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Ionic liquids are promising candidates for novel electrolytes as they possess large electrochemical and thermodynamic stability and
offer a high degree of tunability. As purely-ionic electrolyte without neutral solvent they exhibit characteristic structures near
electrified interfaces and in the bulk, both being described theoretically via separate frameworks and methodologies. We present a
holistic continuum theory applying to both regions. This transport theory for pure ionic liquids and ionic liquids-mixtures allows
the systematic description of the electrolyte evolution. In particular, dynamic bulk-transport effects and interfacial structures can be
studied. The theory is thermodynamically consistent and describes multi-component solutions (ionic liquids, highly concentrated
electrolytes, water-in-salt electrolytes). Here, we give a detailed derivation of the theory and focus on bulk transport processes of
ionic liquids as appearing in electrochemical cells. In addition, we validate our framework for a zinc-ion battery based on a mixture
of ionic-liquid and water as electrolyte.
© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/abdddf]

Manuscript submitted October 29, 2020; revised manuscript received December 23, 2020. Published February 5, 2021. This paper
is part of the JES Focus Issue on Molten Salts and Ionic Liquids II.

Supplementary material for this article is available online

The political and social demand for ecologically friendly, low
cost, and rechargeable batteries with high energy densities is an
increasing research stimulus for the improvement of materials, and
the development of novel battery-components.1 Electrolytes play a
key role for the performance of electrochemical systems.2 Common
types of electrolytes include aqueous electrolytes,3 organic
electrolytes,4 solid electrolytes,5 and recently, ionic liquids (ILs).6

ILs have attracted attention in the context of many technologies,
including energy management, electrodeposition, bioscience, and
biomechanics.7 A large number of ILs can be mixed from various
cations and anions.8 This allows to tailor-cut them into task specific
designer electrolytes. Thus, many ILs exhibit a variety of beneficial
properties which makes them promising candidates for novel
electrolytes.9 Their favorable properties include large electroche-
mical windows, low flammability, or low vapor pressures. Thus,
they can be compatible with high voltage electrodes, offer intrinsic
safety, or be stable toward air.10 Furthermore, some ILs suppress
dendritic growth during metal deposition.11 Depending on their
composition, many ILs are environmentally friendly.12

Current theoretical studies concentrate on the bulk,13 or on
interfacial structures.14 Unifying approaches describing both scales
are rare, but deliver remarkable results.15–18 However, a complete
unified approach for the dynamic description of ILs, and multi-
component IL-mixtures, at bulk and interface, is still missing in the
literature. In this article, we present such a unified framework based
on the concepts of rational thermodynamics (RT) which we
previously applied to electrolytes with neutral solvents.19,20 RT
provides a thermodynamically consistent framework to model a
great variety of non-equilibrium systems. Here, we use RT to derive
a continuum transport theory for strongly correlated electrolytes. In
this work, we focus on bulk-transport. In a previous publication,21

we showed how to supplement the theory with hardcore interactions
and describe the interfacial behavior of ILs. We illustrate our holistic
framework in Fig. 1.

Molecular/atomistic studies of ILs are based on molecular
dynamics (MD) simulations and (classical) density functional theory
(DFT) simulations. DFT resolves microscopic ion-properties, deli-
vers detailed insights into the molecular arrangement in the electro-
chemical double layer (EDL)22 and describes bulk properties like
ion-pair formation23 or small-scale ion-diffusion.24 MD simulations

resolve the complete molecular arrangement and describe the
evolution of the nano-structured bulk-landscape of ILs, dependent
on external agents like temperature, electric fields and pressure.25–29

However, DFT/MD simulations are limited due to their computa-
tional costs; simulations at length-scales above the nano-meter scale
are hardly accessible by these atomistic methods.

Continuum theories provide a complementary methodology for
dynamic transport simulations of larger systems. Recently, Bazant
et al. proposed a phenomenological mean-field-theory for binary ILs
at electrified interfaces.30 Using a generalized Landau-Ginzburg
functional, the authors show that higher gradients in the electric
potential lead to quasi-crystalline structures near electrified inter-
faces. This finding is confirmed by our theory (see comments below
Eq. 65).21 Yochelis et al. rationalized this approach, and extended it
to bulk phenomena and ternary ILs.15–18 Their theoretical work
allows fast dynamic simulations but cannot resolve detailed transport
processes.

Dilute and concentrated electrolytes for lithium-ion batteries drive
the development of continuum transport theories.31 Recently, significant
effort was put in the rationalization of consistent theories for neutral-
solvent-based electrolytes with high amount of salt.19,20,32,33 Although
neat ILs constitute the extreme limit of concentrated electrolytes, where
the neutral solvent vanishes, such transport theories for lithium ion
batteries cannot be generalized to solvent-free electrolytes. This is
because ILs exhibit some exceptional behavior. For example, ILs form
characteristic quasi-crystalline structures near electrified interfaces.
These extend over a couple of nanometers, which is not observed in
regular concentrated electrolytes.34 Our transport theory for ILs,
however, also describes standard electrolytes,35 as the IL-effects
decrease under water-dilution,36 or minor additive salts.21

Transport theories for highly concentrated electrolytes should
contain a condition which prevents “Coulomb collapse” of the
ions.37 The prevalent electrostatic attraction can be counteracted by
volumetric constraints (“mean steric effects”) or repulsive particle
interactions (“atomistic volumetric exclusion”). Here, we impose a
mean-volume constraint for multicomponent-incompressibility. This
results in a threshold for local ion-concentration due to finite volumes.
Near electrified interfaces, the concentration-threshold leads to
crowding effects.21 (Imposing repulsive interactions implies micro-
scopic effects of excluded volume, which lead to overscreening.21)

The momentum equation is explicitly used in our derivation.
Thereby, we capture the coupling of electric and mechanical stresses
in the chemical potentials. This has significant consequences inzE-mail: birger.horstmann@dlr.de; arnulf.latz@dlr.de

Journal of The Electrochemical Society, 2021 168 026511

https://orcid.org/0000-0002-9598-8343
https://orcid.org/0000-0002-1500-0578
https://orcid.org/0000-0003-1449-8172
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1149/1945-7111/abdddf
https://doi.org/10.1149/1945-7111/abdddf
https://iopscience.iop.org/issue/1945-7111/168/2
https://iopscience.iop.org/issue/1945-7111/168/2
https://doi.org/10.1149/1945-7111/abdddf
mailto:birger.horstmann@dlr.de
mailto:arnulf.latz@dlr.de
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/abdddf&domain=pdf&date_stamp=2021-02-05


confined geometries, e.g. electrochemical double layers, where
volumetric constraints are in strong competition with Coulomb
forces.21 Electrolyte momentum is given by the center-of-mass
convection velocity. Thus, the evolution of convection determines
the momentum equation, whereas its variation, expressed by the
rate-of-strain, is mandatory for the correct electro-mechanical
couplings in the stress tensor. Furthermore, convection is a sig-
nificant transport-mechanism in solvent-free electrolytes. We take
account for these phenomena, derive a convection-equation and
consider dissipative, viscous stress in the momentum equation.

We use ILs as validation-template, exemplifying extremely
correlated electrolytes. Nevertheless, our theory applies to any liquid
multi-component electrolyte, composed of arbitrarily charged (also,
neutral) species. Thus it exhibits a very general structure. Our scope
of electrolytes includes ILs, IL-salt mixtures, concentrated electro-
lytes (including aqueous electrolytes) and novel “water-in-salt”
electrolytes.38 In particular, for many applications, neat ILs or
solutions with high salt-concentrations are supplemented by addi-
tives (e.g., water,39 organic solvents,40 or salts41) to improve their
performance as electrolytes. The transport theory presented in this
work can be tailor-cut to any such heterogeneous mixture.

This article is structured into two main parts. In the first part, we
derive our transport theory, which we validate for a zinc-ion battery
in the second part. Finally, we discuss the novel aspects of our
transport theory in relation to previous works.

Transport Theory

Our transport theory relies on non-equilibrium thermodynamics,
supplemented with elements of electromagnetic theory, and
mechanics.32,42–44 We split this theory-chapter into two sections. In
the first section General Transport Theory, we derive the universal
framework, which applies to a wide class of systems. We highlight
the logical steps of this derivation in four subsections. First, we
derive the entropy production rate, Eq. 15, from the fundamental
assumption of conservation of mass, charge, and energy, by
formulating the coupled balance equations for momentum, energy
and entropy. We use symmetry arguments to guarantee that our
model is independent from the state of the observer.45,46 Thus, the set
of variables is restricted to so-called objective quantities (see Section
SI 1 A available online at stacks.iop.org/JES/168/026511/mmedia).47

Our method applies to a large class of materials and leaves a broad
tunability for distinct physical systems. Second, we perform our first
modeling choices and select a variable-set for strongly correlated
electrolytes, Eq. 17. Then, we evaluate the entropy production for a
general free energy. In the next two steps, we use a linear Onsager-
Ansatz to close the system of differential equations. In the third

subsection, we couple the thermodynamic fluxes and forces, Eq. 31,
which ensures a positive entropy production. Fourth, we assume a
linear relationship between viscosity and the velocity-gradients,
Eq. 49. This determines the model-dependent stress-tensor, Eq. 50.

In the second section of this theory-chapter, we specify our
framework and model the free energy density for ILs, Eq. 52. This
casts the specific properties of the medium into the formalism. Here,
these properties comprise liquid state, polarizability, temperature
dependence, viscosity, and multi-component structure. We further
assume incompressibility, and, in the case of bulk transport,
electroneutrality. These strong correlations allow to reduce the
minimal set of independent variables, Eqs. 62, 63. Finally, we state
the equations of motion, Eqs. 65, 67, 68, 69, 70, 73.

General transport theory.— Second law of thermodynamics:
entropy.—As introduction to our derivation, we present the general
structure of a transport theory based on the concepts of non-equilibrium
thermodynamics. Our model is implemented as continuum theory for
the fundamental physical quantities mass, charge, momentum, energy,
and entropy, described by local volume-specific field densities ψA(x) at
position x= (x1, x2, x3). We refer to physical quantities with capital
letters A, B, C, …, to spatial dimensions with lowercase letters i, j,
k, …, and to dissolved species with Greek letters α, β, γ, …. The time
evolution of ψA(x) is governed by continuity equations,48

t
rv , 1t A

A
A A A( ) [ ]xy

y
y¶ =

¶
¶

= - Ä + +

t
rv

d

d
. 2A

A
A A A( · ) [ ] xy

y
y  = = - - +

The partial time derivative ∂tψA refers to temporal changes in the
laboratory system, and the total time derivative A

y describes
temporal changes relative to a co-moving observer at velocity v.
Both are related by a convection term, vA t A A( · )y y y= ¶ + .42

The convection velocity v is defined in the fixed laboratory-frame as
center-of-mass average, v v1

Nr r= åa a a= , describing bulk electro-
lyte-momentum per unit mass.

We derive expressions for the production rates rA and the non-
convective flux densities ξA for each field variable ψA in the
remainder of this section.

The total mass density 1
Nr r= åa a= is conserved in the bulk

electrolyte, M r 01
Nå =a a a= , and it evolves due to convection only,

v vor . 3t ( ) ( ) [ ]r r r r ¶ = - = -

Figure 1. Scheme of our holistic framework, which captures length-scales from battery-cells to particle interactions. Thus, it describes macroscopic phenomena,
like discharging/charging of a battery, mesoscopic effects, like specific electrolyte-dynamics, but also interfacial effects occurring at microscopic scales, like
crowding and overscreening.
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This special role of the total mass density is used to express the
continuity Eq. 2 in a simpler form

r 4A A A [ ] xry = - +
~

for the mass-specific field density A A
y y r= . Individual concentra-

tions cα, however, are affected by non-convective fluxes,

c c v N , 5t ( ) [ ]¶ = - +a a a

c c v N , 6· [ ]  = - -a a a

where Nα = cα(vα − v) are the flux densities in the center-of-mass
system. We note that these flux densities are related,

M N 01
Nå =a a a= .

As (total) charge F z c1
N= åa a a= is conserved, we state the

balance equation

Fz rv , 7t

N

1

( ) [ ]år¶ = - + +
a

a a
=

 

where F z N1
N= åa a a= is the current density in the center-of-mass

system.
Total momentum density ρg comprises kinetic and electromagnetic

contributions. The correct form of the electromagnetic contribution is
under debate in the literature, and various forms have been suggested.49

Here, we set ρg= ρv+D ∧ B, using the Minkowski-momentum.50

We use D and B as a Galilei-invariant description of the electro-
magnetic field, which is consistent with our choice of variables for the
free energy density (see Eq. 17). We formulate momentum conserva-
tion using Eulerʼs first law of mechanics,

g b. 8[ ] sr r= +

Thus, ρg changes due to body-forces ρb acting upon the system, e.g.
gravity, and due to anisotropic surface-forces described with the
Cauchy-stress tensor σ. Here, the tensor-gradient is defined as

i j j ij1
3( )s s = å ¶= . We neglect molecular orientations (internal

spin) in the isotropic bulk liquid, which implies a symmetric stress
tensor, σ= σT.51 In the absence of of gravitation, total momentum is
conserved, ρb= 0. Below, we couple energy and momentum
balances via body-forces b. Thus, our derivation proceeds without
an explicit model for body-forces.52

The evolution of the energy density ϵ is determined by work
performed on the system,

hv vb q . 9T( ) ( ) [ ] sr r r  = + + - -   

The first two terms stem from the non-kinematic mechanical work
performed on the system, coupling energy and momentum, see also
Eq. 8. The third term describes heat production h. As h couples
energy and reversible entropy, no constitutive equations for h is
needed. This is consistent because heat production, like body-forces
b, is an external field. The last two heat-fluxes are the material heat-
flux due to heat-conduction and the momentum-flux of the electro-
magnetic field, described by the Poynting-vector  . Here,

E v B= +  and H v D= -  are the Galilei-invariant
electric and magnetic fields.53

We eliminate the mechanical source-term ρvb by substitution of
Eq. 8 into Eq. 9. Using the vector identity ∇(σTv)= v · ∇σ+ σ: κ,
we find

hq vg: . 10( ) ( ) [ ] s kr r= - +  + +  

The Cauchy-stress tensor σ and the strain-rate-tensor k =
v vgrad grad 2T( )+ couple via complete contraction σ: κ=

∑ijσijκij. The trace of the strain-rate-tensor, vtrk = , determines

volume-expansion, whereas its anti-symmetric part describes shear
of the liquid.54

According to the second axiom of thermodynamics, entropy is
not conserved. We express its evolution with the local Clausius-
Duhem inequality,55

s
h

T
, 11s [ ] xr

r
- +

where ξs is the non-convective entropy flux density. As measure for
the deviation from thermodynamic equlibrium, i.e., equality in
Eq. 11, we define the entropy production rate ,

Ts T h 0. 12s [ ] xr r= + - 

Thus, T is the irreversible part of entropy production. We want to
find expressions for  and ξs. To this aim, we replace the energy
production h in the entropy production in Eq. 12 with the energy
evolution in Eq. 10,

Ts u T q
: 0. 13

s( ) ( )
[ ]

  x
s k

r   = - + - - 
+ 

 

Here, we introduce the internal energy u in the center-of-mass
system, and relate it to the total energy ϵ with the differential relation
u vg  = - .

Our principal modeling-quantity is the free energy density φH,
which is related to the internal energy u by the Legendre-transfor-
mation φH = u− Ts, i.e.,

u Ts Ts. 14H [ ]   j = - -

The Maxwell equations determine the electromagnetic energy flux
density, D B( )    = + +     + D B Id[( )+ - Ä  
D B v: grad]- Ä , see SI 1 B. Thus, the entropy production rate
becomes

15

sT T q D B

D B Id D B v: grad 0.
sH

[ ]
[ ( ) ]
   x
s

rj r  = - - + - + + +
+ + + - Ä - Ä 

  
   



We continue evaluating the entropy poduction , and the entropy
flux density ξs by modeling the free energy density φH in the next
section. The final form of then describes dissipative processes and
determines our transport equations.

First law of thermodynamics: energy.—The discussions above
are valid for many materials.44 In this section, we describe the
process of modeling material properties and derive constitutive
equations for the field variables.

The Helmholtz free energy F is the focal point of our material
model. In this work, we study bulk-phenomena and model the
corresponding local free energy density φH,

F Vd . 16
V

H [ ]ò rj=

Nevertheless, our theory can be extended to non-local phenomena
which are important at electrochemical interfaces. For example, we
have recently shown how to supplement F with an interaction-
functional, incorporating the particle-nature of the constituents.21

For a multi-component, polarizable and magnetizable liquid,49 the
total differential of the free energy density reads

s T cD Bd d d d d . 17H
1

N

( ) · · · · [ ]årj r m= + - +
a

a a
=

 
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Temperature T and concentrations cα are varied according to standard
thermodynamics.32 The differential energy D Bd d· ·+  with the
independent, Galilei invariant variables D and B is valid for linear and
non-linear materials.56 Previous works, however, have chosen 20 or
(P, M)32 as independent variables. Since only unique transformations
between the electromagnetic variables exist, this poses no problem,57

but leads to different expressions for the stress-tensors and the body-
foces employed in the balance-laws.52 Varying the free energy density
with respect to the strain-tensor would extend the model to (visco)-
elastic materials, which lies beyond the scope of this work.

This total differential in Eq. 17 consists of products XA · dϒA,
where XA describes a particular reaction of the medium subject to
variations of the external quantity ϒA. This motivates using
ϒ= {ϒA} as variable-set for F and φH. However, the variational
expansion of the free energy does not capture the complete variable-
set, as it does not comprise viscous, dissipative effects. In particular,
viscous liquids cannot sustain shear stress (unlike elastic media) and
depend on the rate of strain. Due to symmetry-arguments (see
Section SI 1 A), we use the symmetrized, objective strain rate
tensor.58–60 Thus, we model electrolytes with the objective variable
set ϒ= {T, cα, D, B, κ}.

The variation of free energy density in Eq. 17 contains some
constitutive equations,

s
T

, 18H [ ]
j

= -
¶
¶

D
, 19H [ ]r

j
=

¶
¶



B
, 20H [ ]r

j
=

¶
¶



c
. 21H( )

[ ]m
rj

=
¶
¶a

a

These are supplemented by ∂(ρφH)/∂κij = 0. Equation 18 implies
a constitutive equation for the internal energy density, ρu=
− T2 · ∂/∂T(ρφH/T). Constitutive equations relate conjugate vari-
able-pairs, s T D, , , , ,( ) ( ) ( )m ra a , B,( ) and thus complement
the universal balance equations with material-specific properties.

We want to determine Hrj as it enters the entropy production 
in Eq. 15. To this aim, the standard method of Coleman and Noll,42

assumes A
A A

H H( ) ·/ ¡f j ¡ ¡= å ¶ ¶ . However, this expansion
would result in ambiguous constitutive equations for the chemical
potentials because the variable-set ϒ is not independent and contains
redundancies (see SI 1 D). Instead, we determine Hrj from the total
differential of the free energy density (see Eq. 17),

t t

sT
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d

d

d

d

c , 22

H
H

H
H

H

1
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H

( ) ( )

[ ]

 

   å

rj
rj

rj
rj

rj

r m rj





= - = +

= + - + +
a

a a
=

 

where we use the mass continuity equation (see Eq. 3). Replacing
the concentration change ca with the mass balance Eq. 5 and using
∇v= Id: κ, we identify the entropy flux density,44

T
q N

1
, 23s ( ) [ ]x m= - a a

and the entropy production rate,

T N: , 24s
1

N

[ ]åt k x m  = - - F -
a

a a
=



with the symmetric viscosity tensor D B( ) ( )t ¡ s= - Ä + Ä 
+ cD B Id1

N
H( )m rf+ + å -a a a=  . To derive Eq. 24, we use

that DÄ and BÄ is symmetric, see SI 1 C.
The entropy production rate  comprises correlations between

thermodynamic forces and thermodynamic potentials, Nα∇μα,
F and ξs∇T. Positivity of  constitutes an important role in

our framework, constraining the generalized fluxes. We proceed by
determining the fluxes Nα, ξs, and the stress tensor σ in the next two
paragraphs, see Eqs. 43, 44, 46, 50.

Flux densities.—In this section, we determine the flux densities
Nα, ξs relative to the center-of-mass velocity using the
Onsager-formalism.43 This relates the transport equations to the
modeled free energy density φH.

A dimensional analysis of the Maxwell-equations reveals that
magnetic effects in the bulk-electrolyte can be neglected under
normal operating conditions of electrochemical systems.32 We thus
assume from now on the electrostatic limit (B= 0), and introduce
the electric potential Φ such that E = = - F .

Using center-of-mass convection as reference velocity in our
transport theory implies that the trivial flux-constraint

M N 0, 25
1

N

· [ ]å =
a

a a
=

emerges naturally. Thus, only N-1 such fluxes Nα are independent,
and Eq. 25 requires to reduce the number of species. To this aim, we
define reduced valences and chemical potentials with respect to the
designated species α= 1,

z z z
M

M
, 261

1
˜ · [ ]= -a a

a

M

M
. 271

1
˜ · [ ]m m m= -a a

a

In the validation chapter, we demonstrate that the predictions of our
theory, if applied correctly, are independent of the choice of the
designated species. This reduction can lead to counter-intuitive
contributions to the electric current,

F z N . 28
2

N

˜ · [ ]å=
a

a a
=



By construction, z 01̃ = . Thus the designated species does not
contribute, even if it is charged, z1 ≠ 0. Furthermore, if the
designated species is charged, z1 ≠ 0, then even neutral species carry
effective charge and contribute to  . This is one reason behind
recent confusion with respect to solvent-free electrolytes, e.g.,
molten-salts,61,62 and ILs.63,64 For electrolytes with neutral solvents,
the natural choice for the designated species is the solvent,20 since
then z z˜ =a a.

The entropy production rate in the reduced formalism becomes

Fz TN: 29s
2

N

( ˜ ˜ ) [ ]åt k xm  = - F + -
a

a a a
=



X: 0. 30· [ ]
( )

( ) ( )åt k Y= -
a

a a 

Here, we defined the vector of thermodynamic forces X( ) =a

Fz T,( ˜ ˜ )m  F +a a and the vector of thermodynamic fluxes

Ψ(α) = (Nα, ξs) with components A
( )Y a . The subscripts in brackets

denote that only the ionic contributions are species-related.
We make use of this expansion and transfer the products to

quadratic terms via a bilinear Onsager-matrix. Thus, this Onsager
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formalism (i) closes the system of equations, (ii) establishes
positivity of , and (iii) evaluates the flux-force couplings. The
phenomenological relations linearly couple thermodynamic fluxes
and forces with the Onsager matrix ( )( )a b ,

X , 31A

2
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[ ]( ) ( )( ) ( )åY = -a
b

a b b
=

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The Onsager matrix ( )( )a b is symmetric and positive
semi-definite.65 This guarantees that the corresponding term in the
entropy production rate  is always positive (see Eq. 30). Thus,
electrolyte transport is a dissipative process, which wants to
equilibrate the system. In dilute solutions, the Onsager matrix is
diagonal and describes intra-species correlations. In concentrated
electrolytes, off-diagonal Onsager coefficients comprise inter-spe-
cies correlations, e.g., electro-osmotic drag through a membrane66 or
asymmetric transference numbers.67 In total, we define N(N+ 1)/2
independent Onsager coefficients, i.e., transport parameters.

The thermodynamic fluxes are driven by electric potential
gradients, concentration gradients, and temperature gradients, i.e.,
migration, diffusion, and thermo-electric effects. In the following,
we relate the abstract Onsager coefficients to these physico-chemical
effects. The electric current density  (see Eq. 28) is expressed as
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The flux densities Nα and the entropy flux density ξs are often
formulated in terms of  instead of Φ. Therefore, we transform
Eq. 32 by substituting ∇Φ for  with Eq. 33 and introducing
additional, physically motivated parameters,
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Transport coefficients introduced in Eqs. 33, 34, 35 are electric
conductivity κ, Seebeck coefficient β, and thermal conductivity γ,31
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By construction, κ and γ are positive because the Onsager matrix is
positive semi-definite. N-1 transference numbers tα relate particle
fluxes and electric current in Eq. 34,
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These N-1 parameters are subject to the normalization condition,
t 12

Nå =a a= , such that only N-2 transference numbers are indepen-
dent. Thus, for binary electrolytes all transference numbers are fixed,
t 12

N 2 == , and N1 relates to  by the specific mass-ratio alone, see
SI 1 H. Apparently, all tα are positive if the Onsager matrix is
diagonal (as for dilute solutions).

We proceed by defining the N(N+1)/2 coefficients of the
symmetric diffusion matrix ,
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Since TT is determined by γ, β and κ, Eqs. 36 to 40 yield N(N+ 3)/
2 transport coefficients. Thus, the number of transport parameters
defined so far exceeds the number of independent Onsager coeffi-
cients N(N+ 1)/2. However, further N constraints follow from the
relation of  and Nα in Eq. 28,
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Thus, only N(N–1)/2 diffusion coefficients are independent, where
z z2 3

N
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2˜ ˜ ( ˜ )= åb g bg b g=  . Altogether, N(N-1)/2 independent

diffusion coefficients, N–2 independent transference numbers, the
electric conductivity, and the Seebeck coefficient constitute the
complete set of physically motivated free parameters.

We designate a second species, α= 2, and define the set of N–2
reduced chemical potentials
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N2 is determined by the electric flux with Eq. 28 and N1 is
determined by mass conservation in Eq. 25. Our electrolyte potential
Φ is the Maxwell potential that appears in the Poisson equation.
Typically,20,31 concentrated solution theory is expressed using the
alternative potential

M z Fz, , , . 451,2 1,2 1,2 2 2( ) ˜ ˜ [ ]f m mF = F +

If the first designated species is the neutral solvent, Fz2 2˜f m= F +
corresponds to the electro-chemical potential of the second desig-
nated species. With the electrolyte potential φ, we can express the
current density analogous to Eqs. 43 and 44,
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The entropy production rate  in the double reduced formalism is
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where red is the diffusion matrix  without the two designated
species (see Eq. 40). To summarize, the entropy production
comprises three contributions. The first term describes mechanical
dissipation. In the next paragraph, we determine τ in such a way that
τ: κ ⩾ 0 is guaranteed. The second term describes Joule-heating due
to migration. Since the electric conductivity is non-negative,

02 k  . The last term describes entropy production due to
diffusion and heat conduction. Thermodynamic consistency reduces
to non-negativity of the diffusion matrix, 0red  .

Stress tensor.—In contrast to viscous-elastic models, this descrip-
tion does not describe the stress tensor by a constitutive equation in
the form of a derivative of the free energy density.44,68 Instead, we
determine σ implicitely via the viscosity tensor. To find τ(κ), we
apply the Onsager formalism as in the previous subsection, and
assume that τ is linear in the strain-rate tensor. Symmetry demands
that τ is an objective tensor, thus the representation theorems for
isotropic tensors determine it uniquely up to two scalar transport
parameters of viscosity,69,70

T Tv Id, 2 , , 48tf( )( ) ( ) [ ]t kl r h r= +a a

where κtf is the symmetric trace-free part of κ, λ is the bulk-
viscosity and η is the shear-viscosity. Since

v: 2 : 0, 492
tf tf( ) [ ]t k k kl h= + 

the entropy production rate  is non-negative (see Eq. 24), if the
viscosities obey η ⩾ 0 and λ ⩾ 0. To summarize, we find as
constitutive equation for the symmetric stress tensor,71
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The pressure p measured in experiments is derived from the total
stress tensor,32,72

p p v
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tr . 51td( ) · [ ]s l = - = -

Here, p c ED2 3td
1

N
H /m rj= å - +a a a= is the thermodynamic

pressure comprising the standard Gibbs-Duhem contribution, and a
Maxwell-contribution. The further contribution, λ∇v, describes
dissipation due to friction. Since λ ⩾ 0, friction can lead to positive
and negative pressures, depending on ∇v.

The apparent electromagnetic contribution to the total stress σ in
Eq. 50 differs from the Maxwell contribution Σ=− ED/2+ E⊗ D.
Note that we recover the correct standard form once we model and
specify φH (see Eq. 54).

Model for correlated liquid electrolytes.—The transport equa-
tions of any electrolyte-model depend on the specific form of the
free energy density φH. In our approach, φH is the focal point of
modeling. Once φH is specified, all equations follow from plain
mathematics. In this section we introduce our model φH, derive the
convection velocity from the volumetric electrolyte equation of
state, and discuss the dynamic transport equations.

Free energy density.—As discussed in the previous section, we
assume that the free energy density φH depends on temperature T,
concentrations cα, and dielectric displacement D (see Eq. 17 and the
discussion thereafter).32,20 Our model for liquid electrolytes is
generated by
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The first term comprises the electrostatic energy-density of polariz-
able media.56 The eletric field follows from Eq. 19, E= D/ϵ0
(1+ χ), which describes a linear dielectric medium. We neglect
the dependence of susceptibility χ on ion composition such that the
chemical potentials do not depend on dielectric displacement (see
Section SI 1 I).

The second term expresses volumetric contributions with partial
molar volumes 0na in a stable reference state, which couple to surface
forces acting upon the system. These surface forces are usually
expressed by pressure (see Eq. 54). Here,  is the bulk-modulus
which acts as a Lagrange-mutliplier in the case of incompressible
electrolytes (see Eq. 59). We expand the energy of deformations
around a stable reference state in order to easily transfer to
incompresssible media, see Eq. 59. These volumetric energy
penalties encode volume conservation (see Eq. 57), and account
for mean steric effects,14 which are crucial for continuum theories of
concentrated electrolytes73 and ILs.16 Mean steric effects create a
threshold for local ion-concentration and prevent Coulombic col-
lapse of the system.37 This leads to crowding of ILs near electrified
interfaces.21 We motivate this expression for the elastic energy in the
supplementary (see Section SI 1 F).

The third term is the entropy of mixture for non-interacting
systems. We model this term in analogy with ideal gases and neglect
contributions from inter-molecular interactions, e.g., solvation ef-
fects.

We phenomenologically account for non-ideal interaction contribu-
tions in H

intrj . The activity-coefficients fα measure the deviation from

ideal/dilute electrolytes (fαc= 1) via c RT clnH
int f( ) ( )/rj¶ ¶ =a a . The

interaction term H
intrj can also describe the heat capacity of the system,

T T2
H
int 2C · ( )/rj= - ¶ ¶ . Since thermal aspects are not our main

focus, we refer to the supplementary for a thermal contribution to our
free energy model ρφH (see Section SI 1 I3).

In the following, we calulate the chemical potentials μα and the
stress tensor from the model free energy density in Eq. 52. The
chemical potentials follow by evaluation of the constitutive Eq. 21,

RT c cln 1 . 530

1

N
0f

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) [ ]åm n n= - -a a a a

b
b b

=


The first term comprises entropy of mixture and inter-molecular
interaction energies. The stress tensor is determined by Eq. 50,
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Thus, the electrostatic contribution is the expected electrostatic
Maxwell-stress tensor Σ.56 The elastic stress due to compressibility
and the stress due to intra-molecular interaction is also diagonal, i.e.,
isotropic. Shear stress due to viscosity contains the non-isotropic
contribution 2ηκtf.
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Volume constraint and convection.—In this section, we derive the
equation of state for liquids from our model free energy (see Eq. 52),
and discuss incompressibility of electrolytes. In addition, we derive a
multi-component incompressibility constraint, and a transport equa-
tion for the center-of-mass convection velocity v.

In a homogeneous system we neglect viscosity. In this case
p= ptd becomes the thermodynamic pressure as discussed for (51).
Equation 54 determines,

p p f c T Dtr 3 , , , 55v
td

0( ∣ ) ( ) [ ]s= = - = a =

as a function of cα, T, and D. This expression implicitly determines
volume V p T D, , ,( )a as function of particle numbers a ,
pressure p, temperature T, and dielectric displacement D. We
make use of this description, and define partial molar volumes να
as derivative of V with respect to a . Implicit differentiation of the
function f(cα, T, D) then determines the partial molar volumes (see
Section SI 1 E),
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Thus, the partial molar volumes of the electrolyte follow from the
stress tensor.

As V p T D, , ,( )a is a homogeneous function of first order in

b , Eulerʼs homogeneous function theorem yields a compact form
of the electrolyte equation of state of liquid electrolytes,73–76,16
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which takes the form of a volume constraint.
From Eq. 56, we calculate the partial molar volumes for our

model. Liquid electrolytes are hardly compressible, i.e., p .
Repeated application of this approximation yields
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Here, we used Eqs. 55 and 54 to replace c1
N 0nåb b b= . Thus,  is

indeed the bulk-modulus, and 0na is the partial molar volume at
standard pressure p= 0. For incompressible electrolytes  ¥ ,
the partial molar volumes 0n n=a a do not depend on pressure, and
Eq. 57 constitutes an incompressibility constraint.21 In this case,
pressure cannot be determined by Eq. 55. Nevertheless, the volu-
metric contributions in the chemical potentials have to be determined
(see Eq. 53). We show in Eq. 65, how to solve this challenge with
the volumetric contributions in the stress-tensor and momentum
conservation.

The volume constraint in Eq. 57 remains fulfilled under multi-
component transport as the center-of-mass motion balances the
volumes. Thus, we can derive an equation for the velocity v from the
volume constraint. To this aim, let us first proof a Lemma. Partial
molar volumes να defined in Eq. 56 obey the symmetry-property
n n¶ ¶ = ¶ ¶a b b a  . Applying Eulerʼs homogeneous function

theorem to να ensures that c 0
1

Nå n¶ ¶ =b b a b=
 holds for all

species. These relations proof the following Lemma,
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where we used the independence of the primary variables cα, T and
the volume constraint.

Applying the total time derivative to the volume constraint
in Eq. 57, we conclude from our Lemma that c 01

N  nå =a a a= .
In combination with mass conservation Eq. 5 for the concentra-
tions cα, we finally derive the equation for the center-of-mass
velocity v,21
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This equation is generally true for compressible as well as
incompressible electrolytes and for constant as well as non-constant
partial molar volumes.

The left-hand side of Eq. 61 expresses local, isotropic volume-
expansion, v tr( )k = . Thus, the first term on the right measures
volume-expansion caused by transport. In absence of the second
term, and for constant partial molar volumes, the total flux of
volume-fractions cαναvα measured in the fixed frame is conserved,

c v 01
N nå =a a a a= . The second term in Eq. 61 measures volume-

production by chemical reactions, and is an important source for
convection in multicomponent systems.

In the case of a single-component liquid, ∇v= 0 according to
Eq. 61, since by construction the only flux density relative to the
center of mass motion vanishes, N1 = 0. This is a standard-condition
for incompressibility of non-reactive media. However, it is often
used for complex electrolyte-mixtures which can be a bad approx-
imation.

From now on we consider electrolytes in the incompressible limit
 ¥ , such that 0n n=a a becomes the general partial molar

volume (defined for any state).
As we showed above, conservation of mass and charge reduce

the number of independent species by two. We assign the designated
two physical species to α= 1, α= 2. The volume constraint Eq. 57
allows to determine the corresponding concentrations,
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with the charge density ϱ. Furthermore, we transform Eq. 61 into the
reduced description,
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where M M1 1˜ ·n n n= -a a a and z z2 2˜̃ ˜ ˜ ˜ · ˜n n n= -a a a define the
set of independent partial molar volumes. In particular, Eq. 63
implies constant convection-profiles for electroneutral, binary elec-
trolytes. Conversely, this also shows that pure ILs cannot sustain
concentration gradients.61

Equations of motion.—The force law follows from momentum-
balance in Eq. 8 and takes the form of a generalized Navier-Stokes
equation. However, we assume highly effective momentum-dissipa-
tion in such viscous media. We neglect external body forces,79 and
assume mechanical equilibrium,21
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Above we assumed constant viscosity-parameters, constant bulk-
modulus, and isothermal conditions. Although the force law is not
used in most of the battery literature,20 it plays a fundamental role
for highly concentrated electrolytes,79 and ionic liquids,21 where
Coulomb interactions compete with saturation effects.

Stress couples to transport via the volumetric term in the chemical
potentials (see Eq. 53). Via this mechanism, we ensure that the
complete, coupled set of mechanical and electrostatic stresses is
comprised in our theory. By substitution, dissipative electric, viscous,
and interaction forces contribute to the chemical potentials,
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is the thermodynamic factor. It is determined by the constitutive
equation c c c cln 1

N
H
int( ) ( )/ /d n rj + å - ¶ ¶a b ab a b b= , and differs

from the standard form,80 as it accounts for mean steric effects due
to nonvanishing molar volumes. Note that the bulk modulus ,
which is not a viable material parameter in the incompressible limit,
disappears in Eq. 65.

Equation 65 constitutes the complete, mechanically coupled form
for the chemical potentials in our electrolyte model. These thermo-
dynamic forces obey a viscous Gibbs-Duhem relation,

c Fza1
N ( )m å + Fa a a= = (λ+ η)∇(∇v)+ η∇2v). In equilibrium

we can write this with the thermodynamic pressure defined in Eq. 51
as ∇ptd =− ϱ∇Φ−∇(ED)/2. As consequence, strong pressure
gradients emerge in electrochemical double-layers.21

We use Poissonʼs equation for the coupling of electric potential
and charge density in the electrolyte, and use the dielectric constant
ϵR = 1+ χ. This closes the set of complete isothermal equations,
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Equation 69 comprise N–2 independent equations for the indepen-
dent concentrations c3,…,cN (where c1 and c2 follow from Eq. 62).
Here, we restate the ionic fluxes and the conduction current density,
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which are subject to the form of the chemical potentials following
from the modeled free energy density Eq. 65. Note that f = F +

Fz2 2˜ ˜m is the reduced electrochemical potential introduced in Eq. 45.
Volume-expansion ∇v is determined by Eq. 63. Alternatively, the
complete set of transport equations can be cast into matrix-form (see
Section SI 1 J).

In Section SI 1 I, we complete the set of transport equations by
deriving the equation for temperature (“heat equation”),
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Simulation of Zinc Ion Battery Cell

Secondary zinc-ion batteries (ZIB) are an emerging technology
for safe and low-cost energy storage.81–83 Here, we model a
secondary ZIB with IL-water mixture as electrolyte, based on the
experimental work described in Ref. 41. Comparison with these
experimental results serves as validation for our transport theory.
First, we sketch the cell set-up and describe our modeling equations.
Second, we present our simulation results.

The electrodes consist of a porous zinc-anode (zinc powder) and
a Prussian-blue-analogue (PBA) cathode (FeFe CN 6( ) ). The em-
ployed electrolyte is composed of a mixture of choline acetate
([Ch]OAc) with 30 wt % water into which 1M of zinc acetate
(Zn OAc 2( ) ) is dissolved. Despite the significant amount of water, the
[Ch]OAc+water mixture can (still) be denoted “IL with water”, and
may thus be viewed as highly concentrated.84,85 This terminology is
motivated by the large mass fraction of the salt, 3

0
4
0( )r r r+ , see

Table I. The ZIB is illustrated in Fig. 2.

Table I. Species assignment and initial electrolyte composition. Since
water is the designated species, z z˜ =a a. The columns show initial
concentrations c0

a , mass fractions 0ra / ρ, and volume fractions c0na a.

Species z̃a c0
a / mol m−3 0ra / ρ c0na a

α = 1: H2O (designated) 0 19.43 · 103 0.26 0.35
α = 2: Ch+ 1 5.00 · 103 0.39 0.35
α = 3: OAc− −1 4.00 · 103 0.11 0.22
α = 4: Zn OAc 3[ ( ) ]- −1 1.00 · 103 0.18 0.08

Figure 2. Scheme of the simulated zinc-ion battery.
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Model equations.—We neglect hydration of the salt-ions
by water and assume a complete dissociation of the salt
[Ch]OAc⇌ Ch+ +OAc−. In principle, various different ionic zinc-
complexes may form under bulk-reactions, depending on the pH-value
of the solution.86,87 However, such a detailed investigation lies beyond
the scope of this paper. Thus, we assume complete complexation of
the zinc-salt according to Zn OAc OAc Zn OAc2 3( ) [ ( ) ]+ - -.88 We
model the electrolyte as quaternary mixture of the three charged
constituents Ch , OAc , Zn OAc 3[ ( ) ]+ - -, and water.89–91 As reference,
we designate water, thus z z˜ =a a. This choice corresponds to
transport theories developed for aqueous solutions, based on water as
solvent.19 Since length scales above some nanometers suffice for the
description of batteries,19 we can safely assume our system to be
electroneutral, viz. ϱ= 0.31 As a consequence, the charge density is
not a free variable and we solve ∂tϱ= 0 in Eq. 68 for  instead of
Poissonʼs Eq. 67. As thermal aspects play a minor role in elementary
battery cells,20 we assume thermal equilibrium at room temperature,
i.e., ∇T= 0. Hence, the temperature appears only as constant a
parameter. Here, we set the activity coefficients to fα= 1 and neglect
non-ideal interactions 0H

intj = . Furthermore, we assume constant
viscosity-coefficients (η= 25.3 mPa s and λ= 0)92 in the chemical
potentials.

The only independent specific concentrations are c3 and c4, which
determine c1 and c2 via Eq. 62, subject to the condition ϱ= 0.

Due to the porous cell structure, the set of transport equations
must be modified by means of volume-averaging, as described by
porous electrode theory.93 Volume-averaging over liquid and
solid phases implies volumetric (ϵ) and dynamic (ϵβ) transport-
corrections, where ϵ= Vl/V is the liquid-phase volume-fraction or
porosity. β is the Bruggemann-coefficient, which depends on the
microstructure,

t
c c rv N , 743,4( )∣ ( ) ( ) [ ] ¶

¶
= - - +a a a

b
a a=  

Fz rv0 , 75
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Reactions occur only at the electrode surfaces and appear as source-
terms in our model equations, defined as

r a i . 77
k

k
,

; [ ]å n=a
G

G
a

G G

This sum includes all reactions k at all electrode-interfaces Γ,
involving species α. Here, k;n a

G are the stoichiometries of the
reactions, and the specific surfaces aΓ measure the surface-to-
volume ratio of the electrode Γ. The specific surface-reaction-rate
iΓ constitutes interface-conditions between the solid and liquid
phase, and depends upon the reaction overpotential. We model this
quantity using a Butler-Vollmer-Ansatz,94 see Section SI 1 L.

The half cell ractions occuring at the Zn-anode and the PBA-
cathode (FeFe CN 6( ) ) are (see see Section SI 2 A)

Zn 3OAc 2e Zn OAc , 783[ ( ) ] [ ]+ +- - -

Zn OAc 2e FeFe CN 3OAc ZnFeFe CN .
79

3 6 6[ ( ) ] ( ) [ ( ) ]
[ ]

+ + +- - -

Thus, zinc dissolves from the anode and intercalates into the cathode
(and vice versa). We neglect solid-state diffusion and model the
cathodic reactions as deposition-processes (see Section SI 2 B1).

Simulation results.—In this section, we present the simulation
results of the as-modeled ZIB and compare them with the experi-
mental results (we specify our numerical methods in Section SI 2 ).41

In this way, we study the spatial profile and temporal evolution of
concentrations and convection velocity. We highlight the relevance
of convection for cell performance and compare possible definitions
of transference numbers.

Competition of diffusion, migration, and convection.—First, we
validate our model. For this purpose, we simulate the galvanostatic
discharge and charge of the ZIB by applying a moderate current
density (I= 0.1 mA cm−2). We compare our simulation results with
experimental observations in Fig. 3. Apparently, the specific
capacities and cell voltages obtained from simulation are in good
agreement with the experimental values. However, the discharge
profile obtained from experiment exhibits two discharge phases with
a transition at approximately 20 mA h g−1. Endres et al.41 attribute
this effect to two different electro-reactivities, stemming from low-/
and high-spin states of Fe(III) in the PBA. Because such atomistic
processes lie beyond the scope of our model in this paper, this
transition is not found in simulations.

Our model provides a complete description of the electrolyte
dynamics. In the following, we discuss the ion dynamics and their
influence on the overall cell performance in order to understand the
interplay between the different transport mechanisms (migration,
diffusion, and convection), and the reactions at the electrode
surfaces.

For a proper discussion of the electrolyte evolution during
discharge of the battery, we designate some characteristic moments.
Figure SI 1 shows the discharge-profile of the cell-voltage and the
designated moments. We set one focus on processes occuring during
the initial discharge-phase (t= 250 s, 420 s, 520 s). Furthermore, we
designate two intermediate moments, and, finally, the moment of
complete discharge of the cell. The significance of the designated
times becomes apparent below when evaluating the electrolyte-
quantities Φ, v, and cα at these moments.

Figure 4 shows the temporal evolution of the convection velocity
profile. Apparently, the direction of the motion of the center-of-mass
switches from toward the anode (negative convection), to toward the
cathode (positive convection) right after the initial phase, and, then,
the profile quickly becomes quasi-stationary. As discussed below, v
is not dominant in our system. In the supplementary, we observe a
similar behavior for the ionic concentrations (see Figure SI 1c)-f)).
Initially (first three designated moments), concentration-differentials

Figure 3. Comparison of simulated and measured41 cell voltage for a
galvanostatic charge-discharge cycle of the ZIB with current density
I= 0.1 mA cm−2 (see Eq. SI 133).
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grow throughout the cell, followed by quasi-stationary profiles
during the rest of the discharge. This suggests that the dynamics
of the concentration and the convection profile arise from a common
initiation-mechanism. Due to the interplay of multiple transport
mechanisms, i.e., diffusion, migration, and convection, the dynamics
of the concentrations and of the convection velocity are coupled.

We explain these observations with the push of the electrolyte out
of its initial equilibrium-state by the application of the discharge
current through the reactions at the electrodes. As the system relaxes
toward the new stationary state under galvanostatic discharge, the
concentrations approach stationary profiles. Spontaneous electrode
reactions directly influence the profile of the ion concentrations near
the electrodes. In addition, concentration gradients are built up, due
to convective transport of zinc from anode to cathode. As zinc is
dissolved as complex Zn OAc 3[ ( ) ]-, a net loss of available electrolyte
volume occurs at the cathode, and a net gain of electrolyte volume at
the anode. This pushes electrolyte from cathode to anode according
to Eq. 76 and results in negative convection velocities. We give a
detailed analysis of the electrolyte-dynamics in the SI (see Section
SI 3 A).

The evolution of the electric potential in the electrolyte is shown
in Figure SI 1b. As expected, the cathode is more electronegative
than the anode (ΔΦcell ≈− 0.1 mV) at all times during discharge.
This implies a migrational pull of the anionic species toward the
anode, and of the Ch+-ions toward the cathode. Thus, migration
hinders cell operation, which depends on negative Zn OAc 3[ ( ) ]--ions.
As a consequence, diffusion and convection must overcompensate
the electric forces in the electrolyte to sustain cell operation.

Figure 5 shows normalized, quasi-stationary concentration-pro-
files of all electrolyte species at end-of-discharge. Interestingly, the
gradients of the two anionic species (OAc− and Zn OAc 3[ ( ) ]-) have
opposite orientations. The profile for the positively charged
Ch+-ions moderately increases at the more electronegative cathode.
Likewise, water shows a small gradient, despite being neutral
(z 0H O2˜ = in this reference-frame) and thus not being susceptible
to migration.

Most importantly, the large concentration gradient of the
Zn OAc 3[ ( ) ]--ions is necessary to overcome the migration pull.
This is mandatory to maintain cell operation, as zinc is intercalated
into the cathodic PBA-structure. OAc−-ions have to move back to
the anode, which is realized by a small concentration gradient and
the migration pull. This motion of bulky OAc−-ions induces the
positive convection velocity during the stationary phase of galvano-
static discharge seen in Fig. 4 (see Eq. 76).

Figure 6 illustrates the relevance of convective transport for the
electrolyte-species. The ratio ϵβNα/ϵcαv shows the relation between

flux densities within the center-of-mass system and the center-of-
mass velocities. This ratio is larger than one (roughly one), if
convection is negligible (dominant) in transport of the respective
species. Apparently, convective flux contributions are negligible for
the two negative species, whereas convection plays a significant role
for the dynamics of water and Ch+-ions. Thus, convection is
important for those species that do not contribute to the half-cell
reactions. We infer from the sign of the ratio ϵβNα/ϵcαv that
OAc−-ions move toward the anode, whereas Zn OAc 3[ ( ) ]--ions
moves toward the cathode. This confirms our previous finding for
the Zn OAc 3[ ( ) ]--ions that diffusion overcompensates migration.

Limiting discharge currents.—Now, we investigate the power
limiting mechanisms of this ZIB with IL electrolyte. For this
purpose, we simulate the cell discharge at high current densities.

Figure 7 illustrates the impact of increased discharge currents on
the overall cell performance. The shape of the discharge profile is
preserved for moderate discharge current densities (up to
I= 2 mA cm−2), despite being shifted to smaller discharged capa-
cities. At higher current densities, a strong capacity fade is observed
and the discharge profiles exhibit steep voltage drops.

These voltage drops suggest that diffusion becomes too slow to
supply the cathodic interfacial reaction mechanism with sufficient

Figure 4. Volume-averaged convection velocities at the designated mo-
ments (see Figure SI 1) during discharge of the ZIB with current density
I= 0.1 mA cm−2.

Figure 5. Typical concentration profiles for the quaternary electrolyte-
composition at the end of discharge with discharge current density
I = 0.1 mA cm−2. The initial electrolyte composition, c0

a , is tabulated in
Table I.

Figure 6. Convection contribution to ionic mass fluxes at the end of
discharge. The inset shows the conduction current density b  at end of
discharge with current density I= 0.1 mA cm−2.
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amount of Zn OAc 3[ ( ) ]--salt. Such a behavior is typical for ILs,
which are often highly viscous.95

This explanation is confirmed by Fig. 8, in which the concentra-
tion profiles of the Zn OAc 3[ ( ) ]--ions for the different discharge
currents at the end of discharge is shown. We observe steep
concentration gradients throughout the cell. The salt concentration
at the cathode decreases with increasing discharge currents, and,
finally, Zn OAc 3[ ( ) ]--ions get depleted.

At intermediate current densities, we observe in Fig. 8 that the
Zn OAc 3[ ( ) ]- concentration at the anode increases with discharge
current density. Interestingly, it starts to decrease for very high
current densities. In this case, the cell fails so quickly due to
diffusion limitation that a quasi-stationary concentration-profile
cannot establish.

Discussion of transference numbers.—Finally, we demonstrate
the consistency of our transport theory. In our model, we choose two
reference species because of momentum and charge conservation.
The model predictions should be independent of this choice. Here,
we compare simulations with different reference species.

In the theory-chapter, we showed that all N(N+ 1)/2 transport-
parameters, appearing in a N-component electrolyte-mixture, follow
from the Onsager matrix , see Eqs. 36 to 40. Although the
designated species does not appear explicitly,  comprises the
complete set of inter-species-correlations, including correlations
involving the designated species. This becomes apparent in the

closure-relation for the independent fluxes Nα∣α⩾2, Eq. 31, which
implicitly determines N1. Thus, the Onsager-matrices with respect to
different designated species are mutually coupled, and cannot be
stated independently from each other. In Section SI 1 K we show
that simple conversion relations exist, which allow to transfer
between the different choices of reference species.

In Section SI 3 B we prove consistency of our framework.
Figure SI 3 shows a comparison of the discharge curves and the final
concentration profiles of the Zn OAc 3[ ( ) ]--ions, obtained by simula-
tions using the three different sets of reference species comprised in
Table II. Apparently, the deviations lie within numerical accuracy
(relative error 10 6( )» - ). This is consistent, since both cell voltage
and concentrations must not depend upon the choice of reference.
Thus, they give, up to numerical accuracy, identical results.

In contrast to the electric conductivity, some transport parameters,
e.g., transference numbers, depend on the choice of reference species.
Figure 9 shows the transference numbers at the end of discharge for
two different reference species. In addition, Table II summarizes
spatially averaged values of the transference numbers at end of
discharge, for three different sets of reference species. In quaternary
electrolytes, only two transference numbers are independent and only
three transference numbers are well-defined.

We observe in Fig. 9 that sign and magnitude of the transference
numbers depends on the reference species chosen due to momentum
conservation. Interestingly, tOAc- is rather similar for both reference
species H2O, and Ch+, respectively. A significant discrepancy is
observed for t Zn OAc 3[ ( ) ]-. When Ch+ as charged species is designated,
water acquires an effective charge, and thus contributes to the
electric current. In particular, tH O2 is negative in the Ch+-frame.

Transference numbers are particularly intuitive for the neutral
reference species H2O. In this setting, the signs of transference
numbers endorse our interpretation of the overall electrolyte
dynamics, discussed above.

Table II and the inset in Fig. 6 imply that at end of discharge
t z 0Zn OAc Zn OAc3 3˜[ ( ) ] [ ( ) ] <- - , whereas Figs. 4 and 6 imply
N 0Zn OAc 3[ ( ) ] >- . Thus, diffusion dominates over migration and is
the main driving force for cell operation (see Eq. 43).

The relations between the numerical results for the transference
numbers obtained in the three different reference-frames agree with
the analytical predictions, see Eqs. SI 122a-SI 122f.

Since, there is an ongoing debate regarding the sign and
magnitude of transference numbers in concentrated electrolytes
and ionic liquids,63,64 we shall briefly comment on this topic here.

Various, differing definitions for transport parameters exist in the
literature, which bears the potential for confusion when comparing
results from different authors. Thus, a complete characterization

Figure 7. Cell voltage during discharge for various current densities. Figure 8. Concentration profiles of Zn OAc 3[ ( ) ]- at end of discharge state for
various current densities.

Table II. Results for the transference-numbers obtained from using
different reference-frames. The numbers were obtained from spa-
tially-averaging over the cell. No transference-numbers for the
designated species (α = 1) exist relative to the center-of-mass motion
(n.d., not defined). In particular, t 12

Nå =a a= in each frame.

Reference Species z̃a tα

Water Water 0 n.d.
Ch+ 1 0.166
OAc− −1 0.129

Zn OAc 3[ ( ) ]- −1 0.705
Ch+ Water −0.170 −1.549

Ch+ 0 n.d.
OAc− −1.570 0.203

Zn OAc 3[ ( ) ]- −3.330 2.346
Zn OAc 3[ ( ) ]- Water 0.074 0.665

Ch+ 1.430 0.237
OAc− −0.757 0.098

Zn OAc 3[ ( ) ]- 0 n.d.
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should state all transference numbers and make their definitions
clear. In our theory, we define transference numbers and diffusion
coefficients relative to the bulk-motion of the center-of-mass. As it
was shown earlier for molten salts,62 such an internal description
predicts that transference numbers can take up any real value if the
Onsager matrix contains off-diagonal terms. Some works in the
literature perform a less general approach and choose one specific
ionic species as internal reference,96 or choose an external descrip-
tion using fixed coordinates as reference.97 Since each approach
bears its own experimental significance,98 we resolve this ambiguity
in Section SI 1 G. There, we derive simple relations, which
transform between the different reference-systems.

Of course, the theoretical concepts must be probed by experi-
ments. However, the experimental determination of transport para-
meters in concentrated electrolytes is challenging. In principle,
suitable methods must take into account all inter-species-correlations
and the formation of ionic clusters and ion-aggregates.99 In
particular, applicability of NMR/PFG-NMR experiments for deter-
mination of transport parameters is limited for concentrated electro-
lytes, as they (i) neglect formation of ionic complexes, (ii) derive
transference numbers from diffusion coefficients via Nernst-Einstein
relations strictly valid only for ideal electrolytes and (iii) provide
only averaged values.64 Recently, the measurement of ionic electro-
phoretic mobilities was proposed to overcome these obstacles, either
using non-blocking electrodes,67 or experiments based on electro-
phoretic NMR (eNMR).100,101 Unfortunately, the first technique
does not apply to neat IL, as it is not suitable for non-metal ions.102

In contrast, eNMR applies to both, neat ILs and Li-IL-mixtures.63 In
principle, this method is evaluated with the external fixed laboratory-
frame as reference. However, this is correct only if convection is
negligible (see Eq. SI 127).

Discussion

In this section, we discuss the relevance of the derived transport
model. We give a detailed comparison with continuum models
previously presented in the literature, before we quantitatively asses
the role of center-of-mass convection and mechanical forces for a
consistent model of highly concentrated electrolytes.

The so-called Newman-model is standard for the mathematical
modeling of batteries on the cell-level.31,103,104 This approach relies
on Stefan-Maxwell theory to relate flux densities and chemical
potentials. The canonical Newman model describes a ternary system

composed of a cation, an anion, and a neutral solvent with three
parameters, diffusivity, conductivity, transference number. It is
referred to as concentrated solution theory, as it takes correlations
between anions and cations into account. However, the dynamics of
the solvent is usually neglected.103 Monroe et al. extend the
Newman model to locally non-neutral multi-component concen-
trated electrolytes.105 They model flux densities relative to a
designated species-velocity, which serves as convection velocity.
In accordance with this description, the transport parameters relate to
the dynamics of the designated species (“Hittorf-transference”
numbers). However, this approach does not take into account
momentum conservation and mechanical couplings. We show below
that these become relevant in highly concentrated electrolytes.

These Newman-type models can be generalized to account for
the electrolyte equation of state, Eq. 57 74,106. We use it to derive the
convection equation in our framework, see Eq. 61. Monroe et al.
conclude that the relative magnitude of the molar volumes is a
crucial factor (see also Eqs. 80 to 82).106 Nevertheless, their theory is
evaluated only for ternary systems with neutral solvent.

A systematic approach for the description of liquid electrolytes has
recently been introduced by Latz and coworkers.19,20 Their approach
uses a thermodynamically consistent framework,43,69 which is based
on thermodynamics principles and balancing laws to derive the general
structure of the transport Eqs. with an Onsager Ansatz.107,108 They
discuss a ternary system in comparison to the standard Newman
model. Mutual couplings between the ion-species are evaluated, but
the dynamics of the neutral solvent is neglected in the description of
transport. Furthermore, the electro-mechanical forces following from
momentum conservation are not further evaluated.

In a series of publications,75,109,32 Guhlke et al. presented a
similar framework. Their theory is developed using the same
underlying rigorous assumptions and accounts for multi-component
mixtures. Furthermore, similar to our approach, all mechanical
couplings are incorporated into the transport equations. One high-
light of this framework is the thermodynamic description of singular
surfaces, which is used for the consistent description of electro-
chemical double layers. The role of convection for such thermo-
dynamically consistent frameworks is discussed by the authors in
great generality in Ref. 65. However, similar to the description of
Latz and coworkers, the role of convection is assumed negligible in
the discussion of a ternary electrolyte with neutral solvent.

We extend the approach of Latz and coworkers, and derive a more
general, and more consistent framework, as we do not restrict the
number of species, their valences, nor neglect transport of neutral
solvent. At the same time, we make sure that the theory intuitively
connects to the standard Newman model by using comparable
parameter definitions. We highlight two advances of our model:
First, center-of-mass convection plays a key role in our theory.
Thus, molar masses appear in the definition of transport parameters,
see for example Eq. 26. Second, we take into account the coupling of
mechanics and transport. Thus, molar volumes appear in the chemical
potentials and affect the transport dynamics of the electrolyte, see for
example Eq. 66. Due to the consistent reduction of independent
transport parameters, the abstract form of the general transport Eqs.
simplify when specified to particular systems. For example, the electric
conductivity is the only transport parameter needed to describe a
binary IL. In the following, we quantitatively discuss the importance of
these two fundamental extensions for highly concentrated electrolytes.

Equation 63 determines the spatial inhomogeneity of the center-
of-mass velocity. We calculate the ratio of the variation of
convective flux density and the variation of non-convective flux
density. In a ternary electrolyte with neutral solvent (z1 = 0) and
binary salt (c2= c3, z2 = z3), it holds
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Thus, the relative mass density of the solvent ρ1/ρ and the relative
volume density of the solvent c1ν1 determine the relative variation of

Figure 9. Transference numbers at end of discharge for the reference
species H2O, and Ch+ (discharge current density I = 0.1 mA cm−2).
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convection velocity. If the solvent dominates electrolyte mass and
volume, i.e., ρ1 ∼ ρ and c1ν1 ∼ 1, the convection velocity is
constant. If solvent mass is negligible, i.e., ρ1 = ρ, the variation
of the center-of-mass convective flux outweighs the relative varia-
tion of the salt flux. Thus, we define the term highly concentrated
salts based on mass fractions, e.g., ρ1/ρ.

The absolute magnitude of the convection velocity is determined
by the electrochemical reactions at the electrode-electrolyte interfaces.
The non-convective species-fluxes Nα+ cαv= cαvα are subject to
flux boundary conditions, c v R∣ n=a a G

G
a
G , at each electrode-interface

Γ. Here, we model the reaction source-terms via interfacial currents as
defined by Eq. 77 such that rxdR /ò n=G

a a
G , where na

G denotes the
stoichiometry of the reactions. Thus, the relevance of convective
fluxes at the interface is determined by the masses / mass-densities,
and the stoichiometries,
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We conclude that the mass fractions ρα/ρ determine the relevance of
the convective flux density. We apply this analytic result to the zinc
ion electrolyte specified in Table I. At the anode, we find for the
reacting species
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These values show that in this electrolyte center-of-mass convection
is relevant, but not dominant. This is in agreement with the mass
fraction of water, see Table I, which is comparable to the mass
fraction of the salt, but not negligible. Thus, in the bulk the
electrolyte behaves as concentrated electrolyte. Our simulation
results in Fig. 6 validate our estimates for inhomogeneity and
magnitude of the center-of mass velocity in Eq. 80 and Eq. 81,
respectively.

We note that the apparent complexity of the electrolyte depends
on the choice of reference species as shown in Fig. 9. Furthermore,
electrolyte composition is significantly altered at electrified inter-
faces, where ions can accumulate.21 It is the unique strength of our
consistent transport theory that it describes both, the interfacial and
the bulk behavior of concentrated electrolytes independent from the
choice of reference species.

We predict an additional contribution to the thermodynamic
factor in Eqs. 65 and 66, based on the consistent coupling of
mechanical forces. For ideal electrolytes (fα = 1 for all species α), it
holds
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Thus, we find cross-couplings between species with different molar
volumes. We discuss the relevance of species-asymmetry with two
limiting cases, where we assume that the concentrations lie in the same
order of magnitude, i.e., cα∼ cβ. First, if all species have the same molar
volume, Eq. 83 reduces to the standard ideal form, where all species are
decoupled, RT c c0

mixing
f∣m =a a a=g . Second, if the first species is

much larger than the others, ν1? να∣α⩾2, then the forces on the small
species effectively decouple, RT c c2

mixing∣ ·m =a a a a , whereas
the designated species experiences only inter-species correlations

RT c1 1 1
Nmixingm n = - åb b¹ . This analyis exemplifies the relevance

of the consistent coupling of transport and mechanics.

Conclusions

To the best of our knowledge, we have developed the first
thermodynamically consistent transport theory applicable for pure
ILs. Our theory describes the complete set of coupled transport
equations for composition (concentration), temperature, charge
density, electric potential, and convection. We make explicit use
of the force law to include all mechanical couplings. Our detailed
equations for the electrolyte dynamics describe the individual
contributions of all species to transport of mass, charge, heat, and
to convection.

The present work completes our two-fold validation procedure.
In a first publication, the theory was validated in a joint experi-
mental/theoretical investigation of the double-layer-structures
formed by a binary IL near an electrified interface, and of how a
ternary salt influences these characteristic IL-structures.21 Here, we
apply the electroneutral transport theory to a complete secondary
battery cell.

Our simulations determine the concentration dependent electro-
lyte dynamics during a complete cycle of discharging-charging of a
secondary zinc-ion battery based on an IL-electrolyte. The resulting
discharge profile is in good agreement with the experimental results.
However, the cell performance is limited by the negativity of the
zinc ions. These must overcome a Coulombic potential barrier to
maintain cell operation by the formation of concentration gradients.
In contrast to binary ILs, convection does not play a significant role
compared to the competing mechanisms of migration and diffusion.

Our theory provides a rigorous framework for the determination
of the transport parameters, which all follow from the fundamental
Onsager matrix. Furthermore, we enrich the present discussion
regarding the interpretation of transport parameters in solvent-free
electrolytes, as they depend on different reference-frames. Our
model clarifies the exact number of independent parameters and
contains simple Eqs. for their conversions.

The generality of the presented framework covers a huge variety
of physico-chemical systems and it can be customized by appro-
priate free energy models. In particular, it applies to electroneutral
cell-systems as well as to confined geometries near electrified
interfaces. Our transport theory thus provides a valid framework
for the description of complex, multi-component battery-electrolytes
in general (concentrated electrolytes, water-in-salt-electrolytes, ILs)
as well as for the description of surface-effects of ILs and
IL-mixtures.
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