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Abstract
To perform a suitable optimization method in terms of emission and efficiency for an internal combustion engine, first
highly accurate and possible real-time capable modeling for the transient operations should be provided. In this work,
the modeling of NOx and HC raw emission (before exhaust aftertreatment systems) in a six-cylinder gasoline engine
under highly transient operation was performed using machine learning approaches. Three different machine learning
methods, namely Artificial Neural Network, Long Short-Term Memory, and Random Forest were used and the results
of these models were compared with each other. In general, the results show a significant improvement in accuracy
compared to other studies that have modeled transient operations. Furthermore, the shortcoming of Artificial Neural
Network for the prediction of the HC emission by the transient operation is observed. The coefficient of determination
(R2) for the best model for NOx prediction is 0.98 and 0.97 for the training data and test data, respectively. This value is
0.9 and 0.89 for the best HC prediction model.
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Introduction

One of the major challenges of the current decades is to
reduce greenhouse gas and pollutant emissions from
transportation and industry. Carbon dioxide (CO2) is a
greenhouse gas that causes global warming1 and leads to
enormous damage to numerous ecosystems.2 Internal
combustion engines are important to meet the future
and medium-term CO2 fleet limits, but they also emit
pollution.3 Therefore, the optimization of combustion
engines in terms of efficiency and emissions is becoming
increasingly important.4 To perform optimization, the
combustion engines are to be modeled first. Among dif-
ferent modeling approaches, Machine Learning is a real-
time and powerful approach.5 Using Machine Learning
in internal combustion engine modeling is not an
unknown concept and has been studied in previous stud-
ies for gasoline and diesel engines. Thompson et al.6

developed an ANN, based on test bench data, which
modeled the behavior of power and exhaust gas compo-
sition from a heavy-duty diesel engine along an FTP
cycle with an error of less than 5%. The developed mod-
els by Hashemi and Clark7 were also able to predict

CO2 and NOx emissions of specific driving cycles with
high accuracy. However, predictions of acyclic operation
were associated with larger deviations. Sayin et al.8 have
developed the model for the steady-state operation to
predict not only the fuel consumption and efficiency for
a gasoline engine, but also carbon monoxide (CO) and
hydrocarbon (HC) emissions. To assess the potential of
ANNs, Tosun et al.9 in compared a multilayer feed-
forward (MLF) network trained with the Levenberg-
Marquardt (LM) algorithm with linear regression mod-
els and observed a significant reduction in the mean
absolute percentage error when using the ANN.
Jaliliantabar et al.10 tested the sensitivity of load, speed,
and fuel composition on the performance and emissions
of a diesel engine in steady-state operation for different
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biodiesel fuel and were able to find the relationship
between the input parameters and engine performance
and emissions using an ANN. The study of Fang et al.11

indicated that an excess of input parameters for an
MLF can lead to increased errors at low NOx emission
operating points of a diesel engine. To narrow down the
number of inputs, both the significance value (p-value)
and Pearson correlation coefficient were used. Here, the
p-value turned out to be partially misleading and while
looking at the Pearson coefficient allowed a reduction
from 87 to 14 parameters. Particularly important for
NOx prediction were the degree of delivery, exhaust gas
recirculation, inlet air temperature, and cylinder pres-
sure. These studies have demonstrated that MLs can
successfully model the steady-state and quasi-steady-
state operation of an engine on a test bench. However,
this cannot be easily transferred to the changing envi-
ronmental parameters in everyday free driving. Based
on real driving data, three different ML methods were
applied in Altug and Kucuk12 to predict the tailpipe
NOx emissions (measured by PEMS). Here, a coefficient
of determination of R24 0.725 was achieved with a long
short-term memory (LSTM) network and R24 0.92
with the XGBoost algorithm. The discrepancy was
attributed to insufficient data. Fechert et al.13 used ML
methods as a virtual NOx sensor to embed it in the
AdBlue injection control system. The used LSTM net-
work achieved a coefficient of determination of
R2=0.81. Ma et al.2 applied an ANN in combination
with particle swarm optimization to a diesel engine and
were able to reduce NOx, HC, and CO by 20.5%,
30.3%, and 43.1%, respectively, while reducing fuel con-
sumption by 2.1%. These studies indicate that the
research and application of MLs to internal combustion
engines are of great interest and benefit.

But as shown in the literature review, there are still few
studies that have addressed the modeling of raw emissions
(before exhaust aftertreatment systems) from the internal
combustion engines in high transient operation. The
accuracies of the developed models for transient opera-
tions are also in need of improvement. In this sense, in this
study different ML methods, namely, Artificial Neural
Network, Long short-term Memory, and Random Forest
have been used to develop appropriate models for a six-
cylinder gasoline engine. It involves an Engine-in-the-
Loop (EiL) test bench located at the Institute of Internal
Combustion Engines at IFKM, KIT. The test bench is
equipped with all necessary modern measurement tech-
niques. Furthermore, it uses CarMaker from IPG as the
EiL simulation component to enable the highly transient
operation of the engine with real-world relevance. The
results of this study show a significant improvement in
accuracy regarding the prediction of raw emission in
highly transient operations.

Experimental setup and results

The experiments were performed on an engine test
bench with an Engine-in-the-Loop vehicle simulation

component. The test bench is equipped with an
AMA4000 emission analysis system. The emissions
were sampled behind the turbocharger but in front of
the aftertreatment system of the engine. An overview of
the experimental setup is shown in Figure 1. A six-
cylinder inline turbocharged spark-ignition engine was
used for this investigation. Some of the technical data is
given in Table 1. For the experiments, the serial operat-
ing maps were used on the engine control unit (ECU)
with slight alteration for the use on an engine test
bench. With this experimental setup, the simulated test
runs on virtual street courses were performed. The three
courses were selected for conformity with Real Driving
Emission (RDE) tests. Contrary to Commission
Regulation (EU) 2017/1151, the following critical
alterations were used:

� The engine coolant and oil temperature was condi-
tioned externally to 85�C.

� The exhaust was sampled before the exhaust after-
treatment system.

� The dynamic boundaries for vapos, 95 were
overstepped.

� All ECU and test bed data was recorded with or
downsampled to 10Hz instead of 1Hz.

With this alteration, a higher degree of reproduction
ability was achieved as well as a wider operating range
of the engine. The experimental basis for the modeling
consists of nine simulated RDE runs on three RDE
courses using three different driver configurations. The

Figure 1. Experimental setup.

Table 1. Technical engine data.

Type Gasoline direct injection
No. of cylinders Six in line
Displacement 2979 cm3

Compression ratio 10.2:1
Injector position Central
Valve timing Variable
Aspiration Turbocharger
Rated power 225 kW at 5800 rpm
Rated torque 400 N �m at 1200–5000 rpm
Emission certification Euro V
Fuel Gasoline E5



different drivers varied mainly concerning maximum
acceleration target and gear changing behavior. The
training data was obtained from the simulated RDE
runs.

Figure 2 shows exemplary test data for one of the
simulated road curses. Shifting behavior, and therefore
engine speed limit is controlled by the driver parameter-
ization as well as the accelerator pedal position limit.
As can be seen from this example the driver input and
the simulated road course lead to highly transient load
demand and engine speeds. Since no traffic was simu-
lated the resulting simulated vehicle speed is determined
by the speed limit and the lateral acceleration limits for
corner speeds. Peak HC emissions occur often with load
changes from a higher to a lower load.

Table 2 shows an overview over vehicle speed and
dynamic range of the used RDE runs. The definition

and calculations of mean vehicle speed (vmean) and the
dynamic parameter (vapos, 95) are compliant with the EU
regulation. The driver configurations result in dynamic
parameters which are under the limit (lower), near the
limit (medium), and over the limit (higher) defined by
the regulation.

Methodology

The used machine learning approaches

In this study, three different Machine Learning (ML)
methods, that is, Artificial Neural Network (ANN),
Long Short-Term Memory (LSTM), and Random
Forest (RF) were used to model gasoline engine
emissions.

Artificial neural network (ANN). In the field of artificial
neural networks, the cascade-forward neural network
has been used. In Cascade-forward ANN, each layer is
connected with all previous layers. In this sense,
Cascade-Forward ANN differs from Feed-Forward
ANN in that each layer is only connected with a previ-
ous layer (neighbor layer).14,15 Furthermore, to enable
learning of complex relationships, more than one hid-
den layer (deep cascade-forward neural network) was
used to develop neural networks and process the input
parameters.14,16 The transform functions for the hidden
layers were chosen between the Sigmoid, Tanh, or
ReLu function, whereas linear transform functions
were always applied for the input and output layers.

Long short-term memory (LSTM). LSTMs (A method from
the family of RNNs) can learn long-term relationships
in time series data. In particular, when the time delays
between relevant information increase, LSTMs have an
advantage over RNNs.17 Inputs to the LSTM block
are the cell state at time step t 1 (ct 1), the hidden
state at time step t 1 (ht 1), and the features of input
data at time step t (xt). Each of the LSTM block gates
(forget-, update-, and output-gate) has its own weights,
recurrent weights, and bias. Based on these learnable
weights, respective gate decides about the influence of
ht 1 and xt on the cell state.18 In order to control the
influence of information from the past, cell state is ini-
tially computed by the forget gate. In the next step, the

Table 2. Vehicle speed and dynamic range of the used RDE runs.

Driver Speed range

Dynamic Urban Rural Motorway

vmean [km/h] Lower 35.9–38.4 74.7–75–5 115–119
Medium 35.2–35.9 74.4–75.4 115–118
Higher 32.7–34.3 74.0–76.3 116–119

vapos, 95 [m2/s3] Lower 15.7–17.4 19.3–22.4 18.2–20.7
Medium 18.1–19.9 23.3–31.6 24.6–33.9
Higher 21.6–25.6 26.1–34.4 33.1–36.7

Figure 2. Exemplary experimental data of a simulated RDE run.



update gate decides about adding new information to
cell state. Therefore, relevant information, learned from
previous time steps, are stored in the cell state.19 Score
is to minimize root mean squared error (RMSE).17

Random Forest (RF). Random Forest is a method that
can be used for both classification and regression. In
this method, each element (here decision trees) is
trained with the randomly selected input data (boot-
strap samples). The samples that are not used as boot-
straps for a tree are counted as out-of-bag samples for
that tree. The out-of-bag samples are used after train-
ing for the validation of the developed model. The final
prediction of the Random Forest models is also the
average of the prediction of different trees. The most
important hyper-parameter for the Random Forest is
the number of trees. A major advantage of Random
forest compared to the other ML methods is that in
this method there is no over-fitting risk. In other
words, the more trees used, the more accurate the
results will be. But above a certain amount of trees, no
significant improvement in method accuracy will hap-
pen. Whereas with the increasing number of trees the
calculation time will increase significantly.20,21

It should be noted that all the models were devel-
oped in MATLAB Software.

Input parameters

As indicated before, in the modeling of this study, the
output parameters are the NOx in the unit of ppm and
HC in the unit of ppm. Ten parameters were initially
selected to serve as input to develop models. Since the
local conditions in the combustion chamber, which are
predominantly important for emission formation, are
unknown, several external parameters were chosen for
the modeling approach. They are listed below together
with their influence on in-cylinder conditions:

� Injected fuel mass (mg per stroke): fuel mixture,
load, and maximum pressure.

� Throttle valve position (%), intake valve lift (mm):
load, fuel mixture, and in-cylinder flow.

� Engine speed (rpm): in-cylinder flow.
� Boost pressure (mbar): maximum in-cylinder

pressure.
� Rail pressure (MPa), Injection timing (degree of

Crankshaft BTDC): Mixture formation and
homogenization.

� Intake air temperature (�C): Knocking behavior.
� Ignition timing (degree of Crankshaft BTDC):

Combustion characteristics including maximum
pressure.

� Volumetric efficiency (-): additional and optional
load parameter.

The summary of the applied input parameters is
listed in Table 3. To confirm the dependence of output

parameters on the selected input parameters, the
Pearson and Spearman coefficients were calculated.
The Pearson and Spearman coefficients indicate the lin-
ear and non-linear correlation, respectively. The calcu-
lated values are presented in Table 4.

The results show a significant linear and non-linear
correlation between input and output parameters. It
confirms the fact that the selected input parameters play
a crucial role in determining and predicting NOx and
HC emissions.

Data pre-processing

The data from different measurement systems were
synchronized in the first step. After that, 20% of the
data were randomly removed to be used for testing the
developed models. With the remaining data, the models
were trained. The value of 20% is suggested by the
other studies.5 These data samples should cover the
entire ranges of change of the input parameters, to be
able to perform holistic testing of models in all areas of
ranges of change. In Figure 3(a) to (e), it can be seen
that the test samples (marked in red) represent suitable
coverage for the change ranges of input parameters. In
this sense, if the computed errors of test data converge
to the computed errors of training data, the

Table 3. Summary of the applied input parameters.

Input parameter Unit

Fuel flow mg per stroke
Throttle %
Intake valve lift mm
Engine speed rpm
Boost pressure mbar
Rail pressure MPa
Intake air temperature �C
Injection timing degree of Crankshaft BTDC
Ignition timing degree of Crankshaft BTDC
Volumetric efficiency –

Table 4. The Pearson and Spearman coefficients for HC and
NOx emissions.

Inputs
parameters

HC NOx

Pearson Spearman Pearson Spearman

Fuel flow 0.291 0.554 0.806 0.867
Throttle 0.278 0.707 0.625 0.798
Intake valve lift 0.312 0.728 0.724 0.815
Engine speed 0.405 0.628 0.256 0.289
Boost pressure 0.121 0.006 0.409 0.059
Rail pressure 0.276 0.540 0.706 0.630
Intake air
temperature

0.163 0.260 0.221 0.265

Injection timing 0.119 0.020 0.285 0.147
Ignition timing 0.322 0.300 0.438 0.467
Volumetric
efficiency

0.286 0.582 0.792 0.865



overtraining can be ruled out. Considering more or
fewer test data (compared to the case when a suitable
coverage is available), either by less training data (more
test data) the training phase can be worsened or by

more training data (fewer test data) the risk of over-
training can be increased. In this work, besides suitable
coverage, shown in Figure 3(a) to (e), it will be seen in
the next chapter that the calculated errors of training

(d)

(e)

(c)

(b)(a)

Figure 3. llustration of training and test data for all input parameters: (a) Throttle (%) over Fuel Flow(mg/Stroke); (b) RPM (1/min)
over Intake Valve Lift (mm); (c) Rail Pressure (MPa) over Boost Pressure (mbar); (d) Intejction Timing (�CA BTDC) over Intake Air
Temperature (�C) and (e) Volumetric Efficiency ( ) over Ignition Timing (�CA BTDC)



and test data have a suitable agreement, which shows
that the selection of 20% of the data as a test, neither
caused the overtraining nor disadvantaged the training
phase. Also, all input parameters were standardized
before the training phase. This means that the data was
adjusted so that the mean value of each input para-
meter was 0 and its variances were set to 1.16

Model validation

To validate the developed Machine Learning models,
different parameters were used, namely the coefficient
of determination (R2), the Normalized Root Mean
Square Error (NRMSE), and Normalized Mean
Absolute Error (NMAE). These parameters are the
most important indicators to evaluate the accuracy of
the developed models.5 They are presented in equations
(1) to (3).

R2 =1�
Pnumdata

i 1 (Yi � Ŷi)
2

Pnumdata

i 1 (Yi � Y)
2

ð1Þ

NMAE=1�
Pnumdata

i 1 Yi � Ŷi

�� ��
numdata 3Y

ð2Þ

NRMSE=

Pnumdata

i 1
(Yi Ŷi)

2

numdata

r

Y
ð3Þ

Results and discussion

Different architectures of neural networks were evalu-
ated and after the optimization of hyperparameters, the
ANN models for HC and NOx emissions were devel-
oped. The developed ANN models for HC and NOx

emissions have two hidden layers in addition to input
and output layers. The first and the second hidden
layers for the developed model for NOx prediction have
40 and 30 neurons respectively, whereas in the HC
model each of the hidden layers has 25 neurons.
Sigmoid was selected as the activation function for
both hidden layers and both models. The activation
function for the input and output layer was Linear as
mentioned before. Furthermore, the Levenberg-
Marquardt algorithm was used for weight optimization
of the networks.

In the case of LSTM models, in addition to the
sequence layer as input, the developed LSTM models
have two LSTM layers and each layer has 250 hidden
units. To avoid overtraining, each LSTM layer is fol-
lowed by a drop-out layer with a drop-out probability
of 20%.22 The processed data is transferred after the
second drop-out layer through a fully connected layer
to the regression layer (output layer). A batch size of
40 was selected for the training. Furthermore, to opti-
mize the weight, the Adam method was used, with the
advantage of adjusting the learning rate according to
the loss function.17 It was parameterized with an initial
learning rate of 0.001 and a gradient threshold of 1.

For the Random Forest models out-of-bag Method
was used for the validation. As already mentioned, the
higher number of trees in this method always leads to
improvement of the results, whereas after a certain
number of trees, no further significant improvement
happens, and in this case, the increasing number of
trees only slows down the calculation. For this reason,
a total number of 200 trees were used in this work. As
described in Figure 4, the error of developed models
(for both HC emission and NOx emission) tends to a
constant value and an increasing number of trees does
not bring any significant advantage anymore.

Table 5 shows the errors of different methods. The
results show that all three models developed to predict
NOx emissions have suitable accuracy. Otherwise, the
ANN models are not competitive with Random Forest
or LSTM regarding predicting HC emission in transi-
ent operation. For the prediction of NOx, the RF
method gives the best results with R2 equal to 0.98 and
0.97 for training and test samples, respectively. The
NMAE is almost 0.6 and NRMSE is 0.12. In the case
of HC prediction, the LSTM model has the best results.
The R2 for the developed model is 0.9 and 0.89 for the
test and training data. Moreover, NMAE is 0.92 and

Figure 4. Out of bag error over the number of grown trees.

Table 5. The errors of diffrent models for HC and NOx

emissions prediction.

NOx HC

Train Test Train Test

ANN NMAE 0.132 0.132 0.214 0.218
NRMSE 0.211 0.211 0.518 0.535
R2 0.935 0.934 0.614 0.603

LSTM NMAE 0.09 1.02 0.092 0.095
NRMSE 0.161 0.17 0.261 0.284
R2 0.957 0.942 0.9 0.893

RF NMAE 0.060 0.063 0.1 0.101
NRMSE 0.116 0.118 0.294 0.297
R2 0.98 0.97 0.877 0.871



0.95, and NRMSE is 0.261 and 0.284 for training and
test data, respectively. As already mentioned, the devel-
oped ANN models are not accurate enough, especially
regarding HC emissions prediction. LSTM is equipped
with memory characteristics, which can lead to a more
accurate model. In gasoline engines and transient oper-
ation by load change, high HC emission peaks, due to
the delay in mixture control, can happen. The predic-
tion of these peaks is not possible by ANN models
(Figure 5(a)). On the other hand, the LSTM model,

which can utilize information from the previous time-
series, offers a great advantage. As described in Figure
5(b), the HC peaks were detected and correctly pre-
dicted by the LSTM method. Additionally, in Figure 6,
the density diagram for R2 in the most accurate models
(RF for NOx and LSTM for HC) are shown. Based on
these figures, the models can provide suitable results
for the whole range of output parameters.

Moreover, the occurrence probability for the test
data in different ranges of relative error is shown in

(a) (b)

Figure 5. Target value and predicted value by: (a) ANN model and (b) LSTM model.

Figure 6. Density diagram for the most accurate models.



Figure 7(a) and (b) for NOx and HC, respectively. It
can be seen that for the prediction of both emissions,
around 70% of the data samples show a relative error
of less than 10%. Furthermore, in both cases, more
than 85% of the data show an error of less than 20%,
which shows a highly accurate model for the prediction
of emissions in high transient engine operations.

Conclusion

The modeling of HC and NOx raw emissions for a
six-cylinder gasoline engine using machine learning
methods was performed. To the best of the authors’
knowledge, the models have one of the highest accura-
cies among so far developed machine learning models
for emissions prediction by the highly transient opera-
tion. Moreover, according to the results, the ANN
model has a shortcoming in the prediction of HC. The
reason for this is the very higher HC peak, which can
happen in a gasoline engine during load changes. In
this case, the LSTM model, which uses data from ear-
lier time steps, offers advantages concerning accuracy.
For the prediction of NOx emission, the developed RF
model has the best accuracy, and the R2, NMAE,
and NRMSE values for the test data are, 0.97, 0.063,
and 0.118, respectively. These values are 0.98, 0.06, and
0.116 for training data. For the prediction of HC emis-
sion, the LSTM model is the most accurate, and the
R2, NMAE, and NRMSE values for the test data are
0.89, 0.095, and 0.284, respectively. These values are
0.9, 0.092, and 0.261 for training data.

Outlook

An important benefit of these models is the evaluation
of exhaust aftertreatment systems while driving on the
road. The modeling of the raw emissions could be per-
formed on the test bench (as in this study) and the
trained models used in RDE driving. By comparing the

predicted raw emissions from the developed models
and measured tailpipe emissions from the PEMS mea-
surement system, a meaningful evaluation of the effi-
ciency of exhaust aftertreatment systems in real driving
conditions could be obtained. Furthermore, the use of
ANN in model-based reinforcement learning (RL)
would be relevant. ANN can be used to provide real-
time information to the RL agent. RL could be applied
in various applications, such as power split optimiza-
tion, etc.
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Appendix

Notation

NUMdata number of data
R2 coefficient of determination
vmean mean value of vehicle speed
vapos, 95 characteristic dynamic value
Y observed value
Y average of observed values
Ŷ predicted data

Abbreviations

ANN artificial neural network
ECU engine control unit
EiL Engine-in-the-Loop
HC hydrocarbon
LSTM long short-term memory
NMAE normalized mean absolute error
NOx nitrogen dioxide + Nitrogen monoxide
NRMSE normalized root mean square error
PEMS portable emissions measurement system
ppm parts per million
RDE real driving emission
RF Random Forest




