Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction

Daniel Escalera-López,* Steffen Czioska, Janis Geppert, Alexey Boubnov, Philipp Röse, Erisa Saracı, Ulrike Krewer, Jan-Dierk Grunwaldt,* and Serhiy Cherevko*

Cite This: ACS Catal. 2021, 11, 9300–9316

1. INTRODUCTION

The increasing scarcity and security of supply (i.e., price volatility, geopolitical constraints) of fossil fuels currently employed in the energy system and relevant environmental issues are driving the transition toward renewable energy sources like wind and solar power. A decarbonized energy sector based on such sources, given their inherently intermittent energy production, would require an additional energy vector to cover swings in the end-use energy demand. Hydrogen, given its high gravimetric energy density (3 times higher than that of liquid hydrocarbons), has been proposed as a viable candidate for such purposes. Indeed, any green electrical energy surplus can be chemically stored in hydrogen via water electrolysis, which can be later reconverted to electricity or used as a clean fuel for heat and transportation. Acidic proton exchange membrane water electrolyzers (PEMWE), foreseen to be the dominant WE technology by 2030, allow the production of high-purity pressurized hydrogen under intermittent operation. The market penetration of PEMWEs is necessarily reliant on the production scale-up of all components to minimize hydrogen production costs: datasets from 2020 report a green electrolysis price of $4–6/kg vs $2.1/kg for steam methane reforming coupled to carbon capture and sequestration. However, bottlenecks in costs reductions are present, with the most crucial one being the noble metal electrocatalyst. Recent reports have postulated that the terawatt-scale implementation of PEMWEs to fully power the current transportation grid would require the total loading of the state-of-the-art anode catalyst, iridium (Ir), to be reduced by 2 orders of magnitude. Indeed, at current Ir loadings (ca. 2 mg Ir cm⁻²), the annual PEMWE installation capacity would be limited to 2–4.5 GW/year given the current Ir ore mining production rate of 4–9 tons/year. This showcases the need to reduce, if not replace, Ir contained at the anode electrocatalyst to catalyze the sluggish oxygen evolution reaction (OER) in acidic electrolytes. However, the majority of the so-called noble metals are unstable under acidic OER operating conditions.

ABSTRACT: The increasing scarcity of iridium (Ir) and its rutile-type oxide (IrO₂), the current state-of-the-art oxygen evolution reaction (OER) catalysts, is driving the transition toward the use of mixed Ir oxides with a highly active yet inexpensive metal (IrₓMᵧ−ₓO₂). Ruthenium (Ru) has been commonly employed due to its high OER activity although its electrochemical stability in Ir-Ru mixed oxide nanoparticles (IrRuₓ−₁O₂ NPs), especially at high relative contents, is rarely evaluated for long-term application as water electrolyzers. In this work, we bridge the knowledge gap by performing a thorough study on the composition- and phase-dependent stability of well-defined IrRuₓ−₁O₂ NPs prepared by flame spray pyrolysis under dynamic operating conditions. As-prepared NPs (IrRuₓ−₁O₂) present an amorphous coral-like structure with a hydrous Ir-Ru oxide phase, which upon post-synthetic thermal treatment fully converts to a rutile-type structure followed by a selective Ir enrichment at the NP topmost surface. It was demonstrated that Ir incorporation into a RuO₂ matrix drastically reduced Ru dissolution by ca. 10-fold at the expense of worsening Ir inherent stability, regardless of the oxide phase present. Hydrous IrRuₓ−₁O₂ NPs, however, were shown to be 1000-fold less stable than rutile-type IrRuₓ−₁O₂, where the severe Ru leaching yielded a fast convergence toward the activity of monometallic hydrous IrO₂. For rutile-type IrRuₓ−₁O₂, the sequential start-up/shut-down OER protocol employed revealed a steady-state dissolution for both Ir and Ru, as well as the key role of surface Ru species in OER activity: minimal Ru surface losses (<1 at. %) yielded OER activities for tested Ir₉Ru₄O₁₀ equivalent to those of untested Ir₆Ru₄O₁₀. Ir enrichment at the NP topmost surface, which mitigates selective subsurface Ru dissolution, is identified as the origin of the NP stabilization. These results suggest Ru-rich IrRuₓ−₁O₂ NPs to be viable electrocatalysts for long-term water electrolysis, with significant repercussions in cost reduction.

KEYWORDS: electrocatalysis, iridium, oxide, stability, oxygen evolution, composition, ICP-MS

Downloaded via 91.62.106.133 on November 24, 2021 at 23:44:44 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
ing any alternatives to Ir-based catalysts. Moreover, even for monometallic Ir oxides, stability varies with phase. For monometallic Ir materials, an overall OER activity–stability relationship was found based on the structure and crystalline phase, with stability increasing as $\text{IrO}_x < \text{Ir} \ll \text{IrO}_2$. For highly active bi/multimetallic Ir-based mixed oxides, such as $\text{A}_2\text{B}_x\text{IrO}_y$ and IrNi, stability under OER operating conditions was shown to be an important issue given the preferential leaching of B elements and Ni, respectively. On the other hand, Ir-Ru mixed oxides ($\text{Ir}_x\text{Ru}_1-x\text{O}_y$) present a good tradeoff between high OER activities and stabilities, ascribed to the presence of highly active yet relatively stable RuO_2. Multiple studies have shown the improved OER activities of $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ under ex situ$^{46-54}$ and full-cell testing conditions, but the interplay between OER activity and electrocatalyst stability has been scarcely investigated55,56 or evaluated by electrochemical data alone. Such practice is known to provide misleading conclusions, highly dependent on the backing electrode and protocol employed.$^{57-60}$ Only a recent study on the on-line ICP-MS dissolution product detection in gradient $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ mixed model thin film libraries revealed the stark stabilization effect of Ir in a RuO$_2$ matrix: incorporation of ca. 20 at. % Ir yielded a 10-fold decrease in Ru dissolution while minimally reducing the OER activity.61 However, knowledge regarding the electrochemical stability of $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ nanoparticulate catalysts toward the OER coupled to \textit{in situ} analytics is still lacking and is of paramount importance to implement such materials in PEMWEs. Indeed, $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ OER stability was foreseen to be dependent on the local microstructure in thin films (i.e., grain boundaries vs grain terraces),62 which might deviate from nanoparticulate systems. Moreover, since the opposite is not proven, it is far-fetched to believe that the optimal Ir-Ru compositions for thin film and nanoparticulate systems are identical.

This study will devote to the assessment of the electrochemical activity–stability relationships of a set of $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ nanoparticle (NP) catalysts toward the OER with varying Ir:Ru relative compositions. $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ are prepared here for the first time with the one-step, surfactant-free, rapid flame spray pyrolysis (FSP) method. FSP was shown in the past to be a valuable approach to manufacture highly crystalline nanoparticles in a large scale,$^{63-64}$ crucial for industrial applications.65 In addition, FSP enables the preparation of mixed oxide phases with specific compositions by simple mixing of the different metal precursors at different ratios.$^{66-68}$ Previous reports on $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ NPs are mostly based on sol–gel synthetic routes, such as the Pechini synthesis, where a metallic $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ core was still present$^{69-71}$ and could affect any OER activity–stability relationships if directly exposed to the acidic electrolyte.

On-line OER stability tests, performed with a scanning flow cell (SFC) coupled downstream to an inductively coupled plasma mass spectrometer (ICP-MS), aimed to corroborate the significant Ru stabilization in the presence of increasing Ir contents across the $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ compositional range, upon different degrees of crystallinity and under dynamic operating conditions. Post-synthetic thermal treatment is shown to dramatically improve the OER stability, related here to the conversion of an amorphous, hydrous $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ phase to a crystalline rutile-type $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ phase with surface and bulk-sensitive techniques such as X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD). The use of a sequential OER galvanostatic start-up/shut-down testing protocol will provide insights on the catalyst stabilization under dynamic operating conditions, which will be linked to the selective Ru dissolution and subsequent Ir enrichment at the NP surface by Ir:Ru relative ratio analysis, gained by XPS and energy-dispersive X-ray (EDX) mapping on untested and post-mortem NPs imaged with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The insights gained can be transferred to the tailored design of $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ nanocatalysts with improved OER stabilities under long-term operating conditions.

2. EXPERIMENTAL SECTION

The $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ nanoparticle catalysts were synthesized by flame spray pyrolysis (FSP), which has mostly been used for preparation of nanomaterials and catalysts66,72 but hardly electrocatalysts. For the monometallic oxide catalysts, the metal salt precursors (x g) (IrO_x: x = 1 g of iridium acetylacetonate (iridium(III) 2,4-pentanedionato, Ir 37.5%, min, Alfa Aesar; RuO_2: x = 0.81 g of ruthenium acetylacetonate (ruthenium(III) acetylacetonate for synthesis, Sigma-Aldrich) were dissolved in a mixture of 50 mL of acetic acid and methanol (acetic acid and methanol ratio 1:1) to yield a final Ir/Ru concentration of 40.9 mM. The solution was then placed into an ultrasonic bath for 1 h to ensure full dissolution of the precursors. Subsequently, the resulting solutions were filled into a 50 mL syringe and set into a syringe pump (Legato 210, KD Scientific Inc.), as previously described.73 The solution was injected with a flow rate of 5 mL min$^{-1}$ and dispersed with 5 mL min$^{-1}$ oxygen gas flow at 3 bar back pressure while being released through a steel capillary of 0.413 mm diameter into the FSP chamber (Hamilton syringes, KF6, gauge 22). A supporting flame of 0.75 NL min$^{-1}$ methane and 1.6 NL min$^{-1}$ oxygen flow was used to ignite the dispersed solution. The synthesized particles were collected in a cylindrical filter holder 80 cm over the flame by a glass fiber filter (Whatman GF6, GE) connected with a vacuum pump (R5, Busch). A water cooling system was used to prevent the nozzle from overheating and to keep the fiber filter at a low temperature. For the $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ mixed metal oxides, the ratios of the Ir and Ru precursor were adjusted to ratios of 20, 50, and 80 at. % Ir while keeping a constant concentration of 40.9 mM. The prepared solution was then treated and sprayed in the same manner as the single metal solutions. After collection, the as-prepared catalysts were placed in a calcination furnace and heated up to 600 °C in air (2 h, 2 °C/min heating ramp), referred in this study as post-calcined $\text{Ir}_x\text{Ru}_1-x\text{O}_y$.

Catalyst inks for electrochemical activity testing were prepared by weighing 2 mg of the $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ catalyst powder and adding 750 μL of deionized water, 250 μL of isopropanol, 8.58 μL of Nafion 5% dispersion (D-520, VWR), and 1.2 μL of 1 M KOH. Dispersions were ultrasonicated for 10 min. 10 μL of the ink was dropped onto the electrode and dried for 30 min at 60 °C under atmospheric conditions, yielding a catalyst loading of 0.11–0.14 mg cm$^{-2}$.

The inks employed for electrochemical stability testing in the SFC-ICP-MS setup were prepared by dispersing x mg (0 at. % Ir: 2; 20 at. % Ir: 1.93; 50 at. % Ir: 1.85; 80 at. % Ir: 1.8; 100 at. % Ir: 1.775) of the $\text{Ir}_x\text{Ru}_1-x\text{O}_y$ FSP-synthesized nanoparticulate catalysts in a solution containing an 87.5%//12.5% volume ratio of ultrapure deionized water (Merck, Milli-Q IQ 7000) and isopropanol (Merck, Emsure). A perfluorinated...
nated Nafion ionomer solution aliquot (5 wt %, Sigma-Aldrich) was added to the suspension to yield a catalyst-to-ionomer weight ratio of 4:1 (final ink concentration = 0.663 mgcat mL \(^{-1}\)). Homogeneous catalyst dispersions were achieved after 10 min of ultrasonication (Branson, SFX 150) using 4 s/2 s on/off pulse intervals in an ice bath followed by pH \(\approx 11\) adjustment with 0.1 M KOH (Merck, Suprapur). The catalyst spots effectively acting as OER working electrodes were obtained by dropcasting 0.2 \(\mu\)L of the aforementioned inks onto a mirror-polished 5 \(\times\) 5 cm glassy carbon plate (HTW, SIGRADUR). The resulting catalyst spots presented diameters of ca. 1.3–1.4 mm and catalyst loadings of \(\approx 8–12 \mu\)gcat cm\(^{-2}\) per spot.

2.2. Ir\(_{1−x}\)Ru\(_x\)O\(_2\) Electrochemical Activity and Stability Studies. Classical electrochemical experiments were carried out in a PTFE cell with a Gamry Reference 600+ potentiostat connected to a rotating ring disk electrode setup (Pine Research, USA). 250 mL of 0.1 M H\(_2\)SO\(_4\) electrolyte solution (98%, EMSURE, VWR) purged with argon (>99.996%, 10 min before and during experimentation) was prepared with DI water (18.2 MΩ cm). The latter was used for extensive cell rinsing prior to measurements. The working electrode substrate consisted of a PTFE-embedded glassy carbon disk (Ø \(\approx 5\) mm, Pine Research, USA), mirror-polished with a 0.05 \(\mu\)m alumina suspension before each experiment. A Pt wire and a HydroFlex (Gasketel GmbH) reversible hydrogen electrode (RHE) were employed as counter and reference electrodes, respectively. First, potentiostatic electrochemical impedance spectroscopy was performed at open circuit potential with frequencies ranging from \(f = 10^2\) to \(10^{−1}\) Hz and a perturbation amplitude of \(E = 10\) mV. Next, three consecutive cyclic voltammograms were measured with potential rates \(\Delta E/\Delta t = 200\), 100, 50, 25, 200 \(\text{mV} \text{s}^{-1}\) in between potentials of \(E = 0.05\text{V}\) and 1.55 V. The last measurement at 200 \(\text{mV} \text{s}^{-1}\) was recorded to evaluate the effect of electrochemical pre-history in Ir\(_{1−x}\)Ru\(_x\)O\(_2\). All potential values in this study were corrected for the electrolyte resistance gained from the impedance spectroscopy measurement at a phase angle of \(\phi = 0^\circ\).

Real-time, simultaneous analysis of Ir and Ru dissolution from Ir\(_{1−x}\)Ru\(_x\)O\(_2\)-based electrocatalysts was achieved by coupling an in-house CNC machine V-shaped polycarbonate scanning flow cell (SFC) to a PerkinElmer NextION 300x inductively coupled plasma mass spectrometer (ICP-MS) with a HydroFlex (Gasketel GmbH) reversible hydrogen electrode (RHE) and a HydroFlex (Gasketel GmbH) reversible hydrogen electrode (RHE) were employed as counter and reference electrodes, respectively. First, potentiostatic electrochemical impedance spectroscopy was performed at open circuit potential with frequencies ranging from \(f = 10^2\) to \(10^{−1}\) Hz and a perturbation amplitude of \(E = 10\) mV. Next, three consecutive cyclic voltammograms were measured with potential rates \(\Delta E/\Delta t = 200\), 100, 50, 25, 200 \(\text{mV} \text{s}^{-1}\) in between potentials of \(E = 0.05\text{V}\) and 1.55 V. The last measurement at 200 \(\text{mV} \text{s}^{-1}\) was recorded to evaluate the effect of electrochemical pre-history in Ir\(_{1−x}\)Ru\(_x\)O\(_2\). All potential values in this study were corrected for the electrolyte resistance gained from the impedance spectroscopy measurement at a phase angle of \(\phi = 0^\circ\).

Real-time, simultaneous analysis of Ir and Ru dissolution from Ir\(_{1−x}\)Ru\(_x\)O\(_2\)-based electrocatalysts was achieved by coupling an in-house CNC machine V-shaped polycarbonate scanning flow cell (SFC) to a PerkinElmer NextION 300x inductively coupled plasma mass spectrometer (ICP-MS) with a HydroFlex (Gasketel GmbH) reversible hydrogen electrode (RHE) were employed as counter and reference electrodes, respectively. First, potentiostatic electrochemical impedance spectroscopy was performed at open circuit potential with frequencies ranging from \(f = 10^2\) to \(10^{−1}\) Hz and a perturbation amplitude of \(E = 10\) mV. Next, three consecutive cyclic voltammograms were measured with potential rates \(\Delta E/\Delta t = 200\), 100, 50, 25, 200 \(\text{mV} \text{s}^{-1}\) in between potentials of \(E = 0.05\text{V}\) and 1.55 V. The last measurement at 200 \(\text{mV} \text{s}^{-1}\) was recorded to evaluate the effect of electrochemical pre-history in Ir\(_{1−x}\)Ru\(_x\)O\(_2\). All potential values in this study were corrected for the electrolyte resistance gained from the impedance spectroscopy measurement at a phase angle of \(\phi = 0^\circ\).

The SFC-ICP-MS setup can be found in previous publications.\(^{74−76}\)

2.3. Physical Characterization. 2.3.1. X-ray Photoelectron Spectroscopy (XPS). XPS measurements were conducted using a PHI Quantera II scanning X-ray microprobe, equipped with a monochromatic Al Ka X-ray source (1486.6 eV, 15 kV). XPS spectra were collected on pristine and electrochemically tested catalyst spots by employing a spot size of 200 \(\mu\)m at 50 W. For survey spectral acquisition, 280 eV pass energy and 1 eV step sizes were employed, whereas for high-resolution spectra, these were, respectively, 140 and 0.250 eV (dwell time per step: 500 ms). All high-resolution spectra were energy-corrected to the adventitious C 1s peak set to 284.6 eV and processed using CasaXPS (version 2.3.22PR1.0).

For high-resolution spectra deconvolution, Shirley-type backgrounds and modified Functional Lorentzian\(^{77}\) or Gaussian–Lorentzian lineshapes were employed, following recent reports by Morgan et al. for nonsynchrotron monochromatic X-ray sources.\(^{78,79}\) The specific lineshapes employed for Ir 4f were as follows: \(\text{Ir}^0 = LF(0.6,1,150,100)\); anhydrous \(\text{IrO}_2 = LF(0.3,1.65,250)\); satellites = \(LF(0.2,1.5,25,250)\); \(\text{IrO}_2 \times n\text{H}_2\text{O} = LF(0.5,1.5,25,250)\), satellites = \(LF(0.2,1.5,25,250)\). In the case of the Ru 3p\(_x\)\(_y\) component, the lineshapes used were as follows: anhydrous \(\text{RuO}_2 = LF(0.8,1.45,280)\); \(\text{RuO}_2 \times n\text{H}_2\text{O} = LF(1.1,1.45,250)\), satellites = \(GL(30)\). The 7/2:5/2 spin–orbit doublets found at the Ir 4f spectra were fitted by applying a 4:3 area ratio constraint and 3 eV separation.

2.3.2. Scanning Electron Microscopy/Energy-Dispersive X-ray Analysis (SEM/EDX). The bulk relative Ir:Ru contents of the freshly prepared and calcined Ir\(_{1−x}\)Ru\(_x\)O\(_2\) catalysts were evaluated by SEM/EDX. A computer-operated Zeiss GeminiSEM 500 microscope (software SmartSEM version 6.01) with a thermal Schottky field-emitter cathode was employed for micrograph analysis. An energy dispersive X-ray spectrometer X-Max\(^{80}\) from Oxford with a silicon drift detector (80 mm\(^2\) and resolution of 127 eV), alongside the software Aztec 3, was employed for the quantitative analysis of microareas and the distribution of the elements.

2.3.3. Transmission Electron Microscopy (TEM). The nanoparticle dimensions and morphologies of as-synthesized and electrochemically tested Ir\(_{1−x}\)Ru\(_x\)O\(_2\) catalysts were investigated with a Philips CM30 TEM (Philips, Netherlands). In addition, an FEI Titan Thermis 60–300 scanning transmission electron microscope (Thermo Fisher Scientific, USA), operated in high-angle annular dark field mode (accelerating voltage = 300 kV), was employed to obtain STEM-EDX elemental mappings of Ir, Ru, and O using a Super-X EDX spectrometer (energy resolution \(\approx 130\) eV) and atomic resolution imaging.

2.3.4. Powder X-ray Diffraction (PXRD). PXRD patterns were acquired using a Bruker D8 Advance diffractometer using Cu Ka radiation (\(\lambda = 1.54\) Å) generated by accelerating electrons over 40 kV at an anode current of 35 mA. The intensity of scattered X-rays was measured in 20-ranges of 20–80° for qualitative analysis and 5–120° for Rietveld refinements, with step sizes of 0.0164° and 1 step/s. Full description
of Rietveld refinement analysis can be found in the Supporting Information.

3. RESULTS

3.1. Physical Characterization of Ir₉Ru₁₋ₓO₂ Nanoparticles. A full series of IrₓRu₁₋ₓO₂ nanoparticles (x = 0, 0.2, 0.5, 0.8, 1) were prepared by flame spray pyrolysis and post-calcined at 600 °C to maximize their conversion to a rutile-type structure. Their morphology, crystalline structure, and surface oxidation state (as-prepared and post-calcined nanoparticles) were analyzed using (scanning) transmission electron microscopy ((S)TEM), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS).

The PXRD patterns obtained for the as-prepared nanoparticles (Figure 1, top panel) show broad reflections, characteristic of amorphous-like materials with very short-range crystalline order. After calcination, the diffractograms reveal the presence of sharp reflections, in agreement with the database patterns for tetragonal rutile-type oxides IrO₂ (JPCD card no. 15-0870) and RuO₂ (JPCD card no. 15-0870). The average crystallite size, estimated by the Debye–Scherer equation for the FWHM of the (110) reflection (2θ ≈ 28.1°), ranges between 1.6 and 1.7 nm for as-prepared samples and 28 and 37 nm for the calcined samples (11–20 nm after Rietveld refinement, see Table S1 for values). Post-synthesis calcination of the nanoparticles, consequently, leads to larger nanoparticles with extended crystallinity.

Figure 1. Powder X-ray diffractograms obtained for as-prepared (top panel) and post-calcined (middle panel) IrₓRu₁₋ₓO₂ flame spray pyrolysis catalysts. The lower panel presents the reference tabulated data for IrO₂, RuO₂, Ir fcc, and Ru hcp.

The degree of intermixing between Ir and Ru within the rutile structure, i.e., the formation of a solid solution or a mixed oxide phase, was evaluated by tracking the peak position shift of the (211) and (112) lines. Other diffraction lines such as (110) present negligible shifts, known to prevent any unambiguous conclusions regarding continuous oxide phase formation. The (211) diffraction line shifted to higher Bragg angles with increasing Ru contents approaching the values expected for RuO₂ (2θ ≈ 54.1 to 54.4°) (Figure S1a), similar to that found for the (112) line, a behavior reported in single-phase solid solutions. Previous reports from Siracusa-no et al. suggested that, unlike mixed IrO₂-RuO₂ nanocatalysts, pure solid solutions present an almost full overlap of the IrO₂ (310) and (112) reflections. Such an overlap is not present in our samples, even in the monometallic IrO₂ composition where both reflections can be resolved in the diffractograms. Conversely, reports by Sunde and co-workers on Pechini synthesis IrₓRu₁₋ₓO₂ nanoparticles suggest that the criterion to elucidate mixed IrO₂-RuO₂ phases in IrₓRu₁₋ₓO₂ is the presence of distinct shoulders at upward Bragg angles in reflections such as (112), which are absent in our samples (see Figure S1b).

Additional comparison with Ir fcc (COD card no. 1512514) and Ru hcp (COD card no. 1512537) reflections reveals that the metallic Ir fcc (200) and metallic Ru hcp (101) phases, although faint, can be identified at 2θ ≈ 47.4 and ≈43.8° depending on the Ir:Ru relative content. Rietveld refinement analysis was further employed to evaluate the unit cell parameters and weight fractions of the mixed oxide and metal phases observed in the diffractograms (see Figure S2a–e and Table S1 for results). It was found that while the lattice parameter a remained constant across the studied compositions, the lattice parameter c decreased linearly with increasing Ru contents as expected from Vegard’s law, characteristic of atomic intermixing between Ir and Ru phases (Figure S2f). A metallic Ir fcc phase is only present for atomic Ru contents up to 20 at. %, in agreement with previous results of Pechini-synthesized IrₓRu₁₋ₓO₂ nanoparticles. Metallic Ru hcp (101) was, on the other hand, only found for the monometallic RuO₂ nanoparticles (up to ca. 0.5 at. %).

The TEM images of the as-prepared IrₓRu₁₋ₓO₂ nanoparticles (Figure 2) showcase the presence of a highly amorphous, coral-like morphology. High-magnification images reveal that the amorphous structures are composed by small rectangular-shaped crystallite aggregates (1–2 nm) with no prevalent lattice orientation, in agreement with the PXRD analysis. Calcined samples present contrasting morphologies, with cubic and rod-like nanoparticles with dimensions in the 10–40 nm range where extended crystalline facets can be identified. Heavy nanoparticle agglomeration and overlapping are observed, ascribed here to the lack of a surfactant or catalyst support during the flame spray synthesis. Intensity line profile analysis across different Ir:Ru relative nanoparticle compositions shows that, although multiple crystalline facets are present within individual particles, lattice spacings with dhkl ≈ 3.321 and 2.742 Å are prominent. Such interplanar spacings, ascribed here to the (110) and (101) orientations, are slightly larger than the tabulated values of IrO₂ (3.178 and 2.582 Å) and RuO₂ pure phases (3.183 and 2.558 Å) and were reported in highly single crystalline IrₓRu₁₋ₓO₂ nanowires to be caused by solid solution inhomogeneities.

XPS measurements on the as-prepared and post-calcined samples provide insights on the near-surface relative Ir:Ru surface composition and surface oxidation states. For the
pristine samples (Figure 3 and Figure S3 top panel), the Ir 4f high-resolution XPS spectrum of IrO$_2$ is deconvoluted by two sets of asymmetric Ir 4f$_{7/2}$:4f$_{5/2}$ spin–orbit doublets, centered at binding energies of 61.1/64.1 and 62.2/65.2 eV, besides the generally neglected Ir 5p$_{1/2}$ spin–orbit component at 64.1 eV. These components are ascribed to metallic Ir and hydrated Ir oxyhydroxide (generally referred as IrO$_{2}$·nH$_2$O) and present an Ir0:IrO$_{2}$·nH$_2$O relative abundance ratio of 29:71 at. %, indicating that the as-synthesized samples are only partially oxidized due to the fast nanoparticle formation occurring during FSP synthesis and probably the reducing nature of the organic ligands. Once Ru is incorporated within the IrO$_{2}$ matrix, the metallic Ir surface relative abundance drops to 7.6–11 at. % (for composition-dependent values and XPS component fitting parameters, see Table S2) followed by an additional satellite Ir 5p$_{1/2}$ spin–orbit doublet centered at 62.8/65.8 eV. The unambiguous assignment of this component is nontrivial, given that for a conventional monochromatic source the separation of the IrIV satellite peaks and those ascribed to IrIII and their screened surface states is not feasible. Such satellite components are required to accurately describe the tailing of the principal peak, which presents a wider, yet more symmetrical, spectral line shape than that of the calcined Ir$_{x}$Ru$_{1-x}$O$_{y}$ samples (Figure 3 and Figure S3 bottom panel). Previous Ir 4f spectral inspection of amorphous vs rutile IrO$_{2}$ would suggest an Ir(OH)$_{3}$ phase to be present as Ir(OH)$_{3}$ was reported to have less asymmetrical line shape profiles with component binding energies equivalent to those of hydrated IrO$_{2}$. This is supported by the comparison of the O 1s high-resolution spectra of pristine and calcined Ir$_{x}$Ru$_{1-x}$O$_{y}$ NPs (Figure S4a,b), where only an O 1s component characteristic of rutile oxide at ca. 530 eV was clearly found for the calcined samples, shifting to lower binding energies with increasing Ru contents. In addition, the pristine Ru 3p$_{3/2}$ high-resolution spectra (Figure S4c) can be solely described by a peak at ca. 464 eV, in good agreement with the reported values of a hydrated RuIII phase such as Ru(OH)$_{3}$ (464.1 eV).

The Ir 4f high-resolution spectra of the calcined samples, on the other hand, present highly asymmetric line shape profiles arising from screened/unscreened core-level states characteristic of rutile-type structures. Two sets of asymmetric Ir 4f$_{7/2}$:4f$_{5/2}$ spin–orbit doublets can be used to deconvolute the spectra, centered at 61.9/64.9 and 63.2/66.2 eV irrespective of the relative Ir:Ru content, ascribed to the IrIV surface oxidation state and its Gaussian satellites as previously
reported for rutile IrO$_2$ samples78,84 The potential presence of surface metallic Ir was evaluated by explicitly incorporating the Ir9 spin–orbit doublet in the spectral deconvolution (Figure 3, bottom panel). It was shown that metallic Ir accounted for an almost negligible contribution in the cumulative spectral fits (up to a max 5 at. % found for monometallic IrO$_2$ see Table S3 for values), indicating that metallic Ir (if present) is located at the subsurface of the calcined NPs. The Ru 3p$_{3/2}$ high-resolution spectrum (Figure S4d) is deconvoluted by a peak at ca. 462.9 eV along with a satellite at ca. 465.8 eV, in good agreement with the reported values of rutile-type RuO$_2$. This suggests that the Rietveld-refined metallic Ru phase marginally detected is located at the nanoparticle’s core.

The relative Ir:Ru contents across the synthesized Ir$_{1-x}$Ru$_x$O$_2$ nanoparticle compositions were evaluated by SEM/EDX (Ir M$_{45}$Ru L$_{32}$ emission lines) and RSF-normalized Ir 4f:Ru 3p$_{3/2}$ XPS weighted component analysis (Figure 4 and Figure S5). The outermost surface-sensitive XPS distribution of all elements, as shown in a representative line profile across a clustered set of Ir$_{0.5}$Ru$_{0.5}$O$_2$ nanoparticles. However, it was found that the relative Ir:Ru composition was variable across the nanoparticle studied. Post-calcined samples retain, across the studied compositions, the overall intermixing of Ir and Ru as shown by the overlapped HAADF image with the Ir and Ru mapping within the faceted nanoparticles (Figure S5g). EDX line profile analysis across nonoverlapped nanoparticles showcases, in contrast with their as-prepared counterparts, that Ir is preferentially located at the outermost surface (Figure S5l and Figure S6f) as previously found for thermally prepared iridium-ruthenium mixed oxides. These results are in line with the surface-sensitive information gathered by XPS, and of particular relevance for Ru-rich nanoparticles (20 at. % Ir), where an Ir-enriched shell formation (Figure S5k,l) can have clear implications in electrochemical stability under OER evolving potentials. Although infrequently observed, Ir-rich compositions (80 at. % Ir) can present nanoparticle agglomerates with an oxidic Ru-rich core clearly visible upon overlapping of HAADF and Ir/Ru EDX mappings (Figure S6e), in agreement with Ir$_{0.5}$Ru$_{0.5}$O$_2$ nanoparticles previously reported. The homogeneous distribution of oxygen across the nanoparticle profile, shown by O elemental mapping, would confirm the negligible presence of metallic Ir or Ru phases across the compositional ranges studied. Given that Rietveld refinement suggested fcc Ir contents in Ir$_{0.5}$Ru$_{0.5}$O$_2$ up to 13%, we believe that metallic Ir might be present only locally at the nanoparticle’s core, beyond the sensitivity range of the EDX detector. In summary, flame spray pyrolysis was shown to be a successful method to manufacture surfactant-free mixed Ir$_{1-x}$Ru$_x$O$_2$ nanoparticles with tailored Ir:Ru relative contents. Contrasting with the Pechini synthesis method, post-calcination at 600 °C maximized the conversion to a rutile-type phase up to the core of the nanoparticles.

3.2. OER Electrochemical Testing: Cyclic Voltammetry Experiments

Cyclic voltammograms (CVs) were recorded in a classical three-electrode cell setup at different scan rates to evaluate the electrochemical activities of the as-prepared and calcined Ir$_{1-x}$Ru$_x$O$_2$ nanoparticles. The CVs of the calcined samples in Figure 6 reveal a systematic trend in OER activity: the onset potential at a mass specific faradic current of 10 mA mg$^{-1}$ increased linearly with the Ir atomic fraction (see Figure S7), in consonance with previous studies. Three pre-OER current features were observed for RuO$_2$ at peak potentials of 0.6, 1.2, and 1.4 V vs RHE. The first one was ascribed to the RuIII/RuIV redox transition, whereas the other two features have been recently correlated to the stepwise de-/protonation of adsorbed water surface species. Likewise, the monometallic IrO$_2$ sample presented three voltammetry features at slightly different potentials of 0.8 (IrIII/IrIV redox transition), 1.1, and 1.3 V (IrV/IrIV redox transitions along with pseudo-capacitive charge–discharge). For the calcined Ir$_x$Ru$_{1-x}$O$_2$ mixtures, less defined voltammo-
grams were obtained due to the partial overlap of the characteristic monometallic IrO2 and RuO2 features, in agreement with the literature.47,48,92 For all calcined samples, the pre-OER voltammetry features were retained, and barely modified, before and after the electrochemical testing protocol (see Section 2.2 for further details). Therefore, this would indicate that the calcined IrxRu1−xO2 nanoparticles are not subject to electrochemically induced restructuring under continuous cycling.

The as-prepared catalyst, in contrast, is rather strongly affected by the electrochemical treatment as shown in Figure S8. Broadened and unresolved features are present in the CVs of all Ir-containing samples, none of which are related to metallic Ir, with capacitive currents up to 1 order of magnitude higher than those found after calcination. This is a result of the amorphous-like structure primarily containing hydrous Ir oxide surface species as shown by XPS (Figure 3)93 and the smaller particle sizes yielding higher surface areas. For pure IrOy, two broadened features at 1.0 and 1.3 V vs RHE are visible, where the latter gets more pronounced with continuous cycling. Well defined but asymmetric features on the RuOy sample at potentials of 0.7 and 1.1 V are observed in the IrxRu1−xOy mixtures as well, previously ascribed to the RuII/RuIV redox transitions in hydrous ruthenium oxides.94−96 After continuous cycling, IrxRu1−xOy mixtures present a significant decrease in current of the RuOy specific features, closely resembling the CV profile of pure IrOy. This would indicate a loss of electrochemically active hydrous RuOy species, prone to leaching in acidic electrolytes.97

3.3. OER Electrochemical Testing: Online SFC-ICP-MS Experiments. The electrochemical stability of FSP IrxRu1−xO2 nanoparticles as a function of their relative Ir:Ru composition and temperature treatment was evaluated with our dedicated SFC setup coupled downstream to an ICP-MS (SFC-ICP-MS). The electrochemical protocol employed during SFC-ICP-MS measurements initially consisted of a 3 min hold at 1.1 V vs RHE to allow a controlled approach and electrical contact between the SFC and the IrxRu1−xO2 catalyst spots and to resolve the so-called contact peak inherent of native surface native oxides prone to dissolution.98 Next, start-up/shut-down stress tests were performed by exerting a set of 14 symmetric galvanostatic holds alternating between +1 mA cm−2 and open circuit potential (OCP) with a duration of 2 min per holding step, giving a total of seven start-up/shut-down OER hold cycles. Figure 7 shows the associated Ir (second and fourth panels) and Ru (third and fifth panels) dissolution profiles, simultaneously recorded for the different as-prepared and post-calcined IrxRu1−xO2 compositions (for time-dependent electrochemical potential profiles, see Figure S9). It can be clearly observed that, regardless of the degree of calcination, Ru dissolution rates are significantly higher than those of Ir. Such a trend is observed across all the relative

![Figure 5. EDX mapping of the HAADF-STEM images acquired for as-prepared Ir0.2Ru0.8Oy (a−f) and post-calcined Ir0.2Ru0.8O2 (g−l). EDX mapping labels: Ir (green), O (yellow), Ru (red).](image1)

![Figure 6. Cyclic voltammograms (CVs) recorded across the different post-calcined Ir1−xRu xO2 compositions. CV of pristine glassy carbon shown here as backing electrode reference. Solid line: 3rd cycle, first set of 200 mV s−1 CVs; broken line: 3rd cycle, second set of 200 mV s−1 CVs.](image2)
nanoparticle compositions, which is in good agreement with previous data obtained for mixed IrO$_2$-RuO$_2$ thin film gradient libraries61 and pure single-phase sputtered oxide thin films.30

The impact of the post-synthesis calcination treatment in the electrochemical stability is also evident: a 3 order magnitude decrease in Ir dissolution rates was found after calcination, which in the case of Ru is a 2 order magnitude decrease. This is in agreement with the loss of the small crystallite-containing amorphous structure shown by TEM and the higher degree of crystallinity suggested by PXRD and (S)TEM measurements. Recent studies have correlated the tradeoff between OER activity and electrochemical stability with higher calcination temperatures for Ir-based catalysts: hydrous IrO$_2$ catalysts obtained at low calcination temperatures are less stable than rutile-type IrO$_2$ catalysts.29,99,100

The dependence of Ir$_x$Ru$_{1-x}$O$_y$ composition and calcination toward the OER activity, which can be evaluated by plotting the OER potential at the end of each galvanostatic hold versus the number of start-up/shut-down cycles, is shown in Figure 8.

Calcined samples present, after the first OER hold, potentials ranging between 1.61 V (RuO$_2$) and 1.68 V (IrO$_2$); these are 150–170 mV higher than those found for the as-prepared counterparts. The improved OER performances of Ir$_x$Ru$_{1-x}$O$_y$ can be related to their intrinsically more active surface sites, namely, IrIII/RuIII (oxy)hydroxylated species and surface vacancies,84,101 where lattice oxygen participates in the OER mechanism102,103 via the suggested electrochemical formation of electrophilic O$I^−$ species.104,105 In addition to this, the collapse of the Ir$_x$Ru$_{1-x}$O$_y$ amorphous structure by formation of larger rutile crystalline domains after post-synthetic calcination (Figure 2) yields lower electroactive surface areas.

A clear trend was also found between the Ir:Ru relative content and the experimental OER potentials observed. In line with results obtained in RDE (Figure S7), higher Ru contents across the Ir$_x$Ru$_{1-x}$O$_y$ compositions resulted in improved OER activities, whereby the initial Ir$_{0.2}$Ru$_{0.8}$O$_2$ NP OER potential was 6 mV lower than that of monometallic IrO$_2$. The OER activity loss observed after seven OER holds was minor for both as-prepared and calcined samples (ca. 5 mV upward shifts at most) but presented subtle differences across the Ir:Ru compositional ranges tested and their degrees of calcination. Interestingly, as-prepared samples showed, for ≥20 at. % Ir, final OER potentials identical to those of the pristine IrO$_2$ NPs.
In contrast, as-prepared \(\text{Ir}_{0.2}\text{Ru}_{0.8}\text{O}_2 \) NPs showed a slight downward trend in the OER potential. Calcined samples, on the other hand, presented a gradual upward OER potential, in good correlation with the initial Ir:Ru relative contents: increasing Ir contents yielded higher OER potentials. Such contrasting trends showcase drastic changes in the electrochemical stability of \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) after calcination and suggest severe electrochemical degradation in the case of the as-prepared samples.

A better perspective of the impact of Ir:Ru relative contents in the electrochemical stability can be drawn from plotting the total Ir and Ru integrated dissolution during the start-up/shut-down stress tests as a function of \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) composition and their relative dissolution normalized by the initial Ir/Ru loading in the catalyst spots tested. It can be observed that increasing Ir contents in the \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) nanoparticles led to a decrease in the dissolution of Ru and an increase in the dissolution of Ir. Remarkably, an incorporation of only ca. 20 at. % Ir in the calcined \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) nanoparticles’ matrix (Figure 9) yielded an almost 6-fold decrease in integrated Ru dissolution. These trends follow the results described for mixed thin film libraries and support the stabilizing role of Ir in a Ru matrix.\(^{21}\) In contrast, the normalized relative Ir dissolution presented an opposite trend: higher Ru contents within the \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) compositions studied led to aggravated Ir dissolution (see Figure S10 for as-prepared catalysts). Thus, higher Ru incorporation in an \(\text{IrO}_2 \) rutile-type rich matrix destabilized Ir sites, whereas higher Ir into a RuO\(_2\) rutile-type rich matrix stabilized Ru sites.

The relative stability trends observed can be better understood when employing a recently reported stability benchmarking metric, the so-called stability number or \(S \)-number.\(^{28}\) In brief, the \(S \)-number is a dimensionless metric that normalizes the experimental OER activity of an electrocatalyst (i.e., evolved oxygen molecules assuming 100% Faradaic efficiency) per number of dissolved OER-active metal ions detected downstream during SFC-ICP-MS experiments: higher \(S \)-number values correspond to improved electrocatalyst stabilities. For ease of interpretation, given the OER-active nature of both Ir and Ru moieties and the impossibility to decouple their relative contribution to the experimental OER activity, \(S \)-numbers were calculated for individual elements assuming that the total OER integrated current values evolved from the element evaluated. The \(S \)-number values for Ru, regardless of the thermal treatment, were found to gradually increase (i.e., higher Ru stabilities) with increased Ir contents (Figure 10). Indeed, Ir-rich compositions (\(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \)) presented an almost 10-fold increased Ru stability compared with Ru-rich compositions (\(\text{Ir}_0\text{Ru}_{x}\text{O}_2 \)), in line with the integrated dissolution trends. In the case of Ir, the \(S \)-numbers after post-calcination were almost independent of the Ru content, whereas for as-prepared \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) compositions, lower \(S \)-numbers were found for monometallic \(\text{IrO}_x \). This can be explained by the large metallic Ir surface contents found for Ir-rich samples: several reports have shown that metallic Ir is significantly less stable than \(\text{IrO}_3 \),\(^{28-30} \) so higher relative metallic Ir contents impact the \(S \)-number metrics yielding overall lower values. The impact of post-synthesis thermal treatment was also evident in the \(S \)-numbers obtained: after calcination, an almost 3 order of magnitude increase was obtained for both Ir and Ru. Side-by-side comparison with previously obtained \(S \)-numbers for \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) gradient thin film compositions showed equivalent trends and values.\(^{32}\)

3.4. Physical Characterization of \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) Nanoparticles Post-SFC-ICP-MS Experimentation

Post-mortem characterization of the tested SFC catalyst spots was carried out with XPS and HAADF-STEM coupled to EDX mapping. The Ir 4f high-resolution XPS spectral deconvolution (Figure S11) showed negligible modifications for the calcined samples, whereas for as-prepared FSP samples, the metallic Ir component significantly dropped for monometallic \(\text{IrO}_x \). This reinforces the hypothesis that metallic Ir is selectively dissolved from the \(\text{IrO}_x \) amorphous matrix or partially oxidized to \(\text{IrO}_3 \).\(^{106} \) The relative Ir:Ru contents calculated with RSF-normalized Ir 4f:Ru 3p3/2 weighted component analysis show, interestingly, that as-prepared \(\text{Ir}_{x}\text{Ru}_{1-x}\text{O}_2 \) nanoparticles are Ir-enriched after testing (Figure 11). For \(\text{Ir}_{0.2}\text{Ru}_{0.8}\text{O}_2 \), the relative atomic Ir surface content shifts from 14 to 66 at. %. In contrast, calcined \(\text{Ir}_{0.2}\text{Ru}_{0.8}\text{O}_2 \) nanoparticles present minor changes in the relative Ir:Ru surface contents (1−4 at. %). These surface compositional modifications were further evaluated with HAADF-STEM-EDX mapping. Calcined \(\text{Ir}_{0.2}\text{Ru}_{0.8}\text{O}_2 \) samples presented no apparent modification of their morphology and relative distribution of Ir/Ru (Figure S12a−l), whereas the as-prepared \(\text{Ir}_{0.2}\text{Ru}_{0.8}\text{O}_2 \) retained its coral-like morphology while presenting a stark Ir enrichment after inspection of the EDX line profiles (Figure 12a−f). For large nanoparticle aggregates, EDX mapping revealed the formation of segregated metallic Ru nanoclusters of ca. 50−100 nm located at the aggregates’ topmost surface (Figure 12g−l). Ir:Ru composition mapping is consequently highly dependent on the HAADF-STEM probing area: EDX mapping of large domains shows, however, that Ir:Ru relative contents mirror those found for XPS.
4. DISCUSSION

As mentioned previously, FSP has been shown to be a viable technique to manufacture surfactant-free \(\text{Ir}_x \text{Ru}_{1-x} \text{O}_y \) nanoparticulate catalysts with Ir:Ru relative contents easily tailored by the feed rate of their metal precursors. Indeed, the FSP \(\text{Ir}_x \text{Ru}_{1-x} \text{O}_y \) NPs have shown analogous OER electroactivity trends to those previously reported, leaving room for synthesis upscaling and the preparation of other mixed metal oxide compositions. We will now evaluate the implications of several parameters pending evaluation in the \(\text{Ir}_x \text{Ru}_{1-x} \text{O}_y \) NP electrochemical stability data: the degree of calcination, relative Ir:Ru surface composition, and the on/off electrochemical protocol to mimic dynamic operation.

The dependency on temperature treatment of Ir:Ru composition discrepancies between EDX and XPS measurements, and the compositional gradients across calcined \(\text{Ir}_x \text{Ru}_{1-x} \text{O}_y \) individual nanoparticles observed (Figure 5 and Figure S6), can be rationalized after accounting for the relative differences in Ir/Ru oxophilicity and the equilibrium surface energies of rutile-based \(\text{IrO}_2 / \text{RuO}_2 \) terraces. Thermochemical data shows that Ru presents a higher oxygen affinity than Ir, also responsible for its improved OER electrocatalysis. This
thermodynamic consideration can explain why the oxophilic Ru conformed as Ru(OH)$_3$ in as-prepared Ir$_x$Ru$_{1-x}$O$_y$ is primarily segregated toward the outermost surface, leading to Ru-rich surface compositions. In addition, a metallic Ir phase was found for all as-prepared samples in XPS, particularly for thermally prepared mixed Ir$_x$O$_2$ samples: high OER activity in Ir$_x$Ru$_{1-x}$O$_y$ is closely linked to higher Ru surface concentrations. Such nonlinearity in the OER activity and stability is present in thermally prepared mixed Ir$_x$Ru$_{1-x}$O$_2$ thin films, but its impact on nanoparticles systems with higher surface-to-volume ratios (i.e., higher density of surface sites) is amplified and more relevant to PEMWE applications.

The use of consecutive start-up/shut-down OER hold cycles demonstrated that Ir$_x$Ru$_{1-x}$O$_y$ NPs, regardless of their composition and thermal treatment, stabilized under dynamic operating conditions. This was preliminarily observed under potentiostatic OER on/off holds on Ir$_x$Ru$_{1-x}$O$_2$, where Ru was reported to be extracted from subsurface layers, yielding an Ir-rich outermost shell. However, the potential dependence on the formation of Ir dissolution intermediates, along with the potentiostatic protocol employed (with two different operating OER potentials), precludes any unambiguous conclusions regarding surface species stabilization. The symmetric OER galvanostatic protocol employed here not only provides a more meaningful comparison across compositions with S-numbers given the varying contents of the more active Ru phase but also the convergence toward steady-state dissolution profiles. This was more potent for as-prepared Ir$_x$Ru$_{1-x}$O$_y$ samples, where the increase in S-numbers was no less than an order of magnitude, whereas for calcined samples (especially for Ir), the OER hold-induced stabilization effect was minor.

The gradual stabilization in as-prepared Ir$_x$Ru$_{1-x}$O$_y$ is related to the higher dissolution rates of hydrous Ru oxide in acidic electrolytes (S-number $\approx 10^{-2}$–10^{-4}) compared to metallic Ru116,117 and rutile-type RuO$_2$ (S-number $\approx 10^3$), leaving behind an Ir-rich amorphous hydrous oxide phase (S-number $\approx 10^7$–10^{10}) with low coordination sites. Ru evolves via the higher-valence-state, volatile RuO$_4$ intermediate118,119 generated by the redox transition RuO$_2$(OH)$_2$ \leftrightarrow RuO$_4$.117,120 Dissolution-induced restructuring is clearly shown by the large

Figure 12. EDX mapping of the HAADF-STEM images acquired after SFC-ICP-MS testing for as-prepared Ir$_0.2$Ru$_{0.8}$O$_2$ (a–f) FSP catalysts, where panels (g–l) showcase large aggregates with metallic Ru nanoparticles. EDX mapping labels: Ir (green), O (yellow), Ru (red).
relative Ru dissolution values (16–20 at. % for Ru compared to 6–13 at. % for Ir) and the drastic change in the voltammetry profiles after continuous cycling (Figure S8). The selective Ru dissolution in Ir$_x$Ru$_{1-x}$O$_y$ NPs under dynamic operation supports the convergence of OER potential values toward those of monometallic IrO$_2$. Any synergistic effect of Ru in OER activity is, thus, rapidly lost. In the case of Ir$_x$Ru$_{0.8}$O$_{1.9}$, the improved OER activity under on/off dynamic operation over time arises from the formation of metallic Ru surface aggregates (Figure 12j). The origin of such metallic Ru aggregate formation requires further investigations. A dissolution/precipitation mechanism, as found in acid for Ir-based perovskites121 or supported IrO$_x$ catalysts,122 would involve the redeposition of dissolved IrIII to Ir oxide species: this should only occur at $E \leq 0.98$ and 0.19 V vs RHE for Ir and Ru,123 values lower than those recorded at OCP.

Thermally treated Ir$_x$Ru$_{1-x}$O$_y$ minimal stabilization under consecutive OER holds is in agreement with their highly stable rutile phase, which in turn induces minimal relative Ir/Ru leaching (up to 0.15% for Ru and 0.016% for Ir in Ir$_{0.2}$Ru$_{0.8}$O$_2$). This is of particular relevance given the higher OER potentials under which rutile-type Ir$_x$Ru$_{1-x}$O$_y$ performed, which might have compromised their stabilities. Any observed stabilization is then inherently related to the surface restructuring of the topmost NPs surface,29 where surface defects within the mixed rutile structure will be formed given the higher Ru dissolution rates. According to recent DFT calculations on model IrO$_2$/RuO$_2$ surfaces, increasing formation of metal vacancies should favor the lattice oxygen evolution mechanism (LOM) over the adsorbate evolution mechanism (AEM) generally ascribed to rutile structures.124 This would explain the higher relative Ir integrated dissolution values in Ru-rich compositions as selective Ru dissolution would yield more structural defects in the surface Ir-enriched rutile structure.

Initial online electrochemical mass spectrometry experiments on IrO$_2$ with 16O/18O isotope labeling suggested a limited lattice oxygen participation,28,125 later confirmed with recent isotope-labeled H$_2$O$_2$ experiments on sputtered103 and thermally prepared IrO$_2$ rutile surfaces: lattice oxygen exchange was found at the topmost layers (ca. 2.5 nm).102 The thermodynamically and microkinetically anticipated Ir dissolution under OER potentials126,127 can take place via the IrIV/IrIII pathway126,128 but, given the high OER potentials recorded ($E > 1.6$ V vs RHE), is most likely to proceed via the formation of the volatile IrO$_3$ intermediate.113,150 The gradual decrease in Ir and Ru dissolution and time-dependent convergence toward a steady-state profile under OER operation suggests, however, that the Ir-enriched surface in Ir$_x$Ru$_{1-x}$O$_y$ reaches a meta-stable state under which the AEM is favored. In other words, any lattice vacancies and surface defects in the rutile structure formed under OER conditions are ultimately stabilized.

The stabilization of all Ir$_x$Ru$_{1-x}$O$_y$ catalysts tested during OER polarization is thus concomitant of the Ir surface enrichment under electrochemically induced restructuring. From the industrial application perspective, rutile-type Ru-rich Ir$_x$Ru$_{1-x}$O$_y$ compositions would then be the optimal approach to find a cost-effective yet active OER catalyst: the metastable Ir-enriched shell would stabilize the underlying Ru-rich phase after long-term operation, providing a higher OER conversion rate at reasonable stabilities. Indeed, a very recent study has corroborated that electrochemical stability of OER catalysts is substantially prolonged in PEMWE systems compared to aqueous model systems,131 which would reinforce the use of an Ir-protected active phase electrocatalyst.

5. CONCLUSIONS

In this work, Ir$_x$Ru$_{1-x}$O$_y$ catalyst nanoparticles were successfully synthesized using a one-step, surfactant-free flame spray pyrolysis synthesis method, which can be easily implemented to the synthesis of other mixed oxide catalysts for OER applications. A set of surface and bulk-sensitive techniques (PXRD, XPS, HAADF-STEM-EDX, and SEM–EDX) confirmed the Ir-Ru intermixing in the amorphous, as-prepared Ir$_x$Ru$_{1-x}$O$_y$ material. After thermal treatment, rutile-type phase NPs were obtained, where Ir was selectively segregated toward their outermost surface regardless of the bulk composition. SFC-ICP-MS studies shed light on the influence of both temperature treatment and composition in the OER activity and stability. As-prepared Ir$_x$Ru$_{1-x}$O$_y$ presented a higher OER activity but worsened stability ascribed to the unstable IrIII/RuIII (oxy)hydroxides prominently present, whereas rutile-type Ir$_x$Ru$_{1-x}$O$_y$ presented a lower activity but improved stability (1000-fold lower Ir/Ru dissolution) as shown by the virtually unchanged NP morphologies and Ir:Ru surface compositions. The dramatic OER stability improvement upon incorporation of 20 at. % of Ir within a rutile RuO$_2$ matrix (ca. 6-fold) mirrors the results obtained in mixed Ir-Ru oxide libraries, whereby increased Ir contents gradually stabilized the Ru phase at the expense of lower OER activities. Despite such a stabilizing effect, the selective Ru leaching from the subsurface (as-prepared) and topmost surface (thermally treated) under OER operation led to Ir-enriched NP surfaces, where a nonlinear drop in activity accounting for Ru surface loss was found. This corroborates the selective Ru dissolution previously reported and puts the spotlight on the key mechanistic role of Ru surface sites in mixed Ir-Ru oxide systems. The inevitable Ir enrichment observed under dynamic operating conditions suggests, for long-term PEMWE applications, the use of Ru-rich Ir$_x$Ru$_{1-x}$O$_y$ rutile-type NPs given the better tradeoff in their activity–stability relationships.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.1c01682.

Experimental details of Rietveld refinement, tabulated XPS and Rietveld refinement fitting parameters, cyclic voltammograms of as-prepared Ir$_x$Ru$_{1-x}$O$_y$ NPs, and XPS and HAADF-STEM graphs of post-OER tested Ir$_x$Ru$_{1-x}$O$_y$ NPs (PDF)

AUTHOR INFORMATION

Corresponding Authors

Daniel Escalera-López — Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, 91058 Erlangen, Germany; orcid.org/0000-0002-2001-9775; Email: d.escalera@fz-juelich.de

Jan-Dierk Grunwaldt — Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen,
Authors

Steffen Czioska — Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Janis Geppert — Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Alexey Boubnov — Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Philipp Röse — Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76313 Karlsruhe, Germany; Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Erisa Saraci — Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Ulrike Krewer — Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; orcid.org/0000-0002-5984-5935

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.1c01682

Author Contributions

All authors have given approval to the final version of the manuscript.

Funding

S.C., U.K., and J.-D.G. gratefully acknowledge the DFG for financial support within the grants CH 1763/3−1 (S.C.), KR 3850/8−1 (U.K.), and GR 3987/15−1 (J.-D.G.) as a part of the Priority Program SPP 2080 “Catalysts and reactors under dynamic conditions for energy storage and conversion.”

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

D.E.-L. would like to thank Dr. Florian D. Speck (HI-ERN) for XPS spectral acquisition and Mr. Dirk Döhler (IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg) for support in PXRD spectral acquisition. Finally, S.Cz. would like to thank Dr. Michael Zimmermann and Mr. Sebastian Weber (IKFT, Karlsruhe Institute of Technology) for assistance in SEM/EDX measurements and performance of Rietveld refinements, respectively.

REFERENCES

(13) IRENA. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal; 2020.

