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Abstract The fundamental problem of dislocations in incompatible isotropic strain gradient elasticity theory
of Mindlin type, unsolved for more than half a century, is solved in this work. Incompatible strain gradient
elasticity of Mindlin type is the generalization of Mindlin’s compatible strain gradient elasticity including
plastic fields providing in this way a proper eigenstrain framework for the study of defects like dislocations.
Exact analytical solutions for the displacement fields, elastic distortions, Cauchy stresses, plastic distortions and
dislocation densities of screw and edge dislocations are derived. For the numerical analysis of the dislocation
fields, elastic constants and gradient elastic constants have been used taken from ab initio DFT calculations.
The displacement, elastic distortion, plastic distortion and Cauchy stress fields of screw and edge dislocations
are non-singular, finite, and smooth. The dislocation fields of a screw dislocation depend on one characteristic
length, whereas the dislocation fields of an edge dislocation depend on up to three characteristic lengths.
For a screw dislocation, the dislocation fields obtained in incompatible strain gradient elasticity of Mindlin
type agree with the corresponding ones in simplified incompatible strain gradient elasticity. In the case of an
edge dislocation, the dislocation fields obtained in incompatible strain gradient elasticity of Mindlin type are
depictedmore realistic than the corresponding ones in simplified incompatible strain gradient elasticity. Among
others, the Cauchy stress of an edge dislocation obtained in incompatible isotropic strain gradient elasticity of
Mindlin type looks more physical in the dislocation core region than the Cauchy stress obtained in simplified
incompatible strain gradient elasticity and is in good agreement with the stress fields of an edge dislocation
computed in atomistic simulations. Moreover, it is shown that the shape of the dislocation core of an edge
dislocation has a more realistic asymmetric form due to its inherent asymmetry in incompatible isotropic strain
gradient elasticity of Mindlin type than the dislocation core possessing a cylindrical symmetry in simplified
incompatible strain gradient elasticity. It is revealed that the considered theory with the incorporation of three
characteristic lengths offers a more realistic description of an edge dislocation than the simplified incompatible
strain gradient elasticity with only one characteristic length.

1 Introduction

A dislocation is the elementary carrier of plasticity in crystals and the most important crystal defect. Therefore,
plasticity is based on dislocations, in particular on the glide of dislocations. The natural scale of the mechanics
of dislocations is the Ångström scale, which is the characteristic scale in crystallography. However, all fields of
dislocations using classical dislocation theory possess singularities, like the 1/r -type singularity in the stress
and elastic strain fields of dislocations, because the classical approach is not valid at small scales like the
Ångström scale (see, e.g., [6,12,17,41]).
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Generalized continuum theories, like gradient elasticity and nonlocal elasticity, are continuum theories
valid at small scales (see, e.g., [7,27,30]). Mindlin [32] (see also [33]) derived the theory of compatible first
strain gradient elasticity. Compatible first strain gradient elasticity incorporates the gradient of the elastic strain
tensor in the elastic energy in addition to the elastic strain tensor. For an isotropic material, this framework
is characterized by the two Lamé constants and five strain gradient parameters leading to two characteristic
lengths. Mindlin’s first strain gradient elasticity theory respects the invariance under the group SO(3) and their
irreducible representations (see [26]). Already, Toupin and Grazis [47] andMindlin [34] (see also [13]) pointed
out that first strain gradient elasticity, sometimes called gradient elasticity of grade-2, can be considered as the
continuumversion of a lattice theorywith up to second-neighbor interactions (nearest and next-nearest neighbor
interactions). Using ab initio density functional theory (DFT) calculations, Shodja et al. [45] showed that the
characteristic lengths of Mindlin’s compatible strain gradient elasticity theory are in the order of ∼ 10−10

m (Ångström) for several fcc and bcc materials. The elements of the Hessian matrix, obtained by taking the
second derivatives of the total energy with respect to the atomic positions, are related to the strain gradient
material constants. Nowadays, the material parameters of first strain gradient elasticity can be computed from
interatomic potentials to be a self-consistent and parameter-free field theory of materials [1,40]. Moreover, the
atomistic representation of the constitutive tensors in first strain gradient elasticity was given by Admal et al.
[1]. The atomistic representations are analytical expressions in terms of the first and second derivatives of the
interatomic potential with respect to interatomic distances, and dyadic products of relative atomic positions
(see [1]).

First efforts toward dislocations in the framework of Mindlin’s strain gradient elasticity were carried out
by Lardner [16] and Rogula [42], who considered screw and edge dislocations in the framework of Mindlin’s
compatible strain gradient elasticity [32]. Considering neither plastic distortion nor dislocation density, Lardner
[16] and Rogula [42] constructed solutions to a compatible elastic boundary value problem and consequently
failed to remove the classical singularities.

More than two decades later, using a simplified theory of gradient elasticity with only one characteristic
length scale parameter, non-singular elastic strain fields of screw and edge dislocations were given, for the
first time, by Gutkin and Aifantis [8,9]. Non-singular stress and strain fields of screw and edge dislocations
based on a simplified gradient elasticity (or gradient elasticity of Helmholtz type) were given by Lazar and
Maugin [18] (see also [19]). Simplified strain gradient elasticity is a particular version of Mindlin’s strain
gradient elasticity where the double stress tensor can be expressed in a particular form in terms of the gradient
of the Cauchy stress tensor (see, e.g., [18,26]). Moreover, Lazar and Maugin [20] have shown for straight
dislocations that the gradient terms with the characteristic length scale parameter lead to a smoothing of
the displacement profile, in contrast with the jump occurring in the classical displacement field. Simplified
incompatible gradient elasticity (gradient elasticity of Helmholtz type) provides robust non-singular solutions
including one length scale parameter for the elastic distortion, plastic distortion, stress and displacement fields
of screw and edge dislocations. An important mathematical property of gradient elasticity is that it provides
a regularization based on partial differential equations (PDEs) of higher order where the characteristic length
scale parameter plays the role of a regularization parameter. Afterward, the non-singular expressions of all
dislocation key equationswere given by Lazar [23–25] for dislocation loops using simplified gradient elasticity.
For dislocations, the incompatible version of simplified gradient elasticity including plastic distortion and
dislocation density tensors is used leading to an incompatible strain gradient elasticity of defects. These non-
singular dislocation key equations (Burgers formula,Mura–Willis equation, and Peach–Koehler stress formula)
have been implemented in the UCLADiscrete Dislocation Dynamics (DD) code called “model” [35] and used
for applications [39]. The results of the dislocation fields in simplified gradient elasticity endow DD with a
level of maturity that is necessary for computer simulations of three-dimensional dislocation ensembles with
near atomic resolution. Therefore, the use of strain gradient elasticity theory for micromechanical problems
of dislocations leads to non-singular and smooth dislocation fields, and in this way to an Ångström-mechanics
of dislocations (see also [30]). Nevertheless, for a more realistic and physically based modeling of an edge
dislocation due to its inherent asymmetry more than one characteristic length scale parameter is necessary,
and this is exactly what Mindlin’s strain gradient elasticity offers.

Using an incompatible version ofMindlin’s strain gradient elasticity and the technique of Fourier transform,
non-singular and smooth displacement fields of screw and edge dislocations have been recently reported by
Delfani and Tavakol [3] and Delfani et al. [4], respectively. Delfani and Tavakol [3] and Delfani et al. [4] have
reproduced the smoothing of the displacement profile of screwand edge dislocations.However, a systematic and
complete study of screw and edge dislocations (including the elastic strain and stress fields) in the incompatible
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framework of Mindlin’s strain gradient elasticity is still missing in the literature. Therefore, the present work
aims to close this gap in the literature of dislocations in strain gradient elasticity.

The purpose of the present work is to find solutions for the displacement, plastic distortion, dislocation
density, stress and elastic distortion fields of screw and edge dislocations within the framework of incompatible
isotropic strain gradient elasticity theory of Mindlin type. This is an unsolved fundamental problem for more
than half a century. We will formulate the eigenstrain problem of dislocations in Mindlin’s isotropic gradient
elasticity. Dislocation problems are typical examples of eigenstrain problems (see, e.g., [31,36]). We will
use the two-dimensional Green tensors (fundamental solutions of the Mindlin operator) to find non-singular
dislocation fields for a given eigenstrain (or plastic distortion). Furthermore, we clarify the question of the
influence on the dislocation solutions of different characteristic length scale parameters and the five gradient
parameters of the incompatible isotropic strain gradient elasticity theory of Mindlin type and the similarities
and differences to the dislocation solutions obtained in the framework of simplified incompatible strain gradient
elasticity. For the numerical computations, the values of the five gradient parameters for aluminum will be
used given by Shodja [45,46] using atomistic ab initio DFT calculations.

The paper is organized as follows. In Sect. 2, we give the basics of incompatible strain gradient elasticity
of Mindlin type including the relevant Green’s functions which are necessary to solve the field equations
for prescribed plastic distortion of a dislocation. Using the technique of Green’s functions and convolution,
solutions of screw and edge dislocations are presented in Sects. 3 and 4, respectively. The limit of the solutions
of screw and edge dislocations in incompatible strain gradient elasticity of Mindlin type toward simplified
incompatible gradient elasticity is given in Sect. 5. In Sect. 6, conclusions are given. Some technical details
are reported in the “Appendix.”

2 Incompatible strain gradient elasticity of Mindlin type

In this Section, we present the structure and framework of the theory of incompatible strain gradient elasticity
ofMindlin type, which is the incompatible generalization ofMindlin’s compatible first strain gradient elasticity
and is suitable as defect theory at small scales down to the Ångström scale.

2.1 General form

Consider an infinite elastic body. In Mindlin’s theory of first strain gradient elasticity [32,33], the strain energy
density for centrosymmetric materials reads as

W(e, ∇e) = 1

2
Ci jkl ei j ekl + 1

2
Di jmkln∂mei j∂nekl . (1)

Here ei j denotes the incompatible elastic strain tensor which is given by

ei j = 1

2

(
βi j + β j i

)
(2)

and is nothing but the symmetric part of the incompatible elastic distortion tensor

βi j = ∂ j ui − βP
i j , (3)

which is given in termsof the gradient of the displacement vectorui and the plastic distortion (or eigendistortion)
tensor βP

i j .
Moreover,Ci jkl is the fourth-rank matter tensor (constitutive tensor) of the elastic constants possessing the

minor symmetries

Ci jkl = C j ikl = Ci jlk (4)

and the major symmetry

Ci jkl = Ckli j , (5)
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whereasDi jmkln is the sixth-rank matter tensor (constitutive tensor) of the gradient elastic constants possessing
the minor symmetries

Di jmkln = D j imkln = Di jmlkn (6)

and the major symmetry

Di jmkln = Dklni jm . (7)

The quantities conjugate to the elastic strain tensor ei j and the gradient of the elastic strain tensor ∂mei j are
the Cauchy stress tensor σi j and the double stress tensor τi jm , respectively. They are defined as

σi j = ∂W
∂ei j

= Ci jkl ekl , (8)

τi jm = ∂W
∂(∂mei j )

= Di jmkln∂nekl . (9)

In dislocation theory, the dislocation density tensor is defined in terms of the incompatible plastic distortion
tensor (see, e.g., [15,25])

αi j = −ε jkl∂kβ
P
il , (10)

and in terms of the incompatible elastic distortion tensor

αi j = ε jkl∂kβil , (11)

where ε jkl denotes the Levi-Civita tensor. In other words, the dislocation density tensor is the incompatibility
tensor due to dislocations, and it gives the characteristic shape and size of the dislocation core. The dislocation
density tensor satisfies the Bianchi identity of dislocations,

∂ jαi j = 0 , (12)

which means that dislocations cannot end inside the body.
The condition of static equilibrium is expressed by the Euler–Lagrange equation, and it reads in first strain

gradient elasticity

δW
δui

= ∂W
∂ui

− ∂ j
∂W

∂(∂ j ui )
+ ∂k∂ j

∂W
∂(∂k∂ j ui )

= 0 . (13)

In terms of the Cauchy stress and double stress tensors, Eq. (13) takes the form [32]

∂ j
(
σi j − ∂kτi jk

) = 0 . (14)

Because dislocations cause self-stresses, no physical body forces are present in the equilibrium condition for
dislocations. Dislocations belong to the category of eigenstrain problems (see [6,36]).

2.2 Isotropic form

Consider now the isotropic version of Mindlin’s strain gradient elasticity theory of form II. Using SO(3)-
invariance arguments, an isotropic matter tensor of rank 4, satisfying Eqs. (4) and (5), reads as

Ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)
, (15)

where λ and μ are the Lamé constants (elastic constants) and δi j is the Kronecker symbol, and an isotropic
matter tensor of rank 6, satisfying Eqs. (6) and (7), reads as

Di jmkln = a1
2

(
δi jδkmδln + δi jδknδlm + δklδimδ jn + δklδinδ jm

) + 2a2 δi jδklδmn

+ a3
2

(
δ jkδimδln + δikδ jmδln + δilδ jmδkn + δ jlδimδkn

) + a4
(
δilδ jkδmn + δikδ jlδmn

)
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+ a5
2

(
δ jkδinδlm + δikδ jnδlm + δ jlδkmδin + δilδkmδ jn

)
, (16)

where a1, a2, a3, a4, a5 are the five strain gradient parameters (or gradient elastic constants) in Mindlin’s
isotropic first strain gradient elasticity theory [32] (see also [26,33]).

For the isotropic case, the Cauchy stress tensor is given by

σi j = 2μ ei j + λ δi j ell , (17)

and the double stress tensor is given by

τi jk = a1
2

(
δik∂ j ell + δ jk∂i ell + 2δi j∂l ekl

) + 2a2δi j∂kell

+ a3
(
δik∂l e jl + δ jk∂l eil

) + 2a4∂kei j + a5
(
∂i e jk + ∂ j eki

)
. (18)

Using Eqs. (2), (8), and (9), Eq. (14) can be cast in the following equation in terms of the displacement
vector and the plastic distortion tensor:

LM
ik uk = μ

[
1 − 
22�

](
∂lβ

P
il + ∂lβ

P
li

) + [
λ − (a1 + 2a2)�

]
∂iβ

P
ll − (a1 + a3 + a5)∂i∂k∂lβ

P
kl , (19)

where LM
ik denotes the tensorial linear partial differential operator arising in Mindlin’s first strain gradient

elasticity called the Mindlin operator. The isotropic Mindlin operator (differential operator of fourth order) is
given by

LM
ik = (λ + 2μ)

[
1 − 
21�

]
∂i∂k + μ

[
1 − 
22�

]
(δik� − ∂i∂k) , (20)

where � indicates the Laplace operator (differential operator of second order) and the two characteristic
lengths, defined in terms of the five gradient elastic constants and the two elastic constants (Lamé constants),
which are known in isotropic compatible strain gradient elasticity of Mindlin type,


21 = 2(a1 + a2 + a3 + a4 + a5)

λ + 2μ
, (21)


22 = a3 + 2a4 + a5
2μ

. (22)

The two characteristic lengths 
1 and 
2 are the length scales appearing in the isotropic Mindlin operator (20),
and they are the characteristic length scales for the displacement vector uk . Therefore, the two characteristic
lengths 
1 and 
2 are the length scales appearing in Mindlin’s isotropic compatible gradient elasticity (see
[28,32]). Also, it can be observed on the right-hand side of Eq. (19) that the gradient elastic constants a1, a3,
and a5 play a particular role for the plastic distortion.

Now, we decompose the plastic distortion tensor βP
i j into its deviatoric (traceless) part β̊P

i j , which we call

deviatoric plastic distortion tensor, and its trace βP
ll , which is the plastic dilatation:

βP
i j = β̊P

i j + 1

3
δi jβ

P
ll (23)

with β̊P
ll = 0. If we substitute the decomposition (23) into Eq. (19), the mathematical structure of the right-hand

side of Eq. (19) becomes more visible,

LM
ik uk = μL2

(
∂l β̊

P
il + ∂l β̊

P
li

) + 1

3
(2μ + 3λ)L3 ∂iβ

P
ll + 2μ(
22 − 
24)∂i∂k∂l β̊

P
kl , (24)

where the isotropic scalar Helmholtz operator (differential operator of second order) is defined by

L j = 1 − 
2j� , 
 j > 0 . (25)

Here, 
 j are positive real length scale parameters. Sometimes, the differential operator (25) is called modified
Helmholtz operator [49] or metaharmonic operator [37]. In Eq. (24), it becomes obvious that in isotropic
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incompatible strain gradient elasticity of Mindlin type, two additional characteristic lengths can be defined in
terms of the five gradient elastic constants and the two elastic constants (Lamé constants), namely


23 = 2(2a1 + 3a2 + a3 + a4 + a5)

3λ + 2μ
, (26)


24 = a1 + 2a3 + 2a4 + 2a5
2μ

. (27)

The two characteristic lengths 
3 and 
4 are additional length scales due to the plastic distortion tensor appearing
on the right-hand side of Eq. (24). The length scale 
3 is the characteristic length of the plastic dilatation. On
the other hand, the divergence of Eq. (24) gives

(2μ + λ)L1�∂kuk = 1

3
(2μ + 3λ)L3�βP

ll + 2μL4∂k∂l β̊
P
kl . (28)

Moreover, Eq. (24) can be cast in the following form:

LM
ik uk + fi = 0 (29)

with the fictitious body force due to the plastic distortion

fi = −
[
μL2

(
∂l β̊

P
il + ∂l β̊

P
li

) + 1

3
(2μ + 3λ)L3 ∂iβ

P
ll + 2μ(
22 − 
24)∂i∂k∂l β̊

P
kl

]
. (30)

The difficulty in the theory of incompatible strain gradient elasticity of Mindlin type is that both fields, the
displacement field uk on the left-hand side and the plastic distortion βP

il on the right-hand side of Eq. (19), are
“a priori” unknown, and an operator decomposition of the Mindlin operator (20) might be helpful, which is
given in the next Section.

2.3 Decomposition of the isotropic Mindlin operator

The operator decomposition used in incompatible strain gradient elasticity of Helmholtz type [25] or in
simplified strain gradient elasticity [43] is based on the decomposition of a partial differential equation (PDE)
of higher order into a system of PDEs of lower order and on the property that the appearing differential operator
can be decomposed into a product of differential operators of lower order. Here, we present such an operator
decomposition valid in incompatible strain gradient elasticity of Mindlin type.

Because the Mindlin operator (20) is a decomposable linear partial differential operator, it can be decom-
posed into an inner product of two tensorial linear partial differential operators,

LM
ik = L(0)

il LH
lk = LH

il L
(0)
lk , (31)

where L(0)
il is the isotropic Navier operator (differential operator of second order)

L(0)
ik = (λ + 2μ)∂i∂k + μ(δik� − ∂i∂k) (32)

and LH
lk is a tensorial Helmholtz type operator (differential operator of second order) given by

LH
lk = δlk − 
21∂l∂k − 
22(δlk� − ∂l∂k) , (33)

which is the tensorial generalization of the scalarHelmholtz operator L = 1−
2�. In the case that 
1 = 
2 = 
,
it reduces to: LH

lk = δlk
(
1 − 
2�

) = δlk L .
Using the operator decomposition (31), the inhomogeneous PDE (29) of fourth order

L(0)
il LH

lk uk + fi = 0 (34)

might be decomposed into a system of PDEs of second order, namely the inhomogeneous tensorial Helmholtz
type equation,

LH
lk uk = u(0)

l , (35)
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and the classical inhomogeneous Navier equation of incompatible elasticity or eigenstrain theory,

L(0)
il u(0)

l + fi = 0 , (36)

where u(0)
l is the classical displacement field and fi is the fictitious body force due to the classical plastic

distortion β
P,0
il (see also [5])

fi = −[
μ

(
∂lβ

P,0
il + ∂lβ

P,0
li

) + λ∂iβ
P,0
ll

]

= −
[
μ

(
∂l β̊

P,0
il + ∂l β̊

P,0
li

) + 1

3
(2μ + 3λ)∂iβ

P,0
ll

]
. (37)

Thus, Eq. (37) represents the body force equivalent for dislocations in the framework of eigenstrain.
By combining Eqs. (30) and (37), the following PDE results for the plastic distortion tensor1:

μL2
(
∂l β̊

P
il + ∂l β̊

P
li

) + 1

3
(2μ + 3λ)L3 ∂iβ

P
ll + 2μ(
22 − 
24)∂i∂k∂l β̊

P
kl

= μ
(
∂l β̊

P,0
il + ∂l β̊

P,0
li

) + 1

3
(2μ + 3λ)∂iβ

P,0
ll . (38)

If the deviatoric plastic distortion is zero, then Eq. (38) simplifies for the plastic dilatation βP
ll to an inhomo-

geneous Helmholtz equation with characteristic length scale 
3:

L3β
P
ll = β

P,0
ll . (39)

For instance, the length scale 
3 is important for the plastic dilatation of a dilatation point defect (see, e.g.,
[29]). Substituting Eq. (38) into Eq. (24), we obtain the fundamental equation where the displacement vector
uk is determined by the classical plastic distortion tensor, which acts as prescribed plastic distortion,

LM
ik uk = μ

(
∂lβ

P,0
il + ∂lβ

P,0
li

) + λ∂iβ
P,0
ll . (40)

The important consequence of the operator decomposition is that the displacement field uk and the plastic
distortion βP

i j are obtained by the prescribed classical plastic distortion by solving the PDEs (40) and (38),
respectively.

2.4 Green tensors of linear partial differential operators in incompatible strain gradient elasticity

In this Section, we present the Green tensors which arise from the dislocation problem in incompatible strain
gradient elasticity of Mindlin type.

2.4.1 Green tensor of the isotropic Mindlin operator

First, we give the Green tensor of the Mindlin operator (20) for the case of an infinite isotropic medium needed
for the solutions of the screw and edge dislocation problems. The Green tensor, which is the fundamental
solution of the isotropic Mindlin operator (20), is defined by (see, e.g., [28])

LM
ikG

M
k j (R) = −δi jδ(R) , (41)

where δ(.) is the Dirac delta function.
The two-dimensional Green tensor of the plane strain problem in Mindlin’s strain gradient elasticity is

given by (see [14,28,42])

GM
i j (R) = 1

8πμ

[(
δi j� − ∂i∂ j

)
A(R, 
2) + 1 − 2ν

2(1 − ν)
∂i∂ j A(R, 
1)

]
(42)

1 In simplified incompatible strain gradient elasticity, Eq. (38) reads: Ci jkl∂ j
(
LβP

kl −β
P,0
kl

) = 0, leading to the inhomogeneous

Helmholtz equation: LβP
kl = β

P,0
kl with L = 1 − 
2� (see, e.g., [18,25]).
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with the two scalar auxiliary functions

A(R, 
1) = −
{
R2 ln R − R2 + 4
21

[
ln R + K0

(
R/
1

)]}
, (43)

A(R, 
2) = −
{
R2 ln R − R2 + 4
22

[
ln R + K0

(
R/
2

)]}
, (44)

where i, j = x, y and R ∈ R
2. Here Kn is the modified Bessel function of the second kind of order n, and ν

indicates Poisson’s ratio.
For the anti-plane strain problem in Mindlin’s strain gradient elasticity, the Green function is defined by

(see, e.g., [28])

LM
zzG

M
zz(R) = −δ(R) (45)

with the Mindlin operator of anti-plane strain depending only on the length 
2,

LM
zz = μ

[
1 − 
22�

]
� . (46)

For anti-plane strain, the two-dimensional Mindlin operator simplifies to the two-dimensional Laplace-
Helmholtz operator. The two-dimensional Green tensor of the anti-plane strain problem in Mindlin’s strain
gradient elasticity is given by (see [28])

GM
zz(R) = − 1

2πμ

[
ln R + K0

(
R/
2

)]
, (47)

which is non-singular and finite. The gradient of the Green’s function (47) reads as

∂kG
M
zz(R) = − 1

2πμ

Rk

R2

(
1 − R


2
K1

(
R/
2

))
, (48)

being non-singular, continuous and zero at R = 0.

2.4.2 Two-dimensional Green’s functions of the Helmholtz and bi-Helmholtz operators

The Green’s function of the Helmholtz operator (25) is defined by

L jG
L j = δ(R), (49)

and its solution reads

GL j = 1

2π
2j
K0(R/
 j ) . (50)

The Green’s function of the bi-Helmholtz operator, which is the product of two Helmholtz operators, is
defined by

Li L jG
Li L j = δ(R) (51)

and reads (see, e.g., [21])

GLi L j = 1

2π

1


2i − 
2j

[
K0(R/
i ) − K0(R/
 j )

]
(52)

for i �= j . Of course, it yields

GLi L j = GLi ∗ GL j , (53)

where ∗ denotes the convolution.
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2.5 Solutions for the displacement vector and the plastic distortion tensor

Using the technique of Green’s functions, the solution of Eq. (40) reads for the displacement vector

ui = −μ∂kG
M
i j ∗ (

β
P,0
jk + β

P,0
k j

) − λ∂ j G
M
i j ∗ β

P,0
kk . (54)

For the plastic distortion, Eq. (38) must be solved. The divergence of Eq. (38) yields

2μL4∂k∂l β̊
P
kl + 1

3
(2μ + 3λ)L3�βP

ll = 2μ∂k∂l β̊
P,0
kl + 1

3
(2μ + 3λ)�β

P,0
ll . (55)

We consider dislocations that incur no volume change (dislocations of glide mode), so that the plastic dilatation
must be zero,

βP
ll = 0 , (56)

and the classical plastic dilatation must be zero,

β
P,0
ll = 0 . (57)

That means that the plastic dilatation must be zero for dislocations of glide mode. Then, Eq. (55) reduces to

L4∂k∂l β̊
P
kl = ∂k∂l β̊

P,0
kl , (58)

and the solution of Eq. (58) can be written as

∂k∂l β̊
P
kl = GL4 ∗ ∂k∂l β̊

P,0
kl . (59)

If we substitute Eq. (59) into Eq. (38), under consideration of Eqs. (56) and (57), we obtain the following
solution:

∂l β̊
P
il + ∂l β̊

P
li = GL2 ∗ (∂l β̊

P,0
il + ∂l β̊

P,0
li ) − 2(
22 − 
24)G

L2L4 ∗ ∂i∂k∂l β̊
P,0
kl . (60)

Therefore, the solution for the divergence of the deviatoric plastic strain tensor is given by Eq. (60).

2.6 Material parameters

It is important to point out that both the elastic constants (μ, λ) and the gradient elastic constants (a1, a2,
a3, a4, a5) are characteristic material parameters which can be computed from interatomic potentials (e.g.,
[44]) or via ab initio DFT calculations (e.g., [45]). Therefore, the characteristic length scale parameters are
also characteristic material parameters given in terms of the elastic constants and gradient elastic constants by
Eqs. (21), (22), (26), and (27).

For the numerical analysis of the elastic and plastic fields produced by screw and edge dislocations,
we choose aluminum (Al) which is a nearly isotropic material [2]. The Lamé constants, gradient elastic
constants, characteristic lengths, equilibrium lattice parameter and Poisson’s ratio of aluminum, which have
been calculated via ab initio DFT by Shodja et al. [45] and Shodja [46], are given in Table 1. It is interesting to
note that the characteristic length 
2 is the smallest one of the four characteristic lengths for aluminum given
in Table 1. For the numerical analysis of screw and edge dislocations in Sects. 3, 4, and 5, we are using the
material parameters given in Table 1.
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Table 1 Lamé constants, gradient elastic constants, characteristic lengths, equilibrium lattice parameter and Poisson’s ratio for
aluminum (Al) computed via ab initio DFT [45,46]

λ (eV/Å3) μ (eV/Å3) a1 (eV/Å) a2 (eV/Å) a3 (eV/Å) a4 (eV/Å) a5 (eV/Å)

0.4294 0.1701 −0.0028 1.1564 0.2609 −0.0206 0.7158


1 (Å) 
2 (Å) 
3 (Å) 
4 (Å) a(Å) ν

2.3415 1.6582 2.3299 2.3691 4.05 0.3581

3 Screw dislocation

Consider a screw dislocation at the position (x, y) = (0, 0) whose Burgers vector bz and dislocation line
coincide with the z-axis of a Cartesian coordinate system. The problem of a screw dislocation is of anti-plane
strain type.

For a screw dislocation, Eqs. (19), (38), and (40) simplify to

LM
zzuz = μL2∂yβ

P
zy , (61)

L2β
P
zy = βP,0

zy (62)

and

LM
zzuz = μ∂yβ

P,0
zy , (63)

respectively.2

For the classical plastic distortion of a screw dislocation, we choose the expression given by deWit [6] (see
also [36])

βP,0
zy = bzδ(y)H(−x) = bzδ(y)

∫ ∞

x
δ(X) dX , (64)

possessing a discontinuity at y = 0 for x < 0. Here H(.) is the Heaviside step function. The plastic distor-
tion (64) is caused by a relative slip bz on the half-plane (y = 0, x < 0) in the z-direction. The classical plastic
distortion (64) is concentrated on the slip plane (the semi-infinite part of the xz-plane for negative x). This
causes singularities and discontinuities.

If we substitute Eq. (64) into Eq. (62) and use the Green’s function (50), the plastic distortion reads in
incompatible strain gradient elasticity of Mindlin type

βP
zy = GL2 ∗ βP,0

zy

= bz
2π
22

∫ ∞

x
K0

(√
X2 + y2/
2

)
dX , (65)

which is non-singular and finite as observed in Fig. 1. Unlike the classical plastic distortion (64), the plastic
distortion (65) is a smooth and continuous function in strain gradient elasticity. In gradient elasticity, the plastic
distortion is distributed, and as a result, singularities and discontinuities are avoided (see Fig. 1).

The corresponding dislocation density of a screw dislocation reads as

αzz = −∂xβ
P
zy

= GL2 ∗ α0
zz

= bz
2π
22

K0
(
r/
2

)
, (66)

2 Note that Gutkin and Aifantis [8] solved the homogeneous PDE, LM
zzuz = 0, for their “displacement field solution" instead

of the inhomogeneous PDE (63) with Eq. (64). Consequently, the “Gutkin–Aifantis solution" for the displacement field given in
[8,10] does not satisfy the correct equation (63) at y = 0 (see also the discussion in [20]). The same is true for the displacement
component ux of an edge dislocation given in [9,10].
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Fig. 1 Plastic distortion βP
zy of a screw dislocation in incompatible strain gradient elasticity of Mindlin type near the dislocation

line
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Fig. 2 Contour plot of the dislocation density of a screw dislocation αzz (normalized by the Burgers vector bz) in incompatible
strain gradient elasticity of Mindlin type

where α0
zz = bzδ(x)δ(y) is the classical dislocation density of a screw dislocation and r = √

x2 + y2. The
dislocation density (66) is plotted in Fig. 2, and it gives the shape and the size of the dislocation core of a screw
dislocation. It can be seen that the dislocation core of a screw dislocation possesses a cylindrical symmetry.
Such a shape of the dislocation core of a screw dislocation is physical because the Burgers vector, which is in
z-direction, does not break the cylindrical symmetry of the dislocation core of a screw dislocation. Note that
the dislocation density (66) possesses a logarithmic singularity at the dislocation line.

SubstitutingEq. (64) intoEq. (63) andusing theGreen’s function (47), the displacement fielduz is calculated
as

uz = −μ∂yG
M
zz ∗ βP,0

zy

= − bz
2π

∂y

∫ ∞

x

[
ln

√
X2 + y2 + K0

(√
X2 + y2/
2

)]
dX

= bz
2π

(
arctan

y

x
+ πH(−x) sgn(y) + ∂y

∫ ∞

x
K0

(√
X2 + y2/
2

)
dX

)
, (67)

where the first part in Eq. (67) is the angle ϕ with range (−π , π], that is −π < ϕ ≤ π , and discontinuity of
2π across the negative x-axis (see also [6,38])3,

ϕ = arctan
y

x
+ πH(−x) sgn(y) . (68)

3 Such a form of ϕ can by used in many modern computer algebra systems by means of particular commands: for instance,
ArcTan[x, y] in Mathematica and arctan(y, x) in Maple.
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Fig. 3 Displacement field uz of a screw dislocation in incompatible strain gradient elasticity of Mindlin type near the dislocation
line
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Fig. 4 Elastic distortion of a screw dislocation in incompatible strain gradient elasticity of Mindlin type near the dislocation line:
a βzx and b βzy

The displacement field (67) is plotted in Fig. 3. It is interesting to note that the displacement field (67) is non-
singular and has a smooth form due to the superposition of the classical jump discontinuity (first term) and the
gradient term (second term). This superposition gives a smoothing of the classical jump discontinuity present in
Eq. (68). Therefore, while the displacement field of a screw dislocation in classical dislocation theory possesses
a jump discontinuity at the branch cut or dislocation surface (y = 0 and x < 0), the jump discontinuity has
been smoothed out in strain gradient elasticity. This smoothing of the classical jump discontinuity (68) strongly
depends on the value of the length scale parameter 
2 and, in particular, on the ratio 
2/a and is a result of
the convolution in Eq. (67). In the limit as 
2 → 0, we recover the classical discontinuity in the displacement
field. Note that the displacement field (67) is in agreement with the expression given in [3].

For a screw dislocation, the non-vanishing components of the elastic distortion are calculated as

βzx = μbz∂yG
M
zz = − bz

2π

y

r2

[
1 − r


2
K1(r/
2)

]
, (69)

βzy = −μbz∂xG
M
zz = bz

2π

x

r2

[
1 − r


2
K1(r/
2)

]
. (70)

The components of the elastic distortion tensor, Eqs. (69) and (70), are plotted in Fig. 4a, b. It is evident that
they are non-singular. The components (69) and (70) of the incompatible elastic distortion tensor satisfy the
relation: αzz = ∂xβzy − ∂yβzx . In the limit 
2 → 0, the classical expressions given by deWit [6] are recovered
in Eqs. (69) and (70). The non-vanishing components of the Cauchy stress tensor are given by: σzx = μβzx
and σzy = μβzy . All fields (displacement, elastic distortion, plastic distortion, stress, dislocation density) of a
screw dislocation depend only on the characteristic length 
2.
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Fig. 5 Plastic distortion βP
xy of an edge dislocation in incompatible strain gradient elasticity of Mindlin type near the dislocation

line

4 Edge dislocation

Consider an edge dislocation at the position (x, y) = (0, 0)whose Burgers vector bx lies in x-direction and the
dislocation line coincides with the z-axis of a Cartesian coordinate system. The problem of an edge dislocation
is of plane strain type.

For the classical plastic distortion of an edge dislocation of glide mode, the expression given by deWit [6]
(see also [36]) reads as

βP,0
xy = bxδ(y)H(−x) = bxδ(y)

∫ ∞

x
δ(X) dX . (71)

The plastic distortion (71) is caused by a relative slip bx on the half-plane (y = 0, x < 0) in the x-direction.
Using Eq. (60), the non-vanishing component of the plastic distortion tensor can be written for an edge

dislocation,

βP
xy = GL2 ∗ βP,0

xy − 2(
22 − 
24)G
L2L4 ∗ ∂2xβ

P,0
xy

= GL2 ∗ βP,0
xy + 2(
22 − 
24)∂xG

L2L4 ∗ α0
xz, (72)

and the corresponding non-vanishing component of the dislocation density tensor reads

αxz = −∂xβ
P
xy

= GL2 ∗ α0
xz − 2(
22 − 
24)∂

2
x G

L2L4 ∗ α0
xz , (73)

where α0
xz = bxδ(x)δ(y) is the classical dislocation density of an edge dislocation.

On the one hand, if we substitute Eq. (71) into Eq. (72) and use the Green’s functions (50) and (52), the
plastic distortion of the edge dislocation reads in incompatible gradient elasticity of Mindlin type

βP
xy = bx

2π
22

∫ ∞

x
K0

(√
X2 + y2/
2

)
dX − bx

π

x

r

[
1


2
K1(r/
2) − 1


4
K1(r/
4)

]
. (74)

Note that the plastic distortion (74) is non-singular and finite as observed in Fig. 5. It depends on the two
characteristic lengths 
2 and 
4. Unlike the classical plastic distortion (71), the plastic distortion (74) is a
smooth and continuous function in strain gradient elasticity. The first part in Eq. (74) has the same characteristic
form as the plastic distortion of a screw dislocation given in Eq. (65).

On the other hand, if we substitute Eq. (71) into Eq. (73) and use the Green’s functions (50) and (52), the
dislocation density of the edge dislocation reads in incompatible gradient elasticity of Mindlin type
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Fig. 6 Contour plot of the dislocation density of an edge dislocation αxz (normalized by the Burgers vector bx ) in incompatible
strain gradient elasticity of Mindlin type

αxz = bx
2π
22

K0
(
r/
2

) − bx
π

[
x2

r2

(
1


22
K0(r/
2) − 1


24
K0(r/
4)

)

+ x2 − y2

r3

(
1


2
K1(r/
2) − 1


4
K1(r/
4)

)]
. (75)

The dislocation density (75) is plotted in Fig. 6, and it gives the shape and the size of the dislocation core of an
edge dislocation. It depends on the two characteristic lengths 
2 and 
4. It can be seen that the dislocation core
of an edge dislocation does not possess a cylindrical symmetry. Such a shape of the dislocation core of an edge
dislocation is physical because the Burgers vector, which is in x-direction, breaks the cylindrical symmetry of
the dislocation core of an edge dislocation toward an asymmetric dislocation core shape. Therefore, an edge
dislocation possesses an inherent asymmetry. The first part in Eq. (75) has the same characteristic form as
the dislocation density of a screw dislocation given in Eq. (66), whereas the second part in Eq. (75) produces
the asymmetric form of the dislocation core of an edge dislocation. For the first time, the asymmetry of the
dislocation core inherent in an edge dislocation is modeled in a generalized continuum theory with symmetric
stresses revealing the advantage of the considered gradient theory. Until now, the modeling of an asymmetric
dislocation core of an edge dislocation was only possible in the framework of the translation gauge theory of
dislocations with asymmetric stresses (see [22]).

In order to get the displacement fields of an edge dislocation, the Green tensor (42) is used in Eq. (54)
in addition to some mathematical manipulations like Eq. (A.4) and α0

xz = −∂xβ
P,0
zy . In this manner, the

displacement fields may be expressed in terms of the auxiliary functions (43) and (44), and the Green’s
function (47),

ux = −μ ∂yG
M
zz ∗ βP,0

xy − bx
4π

(
∂y∂x A(r, 
2) − 1 − 2ν

2(1 − ν)
∂y∂x A(r, 
1)

)
, (76)

uy = μbxG
M
zz − bx

4π

(
∂2y A(r, 
2) − 1 − 2ν

2(1 − ν)
∂2y A(r, 
1)

)
. (77)

Substituting Eq. (71) into Eq. (76) and using Eqs. (47) and (A.3) in Eqs. (76) and (77), the non-vanishing
components of the displacement vector of an edge dislocation read explicitly

ux = bx
2π

[
arctan

y

x
+ πH(−x) sgn(y) + ∂y

∫ ∞

x
K0

(√
X2 + y2/
2

)
dX

+ xy

r2

(
1 − 4
22

r2
+ 2K2(r/
2)

)
− 1 − 2ν

2(1 − ν)

xy

r2

(
1 − 4
21

r2
+ 2K2(r/
1)

)]
, (78)

uy = − bx
4π

[
1 − 2ν

1 − ν

{
ln r + K0(r/
1) − x2 − y2

r2

(
1 − 4
21

r2
+ 2K2(r/
1)

)}

+ x2 − y2

r2

(
1 − 4
22

r2
+ 2K2(r/
2)

)]
. (79)
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Fig. 7 Displacement fields of an edge dislocation in incompatible strain gradient elasticity of Mindlin type near the dislocation
line: a ux and b uy

The displacement fields (78) and (79) are plotted in Fig. 7a, b. It is interesting to note that the displacement
fields (78) and (79) are non-singular and smooth functions. The first part of Eq. (78) has the same characteristic
form as the displacement field of a screw dislocation given in Eq. (67). The displacement fields (78) and (79)
depend on the two characteristic lengths 
1 and 
2. Note that the displacement fields (78) and (79) agree with
the expressions given in [4].

Substituting the plastic distortion (72), the gradient of the displacement fields (76) and (77) into Eq. (3),
the incompatible elastic distortion follows as

βxx = μbx∂yG
M
zz − bx

4π

(
∂y∂

2
x A(r, 
2) − 1 − 2ν

2(1 − ν)
∂y∂

2
x A(r, 
1)

)
, (80)

βyy = μbx∂yG
M
zz − bx

4π

(
∂3y A(r, 
2) − 1 − 2ν

2(1 − ν)
∂3y A(r, 
1)

)
, (81)

βxy = −μbx∂xG
M
zz − bx

4π

(
∂2y∂x A(r, 
2) − 1 − 2ν

2(1 − ν)
∂2y∂x A(r, 
1)

)
− 2bx

(

22 − 
24

)
∂xG

L2L4 , (82)

βyx = μbx∂xG
M
zz − bx

4π

(
∂2y∂x A(r, 
2) − 1 − 2ν

2(1 − ν)
∂2y∂x A(r, 
1)

)
. (83)

Using now Eq. (A.5) for the third-order derivatives, Eq. (48) for the gradient of the Green’s function GM
zz

and the Green’s function of the bi-Helmholtz operator (52), the non-vanishing components (80)–(83) of the
incompatible elastic distortion tensor of an edge dislocation are found to be

βxx = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) + 2x2

r2

− 2(1 − ν)

{
3x2 − y2

r2

(
4
22
r2

− 2K2(r/
2)

)
− x2 − y2


2r
K1(r/
2)

}

+ (1 − 2ν)

{
3x2 − y2

r2

(
4
21
r2

− 2K2(r/
1)

)
− 2x2


1r
K1(r/
1)

}]
, (84)

βyy = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) − 2x2

r2

+ 2(1 − ν)

{
3x2 − y2

r2

(
4
22
r2

− 2K2(r/
2)

)
− x2 − y2


2r
K1(r/
2)

}

− (1 − 2ν)

{
3x2 − y2

r2

(
4
21
r2

− 2K2(r/
1)

)
+ 2y2


1r
K1(r/
1)

}]
, (85)
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Fig. 8 Elastic distortion components of an edge dislocation in incompatible strain gradient elasticity of Mindlin type near the
dislocation line: a βxx , b βyy , c βxy and d βyx

βxy = bx
4π(1 − ν)

x

r2

[
(3 − 2ν) − 2y2

r2
+ 4(1 − ν)

{
r


2
K1(r/
2) − r


4
K1(r/
4)

}

− 2(1 − ν)

{
x2 − 3y2

r2

(
4
22
r2

− 2K2(r/
2)

)
+ x2 + 3y2


2r
K1(r/
2)

}

+ (1 − 2ν)

{
x2 − 3y2

r2

(
4
21
r2

− 2K2(r/
1)

)
+ 2y2


1r
K1(r/
1)

}]
, (86)

βyx = − bx
4π(1 − ν)

x

r2

[
(1 − 2ν) + 2y2

r2

+ 2(1 − ν)

{
x2 − 3y2

r2

(
4
22
r2

− 2K2(r/
2)

)
− x2 − y2


2r
K1(r/
2)

}

− (1 − 2ν)

{
x2 − 3y2

r2

(
4
21
r2

− 2K2(r/
1)

)
+ 2y2


1r
K1(r/
1)

}]
. (87)

The components of the elastic distortion tensor, Eqs. (84)–(87), are plotted in Fig. 8a–d. It can be observed
that they are non-singular and zero at the dislocation line. The elastic distortion fields, Eqs. (84)–(87), depend
on the three characteristic lengths 
1, 
2, and 
4. The component βxy is larger than the other three components
in the near field (see Fig. 8c). Note that the components (84) and (86) of the incompatible elastic distortion
tensor satisfy the relation: αxz = ∂xβxy − ∂yβxx .

The elastic dilatation, which is the trace of the elastic distortion tensor, reads

βll = −bx (1 − 2ν)

2π(1 − ν)

y

r2

[
1 − r


1
K1(r/
1)

]
. (88)
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The elastic rotation, which is the skew-symmetric part of the elastic distortion tensor, reads

ωxy = bx
2π

x

r2

[
1 − r


4
K1(r/
4)

]
. (89)

In Eqs. (88) and (89), one can see that in the case of an edge dislocation 
1 and 
4 are the characteristic lengths
for the elastic dilatation and elastic rotation, respectively. The non-vanishing components of the elastic strain
tensor are given by: exx = βxx , eyy = βyy , and exy = σxy/(2μ).

Substituting the symmetric part of the elastic distortion tensor given in Eqs. (84)–(87) and the elastic dilata-
tion (88) into the Hooke’s law (17) and using the relation λ = 2μν/(1 − 2ν), the non-vanishing components
of the Cauchy stress tensor of an edge dislocation are obtained as

σxx = − μbx
2π(1 − ν)

y

r2

[
3x2 + y2

r2
− 2νr


1
K1(r/
1)

− 2(1 − ν)

{
3x2 − y2

r2

(
4
22
r2

− 2K2(r/
2)

)
− x2 − y2


2r
K1(r/
2)

}

+ (1 − 2ν)

{
3x2 − y2

r2

(
4
21
r2

− 2K2(r/
1)

)
− 2x2


1r
K1(r/
1)

}]
, (90)

σyy = μbx
2π(1 − ν)

y

r2

[
x2 − y2

r2
+ 2νr


1
K1(r/
1)

− 2(1 − ν)

{
3x2 − y2

r2

(
4
22
r2

− 2K2(r/
2)

)
− x2 − y2


2r
K1(r/
2)

}

+ (1 − 2ν)

{
3x2 − y2

r2

(
4
21
r2

− 2K2(r/
1)

)
+ 2y2


1r
K1(r/
1)

}]
, (91)

σxy = μbx
2π(1 − ν)

x

r2

[
x2 − y2

r2
+ 2(1 − ν)

{
r


2
K1(r/
2) − r


4
K1(r/
4)

}

− 2(1 − ν)

{
x2 − 3y2

r2

(
4
22
r2

− 2K2(r/
2)

)
+ 2y2


2r
K1(r/
2)

}

+ (1 − 2ν)

{
x2 − 3y2

r2

(
4
21
r2

− 2K2(r/
1)

)
+ 2y2


1r
K1(r/
1)

}]
, (92)

σzz = − μνbx
π(1 − ν)

y

r2

[
1 − r


1
K1(r/
1)

]
. (93)

The components of the Cauchy stress tensor, Eqs. (90)–(93), are plotted in Fig. 9a–d. It can be seen that they
are non-singular. At the dislocation line, the stress is zero. The stress components, Eqs. (90)–(93), depend on
the three characteristic lengths 
1, 
2, and 
4. The component σxx is larger than the other three components in
the near field (see Fig. 9a). Moreover, the contours of the non-zero components of the Cauchy stress tensor,
Eqs. (90)–(93), are given in Fig. 10a–d. Using incompatible strain gradient elasticity of Mindlin type, the
contours, as shown in Fig. 10a–d, are the non-singular versions of the classical contours (see, e.g., Hirth and
Lothe [12]) in terms of three characteristic lengths. The component σxx possesses the characteristic butterfly
shape (see Fig. 10a). Of course, the non-singular stresses caused by an edge dislocation are more “complex”
due to the inherent asymmetry. Moreover, it is important to note that the non-singular stresses of an edge
dislocation, Eqs. (90)–(93), are in good agreement with the stress fields of an edge dislocation in Al computed
in atomistic simulations by Webb III et al. [48] using the discrete and Hardy expressions for σi j .

Last but not least, concerning the gradient of the elastic strain tensor and the double stress tensor, it should
be noted that some components are non-singular and some other ones are singular, for instance, the gradient
of elastic dilatation, ∂iβll , appearing in the double stress tensor (18), is still singular.

5 Screw and edge dislocations in simplified incompatible strain gradient elasticity

Now, we perform the limit from incompatible strain gradient elasticity ofMindlin type to simplified incompati-
ble strain gradient elasticity (gradient elasticity of Helmholtz type) for the fields of screw and edge dislocations
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σxx

bx

(b)

y (Å)
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Fig. 9 Stress components of an edge dislocation in incompatible strain gradient elasticity of Mindlin type near the dislocation
line: a σxx , b σyy , c σxy , and d σzz

in order to check if the solutions in incompatible strain gradient elasticity of Mindlin type recover the cor-
rect ones in simplified incompatible strain gradient elasticity known in the literature. The limit to simplified
incompatible strain gradient elasticity is given by [18,28]

a1 = 0 , a2 = λ
2

2
, a3 = 0 , a4 = μ
2 , a5 = 0 (94)

and therefore


1 = 
2 = 
3 = 
4 = 
 . (95)

For the case of a screw dislocation, the limit reads as 
2 = 
 in Eqs. (65), (66), (67), (69), and (70)
leading to known results in the literature (see, e.g., [8,11,18,24,27]). Therefore, the dislocation fields of a
screw dislocation in incompatible strain gradient elasticity of Mindlin type agree with the dislocation fields of
a screw dislocation in simplified incompatible strain gradient elasticity.

In the limit to simplified incompatible gradient elasticity for an edge dislocation, the plastic distortion (74)
simplifies to

βP
xy = bx

2π
2

∫ ∞

x
K0

(√
X2 + y2/


)
dX, (96)

and the dislocation density (75) reduces to

αxz = bx
2π
2

K0
(
r/


)
. (97)
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Fig. 10 Contours of equal stress about an edge dislocation in incompatible strain gradient elasticity of Mindlin type: a σxx/bx ,
b σyy/bx , c σxy/bx , and d σzz/bx

Of course, Eq. (97) is in agreement with the expression given by Lazar and Maugin [20], Lazar [24,27].
Equation (96) corresponds to the plastic field given in [20,27] with a different branch cut.

The displacement fields (76) and (77) reduce to

ux = bx
4π(1 − ν)

[
2(1 − ν)

(
arctan

y

x
+ πH(−x) sgn(y) + ∂y

∫ ∞

x
K0

(√
X2 + y2/


)
dX

)

+ xy

r2

(
1 − 4
2

r2
+ 2K2(r/
)

)]
, (98)

uy = − bx
4π(1 − ν)

[
(1 − 2ν)

(
ln r + K0(r/
)

)
+ x2 − y2

2r2

(
1 − 4
2

r2
+ 2K2(r/
)

)]
. (99)

Equation (98) is in agreement with the displacement field given in [20,27] up to a different branch cut (see also
[11]) and in full agreement with the displacement field given in [4]. Equation (99) agrees with the expression
given in [4,9,11,20,27] up to a constant displacement. Note that the component (99) is the non-singular
gradient version of the classical displacement field given in [12,41].

Moreover, the incompatible elastic distortion fields (84)–(87) simplify to

βxx = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) + 2x2

r2
− 3x2 − y2

r2

(
4
2

r2
− 2K2(r/
)

)
− 2(y2 − νr2)


r
K1(r/
)

]
,

(100)
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βyy = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) − 2x2

r2
+ 3x2 − y2

r2

(
4
2
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− 2K2(r/
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− 2(x2 − νr2)


r
K1(r/
)

]
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(101)

βxy = bx
4π(1 − ν)

x

r2

[
(3 − 2ν) − 2y2

r2
− x2 − 3y2

r2

(
4
2

r2
− 2K2(r/
)

)
− 2

(
y2 + (1 − ν)r2

)


r
K1(r/
)

]
,

(102)

βyx = − bx
4π(1 − ν)

x

r2

[
(1 − 2ν) + 2y2

r2
+ x2 − 3y2

r2

(
4
2

r2
− 2K2(r/
)

)
− 2

(
x2 − νr2

)


r
K1(r/
)

]
,

(103)

which agree with the formulas given by Lazar andMaugin [20], Lazar [24,27]. The comparison of the non-zero
components of the elastic distortion tensor of an edge dislocation in strain gradient elasticity of Mindlin type
(Eqs. (84)–(87)), simplified strain gradient elasticity (Eqs. (100)–(103)), and classical incompatible elasticity
is given in Fig. 11a–d. It is interesting to observe that all four components of the elastic distortion tensor of an
edge dislocation using strain gradient elasticity of Mindlin type and simplified strain gradient elasticity are in
good agreement, even the “strange" behavior (with two additional zeros) of the near field of the component
βyy is reproduced in both gradient theories (see Fig. 11b).

The stress fields (90)–(93) reduce to

σxx = − μbx
2π(1 − ν)

y

r4

[
(3x2 + y2) − (3x2 − y2)

(
4
2

r2
− 2K2(r/
)

)
− 2y2r



K1(r/
)

]
, (104)

σyy = μbx
2π(1 − ν)

y

r4

[
(x2 − y2) − (3x2 − y2)

(
4
2

r2
− 2K2(r/
)

)
+ 2x2r



K1(r/
)

]
, (105)

σxy = μbx
2π(1 − ν)

x

r4

[
(x2 − y2) − (x2 − 3y2)

(
4
2

r2
− 2K2(r/
)

)
− 2y2r



K1(r/
)

]
, (106)

σzz = − μνbx
π(1 − ν)

y

r2

[
1 − r



K1(r/
)

]
, (107)

which are in agreement with the formulas given by Gutkin and Aifantis [10], Gutkin [11], Lazar and Maugin
[18], and Lazar [27]. The contours of the non-zero components of the stress tensor, Eqs. (104)–(107), are given
in Fig. 12a–d. If we compare Figs. 12a–c and 10a–c, it can be seen that the stress components σxx , σyy , and
σxy possess a slightly different shape in the dislocation core region. In the dislocation core region, the stress
components in Fig. 10a–c are weaker than the corresponding ones in Fig. 12a–c. Using simplified incompatible
strain gradient elasticity, the contours, as shown in Fig. 12a–d, are the non-singular versions of the classical
contours (see, e.g., Hirth and Lothe [12]) in terms of only one length scale 
. The characteristic butterfly shape
of the component σxx is changing slightly its form in the dislocation core region (see Fig. 12a). If we compare
Figs. 10b and 12b for the component σyy , and Figs. 10c and 12c for the component σxy , the Cauchy stress
components, Eqs. (91) and (92), obtained in incompatible strain gradient elasticity of Mindlin type look more
realistic and physical in the dislocation core region than the Cauchy stress components, Eqs. (105) and (106),
obtained in simplified incompatible strain gradient elasticity. In particular, the “classical” contours of the stress
components σyy and σxy at |x | = |y| of zero stress are slightly modified in the dislocation core region (see
Fig. 12b, c).

Last but not least, the limit from simplified incompatible strain gradient elasticity to classical incompatible
elasticity is given by 
 → 0 leading to the well-known results of screw and edge dislocations given by deWit
[6].

6 Conclusions

The present paper solves the long-standing problem of dislocations in incompatible isotropic strain gradient
elasticity theory of Mindlin type. Exact analytical solutions for the displacement fields, elastic distortions,
Cauchy stresses, plastic distortions, and dislocation densities of screw and edge dislocations have been derived.
The technique of Green’s functions for PDEs of higher order has been used. For the numerical study of the
dislocation fields, elastic constants and strain gradient parameters for Al have been used taken from ab initio
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Fig. 11 Plots of the elastic distortion components of an edge dislocation in incompatible strain gradient elasticity of Mindlin type
(Mindlin), simplified incompatible strain gradient elasticity (SGE) for 
 = 
2 and classical incompatible elasticity (Classical): a
βxx/bx , b βyy/bx , c βxy/bx , and d βyx/bx

DFT calculations. As characteristic fact of incompatible gradient elasticity, the analytical solutions for the
displacement fields, elastic distortions, stresses, plastic distortions of screw and edge dislocations are non-
singular and finite and depend on the characteristic lengths of incompatible isotropic strain gradient elasticity
ofMindlin type. The characteristic fields of a screw dislocation depend on one characteristic length 
2, whereas
the characteristic fields of an edge dislocation depend on up to three characteristic lengths 
1, 
2, and 
4. The
most important length for the characteristic dislocation profile of the displacement, plastic distortion and
dislocation density fields of screw and edge dislocations is the characteristic length 
2. The dependence of the
dislocation fields on the characteristic length scale parameters is as follows:

Screw dislocation:

• displacement field: uz = uz(r, 
2)
• plastic distortion: βP

zy = βP
zy(r, 
2)• dislocation density: αzz = αzz(r, 
2)

• incompatible elastic distortion: βi j = βi j (r, 
2)
• Cauchy stress: σi j = σi j (r, 
2)

Edge dislocation:

• displacement field: ui = ui (r, 
1, 
2)
• plastic distortion: βP

xy = βP
xy(r, 
2, 
4)• dislocation density: αxz = αxz(r, 
2, 
4)

• incompatible elastic distortion: βi j = βi j (r, 
1, 
2, 
4)
• Cauchy stress: σi j = σi j (r, 
1, 
2, 
4).

Themain feature of the obtained solutions of screw and edge dislocations is the absence of any singularity in
the displacement, elastic distortion, plastic distortion and stress fields. For a screwdislocation, all the dislocation
fields (displacement, elastic distortion, Cauchy stress, plastic distortion, and dislocation density) obtained
in incompatible strain gradient elasticity of Mindlin type agree with the corresponding ones in simplified
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Fig. 12 Contours of equal stress about an edge dislocation in simplified incompatible strain gradient elasticity for 
 = 
2: a
σxx/bx , b σyy/bx , c σxy/bx , and d σzz/bx

incompatible strain gradient elasticity. In the case of an edge dislocation, all the dislocation fields (displacement,
elastic distortion, Cauchy stress, plastic distortion, and dislocation density) obtained in incompatible strain
gradient elasticity of Mindlin type are different, presenting more features than the corresponding ones in
simplified incompatible strain gradient elasticity. For instance, theCauchy stress of an edge dislocation obtained
in incompatible isotropic strain gradient elasticity ofMindlin type looksmore physical andmore realistic in the
dislocation core region than the Cauchy stress obtained in simplified incompatible strain gradient elasticity and
is in agreement with the stress around the core of an edge dislocation in Al computed in atomistic simulations.
In general, the dislocation core appears naturally in incompatible strain gradient elasticity and is characterized
by the dislocation density tensor, which has the physicalmeaning of a dislocation core tensor. Themost exciting
fact is that the shape of the dislocation core of an edge dislocation has a more realistic asymmetric form due to
its inherent asymmetry in incompatible isotropic strain gradient elasticity of Mindlin type than the dislocation
core shape possessing cylindrical symmetry in simplified incompatible strain gradient elasticity. Incompatible
isotropic strain gradient elasticity of Mindlin type is a generalized continuum theory with symmetric stress
which gives an asymmetric dislocation core for an edge dislocation, and it captures the plastic phenomenon
more realistically. Therefore, incompatible strain gradient elasticity of Mindlin type with several characteristic
length scale parameters is able to model an edge dislocation more realistically in the dislocation core region
than simplified incompatible gradient elasticity with only one length scale. Moreover, incompatible strain
gradient elasticity of Mindlin type delivers a better physical based regularization than the regularization with
only one regularization parameter in simplified incompatible gradient elasticity. From the dislocation fields
obtained in incompatible isotropic strain gradient elasticity theory of Mindlin type, the correct limits for the
dislocation fields obtained in simplified incompatible gradient elasticity have been recovered.
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A The auxiliary function A(R, �) and its derivatives

We consider the plane strain case with R ∈ R
2, i, j = x, y. For plane strain, the auxiliary function A(R, 
) is

given by

A(R, 
) = −
{
R2 ln R − R2 + 4
2

[
ln R + K0

(
R/


)]}
. (A.1)

The first-order and second-order derivatives of A(R, 
) are given by the following set of equations:

∂i A(R, 
) = −
{
2Ri ln R − Ri + 4
2

Ri

R2

(
1 − R



K1

(
R/


))}
, (A.2)

∂ j∂i A(R, 
) = − 2δi j
[
ln R + K0

(
R/


)] +
(
δi j − 2

Ri R j

R2

)(
1 − 4
2

R2 + 2K2
(
R/


))
, (A.3)

�A(R, 
) = − 4
[
ln R + K0

(
R/


)]
, (A.4)

∂k∂ j∂i A(R, 
) = − 2
δi j Rk + δik R j + δ jk Ri

R2

(
1 − 4
2

R2 + 2K2
(
R/
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+ 4Ri R j Rk

R4

(
1 − 8
2

R2 + 4K2
(
R/


) + R



K1

(
R/


))
(A.5)

and

∂k�A(R, 
) = −4
Rk

R2

(
1 − R



K1

(
R/


))
. (A.6)

The expressions (A.1)–(A.6) are non-singular.

References

1. Admal, N.C., Marian, J., Po, G.: The atomistic representation of first strain-gradient elastic tensors. J. Mech. Phys. Solids
99, 93–115 (2017)

2. Dederichs, P.H., Leibfried, G.: Elastic Green’s function for anisotropic cubic crystals. Phys. Rev. 188, 1175–1183 (1969)
3. Delfani, M.R., Tavakol, E.: Uniformly moving screw dislocation in strain gradient elasticity. Eur. J. Mech. A Solids 73,

349–355 (2019)
4. Delfani, M.R., Taaghi, S., Tavakol, E.: Uniformmotion of an edge dislocation within Mindlin’s first strain gradient elasticity.

Int. J. Mech. Sci. 179, 105701 (2020)
5. deWit, R.: Theory of disclinations II. J. Res. Natl. Bureau Standards 77A, 49–100 (1973)
6. deWit, R.: Theory of disclinations IV. J. Res. Natl. Bureau Standards 77A, 607–658 (1973)
7. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)
8. Gutkin, M.Y., Aifantis, E.C.: Screw dislocation in gradient elasticity. Scripta Mater. 35, 1353–1358 (1996)
9. Gutkin, M.Y., Aifantis, E.C.: Edge dislocation in gradient elasticity. Scripta Mater. 36, 129–135 (1997)

10. Gutkin, M.Y., Aifantis, E.C.: Dislocations in gradient elasticity. Scripta Mater. 40, 559–566 (1999)
11. Gutkin, M.Y.: Elastic behaviour of defects in nanomaterials I. Rev. Adv. Mater. Sci. 13, 125–161 (2006)
12. Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. Wiley, New York (1982)
13. Jaunzemis, W.: Continuum Mechanics. The Macmillan Company, New York (1967)

http://creativecommons.org/licenses/by/4.0/


M. Lazar

14. Karlis, G.F., Charalambopoulos, A., Polyzos, D.: An advanced boundary element method for solving 2D and 3D static
problems in Mindlin’s strain-gradient theory of elasticity. Int. J. Numer. Methods Eng. 83, 1407–1427 (2010)

15. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958)
16. Lardner, R.W.: Dislocations in materials with couple stress. IMA J. Appl. Math. 7, 126–137 (1971)
17. Lardner, R.W.: Mathematical Theory of Dislocations and Fracture. University of Toronto Press, Toronto (1974)
18. Lazar,M.,Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity.

Int. J. Eng. Sci. 43, 1157–1184 (2005)
19. Lazar, M., Maugin, G.A., Aifantis, E.C.: On dislocations in a special class of generalized elasticity. Phys. Stat. Sol. (b) 242,

2365–2390 (2005)
20. Lazar, M., Maugin, G.A.: Dislocations in gradient elasticity revisited. Proc. R. Soc. A 462, 3465–3480 (2006)
21. Lazar, M., Maugin, G.A., Aifantis, E.C.: On the theory of nonlocal elasticity of bi-Helmholtz type and some applications.

Int. J. Solids Struct. 43, 1404–1421 (2006)
22. Lazar, M., Anastassiadis, C.: The gauge theory of dislocations: static solutions of screw and edge dislocations. Philos. Mag.

89, 199–231 (2009)
23. Lazar, M.: Non-singular dislocation loops in gradient elasticity. Phys. Lett. A 376, 1757–1758 (2012)
24. Lazar, M.: The fundamentals of non-singular dislocations in the theory of gradient elasticity: dislocation loops and straight

dislocations. Int. J. Solids Struct. 50, 352–362 (2013)
25. Lazar, M.: On gradient field theories: gradient magnetostatics and gradient elasticity. Philos. Mag. 94, 2840–2874 (2014)
26. Lazar,M.: Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity. Zeitschrift für angewandte

Mathematik und Mechanik (ZAMM) 96, 1291–1305 (2016)
27. Lazar, M.: Non-singular dislocation continuum theories: strain gradient elasticity versus Peierls–Nabarro model. Philos.

Mag. 97, 3246–3275 (2017)
28. Lazar, M., Po, G.: On Mindlin’s isotropic strain gradient elasticity: Green tensors, regularization, and operator-split. J.

Micromech. Mol. Phys. 3(3 & 4), 1840008 (2018)
29. Lazar, M.: A non-singular continuum theory of point defects using gradient elasticity of bi-Helmholtz type. Philos. Mag. 99,

1563–1601 (2019)
30. Lazar, M., Agiasofitou, E., Po, G.: Three-dimensional nonlocal anisotropic elasticity: a generalized continuum theory of

Ångström-mechanics. Acta Mech. 231, 743–781 (2020)
31. Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific, Singapore (2008)
32. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)
33. Mindlin, R.D., Eshel, N.N.: On first strain gradient theory in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)
34. Mindlin, R.D.: Elasticity, piezoelectricity and crystal lattice dynamics. J. Elast. 2, 217–282 (1972)
35. MODEL (2014), https://github.com/giacomo-po/MoDELib
36. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Dordrecht (1987)
37. Ortner, N., Wagner, P.: Fundamental Solutions of Linear Partial Differential Operators. Springer, Cham (2015)
38. Pellegrini, Y.-P.: Dynamic Peierls–Nabarro equations for elastically isotropic crystals. Phys. Rev. B 81, 024101 (2010)
39. Po, G., Lazar, M., Seif, D., Ghoniem, N.: Singularity-free dislocation dynamics with strain gradient elasticity. J. Mech. Phys.

Solids 68, 161–178 (2014)
40. Po, G., Admal, N.C., Lazar, M.: The Green tensor of Mindlin’s anisotropic first strain gradient elasticity. Mater. Theory 3, 3

(2019)
41. Read Jr., W.T.: Dislocations in Crystals. McGraw-Hill, New York (1953)
42. Rogula, D.: Some basic solutions in strain gradient elasticity theory of an arbitrary order. Arch. Mech. 25, 43–68 (1973)
43. Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101, 59–68

(1993)
44. Shodja, H.M., Tehranchi, A.: A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via

Sutton-Chen potential, Philos. Mag. 90, 1893–1913 (2010), Corrigendum, Philos. Mag. 92, 1170–1171 (2012)
45. Shodja, H.M., Zaheri, A., Tehranchi, A.: Ab initio calculations of characteristic lengths of crystalline materials in first strain

gradient elasticity. Mech. Mater. 61, 73–78 (2013)
46. Shodja, H.M.: personal communication, October (2015)
47. Toupin, R.A.,Grazis, D.C.: Surface effects and initial stress in continuumand latticemodels of elastic crystals, in: Proceedings

of the International Conference onLatticeDynamics, Copenhagen, Edited byR.F.Wallis, PergamonPress pp. 597–602 (1964)
48. Webb, E.B., Zimmerman, J.A., Seel, S.C.: Reconsideration of continuum thermomechanical quantities in atomic scale

simulations. Math. Mech. Solids 13(3–4), 221–266 (2008)
49. Zauderer, E.: Partial Differential Equations of Applied Mathematics. John Wiley & Sons Inc, New York (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://github.com/giacomo-po/MoDELib

	Incompatible strain gradient elasticity of Mindlin type: screw and edge dislocations
	Abstract
	1 Introduction
	2 Incompatible strain gradient elasticity of Mindlin type
	2.1 General form
	2.2 Isotropic form
	2.3 Decomposition of the isotropic Mindlin operator
	2.4 Green tensors of linear partial differential operators in incompatible strain gradient elasticity
	2.4.1 Green tensor of the isotropic Mindlin operator
	2.4.2 Two-dimensional Green's functions of the Helmholtz and bi-Helmholtz operators

	2.5 Solutions for the displacement vector and the plastic distortion tensor
	2.6 Material parameters

	3 Screw dislocation
	4 Edge dislocation
	5 Screw and edge dislocations in simplified incompatible strain gradient elasticity
	6 Conclusions
	Acknowledgements
	A The auxiliary function A(R,ell) and its derivatives
	References




