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Abstract
Simulations of two-dimensional (2D) flow past a circular cylinder with the smoothed particle hydrodynamics (SPH) method were conducted
in order to accurately determine the drag coefficient. The fluid was modeled as a viscous liquid with weak compressibility. Boundary conditions,
such as a no-slip solid wall, inflow and outflow, and periodic boundaries, were employed to resemble the physical problem. A sensitivity
analysis, which has been rarely addressed in previous studies, was conducted on several SPH parameters. Hence, the effects of distinct pa-
rameters, such as the kernel choices and the domain dimensions, were investigated with the goal of obtaining highly accurate results. A range of
Reynolds numbers (1e500) was simulated, and the results were compared with existing experimental data. It was observed that the domain
dimensions and the resolution of SPH particles, in comparison to the obstacle size, affected the obtained drag coefficient significantly. Other
parameters, such as the background pressure, influenced the transient condition, but did not influence the steady state at which the drag co-
efficient was determined.
© 2017 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Smoothed particle hydrodynamics; Drag coefficient; Reynolds number; Sensitivity analysis; Viscous flow
1. Introduction

Recent advancements in high-performance computing
technologies have had significant impacts on mesh-free
methods such as smoothed particle hydrodynamics (SPH) in
computational fluid dynamics (CFD). Although SPH is
computationally expensive due to intensive interactions be-
tween integration points (in a misleading manner also denoted
as particles), it may be advantageous in several situations,
including moving boundaries (e.g., free-surface flow),
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complex boundary geometries, and shock wave simulations.
Consequently, SPH has grown in popularity since its inception
in 1977 for astrophysics purposes (Gingold and Monaghan,
1977; Lucy, 1977). Furthermore, recent developments in this
method have extended its applicability to several engineering
and scientific areas (Liu and Liu, 2005; Monaghan and
Gingold, 1983) including fluid and solid dynamics (Gray
et al., 2001), coastal management (Mirmohammadi and
Ketabdari, 2011), and geotechnical engineering (Bui et al.,
2007). In order to ensure the best performance, the accuracy,
stability, and validity of SPH still need to be investigated
thoroughly, since it is rather a new numerical approach.

Despite the growing popularity of SPH, there have been
few studies on the sensitivity of results to SPH parameters and
the influence of SPH variables on the accuracy of results. On
the other hand, this method is better known for simulating
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fluid motion in games (Gourlay, 2014; Nie et al., 2015). As a
result, the qualitative visualization of fluid flow has almost
always been the main concern, rather than the accuracy in
fluid simulations in engineering applications. Takeda et al.
(1994) simulated flow past a circular cylinder for Reynolds
numbers less than 55, and their results perfectly matched the
results from the finite difference method (FDM) and experi-
mental data. Although they developed a no-slip boundary and
a new viscosity equation, they carried out sensitivity analyses
only on the smoothing length and domain shape. Morris et al.
(1997) used SPH to simulate the same problem for very low
Reynolds numbers (Re � 1). They proposed an artificial ve-
locity for boundary particles to fulfill the no-slip boundary
condition. They also used a simplified viscosity equation
based on a finite difference approximation for very low Rey-
nolds numbers. Marrone et al. (2013) obtained good results for
the same problem using the d-SPH method (Antoci et al.,
2007). They also compared results for circular and square
shapes with those obtained from FDM, and mostly studied the
effects of obstacle shape and vortices geometries. Nonetheless,
a series of questions, including selection of a smoothing
function, smoothing length, and different viscosity equations,
as well as impacts of background pressure and the speed of
sound, have remained unsolved.

The capability of this method should be examined quanti-
tatively in relation to a well-documented problem such as flow
over a bluff body (Anderson, 2007), to provide an appropriate
benchmark to verify the accuracy and validity of a numerical
method as well as a newly developed code. In this study, a
weakly compressible SPH method was adopted (Monaghan,
2005). The drag coefficient, as the main output, was studied
for different SPH variables, including viscosity equations,
kernels, smoothing lengths, speed of sound, and background
pressures, as well as the domain parameters, including di-
mensions and resolution numbers. This study provides a
practical approach to increasing the accuracy of future SPH
simulations.

This paper is structured as follows: the SPH method is
described in the subsequent section, the third section briefly
explains the developed code, flow past a circular cylinder is
discussed intensively in the fourth section, and the paper
closes with a discussion of this work as well as planned ex-
tensions of it.

2. SPH method

The SPH method, originally developed for astrophysical
purposes (Gingold and Monaghan, 1977; Lucy, 1977), is
basically an interpolation technique. A comprehensive review
of this method is presented in Liu and Liu (2005) and
Monaghan (1994). In SPH, the computational domain is
discretized into a finite number of particles (or integration
points). These particles carry material properties such as
velocity, density, and stress, and move with the material
velocity according to the governing equations. The material
properties of each particle are then calculated through the use
of an interpolation process over its neighboring particles
(integration domain) (Bui and Fukagawa, 2013). The inter-
polation process is based on the integral representation of a
field function. Numerous scientists have recently shown in-
terest in this method and introduced details on the derivation
and formulation of SPH (Li and Liu, 2004; Liu and Liu,
2005, 2010). Below, the SPH method is introduced in
detail against the background of this study. As is generally
known, fluid motion is governed by the continuity and mo-
mentum (Navier-Stokes) equations, which are formulated in
SPH as follows:

The continuity equation:

dra
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¼ ra
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where t is time; Wab is the kernel (smoothing function), which
should have particular characteristics in order to approximate
Dirac's delta function (Li and Liu, 2004); Va denotes the
gradient with respect to the coordinates of particle a; the
subscripts a and b denote the integration point and particles in
the neighborhood of particle a, respectively; and the particle
field variables are v, P, m, m, and r, which represent the ve-
locity, pressure, mass, dynamic viscosity, and density,
respectively. The last term in the momentum equation denotes
the viscosity, which will be discussed in Section 2.2.
2.1. Equation of state
In a weakly compressible SPH (WCSPH) method, an
equation of state (EOS) must be used to correlate density and
pressure. As shown in Eq. (2), the pressure plays an essential
role, so the estimation of pressure from the density field is of
paramount importance in the WCSPH method. Three options
are available:

P¼ C2
s r ð3Þ

P¼ C2
s ðr� r0Þ ð4Þ

P¼ P0 þC2
s ðr� r0Þ ð5Þ

where Cs is the speed of sound and should be greater than
10U, with U being the upstream velocity of the flow
(Monaghan, 1988); and r0 and P0 are the density and back-
ground pressure at rest (initial condition), respectively.

EOS also has a significant effect on tensile instability, which
is a well-documented issue in SPH, by maintaining a persistent
positive pressure. SPH particles repel each other when the
pressure is positive, similarly to atoms, and attract each other in
the case of negative pressure, unlike atoms. However, the
attraction causes SPH particles to form clumps, resulting in
tensile instability (Monaghan, 2000; Swegle et al., 1995).
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The ideal gas EOS (Eq. (3)) (Morris et al., 1997) avoids
clustering of particles since it always maintains a positive
pressure, but it requires very small time steps due to the
possibility of localized high pressure. An alternative approach
is to choose larger time steps in Eq. (4), which is computa-
tionally more efficient (Fang et al., 2006). However, Eq. (4)
does suffer from particle clustering due to the development
of negative pressure. For the flow past an obstacle, the pressure
becomes negative in the wake of the bluff body. This problem
can be overcome through introduction of the background
pressure P0 in Eq. (4) (Marrone et al., 2011, 2013; Morris,
1996). Consequently, Eq. (5) was chosen for this study in
order to keep the pressure field positive and to avoid the tensile
instability. It should be noted that the background pressure is
only applicable to problems with a confined domain. In the
case of a free surface problem, there is no need to use this
term, since the gravity acceleration can almost always keep the
pressure field positive. Alternatively, an artificial pressure
(stress) should be used to deal with the tensile instability
(Monaghan, 2000).
2.2. Viscosity equation
In SPH, the chosen viscosity not only determines the
behavior of the liquid, but also influences the performance of
the numerical calculation. Therefore, an artificial viscosity is
often employed in SPH instead of the real viscosity compo-
nent of the Navier-Stokes equation (the last term of Eq. (2))
(Gholami Korzani et al., 2016). The artificial viscosity was
proposed by Monaghan and Gingold (1983) to dampen non-
physical numerical oscillations and to simulate shock waves
(Monaghan, 2012). Although this viscosity conserves total
linear and angular momentum exactly, it is not a suitable
approach to modeling viscous fluids. Therefore, an appropriate
viscosity term, which should be properly adapted to the SPH
scheme, is needed to simulate the shear flow more realistically.
Several viscosity equations from the literature were used and
are compared below:

(1) Morris et al. (1997):
�
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where rab and vab are the distance and velocity vector
ðvab ¼ va � vbÞ between particles a and b, respectively.
vW=vra denotes the value of the derivative of the kernel
function with respect to the location of particle a ðraÞ for rab.
This formulation conserves linear momentum exactly, while
angular momentum is only approximately conserved.

(2) Shao and Lo (2003):
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Eq. (7) is a mixture of a standard SPH first derivative, with
a finite difference approximation for the first derivative.
(3) Takeda et al. (1994):
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where n is the dimension of the problem, and xab is the po-
sition vector, which is defined as xab ¼ xa � xb. Although the
solution of this equation employs the second derivative of the
kernel, it is the exact derivation of viscosity from the Navier-
Stokes equations. The most important assumption in Eq. (8) is
that the fluid is compressible, and the bulk viscosity, z, can be
considered negligible.

(4) Incompressible viscosity:
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This equation was used in this study as it considers the fluid
incompressible by assuming the divergence term ðV$vÞ to be
equal to zero.
2.3. Kernel
The smoothing function, also called the kernel, is of
utmost importance since the performance of SPH critically
depends on it. Kernels must satisfy numerous conditions,
such as unity (the volume integral is equal to one), compact
support (the kernel must not have an infinite reach), and
positivity (Li and Liu, 2004). Kernels depend on the
smoothing length, h, and a non-dimensional distance between
particles, q ¼ r=h. In this study, some well-known kernels
were tested:

(1) Quadratic (Johnson et al., 1996):

Wðr;hÞ ¼ ad
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where ad is 2=ðph2Þ in two dimensions and 5=ð4ph3Þ in three
dimensions. This kernel was used to simulate high-velocity
impact problems. However, the second derivative of the kernel
is a constant value, which is not suitable for Eqs. (8) and (9).

(2) Cubic spline (Monaghan, 1988):
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where ad is 10=ð7ph2Þ in two dimensions and 1=ðph3Þ in
three dimensions. This kernel has been, so far, the most widely
used kernel in SPH literature.

(3) Quintic (Wendland C2) (Wendland, 1995)

Wðr;hÞ ¼ ad

�
1� q

2

�4

ð2qþ 1Þ 0� q� 2 ð12Þ

where ad is 7=ð4ph2Þ in two dimensions and 7=ð8ph3Þ in
three dimensions. In general, the higher the order of the kernel
is, the greater the accuracy of the SPH scheme will be.
Therefore, it provides the best compromise between accuracy
and computational time.

(4) Quintic spline (Morris et al., 1997; Schoenberg, 1946):
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where ad is 7=ð47ph2Þ in two dimensions and 1=ð120ph3Þ in
three dimensions. This approach resembles a Gaussian kernel
with a compact support. It is important to note that this kernel
has a radius of influence of 3h and, therefore, more particles
interact with one another, potentially reducing the computa-
tional efficiency.

Fig. 1 shows the calculated functions for the presented ker-
nels and their first and second derivatives, as well as the Lap-
lacian, as a function of q when h¼ 1 and n¼ 2. In addition, the
impacts of the introduced kernels on the problem are further
discussed in Section 4.2.1. Several theoretical andmathematical
studies have been conducted on kernels to investigate their in-
fluences on SPH performance (Dehnen and Aly, 2012; Violeau
and Leroy, 2014). As a result, the kernel standard deviation is
the most important parameter in comparing distinct kernels.
However, the aim of the present study was to practically
investigate the effects of the chosen kernel on the result of the
calculations.
2.4. Boundary conditions

2.4.1. Solid boundary
Immovable solid bodies are usually built with parallel

layers of fluid particles fixed in place but not allowed to
move, and thus acting as a solid boundary (Dalrymple and
Knio, 2001). In other words, Eq. (2) is calculated for each
boundary particle, but the location and velocity of each
particle are not updated at the end of each time step.
Nevertheless, forces acting on the solid body can be obtained
by summing Eq. (2) over all fixed boundary particles multi-
plied by their masses. The most significant advantage of this
approach is that the computational treatment of the system is
considerably simplified, since no special considerations are
necessary for boundary particles, except for the constraint of
no movement. Several layers of particles are needed to avoid
the kernel support domain truncation, since the truncation
produces some errors in estimating the key variables, such as
the density.

The essential characteristic of a solid boundary is the
enforcement of the no-slip condition. Morris et al. (1997) used
an antisymmetric approximation method, which was similar to
that of Takeda et al. (1994), to extrapolate the velocity of free
particles through fixed boundary particles. In simple terms, the
fixed boundary particles have an artificial velocity that mirrors
their free particle counterparts to ensure that the overall fluid
velocity on the surface is zero.

2.4.2. Inflow/outflow boundary
The inflow/outflow algorithm proposed by Federico et al.

(2012) was used to generate steady continuous flow. As
shown in Fig. 2, two new sets of boundary particles (inflow
and outflow particles) are defined at the domain boundaries in
order to impose distinct upstream and downstream flow con-
ditions. The inflow/outflow particles affect the free fluid par-
ticles within the domain. The inverse is not true, as the inflow/
outflow particles are unaffected by the free ones. The inflow/
outflow region covered by these particles must be at least as
wide as the kernel domain.

At the inflow boundary, the desired velocity and density
are assigned to the inflow particles. They are distributed on a
regular grid and move according to their assigned velocity.
When an inflow particle crosses the inflow threshold, it be-
comes a free fluid particle and will move according to the
governing equations. At the outflow boundary, it is possible
to impose specific outflow conditions similar to the inflow
condition. Nonetheless, a fluid particle that crosses the
outflow threshold becomes an outflow particle and all its field
variables are maintained constant with time, except for the
location, which evolves according to its velocity. Further
details of the computational procedure are reported in
Federico et al. (2012).

2.4.3. Periodic boundary
For this type of boundary condition, the cubical simulation

box is replicated throughout space to form an infinite lattice,
which is often used to eliminate surface effects from the
computation. This boundary condition was applied perpen-
dicular to the flow direction (Fig. 2) and implemented by
considering that particles located at a boundary are linked to
particles at the opposite boundary. Therefore, a particle that
leaves a boundary immediately re-enters at the opposite
boundary with the same velocity.

3. Programming

An open source code, called PersianSPH (Gholami Korzani
et al., 2015), has been developed in Cþþ to solve the introduced
equations. All calculations and neighbor searching were con-
ducted in parallel using the OpenMP library. Therefore, the
whole domain was divided into several segments, and then the
cell-linked list approach (Hockney and Eastwood, 1988) was



Fig. 1. Comparison of kernels and derivative values for h ¼ 1 and n ¼ 2.

Fig. 2. Initial sketch of boundary conditions.
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used to find neighboring particles in order to calculate the forces
between them in parallel. There is no particular limitation to the
number of particles, unless the number of threads is restricted.
In addition, the modified Verlet scheme (Monaghan, 1994) was
used for time integration. The time step size, Dt, of the inte-
grationmethod used has to be limited for stability reasons based
on several criteria, which can be summarized as follows:

Courant-Friedrichs-Lewy (CFL) condition:

Dt � 0:25minðh=CsÞ ð14Þ
Condition on the viscous diffusion:

Dt � 0:125min


h2
�
n
� ð15Þ
Condition on the force per unit mass:

Dt � 0:25min
ffiffiffiffiffiffiffiffiffi
h=ai

p
ð16Þ

where ai is the acceleration of particle i, and n denotes the fluid
kinematic viscosity. The chosen time step size must be smaller
than the minimum of these conditions.
4. Flow past a circular cylinder
4.1. Modeling case
The main problem studied was the calculation of the drag
coefficient for a two-dimensional (2D) circular cylinder under
the influence of various SPH parameters. As shown in Fig. 3,
the periodic boundary was used in the vertical direction, and
the inflow/outflow boundaries were used to generate a steady
flow in the horizontal direction. A solid boundary was used to
simulate the circular cylinder.

Parameters studied can be divided into two main cate-
gories: SPH factors such as kernel choices, and domain fac-
tors such as the domain shape. All parameters and coefficients
will be introduced and discussed thoroughly in Section 4.2.
However, all the parameters considered are defined concisely
in Section 2 and Fig. 3, except for the resolution number,
which is the ratio of the cylinder diameter to the initial
distance between SPH particles at time zero (refer to
Section 4.2.7).



Fig. 3. Schematic view of domain and boundaries.
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4.2. Numerical results
Fig. 4. Drag coefficient curve vs. time for different kernels.
As described earlier, the primary goal of this study was to
achieve accurate results for the drag coefficient, which can be
compared with experimental data. To achieve the best result,
several modifications are required from a base setup of input
parameters defining the numerical model. Inevitably, some
initial assumptions made to simulate the problem must be used
for the investigated parameters at early stages. Afterwards, an
appropriate value or equation is chosen to replace the initial
assumptions based on the results of each modification stage.
By modifying these parameters step by step, the drag coeffi-
cient, as the main output of this study, gradually converges to
the experimental value. Finally, the drag coefficient is calcu-
lated for numerous Reynolds numbers based on the modified
and calibrated models.

For the initial calculations in this study, the Reynolds
number was fixed at 60 for all stages, unless otherwise noted.
The target drag coefficient Cd, extracted from the available
experimental data (Anderson, 2007), was 1.41 for this Rey-
nolds number. A square with side lengths eight times the
cylinder diameter was modeled as the whole domain, and the
cylinder was located in the middle. In addition, the smoothing
length, the speed of sound, and background pressure were 1.1
times the initial distance of particles, ten times the imposed
flow speed, and 0:07C2

s r0, respectively. The resolution number
was 30, and the Morris viscosity equation (Eq. (6)) was
employed. The impacts of these factors and selection criteria
will be discussed in Sections 4.2.1 through 4.2.7.

4.2.1. Kernel selection
Various kernels have been introduced in Section 2.3. As

shown in Fig. 1, there are significant differences between the
kernels and their derivatives, so it seems obvious that the re-
sults for different kernels must be very different as well.
However, it should be noted that the optimum smoothing
lengths for each kernel are not identical. Therefore, a fair
comparison of kernels requires the selection of the individual
optimum smoothing length.

Simulations for each kernel were conducted using the
properties introduced in Section 4.2. The smoothing length was
not changed, so the number of neighboring particles was
maintained constant, except for the case of the quintic spline
kernel. As shown in Fig. 4, the quintic spline is the most suitable
kernel, with Cd ¼ 1:79, because this kernel shows the best
match with the experimental results and its Cd time history
curve is smoother (without any fluctuations) than that of the
other kernels in the steady state condition. Although this kernel
is computationally less efficient, it is the most reliable kernel for
the problem considered. Therefore, the quintic spline kernel was
used for the rest of the study. The accuracy of results using this
kernel has been investigated by Gholami Korzani et al. (2014).

4.2.2. Smoothing length
After choosing a proper kernel, finding the optimum

smoothing length, h, is the next critical step. The number of
neighboring particles grows significantly with increasing h,
which decreases the computational efficiency. In SPH, the
smoothing length is dependent on particle packing and the
initial distance between particles. Hence, the problem was
studied with various smoothing lengths. The smoothing length
equals aDx, where Dx is the initial distance between particles
at the initial time step, and a varied from 0.9 to 1.3.

As shown in Fig. 5, the simulations for a ¼ 0.9 and 1.0
ended earlier since they were highly unstable. The values of
drag coefficient Cd for a values of 0.9, 1.0, 1.1, 1.2, and 1.3
were 1.46, 1.59, 1.79, 1.79, and 1.79, respectively. Cd was
exactly the same for a values of 1.1, 1.2, and 1.3, demon-
strating that a state had been reached in which the smoothing
length did not change the results. Since the computation time
increased with increasing h, the optimal value for a was 1.1,
which was maintained for the rest of the study. It is worth
noting that although this optimum value results in a Cd value
that is quite different from the experimental value of 1.41, the
difference can be reduced further with the introduction of
other modifications.

4.2.3. Viscosity equation
As already explained in Section 2.2, all equations for

modeling the viscosity effect have advantages and disadvan-
tages. Four simulations were conducted to determine the im-
pacts of these equations on the resulting values of Cd. The drag
force is usually divided into two components: frictional drag
and pressure drag. Frictional drag is derived from the friction
between the fluid and the surface and involves viscous flow.
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Pressure drag is derived from eddying motions and is associ-
ated with the formation of a wake. The viscous drag force also
individually shows the effect of the viscosity equation. Hence,
two coefficients were calculated: the total and viscous drag
coefficients. They are compared for the different equations
used in Table 1.

As illustrated in Fig. 6 and Table 1, there is no significant
difference between the resulting drag coefficients. However,
some discrepancies were observed in the transient state condi-
tion, showing that the results of Eqs. (8) and (9) were slightly
smoother. Eqs. (6) and (7) were proposed for low Reynolds
numbers. Since the results for the equation of Takeda et al.
(Eq. (8)) and the equation of incompressible viscosity (Eq. (9))
were closer to the experimental value of Cd, Eq. (8) was chosen
for later simulations. There was no difficulty in obtaining the
second derivative of the kernel, which is needed for the
Table 1

Drag coefficients for different viscosity equations.

Equation Total Cd Viscous Cd

Morris et al. (1997) (Eq. (6)) 1.79 0.52

Shao and Lo (2003) (Eq. (7)) 1.80 0.52

Takeda et al. (1994) (Eq. (8)) 1.73 0.50

Incompressible viscosity (Eq. (9)) 1.73 0.50

Fig. 6. Drag coefficient curve vs. tim
application of the viscosity equation of Takeda et al. (1994),
because the quintic spline kernel as a high-order kernel was
used.

4.2.4. Background pressure
As already discussed in Section 2.1, the value for the

background pressure, P0, should be defined in such a way that
no negative pressure is generated during simulations. In order
to explore this, P0 can be defined as bCsr0, where b is a co-
efficient used to adjust P0. Consequently, P0 will become zero
if b approaches zero (i.e., no background pressure).
Conversely, the EOS will be transformed into that of the ideal
gas if b approaches unity. Fig. 7 illustrates the fluctuations of
Cd with increasing b, but in all cases it reached the same
steady state value for Cd. This study attempted to maintain b as
low as possible to minimize fluctuations and maintain a pos-
itive pressure. A value of b ¼ 0:07 was chosen for the
remainder of the study.

4.2.5. Speed of sound
The speed of sound in the fluid, Cs, as another important

component of the EOS, influences the selection of the time
step and resulting density fluctuations. With the increase of the
speed of sound, the time step must be reduced, and the density
variations become negligible. In contrast, density variations
will be increased by reducing the speed of sound, which means
that the fluid displays a higher compressibility. Therefore, a
balance should be established between the time step and weak
compressibility by optimizing the speed of sound in the fluid.

The speed of sound in the fluid is proportional to the fluid
velocity U, leading to Cs ¼ lU. This is an appropriate
approach since the idea is not to use realistic values for the
speed of sound, but to keep the Mach number U=Cs small and
to reduce compressibility effects. In this study, l varied from 5
to 20. Fig. 8 shows that all curves reached a particular
convergence value, but those with higher values for the speed
of sound had greater fluctuations in the transient state. As a
result, the speed of sound was chosen to be ten times the fluid
velocity as suggested by Monaghan (1988).
e for various viscosity equations.



Fig. 7. Drag coefficient curve vs. time for various background
pressures. Fig. 9. Drag coefficient curve vs. time for square domain shape with

various side lengths.

Table 2

Drag coefficient for square domain shape with various side lengths.

Side length Cd Relative

difference (%)

Side length Cd Relative

difference (%)

5D 2.16 53.2 16D 1.48 5.0

8D 1.73 22.7 21D 1.45 2.8

11D 1.59 12.8 26D 1.42 0.7
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4.2.6. Problem domain geometrical shape
Two geometrical shapes were considered in this study to

model the whole domain of the problem: a square (L¼W,
where L is the length and W is the width), and a rectangle
(L ¼ 2W ) (Fig. 3). Six different side lengths, proportional to
the diameter of the cylinder, were investigated for the square
domain shape. As demonstrated in Fig. 9, the drag coefficient
decreased gradually with increasing side length, and finally
reached a plateau, signaling the point when the results were
independent of the domain size. Table 2 shows the drag co-
efficient and relative difference between the calculated and
experimental (1.41) drag coefficients, and also shows that the
square domain shape resulted in an accurate drag coefficient.
Since the number of particles grows significantly with
increasing side length of the problem domain, it may be
preferable to reach a compromise in accuracy by reducing the
domain size. Although the obtained Cd value for the square
with a side length greater than 20D is closer to the experi-
mental value, it is not computationally beneficial. Hence, to
establish a balance between accuracy and computational time,
the Cd value can be in an acceptable range for a square with a
side length of 16D.

On the other hand, a rectangular domain shape is advan-
tageous, since the number of particles is reduced to half that of
the square domain shape. To study the impact of the rectan-
gular domain on the accuracy of the results, two different flow
velocities were considered. The results show that the drag
coefficient values for Reynolds numbers of 60 and 200 were
1.48 and 1.26, respectively, for the square domain, and 1.58
and 1.32, respectively, for the rectangular domain. Therefore,
Fig. 8. Drag coefficient curve vs. time for various speeds of sound.
the discrepancies between the drag coefficients calculated for
the square and rectangular domain shapes were less than 7%
and 4% for Reynolds numbers of 60 and 200, respectively. The
difference between the rectangular domain shape results and
experimental data was around 13% for both flow conditions.

In addition, under the rectangular domain shape, a shifted
cylinder condition was studied. In this condition, the cylinder
was shifted about 5.5D to the left. Consequently, the calcu-
lated drag coefficient (for a Reynolds number of 200) was
1.49, which was 13% greater than that calculated for the
centered cylinder. Thus, the best condition for both domain
shapes is the centered cylinder.

The results for the square domain shape were more accurate
than those for the rectangular domain shape. However, the
rectangular domain shape is preferred for reducing the
computational time. Accordingly, the square domain shape
was used for Reynolds numbers less than and equal to 200,
since these simulations were not computationally demanding.
In contrast, the rectangular domain shape was selected for
Re ¼ 500. As will be seen later, even with the rectangular
domain shape, the results are accurate enough compared with
the experimental data.

4.2.7. Resolution number (spatial resolution)
As stated previously, the resolution number, D=Dx, is

defined as the ratio of the cylinder diameter to the initial
distance between particles. To demonstrate how this factor
affected the results, some simulations were carried out through
variation of this number. Two different flow velocities (cor-
responding to Reynolds numbers of 60 and 200) were inves-
tigated and the resolution number varied from 10 to 80. It
should be noted that the case of Re ¼ 60 is a flow condition
preceding the generation of vortices, and the case of Re ¼ 200
is a flow condition following the generation of vortices in the
wake of the cylinder.



Fig. 10. Drag coefficient curve vs. time for various resolution numbers.

Fig. 11. Drag coefficient curve vs. Reynolds numbers for a circular
cylinder obstacle.
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Fig. 10(a) illustrates that lower resolution numbers produced
some noise in the results prior to the generation of vortices. In
contrast, the drag coefficient rose gently to reach a plateau after
the generation of vortices, as illustrated in Fig. 10(b). Therefore,
the drag coefficient was strongly dependent on this factor, while
this dependency was more significant for higher Reynolds
numbers. A general result of this study is the observation that the
resolution number is dependent on theReynolds number. Fig. 10
shows that the drag coefficient is free and independent of the
resolution number when the resolution number is greater than a
certain value (e.g., 20 for Re ¼ 60 and 60 for Re ¼ 200). That
means the value of the resolution number showing no influence
on the drag coefficient must be determined manually for every
Reynolds number, and is henceforth denoted as the optimum
resolution number.

4.2.8. Reynolds number
Finally, the model calibrated using the above-mentioned

seven steps (Sections 4.2.1 to 4.2.7) was used to study the
dependency of the drag coefficient on the Reynolds number. In
this section, results obtained from SPH were compared to
available experimental data (Anderson, 2007).

Fig. 11 shows a comparison between the results of this
study, the results of Marrone et al. (2013), and the available
experimental data. Although there were some discrepancies
between the acquired numerical results and the experimental
data for Reynolds numbers exceeding 200, a satisfying
agreement with experimental results was achieved. The devi-
ation of the calculations from experimental results can be
explained by the chosen rectangular domain shape and the
smaller domain size (refer to Section 4.2.6).

Fig. 12 shows the velocity field on the left-hand side and
velocity vectors on the right-hand side, around the cylinder for
different Reynolds numbers, demonstrating agreement with
experimental observations and previous studies (Marrone
et al., 2013). In addition, Table 3 shows the minimum
required resolution numbers for each Re value examined in
this study, demonstrating that the drag coefficient is indepen-
dent of the particle size. It is important to note that the
maximum resolution number (D/Dx ¼ 80) will work for every
Re value considered in this study, and the choice of the indi-
vidual values was made based on computational efficiency
issues only.

5. Conclusions

The paper presents a comprehensive parametric study of
the flow past a circular cylinder in two dimensions. The im-
pacts of several SPH variables on the calculation of drag co-
efficients in the 2D problem were studied for Reynolds
numbers ranging from 1 to 500. Through comparison with
existing experimental data and results from other numerical
tools, the results of this study showed strong agreement with
the existing experimental data.

The significance of the studied parameters can be summa-
rized as follows:

(1) The quintic spline kernel was the most reliable kernel
for this study, even though it was computationally less
efficient.



Fig. 12. Snapshots from velocity field (left) and corresponding ve-
locity vectors (right) for different Reynolds numbers.

152 Maziar Gholami Korzani et al. / Water Science and Engineering 2017, 10(2): 143e153
(2) Different viscosity equations did not have any notice-
able impacts on the results. Therefore, the simplest equation
(Eq. (6)) can be used to improve the computational efficiency.
It should be noted that Eqs. (8) and (9) are beneficial for
reproducing vortices as in the present study no turbulence
model was adopted.

(3) The background pressure played a vital role in avoiding
the clustering of particles due to tensile instability, but its
drawback was some numerical noise in the results. Therefore,
it must be maintained as low as possible to keep the pressure
positive.

(4) Variation of the speed of sound did not affect the steady
state results. It only produced fluctuations in the transient
condition.

(5) The square shape of the problem domain was more
accurate than the rectangular shape. However, the rectangular
domain shape was preferred for higher Reynolds numbers to
reduce the computational time without significantly compro-
mising the accuracy.

(6) The most suitable side length for the square domain
shape was 26D, but a square with a side length of 16D was
Table 3

Resolution number for each Reynolds number.

Re D/Dx Re D/Dx Re D/Dx Re D/Dx

1 20 10 20 60 30 200 60

2 20 20 30 80 30 500 80

5 20 40 30 100 30
used to establish a balance between the accuracy and the
computational time.

(7) As SPH is computationally expensive, it is important to
keep the model size as small as possible. Therefore, obtaining
efficient problem domain sizes or shapes, and using proper
boundary conditions (e.g., the periodic boundary condition)
are absolutely important.

(8) The best location of the obstacle for achievement of the
most accurate results was in the center of both considered
domain shapes.

(9) The results were significantly sensitive to the resolution
number for different flow velocities. Therefore, the resolution
number was individually optimized for each Reynolds number
in order to reach a threshold independent of particle size. This
was done to reduce simulation time, but it is clear that the
highest used resolution number will cover the complete range
of Reynolds numbers considered in this study.

In conclusion, the presented results and discussion provide
guidance and indications for the selection of parameters used
to optimize numerical studies using SPH.
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