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Abstract: Towards the development of low-power miniature gas detectors, there is a high interest in
the research of light-activated metal oxide gas sensors capable to operate at room temperature (RT).
Herein, we study ZnO nanostructures grown by the electrochemical deposition method over Si/SiO2

substrates equipped by multiple Pt electrodes to serve as on-chip gas monitors and thoroughly
estimate its chemiresistive performance upon exposing to two model VOCs, isopropanol and benzene,
in a wide operating temperature range, from RT to 350 ◦C, and LED-powered UV illumination,
380 nm wavelength; the dry air and humid-enriched, 50 rel. %, air are employed as a background.
We show that the UV activation allows one to get a distinctive chemiresistive signal of the ZnO
sensor to isopropanol at RT regardless of the interfering presence of H2O vapors. On the contrary,
the benzene vapors do not react with UV-illuminated ZnO at RT under dry air while the humidity’s
appearance gives an opportunity to detect this gas. Still, both VOCs are well detected by the ZnO
sensor under heating at a 200–350 ◦C range independently on additional UV exciting. We employ
quantum chemical calculations to explain the differences between these two VOCs’ interactions with
ZnO surface by a remarkable distinction of the binding energies characterizing single molecules,
which is −0.44 eV in the case of isopropanol and −3.67 eV in the case of benzene. The full covering
of a ZnO supercell by H2O molecules taken for the effect’s estimation shifts the binding energies
to −0.50 eV and −0.72 eV, respectively. This theory insight supports the experimental observation
that benzene could not react with ZnO surface at RT under employed LED UV without humidity’s
presence, indifference to isopropanol.

Keywords: electrochemical deposition; zinc oxide; chemiresistive effect; gas sensor; DFTB; microarray

1. Introduction

The increasing demand of human society for portable detectors able to effectively
monitor the environment air forces plenty of research activities in the direction to the
development of gas sensors with advanced characteristics which yield a promising low-
cost alternative to analytical instrumentation [1]. So far, such sensors primarily rely on a
change of optical [2] or electrical [3] properties of various materials interfaced with a gas
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media [4]. These properties and their gas-induced changes could be properly read with
several transduction principles of which the conductance measurement is still retained as
the simplest but powerful method [5]. Since the pioneering research by Sejama [6], the
commercial chemiresistors are developed employing mostly wide-gap semiconducting
metal oxides which however require an external activation to facilitate charge exchange at
the surface as the interface between the solid and a gas phase [7]. Such an activation implies
conventionally heating up to 250–400 ◦C range which makes a need in advanced energy
consumption of the sensor-based measuring units [8]. The common trend in electronics to
miniaturization allows one to reduce the feed power for example with micro-hotplates [9]
to go down to low hundreds of mW per sensor [10] but the cost of such systems goes up,
too. As a reasonable alternative, rather recently it was discovered that the UV radiation
could excite a chemiresistive effect at room temperature (RT) in metal oxides whose gap is
close to the radiation energy [11]; even the power of cheap light-emitting diodes (LEDs)
might be enough [12]. Nowadays, LED-activated oxide sensors find considerable interest
when developing low-power gas-analytical units [13,14]. From this viewpoint, zinc oxide
is considered to be an extremely appropriate material because of its bandgap, equal to ca.
3.4 eV [15], which falls into the range where UV, 100–400 nm of wavelength, could excite
electron transitions. Therefore, ZnO has been actively investigated, for example, in the
form of polycrystalline films [16,17], nanoparticles [18], nanorods [19–21], microspheres [22],
subµm-thick fibers [23], single-crystalline sheets [24], and various nanostructured layers [25]
as promising UV-activated gas sensor versus mainly alcohol vapors. In this case, the structures
which have a large surface to interact with the gaseous phase but rather a thin bulk, down to
nanodomain, to be effectively modulated by surface processes are advantageous.

Here we have got a look at the ZnO nanostructures grown by electrochemical deposi-
tion under constant potential over a substrate [26] equipped with multiple electrodes to
further serve as a gas sensor. We have compared the response of grown ZnO to isopropanol
and benzene as two model VOC analytes in a wide temperature range from RT to 350 ◦C
with/without UV excitation. From a practical view, the observations further support
that sensing of alcohol vapors with ZnO could be effectively supported by UV, 380 nm
wavelength, at RT-150 ◦C temperature range while benzene shows a more complicated
chemiresistive performance requiring a presence of H2O or higher energies to facilitate the
response. From a fundamental view, the results are explained by the density functional
tight-binding method (DFTB) to be matured from the differences in the binding energies of
these two VOC molecules with the ZnO surface.

2. Materials and Methods
2.1. Electrochemical Deposition of ZnO Nanostructures

Zinc oxide nanostructures were electrochemically synthesized in an aqueous solution
of 0.1 M Zn(NO3)2 at potential−1 V vs a reference Ag/AgClsat electrode in the conventional
three-electrode configuration as depicted in Figure 1 similar to protocols reported earlier
for deposition of other oxides [27,28]. We utilized Si/SiO2 substrate, 8 × 10 mm2, whose
frontside was supplied with multiple Pt strip electrodes, ca. 120 µm width, in parallel to be
distanced by a gap of ca. 80 µm as a multielectrode chip following the architecture reported
earlier [29]. To monitor the operating temperature over the chip, the sensing area was
surrounded by two meander Pt thermoresistors, 1 µm height, deposited simultaneously
with the measuring electrodes by sputtering under the shadow mask. The rare side of the
chip was equipped with four heating meanders made of Pt film, 1 µm height. We consider
this platform design as the most suitable one for material characterization in the framework
of “lab-on-chip” paradigm. The chip was wired into a ceramic holder which allowed
us to selectively connect each Pt electrode or several Pt electrodes under the synthesis
process [30]. A graphite rod was employed as a counter electrode. During the synthesis,
we have maintained an electrolyte at a temperature of 80 ◦C using a hotplate defined to be
optimal for ZnO growth in preliminary experiments. The electric currents and potential
were measured with the help of a potentiostat (P50 Pro, Elins, Russia) employed to run
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the process. We have varied the deposition time of ZnO in the range of 400–1150 s as a
major parameter to have the spatially distributed oxide areas over the substrate of various
densities to see the differences of properties of the synthesized layer within the same chip,
subject to various external factors (gas exposure, temperature, UV).
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Figure 1. The scheme for deposition of ZnO nanostructured layer over multi-electrode chip em-
ploying a three-electrode electrochemical cell: 1—a potentiostat interfaced with PC, 2—a simplified
circuit diagram of electric potential application by the potentiostat, 3—electrolyte, 0.1 M Zn(NO3)2,
4—graphite rod, 5—Ag/AgClsat electrode, 6—a hotplate, 7—a multi-electrode chip wired in a ce-
ramic holder.

The noted time range has been chosen based on preliminary studies which ensured
the absence of percolation for a current in the layers deposited at shorter time intervals
while longer time resulted in a continuous thicker layer.

2.2. Material’s Characterization

The morphology of the oxide layer deposited over the multielectrode chip has been
evaluated by scanning electron microscopy (AURIGA CrossBeam, Carl Zeiss AG, Germany)
at 5 kV of accelerating voltage. The layer composition has been checked with Raman
spectroscopy (DXR™ xi Raman Imaging Microscope, ThermoFisher Scientific, Waltham,
MA, USA) using a laser, 532 nm wavelength, at the power of 1 mW with ×50 objective.
The crystal structure has been inspected by X-ray diffraction (XRD) employing Bruker D8
advance diffractometer (Bruker, Germany) with CuKα radiation source, λ = 0.15418 nm,
under Bragg-Brentano geometry. Patterns were acquired in the 2Θ range from 10◦ to
90◦ at a 0.0098◦ step; accumulation time was 0.2 s. Soller mirrors of 2.5 mm were used.
The acquired XRD patterns were processed using @Eva4.3 software. The samples were
characterized following the operation of the chip in the course of reported measurements
under heating up to 300 ◦C.

2.3. Gas-Sensing Measurements

To measure the chemiresistive effect in the grown ZnO layer, the multielectrode chip
has been placed into a setup shown in Figure 2 as primarily reported earlier [31]. The
setup consisted of two major parts aimed both to prepare analyte gases and to deliver them
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to the chip as well as to read out the resistances of the ZnO layer confined between two
measuring electrodes with/without UV radiation. The gaseous analytes were supplied
under a dynamic flow mode with a flowrate managed by precision mass-flow controllers
(MKS Instruments, Inc., Andover, MA, USA) at 500 sccm.
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Figure 2. The experimental setup to measure the chemiresistive effect in electrochemically deposited ZnO nanostructured
layer under variable gas exposure and UV activation: (a) drawing of the setup, 1—dry air generator, 2—bottles with
calibrated analyte gases, 3—mass flow meters; 4—deionized water bubblers; 5—hygrometer/thermometer; 6—a sealed
chamber containing the multielectrode chip, 7—UV power supply unit, (b) the scheme of UV irradiation the chip surface,
8—UV LED, 9—measuring Pt electrodes confining the deposited ZnO layer (10), 11—KAMINA unit, 12—PC; (c) the
measured spectrum of LED emission.

The analyte gas concentration in the probe, 1, 10 and 100 ppm, has been adjusted by
mixing the dry filtered air from the generator (SylaTech GmbH, Walzbachtal, Germany)
with source mixtures of isopropanol/synthetic air and benzene/air, each of 250 ppm
concentration, at the corresponding ratio. The source analyte mixtures were contained in
bottles as prepared. The measurements under humidity, 50 rel. %, enriched conditions
were carried out via forking the dry air into two lines, where one line was purged through
a Drexel flask containing deionized water, with further mixing at a 1:1 ratio. The chosen
analyte concentrations correspond to or below the exposure limits of isopropanol and
benzene vapors in the air (see, for instance [32]. Both gas pipe lines corresponding to
reference air and analyte-enriched air are supplied with a humid generator (a bubbler) to
vary independently the humidity content in analyte probes. The humidity content in the
gas probe delivered to the chip under study has been independently monitored with a
hygrometer (Testo, model 601, Titisee-Neustadt, Germany).

To perform measurements of the chemiresistive effect in the deposited ZnO nanostruc-
tured layer, the multielectrode chip was placed in a sealed measuring steel-based chamber
equipped with a UV light-emitting diode installed to illuminate the front side of the chip
with the layer as depicted in Figure 2b. The chip has been secured by two dielectric rings
inside the chamber. The LED emission wavelength was checked with a spectrometer
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(BTC112 Series Fiber Coupled TE Cooled CCD Spectrometer, B&W Tek, Newark, NJ, USA).
The efficient values estimated using a full width at half maximum of the LED spectrum
were 375–385 nm (Figure 2c) that yields photons with energy equal to ca. 3.2–3.3 eV. The
LED was powered by a supply unit (BEHA Uniwatt Labornetzteil NG 304T, Germany). To
heat the multielectrode chip with temperatures up to 350 ◦C, four Pt meander heaters were
realized at the chip backside. The temperature was independently controlled by calibrated
Pt thermoresistors located at the edges of the front side of the chip [30].

We measured the resistance of the ZnO layer between each couple of Pt electrodes as
a chemiresistor utilizing a KAMINA electrical measuring unit [33] with a sampling rate of
1 Hz per all the chemiresistor array located at the chip. The electrical measuring unit was
controlled by a homemade software interfaced to the PC to allow one reading, storing, and
visualization of the received data in real-time. The chemiresistive properties of the ZnO
layer were studied in the temperature range from RT, equal to approx. 20 ◦C, to 350 ◦C
towards isopropanol and benzene, 1–100 ppm of concentration, in the atmosphere of both
dried and humid, 50 rel. %, air. The chip operating temperature was driven by the in-built
meander heaters, with approx. 1 ◦C accuracy, and monitored with the thermoresistors.
The total temperature in the lab during the measurements was secured by air conditioning
at the given value. The temperature of gas flow going to the chamber with a chip was
monitored with a thermometer combined with the hygrometer.

The time of analyte exposure to the chip was adjusted to be 90 min while air purging
was 120 min accounting for preliminary studies to ensure long-term transients as observed
frequently in practice. The chemiresistive response to the analytes was calculated in
percent as

S =

(
Ra

Rg
− 1
)
·100 %, (1)

where Ra, Rg are resistances of the segment of ZnO layer, confined between each couple of
measuring electrodes at the chip, in pure reference air and analyte-enriched air, respectively.

The multi-dimensional signal of the array of ZnO layer segments located at the chip
was processed by Linear Discriminant Analysis (LDA) technique [34]. Because of the large
variation in analyte concentration in the probes, of two orders of magnitude, we have taken
a logarithm of raw resistance values recorded under various impacts as a pre-processing
technique to feed the LDA algorithm.

2.4. DFTB Calculations

The search for the ground state of the considered objects as well as the calculation
of their band structures were performed by the self-consistent charge density-functional
tight-binding method (SCC DFTB) [35]. In terms of computational speed, the SCC DFTB
method is comparable to traditional semi-empirical methods, but, in general, provides the
accuracy comparable to first-principal calculations. The method is based on the second-
order decomposition of the total Kohn–Sham energy with respect to the charge density. The
matrix elements of the unperturbed Hamiltonian H0

µv are represented in the minimal basis
of atomic orbitals using the two-particle approximation. The total energy of the system is
determined by the expression

Etot = ∑
iµv

ci
µci

vH0
µv +

1
2 ∑

αβ

γαβ∆qα∆qβ
+ Erep + Edis, (2)

where ci
µ and ci

v are the coefficients in the decomposition of the molecular orbitals into
atomic orbitals, ∆qα and ∆qβ are the charge fluctuations on the α and β atoms, respectively,
γαβ is a function, that exponentially decreases with increasing a distance between the
α and β atoms and directly depends on the chemical hardness [36], Erep is the term
describing the repulsive interaction at small distances, Edis is the term responsible for
the van-der-Waals interaction of unbound atoms. The Monkhorst-Pack 12 × 12 × 1 grid
was used to sample the Brillouin zone in the reciprocal space. The 3-ob-3-1 basis set was
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applied to describe the interaction between the Zn, O, C and H atoms [37]. It should be
noted that the authors successfully applied the SCC DFTB method earlier to calculate the
binding energy between carbon nanostructures and various functional groups including
iron oxide [38] and DNA [39]. In addition, this method accurately describes the behavior
of H2O clusters [40,41] to be within the scope of the current study.

The binding energy of the 2D ZnO surface with VOCs under study, isopropanol
or benzene, and with water molecules, equal to number N, was calculated utilizing the
following formulas, accordingly:

Eb = E(ZnO + VOC)− E(ZnO)− E(VOC), (3)

Eb =
E(ZnO + NH2O)− E(ZnO)− NE(H2O)

N
, (4)

where E(ZnO), E(VOC) and E(H2O) are the energies of isolated ZnO supercell, analytes
and water structures, E(ZnO + VOC) is the energy of the oxide with bonded analyte at
the ground state, and E(ZnO + NH2O) is the energy of the oxide with H2O molecules at
the ground state.

3. Results and Discussion
3.1. The Physical Characterization of ZnO Nanostructured Layer

Primarily, the ZnO layer has been grown by the electrochemical deposition over Pt
electrodes according to known mechanisms [42]. However, the oxide growth has appeared
to occur not only over the electrode but also in the between-electrode gaps primarily in
the shape of nanodimensional structures. The size and coverage of the gap by the oxide
depend on deposition time leading to an electric percolation of the dielectric area between
electrodes. Figure 3 yields SEM images of the oxide nanostructures which have appeared
within the inter-electrode gaps. As one can see, the morphology of the ZnO nanostructured
layer strongly depends on the deposition time. At 400 s (Figure 3a), the oxide structures
have a minimum size, up to 500 nm, with some slight agglomeration. Enhancing the
deposition time up to 550 s (Figure 3b) resulted in enlarging of individual nanostructures
up to several micrometers. At 700–1150 s of deposition (Figure 3c–f), zinc oxide appears as
a rather continuous layer consisting of co-grown nanostructures.

The structure of the deposited oxide layer has been verified by Raman spectroscopy;
the typical spectrum is shown in Figure 3g. The data of measurements have proved the
layer to grow as ZnO polycrystals with wurtzite symmetry. According to literature [43–45],
we may note various modes characterizing this structure as A1 + E1 + 2E2 + 2B1. Raman and
IR active modes A1 and E1 split into transverse optical (TO) and longitudinal optical (LO)
phonons whose corresponding peaks are found at 383.6 cm−1, 568.7 cm−1, 586.1 cm−1, and
1153.0 cm−1 [46]. Raman active E2 mode includes two nonpolar modes E2

low and E2
high

of low- and high-frequency phonons, observed at 98.2 cm−1 and 202.3 cm−1, 437.6 cm−1,
and 331.5 cm−1 for E2

low, E2
high and E2

high-E2
low, respectively [47]. Phonon LO and TO

peaks are identified at 661.3 cm−1, 1105.5 cm−1 and 1153.0 cm−1. High-intensity peaks of
E2 confirm the wurtzite structure while the appeared LO phonons indicate the presence of
oxygen defects and respective electronic states in the crystals, which have rather a crucial
effect for a chemiresistive effect observation. Still, we have not found B1 mode in the
spectrum similar to other works [47,48]. We also observed bands classified as 2TA, 2LA,
and TA+LO at 202.3 cm−1, 483.8 cm−1 and 661.3 cm−1, respectively [44,48]. The peaks
found at ca. 520.5 cm- 1 and 971.7 cm−1 seem to come from the SiO2/Si substrate [49].

The annealed ZnO layer is characterized by a hexagonal structure, space group P63mc,
just according to XRD results (Figure 3h), with reflexes from (100), (002), (101), (102), (110),
(103), (200), (112), (201), (004), (202), (104) and (203) crystal lattice planes (PDF 00-036-1451).
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1 

 

 
Figure 3. Morphology and structure of the electrochemically deposited ZnO layer: (a–f) SEM images of the oxide structures
to appear in the inter-electrode space in dependence on various time: 400 s (a), 550 s (b), 700 s (c), 850 s (d), 1000 s (e),
1150 s (f); (g) the characteristic Raman spectrum; (h) XRD pattern. The characterization has been carried out for the chip
which was a subject of heating at 300 ◦C in course of measurements.

3.2. The Electrical Properties of the ZnO Nanostructured Layer

We have tested the electrical properties of the electrochemically grown ZnO layer
under the application of dc electric fields. Because the interface contacts between the oxide
and electrode might significantly modify the electric transport, primarily we have looked at
the current–voltage (I–V) characteristics in the range of applied potentials at [−5; +5] V in
two directions. We have checked the I–Vs almost in all the temperature range of operating
temperatures employed in the course of studies, mainly under air conditions, to ensure
its linear character. Here, for example, we show I–Vs in Figure 4 under heating to 150 ◦C
recorded in a dry air environment. This temperature is most interesting as a “bordering”
one which we show further for the gas-sensing performance of the ZnO layer.

As one can see in Figure 4, the I–V curves are quite linear, which indicates the absence
of significant potential barriers at the contact interface in all the ZnO layer areas grown
under different deposition times. The slope of I–V curves, which defines a resistance,
depends on the deposited volume of the oxide; we have clarified it by plotting the resistance
values derived from the I–Vs at the second ordinate axis. The ZnO layer segment resistance
goes down with deposition time from ca. 210 kOhm observed at the area grown at 400 s to
around 130–140 kOhm in the area grown at 850–1150 s. When comparing them to SEM
images of Figure 3, the resistance becomes almost independent on a deposition time at
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these higher magnitudes of deposition time because of the formation of a rather continuous
layer, though still containing mesopores.
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3.3. Gas-Sensing Properties of ZnO Nanostructured Layer under UV Illumination

We have studied the multisensor chip with an electrochemically grown ZnO layer
upon exposing to two model analytes, isopropanol and benzene, mixed with dry and wet
air in a wide temperature range from RT to 350 ◦C. The influence of UV irradiation on
the chemiresistive effect in the ZnO layer has been checked at these temperatures. These
data are summarized in Figure 5, where we depict the temperature dependence of the
chemiresistive response to benzene (Figure 5a,b) and isopropanol (Figure 5d,e), given in
concentration of 100 ppm, where the chemiresistive response and the observed variations
are more remarkable than ones in the case of lower analyte concentration. As a typical
behavior, we have taken the ZnO layer segment deposited for 550 s as an example.

The data plots show that the UV radiation has a significant effect to support the
appearance of the chemiresistive response in ZnO versus isopropanol at temperatures from
room one to 150 ◦C (highlighted in the figure), no matter the humidity vapors co-exist in
the atmosphere. We may see a rather significant response even at RT, about 20–25%, which
enhances up to 250% at T = 150 ◦C. A similar effect is observed, too, when exposing the
chip to benzene mixed with wet air. However, the ZnO conductivity stays almost inert
if benzene vapors are supplied in a mixture with dry air under UV radiation until the
temperature goes up to 150 ◦C. At T = 100 ◦C the response is ca. 1.4% which is similar
to results published in other studies, see, for instance [50]. When heating goes up from
150 ◦C to 350 ◦C, the ZnO layer starts to exhibit the chemiresistive properties to be almost
independent of UV irradiation. It seems at this temperature range the thermal activation
is the major factor to facilitate a charge exchange between both chemisorbed analytes,
isopropanol and benzene, and ZnO surface as discussed later. Still, we should note that
employing operating temperatures up to 350 ◦C leads to a substantial enhancing of the
chemiresistive response to both analytes by more than one order of magnitude when
compared to one observed at T = 150 ◦C even under UV assistance. The response is
saturated at T = 300–350 ◦C that fully corresponds to conventional operating temperatures
known for ZnO chemiresistors [5], the UV effect is almost negligible. Due to the fine
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morphology of the grown ZnO nanostructures, the response is higher than the observed
one in printed ZnO layers doped with Pt [51].
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We have looked at how UV radiation influences the ZnO nanostructures grown in
local chip areas at various deposition times. While the UV radiation dominates in the
RT-100 ◦C of the temperature range employed to activate the chemiresistive response in
this material, we considered T = 150 ◦C as a “border” point where to compare the UV
contribution in comparison to thermal activation. In order to relatively estimate the UV
effect, we have considered the change of chemiresistive response under UV, SUV, in ratio to
the response, S, observed without UV, as

(
SUV

S − 1
)

and plotted it in dependence on the
ZnO deposition time for benzene (Figure 5c) and isopropanol (Figure 5f). The derived data
clearly show that the ZnO nanostructures synthesized for the time in the range 400–700 s,
exhibit the most pronounced influence of UV impact, which enhances the chemiresistive
response up to 4 times. In the range 850–1150 s of deposition times, the UV effect is less
distinct and rather stable, just doubling the response. These clear differences seem to
mature from the morphology of the ZnO layers: the layer deposited at lower times has a
more dispersed meso-nanostructure where the number of free electrons could be effectively
facilitated by UV, as we have recently shown in the case of the TiO2 nanotubes [52]. At
thicker layers, the LED power is not enough for the UV radiation to penetrate the entire
depth of the oxide layer including internal meso-surfaces, and its effect on the interaction
of gaseous analytes to be chemisorbed at the ZnO surface and to participate in the charge
exchange is reduced.

To further show the impact of UV radiation on the ZnO resistance under exposure to
analytes, we have plotted the typical R(t) transients measured at the operating temperature
of 150 ◦C in Figure 6a,b for the case of isopropanol; the dry air background is given in
Figure 6a while wet, 50 rel. %, air background is given in Figure 6b. Firstly, as one can
see, the resistance values of the ZnO layer significantly drop following UV exposure: in
dry air, the drop is by more than ca. 20 times, while in the wet air it is about 5 times. The
drop follows the known UV impact on the wide-band semiconducting oxides related to a
generation of free electrons in the oxide conductance band due to inter-gap transitions that,
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in turn, increases the material’s conductivity; see, for instance, [52]. Furthermore, these
processes reduce inter-crystal potential barriers that also promote higher conductivity [53].
The observed differences between dry and wet conditions indicate that the excessive free
electrons could be partly localized at the surface by additional chemisorbed OH- species
induced under a presence of humidity vapors according to the following dissociation of
water molecules at the oxide surface

H2O + 2e− UV→ 2OH−, (5)

thus reducing the generated number of free electrons.
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dependence of chemiresistive response calculated according to (1) on the VOC concentration of isopropanol (c) and benzene
(d). The data are shown for the layer grown electrochemically for 550 s.
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Secondly, the appearance of isopropanol vapors results in a further drop of ZnO
resistance which constitutes, in fact, the chemiresistive effect under interest for the sensor
performance. The reversible character of R(t) behavior with/without the VOC analyte
confirms the functionality of the synthesized layer as a gas sensor. According to a rather
conventional view [5,14], this effect seems to mature from the surface interaction between
this adsorbed alcohol and chemisorbed oxygen species, O− or O2

−, and/or OH− groups
according to one of the following chemical routs

C3H7OH(ads) +


90− UV→ 3CO2 ↑ +4H2O ↑ + 9e−

20H− UV→ 3CO2 ↑ +5H2 ↑ + 2e−

2OH− + 80− UV→ 3CO2 ↑ +5H20 ↑ + 10e−

2C3H7OH(ads) + 13O−2
UV→ 6CO2 ↑ +16H2O ↑ + 13e−

(6)

All these reactions lead to enhancing a free electron concentration, which increases
the conductance of ZnO as an n-type semiconductor in accordance with the experimental
results.

In the case of benzene, this VOC’s interaction with the ZnO surface is more complex
accounting for data presented in Figure 5. It seems the employed UV energy has not been
enough to facilitate the interaction of benzene directly with chemisorbed oxygen species;
we discuss this phenomenon later. However, the humidity-derived species at the ZnO
surface appeared due to H2O presence in the atmosphere could interact with benzene
according to the next chemical routes

C6H6(ads) +


12OH− UV→ 6CO2 + 9H2 + 12e−

2OH− + 14O− UV→ 6CO2 + 4H2O + 16e−

2OH− + 7O−2
UV→ 6CO2 + 4H2O + 9e−

(7)

Furthermore, it should be noted that comparing R(t) curves displayed in Figure 6a,b
shows that the characteristic time of the chemiresistive effect is substantially reduced by
UV radiation. When LED-UV is Off, 1.5 h of exposure to the isopropanol is still not enough
to reach a rather stationary plateau of the resistance value of the ZnO layer. The same
concerns the recovery time following other reports [22]. Altogether, the gas response looks
partly irreversible within the chosen time intervals of the analyte’s exposure because of not
enough activation of chemisorption processes on the ZnO surface [5]. At the same time,
the ZnO resistance decreases much faster upon/after the exposure to isopropanol vapors
under UV assistance. We may distinguish ca. 10–15 min of response/recovery time, which
characterizes the resistance transient curves, similar to other research [54] that is already
enough for practical applications. Still, the reported values could be further advanced
when employing noble catalysts and heterostructures (see, for instance, [55]).

As a major sensor parameter, we have plotted the dependence of chemiresistive
response (1) on the analyte’s concentration measured at 150 ◦C in Figure 6c,d towards
isopropanol (c) and benzene (d) vapors in dry air and humid-enriched air. The curves
could be well fitted by Freundlich isotherm, S ∼ Cα, where C is the analyte’s concentration
and α is the power index which could be derived as a slope of S(C) curve at a log-log scale
of the plot [29]. All the values of α are summarized in Table 1.

Table 1. The power index α of the S(C) curve for exemplary ZnO layer grown electrochemically for
550 s when exposed to isopropanol and benzene vapors at 150 ◦C.

UV
Isopropanol Benzene

Dry Air Humid Air Dry Air Humid Air

Off 0.62 0.57 0.34 0.52
On 0.54 0.53 0.11 0.32
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In general, the S(C) curves characterizing the isopropanol are steeper than the ones
for benzene, the α index is rather similar to fluctuate at 0.53–0.62 range which is typical
for alcohol’s interaction with ZnO [56]. In benzene vapors, the α index drops to a value
equal to 0.11 in dry air that indicates a rather weak dependence of sensor signal on the
analyte’s concentration; still, the sensor signal is low, too. Again, the presence of humidity
significantly enhances the S(C) slope that yields α equal to 0.32–0.52. The detection limit
which is frequently defined in empirical studies as the analyte concentration corresponding
to 10% response [57] goes down to the sub-ppm range for both analytes under the given
UV assistance.

Although we may note that the ZnO layer’s response to isopropanol is higher when
compared to benzene, we cannot distinguish the analyte employing just a single sensor. To
advance the selectivity, we have to take a vector signal generated by a multisensor array
which we fabricated on the multi-electrode chip’s substrate according to the electronic
nose’s paradigm [58]. With this purpose, again we analyze the most interesting condition
of heating the chip up to 150 ◦C where UV still contributes to the chemiresistive effect.
To process the multisensor’s vector signal, we employ the LDA technique as detailed in
the Materials and Methods section. This technique transfers the vector signal into the
optimized coordinate system to separate the vector’s classes at the maximum degree [59].
The full dimensionality of the system is (N-1) where N is a number of classes to distinguish.
In our cases, we have considered the classes which correspond to analytes, the presence
of H2O vapors, and UV, altogether equal to 12 in our study. The analyte probes are taken
at 10 ppm concentration, as an example. Figure 7 displays the derived LDA coordinate
system, a plane of the first two components.
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Figure 7. The LDA diagram of primary two components related to multi-dimensional sensor signals
of ZnO nanostructured layer-based chip upon exposure to isopropanol and benzene vapors, 10 ppm,
in dry and humid air conditions when UV is On and Off. The clusters of the vector signals related
to reference air backgrounds are given for clarity, too. The chip operating temperature is 150 ◦C.
The cluster ellipses are built under the Gaussian distribution of signals within each class at 0.99
confidence probability. The number of vector signals related to each class under study is equal to 50.
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As one can see, the multi-dimensional array signals from the array are clustered into
corresponding groups according to their class’s origin. Notably, these clusters appear in
four sections defined primarily by the presence of humidity and UV (On/Off) as dominant
factors for the sensor performance. Within each of the four sections, all the analyte-related
clusters and reference air are further distinguished which makes it possible to selectively
justify them. The higher selectivity could be attained via introducing other external
modifications of the sensor signal via, for instance, a gradual surface impurity by foreign
atoms [29] or applying temperature gradients [30].

3.4. DFTB Calculation of Analyte Interaction with ZnO Surface

The DFTB calculations have been performed for the two-dimensional ZnO network
as a supercell of 96 atoms taken from the ZnO crystal of P63mc space group [60] to be
cut along the (1100) plane (Figure 8a). The translation vectors along the X- and Y-axes
were 12.819 Å and 16.655 Å, respectively. Such dimensions of the ZnO supercell allowed
us both to fit the isopropanol and the benzene ring molecules over the oxide surface and
to exclude the interaction between analytes after the translation. At the first stage of the
study, the VOC analyte molecules were approached to the pristine surface of the ZnO
supercell (Figure 8b). We have found that the binding energy between isopropanol and
ZnO was −0.44 eV, while the same one between ZnO and benzene was −3.67 eV. The latter
rather high value is explained by a formation of chemical bonds between two zinc atoms
of the supercell and two carbon atoms of the benzene ring. The length of the Zn-C bond
was 2.21 Å.
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considered supercell, 96 atoms, taken from the crystal of ZnO P63mc; (b) the adsorption of analytes over pristine ZnO
surface; (c) the adsorption of analytes over ZnO surface covered primarily with 19 H2O molecules.

Further, we have searched for a maximum number of H2O molecules to possibly set
over the ZnO supercell in order to simulate the experimental conditions at humid-enriched
air. The humidity molecules were sequentially placed on the ZnO surface. Following each
next bonding of the H2O molecule, the total system was re-optimized and the binding
energy of the ZnO supercell with the humidity molecule was calculated according to the
Formula (2).
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It was found that the maximum number of H2O molecules on the surface of the ZnO
supercell is 19 which allows the system to have minimum total energy under the humidity
adsorption. The further process of humidity adsorption is energetically unfavorable.

Finally, the VOC analytes were approached to the ZnO surface covered with 19 H2O
molecules (Figure 8c). It turned out that the binding energy of the ZnO supercell with the
isopropanol got changed slightly when compared to the pristine case being amounted to
−0.50 eV. At the same time, the binding energy of ZnO with benzene was evaluated to
be −0.72 eV that yields a dramatic reduction when compared to the situation observed
with the pristine surface. It might be explained by the fact that the ZnO coating with
water molecules does not allow forming of the chemical bonds between Zn and C atoms as
discussed above. All these observations support the experimental data that UV irradiation
of approx. 3.2 eV could stimulate the adsorption of benzene molecules in presence of
humidity in the atmosphere.

4. Conclusions

Following the obtained results, we may conclude that the electrochemical deposition
suggests options to grow gas-sensitive ZnO nanostructured layers directly on chip sub-
strates, ready for preparing multisensor arrays, with a varied morphology via adjusting
a growth time. Such sensors could be further activated by UV illumination powering
by an LED to exhibit the chemiresistive effect at rather low temperatures, below 150 ◦C.
The finer oxide structures grown at lower deposition times are more effectively activated
by UV due to a higher surface-to-bulk ratio. We have found clear differences in the ob-
served ZnO response under UV illumination at low operating temperatures towards two
model VOCs, isopropanol and benzene. While the isopropanol yields a distinguished
chemiresistive signal in dry or wet air backgrounds, the benzene appears to be inert in
the absence of interfering H2O vapors. We argue that a possible reason for such an effect
might be the rather higher energy required to adsorb benzene molecules over the ZnO
surface which is supported by DFTB considerations. These results should be accounted
for when developing low-power gas (multi)sensors activated by LEDs for environmental
monitoring.
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