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1. Introduction

The IIB matrix model [1,2] has been suggested as a nonperturbative formulation of type-IIB super-
string theory. First results on the partition function of the Euclidean IIB matrix model were reported
in Refs. [3,4]. Later, numerical simulations [5–7] of the Lorentzian IIB matrix model suggested
the appearance of a 3 + 6 split of the nine spatial dimensions (matching Euclidean results were
presented in Ref. [8]). Still, the physical interpretation of the emergence of a classical spacetime in
Refs. [1,2,5–8] is not really satisfactory, because there is no manifest small dimensionless parameter
to motivate a saddle-point approximation.

Recently, we have revived an old idea, the large-N master field of Witten [9], for a possible origin
of classical spacetime in the context of the IIB matrix model; see Appendix B in the earlier preprint
version [10] of Ref. [11]. But we did not give any details about where precisely in the master field
the classical spacetime is encoded. In the present paper, we try to be more explicit.

Before we set out on our search for classical spacetime in the IIB matrix model, we have five
preliminary remarks. First, we take the Lorentzian signature in the IIB matrix model, because it
is not clear how to interpret an emerging Euclidean “spacetime” from the Euclidean IIB matrix
model. Second, our discussion of the Lorentzian path integrals will be strictly formal, omitting all
convergence issues. Third, we introduce a length scale “�” into the IIB matrix model, in order to give
the dimension of length to the bosonic matrix variable. Fourth, such a length scale “�” may enter the
effective metric of the regularized big bang singularity [12–15]. Fifth, the focus of the present paper
is solely on the IIB matrix model, but it is possible that some of our results could carry over to other
matrix models [16–18].

We will now start by recalling the IIB matrix model and the concept of the master field, and will
then turn to the emergence of the spacetime points and the spacetime metric.

2. Model

The action of the Lorentzian IIB matrix model is given by [1,2]

S[A, �] = Sb[A] + Sf [A, �]
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= Tr
(

1

4

[
A μ, Aν

] [
Aκ , Aλ

]
η̃μκ η̃νλ + 1

2
�β 	̃

μ
βα η̃μν

[
Aν , �α

] )
, (1a)

η̃μν =
[
diag (−1, 1, . . . , 1)

]
μν

, (1b)

with vector indices μ, ν, κ , λ ∈ {0, 1, . . . , 9} and spinor indices α, β ∈ {1, 2, . . . , 32}. The vector A μ

and the Majorana–Weyl spinor �α are both N × N traceless Hermitian matrices. They live in a 10D
spacetime consisting of a single point, a special case of the Eguchi–Kawai reduction [19] operative
in the large-N limit of certain field theories; see Ref. [20] for a review.

The action (1) is invariant under the following global gauge transformation:

A μ → � A μ �†, (2a)

�α → � �α �†, (2b)

� ∈ SU (N ). (2c)

In addition, there is SO(1, 9) Lorentz invariance and an N = 2 supersymmetry [2].
The partition function Z is defined by the following Lorentzian “path” integral [5]:

Z =
∫

dA d� exp
(
i S[A, �]/�4 ). (3)

Here, we have introduced a length scale “�”, so that A μ from Eq. (1) must have the dimension of
length and �α the dimension of (length)3/2.

The length scale “�” is solely introduced to simplify the physics discussion later on and can be
removed by considering dimensionless variables A′ and � ′. The IIB-matrix-model path integral (3)
in terms of dimensionless variables A′ and � ′ has, as emphasized in Appendix B of Ref. [10], no
obvious small dimensionless parameter and, therefore, no obvious saddle-point approximation.

As the fermions appear quadratically in the action, they can be integrated out [3,4] and the partition
function becomes

Z =
∫

dA exp
(
i Seff[A]/�4 ) , (4a)

with an effective action

Seff[A] = Sb[A] + Sinduced[A]. (4b)

For completeness, we mention that the integration measure dA in Eqs. (3) and (4a) is standard [21],
except for the restriction to tracelessness.

3. Master field

A particular gauge-invariant bosonic observable is given by

wμ1···μm = Tr
(
Aμ1 · · · Aμm

)
. (5)
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Its expectation values are given by the following Lorentzian path integrals:

〈wμ1···μm wν1···νn · · · 〉 = Z−1
∫

dA
(
wμ1···μm wν1···νn · · · ) exp

[
i Seff/�

4 ] , (6)

with normalization factor Z from Eq. (4).
The expectation values (6) have the following factorization property:

〈wμ1···μm wν1···νn · · · wω1···ωz 〉 N= 〈wμ1···μm〉 〈wν1···νn〉 · · · 〈wω1···ωz 〉, (7)

which holds to leading order in N (see Sect. III A of Ref. [20] for further discussion). From Eq. (7)
follows the result that, to leading order in N , the expectation value of the square of w equals the
square of the expectation value of w,

〈 (wμ1···μm
)2 〉 N= ( 〈wμ1···μm〉 )2, (8)

which is a truly remarkable result for a statistical (quantum) theory.
According to Witten [9], the factorization results (7) and (8) imply that the path integrals (6) are

saturated by a single configuration, the master field Â μ. For just one observable w from Eq. (5) and
its expectation value (“Wilson loop”), we then have

〈wμ1···μm〉 N= Tr
(

Â μ1 · · · Â μm
)

. (9)

In principle, it is possible that there is more than one master field, as long as these master fields
give, in the large-N limit, exactly the same results for all possible observables of the type (5). For
simplicity, we will talk, in the following, about a single master field.

The explicit expression for the IIB-matrix-model master field Â μ is not known, but it is possible
to give an algebraic equation for it. Based on previous work by Greensite and Halpern [22], the
IIB-matrix-model master field takes the following form [10]:

Â μ

ab(τeq) = exp
[
i (̂pa − p̂b) τeq

]
â μ

ab, (10a)

where τeq must have a sufficiently large value (it traces back to the fictitious Langevin time τ of
stochastic quantization) and where the τ -independent matrix â μ on the right-hand side solves the
following algebraic equation:

i
(̂
pa − p̂b

)
â μ

ab = − δSeff

δAμ ba

∣∣∣∣
A=̂a

+ η̂
μ

ab, (10b)

in terms of the master momenta p̂a (uniform random numbers) and the master noise matrices η̂
μ

ab
(Gaussian random numbers); see Ref. [22] for further details and Refs. [23,24] for some interesting
results.

Further remarks on the IIB-matrix-model master field also appear in Appendix B of Ref. [10], but,
here, we just assume that the master field has been obtained, in the form as given by Eq. (10) or
otherwise.

4. Emergent spacetime points

As argued in Appendix B of Ref. [10], the only place where “classical spacetime” can reside in the
IIB matrix model is the master field Â μ of the model. But precisely where? In the following, we
present a few rather naive ideas (hopefully, not too naive).
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Following Refs. [5–7], we begin by making a particular global gauge transformation (2a),

Â
μ = � Â μ � †, (11a)

� ∈ SU (N ), (11b)

so that the transformed 0-component [singled out by the Minkowski “metric” (1b)] is diagonal and
has ordered eigenvalues α̂i ∈ R,

Â
0 = diag

(
α̂1, α̂2, . . . , α̂N−1, α̂N

)
, (12a)

α̂1 ≤ α̂2 ≤ · · · ≤ α̂N−1 ≤ α̂N , (12b)

N∑
i=1

α̂i = 0, (12c)

where the last equality from tracelessness implies that some α̂i are negative and some positive. The
ordering (12b) will turn out to be crucial for the time coordinates t̃ and t̂ obtained below.

Indeed, we can introduce a continuous function x̃ 0 (̃ζ ) ≡ c̃ t̃ (̃ζ ) for ζ̃ ∈ (0, 1] by identifying (cf.
Ref. [21])

x̃ 0 (i/N ) ≡ c̃ t̃ (i/N ) = α̂i, (13)

with i ∈ {1, . . . , N } and a velocity c̃ that is expected to be related to the vacuum velocity of light in
the low-energy theory. From Eq. (12b), we immediately have

t̃
(
1/N

) ≤ t̃
(
2/N

) ≤ · · · ≤ t̃
(
1 − 1/N

) ≤ t̃
(
1
)
, (14)

where the ordering is the defining property of what makes physical time.
The problem now is how to extract the corresponding space coordinates x̃ m(̃ζ ) from the Hermitian

Â
m

matrices. The simplest idea (following Ref. [2]) is to calculate the eigenvalues of the nine matrices
Â

m
, but then it is unclear how to order them with respect to the eigenvalues from Eq. (12). We will

use a relatively simple procedure, which approximates the Â
m

eigenvalues but still manages to order
them along the diagonal. Our procedure corresponds, in fact, to a type of coarse graining of some of
the information contained in the IIB-matrix-model master field. There is, however, more information
in the master field that we will not consider, and even information not in the master field, as there
are also non-factorizing observables [20] in the IIB matrix model.

We start from the following trivial observation: if M is an N × N Hermitian matrix, then any n × n
block centered on the diagonal of M is also Hermitian, which holds for n ≥ 1 and n ≤ N . With
N � 1, we take n so that 1 � n � N . Specifically, we proceed by the following six steps.

The first step is to let K be an odd divisor of N , so that

N = K n, (15a)

K = 2 L + 1, (15b)

where both L and n are positive integers (we have chosen an odd value of K for later convenience).
In the limit N → ∞, we also take K → ∞ but are not sure exactly how fast (with n staying finite
or not).
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The second step is to consider, in each of the 10 matrices Â
μ

from Eqs. (11) and (12), the K blocks
of size n × n centered on the diagonals.

The third step is to realize that we already know the diagonalized blocks of Â
0

from Eq. (12a).
This allows us to define the following time coordinate t̂ (ζ ), for ζ ∈ (0, 1], as the average of the α̂i

eigenvalues of each n × n block:

x̂ 0 (k/K
) ≡ c̃ t̂

(
k/K

) ≡
⎛⎝1

n

n∑
j=1

α̂(k−1) n+j

⎞⎠+ c̃ t̂shift, (16)

with k ∈ {1, . . . , K}, an arbitrary real constant t̂shift, and the velocity c̃ mentioned below Eq. (13).
The time coordinates from Eq. (16) are ordered,

t̂
(
1/K

) ≤ t̂
(
2/K

) ≤ · · · ≤ t̂
(
1 − 1/K

) ≤ t̂
(
1
)
, (17)

because the α̂i are, according to Eq. (12b). With an appropriate value of t̂shift in Eq. (16), we can set
t̂ = 0 for the halfway block at k = L + 1. The blocks with k < L + 1 will generically have negative
time coordinates t̂ and those with k > L + 1 generically positive time coordinates t̂.

The fourth step is to obtain the eigenvalues of the n × n blocks of the nine spatial matrices Â
m

and
to denote these real eigenvalues

(
β̂ m
)

i , with i ∈ {1, . . . , N }. How the n eigenvalues are ordered in
each block is irrelevant, as they will be averaged over in the next step.

The fifth step is to define, just as in step three, the following nine spatial coordinates x̂ m(ζ ), for
ζ ∈ (0, 1], as the averages of the

(
β̂ m
)

i eigenvalues of the n × n blocks:

x̂ m(k/K
) ≡ 1

n

n∑
j=1

[
β̂ m ]

(k−1) n+j , (18)

with k ∈ {1, . . . , K}. The averaging is done independently for each value of m.
The sixth and last step is, first, to observe that t̂ (ζ ) from Eqs. (16) and (17) is a nondecreasing

function of ζ ≡ k/K and, then, to eliminate ζ between t̂ (ζ ) from Eq. (16) and x̂ m(ζ ) from Eq. (18),
in order to obtain

x̂ m = x̂ m( t̂
)
, (19)

which corresponds to a particular foliation of what will become the classical spacetime.
If the master-field matrices Â

μ
are more or less block-diagonal (with a width �N � N , as

suggested by the numerical results from Refs. [5–7]) and if an appropriate value of n can be chosen
(perhaps n ∼ �N , for sufficiently large values of N ), then the expressions (16) and (18) may provide
suitable spacetime points. In a somewhat different notation, these spacetime points are denoted

x̂ μ

k = (
x̂ 0

k , x̂ m
k

) ≡
(

x̂ 0(k/K
)
, x̂ m(k/K

) )
, (20)

where k runs over {1, . . . , K} with K given by Eq. (15). Each of these 10 coordinates has the
dimension of length, which traces back to the dimension of the bosonic matrix variable A μ, as
discussed in Sect. 2. The points (20), and those obtained from different choices of block size n
and block position along the diagonals of the master-field matrices, effectively build a spacetime
manifold with continuous (interpolating) coordinates x μ if there is also an emerging metric gμν(x).
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5. Emergent spacetime metric

In Sect. 4, we have obtained K points x̂ μ

k as given by Eq. (20), which sample a 10D classical spacetime.
(We have put a hat on our coordinates in order to remind us of their master-field origin.) The idea
now is that low-energy fields propagate over a spacetime manifold which interpolates between these
discrete spacetime points x̂ μ

k . The low-energy fields include the matter fields (scalar, vector, spinor)
and the metric field (tensor). In fact, Aoki et al. [2] have argued that the propagation of a matter field
(e.g., the propagation of a scalar field σ ) determines the effective inverse metric, which is found
to depend on the density function of the spacetime points x̂ μ

k and the correlations of these density
functions.

The crucial result in Ref. [2] is Eq. (4.16), which we rewrite as follows:

gμν(x) ∼
∫

RD
dDy 〈〈 ρ(y) 〉〉 (x − y)μ (x − y)ν f (x − y) r(x, y), (21)

where D = 10 is the spacetime dimension and the average 〈〈 ρ(y) 〉〉 corresponds, for the procedure
used in Sect. 4, to averaging over different block sizes and block positions along the diagonals of
the master-field matrices (details will be presented elsewhere).

The quantities that enter the multiple integral (21) are the density function

ρ(x) ≡
K∑

k=1

δ(D)
(
x − x̂k

)
, (22)

the dimensionless density correlation function r(x, y) defined by

〈〈 ρ(x) ρ(y) 〉〉 ≡ 〈〈 ρ(x) 〉〉 〈〈 ρ(y) 〉〉 r(x, y), (23)

and a strongly localized function f (x), which appears in the effective action of a low-energy scalar
degree of freedom σ “propagating” over the discrete spacetime points x̂ μ

k ,

Seff[σ ] ∝
∑
k , l

1

2
f
(̂
xk − x̂l

) (
σk − σl

)2 +
∑

k

1

2
μ2 �−2 (σk

)2, (24)

where f (x) = f
(
x0, x1, . . . , xD−1

)
has dimension 1/(length)2, μ is dimensionless, and � is the model

length scale introduced in Eq. (3). Here, σk is the field value at the point x̂k and the continuous field
σ(x) has σ (̂xk) = σk . After averaging over different block structures in the master-field matrices
(see above) and making a Taylor expansion, the continuous field σ(x) is found to have a standard
kinetic term gμν ∂μσ ∂νσ in the action, with the inverse metric given by Eq. (21). See Sect. 4.2 of
Ref. [2] for further details, Appendix A for a sample calculation, and Ref. [25] for earlier work on
random-lattice field theories.

The inverse metric gμν(x) from Eq. (21) is manifestly dimensionless and the metric gμν is simply
obtained as the matrix inverse of gμν . In fact, general covariance is also expected to emerge dynam-
ically [2] and the quantity determined by the integral (21) will, for a strongly localized function
f , transform approximately like dxμ dxν , that is, approximately like a rank-2 contravariant tensor.
Taking the matrix inverse of this quantity gives an object that transforms approximately like a rank-2
covariant tensor, so that this object can indeed be interpreted as the emergent metric gμν(x).

The outstanding tasks are to obtain the master-field matrices Â μ, to identify an effective scalar σ

from it (cf. Sect. 4.1 of Ref. [2]), and to recover the effective action (24). The explicit results for
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ρ(x), f (x), and r(x, y) must also explain how the inverse metric from Eq. (21) acquires a Lorentzian
signature.

Using appropriate units to set � = 1, we have performed a toy-model calculation with the function
ftest,2(x) = α + x0 x1 inserted into the multiple integral (21) for D = 2, where we also assume
ρ(x) = r(x, y) = 1 and cut the integration ranges off symmetrically at ±1. The resulting inverse
metric at xμ = 0 is found to change continuously from a Euclidean to a Lorentzian signature as the
parameter α changes continuously from α = 1 to α = 0 (see Appendix B for further details and a
trivial extension to D = 4). The conclusion is that, in principle, it is possible to obtain a Lorentzian
inverse metric from the expression (21). But it will be a challenge to establish, if at all relevant,
the effective Lorentzian metric of the regularized big bang singularity with b ∼ � as the length
parameter [12–15].

For the record, we give a further result, based on Eq. (4.17) of Ref. [2], which concerns the
background value of the dilaton field �,√−g(x) exp

[− �(x)
] ∝ 〈〈 ρ(x) 〉〉, (25)

with g ≡ det gμν and the meaning of the average on the right-hand side explained in the text below
Eq. (21).

Returning to the expression (21) for the emergent inverse metric, we observe that it depends not
only on the density distribution ρ of emerged spacetime points and their correlation function r, but
also on the localization function f from the scalar effective action (24). In this way, the metric only
exists if matter is present, which reminds us of Dicke’s interpretation of spacetime (see Appendix 4,
p. 50 and Appendix 5, p. 60 in Ref. [26]). The new insight from the IIB matrix model is that matter
and spacetime are expected to emerge simultaneously.

Note added

Two subsequent papers [27,28] give details on the extraction of the spacetime points and the spacetime
metric, assuming that the IIB-matrix-model master field is known. A further paper [29] shows that
the IIB-matrix-model master field can, in principle, give rise to the regularized big bang metric [12]
of general relativity.
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Appendix A. Effective action of a scalar degree of freedom

The expression (21) for the emergent inverse metric in Sect. 5 was obtained from an assumed effective
action (24) of a scalar degree of freedom σ . Even though the particular form of this effective action is
entirely reasonable (cf. the discussion of random-lattice scalars in Sect. 6 of Ref. [25]), it is desirable
to understand in some detail how this effective action could arise in the IIB matrix model. This is
done in the present appendix, where we show that the IIB matrix model can, in principle, produce
the effective action (24).
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We start by noting that we should not be led astray by the notation A μ resembling 10 gauge fields
and that the IIB-matrix-model master field Â μ is really a single 10 × N × N matrix with entries
having the dimension of length. The last observation suggests that, in order to get an effective field
φ(x0, . . . , x9) in the continuum, the perturbation φk of the master-field matrix must be taken equal
on all 10 “slices” of the matrix (an explicit example will be given below).

For simplicity, we focus on the four “large” spacetime dimensions [5,6],

D = 4, (A.1)

and let the indices μ, ν, . . . run over {0, 1, 2, 3}. We now present an explicit construction of a
perturbation of the master field for the case

N = K n = 6, n = 3, (A.2)

where n corresponds to the averaging block used in Sect. 4 for the extraction of the spacetime points
(here, there are only two spacetime points, x̂ μ

1 and x̂ μ
2 ). For the sake of argument, we simply assume

that N = 6 is large enough so that there exists a master field (later, we will extend the explicit
construction to N � 1).

The 6 × 6 master-field matrices are assumed to have a band-diagonal structure [5–7] and are given
by

Â
μ =

(
B μ

11 B μ
12

B μ
21 B μ

22

)
, (A.3a)

in terms of 3 × 3 blocks B μ

kl , where

B μ
12 ∼ 0, B μ

21 ∼ 0, (A.3b)

and the block B μ
11 has real eigenvalues {̂x μ

1,a, x̂ μ

1,b, x̂ μ
1,c} with an average value

x̂ μ
1 = 1

3

(̂
x μ

1,a + x̂ μ

1,b + x̂ μ
1,c

)
, (A.3c)

and similarly for the block B μ
22, with real eigenvalues {̂x μ

2,a, x̂ μ

2,b, x̂ μ
2,c} and an average value

x̂ μ
2 = 1

3

(̂
x μ

2,a + x̂ μ

2,b + x̂ μ
2,c

)
. (A.3d)

Now consider the following 6 × 6 matrices A μ involving the perturbations φ1, φ2 ∈ R:

A μ = diag
(
B μ

<11>, B μ
<12>, B μ

<22>

)
, (A.4a)

in terms of 2 × 2 blocks

B μ
<11> =

(
x̂ μ

1 c μ φ1
(
1 − φ2

1/�2
)

c μ φ1
(
1 − φ2

1/�2
)

x̂ μ
1 + φ1

)
, (A.4b)

B μ
<12> =

(
x̂ μ

1 k12 (φ1 − φ2)

k12 (φ1 − φ2) x̂ μ
2

)
, (A.4c)
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B μ
<22> =

(
x̂ μ

2 d μ φ2
(
1 − φ2

2/�2
)

d μ φ2
(
1 − φ2

2/�2
)

x̂ μ
2 + φ2

)
, (A.4d)

for a dimensionless coupling k12 and dimensionless constants c μ and d μ,

k12 = k12
(
�x
) ∈ R, (A.4e)

c μ = (
c0, c, c, c

) ∈ R
4, (A.4f )

d μ = (
d0, d, d, d

) ∈ R
4, (A.4g)

with definition

�x μ ≡ x̂ μ
2 − x̂ μ

1 . (A.5)

Three remarks are in order. First, the same perturbation φ1 appears in all four matrices A μ, and
similarly for φ2. Second, the parameter k12 depends on the coordinate distance �x μ and is assumed
to drop rapidly as this distance increases (otherwise, the emerging scalar theory does not make
sense [25]). Third, the matrices A μ reduce, for φ1 = φ2 = 0, to diagonal matrices with approximately
the same eigenvalues as the master-field matrices (A.3), which were assumed to be band-diagonal.

Next, insert the perturbation matrices A μ from Eq. (A.4) in the bosonic action (1) and find

Sb

∣∣∣(pert) = 1

2

[
3
(
�x0)2 − (

�x1)2 − (
�x3)2 − (

�x1)2 − 2 �x0 (�x1 + �x2 + �x3)
+ 2 �x1 �x2 + 2 �x2 �x3 + 2 �x3 �x1

] (
k12
(
�x
))2

(φ1 − φ2)
2

+ 2

3
�−4 (c0 − c)

2
φ1

4 (�2 − φ1
2)2 + 2

3
�−4 (d0 − d)

2
φ2

4 (�2 − φ2
2)2. (A.6)

Apparently, we have already recovered the “kinetic” term (σ1 − σ2)
2 of Eq. (24), which gives rise

to the emergent inverse metric (21). The mass-squared terms σ1
2 and σ2

2 of Eq. (24) result from
spontaneous symmetry breaking, at least for the simple model considered. Indeed, with shifted scalar
variables,

φ1 = � + χ1, φ2 = � + χ2, (A.7)

the effective action (A.6) becomes, in a shorthand notation,

Sb

∣∣∣(pert) = 1

2

[
· · ·
] (

k12
(
�x
))2 (

χ1 − χ2
)2

+ 6
(
c0 − c

)2
�2 χ1

2 + 6
(
d0 − d

)2
�2 χ2

2 + · · · , (A.8)

where the ellipsis at the end stands for cubic and higher-order self-interaction terms of the scalars
χ1 and χ2. Note that the square bracket in Eq. (A.8), which is explicitly shown in Eq. (A.6), can be
positive, zero, or negative, whereas the mass-square terms in Eq. (A.8) are strictly nonnegative. The
indefinite sign of the square bracket in Eqs. (A.6) and (A.8) traces back to the Lorentzian “signature”
of the coupling constants (1b) in the IIB matrix model.

By adding appropriate (generalized) blocks to Eq. (A.4a) we can easily obtain matrices with larger
values of N . In this way, we keep essentially the same properties as discussed for the (N , n) = (6, 3)
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case and obtain, in particular, an effective action with kinetic terms as shown in Eq. (24), but now in
terms of scalars χk .

Appendix B. Emergent Lorentzian signature

In this appendix, we present some details of the 2D toy-model calculation for the emergent inverse
metric mentioned in Sect. 5. The aim of this 2D toy-model calculation is to present a possible
mechanism for obtaining, in the emergent inverse metric, two eigenvalues with opposite signs. For
completeness, we will also discuss an extended 4D toy-model calculation, which is slightly more
realistic as it allows for a direct interpolation between the standard 4D Euclidean inverse metric and
the standard 4D Minkowski inverse metric. Throughout this appendix, we use length units that set
the IIB-matrix-model length scale to unity, � = 1.

Both calculations start from the multiple integral (21) for spacetime dimension D = 2 or 4 at the
spacetime point

xμ = 0, (B.1a)

with a simplified integrand having

〈〈 ρ(y) 〉〉 = 1, (B.1b)

r(x, y) = 1, (B.1c)

and symmetric cutoffs on the integrals,∫ 1

−1
dy0 · · ·

∫ 1

−1
dyD−1. (B.1d)

The only nontrivial contribution to the integrand of Eq. (21) then comes from the correlation function
f (x − y), for which we will make two Ansätze.

B.1. 2D calculation

For the first toy-model calculation, we take

D = 2, (B.2a)

ftest,2(y) = α + y0 y1, (B.2b)

where the Ansatz function (B.2b) combines a term that is even in both y0 and y1 with a term that is
odd in both y0 and y1. From Eq. (21) with simplifications (B.1), we then get the following multiple
integral for the emerging inverse metric:

gμν
test,2(0) =

∫ 1

−1
dy0

∫ 1

−1
dy1 yμ yν ftest,2(y). (B.3)

The integrals are trivial and we obtain the inverse metric

gμν
α (0) =

(
4 α/3 4/9

4/9 4 α/3

)
, (B.4a)

which has the following set of eigenvalues:

Eα = 4

9

{(
3 α − 1

)
,
(
3 α + 1

)}
. (B.4b)
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We now introduce an interpolation parameter ρ,

α(ρ) = 1 − ρ, (B.5a)

ρ ∈ [0, 1], (B.5b)

so that the inverse metric (B.4a) and its eigenvalues (B.4b) are given by

gμν
ρ (0) =

(
4 (1 − ρ)/3 4/9

4/9 4 (1 − ρ)/3

)
, (B.6a)

Eρ = 4

9

{(
2 − 3 ρ

)
,
(
4 − 3 ρ

)}
. (B.6b)

We see that we have obtained an inverse metric that interpolates between a Euclidean signature for
ρ = 0 and a Lorentzian signature for ρ = 1:

Eρ=0 =
{

8/9, 16/9
}

, (B.7a)

Eρ=1 =
{

− 4/9, 4/9
}

. (B.7b)

At ρ = 2/3, the inverse metric (B.6) is degenerate, with a vanishing determinant.
The origin of the Lorentzian signature (B.7b) is easy to understand. For ρ = 1, theAnsatz parameter

α = 1 − ρ in Eq. (B.2b) equals zero, so that the integrand of Eq. (B.3) becomes simply yμ yν y0 y1.
The symmetric integrals (B.3) then vanish unless {μ, ν} = {0, 1} or {μ, ν} = {1, 0}. In other words,
the matrix for the emergent inverse metric (B.3) is off-diagonal with entries (2/3)2 = 4/9, so that
the eigenvalues are ±4/9. The off-diagonal matrix structure traces back to the assumption that the
correlation function f (y), for ρ = 1 or α = 0, is given by a single monomial y0 y1, which is odd in
both y0 and y1.

A final remark on this 2D calculation of a Lorentzian signature is in order. From the ρ = 1
inverse metric (B.6a), we obtain, after a suitable coordinate transformation (with gμν → g ′ μν) and
a rescaling of x0 and x1 by an identical factor (here, a factor 2/3), the standard Minkowski form,
g ′ μν = diag(−1, 1). Instead of rescaling the coordinates, it is also possible, for this simple case, to
multiply the Ansatz function (B.2b) by an appropriate overall factor (here, a factor 9/4).

B.2. 4D calculation

For the second toy-model calculation, we take

D = 4, (B.8a)

ftest,4(y) = α + β
[(

y2)2 + (
y3)2]+ γ y0 y1, (B.8b)

where the Ansatz function (B.8b) combines two terms that are even in both y0 and y1 with one term
that is odd in both y0 and y1. From Eq. (21) with simplifications (B.1), we then get the emergent
inverse metric

gμν
test,4(0) =

∫ 1

−1
dy0

∫ 1

−1
dy1

∫ 1

−1
dy2

∫ 1

−1
dy3 yμ yν ftest,4(y). (B.9)
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Again, the integrals are trivial and we obtain

gμν
αβγ (0) = 16

9

⎛⎜⎜⎜⎝
3 α + 2 β γ 0 0

γ 3 α + 2 β 0 0
0 0 3 α + (14/5) β 0
0 0 0 3 α + (14/5) β

⎞⎟⎟⎟⎠, (B.10a)

which has the following set of eigenvalues:

Eαβγ = 16

9

{(
3 α + 2 β + γ

)
,
(

3 α + 2 β − γ
)

,
(

3 α + 14

5
β

)
,
(

3 α + 14

5
β

)}
. (B.10b)

Let us now introduce an interpolation parameter σ ,

α(σ) = 3

32

(
2 − 7 σ

)
, (B.11a)

β(σ) = 45

64
σ , (B.11b)

γ (σ ) = − 9

16
σ , (B.11c)

σ ∈ [0, 1], (B.11d)

so that the inverse metric (B.10a) and its eigenvalues (B.10b) are given by

gμν
σ (0) =

⎛⎜⎜⎜⎝
1 − σ −σ 0 0
−σ 1 − σ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠, (B.12a)

Eσ =
{

1 − 2 σ , 1, 1, 1
}

. (B.12b)

From Eq. (B.12a) for σ = 0, we immediately have the standard Euclidean inverse metric,

gμν
σ=0(0) = diag

(
1, 1, 1, 1

)
, (B.13a)

while, from Eq. (B.12a) for σ = 1, we obtain, after a suitable coordinate transformation (with
gμν → g ′ μν), the standard Minkowski inverse metric,

g ′ μν
σ=1 (0) = diag

(
− 1, 1, 1, 1

)
. (B.13b)

Again, we interpolate smoothly between a Euclidean signature (σ = 0) and a Lorentzian signature
(σ = 1). At σ = 1/2, the inverse metric (B.12) is degenerate, with a vanishing determinant.

The expression (21) for the emergent inverse metric, first proposed in Ref. [2] and reinterpreted
in the present paper, has the potential to give either a Euclidean or a Lorentzian inverse metric,
depending on the functional behavior of the correlation functions r(x, y) and f (x − y), which result
from the detailed structure of the emerging spacetime points. In principle, it is even possible to get a
Lorentzian emergent inverse metric from a Euclidean IIB matrix model, provided that the correlation
functions have the appropriate structure [a Euclidean toy-model calculation for D = 4 may give the
inverse metric (B.9) with y0 replaced by y4 and ftest,4(y) by ftest,E4(y) = 1 − γ (y1y2 + y1y3 + y1y4 +
y2y3 +y2y4 +y3y4), and then finds the Lorentzian signature (−+++) for parameter values γ > 1].
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This last observation, if applicable, would remove the need for working with the (possibly more
difficult) Lorentzian IIB matrix model and the first two of the five preliminary remarks in Sect. 1
would no longer apply.
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