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Abstract

The goal of this thesis is to instantiate random oracles without losing security proven

in the random oracle model. It is well known that this is not possible with any function

family, as rst shown by Halevi et al. (IACR’1998). Therefore, we will resort to interaction,

but reduce the overhead created by it as well as we can.

In order to keep the interaction needed to a minimum, we introduce a novel ideal model

called veriable random oracle model. In addition to a random oracle RO, this model

also includes a verication oracle, which for input (𝑥, ℎ) returns 1 if RO(𝑥) = ℎ and 0

otherwise. We then continue to present two concrete instantiations for veriable random

oracles, one of which does not use trusted parties. Additionally, we reduce the network

overhead (i.e. combined message size needed).

When used with the Fiat-Shamir transformation, these instantiations preserve the simula-

tion-sound extractability property. The prover of the Fiat-Shamir transformation unfortu-

nately loses its non-interactivity. However, the verier remains non-interactive, as the

instantiations for the verify oracle are non-interactive. The proofs for these claims make

up a signicant part of this thesis.
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Zusammenfassung

Ziel dieser Arbeit ist es, RandomOracle zu instanziieren, ohne dabei Sicherheit zu verlieren,

die im Random Oracle Modell bewiesen wurde. Das dies mit Funktionsfamilien nicht geht

ist eine wohl bekannte Aussage, die zuerst von Halevi et al. (IACR’1998) gezeigt wurde. Wir

werden aus diesem Grund auf Interaktion zurückgreifen, aber versuchen, den erzeugten

Overhead möglichst zu reduzieren.

Um möglichst wenig zu Interagieren führen wir ein neues ideales Modell mit Namen

Veriable Random Oracle ein. Dieses Modell bietet zusätzlich zum Random Oracle ein

Verikations-Orakel, welches bei Eingabe (𝑥, ℎ) 1 ausgibt, falls RO(𝑥) = ℎ und anderenfalls

0. Wir stellen danach zwei konkrete Instanziierungen für Veriable Random Oracle vor,

von denen eine keine vertrauenswürdige Party benötigt. Zusätzlich reduzieren wir den

Netzwerk-Overhead (also die Gesamtgröße der verwendeten Nachrichten).

Wenn wir unsere Instanziierungen zusammen mit der Fiat-Shamir Transformation verwen-

den, bleibt die Simulation-Soundness Extractability Eigenschaft erhalten. Der Beweiser der

Fiat-Shamir Transformation verliert leider seine nicht-Interaktivität. Der Verizierer bleibt

jedoch Nicht-interaktiv, da die Instanziierungen des Verikations-Orakels nicht-interaktiv

sind. Die Beweise für diese Behauptungen bilden einen signikanten Teil dieser Arbeit.
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1 Introduction

Our steps to nd an instantiation for random oracles are motivated in section 1.1. After-

wards, in section 1.2 we set a concrete, detailed goal. We present existing research with a

similar focus in section 1.3, and summarize our contribution in section 1.4.

1.1 Motivation

The random oracle model was rst explicitly mentioned in 1993 [3]. Whether or not

security in the random oracle model can indicate security in practice has been discussed

ever since. In this section we will explain how these discussions, and the problem with

random oracles at their core, motivate this thesis.

The RandomOracle Model A random oracle implements a function randomly drawn from

all functions with a suitable domain and codomain, usually {0, 1}∗ → {0, 1}𝑙 for some

length 𝑙 depending on the context. In the random oracle model (ROM), all parties have

access to a random oracle. In order to translate a scheme from the ROM to other models,

the random oracle in most cases is replaced by a family of hash functions. Because of this,

random oracles are often viewed as over-idealisations of the functionality of cryptographic

hash functions.

The Discussion about the RandomOracle Model The existence of a random oracle is a very

strong assumption. In fact Halevi et al. demonstrated the existence of schemes secure

in the ROM but insecure for any family of functions replacing the random oracle [20].

Critics of the ROM therefore argue that the ROM is an unt heuristic for the security of

cryptographic hash functions, and can at most be used as a sanity check. Advocates reply

that in 20 years of practice not a single scheme has been successfully attacked as a result

of this discrepancy [23]. They argue that all schemes broken because of their use of a

random oracle in their proof of security are articially constructed. For example, the rst

such scheme [20] has a case that can never occur in the ROM designed to publish the

private key.

Programmability On top of that, there are many cases where random oracles have been

given additional properties. The most common of these properties is programmability. In
security reductions for chosen inputs the output of a programmable random oracle can be

dictated by an adversary or other designated party. There are cases where hash functions

with limited programmability provide security in the standard model [31, 21]. However,

programmability cannot be achieved in the standard model in general, which worsens the

discrepancy between security in the ROM and standard model.

1



1 Introduction

Our Approach All negative results about bringing security from the ROM to the standard

model (e.g. [20, 1, 18]) are based on replacing the random oracle with a family of functions.

Fortunately there are other structures that can be used. In this thesis we analyse the use

of interactive protocols to sidestep these negative results. This is often undesired, as it

entails the use of a public party and the necessity to be online. However this can still be

relevant in cases where proven security is of high importance.

TheFiat-ShamirTransformation The Fiat-Shamir transformation [16] was introduced as an

ecient identication scheme supporting multiple users and without requiring interaction

or shared public keys. Since then, dierent versions of the Fiat-Shamir transformation

have been used in various other scenarios. In fact there are so many results even a quick

search yields research about

• security of the scheme, including for post-quantum settings [6, 15, 11, 29, 14, 24],

• signature schemes with additional functionality or properties [4, 2, 26, 27],

• smartcard and passport implementations of the scheme [12, 22],

• variants and similar schemes [17, 5, 28].

Especially the use as ecient non-interactive, zero-knowledge proof system gave the

Fiat-Shamir transformation appeal across a wide variety of use cases.

Security of the Fiat-Shamir Transformation A variant of the Fiat-Shamir transformation

is secure in the random oracle model [6] with programmability. However, at least some

instances are not secure for any function family used
1
[18]. Because of its popularity

and lack of proven security in the standard model the Fiat-Shamir transformation is a

tting scenario for us to further investigate. We will use the notion of simulation-sound

extractability as a benchmark for our results. All protocols introduced in chapter 3 of this

thesis will preserve this property when replacing the random oracle. A formal denition

of all important notions can be found in chapter 2.

Optimization One of the important benets of the Fiat-Shamir transformation is its non-

interactivity. We will unfortunately lose this trait, when instantiating the random oracle

with an interactive protocol. However, we will keep the interaction as limited as possible.

In order to do so, we make it possible to verify values returned by the random oracle

without interaction. Formally, we will add a second ideal functionality to the random

oracle model, and introduce the novel notion of veriable random oracles. This change
helps to reduce the number of calls to the RO. We will further reduce the amount of

interaction by reducing the size of messages sent.

1
Strictly speaking these results concern dierent notions of security (namely simulation-sound extractability

and simulation soundness). The negative result still raises the question whether or not the security of

the Fiat-Shamir transformation should be trusted in practice.
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1.2 Goal

1.2 Goal

The goal of this thesis is to nd an instantiation of the random oracle used in the simulation-

sound extractability proof of the Fiat-Shamir transformation (see section 2.3). In the

rst step we will introduce veriable random oracles and use them to replace random

oracles. This step is taken to make more ecient instantiations possible. We then try to

nd an instantiation which preserves the security of the original ROM proof with only

small adjustments to the proof. A noteworthy challenge of this goal is the modelling

of programmability for the instantiation. These instantiations will contain one or more

additional parties, which provide the functionality of the veriable random oracle. The

remainder of this section describes additional desired qualities. After presenting the rst

instantiation we will adapt it in order to optimize these qualities. We will also prove any

claims made about the security of our instantiations.

Weaken Assumptions A common way to describe a random oracle is through a lazy-

evaluating, trusted party. This is technically a secure instantiation of a random oracle.

However, having a trusted party is an utopian assumption. Therefore, our goal is to nd an

instantiation with assumptions which are as weak as possible. We will still rely on trusted

parties at rst, in order to have a simpler example. The combination of programmability

and the possibility of compromised parties was one of the harder challenges to gure out

and adds the most complexity to the instantiation.

Reducing the Network Overhead As described before, we want to minimize the amount

of network overhead created by our instantiation. This not only includes the amount of

queries to the veriable random oracle. It also means minimizing

• the amount of rounds needed to answer one query,

• the combined size of messages sent, and

• the amount of messages between dierent parties of the veriable random oracle,

and the combined size of these messages.

We will also reason about lower bounds for these quantities, though not in a formal

manner.

1.3 RelatedWork

In general, random oracles cannot be instantiated with function families as proven by

Halevi et al. [20]. Apart from this negative result, and the surrounding discussion, there

are surprisingly few results about instantiating random oracles. In this section we discuss

related research.

Verifiable Random Functions Veriable random functions were rst introduced by Micali

et al. [25] and rst implemented by Dodis [13]. Their core idea is very similar to our

notion of veriable random oracles. Veriable random functions can be used to instantiate

random oracles with the help of an additional party, and there are distributed variants

[13] to tackle corruption. However, due to the deterministic nature of veriable random

functions it is not possible to program them.
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1 Introduction

Simulatable Verifiable Random Functions There are also veriable random functions that

include a simulator which can generate real looking proofs [9]. With these simulated

proofs it is possible to convince other parties of values dierent from the honest computed

ones. This can in some scenarios replace programmability, but requires a setup with

trusted party.

Trusted Party Implementation There are rare cases, where random oracles can be realized

with the use of a trusted party. For example, a trusted platform module could provide

a (pseudo) random oracle to the system it is part of [19]. This is interesting, as out

instantiations could be used in similar setups.

1.4 Contribution

We introduce a novel notion of veriable random oracles which are a variant of random

oracles that output a proof of correct evaluation alongside the random query result. This

notion is then used to reduce overhead of queries to instantiations of the oracle. Next,

we present instantiations of a veriable random oracle which preserve security proven in

the ROM, even if programmability is required. New proofs of security can be gained by

slightly adjusting the ROM proof to account for the dierent structure of the veriable

random oracle.

Our nal instantiation uses four parties and is secure if at most one of them is corrupted

(or faulty). This instantiation can be generalized to allow for any number 𝑛 of corrupted

parties, but requires a signicant amount of total parties (3𝑛 + 1). We also demonstrate the

capability of our instantiations by providing proofs for the simulation-sound extractability

property of the Fiat-Shamir transformation. These proofs only need small adjustment

to the respective proof in the ROM. In general, simulation-sound extractability could

previously not be transferred to the standard model.
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2 Preliminaries

In this chapter we will explain any formal notations and notions needed to understand

the content of this thesis. We begin in section 2.1 with the foundations, and introduce

the Fiat-Shamir transformation which is central to the thesis afterwards in section 2.2. In

section 2.3 we explain and prove an important property of the Fiat-Shamir transformation,

namely simulation-sound extractability. This property and its proof is used throughout

this thesis as important use case.

2.1 Basic Definitions and Notation

This section explains the mathematical foundations used in this thesis, and covers impor-

tant notations. Anyone familiar with theoretical computer science, especially cryptography,

can likely skip this section.

Security Parameter Throughout the paper we will often implicitly talk about a security

parameter 𝜆. The security parameter is a natural number which indicates the asymptotic

security of a cryptographic scheme. The higher 𝜆 is, the lower the probability of any

adversary breaking the security of the scheme. Use of such a parameter, as well as omitting

it, is common practice. Usually, cryptographic schemes have a setup algorithm Setup(𝜆)
dependent on 𝜆, that outputs descriptions of all other algorithms of the scheme. We also

sometimes chose a concrete member 𝑓𝜆 of a family of e.g. functions 𝐹 with 𝜆. We can

arbitrarily x the security parameter and with it the algorithms output by Setup. Security
properties might still be dependent on 𝜆, e.g. through the use of negligible functions as

described in the next paragraph.

Polynomial, Negligible, andOverwhelming We call a function 𝑓 polynomial (in the security
parameter), if there is a polynomial 𝑃 such that 𝑓 (𝜆) ≤ 𝑃 (𝜆) for any 𝜆 ∈ N. We call 𝑓

negligible (in the security parameter), if there exists a point 𝑛 so that for all 𝜆 ≥ 𝑛 it holds

that 𝑓 (𝜆) ≤ 1

𝑃 (𝜆) . Furthermore, we call 𝑓 overwhelming (in the security parameter), if

there exists a negligible function 𝑔 so that 𝑓 (𝜆) ≥ 1 − 𝑔(𝜆) for any 𝜆 ∈ N. It will become

apparent in the rest of this section how we use these three properties.

Algorithms In our model of computation all algorithms are Turing machines. However

we will abstract from that fact, as is common in literature. Algorithms, like functions, have

an input and an output. However, algorithms may use randomness which may result in

dierent outputs for identical inputs. Most algorithms in this thesis run in polynomial time,

meaning the maximum amount of steps taken is restricted from above by a polynomial

in 𝜆. We will call such algorithms probabilistic polynomial time (PPT) algorithms. The

notation for the result of an algorithm A with input 𝑥 is A(𝑥), similar to the notation of

functions. We will dene algorithms through step-by-step instructions called their code.

5



2 Preliminaries

Parties and Interaction All entities taking part in a cryptographic scheme are modelled

as parties. A party knows one or more algorithms which they can execute, and has a

memory shared between all of them. We model the memory as a map and write mem[𝑥]
for access to storage location 𝑥 . Parties can provide interfaces to other parties to dene

possible interactions. Other parties can call such an interface by sending a message. The

providing party then executes an algorithm linked to the interface with the input specied

by the call message, and sends a message with the answer back to the caller. We often do

not distinguish between a party, an interface, and an algorithm, unless it is necessary to

prevent ambiguity. Otherwise we write P.A(𝑥) for the interface executing algorithm A
with input 𝑥 on party P.

Protocols We also allow two algorithms of dierent parties to send messages between

each other before making an output. Behaviour of such codependent algorithms is dened

in protocols. The sequence of all messages of a protocol is called a transcript. We write

〈A(𝑥),B(𝑦)〉 for the output of the protocol between algorithms A and B with inputs

𝑥 and 𝑦 respectively. This notation will also be used with sets of algorithms, simply

meaning all algorithms of the set take part in the protocol. During a protocol, we also

write 𝑥 ← B(𝑦) meaning 𝑦 is sent to B, and the answer is stored in 𝑥 . We use← instead

of = to clarify the call is part of a protocol.

Game Based Security Notions of security are often described with the help of games.

Games dene a situation in which multiple parties interact. They include an arbitrary but

xed adversary and dene a condition in which the adversary wins. We will present games

in the form of algorithms executing the specied interaction, returning 1 if the adversary

won, and 0 otherwise. At the beginning of a game, the randomness of all participating

parties is uniformly chosen. We denote a uniform choice for 𝑥 from elements of the set 𝑆 as

𝑥
$← 𝑆 . A scheme is secure if for all adversaries the probability (taken over all randomness)

to win the game is negligible.

Game Hops Sometimes it is easier to prove security for a game that is slightly dierent

then the one stated in the security notion. In such a case, one can make an additional

proof showing that the probability of dierent outcomes in the two games is negligible.

This strategy is called making game hops, as you can create a sequence of these games

and “hop” from one to the next. We use game hops to take complexity out of long proofs.

Black Box Access and Oracles The sort of interaction, where a party provides an input and

receives an output without knowing the process in between is called black box access. For
example, parties providing interfaces provide black box access to the associated algorithm.

We denote thatA has black box access to B asAB . Black boxes can be described with the

properties of the provided functionality rather than concrete code. This is possible, even if

no code has the specied properties. For this reason, we call entities providing black box

access to such a functionality an oracle. Oracles are useful tools in security proofs.

Rewindability In addition to regular access to a black box, a party can have rewinding
access to a black box. This allows a party to undo steps of the execution of the black box

(without it noticing or remembering). In this thesis, we model this ability by allowing to

restart the interaction. These denitions are equivalent, as the interaction can be replayed

6



2.2 The Fiat-Shamir Transformation

from the start to any point
1
. The intention is to have control over the algorithm in the

black box without knowing its code.

RandomOracles and Programmability The most common oracle in cryptography is the

random oracle. Random oracles behave like a function randomly drawn from the set

of all functions with a suitable domain and codomain, and are often used to idealize

cryptographic hash functions. In the random oracle model (ROM) all parties have access

to the same random oracle. Sometimes, a party is allowed to control a random oracle

by dictating its output. We refer to this as programming the oracle. In most cases a

programming party acts exactly like the random oracle with only few exceptions. Therefore,

we specify the behaviour of a programmed random oracle by specifying the dierence to

the non-programmed random oracle. We write RO.prgm(𝑥, ℎ) if the result of RO on input

𝑥 is changed to ℎ.

Trusted Parties and Corruption Some security notions can give the adversary the ability

to corrupt one or more parties. Corruption happens once at the beginning of a game and

follows rules dened by the security notion. The only rules used in this paper limit the

number of corrupted parties. A corrupted party shares all information with the adversary.

It does not make decisions, but passes all messages to the adversary, who can dictate the

answers. Parties which cannot be corrupted are called trusted parties. It is possible, but

not necessary for an untrusted party to be corrupted.

Bottom and Timeouts An algorithm can return a special symbol ⊥ (named bottom) to

signal it is not able to make a successful output. When dening algorithms, we often ignore

the possibility of receiving ⊥ as result of calls. If an algorithm would do any computation

with ⊥, it implicitly returns ⊥ as well, or 0 if it is some kind of verication algorithm. This

makes algorithms easier to understand by focusing on their intended behaviour. We also

want to consider the possibility of parties not giving an answer due to being corrupted or

otherwise faulty. In practice such behaviour would be handled by timeouts. We instead

model receiving no answer as another special symbol timeout. The error handling for

timeout works the same as for ⊥.

2.2 The Fiat-Shamir Transformation

This section introduces sigma protocols and zero-knowledge proofs. It explain how the

Fiat-Shamir transformation changes sigma protocols to be zero-knowledge.

SigmaProtocols Sigma protocols (or Σ-protocols) [10] are a way for a prover P to convince

a verier V of a statement 𝑥 . The important part is that P does not give V enough

information to prove 𝑥 to other parties. In order to achieve this, P gains an additional input

𝑤 called witness for 𝑥 . In the protocol, P sends a commitment a to V to receive a challenge

𝑐 . Pwill then send a response 𝑧 to V, who outputs either 1 to accept the proof, or 0 to reject
the proof. The reason, why V cannot reuse the proof to convince other parties is that these

parties will most likely choose another challenge 𝑐′ that V is not able to answer. Formally,

1
This may take polynomially more time then undoing one or more steps, which is of no concern in this

paper.
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2 Preliminaries

this property is described as a simulator Sim with the ability to create real looking proof

conversations.

Denition 1 (Sigma Protocol). Let

• 𝑅 ⊆ 𝑋 ×𝑊 be a witness relation,

• 𝐿𝑅 = {𝑥 ∈ 𝑋 | ∃𝑤 ∈𝑊 .(𝑥,𝑤) ∈ 𝑅} be the associated language,

• P and V be interactive, stateful PPT algorithms, and

• 𝐶 be a set called challenge space.

For public input 𝑥 ∈ 𝑋 , and input𝑤 ∈𝑊 to P, the interaction between the two algorithms
has the following form:

P(𝑥,𝑤) V(𝑥)
a

𝑐
𝑐

$← 𝐶

𝑧 return Vfy(𝑥, (a, 𝑐, 𝑧))

where Vfy takes a potential word 𝑥 and a transcript as inputs and maps them to 1 or 0,
accepting or rejecting the proof respectively. The tuple (P,V) is called Σ-protocol for 𝑅, if the
following properties are fullled:

• Completeness: For all input values (𝑥,𝑤) ∈ 𝑅 the honest prover will always convince
the honest verier i.e. 〈P(𝑥,𝑤),V(𝑥)〉 = 1.

• Special Soundness: There exists a polynomial-time extractor Ext that given a word
𝑥 and two accepting transcripts (a, 𝑐, 𝑧) and (a, 𝑐′, 𝑧′) with equal commitments but
dierent challenges (𝑐 ≠ 𝑐′) always outputs a witness𝑤 ∈𝑊 such that (𝑥,𝑤) ∈ 𝑅.

• Special Honest-Verier Zero-Knowledge: There exists a PPT simulator Sim that, given
𝑥 ∈ 𝑋 and 𝑐 ∈ 𝐶 , always outputs a and 𝑧 such that (a, 𝑐, 𝑧) has the same distribution
as transcripts between the honest P and V.

We will also often require Σ-protocols to have a super-polynomial challenge space and the

strict soundness property as introduced by Unruh [30], meaning for all 𝑥 , a, and 𝑐 there is
at most one verifying 𝑧 i.e.

∀𝑥, a, 𝑐 .Vfy(𝑥, (a, 𝑐, 𝑧)) ∧ Vfy(𝑥, (a, 𝑐, 𝑧′)) ⇒ 𝑧 = 𝑧′.

8



2.2 The Fiat-Shamir Transformation

Zero-Knowledge One potential shortcoming of the Σ-protocol is that the simulator only

works for the honest verier. Use of malicious veriers may break the zero-knowledge

property and give additional information about 𝑥 (other than 𝑥 ∈ 𝐿𝑅). A protocol needs to

have a simulator for each verier in order to be zero-knowledge.

Denition 2 (Zero-Knowledge). Let

• 𝑅 and 𝐿𝑅 be dened as in denition 1, and

• P and V be interactive, stateful PPT algorithms with the completeness property of
denition 1.

(P,V) is called a zero-knowledge proof system (ZK) if for each malicious PPT verier V∗

there exists a PPT simulator SimV∗ that, given 𝑥 , always outputs a transcript that has the
same distribution as transcripts between P and V∗.

The upcoming Fiat-Shamir transformation changes a Σ-protocol in a way that makes it

zero-knowledge in the ROM when giving SimV∗ programming access to the random oracle.

The Fiat-Shamir Transformation Fiat and Shamir were the rst to transform a Σ-protocol
to create an one-round (non-interactive) zero-knowledge proof system [16]. Since then,

some variants and similar transformations like the Fischlin transformation [17] have been

published. In this thesis we will use the strong Fiat-Shamir transformation as described

by Bernhard et al. [6]. It replaces the challenge from the Σ-protocol by querying (𝑥, a) to
a random oracle, instead of V drawing it. As P can now compute the challenge itself, no

interaction with V is needed anymore.

Denition 3 (Fiat-Shamir Transformation). Let

• Σ = (PΣ,VΣ) be a Σ-protocol,

• SimΣ be the special honest-verier zero-knowledge simulator of Σ,

• RO : 𝑋 ×𝐴→ 𝐶 be a random oracle, and

• Vfy be the algorithm VΣ uses to verify.

The Fiat-Shamir transformation of Σ (𝐹𝑆 (Σ)) in the random oracle model is dened by these
two polynomial time algorithms:

P(𝑥,𝑤):
1 : a← PΣ (𝑥,𝑤)
2 : 𝑐 = RO(𝑥, a)
3 : 𝑧 ← PΣ (𝑐)
4 : return (a, 𝑐, 𝑧)

V(𝑥, (a, 𝑐, 𝑧)):
1 : if 𝑐 ≠ RO(𝑥, a):
2 : return 0

3 : return Vfy(𝑥, (a, 𝑐, 𝑧))

9



2 Preliminaries

Sim(𝑥):
1 : 𝑐

$← 𝐶

2 : (a, 𝑧) = SimΣ (𝑥, 𝑐)
3 : RO.prgm((𝑥, a), 𝑐)
4 : return (a, 𝑐, 𝑧)

Figure 2.1: The zero-knowledge simulator for the Fiat-Shamir transformation.

In denition 3, P and V are not described through their interaction, as there is only a single

message from P to V. Instead, V receives the output of P as an input. This non-interactive

nature of the Fiat-Shamir transformation is an important advantage over interactive

schemes, as it can be utilized in more settings. It is also the reason why it is ZK, as the
verier does not make decisions anymore, and therefore malicious veriers cannot diverge

from the honest one. However, the simulator needs programming access to RO in order to

work, as shown in gure 2.1.

2.3 Simulation-Sound Extractability

A very strong property of the Fiat-Shamir transformation is simulation-sound extractability
[6]. It is a combination of the two properties simulation soundness and extractability. Here
are intuitive descriptions of them, before we go into the formal denition of simulation-

sound extractability:

Extractability. AZK proof system is extractable if there exists an algorithm called extractor

that can output witnesses using access to any successful malicious prover. You may think

about extractability this way: Any successful malicious prover has the ability to compute

witnesses.

Simulation Soundness. A ZK proof system is simulation sound, if no PPT adversary with

access to the ZK-simulator can forge proofs for false statements with more then negligible

probability.

Simulation-sound extractability combines these properties as follows: The extractor of the

extractability denition uses an adversary for simulation soundness instead of a malicious

prover. The formal denition is phrased in a way that the adversary only wins if it is not

possible to extract a witness from it:

Denition 4 (Simulation-Sound Extractability in the ROM). Let

• RO be a random oracle,

• Π be a ZK proof system, and

• Sim be the ZK-simulator of Π.

10



2.3 Simulation-Sound Extractability

Π is simulation-sound extractable (SSE) in the random oracle model if there exists an
extractor Ext for which no PPT adversaryA can win the following game with non-negligible
probability, and the expected runtime of Ext in the game is polynomial.

Game SSE:

1 : (𝑥, 𝜋) = ASim,RO()
2 : 𝑀 = {(𝑥, 𝜋) | Sim(𝑥) returned 𝜋 to A}
3 : 𝑤 = ExtA,RO(𝑥, 𝜋)
4 : return Vfy(𝑥, 𝜋) ∧ (𝑥, 𝜋) ∉𝑀 ∧ (𝑥,𝑤) ∉𝑅

In this game, Ext has rewinding access to A and can program RO. Additionally, whenever
A is being rewound, Sim rewinds with it, and both algorithms use the same randomness as
before.

A successful adversary needs to forge a new proof for some 𝑥 in a way that the extractor

is unable to nd a witness for 𝑥 . Again, you might think about this property the following

way: There is no successful attack using a zero knowledge simulator that could not also

nd a witness. This directly implies soundness, as nding a witness𝑤 for a value not in

the language 𝑥 ∉ 𝐿 is not possible.

Simulation-Sound Extractability of the Fiat-Shamir Transformation Over the course of

the thesis, we will refer back to the following theorem 1 and its proof, as we use it as

an example for the application of our results. To be more precise, we will replace the

random oracle in the proof with our veriable random oracle instantiations and prove the

preservation of simulation-sound extractability. The main ideas for the proof come from

the forking lemmas of Bellare et al. [2] and Bootle et al. [8]. However, as there are many

similar, but non-equivalent notions of simulation-extractability, it was necessary to create

a detailed proof for the version we use.

Theorem 1. The Fiat-Shamir transformation of a strictly sound Σ-protocol with super-
polynomial challenge space is simulation-sound extractable in the random oracle model.

The Extractor The extractor Ext used in the following proof utilizes the special soundness

extractor ExtΣ required of the underlying Σ-protocol. When given a statement 𝑥 with two

accepting transcripts with the same commitment and dierent challenges, ExtΣ outputs
a witness for 𝑥 . The rst of the transcripts used by Ext to obtain the witness is the one

the adversary outputs in the initial run. The second transcript is gained from additional

executions of A after carefully reprogramming the random oracle as described in gure

2.2. For technical reasons of the proof of theorem 1, Ext tries at most

√︁
|𝐶 | times to nd

a second accepting transcript. The set 𝑀 contains all outputs of Sim to A in the initial

run, as in Game SSE. Ext can compute𝑀 by simply restarting A and Sim and executing

the initial run again. Before every execution of line 6, Ext restarts A and Sim, so the

only dierence to the initial run is the value of RO(𝑥, a). Therefore, all runs of A diverge

only after RO(𝑥, a) is queried for the rst time. Ext nds the required second transcript

by executing A with dierent values for RO(𝑥, a) until a second challenge is answered

successfully. It remains to be shown that Ext runs in expected polynomial time and the

probability of any A succeeding is negligible.
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ExtA,RO(𝑥, (a, 𝑐, 𝑧)):
1 : if ¬V(𝑥, (a, 𝑐, 𝑧)) ∨ (𝑥, (a, 𝑐, 𝑧)) ∈ 𝑀 :

2 : return ⊥ # A failed

3 : do (max

√︁
|𝐶 | times):

4 : 𝑐
$← 𝐶

5 : RO.prgm((𝑥, a), 𝑐)
6 : (𝑥 ′, (a′, 𝑐 ′, 𝑧 ′)) = ASim,RO()
7 : until 𝑥 ′ = 𝑥 ∧ a′ = a ∧ V(𝑥 ′, (a′, 𝑐 ′, 𝑧 ′))
8 : return ExtΣ (𝑥, (a, 𝑐, 𝑧), (a, 𝑐 ′, 𝑧 ′))

Figure 2.2: The extractor used in the SSE proof for the Fiat-Shamir transformation.

Some additional Setup In the two following proofs, we will x the randomness used by

A and Sim to arbitrary values. All probabilities are taken over the randomness of RO and

the choice of 𝑐 in line 4 of the extractor. Let 𝑐𝑖 be the result of the 𝑖-th query to RO. Because

RO is uniformly random, its randomness can be depicted as a sequence of unique random

choices R = (𝑐1, . . . , 𝑐P), one for each query
2
. P is the maximum number of queries made

to RO, and is polynomial, as all algorithms able to send queries are polynomially time

bound. For any choice 𝑐𝑖 , we can then split the probability of any event E by explicitly

going over one or more of the P choices:

Pr[E] =
∑︁
𝑐∈𝐶

Pr[𝑐𝑖 = 𝑐] · Pr[E | 𝑐𝑖 = 𝑐 ]

We will do so later for all but one 𝑖 , which is why we introduce some notation for it now.

Let

• R𝑖 = (𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐P) be the randomness of RO except for the choice of 𝑐𝑖 ,

• EinitA is successful in the initial run of Game SSE i.e. Vfy(𝑥, 𝜋) ∧ (𝑥, 𝜋) ∉ 𝑀 (see

denition 4), and

• EinitA,𝑖
be the event of A being successful in the initial run and answering challenge 𝑐𝑖 .

Lemma 1. Ext runs in expected polynomial time.

Proof. The maximum amount of time any line of Ext takes to execute is polynomial. With

exception of the loop, every line is executed at most once. Therefore, it suces to prove

that the expected number of loop iterations E[I] is polynomial. The loop is only reached

if A is successful in the initial run. We can therefore state

E[I] = Pr

[
EinitA

]
· E

[
I
�� EinitA ]

.

2
If a query (𝑥, a) is made to RO multiple times, only the rst is represented by a choice 𝑐𝑖 .
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2.3 Simulation-Sound Extractability

We can split this expression into a sum over the index of the successfully answered

challenge 𝑐𝑖 , and then over all randomness of RO except for 𝑐𝑖
3
:

E[I] =
P∑︁
𝑖=1

Pr

[
EinitA,𝑖

]
· E

[
I
��� EinitA,𝑖

]
=

P∑︁
𝑖=1

∑︁
C𝑖∈𝐶P−1

Pr[R𝑖 = C𝑖] · Pr
[
EinitA,𝑖

���R𝑖 = C𝑖

]
· E

[
I
���R𝑖 = C𝑖 ∧ EinitA,𝑖

]
(2.1)

The value E
[
I
���R𝑖 = C𝑖 ∧ EinitA,𝑖

]
is the expected number of loop iterations in the case where

most randomness of RO is xed (R𝑖 = C𝑖 ) andA successfully answered 𝑐𝑖 in the initial run

(EinitA,𝑖
). Executions of A initiated by Ext will use the same randomness as the initial run.

The only dierence is that 𝑐𝑖 gets programmed randomly. This situation can be described

by R𝑖 = C𝑖 . Part of the loop exit condition (𝑥′ = 𝑥 ∧ a′ = a) can be interpreted as A
answering 𝑐𝑖 . The reason for this is the xed randomness. We know that runs can only

diverge after the 𝑖-th query to RO has been answered with 𝑐𝑖 , as this is the rst step in the

execution with unxed randomness. The rest of the exit condition, i.e. V(𝑥′, (a′, 𝑐′, 𝑧′)),
ensures that the reply to 𝑐𝑖 was successful. As there is a second break condition (max

√︁
|𝐶 |

iterations), we conclude that in each iteration, the probability to exit the loop is greater

or equal to Pr

[
EinitA,𝑖

���R𝑖 = C𝑖

]
. The expected number of loop iterations can be expressed

recursively using the probability to exit the loop by

E
[
I
���R𝑖 = C𝑖 ∧ EinitA,𝑖

]
≤ 1 +

(
1 − Pr

[
EinitA,𝑖

���R𝑖 = C𝑖

] )
· E

[
I
���R𝑖 = C𝑖 ∧ EinitA,𝑖

]
,

which simplies to

E
[
I
���R𝑖 = C𝑖 ∧ EinitA,𝑖

]
≤ 1

Pr

[
EinitA,𝑖

���R𝑖 = C𝑖

] .
By substituting this result into equation 2.1 we obtain

E[I] ≤
P∑︁
𝑖=1

∑︁
C𝑖∈𝐶P−1

Pr[R𝑖 = C𝑖] · Pr
[
EinitA,𝑖

���R𝑖 = C𝑖

]
· 1

Pr

[
EinitA,𝑖

���R𝑖 = C𝑖

]
=

P∑︁
𝑖=1

∑︁
C𝑖∈𝐶P−1

Pr[R𝑖 = C𝑖]

=

P∑︁
𝑖=1

1

= P.

As P is polynomial, so is the expected runtime of Ext. �
3
This argument makes the implicit assumption that 𝑐 used by the answer of A in the initial run was

received from RO and not guessed. We will attend to the corner case, in which this is not the case, after

we nish the rest of the proof for theorem 1 at the end of this section.
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Lemma 2. The probability of A succeeding in Game SSE is negligible.

Proof. In order for A to win Game SSE it has to succeed the initial run, and Ext has to
fail in nding a witness. Ext can only fail, if

1. the loop is exited because

√︁
|𝐶 | iterations have been reached, or

2. the loop is exited with “colliding challenges” 𝑐 = 𝑐 .

Let us consider for a moment an extractor Ext′ that does not stop after
√︁
|𝐶 | loop iterations.

The prior proof implies that the expected number of loop iterations E[I′] for Ext′ is also
polynomial. By Markov’s inequality we can derive that

Pr

[
I′ ≥

√︁
|𝐶 |

]
≤ E[I

′]√︁
|𝐶 |

.

This is the exact probability of Ext exiting the loop because

√︁
|𝐶 | iterations have been

reached. It is negligible, as E[I′] is polynomial and

√︁
|𝐶 | is super-polynomial. It remains to

be shown that the probability of a collision 𝑐 = 𝑐 is negligible. This probability is at most

the probability of drawing 𝑐 out of 𝐶 with

√︁
|𝐶 | tries. As each try has a success chance of

1

|𝐶 | we get a probability of at most √︁
|𝐶 |
|𝐶 | =

1

|𝐶 |

for such a collision. Because the challenge space is super-polynomial, we can derive that

this probability is also negligible. Therefore, the probability of A winning Game SSE is

negligible. �

In the proofs of both lemmas, we made the implicit assumption, thatA only answers with

challenges it queried from RO. As A has to guess a challenge when not querying it, the

probability ofA is
1

|𝐶 | , which in negligible as𝐶 is super-polynomial. We can conclude that

𝐹𝑆 (Σ) is simulation-sound extractable in the random oracle model for all strictly sound

sigma protocols Σ with super-polynomial challenge space 𝐶 , as stated by theorem 1.
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3 Verifiable RandomOracles

In this chapter we will introduce the novel notion of veriable random oracles, and

demonstrate how they can replace random oracles. Section 3.1 explains the idea behind

the ideal veriable random oracle model and denes it. We then present a framework for

instantiation in section 3.2 and multiple security properties. Afterwards, in section 3.3,

we instantiate a veriable random oracle with the use of a trusted party, and in section

3.4, we present an instantiation without need for a trusted party. For all instantiations, we

also provide a proof that they preserve simulation-sound extractability when instantiating

a random oracle.

3.1 The Verifiable RandomOracle Model

As explained in section 1.1, we want to nd a way to instantiate random oracles while

preserving security. In our case, security means simulation-sound extractability of the

Fiat-Shamir transformation. However, we are condent that our instantiations will work

in other contexts as well. In this section, we will recap the motivation for the new notion

of veriable random oracles, and dene their ideal functionality. We will also prove that

the Fiat-Shamir transformation remains simulation-sound extractable in the veriable

random oracle model in order to prepare later proofs for instantiations.

Motivation Recap In general, it is not possible to instantiate random oracles with any

function family [20]. We can bypass this negative result by using interaction in instanti-

ations. This is unfortunate, as our use case (the Fiat-Shamir transformation) and many

other scenarios aim to be non-interactive. Even though it is not possible to eliminate the

interaction completely, we can reduce it by providing additional functionality to verify

random oracle values without a query. For the Fiat-Shamir transformation, this implies

that we can at least make the verier non-interactive. As a prover might have the same

proof veried by multiple veriers, this can signicantly reduce the network interaction

of the scheme, depending on the use case. Formally dening a random oracle with this

functionality leads to the new notion of veriable random oracles.

Changes to the Random Oracle Model In the veriable random oracle model, all parties
gain access to these two oracles:

• HVRO, which acts exactly like a random oracle, and

• VfyVRO, which checks if HVRO maps a given query value to a given result value.

We will later make sure to instantiate VfyVRO non-interactively (meaning with a function

all parties can compute locally). The instantiation of HVRO has to include interaction

though, as mentioned in the last paragraph.
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3 Veriable Random Oracles

P(𝑥,𝑤):
1 : a← PΣ (𝑥,𝑤)
2 : 𝑐 = HVRO(𝑥, a)
3 : 𝑧 ← PΣ (𝑐)
4 : return (a, 𝑐, 𝑧)

V(𝑥, (a, 𝑐, 𝑧)):
1 : if ¬VfyVRO((𝑥, a), 𝑐):
2 : return 0

3 : return Vfy(𝑥, (a, 𝑐, 𝑧))

Figure 3.1: The prover and verier of the Fiat-Shamir transformation, adapted to be used

with the ideal veriable random oracle.

Denition 5 (Ideal Veriable Random Oracle). Let HVRO : 𝐷 → 𝐶 be a (programmable)

random oracle, and VfyVRO : 𝐷 ×𝐶 → {1, 0} be the function dened by

VfyVRO(𝑥, ℎ) =
{
1 if HVRO(𝑥) = ℎ

0 else
.

We call the tuple
(
HVRO,VfyVRO

)
an ideal (programmable) veriable random oracle.

Note that in this ideal scenario, programming HVRO automatically changes the output of

VfyVRO accordingly, by denition.

Adapting Schemes for the Verifiable RandomOracle When translating schemes from the

random oracle model to the veriable random oracle model, one must decide which RO
queries to replace with HVRO queries, and which with VfyVRO computations. It might also

be necessary to send a VRO query result to a party so that the party does not have to query

it, but can verify it instead. These changes require decisions and can unfortunately not

be automated. However, this should be straightforward in most cases. In the Fiat-Shamir

transformation (see denition 3), we only need to replace

• the explicit comparison 𝑐 ≠ RO(𝑥, a) in the verier with VfyVRO((𝑥, a), 𝑐), and

• the occurrence of RO in the prover with HVRO,

as shown in 3.1.

Security in the Verifiable RandomOracle Model Because schemes have to be translated

manually, as argued in the last paragraph, we also need to adjust any proofs given in the

random oracle model by hand. This includes completeness, which is very easy to prove in

our case: P has not really changed, we only renamed RO to HVRO. Their denition is the

same. V uses VfyVRO instead of an explicit check. However, the check being replaced is

the exact denition of VfyVRO, so nothing changes. Overall, the scheme remains complete.

We also need to adjust the simulation-sound extractability proof:

Theorem 2. The Fiat-Shamir transformation of a strictly sound Σ-protocol with super-
polynomial challenge space is simulation-sound extractable in the veriable random oracle
model.
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3.1 The Veriable Random Oracle Model

Game SSE and Ext are both the same as in theorem 1, with the following exceptions:

• The prover and verier are updated as described above,

• any calls to RO.prgm made by Ext are replaced by VRO.prgm, and

• A and Ext now have access to HVRO and VfyVRO instead of RO.

After a game hop, the following proof reects the proof of theorem 1:

Proof. Let

• Game 0 be Game SSE in the VROM, and

• Game 1 be the same game, except that VfyVRO(𝑥, a, 𝑐) only returns 1 if (𝑥, a) was
queried to HVRO (and HVRO(𝑥, a) = 𝑐).

We will now show thatA behaves the same in both games, except for a negligible probabil-

ity. A is only able to behave dierently if it nds 𝑥 , a, and 𝑐 such that VfyVRO(𝑥, a, 𝑐) = 1

without queryingHVRO(𝑥, a) = 𝑐 . As this is only true for one 𝑐 out of the super-polynomial

challenge space, A has only a negligible probability of guessing correct even with a poly-

nomial amount of tries. As the probability of A behaving dierently is at most negligible,

so is the dierence in the success probability of A in the two games. In Game 1 we can

use Ext and the argumentation for theorem 1:

• If the initial run is successful, Ext xes randomness in a way that one of the challenges

queried is for (𝑥, a) from the initial run.

• When A is successful, it answers one of the P challenges queried, where P is bound

by the polynomial runtime of A.

• In each loop iteration, the probability that A answers the challenge for (𝑥, a) is
therefore

1

|𝐶 | .

• This implies the expected amount of loop iterations is |𝐶 |, making the expected

runtime of Ext polynomial.

• Using this and Markov’s inequality yields that the probability of exiting the loop

because

√︁
|𝐶 | tries have been reached is negligible.

• The probability of drawing the same challenge 𝑐 as in the initial run for (𝑥, a) in√︁
|𝐶 | tries is also negligible.

• These are the only two ways A can win Game 1, so the probability of that is

negligible as well.

We can conclude that the Fiat-Shamir transformation is simulation-sound extractable in

the VROM. �

The proof is only outlined here, because it follows the exact same argumentation as the

proof for theorem 1.
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3 Veriable Random Oracles

3.2 A Framework for Instantiation

In this section we dene a framework for the instantiation of veriable random oracles. The

main advantage for such a framework over directly dening concrete instantiation is the

unication of security proofs. We dene what algorithms and protocols an instantiations

consists of, and present properties for such instantiations. Afterwards, we provide a proof

that any instantiation with these properties preserve simulation-sound extractability of

the Fiat-Shamir transformation. It then suces to prove these properties for our two

instantiations in sections 3.3 and 3.4.

Proof of Correct Evaluation There is a fundamental problem when trying to instantiate

veriable random oracles: As explained before, the goal is to instantiate VfyVRO with an

algorithm 𝓋 that can be executed locally by anyone. At the same time, we want to be able

to program the implementation of HVRO. There is no 𝓋 that can accomplish this required

behaviour without additional information. We will provide this information in the form

of a proof of correct evaluation 𝜎 ∈ 𝑆 . This value will be a side output of instantiations of
HVRO and an additional input to 𝓋.

Allowing for more complex Interaction As discussed before, the instantiation of HVRO will

be interactive. For this reason, it consists of a query algorithm 𝓆 that can be executed

by anyone, and one or more algorithms 𝒽𝑖 each provided by a dierent party P𝑖 . We

instantiate HVRO with the protocol 〈𝓆,P1.𝒽1, . . . ,P𝑛 .𝒽𝑛〉 where 𝑛 is the amount of parties

specied by the concrete instantiation. For brevity, we will write 𝒽𝑖 instead of P𝑖 .𝒽𝑖 . The

types of these new algorithms are:

〈𝓆(·),𝒽1, . . . ,𝒽𝑛〉 : 𝐷 → 𝐶 × 𝑆
𝓋 : 𝐷 ×𝐶 × 𝑆 → {1, 0}

It is often helpful to talk about the collective as a single algorithmℋ = (𝒽1, . . . ,𝒽𝑛). In
those cases you may think ofℋ as wrapper which only passes messages between 𝓆 and

all 𝒽𝑖 .

A Setup Algorithm Concrete instantiations may require a setup e.g. to generate keys.

Therefore, we will add an additional setup algorithm 𝓈. This setup computes information

known to all parties realised as one public key pk, and for each P𝑖 information only known

to that party realised as a secret key sk𝑖 . We can now dene the interface for instantiation

of veriable random oracles.

Denition 6 (Veriable Random Oracle Instantiation). Let

• 𝑛 be the number of parties implementing the veriable random oracle,

• 𝓈 be a PPT setup algorithm which outputs a public key pk and 𝑛 secret keys sk =(
sk

1
, . . . , sk𝑛

)
,

• ℋpk,sk =
(
𝒽1,pk,sk

1

, . . . ,𝒽𝑛,pk,sk𝑛

)
be a non-empty tuple of interactive PPT algorithms

each provided by a dierent party P𝑖 ,
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• 𝓆pk be an interactive PPT algorithm known to all parties,

• 𝐷 → 𝐶 × 𝑆 be the type of the protocol
〈
𝓆pk(·),ℋpk,sk

〉
, and

• 𝓋pk : 𝐷 ×𝐶 × 𝑆 → {1, 0} be a non-interactive PPT algorithm known to all parties.

Then (𝓈,𝓆,ℋ,𝓋) is called veriable random oracle, if the following properties are met for
all (pk, sk) = 𝓈():

• Completeness: 𝓋pk always veries outputs of
〈
𝓆pk(·),ℋpk,sk

〉
i.e.

∀𝑥 .(ℎ, 𝜎) =
〈
𝓆pk(𝑥),ℋpk,sk

〉
⇒ 𝓋pk(𝑥, ℎ, 𝜎).

• Pseudo Determinism: The same input 𝑥 results in the same output value ℎ, i.e.

∀𝑥 .(ℎ1, 𝜎1) =
〈
𝓆pk(𝑥),ℋpk,sk

〉
∧ (ℎ2, 𝜎2) =

〈
𝓆pk(𝑥),ℋpk,sk

〉
⇒ ℎ1 = ℎ2.

• Pseudorandomness: ℎ is undistinguishable from uniform randomness, i.e. there exists
no stateful PPT adversary A that wins the following game with more then negligible
probability.

Game PR:

1 : (pk, sk) = 𝓈()
2 : 𝑥 ← A〈𝓆pk ( ·),ℋpk,sk〉,𝓋pk ()
3 : 𝑀 =

{
𝑥
�� A queried 𝑥 to

〈
𝓆pk(·),ℋpk,sk

〉}
4 : (ℎ0, 𝜎0) =

〈
𝓆pk(𝑥),ℋpk,sk

〉
5 : ℎ1

$← 𝐶

6 : 𝑏
$← {0, 1}

7 : 𝑏 ′← A(ℎ𝑏)
8 : return 𝑏 ′ = 𝑏 ∧ 𝑥 ∉ 𝑀

Forgery of Proofs The proof of correct evaluation introduced by this framework is a new

potential weakpoint. If an adversary can forge such a proof it can virtually program the

veriable random oracle. For this reason, we dene a security property for veriable

random oracles similar to EUF-CMA for signature schemes:

Denition 7 (Weak Unforgeability). A veriable random oracle VRO = (𝓆,ℋ,𝓋) is
weakly unforgeable, if there exists no PPT adversary A that can win the following game
with non-negligible probability:

Game wUF:

1 : (𝑥, ℎ, 𝜎) ← Aℋ ()
2 : 𝑀 =

{
(𝑥, ℎ)

�� 〈𝓆pk(𝑥),ℋpk,sk
〉
returned (ℎ, 𝜎) to A

}
3 : return 𝓋pk(𝑥, ℎ, 𝜎) ∧ (𝑥, ℎ) ∉𝑀
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3 Veriable Random Oracles

P(𝑥,𝑤):
1 : a← PΣ (𝑥,𝑤)
2 : (𝑐, 𝜎) = 〈𝓆(𝑥, a),ℋ〉
3 : 𝑧 ← PΣ (𝑐)
4 : return ((a, 𝑐, 𝑧), 𝜎)

V(𝑥, (a, 𝑐, 𝑧), 𝜎):
1 : if ¬𝓋((𝑥, a), 𝑐, 𝜎):
2 : return 0

3 : return Vfy(𝑥, (a, 𝑐, 𝑧))

Figure 3.2: The prover and verier of the Fiat-Shamir transformation, adapted to be used

with a veriable random oracle instantiation.

A Programming Interface Our notation to program random oracles RO.prgm(𝑥, ℎ) re-
minds of the notation for an interface. Programming interfaces are usually more of a

way to intuitively explain programmability. However, for concrete instantiations we need

a concrete way to program it. We will describe how to program an instantiation with

pseudocode, thus taking the idea of programming interfaces a little more literally. To

dene the exact properties of such an interface is intrinsically hard and not the subject

of this thesis. We will instead dene what algorithms make up the interface, and what

properties we require of them in the simulation-sound extractability setting.

Denition 8 (Programming Interface). Let

• VRO = (𝓈,𝓆,ℋ,𝓋) be a veriable random oracle (with weak unforgeability), and

• (P1, . . . ,P𝑛) be the parties providing the interfaces inℋ.

We now modify VRO as described below. Let

• P be the party with programming access,

• prgmpk be an interactive PPT algorithm known only to P, and

• PRGMpk,sk =

(
prgm

1,pk,sk
1

, prgm𝑛,pk,sk𝑛

)
be programming interfaces, each provided

only to P by a dierent P𝑖 .

Then (prgm, PRGM) is called programming interface of VRO for P.

The properties of VRO from denition 8 do not necessarily hold if the programming

interface is used. In fact, you would expect the programming of an oracle to break both

the pseudo determinism and the pseudorandomness of VRO. However, in cases where the

programming interface is not used, the properties hold. We will later take advantage of

this fact to proof preservation of simulation-sound extractability.

Using the Instantiation One again, we need to slightly adapt the Fiat-Shamir transforma-

tion to the form of the veriable random oracle instantiation. Specically, the proof of

correct evaluation has to be shared in order for queries to be veried, as shown in 3.2. We

also need to change Game SSE in the following way:
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3.3 Instantiation with a Trusted Party

• Any programming calls from the extractor are made to 〈prgm(·, ·), PRGM〉,

• A and Ext gain access to 𝓆,ℋ, and 𝓋 instead of HVRO and VfyVRO.

With these changes, we can go back to the simulation-sound extractability proof.

Simulation-Sound Extractability with Instantiations Before we begin with the simulation-

sound extractability proof, we will require another two properties from our programming

interface:

• In the executions of A initiated by Ext, with the exception of query (𝑥, a), queries
to the veriable random oracle are answered identical to queries in the initial run,

except for a negligible probability.

• A cannot distinguish between the initial run and being executed by Ext.

We will call programming interfaces with these properties suitable. Here is a outline for the
proofs, that our instantiations preserve simulation-sound extractability of the Fiat-Shamir

transformation.

Proof Outline. We make use of several game hops.

• Let Game 0 be the Game SSE using an instantiated veriable random oracle

VRO = (𝓈,𝓆,ℋ,𝓋) with weak unforgeability and suitable programming interface

(prgm, PRGM).

• In Game 1, we use a changed version of VRO with uniform randomness instead of

pseudorandomness, and show that A cannot distinguish this change. How exactly

VRO has to be changed depends on the concrete instantiation.

• In Game 2 A loses when outputting a forged proof of correct evaluation, which

only changes the success probability of A negligibly.

Using the suitability of the programming interface, we can follow the steps of the proof

for theorem 2 to prove security in Game 2. �

We will use this outline to prove security with our instantiations in the sections 3.3 and

3.4.

3.3 Instantiation with a Trusted Party

In this section, we will showcase the rst instantiation of a veriable random oracle. This

instantiation relies on a trusted party. After explaining a simple idea for instantiation, we

optimize it to have less overhead. We also eliminate the use of real randomness in order to

be closer to practice. Finally, we prove that the instantiation preserves simulation-sound

extractability of the Fiat-Shamir transformation.
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Lazy Sampling The instantiation presented in this section is inspired by the lazy sampling

interpretation of a random oracle. We only use a single trusted party P1 to implement

the functionality. P1.𝒽1 draws a random ℎ uniformly for each new query 𝑥 , saves it, and

returns it. If the same 𝑥 is queried again, 𝒽1 returns the saved ℎ. In addition, 𝒽1 outputs a

signature for the tuple (𝑥, ℎ) as proof of correct evaluation. This only yields a valid method

to prove the correct evaluation, if P1 is a trusted party. In the following paragraphs, we

will further customize this instantiation to have less network overhead.

Input Hashing The instantiation suggested in the previous paragraph uses the minimal

number of messages possible (a single message to answer a query). If we want to reduce

overhead further we need to shorten these messages. The length of the random value ℎ is

dictated by the scheme that makes use of the instantiation, meaning we have no inuence

on its length. We can reduce the length of the signature to a certain extent by choosing a

suitable signature scheme. Apart from that, we can use a cryptographic hash function H
in 𝓆 and send H(𝑥) instead of 𝑥 to 𝒽1. This can reduce the size of queries to be linear in

the security parameter
1
with negligible security loss (as proven later for theorem 3).

Using Pseudorandomness As of now, the values output by the veriable random oracle

are chosen uniformly random. Although this is allowed in theory, we cannot rely on the

ability to draw random values uniformly in practice. Therefore we will use a pseudorandom
function to chose random values. As any adversary will only notice this dierence with

negligible probability, the instantiation remains secure (as proven later for theorem 4).

This also eliminates the need to store the random values as P1 can compute them again.

Programming We still need to demonstrate how the instantiated version of the oracle can

be programmed. In order to program 〈𝓆(𝑥),𝒽1〉 to be equal to ℎ in this instantiation, the

programming party can “just tell” P1 what values to use. As P1 only interacts with hashed

values of 𝑥 , prgm computes 𝑥′ = H(𝑥) and calls P1.prgm1
(𝑥′, ℎ′). The tuple is saved by

P1, which will use ℎ′ whenever 𝒽1(𝑥′) is queried. Otherwise, P1 proceeds normally. We

can now formally dene the described instantiation:

Theorem 3 (Trusted Party Instantiation). Let

• SIG = (Gen, Sign,Vfy) be a EUF-CMA-secure signature scheme,

• PRF be a keyed pseudorandom function,

• H be a keyed, collision resistant, publicly known hash function,

• the setup algorithm 𝓈 be dened as

1
This optimization assumes queries of big values, e.g. polynomial in the security parameter. For schemes

that query only small values, this optimization might even increase the length of query messages and

can be skipped.
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𝓈():
1 : pkH

$← Rand

2 : skPRF
$← Rand

3 :
(
pkSIG, skSIG

)
= Gen()

4 : pk =
(
pkH, pkSIG

)
5 : sk

1
=
(
skPRF, skSIG

)
6 : return

(
pk,

(
sk

1

) )

,

• the algorithms 𝓆, 𝒽1, and 𝓋 be dened as

𝓆pk(𝑥):
1 : 𝑥 ′ = HpkH (𝑥)
2 : return 𝒽1(𝑥 ′)

𝒽1,pk,sk
1

(𝑥′):
1 : if 𝑥 ′ ∈ mem:
2 : ℎ = mem[𝑥 ′]
3 : else:
4 : ℎ = PRFskPRF (𝑥

′)
5 : 𝜎 = SignskSIG (𝑥

′, ℎ)
6 : return (ℎ, 𝜎)

𝓋pk(𝑥, ℎ, 𝜎):
1 : 𝑥 ′ = H(𝑥)
2 : return VfypkSIG ((𝑥

′, ℎ), 𝜎)

, and

• the programming interfaces prgm and prgm
1
be dened as

prgmpk(𝑥, ℎ′):
1 : 𝑥 ′ = HpkH (𝑥)
2 : prgm

1
(𝑥 ′, ℎ′)

prgm
1,pk,sk

1

(𝑥′, ℎ′):
1 : mem[𝑥 ′] = ℎ′

.

Then (𝓈,𝓆, (𝒽1),𝓋) is a veriable random oracle with weak unforgeability and suitable
programming interface

(
prgm,

(
prgm

1

) )
.

We will prove this theorem by proving that (𝓈,𝓆, (𝒽1),𝓋) (without the programming

interface) is a veriable random oracle, and afterwards, that it is weakly unforgeable, and

that the programming interface is suitable.

Lemma 3. (𝓈,𝓆, (𝒽1),𝓋) is a veriable random oracle.

Proof. Without the programming interface, the greyed out branch in 𝒽1 will never be

taken. We can therefore conclude, that all queries get answered as follows:

(ℎ, 𝜎) =
〈
𝓆pk(𝑥),𝒽1,sk

1

〉
= 𝒽1,sk

1

(HpkH (𝑥))

=

(
PRFskPRF (HpkH (𝑥)), SignskSIG (HpkH (𝑥), PRFskPRF (HpkH (𝑥)))

)
=

(
ℎ, SignskSIG (HpkH (𝑥), ℎ)

)
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3 Veriable Random Oracles

Passing these values to 𝓋 results in

𝓋pk(𝑥, ℎ, 𝜎) = VfypkSIG

( (
HpkH (𝑥), ℎ

)
, SignskSIG

(
HpkH (𝑥), ℎ

) )
= 1.

We can conclude completeness. For the same input 𝑥 , the output ℎ is always computed

by PRFskPRF (HpkH (𝑥)), which is a function. Therefore, we have pseudo determinism. An

adversary A to the pseudorandomness has to either break the pseudorandomness of PRF,
or the collision resistance of H. Therefore,A is successful only with negligible probability.

With this, all requirements of a veriable random oracle are met. �

Lemma 4. (𝓈,𝓆, (𝒽1),𝓋) has weak unforgeability.

We prove this lemma by contradiction. We assume a successful adversary exists and

construct a successful EUF-CMA adversary with it:

Proof. Let

• A be any successful adversary to the weak unforgeability of (𝓈,𝓆, (𝒽1),𝓋), and

• OSign the signing oracle of Game EUF-CMA of the used signature scheme.

We can use A to break EUF-CMA security by constructing an adversary like this:

A() ASign()

do: 𝒽1(𝑥 ′𝑖 )? ℎ𝑖 = PRFskPRF (𝑥𝑖)

until done (ℎ𝑖 , 𝜎𝑖) 𝜎𝑖 = OSign(𝑥 ′𝑖 , ℎ𝑖)

(𝑥, ℎ, 𝜎) 𝑥 ′ = HpkH (𝑥)

return ((𝑥 ′, ℎ), 𝜎)

In this setup,ASign answers to 𝒽1 queries fromA, and uses H and PRF from theorem 3. If

A is successful, we know that Vfy(pk, (𝑥′, ℎ), 𝜎) = 1 by denition of 𝓋. ASign can only be

unsuccessful in such a case if it queried (𝑥′, ℎ) from OSign before. In this case, A found a

hash collision for H. The probability of this is negligible due to the collision resistance

of H. Because we required the signature scheme to be EUF-CMA secure, no such ASign
exists, and therefore, A cannot exist. �

Lemma 5.
(
prgm,

(
prgm

1

) )
is a suitable programming interface for (𝓈,𝓆, (𝒽1),𝓋) in the

simulation-sound extractability setting.

Proof. Ext only ever calls the programming interface for (𝑥, a). Therefore, the only storage
location used is P1.mem[HpkH (𝑥, a)]. The only deviations from the original run occur if

𝑥′ = HpkH (𝑥, a) is queried to 𝒽1. This happens either if 〈𝓆(𝑥, a),ℋ〉 is called, or in the

negligible case that A found a hash collision for H. Therefore, the probability of queries
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3.3 Instantiation with a Trusted Party

not being answered identically as in the initial run, with the exception of query (𝑥, a), is
negligible.

It remains to be shown that A cannot distinguish between the initial run and runs started

by Ext, except with negligible probability. We know that the probability of nding any

dierence beside the value of (𝑐, 𝜎) = 〈𝓆(𝑥, a),ℋ〉 is negligible. In the initial run, 𝑐 is a

pseudorandom value gained by PRFskPRF (HpkH (𝑥, a)). In runs started byA, it is a uniformly

random value out of the challenge space. Distinguishing between those is negligible

because of the pseudorandomness of PRF. If 𝜎 would help to distinguish between runs,

the signature scheme could be used to break the pseudorandomness of PRF. Overall, the
probability for A distinguishing the runs is negligible. �

In conclusion, (𝓈,𝓆, (𝒽1),𝓋) is a veriable random oracle with weak unforgeability and

a suitable programming interface

(
prgm,

(
prgm

1

) )
, as stated in theorem 3. We will now

proceed to prove simulation-sound extractability of the Fiat-Shamir transformation when

used with this instantiation.

Theorem 4. The Fiat-Shamir transformation of a strictly sound Σ-protocol with super-
polynomial challenge space is simulation-sound extractable if used with the veriable random
oracle dened in theorem 3.

The proof for theorem 4 follows the outline presented at the end of section 3.2.

Proof. Let

• VRO = (𝓈,𝓆, (𝒽1),𝓋) be the veriable random oracle with the programming inter-

face

(
prgm,

(
prgm

1

) )
dened in theorem 3,

• 𝒽
′
1
be a version of 𝒽1 that uses uniform randomness instead of PRF to gain ℎ in line

4,

• Game 0 be Game SSE using VRO,

• Game 1 be the same game, except it uses VRO′ =
(
𝓈,𝓆,

(
𝒽
′
1

)
,𝓋

)
(with unchanged

programming interface) instead of VRO, and

• Game 2 be like Game 1 except A loses when outputting a forged proof.

Any A noticing a dierence between Game 1 and Game 2 could be used to break the

pseudorandomness of PRF. Therefore, the dierence in probabilities of A succeeding

in Game 0 and Game 1 is negligible. VRO′ is a veriable random oracle with weak

unforgeability and the suitable programming interface

(
prgm,

(
prgm

1

) )
for the same

reasons as VRO. Because of the weak unforgeability of VRO′ the probability of A acting

dierent in Game 1 and Game 2 is negligible. This also implies the dierence in success

probabilities for the two games is negligible. With help of the suitable behaviour of(
prgm,

(
prgm

1

) )
, we can repeat the argumentation for theorem 2 to prove that the Fiat-

Shamir transformation is simulation-sound extractable in Game 2, and therefore in Game
0. �

25



3 Veriable Random Oracles

3.4 Reducing Trust in Parties

In section 3.3, we have seen how to construct a veriable random oracle using a trusted

party. This is a strong assumption, as trusting a party in this context not only means

trusting it to be honest. It also implies trusting that there will never be any successful

attack against the party. This section introduces the concept of corruption and presents

a veriable random oracle instantiation which is safe as long as no more than one party

is corrupted. We will prove this instantiation is suitable to be used with the Fiat-Shamir

transformation by preserving simulation-sound extractability. Afterwards, we demonstrate

that the instantiation can be generalized to allow up to any number of corrupted parties.

However, this comes with a signicant increase of needed parties and size of messages.

Corruption Corruption is a tool to model parties getting “hacked” or otherwise compro-

mised. A party corrupted by an adversary shares all information with this adversary. If the

adversary only gets information this way, but does not otherwise inuence the corrupted

party, we speak of passive corruption. If the adversary can control the corrupted party by

dictating its outputs, it is active corruption. For now, we will focus on active corruption. In

settings that allow corruption, security has to be proven for any possible set of corrupted

parties. A party is untrusted, if it is part of any possible set of corrupted parties.

Distributing Functionality A common strategy to tackle the problem of corruption is to

distribute the functionality among multiple parties. We could for example have three

parties implementing the exact same functionality. A query would then consist of separate

queries to each of the parties and use the output given by a majority of the parties. If

a single corrupted party among them changes its output, the majority of outputs and

therefore the eective value does not change. This naive idea is undesirable for multiple

reasons, as we will soon realize.

Corruption vs. Programming Corruption in the simulation-sound extractability setting

entails an additional challenge: The extractor should be able to program the VRO without

the adversary noticing. Without this ability, simulation-sound extractability cannot be

accomplished. If the extractor changes any output of a corrupted party, the adversary will

notice the programming attempt. Therefore, the extractor has to know which parties are

corrupted. It will gain this information as an additional input.

Finding an Instantiation Distributing functionality by copying it three times fails in our

case. The corrupted party would notice programming attempts as it can compute the

honest output by itself. In fact, any instantiation in which an untrusted party can compute

the honest result alone will fail for this reason. To avoid this problem, we will change

the way we derive the output value. Thus far, given an input 𝑥 , we used a pseudorandom

function PRF to calculate the random value ℎ ← PRF(𝑥). A simple solution to our problem

is to use multiple such functions and combine their output with a bitwise exclusive OR:

ℎ =
⊕
𝑖

PRF𝑖 (𝑥)

We then make sure that no party knows all PRF𝑖 , and use the majority for each individual

PRF𝑖 as described before. The minimum number of parties required for this strategy is
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four, as one party is required not to know some PRF𝑖 , and three others are required in

order for majority to work. Let all parties P𝑖 know all pseudorandom functions except

for PRF𝑖 . By giving each P𝑖 a unique signature, and letting them sign (𝑥, PRF𝑛 (𝑥)) for all
𝑛 ≠ 𝑖 , we can make this system veriable. We write 𝑛 ≠ 𝑖 as a shorthand for 𝑛 ∈ {1..4}\{𝑖}
when 𝑛 and 𝑖 are indices of parties.

How to Program It is still possible to freely program this instantiation if only one party

P𝑛 is corrupted. In this case, the extractor can program all other parties to change the

result of PRF𝑛 without P𝑛 noticing. To change the overall output for input 𝑥 to ℎ′, the
extractor can set

PRF𝑛 (𝑥) = ℎ′ ⊕
⊕
𝑖≠𝑛

PRF𝑖 (𝑥).

We will now give a formal denition for this instantiation.

Theorem 5 (Distributed Instantiation). Let

• SIG = (Gen, Sign,Vfy) be a EUF-CMA-secure signature scheme,

• PRF be a keyed pseudorandom function,

• Corr ⊆ {1..4} be the indices of all corrupted parties,

• the setup algorithm 𝓈 be dened as

𝓈():
1 : for 𝑖 ∈ {1..4}:

2 : skPRF,𝑖
$← Rand

3 :

(
pkSIG,𝑖 , skSIG,𝑖

)
= Gen()

4 : pk =

(
pkSIG,𝑖

�� 𝑖 ∈ {1..4})
5 : for 𝑖 ∈ {1..4}:

6 : sk𝑖 =
(
skSIG,𝑖 ,

(
skPRF,𝑛

�� 𝑛 ≠ 𝑖

))
7 : sk =

(
sk𝑖

�� 𝑖 ∈ {1..4})
8 : return (pk, sk)

,

• the helper algorithm extract, which computes ℎ from 𝜎 , be dened as
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extractpk(𝜎):
1 :

( (
ℎ𝑖,𝑛, 𝜎𝑖,𝑛

) �� 𝑛 ∈ {1..4} ∧ 𝑖 ≠ 𝑛
)
= 𝜎

2 : for 𝑖 ∈ {1..4}:

3 : if max

ℎ′

���{𝑛 ��� VfypkSIG,𝑛 ( (
𝑥, ℎ𝑖,𝑛

)
, 𝜎𝑖,𝑛

)
∧ ℎ𝑖,𝑛 = ℎ′

}��� < 2:

4 : return ⊥

5 : ℎ𝑖 = argmax

ℎ′

���{𝑛 ��� VfypkSIG,𝑛 ( (
𝑥, ℎ𝑖,𝑛

)
, 𝜎𝑖,𝑛

)
∧ ℎ𝑖,𝑛 = ℎ′

}���
6 :

return
⊕

𝑖∈{1..4}
ℎ𝑖

,

• the algorithms 𝓆,ℋ = (𝒽𝑛 | 𝑛 ∈ {1..4}), and 𝓋 be dened as

𝓆pk(𝑥):
1 : for 𝑛 ∈ {1..4}:
2 : 𝜎𝑛 = 𝒽𝑛 (𝑥)
3 : 𝜎 = (𝜎𝑛 | 𝑛 ∈ {1..4})
4 : ℎ = extractpk(𝜎)
5 : return (ℎ, 𝜎)

𝒽𝑛,pk,sk𝑛 (𝑥):
1 : for 𝑖 ≠ 𝑛:
2 : if (𝑖, 𝑥) ∈ mem:

3 : ℎ𝑖,𝑛 = mem[𝑖, 𝑥]
4 : else:
5 : ℎ𝑖,𝑛 = PRFsk𝑖 (𝑥)
6 : 𝜎𝑖,𝑛 = SignskSIG,𝑛 (𝑥, ℎ𝑖,𝑛)
7 : return

( (
ℎ𝑖,𝑛, 𝜎𝑖,𝑛

) �� 𝑖 ≠ 𝑛
)

𝓋pk(𝑥, ℎ, 𝜎):
1 : ℎ′ = extractpk(𝜎)
2 : return ℎ = ℎ′

,and

• the programming interfaces prgm and PRGM =
(
prgm𝑛

�� 𝑛 ∈ {1..4}) be dened as
prgmpk,Corr(𝑥, ℎ′):
1 : if |Corr| > 1:

2 : return ⊥
3 : {𝑖} = Corr

4 : ℎ′𝑖 = ℎ′ ⊕
⊕
𝑛≠𝑖

ℎ𝑛

5 : for 𝑛 ≠ 𝑖 :
6 : prgm𝑛 (𝑖, 𝑥, ℎ′𝑖 )

prgm𝑛,pk,sk𝑛
(𝑖, 𝑥, ℎ′𝑖):

1 : mem[𝑖, 𝑥] = ℎ′𝑖

,

where prgm can acquire all ℎ𝑛 values with 𝒽𝑛 (𝑥) queries to uncorrupted parties. Then
(𝓈,𝓆,ℋ,𝓋) is a veriable random oracle with weak unforgeability and suitable programming
interface (prgm, PRGM), if |Corr| ≤ 1.

We will again split theorem 5 into three lemmas.

Lemma 6. VRO = (𝓈,𝓆,ℋ,𝓋) is a veriable random oracle if |Corr| ≤ 1.
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Proof. Let P1 be the only corrupted party without loss of generality, i.e. Corr = {1}. This
implies, that all algorithms except for 𝒽1 behave as dened. Without the programming

interface, the greyed out branch in each 𝒽𝑖 will never be taken. Therefore, for a call

〈𝓆(𝑥),ℋ〉, we have the following knowledge for ℎ𝑖,𝑛 values in 𝜎 :

ℎ1,2 = ℎ1,3 = ℎ1,4 = PRFskPRF,1 (𝑥),
ℎ2,3 = ℎ2,4 = PRFskPRF,2 (𝑥),
ℎ3,2 = ℎ3,4 = PRFskPRF,3 (𝑥), and
ℎ4,2 = ℎ4,3 = PRFskPRF,4 (𝑥).

We also know, that all respective 𝜎𝑖,𝑛 are verifying. Overall, this implies that ℎ returned by

extract is equal to
⊕

𝑖∈{1..4}
PRFskPRF,𝑖 . This is a function, meaning VRO is pseudo deterministic.

As 𝓋 uses the same 𝜎 to extract ℎ′, we know that ℎ = ℎ′, and that VRO is complete. We also

know that the bitwise exclusive OR of pseudorandom functions is itself a pseudorandom

function. Therefore, VRO is pseudorandom, and we can conclude it is a veriable random

oracle. �

Lemma 7. VRO = (𝓈,𝓆,ℋ,𝓋) is weakly unforgeable if |Corr| ≤ 1.

Proof. To forge a new proof 𝜎′, it is necessary to change at least one ℎ𝑖 as calculated in

extract from a known 𝜎 . This requires to change two signatures 𝜎𝑖,𝑎 and 𝜎𝑖,𝑏 for (𝑥, ℎ𝑖).
Let P𝑎 be corrupted by A without loss of generality. If A is successful in breaking the

weak unforgeability of VRO, it can be used to break EUF-CMA of SIG, by forging 𝜎′
𝑖,𝑏
.

This probability is negligible, so A cannot be successful, and we can conclude the weak

unforgeability of VRO. �

Lemma 8. (prgm, PRGM) is a suitable programming interface for (𝓈,𝓆,ℋ,𝓋) in the
simulation-sound extractability setting, if |Corr| ≤ 1.

Proof. Again, let P1 be the only corrupted party without loss of generality. Ext only ever

calls the programming interface for (𝑥, a). Therefore, P𝑖 .mem[1, (𝑥, a)] for 𝑖 ≠ 1 are the

only storage locations used. The only deviations from the original run occur if (𝑥, a) is
queried to any P𝑖 for 𝑖 ≠ 1. This can only inuence the result of 〈𝓆(𝑥, a),ℋ〉. Any other

queries have identical results.

It remains to be shown that A can only distinguish between the initial run and runs

started by Ext with negligible probability. We know that there are no dierences, ex-

cept for the call to 〈𝓆(𝑥, a),ℋ〉. The result of this computation in the initial run is the

pseudorandom value

⊕
𝑖∈{1..4}

PRFskPRF,𝑖 (𝑥, a) as demonstrated before. In a programming call

〈prgm((𝑥, a), ℎ′), PRGM〉, the interface prgm
1
of the corrupted party is never called and

therefore does not give anything away. After a call to 〈prgm((𝑥, a), ℎ′), PRGM〉, we know
about the associated 𝜎 that

ℎ1,2 = ℎ1,3 = ℎ1,4 = ℎ′ ⊕
⊕
𝑖≠1

PRFskPRF,𝑖 (𝑥, a), and thus,
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〈𝓆(𝑥, a),ℋ〉 = ℎ′ ⊕
⊕
𝑖≠1

PRFskPRF,𝑖 (𝑥, a) ⊕
⊕
𝑖≠1

PRFskPRF,𝑖 (𝑥, a)

= ℎ′.

This value was drawn with uniform randomness by Ext. Distinguishing it from the honest

output would require breaking the pseudorandomness of

⊕
𝑖∈{1..4}

PRFskPRF,𝑖 (𝑥, a). Overall, the

probability for A to distinguish the runs is negligible. �

In conclusion, (𝓈,𝓆,ℋ,𝓋) is a veriable random oracle with weak unforgeability and

suitable programming interface (prgm, PRGM), as stated by theorem 5. We will now

proceed to prove simulation-sound extractability of the Fiat-Shamir transformation when

used with this instantiation.

Theorem 6. The Fiat-Shamir transformation of a strictly sound Σ-protocol with super-
polynomial challenge space is simulation sound extractable if used with the veriable random
oracle dened in theorem 5, and at most one party of the oracle is corrupted.

We will once more follow the outline presented at the end of section 3.2 to prove theorem

6.

Proof. Let

• P1 be the only corrupted party without loss of generality,

• VRO = (𝓈,𝓆,ℋ,𝓋) be the veriable random oracle with the programming interface

(prgm, PRGM) dened in theorem 5,

• ℋ
′ =

(
𝒽1,𝒽

′
2
,𝒽′

3
,𝒽′

4

)
be a version ofℋ where all parties with access to PRFskPRF,1

use the same uniform randomness instead,

• Game 0 be Game SSE using VRO,

• Game 1 be the same game except it uses VRO′ = (𝓈,𝓆,ℋ′,𝓋) instead of VRO,

• Game 2 be like Game 1 except A loses when outputting a forged proof.

Any A noticing a dierence between Game 0 and Game 1 could be used to break the

pseudorandomness of PRF, specically the one used with key skPRF,1. Therefore, the

dierence in probabilities ofA succeeding in Game 0 and Game 1 is negligible. VRO′ is a
veriable random oracle with weak unforgeability and the suitable programming interface

(prgm, PRGM) for the same reasons as VRO. Because of the weak unforgeability of VRO′

the probability of A acting dierently in Game 1 and Game 2 is negligible. This also

implies that the dierence in success probabilities for the two games is negligible. With

the help of suitable behaviour from (prgm, PRGM), we can repeat the argumentation of

theorem 2 to prove that the Fiat-Shamir transformation is simulation-sound extractable in

Game 2, and therefore in Game 0. �
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3.4 Reducing Trust in Parties

AnUntrusted Setup The setup algorithm 𝓈 presented in theorem 5 requires a trusted party

to generate and distribute keys. We can replace it with a secure multi-party computation

protocol between all P𝑖 . However, nding a suitable protocol is not the subject of this

thesis.

Timeouts Theorems 5 and 6 still hold if the corrupted party is faulty in some other way.

This includes not answering at all. Remember that we modelled this behaviour with a

special error symbol timeout. As timeout is never valid, all other parties always have a
majority over the faulty one. However, the pseudocode does not reect this behaviour

explicitly, as error handling would decrease the readability.

Optimizations The instantiation presented in this section can easily be optimized. We

begin with the same trick as in section 3.3 to hash 𝑥 in 𝓆, and use the hashed value

for queries to any 𝒽𝑖 . As before, this change will result in queries with size linear in 𝜆,

with negligible security loss. In the next three paragraphs, we reduce the size of 𝜎 by a

signicant amount.

Redundancy There is a lot of redundant information in 𝜎 : For all 𝑖 , a majority of ℎ𝑖,𝑛 in

any 𝜎 have to be equal to ℎ𝑖 (as computed by extract). Any deviating value will not be

used in the computation of the nal ℎ and could be omitted from 𝜎 . Additionally, two

accepting 𝜎𝑖,𝑛 are enough to conrm any ℎ𝑖 . The third is not needed, regardless if it veries

or not. Therefore, we can reduce the size of 𝜎 by restructuring it so that it contains each

ℎ𝑖 once, and exactly two accepting signatures for each. This optimization requires the

possibility of requesting only specic information from each P𝑖 and a much more complex

algorithm 𝓆 to query them. The complexity stems from all the special cases, in which

parties send non-verifying responses.

Coordination We can further optimize scenarios where calls from 𝓆 to any 𝒽𝑖 are more

costly than calls between two parties inℋ. 𝓆 can query the whole 𝜎 from any 𝒽𝑖 , which

in turn requests missing information from the other 𝒽𝑛. The only scenario in which 𝓆

needs to make a second query is if the rst obtained 𝜎 doesn’t verify. This can happen

when making a request to a corrupted or otherwise faulty party.

Aggregate Signatures By using aggregate signatures [7], we can continue to reduce the

size of a result 𝜎 coordinated byℋ and returned to 𝓆 even further. Multiple aggregate

signatures (even of dierent parties and for dierent messages) can be aggregated into a

single signature that is sucient to replace all original signatures. With this optimization,

𝜎 contains only the four ℎ𝑖 values and a single signature, down from twelve ℎ𝑖,𝑛 and twelve

signatures. This step concludes our optimization.

More Corrupted Parties The instantiation in this section can be generalized to be able to

handle up to 𝑛 corrupted parties. We will now compute the total number of parties and

total number of PRFs needed in this situation. For each possible set of corrupted parties,

there has to be a PRF not known by any party in the set. Now there exists a situation in

which all 𝑛 corrupted parties know a concrete PRF. In this scenario, there are still 𝑛 other

parties that do not know PRF. To be able to form a majority against the corrupted parties,

we need another 𝑛 + 1 uncorrupted parties which do know PRF. Therefore, we need a total
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3 Veriable Random Oracles

of 3𝑛 + 1 parties if up to 𝑛 parties can be corrupted. The number of PRFs needed is the

amount of dierent 𝑛 party subsets from the set of all 3𝑛 + 1 parties. This value amounts to(
3𝑛 + 1
𝑛

)
=
(3𝑛 + 1)!
𝑛!(2𝑛 + 1)! > 2

𝑛

which is unfortunately super-polynomial in the amount of corrupted parties. This also

increases the size of proofs of correct evaluation accordingly, as all PRF𝑖 values have to
be included. It would be interesting to see if instantiations with less overhead exist for

situations with more corrupted parties.
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4 Conclusion

In this thesis, we have demonstrated that instantiation of random oracles is possible with

the help of interaction. This chapter summarizes what we did in order to achieve this goal.

Verifiable RandomOracles In section 3.1, we introduced a novel ideal model called veri-

able random oracle model which is closely related to the random oracle model. This step

was not necessary to nd an instantiation. However, it helped to reduce the interaction

in protocols instantiating the random oracle, by adding a second oracle to verify random

values gained from the random oracle. Instantiations for this new verication oracle can

be non-interactive.

Instantiations In section 3.2, we presented a framework to instantiate veriable random

oracles, and dened properties we later used in security proofs. We then used this frame-

work to dene two concrete instantiations. One of them needs only one party, but requires

it to be trusted (section 3.3), the other is secure as long as at most one party is corrupted,

but requires four parties (section 3.4).

Security Throughout the thesis, we have demonstrated the viability of our approach by

proving that it is suitable to be used with the Fiat-Shamir transformation. To be more

accurate, we have proven that versions of the Fiat-Shamir transformation using the ideal

veriable random oracle model, the framework with a variety of assumed properties, the

instantiation with one trusted party, or the distributed instantiation respectively remain

simulation-sound extractable. We are condent that other properties in other scenarios

will be preserved from the random oracle model by the use of these instantiations as well.
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