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Abstract

In recent years, reinforcement learning (RL) has gained increasing attention in control engineering.
Especially, policy gradient methods are widely used. In this work, we improve the tracking performance
of proximal policy optimization (PPO) for arbitrary reference signals by incorporating information
about future reference values. Two variants of extending the argument of the actor and the critic
taking future reference values into account are presented. In the first variant, global future reference
values are added to the argument. For the second variant, a novel kind of residual space with future
reference values applicable to model-free reinforcement learning is introduced. Our approach is
evaluated against a PI controller on a simple drive train model. We expect our method to generalize
to arbitrary references better than previous approaches, pointing towards the applicability of RL to
control real systems.

1. Introduction

In cars with automatic transmissions, gear shifts shall be performed in such a way that no
discomfort is caused by the interplay of motor torque and clutch control action. Especially, the
synchronization of input speed to the gears’ target speed is a sensitive process mainly controlled by
the clutch. Ideally, the motor speed should follow a predesigned reference, but not optimal operating
feedforward control and disturbances in the mechanical system can cause deviations from the optimal
behavior. The idea is to apply a reinforcement learning (RL) approach to control the clutch behavior
regulating the deviations from the optimal reference. The advantage of a RL approach over classical
approaches as the PI control is that no extensive experimental parametrization for every gear and
every clutch is needed which is very complex for automatic transmissions. Instead, the RL algorithm
is supposed to learn the optimal control behavior autonomously. Since the goal is to guide the motor
speed along a given reference signal the problem at hand belongs to the family of tracking control
problems.

In the following, a literature review on RL for tracking control is given. In [1], the deep deterministic
policy gradient method, introduced in [2], is applied to learn the parameters of a PID controller. An
adaptive PID controller is realized in [3] using an incremental Q-learning for real-time tuning. A
combination of Q-learning and a PID controller is presented in [4], where the applied control input is
a sum of the PID control input and a control input determined by Q-learning.

Another common concept applied to tracking control problems is model predictive control (MPC)
which can also be combined with RL. A data-efficient model-based RL approach based on probabilistic
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model predictive control (MPC) is introduced in [5]. The key idea is to learn the probabilistic
transition model using Gaussian processes. In [6], nonlinear model predictive control (NMPC) is used
as a function approximator for the value function and the policy in a RL approach. For tracking
control problems with linear dynamics and quadratic costs a RL approach is presented in [7]. Here,
a Q-function is analytically derived that inherently incorporates a given reference trajectory on a
moving horizon.

In contrast to the before presented approaches derived from classical controller concepts also pure
RL approaches for tracking control were invented. A model-based variant is presented in [8] where a
kernel-based transition dynamic model is introduced. The transition probabilities are learned directly
from the observed data without learning the dynamic model. The model of the transition probabilities
is then used in a RL approach.

A model-free RL approach is introduced in [9] where the deep deterministic policy gradient
approach [2] is applied on tracking control of an autonomous underwater vehicle. In [10], images
of a reference are fed to a convolutional neural network for a model-free state representation of the
path. A deep deterministic policy gradient approach [2] is applied where previous local path images
and control inputs are given as arguments to solve the tracking control problem. Proximal policy
optimization (PPO) [11] with generalized advantage estimation (GAE) [12] is applied on tracking
control of a manipulator and a mobile robot in [13]. Here, the actor and the critic are represented by
a long short-term memory (LSTM) and a distributed version of PPO is used.

In this work, we apply PPO to a tracking control problem. The key idea is to extend the arguments
of the actor and the critic to take into account information about future reference values and thus
improve the tracking performance. Besides adding global reference values to the argument, we also
define an argument based on residua between the states and the future reference values. For this
purpose, a novel residual space with future reference values is introduced applicable to model-free RL
approaches. Our approach is evaluated on a simple drive train model. The results are compared to a
classical PI controller and a PPO approach, which does not consider future reference values.

2. Problem Formulation

In this work, we consider a time-discrete system with non-linear dynamics

xk+1 = f (xk, uk) , (1)

where xk ∈ Rnx is the state and uk ∈ Rnu is the control input applied in time step k. The system
equation (1) is assumed to be unknown for the RL algorithm. Furthermore, the states xk are exactly
known.

In the tracking control problem, the state or components of the state are supposed to follow a
reference xrk ∈ Rnh . Thus, the goal is to control the system in a way that the deviation between the
state xk and the reference xrk becomes zero in all time steps. The reference is assumed to be given
and the algorithm should be able to track before unseen references.

To reach the goal, the algorithm can learn from interactions with the system. In policy gradient
methods, a policy is determined which maps the RL states sk to a control input uk. The states sk can
be the system states xk but can also contain other related components. In actor-critic approaches, the
policy is represented by the actor. Here, sk is the argument given to the actor and in most instances
also to the critic as input. To prevent confusion with the system state xk, we will refer to sk as
argument in the following.

3. Existing solutions and challenges

In existing policy gradient methods for tracking control, the argument sk is either identical to the
system state xk [9] or is composed of the system state and the residuum between the system state
and the reference in the current time step [13]. Those approaches show good results if the reference is
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fixed. Applied on arbitrary references the actor can only respond to the current reference value but is
not able to act optimally for the subsequent reference values. In this work, we will show that this
results in poor performance.

Another common concept, applied on tracking control problems, is model predictive control (MPC),
e.g., [5]. Here, the control inputs are determined by predicting the future system states and minimizing
their deviation from the future reference values. In general, the optimization over a moving horizon
has to be executed in every time step as no explicit policy representation is determined. Another
disadvantage of MPC is the need to know or learn the model of the system.

Our idea is to transfer the concept of utilizing the information given in form of known future
reference values from MPC to policy gradient methods. A first step in this direction is presented in [7],
where an adaptive optimal control method for reference tracking was developed. Here, a Q-function
could be analytically derived by applying dynamic programming. The received Q-function depends
inherently on the current state but also on current and future reference values. However, the analytical
solution is limited to the case of linear system dynamics and quadratic costs (rewards). In this work,
we transfer those results to a policy gradient algorithm by extending the arguments of the actor and
the critic with future reference values. In contrast to the linear quadratic case, the Q-function cannot
be derived analytically. Accordingly, the nonlinear dependencies are approximated by the actor and
the critic. The developed approach can be applied to tracking control problems with nonlinear system
dynamics and arbitrary references. In some applications, the local deviation of the state from the
reference is more informative than the global state and reference values, e.g. operating the drive train
in different speed ranges. In this case, it can be beneficial if the argument is defined as residuum
between the state and the corresponding reference value, because this scales down the range of the
state space has to be explored. Thus, we introduce a novel kind of residual space between states and
future reference values which can be applied without knowing or learning the system dynamics. The
key ideas are (1) extending the arguments of the actor and the critic of a policy gradient method by
future reference values, and (2) introducing a novel kind of residual space for model-free RL.

4. Preliminaries: Proximal Policy Optimization Algorithm

As policy gradient method, proximal policy optimization (PPO) [11] is applied in this work. PPO
is a simplification of the trust region policy optimization (TRPO) [14]. The key idea of PPO is a
novel loss function design where the change of the stochastic policy πθ in each update step is limited
introducing a clip function

J(θ) = E(sk,uk){min (pk(θ)Ak, clip (pk(θ), 1− c, 1 + c)Ak)} , (2)

where
pk(θ) =

πθ(uk|sk)
πθold

(uk|sk)
. (3)

The clipping motivates pk(θ) not to leave the interval [1− c, 1 + c]. The argument sk given to the actor
commonly contains the system state xk of the system, but can be extended by additional information.
The loss function is used in a policy gradient method to learn the actor network’s parameters θh

θh+1 = θh + αa · ∇θJ(θ)|θ=θh
,

where αa is referred as the actor’s learning rate and h ∈ {0, 1, 2, . . .} is the policy update number. A
proof of convergence for PPO is presented in [15]. The advantage function Ak in (2) is defined as the
difference between the Q-function and the value function V

Ak(sk, uk) = Q(sk, uk)− V (sk) .

In [11], generalized advantage estimation (GAE) [12] is applied to approximate the value function

Â
GAE(γ,λ)
k =

∞∑
l=0

(γλ)l δVk+l , (4)
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where δVk is the temporal difference error of the value function V [16]

δVk = rk + γV (sk+1)− V (sk) . (5)

The discount γ ∈ [0, 1] reduces the influence of future incidences. λ ∈ [0, 1] is a design parameter
of GAE. Note, the value function also has to be learned during the training process and serves as
critic in the approach. The critic is also represented by a neural network and and receives the same
argument as the actor. To ensure sufficient exploration the actor’s loss function (2) is commonly
extended by an entropy bonus S[πθ](sk) [17], [18]

J(θ) = E(sk,uk){min (pk(θ)Ak, clip (pk(θ), 1− c, 1 + c)Ak) + µS[πθ](sk)} ,

where µ ≥ 0 is the entropy coefficient.

5. Proximal Policy Optimization for Tracking Control with future references

As mentioned before, the key idea of the presented approach is to add the information of future
reference values to the argument sk of the actor and the critic in order to improve the control quality.
PPO was already applied to a tracking control problem in [13] where the argument s0

k, contains the
current system state xk as well as the residuum of xk and the current reference xrk

s0
k = [xk, (xrk − xk)]

T . (6)

However, no information of future reference values is part of the argument. We take advantage of the
fact that the future reference values are known and incorporate them to the argument of the actor
and the critic. In the following, two variants will be discussed:

(1) Besides the system state xk N future reference values are added to the argument

s1N
k =

[
xk, x

r
k, x

r
k+1, . . . , x

r
k+N

]T
, N ∈ N . (7)

(2) We introduce a novel residual space where the future reference values are related to the current
state and the argument is defined as

s2N
k =

[
(xrk − xk) ,

(
xrk+1 − xk

)
, . . . ,

(
xrk+N − xk

)]T
. (8)

In Figure 1, the residual space is illustrated for two-dimensional states and references. Being in
the current state xk = [x1

k, x
2
k]T (red dot) the the residua between the current state and the future

reference values (black arrows) indicate if the components of the state x1
k and x2

k have to be increased
or decreased to reach the reference values xrk+1 and xrk+2 in the next time steps. Thus, the residual
argument gives sufficient information to the PPO algorithm to control the system.

Please note, a residual space containing future states
(
xrk+1 − xk+1

)
, . . . ,

(
xrk+N − xk+N

)
would

suffer from two disadvantages. First, the model has to learned which would increase the complexity
of the algorithm. Second, the future states xk+1, . . . , xk+N depend on the current policy thus the
argument is a function of the policy. Applied as argument in (3) the policy becomes a function of
the policy πθ(uk|sk(πθ)). This could be solved by calculating the policy in a recursive manner where
several instances of the policy are trained in form of different neural networks. This solution would
lead to a complex optimization problem which is expected to be computationally expensive and hard
to stabilize in the training. Therefore, we consider this solution as impractical. On the other hand,
the residual space defined in (8) contains all information about the future course of the reference,
consequently a residual space including future states would not enhance the information content.

In the residual space, the arguments are centered around zero, independent of the actual values of
the state or the reference. The advantage, compared to the argument with global reference values, is
that only the deviation of the state from the reference is represented, which scales down the range of
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Figure 1: Residual space defined by current state and future reference values.

the state space has to be learned. But the residual space argument is only applicable if the change in
the state for a given control input is independent of the state itself.

As part of the tracking control problem a reward function has to be designed. The reward should
represent the quality of following the reference. Applying the control input uk in the state xk leads
to the state xk+1 and related to this a reward depending on the difference between xk+1 and the
reference xrk+1. Additionally, a punishment of huge control inputs can be appended. The resulting
reward function for time step k is defined as

rk = −
(
xk+1 − xrk+1

)2 − β · u2
k , (9)

where β ≥ 0 is a weighting parameter.

6. Simple Drive Train Model

An automatic transmission provides gear shifts characterized by two features: (1) the torque
transfer, in which a clutch corresponding to the target gear takes over the drive torque, and (2) the
speed synchronization, in which slip from input to output speed of the clutch is reduced such that
it can be closed or controlled at low slip. In this work, we consider the reference tracking control
problem for a friction clutch during synchronization phase. Its input is driven by a motor and the
output is propagated through the gearbox to the wheels of the car. Speed control action can only be
applied by the clutch when input and output force plates are in friction contact with slip. Generally,
the aim in speed synchronization is to smoothly control the contact force of the clutch without jerking
towards zero slip. This is where our RL approach for tracking control comes into account. For a
smooth operation a reference to follow during the friction phase is predesigned by the developer of
the drive train.

For easier understanding, a simple drive train model is used which is derived from the motion
equations of an ideal clutch [19] extended by the influence of the gearbox

Jin ω̇in = −Tcl + Tin , (10)
Jout ω̇out = θ Tcl − Tout , (11)

where ωin is the input speed on the motor side and ωout is the output speed at the side of the wheels.
Accordingly, Tin is the input torque and Tout is the output torque. The transmission ratio θ of the
gearbox defines the ratio between the input and output speed. The input and output moment of
inertia Jin, Jout and the transmission ratio θ are fixed characteristics of the drive train. The clutch is
controlled varying the torque transmitted from the clutch Tcl.
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The input torque Tin is approximated as constant while the output torque is assumed to depend
linear on the output speed Tout = η · ωout which changes (10) and (11) to

Jin ω̇in = −Tcl + Tin ,

Jout ω̇out = θ Tcl − η · ωout .

Solving the differential equations for a time interval ∆T , yields the discrete system equation[
ωin
ωout

]
k+1

= A

[
ωin
ωout

]
k

+ B1 · Tcl,k + B2 · Tin , (12)

where

A =
[
1 0
0 exp

(
−η·∆T

Jout

)] ,

B1 =
[

−∆T
Jin

θ
η

(
1− exp

(
−η·∆T

Jout

))] , B2 =
[

∆T
Jin

0

]
,

with state xk = [ωinωout]Tk and the control input uk = Tcl,k. For a friction-plate clutch, the clutch
torque Tcl,k depends on the capacity torque Tcap,k

Tcl,k = Tcap,k · sign (ωin,k − θ · ωout,k) , Tcap,k ≥ 0 , (13)

which means Tcl,k is changing its sign according to if the input speed or the output speed is higher.
The capacity torque is proportional to the contact force which is applied on the plates Tcap,k ∼ FN,k.

In real drive trains, the change of the control input in a time step is limited due to underlying
dynamics such as pressure dynamics. For simulating this behavior, a low pass filter is applied on the
control inputs. We use a first-order lag element (PT1) with the cutoff frequency fg

T ′cl,k =


(
Tcl,k − T ′cl,k−1

)
· (1− a) + T ′cl,k−1, if Tcl,k > T ′cl,k−1 ,(

T ′cl,k−1 − Tcl,k
)
· a+ Tcl,k, otherwise ,

where
a = exp (−2πfg∆T ) .

In this case, the control input provided by the controller Tcl,k is transformed to the delayed control
input T ′cl,k applied on the system.

The simple drive train model is used in three different experiments of input speed synchronization
which are derived from use cases of real drive trains. In the first experiment, the references to
be followed are smooth. This is associated with a usual gear shift. In real applications, delays,
hidden dynamics, or change-of-mind situations can arise which make a reinitialization of the reference
necessary. This behavior is modeled in the second experiment where the references contain jumps and
discontinuities, respectively. Jumps in the reference can lead to fast changes in the control inputs.
To still maintain a realistic behavior the lag element is applied on the control inputs. In the third
experiment, we use again smooth references but in different input speed ranges. Varying drive torque
demands typically cause the gear shift to start at different input speed levels. Our approach will be
evaluated on all three experiments to determine the performance for different use cases. Note, that
for demonstration purposes we consider speed synchronization by clutch control input only. In real
applications, clutch control is often combined with input torque feedforward.
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Table 1: Parameters of the simple drive train model.

Parameter Value
Input moment of inertia Jin 0.209 kgm2

Output moment of inertia Jout 86.6033 kgm2

Transmission ratio θ 10.02
Input torque Tin 20 Nm
η 2 (Nms)/rad
Time step ∆T 10 ms

7. Evaluation

As mentioned in the last chapter, we will evaluate our approach using three different experiments
representing three use cases of the drive train. In every experiment, the three different arguments of
the actor and the critic introduced in Chapter 5 will be applied.

For the drive train system (12), the arguments of the actor and the critic have to be defined. The
reference to be followed is only corresponding to the input speed. Since no reference for the output
speed is given we add the output speed ωout,k as global variable in all three arguments. Analogous to
(6), (7) and (8), the arguments of the drive train system are

s0,cl
k =

[
ωout,k, ωin,k,

(
ωrin,k − ωin,k

)]T
,

s1N,cl
k =

[
ωout,k, ωin,k, ω

r
in,k, ω

r
in,k+1, . . . , ω

r
in,k+N

]T
,

s2N,cl
k =

[
ωout,k,

(
ωrin,k − ωin,k

)
,
(
ωrin,k+1 − ωin,k

)
, . . . ,

(
ωrin,k+N − ωin,k

)]T
.

Without future reference values as applied in [13] the argument is s0,cl
k , with global future reference

values s1N,cl
k and in residual space with future reference values s2N,cl

k .
The reward function for the simple drive train model derived from (9) is given as

rk = −
(
ωin,k+1 − ωrin,k+1

)2
− β · (Tcl,k − Tin)2 . (14)

If Tcl,k = Tin the input speed ωin is not changing from time step k to time step k + 1 according to
(12). Thus, deviations of Tcl,k from Tin are penalized to suppress control inputs which would cause
larger changes in the state. All parameters used in the simple drive train model are given in Table 1.

7.1. Algorithm
The PPO algorithm, applied for the evaluation, is shown in Algorithm 1. We use two separate

networks representing the actor and the critic. In order to improve data-efficiency we apply experience
replay [20], [21]. While interacting with the system, the tuples (sk, uk, rk, sk+1) are stored in the
replay buffer. In every epoch a training batch of size L is sampled from the replay buffer to update the
actor’s and the critic’s parameters. As introduced in Chapter 4, the advantage function is determined
via generalized advantage estimation (4) with the GAE parameter set to λ = 0 and the discount
γ = 0.7. To improve the stability of the critic network during the training, we added a target critic
network V ′ [21] which is only updated every m-th epoch (in our implementation m = 2). The critic
loss is defined as the mean squared temporal difference error (5)

C(φ) = 1
L

L∑(
rk + γ V ′(sk+1)− V (sk)

)2
.

The output of the actor provides Tcap in (13) and the sign for Tcl is calculated through the input
and output speed. To ensure Tcap ≥ 0 the last activation function of the actor is chosen as ReLU.
In Table 2, all parameters used in the PPO algorithm are shown. In our trainings, we perform 2000
episodes each with 100 time steps. Each run through the system is followed by 100 successive training
epochs.
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Algorithm 1 PPO for tracking control
Require: Replay buffer D, critic parameters φ, actor parameters θ, actor learning rate αa, critic

learning rate αc, target network delay factor τ
1: Init target critic parameters φ′ ← φ and h = 0
2: for 1 .. Number of episodes do
3: Observe initial state x0 and new reference ωrin
4: for 1 .. K do
5: Apply control input uk ← πθ(sk)
6: Observe new state xk+1 and reward rk
7: Add (sk, uk, rk, sk+1) to replay buffer D
8: end for
9: for 1 .. Number of epochs do

10: Sample training batch from D
11: Update critic φ

h+1 ← φ
h

+ αc∇φC(φ
h
)

12: Calculate advantage Â using GAE
13: Update actor θh+1 ← θh + αa∇θJ(θh)
14: h← h+ 1
15: Every m-th epoch

Update target critic φ′ ← (1− τ)φ′ + τ φ
16: end for
17: end for

7.2. Simulation procedure
In the following, we will evaluate our approach on three different experiments. For each experiment

15 independent simulations are performed. In each simulation the algorithm is trained using 2000
different training references (one for each episode). After every tenth episode of the training the actor
is tested on an evaluation reference. Using the evaluation results the best actor of the training is
identified. In the next step, the best actor is applied to 100 test references to evaluate the performance
of the algorithm. In the following, the mean episodic reward over all 100 test references and all 15
simulations will serve as quality criterion.

The smooth references are cubic splines formed from eight random values around the mean
2000 rpm. In the second experiment, between one and 19 discontinuities are induced by adding
periodic square-waves of different period durations to the reference. The references in the third
experiment are shifted by adding an offset to the spline. Five different offsets are used, resulting in
data between approximately 1040 rpm and 4880 rpm.

Table 2: Parameters used in the PPO algorithm.

Parameter Value
Hidden layers size actor and critic networks [400, 300]
Activation functions actor network [tanh, tanh, ReLU]
Activation functions critic network [tanh, tanh, -ReLU]
Actor’s learning rate αa 5 · 10−5

Critic’s learning rate αc 1.5 · 10−3

Batch size L 100
Reply buffer size 10000
Initial standard deviation stochastic actor 10
c 0.1
τ 0.001
Entropy coefficient µ 0.01
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Figure 2: Training over 2000 episodes on smooth references.

As mentioned before, the results will be compared to the performance of a PI controller. We
determine the parameters of the PI controller by minimizing the cumulative costs over an episode,
respectively the negative of the episodic reward defined by the reward function (14). To avoid local
minima, we first apply a grid search and then use a quasi-Newton method to determine the exact
minimum. In the optimization, the cumulative costs over all training references (same as in the PPO
training) are used as quality criterion.

7.3. Results
In the following, the results of the different experiments with (1) a class of smooth references, (2)

a class of references with discontinuities and (3) a class of smooth references shifted by an offset will
be presented.

Class of smooth references
For smooth references the weighting parameter β in the reward function (14) is set to zero. The

parameters of the PI controller were computed as described in Section 7.2, the parameter of the
proportional term KP was determined as 20.88 and the parameter of the integral term KI is 11.08.
The training curves of the PPO approaches are drawn in Figure 2. It can be clearly seen that the
approaches using one future reference value in the argument of the actor and the critic (GPPO1,
RPPO1) reach a higher mean episodic reward than the approach including only reference information
of the current time step (CPPO). Furthermore, the approach with the argument defined in the residual
space (RPPO1) achieves high rewards faster than the GPPO1 and the CPPO.

As mentioned before, the trained actors are evaluated on a set of test references. The obtained
results are given in Table 3. The approach using global reference values in the argument (GPPO1)
and the approach defining the argument in a residual space (RPPO1) provide the best results. The
mean episodic reward of the CPPO is ten times lower than the ones of the GPPO1 and the RPPO1.

Table 3: Quality evaluated on test a set for smooth references.

Arguments of actor and critic Acronym Mean episodic Standard deviation
reward episodic reward

Current state and residuum
(s0,cl
k )

CPPO -0.303 0.027

Global space with one future
reference (s11,cl

k )
GPPO1 -0.035 0.020

Residual space with one future
reference (s21,cl

k )
RPPO1 -0.030 0.020

PI controller PI -0.069 1.534
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Figure 3: Performance of the best trained actors on a smooth test reference. Note that in real
applications reference trajectories are designed in such a way that the input speed is synchronized
quickly but smoothly towards zero slip at the clutch.
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Figure 4: Training over 2000 episodes on references with discontinuities.

The performance of the classical PI controller lies in between them but the standard deviation is very
high. This implies that optimizing the PI’s parameters using the training data, no parameters can be
determined which lead to equally good performance for all the different references.

In Figure 3, the best actors are applied to follow a test reference. The tracks of the PI controller,
the GPPO1 and the RPPO1 show similar behavior. Only in the valleys the PI controller deviated
slightly more from the reference. Since the CPPO has to decide for a control input only knowing the
current reference value, its reaction is always behind. In Figure 3a, it can be seen that the CPPO
applies a control input that closes the gap between the current input speed and the current reference
value. But in the next time step the reference value has already changed and is consequently not
reached. The same effect leads to a shift of the control inputs in Figure 3b.

Class of references with discontinuities
As mentioned before, to avoid unrealistic fast changes of the control inputs we add a first-order

lag element with cutoff frequency fg = 100 Hz to the traindrive model in the experiment setting for
references with discontinuities. In addition, β is set to 1/3000 in the reward function (14) to prevent
the learning of large control inputs when discontinuities occur in the reference signal. The PI controller
parameters were optimized on the same reward function resulting in KP = 18.53 and KI = 5.67.
Besides including the information of one future reference value the performance of adding three future
reference values (GPPO3 and RPPO3) is also investigated in this experiment. The learning curves of
all five PPO approaches are illustrated in Figure 4. All approaches with future reference values show
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Table 4: Quality evaluated on test references with discontinuities.

Arguments of actor and critic Acronym Mean episodic Standard deviation
reward episodic reward

Current state and residuum
(s0,cl
k )

CPPO -10.936 0.618

Global space with one future
reference (s11,cl

k )
GPPO1 -1.597 0.079

Global space with three future
reference (s13,cl

k )
GPPO3 -1.499 0.082

Residual space with one future
reference (s21,cl

k )
RPPO1 -1.614 0.088

Residual space with three fu-
ture reference (s23,cl

k )
RPPO3 -1.510 0.086

PI controller PI -1.747 2.767

similar results in the training. The PPO approach containing only current reference values (CPPO)
achieves a significant lower mean episodic reward.

A similar behavior can be observed in the evaluation on the test reference set for which the results
are given in Table 4. Again, the PPO approaches with one global future reference (GPPO1) and one
future reference in the residual space (RPPO1) show similar results and perform significantly better
than the CPPO. Adding the information of more future reference values (GPPO3 and RPPO3) leads
to an even higher mean episodic reward. The PI controller performs slightly worse than the PPO
aproaches with future reference information. Due to the large standard deviation of the PI controller’s
performance, it cannot be guaranteed to perform well on a specific reference.

The performance of the best actors on a test reference with discontinuities is illustrated in Figure 5a.
Note, for better visibility, the figure shows only a section of a full episode. The PPO approaches
including future reference values and the PI controller are able to follow the reference even if a
discontinuity occurs. The PPO approach without future reference values is performing even worse
than on the smooth reference. It can be clearly seen that the jump cannot be detected in advance and
the reaction of the actor is delayed. In Figure 5a the applied control inputs are shown, the approaches
including three future reference values respond earlier to the upcoming discontinuities and cope with
the discontinuity requiring only smaller control inputs (Figure 5b) which also leads to a higher reward.
The PI controller shows a similar behavior than the PPO approaches with one future reference value
(GPPO1 and RPPO1).
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Figure 5: Performance of the best trained actors on a test reference with discontinuities.
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Figure 6: Training over 2000 episodes on smooth references with offsets.

Class of smooth references with offsets
For the class of smooth references with offsets, the same settings, as used in the experiment for

smooth references, are applied. The PI parameters are determined as 20.88 for KP and 11.04 for KI .
The training curves of the PPO approaches are illustrated in Figure 6. Compared to the learning
curves of the smooth references experiment the training on the references with offset needs more
episodes to reach the maximum episodic reward. The training of the approach using global reference
values (GPPO1) is extremely unstable. The reason might be that the training data contains only
references in a finite number of small disjointed areas in a huge state space. As the argument of
GPPO1 includes only global states and reference value no shared data between this areas exist and
the policy is learned independently for each area. Consequently, the stability of the approaches with
argument components in the residual space CPPO and RPPO is not effected by this issue. However,
the RPPO1 is receiving higher rewards significantly faster than the CPPO which also contains the
global input speed.

In Table 5, the performance on a set of test references is given. The mean episodic reward
of the CPPO, the RPPO1 and the PI controller is in the same range as in the smooth references
experiment. As in the other experiments, the PI controller shows a large standard deviation. Despite
the instabilities in the training, the GPPO1 receives a higher mean episodic reward than the CPPO
but its performance is significant worse than in the smooth references experiment. It can be clearly
seen that residual space arguments lead to better performance for references with offsets. In Figure 7,
the performance of the best actors on a test reference is illustrated. For better visibility, only a section
of a full episode is drawn. The results are similar to the smooth reference experiment, only the GPPO1
shows slightly worse tracking performance.

Table 5: Quality evaluated on a test set for smooth references with offset.

Arguments of actor and critic Acronym Mean episodic Standard deviation
reward episodic reward

Current state and residuum
(s0,cl
k )

CPPO -0.377 0.091

Global space with one future
reference (s11,cl

k )
GPPO1 -0.102 0.089

Residual space with one future
reference (s21,cl

k )
RPPO1 -0.031 0.018

PI controller PI -0.069 1.541
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Figure 7: Performance of the best trained actors on a smooth test reference with offsets.

8. Conclusion

In this work, proximal policy optimization for tracking control exploiting future reference infor-
mation was presented. We introduced two variants of extending the argument of both actor and
critic. In the first variant, we added global future reference values to the argument. In the second
variant, the argument was defined in a novel kind of residual space between the current state and the
future reference values. By evaluating our approach on a simple drive train model we could clearly
show that both variants improve the performance compared to an argument taking only the current
reference value into account. If the approach is applied to references with discontinuities, adding
several future reference values to the argument is beneficial. The residual space variant shows its
advantages especially for references with different offsets. In addition, our approach outperforms PI
controllers commonly used in drive train control. Besides higher tracking quality, the generalization
to different references is significantly better than using a PI controller. This guarantees an adequate
performance on arbitrary, before unseen, references.

In future work, our approach will be applied to a more sophisticated drive train model where
noise behavior, model inaccuracies, non-modeled dynamics, and control input range limits, as being
expected in a real drive train system, are systematically included in training.
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