooms have a second small board inte-

grated into the fan, which collects the data from sensors placed inside the ventilation

device. These include a temperature and humidity sensor on the outdoor cover, a

temperature, RH, and CO2 sensor on the indoor cover, and a pressure difference

sensor integrated to the channel, which measured the pressure drop along with the

whole ventilation device. Table 5.2 summarizes the properties of the installed sen-

sors.

Sensor Variable Unit Range Precision

Sensirion SCD30

T ◦C -40 - 70 0.4+0.023(T-25)

RH % 0-100 3

CO2 ppm 0-40000 30

Silicon Labs Si7021*
T ◦C -10 - 85 0.4

RH % 0-100 3

AMS CCS811
VOC ppb 0 - 1187 **

eqCO2 ppmeq 400 - 8192 **

Sensirion SDP810* Pressure Pa 0 - 50 0.35

PEL12T Rotary encoder State - 0 - 24 -

Table 5.2: Sensor properties for the monitoring concept.*Additional sensors for the

bedrooms.**Accuracy not reported.

5.2.3 User interface

A user-friendly interface was developed. Maier [142] carried out two surveys about

residential ventilation. In the first one, participants were interviewed and asked

about the characteristics and functionalities of user interfaces for residential venti-

lation systems. The central findings are summarized in three points:

� The interface must be intuitive and understandable

� The user must be able to identify the ventilation levels

� The interface must be understandable for users without a technical background
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Besides, the participants were asked to define their ideal interface in her study,

having some existing examples available on the market as a reference. Findings

revealed that users prefer mostly rotary interfaces, if excluding integrated HVAC

controllers (the heating system worked independently from the ventilation system),

thus it was decided to build a rotary encoder to collect the user feedback. Plus,

a color field was included (red-green-blue) to facilitate the interpretation of the

rotation (the occupants received information about this before the experiment),

illustrated in Figures 5.9 and 5.10. A green light indicates no level change, a blue

light means decreasing the fan level, and a red light means increasing the fan level.

As seen before in Figure 5.6, when the user selects a certain ventilation level, the

controller is overridden for 20 minutes. The user’s choice is collected into four

possible votes (-2, -1, +1, or +2), according to the difference between the selected

and the previous fan level, which are then learned by the controller.

Figure 5.9: Operable user interface - de-

creasing level color (blue).

Figure 5.10: Operable user interface -

increasing level color (red).

5.3 Results

General aspects of the indoor environmental quality, the performance of the venti-

lation system, and the proposed learning controller are investigated and presented

in this section.

5.3.1 Performance indicators

The general results are presented in this section. The performance indicators regard-

ing relative humidity and CO2 concentration defined in Chapter 2 are calculated as

well, together with the performance of the decentralized ventilation system. Figure
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5.11 illustrates the mean average outdoor conditions during the whole measurement

period. Although this experiment was designed for winter conditions, most of the

days with an outdoor average temperature below 5◦C are in the first month. In late

April, typical weather conditions of mid spring were observed. This influenced the

results of the experiment strongly.
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Figure 5.11: Daily mean ambient conditions during the measurement period.

Figures 5.12 to 5.15 show the boxplots of the indoor measurements in every room.

Indoor temperatures stayed between 22 and 24◦ usually. The high internal loads

(due to the smart devices of the house) and elevated temperature setpoints caused

these high temperatures. As a result, lower indoor relative humidities were observed

(almost always between 25 and 50%). Only the bathroom presented high humidi-

ties, probably when the occupants were taking a shower. The controller kept the

CO2 concentrations in every room below the desired threshold of 1250 ppm usually.

Both bedrooms present higher upper quartile values, reaching around 1600 ppm

(mostly during sleeping). The VOC concentration reveals slightly higher indoor

contaminants in the kitchen area.
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Figure 5.12: Indoor room temperature

boxplot.
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Figure 5.13: Indoor relative humidity

boxplot.
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Figure 5.14: Indoor CO2 concentration

boxplot.
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Figure 5.15: Indoor VOC concentration

boxplot.

Similar to the simulation results in Chapter 4, Figure 5.16 shows the cumulative

distribution of the two most relevant variables during the measurement period. The

highest exposure to high humidities happens in the bathroom, even though only for

short periods. The highest exposure to elevated CO2 concentration occurs in the

bedrooms, during sleeping. In this case, the considered points for the cumulative

distribution are not filtered with the presence of the occupant. This indicates at

first glance that the designed ventilation concept was adequate for the dwelling.
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Figure 5.16: Cumulative distribution of RH and CO2 concentration in every room.

Table 5.3 summarizes the performance indicators for the whole measurement pe-

riod. Indicators regarding comfort and indoor air quality present values closer to

zero, confirming that the ventilation concept and the learning control strategy were

successful. CO2 concentration presents an overshoot of around 35 ppm for both

bedrooms, which is considered negligible (almost inside the accuracy range of the

sensor). As both the heat recovery efficiency and fan power could not be measured,

the energy consumption of the ventilation system cannot be properly evaluated.

Therefore, the heat losses due to ventilation were estimated assuming a heat recov-

ery profile following the results of the laboratory measurements of the device [35],

which is shown in Figure A.20 in Appendix A.3. Besides, the fan power was esti-

mated using the datasheet of the fan, as shown in Figure 4.10. The total energy

consumption due to ventilation (Qpe,vent) was 71.84 kWh. This result is not compa-

rable to the simulations in Chapter 4, since the boundary conditions are extremely

different (climate conditions and time of the year, building floor plan, number of

occupants).

Control ∆RHlo [%] ∆RHup [%] ∆CO2 [ppm]

Bathroom 0.04 0.11 13.03

Kitchen 0.01 0.00 3.72

Living <0.01 <0.01 3.71

Bedroom 1 <0.01 0.00 34.16

Bedroom 2 0.00 0.00 37.20

Table 5.3: Performance indicators in every room for the measurement period in the

ESHL.
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During the measurement period, the installed ventilation device provided an average

air exchange rate of around 0.22 h−1. The average theoretical profile is depicted in

Figure 5.17. This plot shows a theoretical profile, as the mass flow was calculated

using the fan speed and not measured. Pressure differences between indoor and

outdoor and high wind speeds can deviate the real airflow rate from the theoretical

one in a decentralized ventilation system. The peaks are due to the automatic

clock that turned off the fans for ten minutes five times a day to prevent a memory

overflow in the microcontrollers. The temperature correction in the board caused an

overestimation of the relative humidity every time it was restarted, which resulted

in a short increase in the volume flow.
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Figure 5.17: Total daily mean theoretical air exchange rate profile in the measure-

ment period.

Besides, Figure 5.18 shows the fan level frequency in every room. The fans operated

almost always at the extreme levels (1 and 4). The kitchen and living room are the

only rooms with more than 10% of higher fan levels. This reacts not only to the

basis ventilation controller but also to the learned profiles. The influence of the user

on the ventilation levels is discussed in the next sections.
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Figure 5.18: Fan level frequency in every room in the measurement period.

5.3.2 Performance of the learning controller

In this section, the performance of the implemented self-learning DCV controller

is analyzed. As seen before, the ventilation concept developed for this application

was successful considering norm-related values of acceptability of indoor relative

humidity and CO2 concentration. In this section, the influence of the occupant on

the performance of the DCV is studied and the learning process of the controller is

described.

Table 5.4 shows the time progression of the user votes in the three measured months.

The kitchen and both bedrooms had more than 40 user votes, meaning that the

learning process may be close to the stabilization. The living area and bathroom

had significantly fewer interactions, meaning the resulting learned profiles could still

present potential differences. The total number of votes in 3 months was around

200, which means that the occupants operated actively the ventilation system [183].

This can be also a consequence of the Covid-19 pandemic outbreak, as the students

spent more time indoors than expected. More than half of the votes occurred in the

first month, where the occupants were probably still experimenting with the devices.

Only the kitchen area presented over ten interactions in the last month.
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Month Bedroom 1 Bedroom 2 Living Kitchen Bathroom Total

March 29 28 14 27 10 108

April 8 14 5 13 5 45

May 8 3 7 16 7 41

Total 45 45 26 56 22 194

Table 5.4: Number of votes per room and month in the measurement period.

Table 5.5 shows the distribution of the user votes in every room given its vote type.

The occupants almost always operated the fans by changing the desired volume flow

strongly, resulting in extreme votes (-2 or +2). This could be also a consequence

of the designed user interface, even though the occupants were instructed on how

to operate it. A clear trend is observed, as the users voted often less airflow in

the bedrooms and more airflow in the other rooms. As discussed in Section 4.4.2.6,

the occupants might have different requirements or comfort profiles in the different

rooms, and the shape of the votes in these measurements confirm this. Therefore, a

whole-dwelling learning approach would lose those room-individual profiles.

Votes Bedroom 1 Bedroom 2 Living Kitchen Bathroom Total

+2 6 6 15 26 18 71

+1 2 0 0 4 1 7

-1 0 3 2 10 2 17

-2 37 36 9 16 1 99

Table 5.5: Number of votes per room and type in the measurement period.

In this analysis, bedroom 1 and kitchen are taken as reference. The rest of the

rooms do not show a distinctive profile from these two or were not relevant for the

learning (user behavior plots in those rooms are in the Appendix A.7). Figures

5.19 and 5.20 illustrate the votes of the occupants in relationship to the measured

relative humidity and CO2 concentration, as proposed for the learning algorithm.

In bedroom 1, a strong presence of negative votes (-2) is observed, and there is no

clear pattern between the RH, the CO2 concentration, and the resulting user vote

(Pearson’s R correlation coefficient [180, p. 282] is -0.012 for RH and -0.008 for

CO2). In the case of the kitchen, a predominance of positive votes (+2) is detected,

although the distribution of the votes is more balanced. Once again, no correlation

was found in the variables (Pearson’s R Coefficient is 0.005 for RH and -0.004 for

CO2). Higher RH and CO2 values are typically expected in the kitchen, usually
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during cooking time. The user interface containing the sensors was placed over 1.5

m away from the cooking field (main pollutant source), registering then lower values

[236]. This could potentially establish a different correlation between the user vote

and the measured values.
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Figure 5.19: User votes dispersion as a

function of RH and CO2 in the bed-

room 1.
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Figure 5.20: User votes dispersion as a

function of RH and CO2 in the kitchen

area.

Figure 5.21 shows the default learning DCV control profile. It was the starting point

for every room and shifted to the individual chosen preferences after the measure-

ment period. Figures 5.22 and 5.23 illustrate those resulting profiles for the bedroom

1 and kitchen, respectively. These reflect the user votes distribution previously an-

alyzed. The main changes in the control field occurred between 30 and 60% relative

humidity and 500 to 1500 ppm CO2 concentration. This is primarily because the

measured points in the indoor environment were seldom in extreme values, given

the air exchange of the installed ventilation system and the outdoor conditions.
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Figure 5.21: Starting control profile.
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Figure 5.22: Bedroom 1 control field af-

ter learning.
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Figure 5.23: Kitchen control field after

learning.

Providing a whole-dwelling learning scheme can speed up the adaptation of the

control field to the occupant’s votes, as concluded in Section 4.4.2.6. However, this

could result in a loss of room-individual preferences. Figure 5.24 shows the learned

control field if a whole-dwelling approach had been used. As expected, the formerly

reported differences, for instance, between bedroom 1 and kitchen, would disappear

under this scheme.
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Figure 5.24: Whole dwelling potential control field after learning.

Moreover, the impact of the learning controller is analyzed. Figures 5.25 and 5.26

show the differences in the fan level frequencies in the first and last month of the

measurement period. For instance, compared to the overall frequencies in Figure

5.18, bedroom 1 had more time in level 4 in the first month than in the last one, as a

result of the negative user votes, wanting less airflow in this room. On the contrary,

the kitchen showed significantly more time in level 4 in the last month, given the

positive votes.
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Figure 5.25: Fan level frequencies in the

first month.
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Figure 5.26: Fan level frequencies in the

last month.

Figures 5.27 and 5.28 depict the fan speed on two sample days (at the beginning and

end of the test phase) together with the relative humidity and CO2 concentration

for bedroom 1 and kitchen. Even though both days show similar RH and CO2

profiles, the fan speed profile is distinctive in each case, reflecting the influence of

the learned control field. Fan speed is lower on the last day for bedroom 1 as a

result of the user votes, and the opposite effect occurs in the kitchen, where the fan

speed is significantly higher on the last day.
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Figure 5.27: RH, CO2 and fan speed daily profile for the bedroom 1.
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Figure 5.28: RH, CO2 and fan speed daily profile for the kitchen.

5.3.3 Practical lessons learned from the field

The field implementation of a machine learning-based smart ventilation system us-

ing decentralized push-pull devices was successful. This confirms that the further

development of smart IoT-based technologies in residential buildings can be applied

also to ventilation systems.

Angsten et al. [16] described the advantages and drawbacks of decentralized ven-

tilation systems against centralized systems. Lessons learned around the complete

process of commissioning, installation, and operation of decentralized systems in

residential buildings are summarized in Table 5.6, complementary to the mentioned

study.

Advantages Disadvantages

� Simple commissioning and

installation process

� Easy individual room control

through user interface

� Controlled air exchange rate in

the whole dwelling

� DVS placement can lead to

draft (Bedroom 2)

� Shifted direction change critical

for unbalances

� High fan speed causes noise

pollution

Table 5.6: Advantages and disadvantages of decentralized ventilation, as a result of

the field implementation.
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Furthermore, issues with the IoT system were identified. In the first place, the

selected microcontrollers communicated with the fan, the sensors, and the central

Raspberry Pi, resulting in sometimes a memory overflow, which leads to a failure

on the individual room board. This system failure was unluckily detected after the

installation, and when the occupants were already living there. The problem was

troubleshot during the first occupancy week. A reset clock function was included

that shut down the entire system for ten minutes to prevent memory overflow and

data losses. This function ran five times a day, corresponding to the air exchange

peaks in Figure 5.17. Table 5.7 shows the total time down of the system in every

room.

Failure time [%] Bedroom 1 Bedroom 2 Living Kitchen Bathroom

Average 10.5 10.9 8.4 13.2 7.7

Table 5.7: Average system failure time during the experiment.

Although the system presented technical disadvantages and improvement potential

by the implementation, this experiment can conclude that the employment of ma-

chine learning-based techniques is as well possible in residential ventilation systems.

This opens the door for future developments in this field, considering as well the

integration with IoT-based systems and smart building technologies.

5.4 Occupant behavior analysis

5.4.1 Analysis of user behavior and mechanical ventilation

An exploratory analysis of the occupant behavior regarding the operation of mechan-

ical ventilation is performed in this section. Following the methodology described in

Section 3.3.1, the coefficients of a logistic regression model can evaluate the occupant

preferences towards mechanical ventilation.

Regarding the explanatory variables, VOC, previous fan speed, and supply temper-

ature (measured only in bedrooms) are added in comparison to the window opening

analysis. Since the noise produced by the fan is proportional to the logarithm of the

volume flow (Section 2.5), the previous fan speed represents noise pollution as an

additional variable to interpret the user behavior. In contrast to the window opening

behavior which has only two possible states (open or closed), the occupants’ votes

are grouped in four possible outputs (-2, -1, +1, and +2), plus a no-change value.

For this analysis, this was reduced to three outputs (less air, grouping -1 and -2,
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more air, joining +1 and +2, and no change as 0). Models were fitted again using

the scikit-learn package in python [172], using a ”one-versus-rest” method, in which

the model is fitted individually for each class different than 0, taking the rest as

points that do not belong to this class. Thus, two models arise, one for increasing

the fan level and another for reducing it. The resulting coefficients for every room

are shown in Tables 5.8 and 5.9 respectively. Both tables highlight the most relevant

variables in every model.

Variable Bedroom 1 Bedroom 2 Living Kitchen Bath

Intercept -9.58 -10.14 -10.34 -9.95 -10.29

TRoom -0.22 -0.02 0.57 0.17 -0.53*

RHRoom 0.17 -0.19 0.60* 1.56* 2.36*

CO2,Room -0.46 0.22 -0.56* 0.23 2.55*

V OCRoom -0.02 -0.01 -0.02 0.05 0.34

TSup 0.15 0.30 n.a. n.a. n.a.

FanRPMPrev 0.47 0.05 -0.61 0.10 0.61

Tamb 0.18 0.03 0.62 0.83 0.10

RHamb 0.13 0.11 0.73 0.37 0.54

06-10 -0.63 -0.50 -0.75 -0.69 -0.33

10-14 0.93 0.09 -0.24 -0.43 1.30

14-18 0.33 1.18 -0.24 0.29 0.48

18-23 -0.21 -0.03 1.52 0.78 -0.45

23-06 -0.43 -0.75 -0.29 0.05 -0.99

Weekend -0.12 -0.30 -0.14 0.67 -0.12

Table 5.8: Logistic regression coefficients for increasing mechanical ventilation vol-

ume flow in every room (n.a. = not available, * = p-value<0.05).

There is no clear pattern in the dry rooms between the explanatory variables and

the action of increasing the fan level. In all of them, time-related actions are ob-

served, with coefficients ranging from 0.9 to 1.5. This result might be due to the

low number of positive votes (below 10), especially in the bedrooms. In both bed-

rooms, all the coefficients are not significant, while in the living room only the CO2

coefficient explains the occupant behavior. In the humid rooms (kitchen and bath-

room), the indoor relative humidity plays a significant role. Relative humidity and

CO2 concentration are correlated (especially in the bathroom), resulting in similar

regression coefficients, which are both positive and significant (moisture loads are

only activity-related). Hence, the users wanted to remove the excess of humidity in
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these areas. In these rooms

Variable Bedroom 1 Bedroom 2 Living Kitchen Bath

Intercept -8.26 -6.84 -9.00 -8.13 -10.79

TRoom -1.31 -0.66 -1.24 -1.57* -0.37

RHRoom 0.40 -1.13* 0.60 0.86 0.38

CO2,Room 0.04 -0.62 0.42 0.72 0.40

V OCRoom 0.11* 0.05 <0.01 -0.02 <0.01

TSup 0.35* -0.50 n.a. n.a. n.a.

FanRPMPrev 2.86* 1.80* 1.93* 1.16* 0.68

Tamb -1.28* -1.51 -1.07* -1.57* -0.38

RHamb 0.50 0.54 -0.13 1.07 -0.12

06-10 -0.46 -1.14 -0.59 -0.58 -0.30

10-14 0.49 0.14 -0.57 0.39 -0.30

14-18 -0.43 -0.16 0.75 0.55 0.92

18-23 -0.62 -0.02 0.73 -0.15 -0.40

23-06 1.03 1.18 -0.31 -0.20 -0.07

Weekend -0.08 -0.41 0.46 0.27 0.64

Table 5.9: Logistic regression coefficients for decreasing mechanical ventilation vol-

ume flow in every room (n.a. = not available, * = p-value<0.05).

Noise (represented by the previous fan speed) seems to be the main reason to turn

down a fan in the dry rooms, reporting strong positive and significant coefficients

(1.8 - 2.9). In the kitchen, the indoor and outdoor temperatures have the highest

influence (with noise in the second place). However, in the bathroom, there is no

clear indicator (no significant coefficients), as a consequence of having only three

total negative votes. This analysis reinforces that noise is a critical point in de-

centralized ventilation and that this is an issue that should be addressed further in

future developments [145]. Besides, the outdoor temperature is significant in almost

every room. This is also interesting when observing the evolution of the regression

coefficients during the measurement period. Taking again bedroom 1 and kitchen as

examples, Figures 5.29 and 5.30 illustrate the coefficient evolution of the negative

and positive votes in the former, and Figures 5.31 and 5.32 in the latter respectively.
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Figure 5.29: Evolution of logistic regres-

sion coefficients for decreasing fan level

in bedroom 1.
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Figure 5.30: Evolution of logistic regres-

sion coefficients for increasing fan level

in bedroom 1.

0 20 40 60 80
Days

1

0

1

2

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
s 

i [
-]

Troom

FanRPMprev

Tamb

Other variables

Figure 5.31: Evolution of logistic regres-

sion coefficients for decreasing fan level

in the kitchen.
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Figure 5.32: Evolution of logistic regres-

sion coefficients for increasing fan level

in the kitchen.

For decreasing the fan speed, in both rooms, the importance of the previous fan speed

is observed from the beginning. In the case of the bedroom, where occupants can be

more sensitive to noise, this trend remains until the end of the experiment. Following

Figure 5.11, after day 40 (around April 10th), there is a substantial increase in

the mean outdoor temperature, which reflects in the occupant behavior regarding

mechanical ventilation. From this day on, the influence of the indoor and outdoor

temperature increases steadily, becoming the most important explanatory variables

for the decreasing fan level in the kitchen and second place in bedroom 1. The

coefficients are negative, meaning that a higher temperature reduces the probability

of decreasing the fan level. The higher the temperatures, the higher the airflow that

the occupants needed to satisfy their comfort requirements.

The occupant behavior for increasing the fan speed does not show a clear pattern,

as in the decreasing case. In bedroom 1, the few recorded votes result in no sig-

nificant regression coefficients. In the kitchen, the RH established itself from the
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beginning as the strongest explanatory variable. Besides, the variation of the indoor

temperature coefficient is identified as being high during the first month (negatively

correlated) and weakening its effect by the end of the measurement period. The

profiles for the other rooms are available in the Appendix A.7.

5.4.2 User satisfaction

Complementary with the previous results, the two occupants were surveyed after the

experiment. The questionnaire was the same as the one developed by Maier [142].

The duration was around 30 minutes, where the participants had to answer questions

regarding natural ventilation (window opening) as well as mechanical ventilation.

Different topics were asked, such as the motivation to ventilate an indoor space,

evaluation of mechanical ventilation devices, user interface design, and improvement

suggestions. The most relevant results for this study are described in this section.

The main reason to ventilate is to get fresh air, according to the occupants. How-

ever, they also suggest that ventilating an indoor space is not associated necessarily

with improving the indoor climate. Besides, humidity and smells are recognized

as triggers to ventilate, mostly in the kitchen and bathroom. When considering

summer, indoor temperature becomes a relevant variable, which is consequent with

the results obtained in Section 5.4.1. Ventilation routines were asked as well. After

showering has the strongest association with ventilation, emphasizing the impor-

tance of removing the humidity excess. On cold days, ventilation before leaving

the apartment is also reported as relevant, whereas night ventilation is preferred on

warm days.

The evaluation of mechanical ventilation systems was also included in the survey.

In the first place, the occupants highlighted that the installed devices met their re-

quirements and perceived the resulting air exchange successfully. Although Angsten

et al. [16] reported critical issues regarding ventilation effectiveness and air short-

circuiting, the occupants were satisfied with the provided fresh air. Another positive

aspect was the developed user interface, evaluated as intuitive and understandable,

especially considering the color field. On the other hand, this simplicity was also

criticized, given the lack of programmability of the system. Another complaint was

the loudness of the devices at night, which caused some sleep problems at the be-

ginning. This confirms the previous analysis, where the noise of the device was

identified as key to decrease the fan level. This result is independent of the selected

controller since the loudness of the system was reported in levels 3 and 4.
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Finally, the occupants provided suggestions, which could improve the relationship

between the user and technology. Programmability and remote control options

(mainly through a smartphone app) are recognized as a key for the individualization

of the operation. It is worth mentioning that both occupants have a university degree

in a technology-related field, which increases their affinity to these solutions [142].

Besides, the user interface could be enhanced with direct feedback (for example,

room temperature and humidity). A sleeping mode could be included as well (which

is typically present, as described in Section 4.1.1).

In general, the smart controller was perceived as useful but not crucial for the ac-

ceptance of the system. A comparison with other controllers should be carried out

to study properly the acceptance. The users could realize the intelligence of the

system; however, the lack of flexibility was sometimes perceived as a negative issue.

Even though both occupants have a similar background and lived together dur-

ing the measurement period, their answers are different in some aspects, especially

considering the drivers to ventilate a room and the perception of the IAQ.

5.5 Summary

Smart ventilation acquired more relevance in the residential sector in the past years.

Research has been focusing mostly on different demand-controlled controllers since

the implementation of this technology is already proven. In Chapter 4, an innovative

self-learning DCV controller is proposed, and the implementation in a real building

was covered in this chapter. Thus, the research question 4 is answered through the

following points:

Research Question 4: How is the performance of innovative occupant-centered

control strategies in a real-building implementation? Do they influence the accep-

tance of the user towards ventilation systems?

� The implementation of a self-learning DCV controller in decentralized venti-

lation systems was successful. A field study in a smart home apartment was

carried out where two occupants lived for three months. An Internet of Things

scheme was developed along with a user interface, that the occupants used to

operate the ventilation systems as desired. The controller learned through the

user feedback to adapt itself to the occupants’ needs.

� The installed decentralized ventilation system performed convincingly, provid-

ing enough air exchange to keep the performance indicators regarding relative
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humidity and CO2 concentration in the desired range. Energy consumption

was not measured but estimated. The proposed learning DCV strategy was

implemented satisfactorily, as the rooms presented highly diverse control fields

after the measurement period. The influence of the user in every field was rec-

ognized, shaping the air exchange rate profile given the different user votes.

The votes distribution profile was distinctive in every room, which confirms the

suitability of single-room learning schemes against a whole-dwelling approach

(as concluded in Section 4.5). Even though longer learning periods should be

considered, a single-room learning scheme can grasp the singularities of the

occupant behavior in every room correctly. However, a room-individual con-

trol would require a balancing procedure in case a single decentralized system

is installed per room, as different airflow levels are required in different rooms

at the same time. Other learning variables, such as fan noise or outdoor tem-

perature, should be considered since there is no clear pattern in some rooms

regarding RH and CO2 concentration.

� User behavior was analyzed through data analysis using logistic regression,

to understand the user motivation to ventilate. For increasing the fan level,

in the humid rooms (kitchen and bathroom) RH was the most important

explanatory variable, and in the other rooms, time-related coefficients (rou-

tines). For decreasing the fan level, noise (represented by previous fan speed)

was identified as the most important explanatory variable in the dry rooms.

The humid rooms had indoor and outdoor temperature, noise being the second

most important. The influence of weather change during the experiment could

be seen, as the temperature variables gained relevance through time in every

room. These findings were supported later by the user survey, carried out

after the experiment. Occupants were satisfied with the performance of the

installed devices and highlighted the user interface development. On the other

hand, noisy environments in bedrooms and lack of programmability were crit-

icized. Smart residential ventilation systems are perceived as useful but are

not the only aspect that the user considers for its acceptance. The combi-

nation of the logistic regression analysis and user survey concludes that the

motivations and preferences of the occupants regarding mechanical ventilation

can be extremely different, even when sharing an apartment. This highlights

the importance of the individualization of the user preferences when proposing

innovative user-centered ventilation controllers.
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6 Conclusions and outlook

Main findings

This thesis provides an insight into residential decentralized ventilation control

strategies. The relationship between users and ventilation systems is complex and

must be understood properly within a context that targets health and comfort with-

out disregarding energy efficiency. Understanding this relationship is a key to narrow

the gap between technology and the user. The increasing market share regarding

decentralized ventilation in Germany, mainly due to the retrofit of residential build-

ings, is driving the attention of scientific research to these devices.

The requirements for residential decentralized ventilation systems have been inves-

tigated. Owners and housing associations are primarily interested in minimizing in-

vestment costs, reducing maintenance efforts, and avoiding mold growth. In different

standards, mechanical ventilation is compulsory only when a minimum humidity-

protection air exchange rate is not achieved with infiltration, and in humid rooms

without windows. From the industry perspective, energy-efficient devices are con-

sidered as an additional sales argument. The latest trend in research is to prioritize

indoor air quality and health effects. Even though many contaminants are present

in indoor environments, CO2 is still the most accepted variable to control in dry

rooms. In extreme values (below 25% and over 75%), relative humidity also has a

direct impact on human health. In that sense, higher air exchange rates become

more attractive. Other variables, which can be directly hazardous for occupants,

are usually not considered since the monitoring technology is too complex for a

commercial device. In times of a worldwide pandemic, health can also turn into

a highly compelling argument for the installation of residential ventilation systems

[205]. From the perspective of the occupant, the sense of fresh air is one of the

main targets, while at the same time minimizing the energy costs. Relative humid-

ity and CO2 concentration are targeted in winter since they are highly correlated

with indoor occupant activities. Different acceptability thresholds were found in

the literature because occupants have vastly different definitions of the concept of

”fresh air”. Other aspects, such as noise pollution caused by the system itself and

user-friendly interfaces, are crucial for the success of these technologies.

Furthermore, occupant behavior models related to residential ventilation were com-

pared and discussed. Available data about user behavior towards residential me-

chanical ventilation is limited and mostly acquired through surveys. Thus, window
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opening behavior was analyzed, as a reaction to the need for fresh air. Three popular

models from the literature based on logistic regression were tested and compared.

The outputs of the models are highly diverse, showing potential overfitting to the

training data. Available real window opening data was used to tune a novel cluster-

ing method, to identify distinctive user behavior patterns. The existing probabilistic

models represent only reliably a few profiles, as a result of generalized modeling,

missing the individual preferences in some cases. A real-time logistic regression is

proposed and tested with collected data from renovated apartments with mechanical

ventilation, to understand the occupants’ drivers to open the window. This has the

potential to understand the occupants’ preferences targeting the individualization

of mechanical ventilation control strategies (analogous to a previous study [183]).

Results indicate that occupants operate windows mostly due to time habits or as

a consequence of indoor and outdoor environmental variables. To integrate this

into a residential ventilation controller, a peak detection algorithm was applied to

identify window opening without using window contacts. High accuracies in apart-

ments where CO2 concentration is a key driver to window opening were observed.

Otherwise, the accuracy strongly decreases. An improvement in this method could

lead to a tailored scheme that detects the user ventilation needs and implements it

directly in a controller.

Simulation has become a necessary tool for the development of different technologies

and their evaluation before implementation. Existing models do not meet all the

requirements to assess control strategies for decentralized ventilation in residential

buildings. The Airflow Network modeling principle is crucial to evaluate the im-

pact of these controllers in room-individual models, where heat, moisture, and CO2

values could be evaluated. Reliable heat recovery and fan models were developed

and validated, given their high impact on the buildings’ energy performance. A

co-simulation scheme was proposed, which combined the strengths of different envi-

ronments, to obtain reliable results for the evaluation of the developed controllers.

Since assessing a real-time user preference detection was not feasible, other occupant-

centered solutions were explored. A thorough market and scientific state-of-the-art

analysis regarding ventilation control strategies identified the lack of multivariable

controllers and occupant-centric solutions in this field. In this regard, two fully auto-

matic controllers were developed, which return the desired fan speed as a function of

the relative humidity and CO2 concentration. Both cost function and fuzzy-based

controller provide energy savings in comparison to traditional demand-controlled

strategies, without compromising hygrothermal comfort or indoor air quality. How-
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ever, the state-of-the-art steps strategy already provided more than half of the poten-

tial energy savings and achieved significantly better performance indicators. These

results confirm that the lack of innovation in ventilation control strategies lies in

the capabilities of the current state-of-the-art controllers, which can achieve already

an acceptable performance against manual controllers. The sensitivity to different

weather conditions concluded that the primary energy savings potential is higher in

colder climates and that ambient conditions do not strongly impact the resulting fan

speeds, which coincides with previous studies [91, 150]. The sensitivity to internal

loads resulted in greater fan speed differences. In any case, a fuzzy-based DCV has a

primary energy savings potential ranging from 10 to 25% in comparison to a state-

of-the-art stepwise demand-controlled ventilation strategy, without compromising

the health and air quality indicators.

However, occupants need a certain degree of control over the systems to improve

their acceptance [208]. In that sense, an innovative self-learning DCV scheme was

proposed, to learn the user preferences towards RH and CO2. Hence, a user behav-

ior model regarding mechanical ventilation was necessary. Four user profiles were

developed and exposed to the self-learning DCV in a simulation scenario. The se-

lected learning algorithm is the Support Vector Machines (SVM). The algorithm

was tested regarding learning rate, room-individual or whole-dwelling learning, user

comfort, and activity profile. The self-learning DCV performed satisfactorily, tai-

loring its shape to the predefined user profile from the beginning, and stabilizing

after around 60 user votes. This solution achieved an individualized comfort im-

provement, without resigning energy-efficiency. The whole-dwelling approach could

learn the well-defined user comfort profiles more quickly, but failed to build a re-

liable solution when occupants present distinctive comfort profiles in the different

rooms. Hence, a single-room approach is preferred. Different user comfort profiles

were tested, which directly influence the potential primary energy savings of the

proposed controller. In this case, validated user comfort profiles are required to

properly assess the influence of the occupant behavior on the performance of resi-

dential ventilation systems. In this thesis, the four artificial comfort profiles affected

the potential energy savings within a range of 20%. Comfort and indoor air quality

indicators are not sensitive to the different user profiles, as the ventilation controller

adapts the resulting air exchange rate to the occupants’ needs.

In contrast to fuzzy-based solutions, the implementation of a self-learning DCV sys-

tem had not yet been investigated. The developed controller was installed and tested

in the Energy Smart Home Lab, a living lab facility in Germany. Decentralized ven-
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tilation systems were installed together with an IoT-based solution, which collects

data and runs the self-learning controller. A Human-Machine-Interface with a ro-

tary encoder was developed to collect user feedback and make the operation simple

and understandable. From the ventilation side, the performance indicators showed

a correct dimensioning and operation of the installed system. Additionally, the

learning algorithm could follow the occupants’ preferences in almost every room.

Nevertheless, there are no clear patterns between the independent (RH and CO2)

and dependent (Fan speed) variables. Analyzing the votes with a real-time logistic

regression confirmed this later. It highlighted the need for quieter environments in

bedrooms and moisture removal in wet rooms. The developed approach provided

an individualization that the occupants remarked as effective. On the other hand,

the user survey and logistic regression analysis show that there are potentially other

variables, that could be more suitable for tailoring the system to the user prefer-

ences, rather than the selected ones. For instance, indoor and outdoor temperature

gained importance in the last month of the measurement period, mainly because

the outdoor conditions were closer to summer conditions. Moreover, the occupants

perceived the operation of the ventilation systems as useful. Some improvement

suggestions emerged regarding control flexibility, scheduling, and noise.

Limitations

The thesis limits itself to the analysis of decentralized ventilation systems in res-

idential multifamily buildings. The behavior models and weather conditions were

defined for a Central European zone. In that sense, further work to expand the

validity of these results to other ventilation systems, building, and climate types

should be considered.

The selected simulation approach presents some limitations. The building model

represents a generic multifamily apartment and was validated against measurements

in real apartments with different floor plans but similar thermal characteristics. The

influence of higher wind speeds could not be assessed properly, as the selected simu-

lation scheme compensates the pressure difference between room and façade with in-

filtration. The additional infiltration results in a higher heating energy consumption,

meaning that a proper assessment of the impact of unbalanced decentralized ven-

tilation in comfort and indoor air quality requires other modeling techniques [203].

Besides, the decentralized ventilation model was developed and validated following

laboratory measurements, as field measurements were not available. Regarding the
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occupant behavior, deterministic (internal loads) and probabilistic (heating setpoint,

window opening and ventilation operation) were combined into a single simulation

model. D’Oca et al. [62] studied that heating setpoint and window opening be-

havior must be simulated with stochastic models to lower the discrepancy between

predicted and actual energy consumption. The combination of different occupant

behavior models should be further studied.

A central limitation concerns the single-room learning approach. As seen in the

simulation study in chapter 4, having different comfort profiles learned in a single

room can be problematic. These should not be an issue in multifamily residen-

tial buildings, where usually the number of occupants is rather low in comparison

to other building types. However, when extending the proposed method to other

buildings such as office buildings (where workers share open spaces), the clash of

the different comfort profiles can become critical. Comparable to the results for the

whole-dwelling learning scheme, the self-learning controller would deliver unstable

control fields in shared open spaces. Other solutions should be explored to achieve

an individualized solution in these multi-occupant spaces.

The analysis of the occupant behavior towards mechanical ventilation at the ESHL

has a main limitation: only two occupants operated the system. Besides, the ex-

change students come from South America (different climate zone), which might

result in different behaviors than Central European countries. In this thesis, it was

preferred to have the same occupant behavior for three months to evaluate the po-

tential of the self-learning controller. To properly study the occupant behavior, data

from different occupants should be collected, including control groups. Therefore,

this experiment could be repeated with different occupants to lower the bias of the

results towards a specific behavior.

Outlook

This thesis is expected to gain relevance for the development of control strategies

in the forthcoming years. The residential ventilation market is growing steadily,

and decentralized systems are increasing their market share every year. More than

ten years ago, Hasselaar [103] described one of the main reasons for a residential

ventilation crisis as the poor relationship between user and technology. Since that

publication, several health effects related to poor indoor environments have been

investigated, once again emphasizing the relevance of residential ventilation. In

this thesis, these effects were represented by the indoor relative humidity and CO2
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concentration. When extending this method to other buildings (such as office build-

ings), the relevance of the relative humidity as a contaminant is limited, and other

pollutants are more relevant, such as VOC. These other pollutants were not modeled

in this thesis due to their complexity [1]. Besides, pollutant monitoring in the field

is currently limited, since it requires an advanced sensor deployment. In general, a

lack of cost-effective solutions can be identified. A few studies [149, 54] analyzed the

suitability of VOC as a target variable for DCV. Overventilated apartments were

observed, given the sensitivity of VOC to activity-related contaminants. Further re-

search is needed on this topic, to obtain a more reliable indoor air quality indicator

than CO2 alone. The proposal of other indicators could enhance the performance

of the self-learning scheme.

Concerning decentralized ventilation systems, noise is a key unresolved issue. Sleep

disturbance was observed in the implementation of facade-integrated ventilation

systems in chapter 5, confirming previous studies [163]. If the fan operates at its

lowest levels, the occupants reported high acceptability. One of the key advantages

of decentralized ventilation is the simple installation process and its compactness.

Axial fans allow changing the direction of the volume flow but are sensitive to

pressure changes. The use of radial fans could provide a solution where the fans are

louder but able to overcome noise reduction measurements and keep an acceptable

ventilation efficiency. Summarizing, the market for residential ventilation expands

every year, and tackling the noise problem is key to the prosperity of this technology.

The proposed real-time logistic regression method provides a reliable data-based

interpretation of the occupant needs. An improvement of the detection algorithm,

together with its application in real case studies, could provide further insight into

the adaptation of ventilation control strategies to the user preferences. As described

in chapter 3, the occupants’ drivers to operate a residential mechanical ventilation

system are still not sufficiently investigated. Ren et al. [183] emphasized the need

to develop better user behavior models for building performance simulation. In that

sense, more measurement campaigns in real buildings regarding the operation of

mechanical ventilation are needed. o Psychological and cultural aspects should not

be neglected in future research, in order to further understand the potential of self-

learning systems in multi-occupant spaces. The application of self-learning systems

in shared spaces should be studied both in residential and non-residential buildings.

The simulations performed in this thesis focused on the winter operation of venti-

lation systems. As a direct consequence of climate change, summer outdoor tem-

peratures increase steadily, causing frequent summer overheating in the last years.
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This increased the interest in summer ventilation. The proposed strategies could

be extended as well to summer operation, considering an extension regarding the

occupant-related variables. Indoor and outdoor temperatures and the reduction of

cooling loads, as well as thermal comfort, should be primary objectives. Although

the implementation of the self-learning controller was designed for winter conditions,

part of the experiment took place under early summer weather. This field implemen-

tation confirmed that the temperature variables gained relevance throughout time

in every room. In that sense, some work related to fuzzy controllers and summer

residential ventilation is already available in the literature [92].

The development of self-learning control strategies, as well as the field implemen-

tation, is covered in this thesis. The installation of the device in the real building

was simple, however the development of an electronic concept for the deployment

of the smart controller was necessary. With the investment in additional hardware

and sensors, the start-up procedure could require IT experts in the field, losing

the simplicity of the installation process. Chiesa et al. [46] suitably explained the

advantages and challenges of IoT platforms for smart ventilation systems.

Smart technologies have received more attention in the research community. In

July 2020, the International Energy Agency approved the new Annex 86 - ”Energy-

efficient smart IAQ management for residential buildings”, confirming the direction

of the technology towards the optimization of ventilation systems [5]. Some publi-

cations already cover the impact of big data on ventilation systems [139]. Schieweck

et al. [190] explained that the acceptance of smart home technologies (including

ventilation) depends on several factors, although users mostly see their benefits and

perceive the advantages in terms of energy savings and comfort improvement. In

addition to a cost-effective offer, fears towards new technologies should cease. In

that sense, endeavors from research, industry, and users must join together for the

prosperity of these technologies.
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A.1 Real-time logistic regression for window opening

In this section, the plots with the time evolution of all regression coefficients from

the logistic regression analysis are presented, as described in section 3.3.
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Figure A.1: Real-time evolution of the logistic regression coefficients with measured

window opening in the apartment 1.
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Figure A.2: Real-time evolution of the logistic regression coefficients with estimated

window opening in the apartment 1.
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Figure A.3: Real-time evolution of the logistic regression coefficients with measured

window opening in the apartment 2.
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Figure A.4: Real-time evolution of the logistic regression coefficients with estimated

window opening in the apartment 2.
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Figure A.5: Real-time evolution of the logistic regression coefficients with measured

window opening in the apartment 3.

0 20 40 60 80 100 120
Days

0

2

4

6

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
s 

i [
-]

Troom

RHroom

CO2

Weekend
06_10
10_14

14_18
18_23
23_06

Tamb

RHamb

Figure A.6: Real-time evolution of the logistic regression coefficients with estimated

window opening in the apartment 3.
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A.2 Multifamily building model

This section addresses further details of the proposed building model (Section 4.2.2)

and its validation. As mentioned before, the building is modeled with EnergyPlus

8.9.0 [50]. The air movement inside and outside the dwelling, the infiltration, and

wind pressure are simulated by applying the airflow network approach [27].

Every room is modeled as a node, where pressure is the associated state variable.

A pressure difference between two nodes causes an air movement. This happens

through air paths (equivalent to electric resistances). Thus, the air movement is

calculated using the power law [21].

V̇ = Cd · A ·
(

2 ·∆P
ρair

)m
(A.1)

� V̇ is the resulting volume flow in m3

h
.

� ∆P is the pressure difference between two nodes in Pa.

� ρair is the air density in kg
m3 , assumed 1.2.

� Cd is the non-dimensional discharge coefficient.

� A is the opening area in m2.

� m is the mass flow exponent (0.5 for turbulent, 1.0 for laminar flow), non-

dimensional.

To model the airflow through small openings (cracks, doors, closed windows), the

Technical Note 44 of the AIVC suggests using the flow coefficient k [164]:

k = Cd · A ·
(

2

ρair

)m
(A.2)

Assuming a Cd of 0.6 and a mass flow exponent m of 0.667, the mass flow coefficient

k was measured in different countries and building schemes in Technical Note 44 of

the AIVC [164]. For windows, a value of kw = 1.5E-04 was used, and for doors kd =

4.4E-04. The window value is valid for German multifamily buildings, whereas the

door value is measured in the United States for residential doors since the source

does not report values for Germany.
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Regarding the infiltration, the recommendation of the Passive House Institue is

followed, which suggests a total air exchange rate of 0.5 h−1 when the pressure

difference ∆Pref is 50 Pa [170]. The infiltration is distributed in every room and

modeled using the effective leakage area (ELA) method [10]:

ELA = V̇ref ·
(

ρair
2 ·∆Pref

)m
· C−1d (A.3)

� ELA is the effective leackage area in m2.

� V̇ref is the reference volume flow in m3

h
.

� ∆Pref is the reference pressure difference in Pa.

� ρair is the air density, assumed 1.2 kg
m3 .

� Cd is the non-dimensional discharge coefficient, assumed 0.6 [164].

� m is mass flow exponent, assumed 0.667 [164].

Table A.1 illustrates the distribution of the outdoor surfaces in every room in the

building model. The calculated effective leakage area (in m2), assigned propor-

tionally to the outdoor surfaces, is shown in Table A.2. The air exchange due to

infiltration is calculated also using the power law (Equation A.1).

Room Volume [m3] EWN [m2] EWW [m2] EWS [m2]

Children 2 28.04 8.91 0 0

Children 1 28.04 8.91 0 0

Bedroom 36.98 8.6 10.75 0

Living room 57.94 0 10.75 13.48

Kitchen 22.04 0 0 5.13

Bathroom 17.2 0 0 4.00

Table A.1: Summary of exterior wall surface properties for the modeled building (N

= north façade, W = west façade, S = south façade).
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Room ELAtotal [m2] ELAN [m2] ELAW [m2] ELAS [m2]

Children 2 3.43E-04 3.43E-04 0 0

Children 1 3.43E-04 3.43E-04 0 0

Bedroom 4.53E-04 2.01E-04 2.52E-04 0

Living room 7.10E-04 0 3.15E-04 3.95E-04

Kitchen 2.70E-04 0 0 2.70E-04

Bathroom 2.11E-04 0 0 2.11E-04

Table A.2: Summary of ELA properties for the modeled building (N = north façade,

W = west façade, S = south façade).

To calculate the wind pressure on the façade, the wind pressure coefficients were

calculated using the equation of Swami and Chandra [201]. Results for the three

used orientations and wind angles are presented in Table A.3.

Cp = Cp(0) · ln
[
1.248− 0.73 · sin

(
θ

2

)
· 1.175 · sin2(θ) + 0.131 · sin3(2Gθ)

+0.769 · cos
(
θ

2

)
+ 0.07 ·G2 · sin2

(
θ

2

)
+ 0.717 · cos2

(
θ

2

)]
(A.4)

� Cp(0) is the reference wind pressure coefficient (suggested 0.6), non-dimensional.

� θ is the wind angle (0 at north, advances clockwise) in rad.

� G = ln(W
L

) is he natural logarithm of the building width and length relation-

ship, non-dimensional.

Wind angle [deg] North West South

0 0.603 -0.415 -0.260

30 0.469 -0.599 -0.308

60 0.123 -0.308 -0.599

90 -0.415 -0.260 -0.415

120 -0.599 -0.308 0.123

150 -0.308 -0.599 0.469

180 -0.260 -0.415 0.603

Table A.3: Summary of wind pressure coefficients for every façade.

Furthermore, the ventilation concept for this dwelling must be defined. The four

ventilation levels according to the norm DIN 1946-6 [58], explained in Section 2.1,
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are dimensioned for the building model. The total ventilation needed V̇tot is defined

in Equation A.5:

V̇tot = fLSt · (−0.002 · A2
Dw + 21.15 + ADw) (A.5)

� fLSt is a coefficient for each ventilation level, in m3

h·m2

� ADw is the dwelling room surface (84.6 m2)

Following Equation 2.1, the mechanical ventilation requirements are defined by the

total air exchange requirements, subtracting the infiltration and natural ventilation.

Neglecting the window opening (conservative assumption), the infiltration V̇inf is

calculated using Equation A.6.

V̇inf = ez · VDw · n50 = 4.5m
3

h
(A.6)

� ez is a coefficient for placement and size of the whole building for each venti-

lation level, nondimensional (0.04)

� VDw is the dwelling volume (311.5 m3)

� n50 is the air exchange rate at 50 Pa pressure difference (0.5 h−1 [170])

Hence, the ventilation levels are defined. Six devices are planned a priori (one in

every room). Table A.4 summarizes the total air requirements and the distribution

in every ventilation system, together with the modeled fan speed.

Ventilation

level
Total V̇

V̇DV S

minimum

V̇DV S

modeled

Fan speed

[%]

Humidity

protection
27.4 8 10 25

Reduced

ventilation
64.0 20 21 50

Nominal

ventilation
91.4 29 32 75

Intense

ventilation
118.9 38 45 100

Table A.4: Ventilation requirements (in m3/h) according to DIN 1946-6 [58].
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Additional conditions must be fulfilled [58, T. 16, p. 48], such as:

� Kitchen and bathroom when showering or cooking = 40 m3

h

� Toilet nominal ventilation = 20 m3

h

� Bedroom ventilation = 15 m3

h
per person

Thus, nominal and intense ventilation levels must be raised in the humid rooms

to comply with this regulation. Besides, the bedroom (two persons) must deliver

twice the airflow in nominal ventilation. In this case, a second device will be added

to the bedroom. A second ventilation device is included in the living room as

well to balance the dwelling. A total of eight devices are planned. Moreover, the

airflow network model assumes a perfect air mixing (single node model) and ignores

the impact of air distribution in the room and potential short circuits in different

system configurations. Given that the ventilation systems are façade-integrated, the

ventilation effectiveness ηvent can be modeled as a function of the air exchange rate

(Equation A.7)[127]. This assumed effectiveness affects the volume flow in every

room.

ηvent = −0.244 ·

(
V̇sup
Vroom

)2

+ 0.376 ·

(
V̇sup
Vroom

)
+ 0.732 (A.7)

� V̇sup is the supply volume flow rate in m3

h

� Vroom is the volume of the room in m3

The validation is performed by comparing a baseline case with measured indoor

environments. The fan speed was set to 2000 RPM, which provides an air exchange

rate of 0.4 h−1, analogous to the observed values in the measured apartments (Sec-

tion 3.2.1). Apartment 2 of the measured data is compared to the simulation results

since it is the closest floor plan from the measured apartments (88 m2, two bed-

rooms, renovated to the medium energy standard). The following figures illustrate

a histogram comparison of indoor temperature, RH, and CO2 concentration values

(CO2 was not measured in the kitchen and bathroom). Energy consumption was

not measured in the apartments. Since the heating and cooling energy consumption

is not considered in the analyses of this thesis, this was not a part of the validation

process.
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Figure A.7: Histogram comparison for

indoor temperature in the bedroom.
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Figure A.8: Histogram comparison for

indoor temperature in the living room.
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Figure A.9: Histogram comparison for

indoor temperature in the kitchen.
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Figure A.10: Histogram comparison for

indoor temperature in the bathroom.
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Figure A.11: Histogram comparison for

indoor RH in the bedroom.
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Figure A.12: Histogram comparison for

indoor RH in the living room.
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Figure A.13: Histogram comparison for

indoor RH in the kitchen.
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Figure A.14: Histogram comparison for

indoor RH in the bathroom.
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Figure A.15: Histogram comparison for

indoor CO2 in the bedroom.
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Figure A.16: Histogram comparison for

indoor CO2 in the living room.
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A.3 Decentralized ventilation system model

The proposed decentralized ventilation model (Section 4.2.3) is detailed and vali-

dated in this section. The decentralized ventilation system is modeled with Modelica

3.2.2 [147]. The thermal and hydraulic modeling and validation process are pub-

lished already in a scientific article [35]. Figure A.17 shows the structure of the heat

recovery system (HRC). Table A.5 summarizes the properties of the ceramic heat

storage.

d

vair

w

twall

Figure A.17: Honeycomb regenerator, front view (left) and channel (right) [35].

Variable Definition Unit Value

wchan Channel width m 0.004

lchan Channel length m 0.15

dcyl Cylinder diameter m 0.142

mcyl Mass kg 2.32

Csolid Heat capacity solid kJ
kg

2034

ρsolid Density solid kg
m3 2700

ksolid Thermal conductivity solid W
m·K 0.026

nchan Number of channels - 1000

twall Wall thickness m 0.001

Table A.5: Heat storage properties.
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The heat exchange between the air and the heat storage is assumed as a pure

convection case (temperature rise due to radiation between surfaces in comparison

to convection is around 3% [87]). Equation A.8 was obtained applying the first law

of the thermodynamics in a control volume of the heat exchanger:

Q̇(t) = ρair ·V̇air ·cp,air ·
∂Tair
∂x

=
hair · Aht · dx

Lht
(Tair−Tsolid) = Csolid·

dx

Lht

dTsolid
dt

(A.8)

� Q̇ is the heat transfer rate between the fluid and the HRC surface, in W.

� ρair is the dry air density, in kg
m3 , assumed 1.2.

� V̇air is the air volume flow rate, in kg
s

.

� cp,air is the dry air specific heat capacity, in J
kg·K , assumed 1.005.

� Tsolid is the temperature on the surface of the solid, in K.

� Tair is the air temperature, in K.

� hair is the specific convection coefficient, in W
K·m2 .

� Csolid is solid heat capacity, in kJ
kg

.

� Aht is the heat transfer area, in m2.

� Lht is the heat transfer length, in m.

The specific convection coefficient is calculated using Equation A.9.

hair =
Nu · kair

dh
(A.9)

� Nu is the non-dimensional Nusselt number.

� dh is the hydraulic diameter, in m.

� kair is the thermal conductivity of dry air, in W
K·m , assumed 0.025.

Therefore, the heat stored is modeled as a capacity that absorbs or releases heat on

each time step, depending on the temperature difference and the Nusselt number.

The hydraulic diameter dh is calculated using Equation A.10.
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dh =

√
3

2
· w (A.10)

Since the flow through the channels is laminar (Re <2300), an empirical correlation

for Nusselt number was used (Equation A.11) [136]. The non-dimensional numbers

of Reynolds (Re) and Prandtl (Pr) are necessary to calculate it [194].

Nu = 3.61 +

0.0668 ·
(
dh
l

)
·Re · Pr

1 + 0.04 ·
[(

dh
l

)
·Re · Pr

]2

3

(A.11)

Concerning the geometrical modeling approach in Modelica, the heat transfer through

the hexagonal channels is modeled as a heat transfer in a circular pipe. The equiv-

alent diameter of this pipe is calculated with the corresponding cross-section area

during the heat transfer. The equivalent cross-section in the simulated pipe must be

the same as in the channels. Equation A.12 shows the geometrical transformation.

deq,pipe =

√
3 ·
√

3 · w2 · nchan
2 · π

(A.12)

Besides, the heat storage model is discretized to represent better the temperature

progression across the heat exchanger. Along with the higher accuracy, the compu-

tational time increases. Figure 4.8 in Section 4.2.3 shows the model in Modelica. For

the model validation, two indicators are used: the root mean squared error (RMSE)

and mean average percentage error (MAPE) [17], which are applied to the supply

temperatures on the room side of the heat exchanger. The RMSE has the unit of

the measured variable, while the MAPE is expressed in percentage.

RMSE =

√
Σn (Xsim −Xmeas)

2
n

n
(A.13)

MAPE =

Σn

∣∣∣∣Xsim −Xmeas

Xmeas

∣∣∣∣
n

n
100 (A.14)

A key parameter of the model is the number of nodes of the discretization. Figure

A.18 shows the calculated RMSE between simulated and measured supply air tem-

peratures as a function of the number of nodes for the simulation with an alternating
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Figure A.18: RMSE for the supply air temperature as a function of the number of

nodes [35].

period of 60 seconds and nominal fan speed. The error stabilization occurs for the

models with six or more nodes. Therefore, simulations are carried out by modeling

the regenerator with six nodes.

Table A.6 presents the simulation results for the quasi steady-state cycles of every

parametric case. As expected, higher air speeds mean a higher heat exchanged in

both phases. Besides, a higher air speed means a lower heat recovery efficiency.

Shorter periods lead to a lower mean heat exchanged but higher efficiencies. The

principle is the same as in the analysis of the air speed: a longer cycle means that

the regenerator is closer to its heat saturation in both phases, leading to a lower

average air supply temperature, therefore a lower efficiency.

Period 60 s 180 s

Control ηHRC [%] Q̇sup [W] ηHRC [ppm] Q̇sup [W] vair [m
s

] Re [-]

50% Speed 0.77 25.3 0.76 30.6 0.40 94

100% Speed 0.71 46.7 0.63 59.0 0.89 204

Table A.6: Average simulated supply heat exchanged and heat recovery efficiency.

Figure A.19 compares the measured and simulated air temperature profiles for the

180 seconds cycle length. Asadov [20] carried out laboratory measurements of re-

generative decentralized ventilation systems, used in this thesis for the validation

process. The temperature profiles on both sides of the regenerator display an overall

adequate agreement. The initial temperature on both phases shows a slight jump

176



A Appendix

and then a linear behavior, mainly because of the direction change of the fan and the

inaccurate modeling of the flow. These temperature gaps affect the simulated heat

exchange between the airflow and the regenerator. However, the obtained results

are acceptable for the model. The achieved relative errors (MAPE) are under 10%

in every simulated case, for both fan speeds. Additionally, the model neglects radi-

ation, thermal conductivity in the heat storage, and the air velocity profile. Table

A.7 summarizes the performance indicators for the supply temperature. The model

simulates ten periods (1800 seconds) in 0.17 seconds.
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Figure A.19: Supply and exhaust temperatures for a 180 second period. Measured

and simulated profiles are compared [35].

Period 60 s 180 s

Ṫsup RMSE [◦C] MAPE [%] RMSE [◦C] MAPE [%]

50% Speed 0.57 2.26 0.31 1.61

100% Speed 1.06 6.91 1.05 7.64

Table A.7: RMSE and MAPE concerning the average supply air temperature.

To estimate the energy consumption due to ventilation in Chapter 5, an estimated

heat recovery efficiency as a function of theventilation volume flow is simulated. A

curve is then fitted using an exponential approximation. The curve is illustrated in

Figure A.20.
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Figure A.20: Approximation of the heat recovery efficiency as a function of the

ventilation volume flow.

Regarding the fan model, the data reported in the literature [57] is followed. Three

ventilation levels (associated with three different fan speeds) are given, and the

volume flow of the system was measured while variating the pressure difference on

both sides of the fan (Figure A.21). The curves in Figure 4.9 are a result of the

linear relationship between fan speed and volume flow, shown in Equation A.15.

Together with the curve, the fan is assumed to have a rising time (time to reach

99.6% of speed) of 25 seconds. The applied fan model is available in the Buildings

library [223].

nfan
nfan,nom

=
V̇fan

V̇fan,nom
(A.15)
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Figure A.21: Supply and exhaust volume flow given the fan speed and pressure

difference between room and façade. Circle points are measured supply airflow

rates and crosses are measured exhaust airflow rates [57].
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A.4 Market research

29 scientific publications related to innovative ventilation control strategies in the

last twenty years were reviewed. The search was extended to other HVAC systems

as well where the airflow rate is controlled, to obtain a better overview of the lat-

est developments applicable to ventilation systems. Table A.8 summarizes the key

properties of every paper.

� VS = ventilation system (CVS = centralized, DVS = decentralized)

� SCVS-IF = semicentralized ventilation system with individual fans.

� CAV = constant air volume, VAV = variable air volume.

� MPC = model predictive control.

� MDP = Markov decision process.
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Control Inputs Outputs

VS Ref. Scheme Algorithm Indoor Outdoor System Ventilation Others

[12] DCV -
T, RH,

Presence
- Power Volume flow Supply air T

[14] Robust control - - -
Supply and

exhaust air T

Volume flow,

damper

Supply air T,

power

[42] PID
Artificial neural

networks
T, RH, CO2 - -

Fan speed,

damper
Supply air T

[90]
Set point; State

feedback; MPC
-

T, RH,

Presence
T, RH Volume flow

Volume flow,

damper
Supply air T

[122]
Comfort range

optimization
- T, RH, CO2 - Light Volume flow Power, humidifier

[128]
On-off; PID;

State-feedback

Genetic

algorithm

T, RH, CO2,

Presence
- - Fan speed -

[129] State-feedback - CO2, Presence - - Volume flow -

[131]
Decentralized

control

Markov

decision process

T, RH, CO2,

Presence
-

Volume flow,

light
Fan speed Power, lighting

[134] DCV - CO2 CO2 - Volume flow -

[135] DCV Load shifting T, Presence T Volume flow Volume flow On-off

[137] PI
Artificial neural

networks
T, PMV - - Volume flow Power

C
e
n
tr
a
li
z
e
d

H
V
A
C

[155] Fuzzy - T, RH, CO2 T - Volume flow
Power, window

opening, lights

Continued on next page
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Table A.8 – continued from previous page

Control Inputs Outputs

VS Ref. Scheme Algorithm Indoor Outdoor System Vent. Others

[157] DCV -
Emission rate,

Presence
- - Volume flow -

[158] Set point
Genetic

algorithm
T, RH, CO2 - Volume flow Volume flow Supply air T

[159] Robust control - CO2 - - Volume flow -

[165] DCV - T - - Volume flow T set point

[171] DCV - RH, CO2 - - Volume flow -

[189] PI-based DCV - CO2 - - Dampers -C
e
n
tr
a
li
z
e
d

H
V
A
C

[230] MPC - T, thermal vote - - Fan speed -

[47]
Dynamic

control
Load shifting Presence - - Fan speed -

C
V
S

[133] DCV - RH, CO2 - - Volume flow -

[196] DCV Load shifting CO2 - Volume flow Volume flow On-off

[23] CAV - -
Wind

speed
- Fan speed -

D
V
S

[22] PID - P
Wind

speed
- Fan speed -

[108] PI -
T, RH, CO2,

VOC
- T set point Fan speed Power

Continued on next page
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Table A.8 – continued from previous page

Control Inputs Outputs

VS Ref. Scheme Algorithm Indoor Outdoor System Vent. Others

DVS [197] DCV - RH - - Volume flow -

SCVS-

IF
[124] Set point - CO2 - - Fan speed -

CVS;

DVS;

SCVS-

IF

[150] DCV - CO2, VOC - - Fan speed -

Extract [177] Fuzzy - VOC, Benzene - - Fan speed -

Table A.8: Summary of scientific literature review.183
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A.5 Support vector machines

Support vector machines (SVM) is one of the most popular supervised learning

algorithm, developed by Vapnik [211]. This classification algorithm is already ex-

tensively used in different disciplines, such as text categorization [116], heart disease

diagnosis [101], building energy consumption [234], wind speed forecasting [138], or

thermal comfort prediction [78]. In this section, the algorithm and its capabilities

are briefly introduced, following the explanation of Burges [30] and Vanderplas [210].

Let xi, yi be the training data, xi ∈ Rd. d is the dimension of the training data and

i = 1, . . . , n are the number training of data points. For the sake of simplicity, the

training points are bidimensional (d = 2). The classification has only two possible

outcomes and, therefore yi ∈ −1, 1. The data is linearly separable, as illustrated in

Figure A.22.
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Figure A.22: Linearly separable data.

Suppose the data can be linearly separated by a hyperplane, having on each side

the positive and negative (green and blue) classifications of the training data. The

vector wv, perpendicular to the hyperplane, and the constant b are defined, such as

the points x on the hyperplane satisfy wTv x+ b = 0. There are infinite hyperplanes

that can be defined under this condition. The “margin” is defined as the distance

between the hyperplane and the closest point of each side. The SVM method looks

to obtain the optimal hyperplane by maximizing the margin. For the points that lie

on the positive and negative margin, the following constraint applies:

yi · (wTv · xi + b)− 1 = 0 (A.16)
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|b|
‖wv‖ is the minimum distance from the hyperplane to the origin. Since both margins

are taken into account, the algorithms pursuits the maximization of the margin,

which is defined as 2
‖wv‖ . Therefore, the following optimization applies:

min
1

2
‖wv‖2 (A.17)

subject to yi · (wTv · xi + b)− 1 ≥ 0 (A.18)

The expected solution is illustrated in Figure A.23. The points that lie on both

margins are the calculated limits of the solution, and their presence affects directly

the obtained hyperplane. These are called the support vectors. In his publication,

Burges [30] explains in full detail the development of the mathematics of the method.
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Figure A.23: Classification after maximization of margin.

Yet in most cases, the data cannot be linearly separated. In that sense, the target

function requires a certain cost coefficient C together with the creation of slack

variables ξi, which helps to relax the constraints but only up to a certain point.

The larger the parameter C becomes, the higher the penalty associated with the

committed errors. Figure A.24 illustrates an example with two different values of this

coefficient. Equation A.17 becomes Equation A.19 for the optimization process. −ξi
‖wv‖

becomes the minimum distance between the point i and the obtained hyperplane.

min
1

2
‖wv‖2 + C

∑
i

ξi (A.19)

subject to yi · (wTv · xi + b) ≥ 1− ξi, ξi ≥ 0 (A.20)

185



A Appendix

2 1 0 1 2 3 4

1

0

1

2

3

4

5

6

7

w

C = 100000.00

2 1 0 1 2 3 4

1

0

1

2

3

4

5

6

7

w

C = 0.01

Figure A.24: Algorithm sensitivity to the cost coefficient C.

In some other cases, the points can show a clear pattern, which can only be poorly

separated by a linear hyperplane. Figure A.25 shows an example of this case.
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Figure A.25: Non-linearly separable data.

According to Burges [30], the procedure is to apply a kernel function to transform

data into a linearly separable case. One of the most popular solutions in combina-

tion with SVM classification algorithms is the gaussian radial basis function (RBF)

kernel. The Equation A.21 shows the transformation of the data, depending on the

parameter γ, which is called the Kernel coefficient. This coefficient must be positive

and can be defined by the user, to determine the degree of the transformation.

kRBF (xi, xj) = exp(−γ‖xi − xj‖2) (A.21)

Figure A.26 shows a 3D plot of the transformation of the data after applying RBF
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and the results of the classification algorithm over the transformed data. The effect

of the kernel shows that the new classification results much more accurate than the

previous one.
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Figure A.26: Data classification after RBF kernel.

In this study, the employed SVM method was taken from the LibSVM library [41],

which includes all the parameters already described. The library expands this clas-

sification method to multiclass labels using the “one-against-one” method by Knerr

et al. [123]. This strategy consists of constructing one SVM learning procedure

per class. Each one is trained to classify the samples of one class against all re-

maining classes together. The probability of being classified as a certain class is

calculated following the description of Platt [178], who fits a sigmoid function into

the class-conditional probability density and calculated the associated probability

using Bayes’ rule.

The coefficients C and γ were tuned using a grid search cross-validation process

[172]. The results obtained were C = 1000 and γ = 1, which are used for the user

preferences learning process.
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A.6 Learned user artificial comfort profiles

The following plots illustrate the progression of the learned control fields for the four

artificial user comfort profiles.
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Figure A.27: Learned profile for the

”distracted” user after 10 votes.
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Figure A.28: Learned profile for the

”distracted” user after 30 votes.
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Figure A.29: Learned profile for the

”distracted” user after 50 votes.
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Figure A.30: Learned profile for the

”distracted” user after 100 votes.

Less air user
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Figure A.31: Learned profile for the

”less air” user after 10 votes.
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Figure A.32: Learned profile for the

”less air” user after 30 votes.
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Figure A.33: Learned profile for the

”less air” user after 50 votes.
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Figure A.34: Learned profile for the

”less air” user after 100 votes.

More air user
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Figure A.35: Learned profile for the

”more air” user after 10 votes.
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Figure A.36: Learned profile for the

”more air” user after 30 votes.
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Figure A.37: Learned profile for the

”more air” user after 50 votes.
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Figure A.38: Learned profile for the

”more air” user after 100 votes.

Norm user
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Figure A.39: Learned profile for the

”norm user” after 10 votes.
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Figure A.40: Learned profile for the

”norm user” after 30 votes.
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Figure A.41: Learned profile for the

”norm user” after 50 votes.
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Figure A.42: Learned profile for the

”norm user” after 100 votes.

Random user
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Figure A.43: Learned profile for the

”random user” after 10 votes.

20 40 60 80
Relative humidity [%]

500

750

1000

1250

1500

1750

2000

Ca
rb

on
 d

io
xi

de
 [p

pm
]

-2 -1 +1 +2

Figure A.44: Learned profile for the

”random user” after 30 votes.
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Figure A.45: Learned profile for the

”random user” after 50 votes.
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Figure A.46: Learned profile for the

”random user” after 100 votes.
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A.7 Room-individual results in the ESHL
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Figure A.47: Living room learned con-

trol field.
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Figure A.48: Bedroom 2 learned control

field.
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Figure A.49: Bathroom learned control field.
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Figure A.50: Real-time evolution of the logistic regression coefficients for increasing

fan level in bedroom 1.
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Figure A.51: Real-time evolution of the logistic regression coefficients for decreasing

fan level in bedroom 1.
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Figure A.52: Real-time evolution of the logistic regression coefficients for increasing

fan level in bedroom 2.
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Figure A.53: Real-time evolution of the logistic regression coefficients for decreasing

fan level in bedroom 2.
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Figure A.54: Real-time evolution of the logistic regression coefficients for increasing

fan level in the kitchen.
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Figure A.55: Real-time evolution of the logistic regression coefficients for decreasing

fan level in the kitchen.
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Figure A.56: Real-time evolution of the logistic regression coefficients for increasing

fan level in the living room.
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Figure A.57: Real-time evolution of the logistic regression coefficients for decreasing

fan level in the living room.
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Figure A.58: Real-time evolution of the logistic regression coefficients for increasing

fan level in the bathroom.
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Figure A.59: Real-time evolution of the logistic regression coefficients for decreasing

fan level in the bathroom.
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NOMENCLATURE

Nomenclature

Latin letters

Variable Unit Definition

Adw m2 Dwelling area

Aht m2 Heat transfer area

AHamb g/kg Ambient absolute humidity

b - Constant of vector wvx+ b (SVM)

C - Cost coefficient (SVM)

Csolid kJ/kg Heat capacity of a solid

Cd - Discharge coefficient

Cp - Wind pressure coefficient

ci - Cluster centroid

CO2 ppm Carbon dioxide concentration

costel EUR/kWh Electric costs

costheat EUR/kWh Heating costs

costop EUR/kWh Operative costs

dcyl m Heat storage cylinder diameter

DCO2 - Discomfort with CO2

DRH - Discomfort with relative humidity

D(RH,CO2) - Discomfort cost function

d(x, y) - Euclidean distance between x and y

dh m Hydraulic diameter

deq m Equivalent diameter

Eel,fan kWh, el Fan electrical energy consumption

ez - Building placement coefficient

fHi/Hs
kWh, gas,Hi

kWh, gas,Hs
Inferior-superior energy factor

fp,heat
kWh, pe

kWh, gas,Hi
Heating primary energy factor

fp,elec
kWh, pe

kWh, el
Electricity primary energy factor

FLSt - Ventilation level coefficient

G - Natural logarithm of the building width and

length ratio

hair W/K m2 Air specific convection coefficient
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NOMENCLATURE

Indopt - Optimization indicator

k
dm3

s ·m2 · Pan
Flow coefficient

kair W/K m Air thermal conductivity

ksolid W/K m Heat storage thermal conductivity

kRBF - Radial basis kernel function (SVM)

lchan m Heat storage channel length

Lht m Heat transfer length

m - Mass flow exponent

mcyl kg Heat storage mass

Nu - Nusselt number

n50 h−1 air exchange rate at 50 Pa pressure difference

nc - Number of clusters

nchan - Honeycomb number of channels

OdR - Odds ratio

p - Associated probability

PD % Percentage dissatisfied

pcomf - Comfort probability

Pheat W Heating power

Pfan W Fan electric power

Pfan,nom W Nominal fan electric power

Pr - Prandtl number

Qpe,vent kWh, pe Primary energy consumption due to ventila-

tion

Qheat,vent kWh, heat Heating energy losses due to ventilation

Q̇heat W Instantaneous heat flow rate of the heating

system

Q̇HRC W Heat flux recovered

Q̇sup W Heat transfer rate in the supply phase of the

DVS

Q̇vent W Heat transfer rate due to ventilation

QHRC kWh, heat Heat energy recovered

Qsup kWh, heat Heat recovered in the supply phase of the

DVS

Re - Reynolds number

RH / RHroom % Room relative humidity

RHamb % Ambient relative humidity
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NOMENCLATURE

t s Time

Tamb
◦C Ambient temperature

Troom
◦C Room temperature

Tsolid
◦C Solid temperature

Tsup
◦C Supply temperature

twall m Regenerator wall thickness

V̇air m3/h Volume flow in the DVS

V̇fan m3/h Fan volume flow

V̇fan,nom m3/h Nominal fan volume flow

V̇inf m3/h Volume flow due to infiltration

V̇MV m3/h Volume flow due to mechanical ventilation

V̇ref m3/h Reference volume flow

V̇tot m3/h Volume flow total

V̇WO m3/h Volume flow due to window opening

Vroom m3 Room volume

VDw m3 Dwelling volume

vair m/s Channel air velocity

wchan m Heat storage channel width

wv - Direction of vector wvx+ b (SVM)

Greek letters

Variable Unit Definition

αi,j - Membership degree (Fuzzy logic)

βi - Logistic regression coefficients

∆CO2 ppm Carbon dioxide indicator

∆Pref Pa Reference pressure difference

∆RHlower % Lower relative humidity indicator

∆RHup % Upper relative humidity indicator

ηheat,boil
kWh, heat

kWh, gas,Hs
Boiler combustion efficiency

ηHRC - Heat recovery efficiency

ηvent - Ventilation effectiveness

γ - Kernel coefficient (SVM)

µ - Mean

µR - Rule degree levels (Fuzzy logic)

µo,R - Fuzzy output for each rule (Fuzzy logic)

µo - Aggregated fuzzy output (Fuzzy logic)
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NOMENCLATURE

ρair kg/m3 Air density

ρsolid kg/m3 Solid density

σ - Standard deviation

θ rad Wind angle

ξi - Slack variables (SVM)

Acronyms

Acc Accuracy

ACH Air changes per hour

ACS Average state changes

AIVC Air, Infiltration and Ventilation Centre

AFN Airflow network

ARBA Automatic room balancing algorithm

ASHRAE American Society of Heating, Refrigerating and Air-

conditioning Engineers

CCV Constant controlled ventilation

CFD Computational fluid dynamics

CO2 Carbon dioxide concentration

DCV Demand controlled ventilation

DI Dunn index

DIN Deutsches Institut für Normung (German Institute for

Standards)

DNS Day-night score

DT Decision tree classifie

DVS Decentralized ventilation systems

ELA Effective leakage area

EPBD Energy performance of buildings directive

ESHL Energy smart home lab

FMI Functional mock-up interface

FMU Functional mock-up unit

FN False negatives

FP False positives

GPC Gaussian process classifier

HCS Hour change score

HMI Human-machine-interface

HMM Hidden Markov model
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NOMENCLATURE

HRC Heat recovery systems

HVAC Heat, ventilation and air conditioning

IAQ Indoor air quality

IEQ Indoor environmental quality

IoT Internet of Things

LogR Logistic regression classifier

LR Learning rate

MAPE Mean absolute percentage error

MFB Multifamily building

MV Mechanical ventilation

NB Gaussian näıve bayes classifier

OB Occupant behavior

Occ Occupancy

PD Percentage dissatisfied

PHI Passive House Institute

PPV Positive predictive value

RBF Radial basis function

RF Random forests classifier

RMSE Root mean squared error

RH Relative humidity

SBS Sick building syndrome

SEC Specific energy consumption

SFP Specific fan power

SS Seasonal score

SVM Support vector machines classifier

TN True negatives

TP True positives

TPR True positive rate

VOC Volatile organic compounds

WkS Weekend Score

WO Window opening
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