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Abstract 

Minor and major keys/chords are arranged along the joint subdominant-dominant axis. For 
this purpose, the relative minor for a major tonic (e.g. Am regarding C major) is put between 
the tonic and its subdominant (F), being interpreted as the ‘semi-subdominant’. 
Correspondingly, the relative major for a minor key (C for Am) is called its ‘semi-dominant’. 
Thereby, two axes of fifths for major and minor keys are merged into one. To reflect the 
proximity of other types of key/chord relations (parallel major-minor keys, major dominants 
in minor keys and minor subdominants in major keys), this axis is closed by analogy with the 
circle of fifths and twisted, as if wrapping a torus. The torus unfolded results in a key/chord 
proximity map. Due to using the subdominant-dominant axis, it is free from inconsistencies 
inherent in some known maps.  

Keywords: Music theory, diatonic functions, key proximity map, tonic, dominant, 
subdominant, mediant 
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1   Introduction 

Musical harmony is commonly considered from the viewpoint of either psychoacoustics or 
music theory/composition. The musical acoustics approach deals mainly with such chords’ 
properties like consonance-dissonance, belonging to particular classes, and their perceptual 
proximity explained in terms of pitches and timbres. The music theory/composition approach 
focuses on ‘correctly’ connecting chords, tonal tension/relaxation effects, and their use in 
building the musical form of a piece. For reviews see [Acotto and Andreatta  2012; Bigo et al. 
2014–2015; Chew 2002; Cohn 2012; Krumhansl and Kessler 1982; Tymoczko 2011]. 

This article suggests a 2D proximity map for major and minor harmonies within the second 
approach. The idea was however inspired by the first-approach talk at the 7th International 
Conference of Music Perception and Cognition [Krumhansl 2002], which referred to the key 
proximity map [Krumhansl and Kessler 1982, p. 346]. Following [Shepard 1982], the major 
keys were ordered according the circle of fifths (Figure 1), and the same was done for the 
minor keys. To visualize the proximity of relative major-minor (A-Am) and parallel major-
minor (C-Cm), the two circles of fifths were helically wounded on a torus, and then the torus 
was unfolded resulting in a 2D map in Figure 2. 

We develop this idea further but instead of ordering keys according to their acoustical 
proximity, we focus on the chords’ diatonic functions. As one can notice, the chord order by 
fifth in Figure 1 implies subdominant-tonic-dominant triplets: F-C-G, C-G-D, etc. Inserting 
the relative minor chord before each major chord (like Am before C), we obtain the major-
minor circle Figure 3. The subdominant-tonic-dominant triplets are then extended to 
subdominant-submediant-tonic-mediant-dominant quintuplets (like F-Am-C-Em-G). 

The insertion of relative minor keys into the circle of major keys is justified by the 
(sub)mediant’s ambivalent (or even intermediate) functionality. [Weber 1817–1821; 
Tchaikovski 1872; Rimski-Korsakov 1886] characterized the (sub)mediants as auxiliary to the 
diatonic functions of tonic, dominant and subdominant. To emphasize the relation to these 
main functions, [Riemann 1893] called mediant (Em in C major) tonic parallel (in this 
context, the German ‘parallel’ is the same as ‘relative’ in English), and submediant (Am in C 
major) subdominant parallel. Alternatively, [Catuar 1924; Schenker 1906–1935; Tulin-
Privano 1965] proposed their context-dependent functional interpretation. For instance, Am in 
C major is interpreted either as tonic or subdominant. In minor keys, the relative major is 
often used instead of the dominant: in weaker cadences, for the second themes of sonatas and 
symphonies, etc. A close relation of (sub)mediants to three main diatonic functions is also 
demonstrated by [Andreatta and Baroin 2016], where harmonic paths in Andreatta’s song La 
sera non è più la tua canzone are visualized; see Figure 4. There, the zig-zag arrow lines with 
subdominant-tonic-dominant transitions through submediants and mediants follow the logic 
of successive arcs in the subdominant-dominant circle in Figure 3.  
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Figure 1: The circle of fifths with three subdominant-tonic-dominant triplets underlined by arcs 

 
 
   (a) 

 

(b) 

 
 

 

Figure 2: (a) The major-key and minor-key circles of fifths wound on a torus  with one azimuth turn in the 
clockwise direction and three tube turns in the counterclockwise direction. (b) The unfolded torus with both 
circles of fifths (the horizontal section is along the torus’ equator, and the vertical section is at the torus’ “12 
o’clock”). Source:  [Zatorre and Krumhansl 2002]. 
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Figure 3: The subdominant-dominant circle with four subdominant-submediant-tonic-subdominant-dominant 
quintuplets underlined by arcs, and the corresponding chords in symbolic and standard notation 
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Figure 4: Subdominant-submediant-tonic-mediant-dominant paths in M. Andreatta’s song La sera non è più la 
tua canzone. Source: [Andreatta and Baroin 2016, p. 267] 

What we are going to do is to use the subdominant-dominant axis for constructing a key/chord 
proximity map. Among other things, it enables to visualize the proximity of keys at the 
distance of major third (C-E) — the second most important interval after fifths for tuning  
systems since Pythagoras — with no additional third dimension required by [Bigo Ghisi 
Spicher Andreatta 2015; Gollin 1998].  

In Section 2, ‘Subdominant-dominant axis’, the merge of the circles of fifths for major and 
minor keys is discussed. 

In Section 3, ‘Subdominant-dominant helix’, the subdominant-dominant axis is twisted, 
bringing closer some chord types. 

In Section 4, ‘Enhancing the enharmonic equivalence’, the subdominant-dominant helix 

closes in on itself to identify the six-sharp and six-flat keys (F = G).  

In Section 5, ‘Alternative winding the subdominant-dominant axis on a torus’, we analyze 
several 3D toroidal maps of chord proximity. 

In Section 6, ‘The uniqueness of the 2D chord proximity map and its application’, it is shown 
that wrapping the torus by the subdominant-dominant axis in alternative ways does not 
change the 2D  key proximity map obtained by unfolding the torus. In addition, we illustrate 
the use of this unique map for finding harmonic paths with an increasing harmonic tension. 

Section 7, ‘Conclusions’, recapitulates the main statements of the paper.  
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2   Subdominant-dominant axis  
In music theory, fifths determine diatonic functions relative to the tonally central chord, called 
the tonic. The chord whose root is one fifths higher than that of the tonic is called the 
dominant, and the chord whose root is one fifths lower is called the subdominant. Examples 
of such chord triplets are underlined by arcs in Figure 1. They are harmonic determinants of 
every major or minor tonality, and most simple melodies (e.g. classical blues) can be 
harmonized using these three chords. The keys whose tonics differ in one fifth — like F and C 
or C and G — have two common basic chords, enabling smooth transitions (modulations) 
from each other.  

In addition to subdominant and dominant, each key (e.g. C) has two intermediate chords — 
the submediant (Am) and the mediant (Em), which we call the semi-subdominant and the 
semi-dominant, respectively. Then every key is characterized by harmonic quintuplets that 
include three main and two auxiliary diatonic functions, as underlined by arcs in the circle of 
Figure 3.   

Let us index the main and auxiliary diatonic functions. For each chord, the degree of its 
‘subdominance’ and ‘dominance’ relative to the 0-indexed tonic is expressed in ½-steps as 
shown at the bottom of Table 1. For C major, the relative minor Am is the semi-subdominant, 

D is the second dominant, Fm is the 2½-dominant, and the parallel Cm is the 3½-

subdominant.  

Table 1: Positive and negative diatonic function indices 

Diatonic 
function 

1½-
subdominant 

Subdominant Semi-
subdominant 
(Submediant) 

Tonic Semi-
dominant 
(Mediant) 

Dominant 1½-
dominant 

Scale degree II  IV vi I iii V  

Case of C 
major 

Dm F Am C Em G Bm 

Diatonic 
function 
index for C 
major 

–1½  

   

–1 –½  0 +½ +1 +1½ 

Such an indexation of diatonic functions focuses on the dominant or subdominant direction, 
which is perceived as more important than the distance from the tonic. For example, the three 
chord progressions in Table 2 are perceived as functionally quite similar. All the three can 
back up the same melody (e.g. Let’s twist again by K Mann and D Appell recorded by 
Chubby Checker in 1961). This is explained by the fact that all of them perform two 
successive subdominant descents with a return to the tonic C via the dominant G. Respecting 
the subdominant-dominant direction is more critical than the degree values. A similar 
phenomenon is inherent in melodic variations: a melody remains recognizable if the 
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ascending/descending direction of melodic intervals at metrical accents is preserved, while the 
interval values being less important [Zaripov 1983]. 

Table 2: Similarly perceived chord progressions 

Chord progression  Diatonic indices 

C Am F G C        0 –½      –1        +1      0 

C Am Dm G C 0 –½      –1½      +1      0 

C F Dm G C 0 –1       –1½      +1      0 

In a similar way, a tonic’s ‘clockwise neighbors’ at the subdominant-dominant circle produce 
a dominant tension. As mentioned in Introduction, the relative major to a minor chord (C with 
respect to Am) was often used in Viennese sonatas instead of the major dominant (E) 

avoiding the alteration of the seventh scale degree (g→g). 

3   Subdominant-dominant helix  
The subdominant-dominant circle visualizes the proximity of diatonic functions for so-called 
natural (purely diatonic) modes but fails to do this for tonics of parallel keys (C-Cm), major 
dominants to minor chords (like E-Am whose diatonic indices differ by 4½) and harmonic 
(minor) subdominants to major chords (like Fm-C whose diatonic indices also differ by 4½). 
To bring these chords closer, the axes of major and minor keys are helically twisted like in 
Figure 2. The corresponding subdominant-dominant helix is shown in Figure 5.   

 
Figure 5: The subdominant-dominant helix 
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4   Enhancing the enharmonic equivalence 
The last step is enhancing the enharmonic equivalence, that is, equalizing the six-sharp and 

six-flat keys (F = G). This is attained by closing the subdominant-dominant helix in a 

toroidal coil as done in Figure 2a for both helixes of major and minor keys. The result for the 
subdominant-dominant helix is shown in Figure 6a. Referring to Figure 2a, the red helix for 
major keys is integrated into the blue helix for minor keys, giving a single helix with a double 
‘chord density’. Figure 6b depicts the unfolding of the torus obtained by cutting the torus’  
equator and transecting the tube at the torus’ “six o’clock”. 

Compared with Figure 2, Figure 6 more consistently visualizes the relations between the 
diatonic functions of chords. For example, the shortest path from C major to its 3rd dominant 
A major in Figure 2 goes through C’s submediant (= semi-subdominant) Am. The second 
distinction is using the mathematically standard counterclockwise direction of rotation in 
Figure 6a, both in the horizontal plane and the vertical dimension. Hence, the dominant 
direction in Figure 2b is ascending, as opposed to the descending dominant direction in Figure 
2b. The relations between chords with respect to their reciprocal diatonic functionality are 
shown in Figure 7 by color links. 

 

5   Alternatively wrapping the torus by the subdominant-dominant axis 
The unfolding in Figure 7b can be folded back into a torus in two ways. If it is rolled from 
bottom to top and the resulting tube is rolled into a ring, then we obtain the torus in Figure 7a. 
If the unfolding is first rolled from left to right and then the tube is rolled into a ring, then we 
obtain the torus in Figure 8a. The difference is that the subdominant-dominant axis in Figure 
7 makes a single azimuth (horizontal) turn and three tube (vertical) turns, whereas in Figure 8 
it makes three azimuth turns and one tube turn. It does not change the chord interrelations 
because the new unfolding in Figure 8b is in fact the one in Figure 7b turned by 90° in the 
counterclockwise direction and then reversed from left to right. 

The subdominant-dominant axis can be wound on a torus in four other ways differing in the 
number of azimuth and tube turns. These ways, including the ones already discussed are 
characterized in Table 3. The table also includes the characteristics of the ‘chromatic axis’, 
which consists of the links between the relative major-minor chords (C-Cm) and 

counterparallel major-minor chords (C-Cm), and the horizontal-vertical positions of eight 

axes of major thirds.  

Similarly to Figures 7-8, Figures 9-10 and 11-12 constitute pairs with exchanging numbers of 
azimuth and tube turns. Moreover, the characteristics of the subdominant-dominant and 
chromatic axes are interdependent. Both always have 3 either azimuth or tube turns, and the 
sum of the turns counted along the table rows is always equal to 14. That is, the average 
number of turns per axis is equal to seven — the number considered fundamental to music by 
Pythagoras. 
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Figure 6: (a) The subdominant-dominant circle wound on a torus with one azimuth turn and three tube turns in 
the counterclockwise directions. (b) The unfolded torus (the horizontal section is along the torus’ equator, and 
the vertical section is at the torus’ “six o’clock”). 
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Figure 7: The same as Figure 6 but with links between close keys/chords 
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Figure 8: (a) The subdominant-dominant circle wound on a torus with 3 azimuth turn and one tube turns in the 
counterclockwise directions. (b) The unfolded torus (the horizontal section is along the torus’ equator, and the 
vertical section is at the torus’ “six o’clock”). 
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Figure 9: (a) The subdominant-dominant circle wound on a torus with 4 azimuth turns and 3 tube turns in the 
counterclockwise directions. (b) The unfolded torus (the horizontal section is along the torus’ equator, and the 
vertical section is at the torus’ “six o’clock”). 
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Figure 10: (a) The subdominant-dominant circle wound on a torus with 3 azimuth turns and 4 tube turns in the 
counterclockwise directions. (b) The unfolded torus (the horizontal section is along the torus’ equator, and the 
vertical section is at the torus’ “six o’clock”). 
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Figure 11: (a) The subdominant-dominant circle wound on a torus with 7 azimuth turns and 3 tube turns in the 
counterclockwise directions. (b) The unfolded torus (the horizontal section is along the torus’ equator, and the 
vertical section is at the torus’ “six o’clock”). 
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Figure 12: (a) The subdominant-dominant circle wound on a torus with 3 azimuth turns and 7 tube turns in the 
counterclockwise directions. (b) The unfolded torus (the horizontal section is along the torus’ equator, and the 
vertical section is at the torus’ “six o’clock”). 
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Table 3: Subdominant-dominant axis windings on a torus 
 Subdominant-dominant axis ██████████ Chromatic axis ████████████████ Position of 

circles of 
major thirds 

 

Number of azimuth 
turns 

Number of tube 
turns 

Number of azimuth 
turns 

Number of tube 
turns 

Figure 6 1 3    

Figure 7 1 3 7 3 Horizontal 

Figure 8 3 1 3 7 Vertical 

Figure 9 4 3 4 3 Horizontal 

Figure 10 3 4 3 4 Vertical 

Figure 11 7 3 1 3 Horizontal 

Figure 12 3 7 3 1 Vertical 
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Figure 13: Extended key proximity map with the areas covered by Figures 6--12 

 

6   The uniqueness of the 2D chord proximity map and its application  
In spite of different windings of the subdominant-dominant axis, the resulting key/chord 
proximity maps are the same. This is demonstrated by the extended map in Figure 13, 
showing the areas covered by each pair of figures.  

Among other things, this proximity map suggests the harmonic paths with increasing either 
dominant or subdominant tension. The simplest two-step paths are collected in Figure 14.  

Finally we note that the inharmonic equivalence in the chord proximity map shouldn’t be 
misinterpreted. The circle of fifths is a tuning rather than a composition device. Most 
composers, applying distant modulations, return to the tonic not by the enharmonic shortcuts 
but through successive back-steps. Indeed, the enharmonic tonic has a quite distinct quality 
than the home tonic, and the seventh dominant should not be therefore considered the fifth 
subdominant. 
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Figure 14: Two-step harmonic paths with progressive dominant or subdominant tension resolving in cadences 

 
7   Conclusions 

Let us summarize the main points of the paper. 

1. The circles of fifths for major and minor keys are merged in a joint major-minor 
subdominant-dominant circle, where all the chords are considered subdominants or 
dominants of different degrees to a given tonic. 

2. To reflect the proximity of certain chords, this circle is wound on a torus. To obtain a 
2D visualization, the torus is unfolded, resulting in a 2D key/chord proximity map 
with improved consistency and local symmetry. 
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3. The key/chord proximity map is shown to be the same when derived from alternative 
3D toroidal representations, proving its invariant character. It is noteworthy that all the 
consistent 3D representations make use of the Pythagorean fundamental number 
seven. 
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