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Abstract
We construct and analyze a second-order implicit–explicit (IMEX) scheme for the
time integration of semilinear second-order wave equations. The scheme treats the stiff
linear part of the problem implicitly and the nonlinear part explicitly. This makes the
scheme unconditionally stable and at the same time very efficient, since it only requires
the solution of one linear system of equations per time step. For the combination of the
IMEX scheme with a general, abstract, nonconforming space discretization we prove
a full discretization error bound. We then apply the method to a nonconforming finite
element discretization of an acoustic wave equation with a kinetic boundary condition.
This yields a fully discrete scheme and a corresponding a-priori error estimate.
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1 Introduction

In this paper we construct and analyze an implicit–explicit (IMEX) time integration
scheme for second-order semilinear wave equations of the form

u′′(t) + Bu′(t) + Au(t) = f (t, u(t))

in a suitable Hilbert space. Here, A and B are unbounded operators and f is a locally
Lipschitz continuous nonlinearity. The IMEX scheme is constructed as a combination
of the explicit leapfrog method and the implicit Crank–Nicolson scheme. It treats the
unbounded linear part of the differential equation implicitly and the nonlinear part
explicitly. We show that the scheme is unconditionally stable in the sense that the
time-step size is only restricted by the Lipschitz constant of f but not by the linear
operators A and B.

We combine this IMEX scheme with an abstract, nonconforming space discretiza-
tion within the framework of [11–13]. These papers provide a unified error analysis
(UEA) which allows one to analyze nonconforming space discretizations of wave
equations in a systematic way. Our main result is an error bound that is second order
in time and contains abstract space-discretization errors. The error result can then be
used to prove convergence rates for specific problems and discretizations by plugging
in geometric and interpolation error results. The fully discrete scheme is very efficient.
In fact, we show that one time step only requires the solution of one linear system and
one application of discretizations of A, B, and f , respectively. Since the construction
of the scheme is based on two second-order methods and our analysis makes use of
the specific form of the method, the generalization to higher order is not straightfor-
ward and out of the scope of this paper. Higher-order IMEX schemes for second-order
equations will be part of future work.

There is a rich literature on IMEX schemes for first-order equations, in particu-
lar, there is a well-developed theory for IMEX Runge–Kutta schemes [3,6] or IMEX
multistep schemes [1,4,8,15], for instance. In [6,15] an error analysis for ODEs is pre-
sented,while [1] contains discretization errors for IMEXschemes applied to conformal
space discretizations of quasilinear parabolic evolution equations. IMEX schemes are
used in applications, e.g., in structural dynamics and fluid-structure interaction [22],
hydrodynamics [16], sea-ice dynamics [20], or atmospheric dynamics, see, e.g., [9], to
mention just a few examples. There exists also a so-called Crank–Nicolson-leapfrog
IMEX scheme which is obtained from a combination of the Crank–Nicolson and the
leapfrog scheme for first-order equations, cf. [17,18], and references therein. How-
ever, this scheme is not equivalent to the scheme we construct here, since the leapfrog
schemes for first- and second-order equations are not equivalent and indeed have
completely different stability properties.More precisely, theCrank–Nicolson-leapfrog
scheme is only stable, if the explicitly treated part is skew symmetric.

To solve a second-order equation one can either reformulate it equivalently into
a first-order equation and apply an IMEX scheme to it or one can design a scheme
for the original second-order form. An example for the first option is the Crank–
Nicolson-leapfrog IMEX scheme presented in [17,18]. In contrast, we decided to take
the second option and present a new schemewhich to the best of our knowledgewas not
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An implicit–explicit time discretization scheme… 871

considered in literature so far. In fact, we are not aware of any IMEX scheme exploiting
the special structure of second-order equations. The advantage of this approach is the
efficiency of the scheme, as will be discussed in detail in Sect. 2.2.

The main contribution of this paper is to provide a full discretization error analysis
of semilinear wave equations in a quite general framework. So far, such an error anal-
ysis does not even exist for the Crank–Nicolson scheme, which is also covered as a
byproduct of our analysis of the IMEX scheme. The challenge of such a rigorous anal-
ysis is that it applies to abstract, non-conforming space discretizations of semilinear
wave-type equations.

As an application of our abstract theory, we consider an acoustic wave equation
with kinetic boundary conditions that fits into the abstract setting, cf., [13]. Kinetic
boundary conditions are a special case of dynamic boundary conditions that contain
tangential derivatives and are intrinsically posed on domains with (piecewise) smooth
and therefore possibly curved boundaries. Hence, the spatial discretization has to be
done on an approximated domain rendering the discretization nonconforming.

The paper is organized as follows: in Sect. 2 we present the problem setting, intro-
duce the IMEX scheme for second-order wave equations, and state a second-order
error bound for the time discretization error. In Sect. 3 we briefly recall the UEA and
present the fully discrete scheme as a combination of the IMEX scheme with a gen-
eral space discretization. Afterwards we state and prove the main result, namely the
abstract full discretization error bound. Finally, in Sect. 4, we consider a semilinear
acoustic wave equation with a kinetic boundary conditions as an example fitting into
the abstract setting. We present a finite element space discretization and the full dis-
cretization error bound. We finish the paper with numerical experiments underlining
the theoretical error bounds and the efficiency of the IMEX scheme.

2 The implicit–explicit (IMEX) scheme

In this sectionwefirst introduce the problem setting and then present the IMEXscheme
and its properties.

2.1 Continuous problem

Let V , H beHilbert spaceswith V ⊂ H .We consider the following second-order vari-
ational equation as a prototype of second-order wave equations in weak formulation:
find u:[0, T ] → V s.t.

m
(
u′′(t), v

) + b
(
u′(t), v

) + a
(
u(t), v

) = m
(
f (t, u(t)), v

)
for all v ∈ V , t ∈ (0, T ],

u(0) = u0, u′(0) = v0,
(1)

with bilinear forms

m:H × H → R,

a:V × V → R,
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872 M. Hochbuck, J. Leibold

b:V × H → R,

and f :[0, T ] × V → H .
For the rest of the paper we require the following assumptions without further

mentioning it everywhere:

Assumption 2.1

(a) The bilinear form m is a scalar product on H . In the following, we equip H with
m and denote the corresponding norm by ‖·‖m .

(b) The bilinear form a is symmetric and there exists a constant αG > 0 s.t.

ã = a + αGm

is a scalar product on V . In the following we equip V with ã and denote the
corresponding norm by ‖·‖ã .

(c) The space V is densely embedded in H , i.e., there exists an embedding constant
Cemb, s.t. ‖v‖m ≤ Cemb‖v‖ã for all v ∈ V . (2)

(d) The bilinear form b is bounded and quasi-monotone, i.e., there exist constants
CB > 0 and βqm s.t.

b
(
v,w

) ≤ CB‖v‖ã‖w‖m for all v ∈ V , w ∈ H , (3a)

b
(
v, v

) + βqmm
(
v, v

) ≥ 0 for all v ∈ V . (3b)

(e) The nonlinearity f satisfies f ∈ C1([0, T ] × V ; H) and is locally Lipschitz-
continuous on V with constant LT ,ρ , i.e., for all t ≤ T and v,w ∈ V with
‖v‖ã, ‖w‖ã ≤ ρ we have

‖ f (t, v) − f (t, w)‖m ≤ LT ,ρ‖v − w‖ã . (4)

Example 2.2 We consider the semilinear damped wave equation

utt − ∇ut − �u = |u|u in (0, T ) × Ω (5)

in a domain Ω ⊂ R
d , d = 2, 3.

(a) It iswell known, that theweak formulationof (5) equippedwithDirichlet boundary
condition u = 0 on ∂Ω fits in the setting presented above with

V = H1
0 (Ω), H = L2(Ω).

(b) If Ω has a C2 boundary, we can equip (5) with semilinear acoustic boundary
conditions that have the form

utt + ∂nu − �∂Ωu = |u|2u in (0, T ) × ∂Ω.

We discuss a more general form of this example in Sect. 4, and show that it also
fits in the setting of Sect. 2.1.
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In the following we consider (1) as evolution equation on H :

u′′(t) + Bu′(t) + Au(t) = f (t, u(t)), u(0) = u0, u′(0) = v0, (6)

with operators A:D(A) → H and B:V → H induced by a and b, i.e.,

m
(
Av,w

) = a
(
v,w

)
, for all v ∈ D(A), w ∈ V ,

m
(
Bv,w

) = b
(
v,w

)
, for all v ∈ V , w ∈ H ,

with

D(A) = {
v ∈ V

∣
∣∣ ∃C = C(v) > 0 ∀w ∈ V : |a(

v,w
)| ≤ C‖w‖m

}
.

The wellposedness of (6) can be obtained by classical semigroup theory applied to
the first-order formulation (7) of the equation, as detailed in [13].

Theorem 2.3 The problem (6) is locally wellposed, i.e., for all u0 ∈ D(A), v0 ∈ V
there exists a time t∗ = t∗(u0, v0) s.t. for all T < t∗, (6) has a unique solution

u ∈ C2([0, T ]; H) ∩ C1([0, T ]; V ) ∩ C([0, T ]; D(A)).

2.2 Construction of the IMEX scheme

We modify the Crank–Nicolson scheme such that it treats the nonlinear part of (6)
explicitly and thus avoids the solution of nonlinear equations.

To derive and analyze the scheme we state (6) in a first-order formulation. Set
u′ = v and

x =
[
u
v

]
, S =

[
0 − I
A B

]
, g (t, x) =

[
0

f (t, u)

]
, x0 =

[
u0

v0

]
.

Then (6) can be written as

x ′(t) + Sx(t) = g(t, x(t)), t ∈ [0, T ],
x(0) = x0.

(7)

We consider this equation in the Hilbert space (X , p):=(V , ã) × (H ,m), where p is
the natural inner product, and D(S) = D(A) × V .

Let τ > 0 be the time step and tn :=τn for n ∈ N. By

[
un

vn

]
= xn ≈ x(tn)
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874 M. Hochbuck, J. Leibold

we denote the numerical approximation of the exact solution of (7) at time tn and we
further use the short notations

gn =
[
0
f n

]
:=

[
0

f (tn, un)

]
= g(tn, x

n).

The Crank–Nicolson scheme applied to (7) has the form

xn+1 = xn + τ

2

( − S(xn + xn+1) + gn + gn+1) (8a)

and can be written as

R+xn+1 = R−xn + τ

2

(
gn + gn+1

)
, R±:=I ± τ

2
S. (8b)

By [11, Lemma 2.14 and Lemma 4.2] we have the following properties of R±:

Lemma 2.4 Let cqm = 1
2αGCemb + βqm with Cemb defined in (2) and αG, βqm from

Assumption 2.1. Then, for τcqm < 2, the following assertions hold true:

(a) R+ is invertible with ‖R−1+ ‖X←X ≤ 1 and R−1+ x ∈ D(S) for all x ∈ X.
(b) R:=R−1+ R− has a continuous extension on X satisfying ‖R‖X←X ≤ eτcqm .

By applying R−1+ to (8b), the Crank–Nicolson scheme reads

xn+1 = Rxn + τ

2
R−1+

(
gn + gn+1

)
. (8c)

Lemma 2.5 The Crank–Nicolson scheme (8a) can equivalently be rewritten in a half-
full-half step formulation

vn+ 1
2 = vn − τ

2
Aun − τ 2

4
Avn+ 1

2 − τ

2
Bvn+ 1

2 + τ

4

(
f n + f n+1), (9a)

un+1 = un + τvn+ 1
2 , (9b)

vn+1 = vn+ 1
2 − τ

2
Aun − τ 2

4
Avn+ 1

2 − τ

2
Bvn+ 1

2 + τ

4

(
f n + f n+1). (9c)

Proof Using

vn+ 1
2 :=1

2

(
vn + vn+1

)
, (10)

we write (8a) component wise:

un+1 = un + τvn+ 1
2 ,

vn+1 = vn − τ

2
A(un + un+1) − τ Bvn+ 1

2 + τ

2
( f n + f n+1).
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The first equation gives (9b). By eliminating un+1 in the second equation we obtain

vn+1 = vn − τ Aun − τ 2

2
Avn+ 1

2 − τ Bvn+ 1
2 + τ

2

(
f n + f n+1),

which is equivalent to the two half steps (9a) and (9c). ��
By replacing in (9) the trapezoidal rule for the nonlinear part by the left/right rectan-
gular rule, respectively, we obtain the following IMEX scheme:

vn+ 1
2 = vn − τ

2
Aun − τ 2

4
Avn+ 1

2 − τ

2
Bvn+ 1

2 + τ

2
f n, (11a)

un+1 = un + τvn+ 1
2 , (11b)

vn+1 = vn+ 1
2 − τ

2
Aun − τ 2

4
Avn+ 1

2 − τ

2
Bvn+ 1

2 + τ

2
f n+1. (11c)

It can be interpreted as a combination of the Crank–Nicolson scheme for the linear
and the leapfrog scheme for the nonlinear part, respectively. Obviously, it is time
reversible.

Remark 2.6 An equivalent representation of vn+1 is obtained by subtracting (11a)
from (11c), namely

vn+1 = −vn + 2vn+ 1
2 + τ

2

(
f n+1 − f n

)
. (11d)

It is computationally more efficient because of the elimination of the operators A and
B.

The implementation is comprised by solving the linear system in (11a), and then
computing (11b), and (11d). Altogether, each time step requires the solution of one
linear system, one application of A and one evaluation of the nonlinearity (note that
f n+1 can be reused in the next time step).

2.3 Wellposedness of the IMEX scheme

By (11a) we have

Q+vn+ 1
2 = vn − τ

2
Aun + τ

2
f n, (12)

with Q±:D(A) → H given by

Q± = I±τ

2
B ± τ 2

4
A.

Since these operators play an important role in the analysis of the method, we collect
some of their properties.
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876 M. Hochbuck, J. Leibold

Lemma 2.7 (Properties of Q±) Let

τ 2

2
αG + τβqm ≤ 1. (13)

Then, the operator Q+ is invertible and its inverse Q−1+ :H → D(A) satisfies

∥∥∥
(τ

2
B + τ 2

4
A
)
Q−1+

∥∥∥
H←H

≤ 1, (14a)

∥∥
∥Q−1+

∥∥
∥
H←H

≤
√
2

τ
, (14b)

∥∥∥Q−Q−1+
∥∥∥
H←H

≤ e
τ2
2 αG+τβqm . (14c)

Proof (a)We first prove that Q+ is invertible. By (13) andAssumption 2.1, the bilinear
form

m + τ

2
b + τ 2

4
a =

(
1 − τ

2
βqm − τ 2

4
αG

)

︸ ︷︷ ︸
≥0

m + τ

2
(b + βqmm) + τ 2

4
ã:V × V → R

is V -elliptic. Hence, by the Lax–Milgram lemma, for a given v ∈ H ⊂ V ′ there exists
a unique z ∈ V such that

m
(
z, w

) + τ

2
b
(
z, w

) + τ 2

4
a
(
z, w

) = m
(
v,w

)
for all w ∈ V ,

or equivalently

τ 2

4
a
(
z, w

) = m
(
v − z − τ

2
Bz, w

)
for all w ∈ V .

This yields z ∈ D(A) and Q+z = v, hence Q+ is invertible.
(b) Proof of the bounds (14): Let v ∈ H and set z = Q−1+ v ∈ D(A). Then we have

‖v‖m2 =
∥∥
∥
(
I+τ

2
B + τ 2

4
A
)
z
∥∥
∥
2

m

= ‖z‖m2 +
∥∥∥
(τ

2
B + τ 2

4
A
)
z
∥∥∥
2

m
+ 2m

((τ

2
B + τ 2

4
A
)
z, z

)

=
(
1 − τ 2

2
αG − τβqm

)
‖z‖m2 +

∥∥∥
(τ

2
B + τ 2

4
A
)
z
∥∥∥
2

m

+ 2
τ

2
m

((
B + βqm I

)
z, z

) + 2
τ 2

4
m

((
A + αG I

)
z, z

)

≥
∥∥∥
(τ

2
B + τ 2

4
A
)
Q−1+ v

∥∥∥
2

m
+ τ 2

2
‖Q−1+ v‖ã2
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due to the quasi-monotonicity of b (3b) and (13). This immediately yields (14a)
and (14b). The bound (14c) can be shown similar to the bound for R−1+ R− in the
proof of [11, Lemma 2.14]. ��

Corollary 2.8 The IMEX scheme is wellposed in D(A) × H, i.e., for u0 ∈ D(A) and
v0 ∈ H the numerical approximations satisfy

un ∈ D(A), vn ∈ H , vn+ 1
2 ∈ D(A), n ≥ 0.

Proof We use induction. The statement holds for n = 0 by assumption, hence
we assume that un ∈ D(A), vn ∈ H for some n ≥ 0. By Lemma 2.7, Q+
is invertible and (12) implies vn+ 1

2 ∈ D(A). From (11b) and (11c) we then get
un+1 ∈ D(A), vn+1 ∈ H . ��

2.4 Error bound for the IMEX scheme

We now state a second-order error bound for the IMEX scheme.

Theorem 2.9 Let the assumptions of Theorem 2.3 be satisfied, T < t∗(u0, v0), and
let the exact solution u of (6) satisfy u ∈ C4([0, T ], H) ∩ C3([0, T ], V ) and f (u) ∈
C2([0, T ], H). Then for all τ sufficiently small and all tn < T , the approximations un

from the IMEX scheme (11) are bounded by

‖un‖ã ≤ ρ:=2‖u‖L∞([0,T ];V ).

Moreover, un, vn satisfy the error bound

‖un − u(tn)‖ã + ‖vn − u′(tn)‖m ≤ CeMtn E(u)τ 2

with M = cqm +
(
1+(3/2)1/2

)
LT ,ρ

1−
(
1+(3/2)1/2

)
LT ,ρτ

, cqm = 1
2αGCemb + βqm,

E = E(u) = ‖u(4)‖L∞([0,T ];H) + ‖u(3)‖L∞([0,T ];V ) +
∥
∥∥
d

dt

(
f (u)

)∥∥∥
L∞([0,tn ];H)

+
∥
∥∥
d2

dt2
(
f (u)

)∥∥∥
L∞([0,tn ];H)

,

and a constant C that only depends on T but is independent of τ , L, and u.

Since the proof works with the same arguments as the the more complicated proof of
Theorem 3.3 for the full discretization error of the IMEX scheme, we do not present
it here, cf., also Remark 3.4 a).
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2.5 The IMEX scheme in first-order formulation

For the error analysis we rewrite the IMEX scheme (11) as a perturbation of the one-
step formulation of the CN scheme (8b). A similar idea was used in [14] for analyzing
the leapfrog scheme and locally implicit schemes for Maxwell equations.

The formulation (8c) of the Crank–Nicolson scheme can be used to prove stability.
For the IMEX scheme we now derive a similar formulation.

Lemma 2.10 (a) We have the following representations of R−1+ and R:

R−1+ =
[

Q−1+
(
I+ τ

2 B
)

τ
2Q

−1+
− 2

τ
+ 2

τ
Q−1+ (I+ τ

2 B) Q−1+

]
, (15a)

R =
[ − I+Q−1+ (2 I+τ B) τQ−1+
− 4

τ
I+ 1

τ
Q−1+ (4 I+2τ B) Q−Q−1+

]
. (15b)

(b) For all w ∈ V we have

R−1+
[

w

−Bw

]
=

[
Q−1+ w

− (
B + τ

2 A
)
Q−1+ w

]
. (15c)

(c) The IMEX scheme (11) is equivalent to

xn+1 = Rxn + τ

2
R−1+

(
gn + gn+1) + τ 2

4

[
Q−1+

(
f n − f n+1

)

− (
B + τ

2 A
)
Q−1+

(
f n − f n+1

)
]

.

(16)

Proof First note that the right-hand side of (15a) is a well-defined mapping from
X to D(S) by Lemma 2.7. The identities (15) can be verified by straightforward
calculations.

(c) To make the following calculations well defined, we assume for the moment

that vn, vn+1 ∈ V . We eliminate vn+ 1
2 from the scheme (11), by subtracting (11c)

from (11a). This yields

vn+ 1
2 = 1

2

(
vn + vn+1

)
+ τ

4

(
f n − f n+1

)
, (17)

which differs from theCrank–Nicolson scheme by the contributions of the nonlinearity
f , cf. (10). Note that we have f n − f n+1 ∈ V since, by Corollary 2.8, vn, vn+1 ∈ V

and vn+ 1
2 ∈ D(A) . Inserting (17) into (11b) gives

un+1 = un + τ

2
(vn + vn+1) + τ 2

4

(
f n − f n+1

)
. (18)
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On the other hand, by adding (11a) and (11c) and inserting (11b) and (17) we get

vn+1 = vn − τ

2
A(un + un+1) − τ

2
B

(
vn + vn+1

)
+ τ

2

(
f n + f n+1

)

− τ 2

4
B

(
f n − f n+1

)
.

(19)

With the definition (8b) of R± we can express (18) and (19) in first-order formulation
as

R+xn+1 = R−xn + τ

2

(
gn + gn+1

)
+ τ 2

4

[
f n − f n+1

−B
(
f n − f n+1

)
]

.

Multiplying by R−1+ and using (15c) shows that the IMEX scheme is equivalent to (16)
under the additional assumption vn, vn+1 ∈ V . Since both formulations are also well
defined for vn, vn+1 ∈ H and since V is dense in H , we also get their equivalence for
vn, vn+1 ∈ H . ��

3 Full discretization

In this section we combine the IMEX scheme with an abstract space discretization
to obtain a fully discrete scheme. We use the framework introduced in [12] for linear
equations and extended in [13] to the semilinear case. It is rather general and allows
one to cover conforming as well es nonconforming space discretizations, the latter
being relevant for the discretization of equations with dynamic boundary conditions.

3.1 Framework

Let (Vh)h be a family of finite dimensional vector spaces for the spatial approximation
related to a discretization parameter h, e.g., the mesh width of a spatial grid.

For all Vh ∈ (Vh)h we consider the following discretization of (1): find uh :[0, T ] →
Vh s.t.

mh
(
u′′
h, ϕh

) + bh
(
u′
h, ϕh

) + ah
(
uh, ϕh

) = mh
(
fh(t, uh), ϕh

) ∀t ∈ (0, T ], ϕh ∈ Vh,

uh(0) = u0h, u′
h(0) = v0h .

(20)

Here,mh, ah, bh, fh, u0h and v0h are approximations of their corresponding continuous
counterparts and satisfy similar properties as in Assumption 2.1.

Assumption 3.1 In the following statements, all constants are independent of h.

(a) The bilinear form mh is a scalar product on Vh and we denote Vh equipped with
this scalar product by Hh .

(b) The bilinear form ah is symmetric and there exists a constant α̂G ≥ 0 s.t.

ãh = ah + α̂Gmh
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is a scalar product on Vh . In the following we equip Vh with ãh .
(c) There exists a constant Ĉemb > 0 s.t. ‖vh‖mh ≤ Ĉemb‖vh‖ãh for all vh ∈ Vh .
(d) The bilinear form bh :Vh × Hh → R is continuous and there exists a β̂qm ≥ 0 s.t.

bh
(
v, v

) + β̂qm‖v‖mh
2 ≥ 0 for all vh ∈ Vh .

(e) The discrete nonlinearity fh :[0, T ] × Vh → Hh is locally Lipschitz continuous
on Vh with constant L̂M , analogously to (4).

To reformulate (20) as an evolution equation on Vh , we define Ah, Bh ∈ L(Vh; Vh)
via

mh
(
Ahvh, ϕh

) = ah
(
vh, ϕh

)
, mh

(
Bhvh, ϕh

) = bh
(
vh, ϕh

)
for all vh, ϕh ∈ Vh .

Then (20) is equivalent to

u′′
h(t) + Bhu

′
h(t) + Ahuh(t) = fh(t, uh(t)),

uh(0) = u0h, u′
h(0) = v0h .

(21)

Analogously to the continuous case we can rewrite this in a first-order formulation.
With the Hilbert space Xh = Vh × Hh and

xh =
[
uh
vh

]
, Sh =

[
0 − I
Ah Bh

]
, gh (t, xh(t)) =

[
0

fh(t, uh(t))

]
,

(21) is equivalent to

x ′
h(t) + Shxh(t) = gh(t, xh(t)), t ∈ (0, T ],

xh(0) = x0h .
(22)

The IMEX scheme (11) applied to (21), reads

v
n+ 1

2
h = vnh − τ

2
Ahu

n
h − τ 2

4
Ahv

n+ 1
2

h − τ

2
Bhv

n+ 1
2

h + τ

2
f nh , (23a)

un+1
h = unh + τv

n+ 1
2

h , (23b)

vn+1
h = v

n+ 1
2

h − τ

2
Ahu

n
h − τ 2

4
Ahv

n+ 1
2

h − τ

2
Bhv

n+ 1
2

h + τ

2
f n+1
h , (23c)

where we used the short notation f nh := fh(tn, unh). As in the continuous case, (23c)
can be replaced by the more efficient update

vn+1
h = −vnh + 2v

n+ 1
2

h + τ

2

(
f n+1
h − f nh

)
. (23d)
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3.2 Error analysis

Wefirst introduce some notation that is required for the unified error analysis presented
in [12,13].

To relate the discrete and the continuous solution we assume that there exists a lift
operator LV

h ∈ L(Vh; V ) which satisfies

‖LV
h vh‖m ≤ CH‖vh‖mh , ‖LV

h vh‖ã ≤ CV ‖vh‖ãh , (24)

for all vh ∈ Vh with constants CH ,CV > 0 which are independent of h.
The adjoints LH∗

h :H → Vh and LV∗
h :V → Vh

of LV
h play an important role in the error analysis. They are defined via

mh
(
LH∗
h v,wh

) = m
(
v,LV

h wh
)

for all v ∈ H , wh ∈ Hh,

ãh
(
LV∗
h v,wh

) = ã
(
v,LV

h wh
)

for all v ∈ V , wh ∈ Vh .

The corresponding first-order operators Lh :Xh → X and L∗
h :X → Xh are defined as

Lh

[
vh
wh

]
=

[
LV
h vh

LV
h wh

]
, L∗

h

[
v

w

]
=

[
LV∗
h v

LH∗
h w

]
.

Let ZV d
↪→ V be a dense subspace and Ih ∈ L(ZV ; Vh) be an interpolation operator

satisfying
‖Ih‖Hh←ZV ≤ ĈI

with ĈI > 0 independent of h. We define Z = V × ZV d
↪→ X and the first-order

reference operator Jh :Z → Xh by

Jh

[
v

w

]
:=

[
LV∗
h v

Ihw

]
.

Furthermore, for vh, wh ∈ Vh , the errors in the scalar products are defined via.

�m
(
vh, wh

):=m
(
LV
h vh,LV

h wh
) − mh

(
vh, wh

)
,

�ã
(
vh, wh

):=ã
(
LV
h vh,LV

h wh
) − ãh

(
vh, wh

)
.

For z =
[
v

w

]
∈ Z , the discretization errors in the linear operator and the nonlinearity

are given by the following remainder terms:

Rhz = (
L∗
h S − Sh Jh

)
z =

[ −(LV∗
h − Ih)w

LH∗
h (Av + Bw) − (AhLV∗

h v + Bh Ihw)

]
, (R1)
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rh(t, z) = L∗
hg(t, z) − gh(t, Jhz) =

[
0

LH∗
h f (t, v) − fh(t,LV∗

h v)

]
. (R2)

Analogously to the continuous case we define the following operators:

Q̂±:= I±τ

2
Bh ± τ 2

4
Ah :Vh → Vh, (25a)

R̂±:= I±τ

2
Sh :Xh → Xh, (25b)

R̂:=R̂−1+ R̂−. (25c)

Since the setting is the same as in the continuous case with constants independent
of h, Lemmas 2.4 and 2.7 transfer directly to the discrete case with the continuous
constants replaced by the discrete ones.

Our analysis relies on the following regularity assumptions.

Assumption 3.2 Let the assumptions of Theorem 2.3 be satisfied and let u be the
classical solution of (6) that satisfies additionally

u ∈ C4 ([0, T ], H) ∩ C3 ([0, T ], V ) ∩ C2([0, T ], ZV )
and f (u) ∈ C2([0, T ], H)

for a T < t∗(u0, v0).

Wenow state ourmain results. Firstwe present an abstract error bound depending on
the radius of a ball containing the exact and the numerical solution. Here, this radius
depends on τ and h. Afterwards, in Corollary 3.5, we show that under additional
consistency assumptions for the space discretization and for sufficiently small τ and
h, the fully discrete approximations unh are bounded in terms of the exact solution only.

Theorem 3.3 Let Assumptions 3.1 and 3.2 be satisfied. For T given in Assumption 3.2
we set

ρ = max
{
CV ‖u‖L∞([0,T ];V ), max

tn≤T
‖unh‖ãh

}

and define ĉqm = α̂GĈemb/2 + β̂qm. If τ satisfies the step-size restriction

max
{
τ
(
1 + (3/2)1/2

)
L̂T ,ρ, τ

ĉqm
2

,
τ 2

2
α̂G + τ β̂qm

}
< 1,

then for all n > 0 with tn < T , the fully discrete approximations unh, v
n
h given by the

scheme (23) satisfy the error bound

‖LV
h u

n
h − u(tn)‖ã + ‖LV

h vnh − u′(tn)‖m ≤ CeM̂tn

(
4∑

i=0

Eh,i + τ 2E

)

(26)
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with

M̂ = ĉqm +
(
1 + (3/2)1/2

)
L̂T ,ρ

1 − (
1 + (3/2)1/2

)
L̂T ,ρτ

and a constant C that only depends on T , but which is independent of τ , h, L̂, and
u. The constants Eh,i = Eh,i (u) contain the abstract space discretization errors and
are given by

Eh,0 = ‖u0h − LV∗
h u0‖ãh + ‖v0h − Ihv

0‖mh ,

Eh,1 = ‖LH∗
h f (·, u) − fh(·,LV∗

h u)‖L∞([0,T ];Hh ),

Eh,2 = ‖(I−LV
h Ih)u‖L∞([0,T ];V ) + ‖(I−LV

h Ih)u
′‖L∞([0,T ];V ) + ‖(I−LV

h Ih)u
′′‖L∞([0,T ];H)

+ ‖(I−LV
h Ih) f (·, u)‖L∞([0,T ];V ),

Eh,3 =
∥
∥∥ max‖ϕh‖ãh =1

�ã
(
Ihu, ϕh

)∥∥∥
L∞(0,t)

+
∥
∥∥ max‖ψh‖mh =1

�m
(
Ihu, ψh

)∥∥∥
L∞(0,t)

+
∥
∥∥ max‖ϕh‖ãh =1

�ã
(
Ihu

′, ϕh
)∥∥∥

L∞(0,t)
+

∥
∥∥ max‖ψh‖mh =1

�m
(
Ihu

′′, ψh
)∥∥∥

L∞(0,t)

Eh,4 =
∥
∥∥ max‖ψh‖mh =1

∣∣b
(
u′,LV

h ψh
) − bh

(
Ihu

′, ψh
)∣∣

∥
∥∥
L∞(0,t)

,

and E = E(u) is given in Theorem 2.9.

Proof All error terms arising from the space discretization can be expressed within the
unified error analysis and were bounded against Eh,i , i = 0, . . . , 4 in [12, Theorem
4.8], and [13, Theorem 3.9], respectively.

For the proof of the error bound (26), we use the first-order formulation of the
IMEX scheme. We use the notation

xnh =
[
unh
vnh

]
, x̃n =

[
ũn

ṽn

]
=

[
u(tn)
u′(tn)

]
, g̃nh = gh(tn, Jh x̃

n) =
[

0
fh(tn,LV∗

h ũn)

]
=

[
0
f̃ nh

]
.

The proof consists of four main steps.
(a) Splitting of the error. The error can be split via

Lhx
n
h − x̃n = Lhe

n
h + (Lh Jh − I)̃xn, where enh = xnh − Jh x̃

n .

Due to the continuity of the lift operator and [12, Theorem 4.8] we have

‖Lhx
n
h − x̃n‖X ≤ C‖enh‖Xh + ‖(Lh Jh − I)̃xn‖X ≤ C

(‖enh‖Xh + Eh,3 + Eh,2
)
.

(27)

Hence, it remains to bound the discrete error ‖enh‖Xh .
(b) Derivation of an error recursion for enh . Since the discrete operators share the

properties of their continuous counterparts, we can rewrite the fully discrete scheme
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(23) analogously to Lemma 2.10 as

xn+1
h = R̂xnh + τ

2
R̂−1+

(
gnh + gn+1

h

) + τ 2

4

[
Q̂−1+

(
f nh − f n+1

h

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f nh − f n+1

h

)
]

.

(28)
To derive a recursion for the discrete error, we insert Jhx into the fully discrete

scheme (28) and obtain

Jh x̃
n+1 = R̂ Jh x̃

n + τ

2
R̂−1+

(
g̃n+1
h + g̃nh

)
+ τ 2

4

[
Q̂−1+

(
f̃ nh − f̃ n+1

h

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f̃ nh − f̃ n+1

h

)
]

− �n+1
h

(29)

with a defect �n+1
h which is yet to be determined. We can interpret �n+1

h as a pertur-
bation of the defect �n+1

h,CN of the fully discrete Crank–Nicolson scheme given by

Jh x̃
n+1 = R̂ Jh x̃

n + τ

2
R̂−1+

(
g̃n+1
h + g̃nh

)
− �n+1

h,CN. (30)

In fact we have

�n+1
h,CN = �n+1

h − δ̃n+1
h , δ̃n+1

h = τ 2

4

[
Q̂−1+

(
f̃ nh − f̃ n+1

h

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f̃ nh − f̃ n+1

h

)
]

. (31)

A simple calculation shows that Jhx inserted in the Crank–Nicolson scheme satisfies

Jh x̃
n+1 = Jh x̃

n + τ

2

(
−Sh Jh (̃x

n + x̃n+1) + g̃nh + g̃n+1
h

)
− δn+1

h − L∗
hδ

n+1
CN , (32)

where

δn+1
h = − (

Jh − L∗
h

)
(̃xn+1 − x̃n) + τ

2
Rh (̃x

n+1 + x̃n) − τ

2

(
rh(tn+1, x̃

n+1) + rh(tn, x̃
n)

)
(33)

contains the abstract space discretization errors and

δn+1
CN = τ

2

(
x ′(tn+1) + x ′(tn)

) −
(
x̃n+1 − x̃n

)

is the defect of the Crank–Nicolson scheme applied to the continuous equation (7).
By applying R̂−1+ to (32) we obtain with (30) and (31)

�n+1
h = R̂−1+ δn+1

h + R̂−1+ L∗
hδ

n+1
CN + δ̃n+1

h . (34)
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Subtracting (29) from (28) yields the error recursion

en+1
h = R̂enh + τ

2
R̂−1+

(
gn+1
h − g̃n+1

h + gnh − g̃nh

)

+ τ 2

4

[
Q̂−1+

(
f nh − f̃ nh − f n+1

h + f̃ n+1
h

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f nh − f̃ nh − f n+1

h + f̃ n+1
h

)
]

+ �n+1
h .

(35)

(c) Stability. Solving (35) gives

enh = R̂ne0h +
n∑

m=1

R̂n−m
(

τ

2
R̂−1+

(
gmh − g̃mh + gm−1

h − g̃m−1
h

)

+ τ 2

4

[
Q̂−1+

(
f m−1
h − f̃ m−1

h − f mh + f̃ mh
)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f m−1
h − f̃ m−1

h − f mh + f̃ mh
)
]

+ �m
h

)
.

Taking the norm, using the triangle inequality, and ‖R̂‖Xh←Xh ≤ eτ ĉqm yields

‖enh‖Xh ≤ τ

n∑

m=1

e(n−m)τ ĉqm

(
1

2

∥∥R̂−1+
(
gmh − g̃mh )

∥∥
Xh

+ 1

2
‖R̂−1+

(
gm−1
h − g̃m−1

h

)‖Xh

+ τ

4

∥∥∥∥

[
Q̂−1+

(
f m−1
h − f̃ m−1

h

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f m−1
h − f̃ m−1

h

)
] ∥∥∥∥

Xh

+ τ

4

∥∥∥
∥

[
Q̂−1+

(
f mh − f̃ mh

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f mh − f̃ mh

)
] ∥∥∥

∥
Xh

)

+
∥∥∥∥R̂

ne0h +
n∑

m=1

R̂n−m�m
h

∥∥∥∥
Xh

.

We investigate the different terms in the first sum separately. For this we use the
Lipschitz-continuity of the discrete nonlinearity and the bounds from Lemmas 2.7
and 2.4 for the discrete case. Note that by (38) we have ‖LV∗

h u(t)‖ãh ≤ ρ for all
t ≤ T . With τ ĉqm < 2 and ‖R̂−1+ ‖Xh←Xh ≤ 1, we obtain:

∥∥R̂−1+
(
gmh − g̃mh )

∥∥
Xh

≤ L̂T ,ρ‖emh ‖Xh .

Using

‖Q̂−1+ ‖Vh←Hh ≤
√
2

τ
and

∥∥∥
(
Bh + τ

2
Ah

)
Q̂−1+

∥∥∥
Hh←Hh

≤ 2

τ
,

we have for τ 2

2 α̂G + τ β̂qm ≤ 1
∥∥∥∥

[
Q̂−1+

(
f mh − f̃ mh

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f mh − f̃ mh

)
] ∥∥∥∥

Xh

≤ L̂T ,ρ

τ

√
6‖emh ‖Xh .

With C3/2 = 1 + (3/2)1/2, this yields
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e−nτ ĉqm‖enh‖Xh ≤ C3/2 L̂T ,ρτ

n∑

m=1

e−mτ ĉqm‖emh ‖Xh + e−nτ ĉqm

∥
∥∥
∥R̂

ne0h +
n∑

m=1

R̂n−m�m
h

∥
∥∥
∥
Xh

.

By applying a discrete Gronwall Lemma, multiplying by enτ ĉqm , and inserting (34),
we obtain for

τ ≤ 1

C3/2LT ,ρ

‖enh‖Xh ≤ e
C3/2 L̂T ,ρnτ

1−C3/2 L̂T ,ρ τ

(∥∥∥∥R̂
ne0h +

n∑

m=1

R̂n−m
(
R̂−1+ δmh + R̂−1+ L∗

hδ
m
CN + δ̃mh

) ∥∥∥∥
Xh

)

≤ e
C3/2 L̂T ,ρ tn

1−C3/2 L̂T ,ρ τ

(
enτ ĉqm

(
‖e0h‖Xh +

n∑

m=1

(‖δmh ‖Xh + ‖L∗
hδ

m
CN‖Xh

) )

+
∥∥∥

n∑

m=1

R̂n−m δ̃mh

∥∥∥
Xh

)
.

(36)
(d) Defects. The initial error e0h is given by the discretization errors of the initial

values and bounded by
‖e0h‖Xh ≤ CEh,0.

From (33) we obtain for the defect containing the space discretization errors

∥
∥∥δmh

∥
∥∥
Xh

= τ

∥
∥∥
1

τ

∫ tm

tm−1

(
Jh − L∗

h

)
x ′(s) ds + 1

2 Rh (̃x
n+1 + x̃n) − 1

2

(
rh(tn+1, x̃

n+1) + rh(tn, x̃
n)

)∥∥∥
Xh

.

By [12, Theorem 4.8] and [13, Theorem 3.9] we have

∥∥∥δmh

∥∥∥
Xh

≤ Cτ

4∑

i=1

Eh,i .

The Crank–Nicolson defect was bounded in [11, Lemma 2.15] by

‖L∗
hδ

m
CN‖Xh ≤ C‖δmCN‖X ≤ Cτ 3‖x (3)‖L∞([tm ,tm−1];X)

≤ Cτ 3
(
‖u(3)‖L∞([tm ,tm−1];V ) + ‖u(4)‖L∞([tm ,tm−1];H)

)

≤ Cτ 3E .

To bound the additional IMEX defect we split it into

δ̃mh = τ 2

4

[
Q̂−1+

(
f̃ m−1
h − f̃ mh

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f̃ m−1
h − f̃ mh

)
]

= δ̃mh,1 + δ̃mh,2 + δ̃mh,3
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with

δ̃mh,1 = τ 2

4

[
Q̂−1+

(
f̃ m−1
h − LH∗

h f̃ m−1 − f̃ mh + LH∗
h f̃ m

)

− (
Bh + τ

2 Ah
)
Q̂−1+

(
f̃ m−1
h − LH∗

h f̃ m−1 − f̃ mh + LH∗
h f̃ m

]
,

δ̃mh,2 = τ

4

[
τ Q̂−1+ LH∗

h

(
f̃ m−1 − f̃ m

)

Q̂− Q̂−1+ LH∗
h

(
f̃ m−1 − f̃ m

)
]

,

δ̃mh,3 = τ

4

[
0

−LH∗
h

(
f̃ m−1 − f̃ m

)
]

,

where we used the additional notation f̃ m = f (tm, ũm). The first term is bounded by
‖̃δmh,1‖Xh ≤ Cτ Eh,1.

The terms δ̃mh,2 and δ̃mh,3 are only of order τ 2, which is not sufficient to obtain a
global error of order two. Moreover, a combination of both terms from two successive
time steps allows to gain an additional factor of τ . With the explicit representation of
R̂ analogous to that of R in (15b), we obtain

δ̃mh,2 + R̂δ̃m−1
h,3 = τ

2

[
τ
2 Q̂

−1+ LH∗
h

( − f̃ m−2 + 2 f̃ m−1 − f̃ m
)

1
2 Q̂− Q̂−1+ LH∗

h

( − f̃ m−2 + 2 f̃ m−1 − f̃ m
)

]

.

Using this together with the bound bounds for Q̂−1+ and Q̂− Q̂−1+ from Lemma 2.7 and
the continuity of the adjoint lift operator, leads to the bound

‖̃δmh,2 + R̂δ̃m−1
h,3 ‖Xh ≤ Cτ

∥∥LH∗
h

( − f̃ m−2 + 2 f̃ m−1 − f̃ m
)∥∥

mh

≤ Cτ 3
∥∥∥
∥
d2

dt2
(
f (t, u(t))

)
∥∥∥
∥
L∞([tm−2,tm ];H)

≤ Cτ 3E,

and hence,

∥∥
∥

n∑

m=1

R̂n−m δ̃mh

∥∥
∥
Xh

≤ Cenτ ĉqmEh,1 +
∥∥
∥R̂n−1δ̃1h,2 + δ̃nh,3 +

n∑

m=2

R̂n−m (̃δmh,2 + R̂δ̃m−1
h,3 )

∥∥
∥
Xh

≤ enτ ĉqm

(

CEh,1 + ‖̃δ1h,2‖Xh + ‖̃δnh,3‖Xh +
n∑

m=2

‖̃δmh,2 + R̂δ̃m−1
h,3 ‖Xh

)

≤ Cenτ ĉqmτ 2(Eh,1 + E).

Inserting all bounds into (36) yields

‖enh‖Xh ≤ CeM̂tn

(

Eh,0 +
4∑

i=1

Eh,i + τ 2E

)

. (37)
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Finally, the error bound (26) follows from

‖LV
h u

n
h − u(tn)‖ã + ‖LV

h vnh − u′(tn)‖m ≤√
2‖Lhx

n
h − x(tn)‖X

and (27). ��
Remark 3.4

(a) Theorem 2.9 can be proven by replacing all discrete quantities by their continuous
counterparts in the proof of Theorem 3.3. Since all assumptions in the discrete
setting remain valid in the continuous case, the proof applies to the latter as well
and all space discretization errors vanish.

(b) The step-size restriction in Theorem 2.9 is not a CFL condition, since it only
depends on constants that are independent of the mesh width h. Note that in the
special case of a linear problemwith α̂G = β̂qm = 0, the scheme is unconditionally
stable.

(c) Theorem 3.3 and Corollary 3.5 are also valid for the Crank–Nicolson scheme. In
this case, the error recursion (35) simplifies to

en+1
h = R̂enh + τ

2
R̂−1+

(
gn+1
h − g̃n+1

h + gnh − g̃nh

)
+ δn+1

h + R̂−1+ L∗
hδ

n+1
CN

and the error bound (26) holdswith ECN(u)=‖u(4)‖L∞([0,T ];H)+‖u(3)‖L∞([0,T ];V )

(instead of E) and 1 + (3/2)1/2 replaced by 1 in the CFL condition and the error
bound.

Under additional consistency assumptions for the space discretization, the following
corollary states that for sufficiently small τ and h, the fully discrete approximations
are bounded in terms of the exact solution and converge.

Corollary 3.5 Let Assumptions 3.1 and 3.2 be satisfied.

a) For T given in Assumption 3.2 define

ρ = 2CV ‖u‖L∞([0,T ];V ). (38)

If Eh,i
h→0−→ 0 for i = 0, . . . , 4, then there exist h∗ > 0 and τ ∗ > 0 with τ ∗

independent of h s.t. for all h < h∗, τ < τ ∗ we have

max
tn≤T

‖unh‖ãh ≤ ρ, (39)

and the fully discrete solution converges, i.e.,

max
tn≤T

{‖LV
h u

n
h − u(tn)‖ã + ‖LV

h vnh − u′(tn)‖m} → 0, τ, h → 0.

b) If additionally Eh,i ≤ hk for a k > 0 and i = 0, . . . , 4, we obtain the error bound

max
tn≤T

{‖LV
h u

n
h − u(tn)‖ã + ‖LV

h vnh − u′(tn)‖m} ≤ CeM̂tn (τ 2 + hk) (40)
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with M̂ defined in Theorem 3.3 and a constant C independent of τ and h.

Proof It remains to prove the bound (39) for τ and h sufficiently small, since all other
assertions then follow immediately from Theorem 3.3.

Let f ρ
h :[0, T ] × Vh → Hh be a function that is globally Lipschitz-continuous on

Vh with Lipschitz constant L̂T ,ρ and satisfies

f ρ
h (t, vh) = fh(t, vh) for all t ∈ [0, T ] and all vh ∈ Vh with ‖vh‖ãh ≤ ρ.

Further let uρ,n
h be the iterates of the IMEX scheme (23) with fh replaced by f ρ

h . Note
that due to (38) we have

fh(t,LV∗
h u(t)) = f ρ

h (t,LV∗
h u(t)) for all t ∈ [0, T ].

Hence, as in the proof of Theorem 3.3, we obtain similar to the bound of the first
component in (37)

‖uρ,n
h − LV∗

h ũnh‖ãh ≤ CeM̂tn

(
4∑

i=0

Eh,i + τ 2E

)

for all tn ≤ T . Since Eh,i
h→0−→ 0, and E is independent of h and τ , we can choose

h∗, τ ∗ > 0 s.t. for all h < h∗, τ < τ ∗ we have

‖uρ,n
h − LV∗

h ũnh‖ãh ≤ ρ

2

and hence together with (38)

‖uρ,n
h ‖ãh ≤ ‖uρ,n

h − LV∗
h ũnh‖ãh + ‖LV∗

h ũnh‖ãh ≤ ρ

2
+ CV ‖ũnh‖ã ≤ ρ.

This implies, that for all tn ≤ T the iterates uρ,n
h coincide with the original iterates unh

and thereby ‖unh‖ãh = ‖uρ,n
h ‖ãh ≤ ρ. ��

4 Application: semilinear wave equation with kinetic boundary
conditions

In this section we consider the IMEX scheme applied to a finite element discretization
of a semilinear acoustic wave equation with a kinetic boundary condition. Kinetic
boundary conditions serve as an effective model for the interaction of waves with a
boundary covered by a thin layer. A derivation can be found in, e.g., [10], and the
wellposedness was proven in [21]. The space discretization we present in this section
was analyzed in [11,12,19].

We show that this example fits into the abstract theory presented in the previous
sections.
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4.1 Formulation of the equations

Let Ω ⊂ R
d , d = 2, 3, be a bounded domain with smooth boundary  = ∂Ω . With

� we denote the Laplace-Beltrami operator on  and with n the outer normal vector.
We consider the following semilinear acoustic wave equations with kinetic bound-

ary conditions. Seek u:[0, T ] × Ω → R satisfying

⎧
⎪⎨

⎪⎩

utt + (αΩ + βΩ · ∇) ut − �u = fΩ(t, x, u), in (0, T ) × Ω,

utt + ∂nu + (α + β · ∇) ut − �u = f(t, x, u), in (0, T ) × ∂Ω,

u(0, x) = u0(x), ut (0, x) = v0(x), in Ω,

(41)

where the nonlinearities and the coefficients satisfy the following conditions.

Assumption 4.1 (a) The nonlinearities satisfy

fΩ ∈ C1([0, T ] × Ω × R;R), f ∈ C1([0, T ] ×  × R;R). (42)

Moreover, they satisfy the following growth condition, that there exist

ζΩ

{
< ∞, d = 2,

≤ d
d−2 , d ≥ 3,

and ζ

{
< ∞, d = 2, 3,

≤ d−1
d−3 , d ≥ 4

(43)

such that for all (t, x, u) ∈ [0, T ] × Ω × R

| fΩ(t, x, u)| ≤ C(1 + |u|ζΩ ), |∇ fΩ(t, x, u)| ≤ C(1 + |u|ζΩ−1), (44)

and for all (t, x, u) ∈ [0, T ] ×  × R

| f(t, x, u)| ≤ C(1 + |u|ζ ), |∇ f(t, x, u)| ≤ C(1 + |u|ζ−1)

hold true.
(b) The coefficients αΩ ∈ C(Ω), βΩ ∈ C1(Ω)d , α ∈ C() and β ∈ C1()d are

non-negative and satisfy

αΩ − 1

2
div βΩ ≥ 0 in Ω, α + 1

2
(βΩ · n − div β) ≥ 0 on .
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In [13] was shown that the weak formulation of (41) is of the form (2) with

H = L2(Ω) × L2()

V = H1(Ω;):={v ∈ H1(Ω) | γ (v) ∈ H1()} ⊂ H1(Ω) × H1(),

m
(
v, ϕ

) =
∫

Ω

vϕ dx +
∫



vϕ ds,

b
(
v, ϕ

) =
∫

Ω

(αΩv + βΩ · ∇v) ϕ dx +
∫



(αv + β · ∇v) ϕ ds,

a
(
v, ϕ

) =
∫

Ω

∇v∇ϕ dx +
∫



∇v∇ϕ ds,

(45)

and f :[0, T ] × V → H defined via

m
(
f (t, v), ϕ

) =
∫

Ω

( fΩ(t, ·, v(·))) ϕ dx +
∫



( f(t, ·, v(·))) ϕ ds.

Note that for the subset relation V ⊂ H , each element v ∈ V is identified with
(v, γ (v)) ∈ H . Furthermore, Assumption 2.1 is satisfied and we have D(A) =
H2(Ω;). Thus, Theorem 2.3 yields the existence of a solution u of (41) .

4.2 Space discretization

As in [13], we use the bulk-surface finite element method presented in [7] to dis-
cretize (41) in space. This discretization was also considered in [11,12] for linear
problems.

We start by giving a short summary of this method and refer to [7,11] for more
details.
Bulk-surface finite element method

Let (Th)h be a quasi-uniform family of consistent meshes of order p isoparametric
elements with maximal mesh width h. For each Th ∈ (Th)h the discretized domain
and its boundary are denoted by

Ωh :=
⋃

K∈Th
K ≈ Ω and h :=∂Ωh .

We define the bulk and the surface finite element space of order p ≥ 1 via

VΩ
h,p:=

{
vh ∈ C(Ωh) | vh

∣∣
K

= v̂h ◦ (FK )−1 with v̂h ∈ Pp(K̂ ) for all K ∈ Th
}
,

V 
h,p:=

{
ϑh ∈ C(h) | ϑh = vh

∣∣
h

with vh ∈ VΩ
h,p

}
.

Here Pp(K̂ ) denotes the space of polynomials of degree p on a reference triangle K̂
and FK is a transformation from K̂ to K . This discretization is nonconforming because
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Ωh �= Ω . In [7], an elementwise smooth homeomorphism Gh :Ωh → Ω with

Gh
∣
∣
K

∈ C p+1(K ), for all p ≤ k and K ∈ Th

is constructed. This allows us to define lifted versions of vh ∈ VΩ
h,p and ϑh ∈ V 

h,p as

v�
h :=vh ◦ G−1

h and ϑ�
h :=ϑh ◦ G−1

h . (46)

The mapping Gh is constructed in such a way, that Gh(ai ) = ai , i = 1, . . . , N =
dim Vh , where a1, . . . , aN ∈ Ωh are the nodes corresponding to the finite element
discretization. This implies v�

h(ai ) = vh(ai ) for i = 1, . . . , N and for all vh ∈ VΩ
h,p.

By Ih,Ω :C(Ω) → VΩ
h,p and Ih,:C() → V 

h,p we denote the nodal interpolation
operator inΩ and on, respectively.By construction, the nodes on the surface coincide
with the bulk nodes and therefore we have

γ (Ih,Ωv) = Ih,γ (v) for all v ∈ C(Ω).

The semidiscrete equation
We now present the space discretization in the framework of Sect. 3. As finite

element space we choose Vh = VΩ
h,p. Furthermore we set Ih :=Ih,Ω

∣∣
ZV :ZV → Vh ,

where

ZV :=D(A) = H2(Ω;)
d

↪→ V = H1(Ω;), (47)

and define the lift operator via
LV
h v:=v�

with v� given in (46). The spatial discretization of (41) can then be written as (20)
where the discretizations mh, bh, ah :Vh × Vh → R of m, b, and a are defined via

mh
(
vh, ϕh

):=
∫

Ωh

vhϕh dx +
∫

h

vhϕh ds,

bh
(
vh, ϕh

):=
∫

Ωh

(
Ih,ΩαΩvh + Ih,ΩβΩ · ∇vh

)
ϕh dx

+
∫

h

(
Ih,αvh + Ih,β · ∇vh

)
ϕh ds,

ah
(
vh, ϕh

):=
∫

Ωh

∇vh∇ϕh dx +
∫

h

∇h uh∇hϕh ds.

The discretized nonlinearity fh :[0, T ] × Vh → Hh is given by

mh
(
fh(t, vh), ϕh

):=
∫

Ωh

Ih,Ω fΩ
(
t, ·, v�

h(·)
)
(x)ϕh(x) dx

+
∫

h

Ih, f
(
t, ·, v�

h(·)
)
(x)ϕh(x) ds

(48)
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for all ϕh ∈ Vh .
In [11,13] it was shown, that Assumption 3.1 is satisfied.

Remark 4.2 The nodal interpolation only requires function evaluations in the nodes
a1, . . . , aN . Since they are invariant under the lift operator, the computation of v�

h is
not necessary. It is only needed for the definition of fh since the interpolation operator
acts on functions defined on Ω .

4.3 Full discretization error bound

We now state an error bound for the full discretization of (41) with the bulk-surface
finite element method and the IMEX scheme (23).

Corollary 4.3 Let 1 ≤ p ≤ k and  ∈ Ck+1. Furthermore let Assumption 4.1 be
satisfied and let u be a solution of (41) on [0, T ] satisfying

u ∈ C4
(
[0, T ]; L2(Ω) × L2()) ∩ C3([0, T ]; H1(Ω; )) ∩ C2([0, T ]; H2(Ω; )

)
,

u, u′ ∈ L∞([0, T ]; H p+1(Ω; )
)
,

u′′ ∈ L∞([0, T ]; H p(Ω; )
)
,

fΩ(t, ·, u(t, ·)) ∈ L∞([0, T ]; Hmax{2,p}(Ω)
)
,

f(t, ·, u(t, ·)) ∈ L∞([0, T ]; Hmax{2,p}()
)
.

Then there exist τ ∗, h∗, ρ > 0 s.t. for all 0 < h < h∗, 0 < τ < τ ∗, and tn ≤ T , the
approximations unh and vnh given by (23) with bulk-surface elements of order p, satisfy

‖(unh)� − u(tn)‖H1(Ω;) + ‖(vnh )� − u′(tn)‖L2(Ω)×L2() ≤ Ce

(
1
2 +

(
1+(3/2)1/2

)
L̂T ,ρ

1−
(
1+(3/2)1/2

)
L̂T ,ρ τ

)
tn

(h p + τ 2)

(49)
with a constant C independent of τ and h. The Lipschitz constant of the discretized
nonlinearity is given by

L̂T ,ρ = C

(
σ(Ω)

ζΩ−1
2ζΩ + σ()

ζ−1
2ζ + 2ρζΩ−1 + 2ρζ−1

)
, (50)

where σ(Ω) and σ() denote the measure of Ω and , respectively, and ζ and ζΩ

are given in Assumption 4.1.

Proof In [13] it was shown, that Assumptions 2.1 and 3.1 are satisfied with Ĉemb =
α̂G = 1, β̂qm = 0, and L̂T ,ρ given in (50). The regularity assumptions on u are such
that u ∈ C4 ([0, T ], H) ∩ C3 ([0, T ], V ) ∩ C2

([0, T ], ZV
)
, cf. (45) and (47). Since

additionally ZV = D(A) = H2(Ω;), we have that Au ∈ C2([0, T ]; H) und hence
f (u) = u′′ + Bu′ + Au ∈ C2([0, T ]; H).
Thus, also Assumption 3.2 is satisfied, and we can apply Corollary 3.5.
Under the above assumptions, in [12,13] it was shown that the space discretization

error terms are bounded by Eh,i ≤ Chp. So the bound (49) follows then directly
by (40). ��
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4.4 Implementation

In the followingnumerical experimentswe compare the IMEXschemewith theCrank–
Nicolson and the explicit classical Runge–Kutta scheme of order 4 applied to the space
discretized wave equation with kinetic boundary conditions. For the implementation
we used the C++ finite element-library deal.II (version 9.2) [2,5]. The codes to
reproduce the experiments are available on https://doi.org/10.5445/IR/1000127003.
We ran the experiments on a computer with an i5 processor (3.5 GHz) and 16 GB
RAM.

To comment on the implementation we first introduce some additional notation.
For a finite element function uh ∈ Vh we denote by u ∈ R

N , the corresponding
coefficient vector in the finite element basis. Furthermore, M ∈ R

N×N is the mass
matrix, A,B ∈ R

N×N are the stiffness matrices related to Ah and Bh , respectively,
and fn ∈ R

N denotes the load vector corresponding to f nh = fh(tn, un), n ∈ N.
IMEX scheme

The fully discrete IMEX scheme (23) reads

Mvn+ 1
2 = Mvn − τ

2
Aun − τ 2

4
Avn+ 1

2 − τ

2
Bvn+ 1

2 + τ

2
fn, (51a)

un+1 = un + τvn+ 1
2 , (51b)

Mvn+1 = −Mvn + 2Mvn+ 1
2 + τ

2

(
fn+1 − fn

)
. (51c)

The linear system in (51a) has the form

Q+vn+ 1
2 = Mvn − τ

2
Aun + τ

2
fn, Q+ = M + τ

2
B + τ 2

4
A.

We solve this systemwith the GMRES solver provided by deal.II and either a sparse
incomplete LU or a geometric multigrid preconditioner. For themeasure of the error in
the GMRES iterations, the residual r with corresponding coefficient vector r is used.
A suitable stopping criteria would be

‖r‖ãh ≤ τ 2 tol,

where tol is a given tolerance, since then in (51b) the error in un+1 caused by the
solution of the linear system in the ‖·‖ãh norm is of order τ 3, which corresponds to
the local error of the IMEX scheme. In practice, the computation of ‖r‖ãh is quite
expensive and we thus used the stopping criterion

‖r‖h,2 = ‖r‖h,2 ≤ τ 2 tol,

in a grid dependent scaled Euclidean norm ‖·‖h,2 = hd/2‖·‖2. This is much more
efficient, since this norm is available within the GMRES code at no additional cost.
The criterion worked well in our numerical experiments as we will show in Sect. 4.5.
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We always use tol = 0.01 in our numerical examples, which is chosen s.t. the errors
in solving the linear systems do not destroy the overall order of convergence.

Note that in the IMEX scheme (23), only Mvn+1 is required so that we neither
compute nor store vn+1 itself.
Crank–Nicolsonscheme

The fully discrete Crank–Nicolson scheme can be written in the form

Q+un+1 − τ 2

4
fn+1 = (M + τ

2
B − τ 2

4
A)un + τMvn + τ 2

4
fn, (52a)

Mvn+1 = Mvn − τ

2
A(un + un+1) + B(un − un+1) + τ

2

(
fn + fn+1).

(52b)

We solve the nonlinear equation (52a) with a simplified Newton method where we use
Q+ as an approximation to the Jacobian. The linear equations are solved as in the IMEX
scheme. We stop the Newton scheme when the update �u satisfies ‖�u‖h,2 ≤ τ 3t̃ol
with a given tolerance t̃ol. In the numerical examples we use t̃ol = 0.1, which is
again chosen s.t. the Newton errors do not destroy the overall order of convergence.
All matrix vector products appearing in (52a) and (52b) are computed only ones and
saved in temporary vectors, as well as all terms that can be reused in the next time
step. As in the IMEX scheme we do not compute vn+1 but only Mvn+1.
Classical Runge–Kutta scheme

The classical Runge–Kutta scheme is an explicit scheme of order four that is suited
for hyperbolic problems because its stability region contains an interval on the imagi-
nary axis. This is in contrast to the second-order schemes by Heun and Runge, which
intersect with the imaginary axis in the origin only. We implemented it using mass
lumping to obtain a fully explicit scheme. Note that the space discretization with mass
lumping also fits into the setting of Sect. 3, as it was shown in [12] for a linear acoustic
wave equation.

4.5 Numerical examples

We consider the semilinear wave equation with kinetic boundary conditions (41) with
αΩ = 1, βΩ(x) = x and α = β = 0 on the unit disc Ω = B(0, 1) ⊂ R

2. As
nonlinearities, we choose

fΩ(t, x, u) = |u|u + ηΩ(t, x),

f(t, x, u) = |u|2u + η(t, x)

with

ηΩ(t, x) = −
(
4π2 + |sin(2π t)x1x2|

)
sin(2π t)x1x2 + 6π cos(2π t)x1x2,

η(t, x) = −4π2 sin(2π t)x1x2 + 6 sin(2π t)x1x2 − (sin(2π t)x1x2)3 ,
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Fig. 1 Error Eh(0.8) of the IMEX scheme (solved with GMRES and ILU preconditioner), the Crank–
Nicolson scheme, and the classical Runge–Kutta method plotted against step size τ for coarse space
discretization (328,193 degrees of freedom, left) and fine space discretization (18,3118,745 degrees of
freedom, right)
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Fig. 2 Error Eh(0.8) of the IMEX scheme, solved with GMRES and ILU/Multigrid(MG, F-cycle with 8
levels) preconditioner, the Crank–Nicolson scheme, and the classical Runge–Kutta method plotted against
runtime for coarse space discretization (3288,193 degrees of freedom, top) and fine space discretization
(18,3118,745 degrees of freedom, bottom)

and as initial values
u(0, x) = 0, ut (0, x) = 2πx1x2.

The example is chosen such that the exact solution is given by

u(t, x) = sin(2π t)x1x2

which allows us to compute reliable errors. For the space discretizationwe use isopara-
metric elements of order p = 2, and choose u0h = Ih,Ωu0 and v0h = Ih,Ωv0 as discrete
initial values.
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Fig. 3 Error Eh(0.8) of the IMEXscheme plotted against the runtimewhen using the two different error esti-
mates as stopping criteria for the GMRES scheme as discussed in Sect. 4.4 for a coarse space discretization
(3288,193 degrees of freedom)

As we cannot compute the lift of a finite element function exactly, we consider the
error

Eh(t):=‖uh(t) − u(t)
∣∣
Ωh

‖H1(Ωh;h)
+ ‖u′

h(t) − u′(t)
∣∣
Ωh

‖L2(Ωh)×L2(h)
.

We evaluate the integrals with a quadrature rule of order 4 such that the quadrature
error is negligible. The restriction of u to Ωh is possible since for convex domains we
have Ωh ⊂ Ω .

In Fig. 1 the errors of the IMEX, the Crank–Nicolson, and the classical Runge–
Kutta scheme are plotted against the time-step size τ for a coarse (h ≈ 0.014) and a
fine (h ≈ 0.007) space discretization, respectively. As predicted by Corollary 1, the
IMEX and the Crank–Nicolson scheme converge with order two until the error of the
space discretization is reached. The explicit Runge–Kutta scheme is only stable under
a strong CFL condition and then the error reaches immediately the space discretization
error plateau.

Figure 2 shows the errors of the different schemes plotted against the runtime for
the same coarse and fine space discretization as in Fig. 1. It can be observed, that
the IMEX scheme is significantly faster than the Crank–Nicolson scheme. For errors
of the magnitude of the space discretization error plateau, the classical Runge–Kutta
scheme ismore efficient than the IMEXscheme, but the IMEXschemeoutperforms the
Runge–Kutta scheme if less accuracy is sufficient. The Runge–Kutta method has the
disadvantage that the stability limit in applications is not exactly known, and therefore
there is a risk that it will not be stable if a too large time-step size is chosen, or the
effort is unnecessarily high if the time-step size is too small. For the large system
obtained by the fine space discretization and large time-step sizes, it can be observed,
that the use of the multigrid preconditioner is quite efficient.

Finally, Fig. 3 shows a comparison of the runtimes of the IMEX schemewhen using
the different stopping criteria for the GMRES solver discussed in Sect. 4.4, namely
using ‖r‖ãh or ‖r‖h,2 as estimate for the error, respectively. It can be seen that the
afford of computing the (better suited) ‖r‖ãh is too high and does not pay off.
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