KIT | KIT-Bibliothek | Impressum | Datenschutz

On Helmholtz Equations and Counterexamples to Strichartz Estimates in Hyperbolic Space

Casteras, Jean-Baptiste; Mandel, Rainer 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)


In this paper, we study nonlinear Helmholtz equations (NLH) $-\Delta_{\mathbb{H}^N} u - \frac{(N-1)^2}{4} u -\lambda^2 u = \Gamma|u|^{p-2}u$ in $\mathbb{H}^N$, $N\geq 2$ where $\Delta_{\mathbb{H}^N}$ denotes the Laplace-Beltrami operator in the hyperbolic space $\mathbb{H}^N$ and $\Gamma\in L^\infty(\mathbb{H}^N)$ is chosen suitably. Using fixed point and variational techniques, we find nontrivial solutions to (NLH) for all $\lambda>0$ and $p>2$. The oscillatory behaviour and decay rates of radial solutions is analyzed, with possible extensions to Cartan-Hadamard manifolds and Damek-Ricci spaces. Our results rely on a new Limiting Absorption Principle for the Helmholtz operator in $\mathbb{H}^N$. As a byproduct, we obtain simple counterexamples to certain Strichartz estimates.

DOI: 10.1093/imrn/rnz389
Web of Science
Zitationen: 1
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2021
Sprache Englisch
Identifikator ISSN: 1073-7928, 1687-0247
KITopen-ID: 1000135792
Erschienen in International mathematics research notices
Verlag Oxford University Press (OUP)
Band 2021
Heft 7
Seiten 4838–4863
Vorab online veröffentlicht am 30.01.2020
Nachgewiesen in Dimensions
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page