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Abstract

This work is devoted to anisotropic continuum-damage mechanics in the quasi-static, isothermal, small-

strain setting. We propose a framework for anisotropic damage evolution based on the compliance

tensor as primary damage variable, in the context of generalized standard models for dissipative

solids. Based on the observation that the Hookean strain energy density of linear elasticity is jointly

convex in the strain and the compliance tensor, we design thermodynamically consistent anisotropic

damage models that satisfy Wulfinghoff’s damage-growth criterion and feature a convex free energy. The

latter property permits obtaining mesh-independent results on component scale without the necessity of

introducing gradients of the damage field. We introduce the concepts of stress-extraction tensors and

damage-hardening functions, implicitly describing a rigorous damage-analogue of yield surfaces in elasto-

plasticity. These damage surfaces may be combined in a modular fashion and give rise to complex damage-

degradation behavior. We discuss how to efficiently integrate Biot’s equation implicitly, and show how to

design specific stress-extraction tensors and damage-hardening functions based on Puck’s anisotropic

failure criteria. Last but not least we demonstrate the versatility of our proposed model and the efficiency

of the integration procedure for a variety of examples of interest.
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Introduction

State of the art

Damage mechanics describes the progressive degradation of the elastic stiffness of materials upon

loading, and is typically attributed to growing voids or cracks on a lower length scale (Lemaitre,

1996), see Figure 1. There are two predominant approaches to continuum damage-mechanics

(Krajcinovic, 1984; Lemaitre and Chaboche, 1990). The first approach accounts for the origin of

damage on a lower length scale in terms to micromechanics (Fitoussi et al., 1996; Guo et al., 1997),

see also Section 3 in Krajcinovic (1989) for an early account. With qualitative predictions in mind,

the second strategy is of phenomenological nature. After selecting a suitable damage variable (or a

collection thereof), suitable kinetic laws are postulated taking continuum thermodynamics into

account, Section 4 in Krajcinovic (1989).
The micromechanics-based approach to damage mechanics takes the damage mechanisms on a

lower scale into account and is still subject of current research, for instance concerning mesh-size

objective modeling (Liang et al., 2018), a coupling to model-order reduction (Bhattacharyya et al.,

2020) or accounting for micro-computed tomography data (Luo et al., 2020). Micromechanics-

informed damage models permit taking the stochastics on the microscale into account naturally,

e. g., for progressive fiber breakage in fiber-reinforced composites (Ju and Wu, 2016; Wu and Ju,

2017), interfacial transition-zone effects (Chen et al., 2018), uncertainty in the elastic moduli of

fiber-reinforced concrete (Liu et al., 2020), localized microcracks (Li et al., 2020) or random loading

in fatigue processes (Franko et al., 2017). Another advantage concerns modeling the unilateral

character of brittle damage, i. e., a different damaging behavior under tension compared to com-

pression (Goidescu et al., 2015; Zhang et al., 2019), and accounting for interface debonding (Pupurs

and Varna, 2017; Schemmann et al., 2018b; Yang et al., 2020). However, care has to be taken as

homogenization and localization are incompatible (Gitman et al., 2007), in general, i.e., upon

localization, the volume elements considered will not be representative for the effective mechanical

behavior (Drugan and Willis, 1996; Hill, 1963; Kanit et al., 2003).
As an alternative to micromechanics-type strategies, phenomenological approaches to

continuum-damage mechanics may be pursued. In a first step, a (scalar- or tensor-valued)

damage variable is selected which describes the reduction of the effective cross-section of a typical

material sample undergoing material degradation (Gurson, 1977; Voyiadjis, 2015). Then, suitable

kinetic laws are postulated on the basis of continuum thermodynamics (Hansen and Schreyer, 1994;

Simo and Ju, 1987).
The tensor order of the damage variable naturally distinguishes different phenomenological

damage models. Even today, the classical scalar isotropic damage variable serves as a reliable

Figure 1. Schematics of microstructures with growing microscopic cracks, passing from state ‹ to state ›, similar
to Fassin et al. (2019). Growing microcracks induce a reduction of the effective stiffness. (a) Polycrystalline micro-
structure. (b) Microstructure composed of fiber bundles.
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workhorse with numerous applications including cast steel with pores (Yan et al., 2020), concrete
(Li and Wu, 2018), rocks (Liu et al., 2018; Xu et al., 2018), framed structures (Yang et al., 2017),
unidirectional glass fiber-reinforced plastic composite plies (Sharma and Daggumati, 2020), fibrous
composite laminae (Abu-Farsakh and Asfa, 2020), notched epoxy resin specimens (Rahimi et al.,
2020) and steel-fiber reinforced concrete (Moradi et al., 2020).

Damage variables with higher tensor order permit modeling an emerging anisotropy of damage.
As working with second-order tensors comes naturally to disciples of continuum mechanics, it is not
surprising that second-order damage-tensors (Murakami and Ohno, 1981) are used frequently in
continuum damage-mechanics. Recent applications include concrete (Desmorat, 2016; Wardeh and
Toutanji, 2017), metal-forming processes (Nasab and Mashayekhi, 2019), rock materials (Wang and
Xu, 2020), composite fabrics and laminated panels (Wei et al., 2020) and composite laminates
(Okabe et al., 2018; Onodera and Okabe, 2020). Second-order damage-tensors are always ortho-
tropic w. r. t. their eigenbasis, limiting their degree of generality. More often than not, such
a limitation is interpreted as a feature, and specific orthotropic damage models are developed,
for instance for brittle materials (Kim et al., 2016), in elastoplastic and finite-strain damage
coupling (Ganjiani, 2018; Reese et al., 2021), or for ceramic-matrix composites (Alabdullah and
Ghoniem, 2020).

As continuum damage-models primarily seek to describe a loss of stiffness due to emerging
defects in solids, using a fourth-order damage-tensor (Chaboche, 1981), the same tensor order as
the stiffness tensor, appears reasonable. In Section 4.3.4, Krajcinovic (1989) even notes that “an
appropriate description of damage [. . .] must involve at least a fourth-rank tensor.” This idea was
pursued for the stiffness or compliance tensors as the primary damage variable (Dougill, 1976;
Ortiz, 1985; Ortiz and Popov, 1982), also coupled to plasticity (Ju, 1989; Simo and Ju, 1987;
Yazdani and Schreyer, 1990). We refer to Zhang and Cai (2010) for a modern account of aniso-
tropic damage mechanics. However, some care has to be taken when working with tensor-valued
damage variables due to possible inconsistencies arising for complex non-radial loading-unloading
scenarios, see Simon et al. (2017).

The unilateral character of pores and cracks (see Figure 1) often leads to a tension-compression
asymmetry of the material behavior upon damage loading, see Chaboche (1993) for a discussion. To
incorporate the latter effect in phenomenological models, one may introduce different damage
variables for the tensile and the compressive regime (Cicekli et al., 2007; Ramtani et al., 1992).
For three-dimensional stress states, spectral decompositions of either the strain or the stress tensor
may form the basis of continuum damage models that differentiate between damage evolution due
to tension and compression (Ladeveze and Lemaitre, 1984; Ortiz, 1985).

Whenever damage models exhibit a softening behavior, their use in a continuum formulation
leads to an ill-posed problem due to localization effects (Lemaitre, 1986), which is reflected by
strongly mesh-dependent results in numerical simulations (De Borst, 1996). Countermeasures in
the framework of local damage models were investigated (Becker et al., 1988; Beremin et al., 1983;
Tvergaard, 1982). Non-local formulations (Ba�zant, 1991; Belytschko et al., 1986) prevent the local-
ization responsible for the ill-posedness, and may be realized by an explicit convolution with a
tapering function (Pijaudier-Cabot and Ba�zant, 1987), by augmenting the damage evolution equa-
tion by an elliptic differential operator (Aifantis, 1984) or by employing a gradient-enhanced for-
mulation (Abu Al-Rub and Voyiadjis, 2009; Brünig and Ricci, 2005; Germain et al., 2007), which
may also be coupled to Hamilton’s least-action principle (Junker et al., 2019, 2021). As long as the
softening is not too pronounced, existence of results for non-local damage models (Thomas and
Mielke, 2010) may be established. However, except for specific models (Roub�ıc�ek, 2009; Susu,
2017), uniqueness (and, thus, well-posedness) cannot be ensured. For a review on ill-posedness
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due to localization problems and appropriate regularization methods, the reader is referred to
Forest et al. (2004). Also, for a general overview on continuum damage-mechanics and further

literature, the reader may consult the books of Murakami (2012) and of Voyiadjis (2015).
Oftentimes, the ill-posedness of local damage models is taken for granted, and appropriate

countermeasures are taken. A charming strategy takes a conventional local damage model with

softening (but sufficient growth at infinity), and applies relaxation techniques (Balzani and Ortiz,
2012; Schmidt and Balzani, 2016; Schwarz et al., 2021), which are typically used for studying solids

with emerging microstructure. When describing stable damage processes, these countermeasures
should not be neccesary, however. Indeed, for a moderate degree of loading, localization is exclud-

ed, and manifests only at a specific turning point in loading level. For component-scale simulations,
this loading level is not readily apparent, and depends on the specimen geometry via solving the

equations of continuum mechanics. To sum up and loosely speaking, we know that local damage
models are perfectly reasonable up to a specific level of loading, but we do not know this level in

advance. Thus, interest arose to design damage models which give rise to a meaningful response for
the entire range of loading, and which are intended to be complemented by a classical failure

criterion.

Contributions and organization of this article

We contribute to phenomenological continuum damage-mechanics with a tensorial damage vari-
able. We advocate using the full compliance tensor as a rather natural and observable damage

variable, liberating the engineer of the burden of selecting the appropriate damage variable in
advance, permitting her to focus the attention on appropriate kinetic laws. Thus, when it comes

to continuum damage-mechanics of phenomenological type, the proposed framework is as ab-initio
as possible, since only the evolution of the damage surface in stress space needs to be identified.

The compliance tensor has been used as the primary damage variable before (Baranger, 2018;
Ladev�eze, 1983, 2002; Ladev�eze et al., 2014). Yet, this approach has not yet entered the main stream

of damage-modeling frameworks. Our theoretical contributions to compliance-based damage
models are actually twofold. For a start, we point out that the standard Hookean strain energy

density, regarded as a function of the strain tensor and the full compliance tensor, is de facto jointly

convex in both arguments. This result is surprising, and we are not aware of an account in the
literature (although we sincerely believe that others have presumably noticed this fact before with-

out stating it explicitly, see Thomas and Mielke (2010) for a special case).
Based on the compliance tensor, we develop a simple, modular framework for anisotropic

damage mechanics. The framework provides the working engineer with a number of options
which we believe to be of advantage. Indeed, due to the convexity property of the Hookean elastic

energy, it is possible to develop a purely hardening damage-mechanics modeling-framework, where
localization does not become an issue. Very much, there are materials which show a purely damage-

hardening material response prior to sudden and brutal failure, e.g., Sheet Molding Compound
(SMC) composites (Anagnostou et al., 2018; Fitoussi et al., 1996, 1998) comprising an unsaturated

polyester-polyurethane hybrid (UPPH) resin (Kehrer et al., 2018; Schemmann et al., 2018a; Trauth

et al., 2017) reinforced by glass fibers (G€orthofer et al., 2019; Meraghni and Benzeggagh, 1995;
Schemmann et al., 2018c).

Of course, the modeling framework is not restricted to damage-hardening, but may be adapted to
softening in a straightforward manner. However, the latter scenario is rather classical in continuum

damage-mechanics, and we decided to work out the details of a hardening framework in the paper
at hand, essentially due to our desire to model SMC materials.
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To highlight the simplicity of our proposed compliance-type damage modeling framework, we

present a first-principles development in the context of generalized standard models (GSMs) for

dissipative solids (Halphen and Nguyen, 1975) and discuss the efficient resolution of the evolution

equations in a predictor-corrector framework.
Our second contribution concerns a design methodology for the damage surfaces which draws upon

similar approaches in (associative) elastoplasticity (Bertram, 2011; Chaboche, 2008; McDowell, 2008),

but takes failure criteria and multiple damage surfaces (Bakhshan et al., 2018; Jin and Arson, 2018;

Khayyam Rayeni et al., 2020) into account. More precisely, building upon Puck’s anisotropic failure

criteria developed for continuously reinforced polymers (Knops, 2008; Puck and Schürmann, 2002), we

design specific damage-extraction tensors and damage-activation functions which present a flexible

arsenal of tools that, taking the individual damaging mechanisms into consideration, permit building

up an accurate and fully anisotropic continuum damage model.
For anisotropic damage models not to be judged as purely academic, it is of utmost importance to

establish links to experimental data and to compare it to (dis)similar modeling approaches. After

conducting computational investigations which clarify the influence of the different model param-

eters on the damage evolution and expose the developing elastic anisotropy upon loading, we study

a plain-weave mesostructure of a woven carbon-fiber reinforced thermoset investigated by Simon

et al. (2017). We show that the convex modeling framework permits reproducing the effective

mechanical behavior of the individual tows and the composite quantitatively within the loading

range of interest.

Notation

We follow a direct tensor notation throughout the text, representing vectors and tensors by their

components or using matrix representations (in an orthonormal basis) only when necessary. Vectors

and second-order tensors are denoted by lower case and upper case bold letters, respectively (e.g., a

and A). Fourth-order tensors are denoted by, e.g., A;B. Scalars and arrays of quantities are repre-

sented by non-bold letters (e.g., H, w or z). The transposition of a vector and second-order tensor

reads aT and AT, respectively. The principal transposition of a fourth-order tensor is denoted via A
TM

and the left and right transpositions are ATL and A
TR. The linear mappings induced by second-order

and fourth-order tensors are written as a ¼ Cb and A ¼ C½B�, respectively. The composition of two

second-order or two fourth-order tensors is denoted by AB and AB. The Frobenius inner product is

denoted by A � B ¼ trðABTÞ. The tensor product is symbolized by �. Its symmetrized version �S is

defined via a�Sb ¼ a� bþ b� að Þ=2. We introduce the abbreviation a�n ¼ a� a . . .� a (n repeti-

tions). The material time derivative of a quantity w is expressed as _w ¼ dw= dt. We denote by SymðdÞ
the space of symmetric second-order tensors on R

d. The unit sphere in R
3 reads S2. The vector space

of fourth-order tensors with minor symmetries (A ¼ A
TL ; A ¼ A

TR) is written as LðSymðdÞÞ, whereas
SymðSymðdÞÞ denotes those-fourth order tensors that have minor and major symmetries (A ¼ A

TM).

In general, details on further spaces of interest, domains of definition and corresponding explicit

expressions are given upon their first appearance.

A compliance-based anisotropic damage model

A convex standard model for anisotropic damage

We will describe the damage model, in a small-strain and isothermal setting, as a generalized stan-

dard model (GSM) (Halphen and Nguyen, 1975), whose framework we briefly recall. In addition to
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the symmetric d� d infinitesimal strain tensor e 2 SymðdÞ, where d¼ 2, 3 denotes the dimension of
the ambient space, a (Banach) space Z of internal variables is postulated. Furthermore, a free
energy (density)

w : SymðdÞ � Z ! R; ðe; zÞ 7! wðe; zÞ; (2.1)

a continuously differentiable function of the strain tensor e and the internal variables z 2 Z,
and a force potential U� : Z0 ! ½0;1�, a lower semicontinuous, non-negative and convex
function on the continuous dual space Z0 satisfying U�ð0Þ ¼ 0, are introduced. To
ensure thermodynamic consistency, the Clausius-Duhem inequality (CDI), see Chapter 13 in
Haupt (2000),

0 �! r � _e� d

dt
wðe; zÞ½ � 	 r� @w

@e
ðe; zÞ

� �
� _e� @w

@z
ðe; zÞ � _z; (2.2)

where _z 	 dz= dt denotes the material time derivative of the internal variables, needs to be satisfied.
Associated to a current equilibrium state ðe; zÞ of a hyperelastic material, the Cauchy stress tensor
r 2 SymðdÞ is defined (Halphen and Nguyen, 1975; Miehe, 2002) by

r ¼ @w

@e
ðe; zÞ: (2.3)

For a prescribed loading path e : ½0;T� ! SymðdÞ on a given interval of time and the initial
condition zð0Þ ¼ z0 for some z0 2 Z, the evolution of the internal variables is governed by Biot’s
(dual) equation

_z 2 @U� � @w

@z
ðe; zÞ

� �
; (2.4)

where @U� denotes the subdifferential of the convex function U�

@U�ðnÞ ¼ z 2 Z jU� ~n
� �
� U�ðnÞ 
 ~n � n

� �
� z for all ~n 2 Z0

n o
; (2.5)

a subset of Z0, see Borwein and Lewis (2006) for details. Due to these definitions, see Halphen and
Nguyen (1975), generalized standard materials are automatically thermodynamically consistent.
Indeed, by Biot’s (dual) equation (2.4),

U�ð0Þ � U�ðnÞ 
 ð0� nÞ � _z for n ¼ � @w

@z
ðe; zÞ (2.6)

holds. Using U�ð0Þ ¼ 0, rearranging the latter inequality yields

� @w

@z
ðe; zÞ � _z 	 n � _z 
 U�ðnÞ 
 0; (2.7)
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i.e., the Clausius-Duhem inequality (2.2) holds in view of the definition of stress (2.3). As it drives the
evolution of the internal variables, the quantity n 	 � @w

@z ðe; zÞ is called driving force.
As internal variables z of our proposed continuum damage-mechanics model, we consider an

elastic compliance tensor

S 2 Sd ¼ S 2 SymðSymðdÞÞ j s � S s½ � > 0 for all s 2 SymðdÞnf0g� 	
; (2.8)

and a general variable q 2 Q which describes the shape and size of the damage surface, s. t.

z ¼ S; qð Þ 2 Sd �Q: (2.9)

Notice that the set Sd of (positive definite) compliance tensors is not a linear space. Instead, it is
an open, convex subset of the linear space of fourth-order tensors SymðSymðdÞÞ with minor and
major symmetries.

For a GSM, the CDI (2.2) will always be satisfied. However, we need to ensure that the (dual)
Biot’s equation (2.4) guarantees that S remains an element of Sd, i.e., that the compliance tensor S
remains positive definite. In contrast, the damage-surface variables we consider live in a linear space
Q (which we deliberately keep abstract). For the specific models presented in the next section q is
just a finite collection of scalar values. However, our arguments cover the more general case,
accounting for vector- or tensor-valued damage-surface variables in a natural way.

The free energy (density) we consider is defined by

w : SymðdÞ � Sd �Q ! R; ðe; S; qÞ 7! weðe; SÞ þ hðqÞ; (2.10)

involving the Hookean elastic energy (density)

we : SymðdÞ � Sd ! ½0;1Þ; ðe; SÞ 7! 1

2
e � S�1 e½ �; (2.11)

and an energy (density) related to the progressive degradation of the material,

h : Q ! R; q 7! hðqÞ; (2.12)

which we assume to be convex and continuously differentiable. Notice that the Hookean elastic
energy we (2.11) is jointly convex in both variables and infinitely often differentiable. The latter
property is immediate1, as we depends on e quadratically and the Neumann-series representation

ðSþ LÞ�1 ¼
X1
k¼0
�S�1Lð ÞkS�1; S 2 Sd; L 2 SymðSymðdÞÞ; (2.13)

valid for sufficiently small L, shows that we is even analytic. For the convexity, recall that a twice
differentiable function defined on an open convex set is convex if and only if its Hessian is positive
semidefinite everywhere, see Theorem 3.1.11 in Borwein and Lewis (2006). A direct computation
shows that the Hessian admits the representation

D2weðe; SÞ½n;L� ¼ 1

2
n� LS

�1 e½ �

 �

� S�1 n� LS
�1 e½ �

h i
; (2.14)
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for ðe; SÞ 2 SymðdÞ � Sd and ðn;LÞ 2 SymðdÞ � SymðSymðdÞÞ, see Appendix B. Any S 2 Sd is pos-

itive definite, and thus, the Hessian in equation (2.14) is non-negative. Consequently, the elastic

energy is convex (but not strictly convex). As we assumed the energy h (2.12) to be continuously

differentiable and convex, the smoothness and convexity properties of we imply that the free energy

w (2.10) is continuously differentiable and convex, as well. Furthermore, the formula for the Cauchy

stress (2.3) becomes

r ¼ @w

@e
ðe; S; qÞ 	 S

�1 e½ �; (2.15)

i.e., for a fixed compliance tensor S, the stress-strain relationship reduces to Hooke’s law. To

conclude this paragraph, several remarks are in order.

1. Using the framework of generalized standard materials for phenomenological modeling of damage

is classical. For instance, Hansen and Schreyer (1994) study a general tensor-valued damage var-

iable coupled to plasticity in such a framework, apparently unaware of the connection.
2. In phenomenological continuum damage-mechanics, choosing the damage variable typically

comes first, and the damage kinetics needs to be set up based on the resulting driving forces.

Our approach frees the reader of an a priori selection of damage variable, and permits her to

focus on the kinetics in terms of the quite natural stress-based driving force.
3. The compliance tensor has the attractive characteristic that it is a physical quantity which can be

determined experimentally. Of course, determining all 21 independent parameters of a stiffness tensor

in three spatial dimensions is a daunting task from an experimental perspective. Still, observability of

the damage variable is not ensured for purely phenomenological damage vectors and tensors.
4. The compliance tensor has been used as a damage variable before (Ladev�eze, 1983, 2002).

However, its use seemed restricted to specific situations, e.g., damage modeling in ceramic-

matrix composites (Baranger, 2018; Ladev�eze et al., 2014). In this work, we advocate using

the compliance tensor as the damage variable of choice in greater generality.
5. It is more than well-known that the Hookean energy (2.11) is convex in the strain tensor. It

appears much less known that the Hookean energy is jointly convex in the strain and the com-

pliance tensor. When coupled to an energy h which makes the condensed incremental potential

strictly convex, the resulting framework produces an anisotropic damage model which does not

permit localization. In particular, associated finite-element computations are not affected by

mesh sensitivity induced by softening behavior. We do not want to argue against damage local-

ization. Rather, we wish to add a powerful weapon to the arsenal of continuum damage-

mechanics when it comes to modeling stable anisotropic damage phenomena.
6. In classical small-strain elasto(visco)plasticity the (visco)plastic strain ep 2 SymðdÞ serves as an

internal variable. The corresponding stored energy (density)

ðe; epÞ 7! 1

2
e� epð Þ �C e� ep½ � (2.16)

with a fixed stiffness tensor C ¼ S
�1 is smooth and jointly convex in both arguments, but not

strictly convex. The Hookean elastic stored energy function we (2.11) may be considered as a

damage-analog of the elastic stored energy in classical elasto(visco)plasticity (2.16). The com-

bined energy taking into account damage (2.11) and elasto(visco)plasticity (2.16) is jointly convex

8 International Journal of Damage Mechanics 0(0)



in all variables. If plasticity is neglected (ep 	 0) we recover the damage case and for a constant
stiffness (C ¼ S

�1 	 const:) we recover classical elasto(visco)plasticity. Such a model differs from
the classical presentation, which is typically based on either strain or energy equivalence (Hansen
and Schreyer, 1994; Sections 3.2.1 and 3.2.2).

7. If we regard the Hookean elastic stored energy function ðe;CÞ 7! 1
2
e �C e½ � as a function of the

stiffness tensor C, it will not be convex. Indeed, its Hessian at ðe;CÞ computes as

ðn;LÞ 7! 2n � L e½ � þ n �C n½ �; (2.17)

which may become negative (take, for instance n ¼ e and L ¼ �C). This lack of convexity is the
reason why it is so difficult to design convex damage models for stable damage processes. Using
the compliance tensor eradicates these issues with the help of a nonlinear transformation.

8. For the thermodynamics considerations at the beginning of this section to be valid, the
“interfacial” energy (2.12) need not be convex, see, for example, Govindjee et al. (1995). In
particular, softening behavior can be modeled in the compliance-tensor framework, as well. In
that case, for obtaining a well-defined boundary-value problem, damage localization has to be
overcome, for instance by adding gradient terms of the variable q to the energy (2.12).

9. The presented model cannot distinguish tensile and compressive loading. Indeed, the driving
force T (2.18) for the compliance evolution computes as

T ¼ � @wðe; S; qÞ
@S

¼ � @weðe; SÞ
@S

¼ 1

2
r� r 2 SymðSymðdÞÞ; (2.18)

which is insensitive to the involution r 7! � r. Thus, in order to extend our model to account for
tension-compression asymmetry, the free energy w requires a modification, see Ladev�eze and co-
workers (Ladev�eze, 1983, 2002; Ladev�eze et al., 2014).

To finish presenting the two-potential model, a suitable force potential U� needs to be provided,
entering the evolution equation of the internal variables, see equation (2.4),

ð _S; _qÞ 2 @U� T; bð Þ: (2.19)

In the quasi-static setting targeting a rate-independent damage model, we describe the force
potential U� in terms of M continuously differentiable and convex damage functions
/i : SymðSymðdÞÞ � Q0 ! R, i.e.,

U�ðT; bÞ ¼ 0; /iðT; bÞ � 0 for all i ¼ 1; . . . ;M;
þ1; otherwise:

�
(2.20)

Such a force potential gives rise to a quasi-static damage evolution in terms of an elastic domain
defined by the functions /i, in strict analogy to associated elastoplasticity at small strains, see
Chapter 5 in Simo and Hughes (1998). A schematic of the admissible region based on the force
potential (2.20) with corresponding driving forces T and b is shown in Figure 2.
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However, some care has to be exercised, as the elastic domain is defined in terms of the com-
pliance driving-force T, which takes the form T ¼ 1

2 r� r for the free energy w (2.10), in contrast to

elastoplasticity, where the stress tensor r (or a shifted version thereof) serves as the driving force.
For the specific force potential U� (2.20), Biot’s (dual) equation (2.4) becomes

_S ¼
XM
i¼1

_li

@/iðT; bÞ
@T

and _q ¼
XM
i¼1

_li

@/iðT; bÞ
@b

; (2.21)

involving the driving forces

b ¼ � @wðe; S; qÞ
@q

	 � @hðqÞ
@q
2 Q0 (2.22)

for the evolution of the damage-surface variables q and consistency parameters l1; . . . ; lM which

obey the Karush-Kuhn-Tucker (KKT) conditions

_li 
 0; /iðT; bÞ � 0; _li /iðT; bÞ ¼ 0; i ¼ 1; . . . ;M: (2.23)

To ensure that S remains in the set Sd of positive definite compliance tensors, a condition of the

form

@/iðT; bÞ
@T


 0 for all i ¼ 1; . . . ;M; (2.24)

on the damage functions /i is sufficient. The latter condition was established by Wulfinghoff et al.

(2017) as a criterion any physically meaningful vectorial or tensorial continuum-damage model
should satisfy. In our context, the compliance tensor S serves as the damage variable, and

Wulfinghoff’s criterion becomes “ _S 
 0”, i.e., _S is positive semidefinite.
To complete describing our model, we restrict the space of damage variables to Q ¼ R

M, i.e., one

scalar damage variable per damage-activation function /i. We define the damage-activation func-
tion to be

Figure 2. Schematic of the admissible elastic region in (T; b)-space.
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/i : SymðSymðdÞÞ � R! R; ðT; biÞ 7! 2T � B2
i � r20;i þHibi; i ¼ 1; . . . ;M; (2.25)

involving a (fourth-order, dimension-free) damage-extraction tensor Bi 2 LðSymðdÞÞ with minor and
major symmetries, a damage-activation threshold r0;i (analogous to the yield stress in elastoplasticity),

and a positive parameter Hi with the dimensions of stress.
In principle, the damage-extraction tensor Bi need not have the major symmetry for equation

(2.29) to make sense. In this non-symmetric case, the term B
2
i in equation (2.25) needs to be replaced

by B
TM

i Bi in terms of the transpose B
TM

i of the damage-extraction tensor Bi. However, the frame-

work (2.25) may be recovered by defining ~Bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B
TM

i Bi

q
. Thus, by restricting the damage-extraction

tensor to have major symmetries we do not lose generality. Furthermore, as we consider the variable
qi to be dimensionless, the associated driving force bi has dimensions of stress and the parameter Hi

is necessary for dimensional reasons.
In any case, for the damage function (2.25) the condition (2.24) to fulfill Wulfinghoff’s damage

growth criterion, is automatically satisfied. Indeed, for any i ¼ 1; . . . ;M, we obtain,

s � @/iðT; biÞ
@T

s½ � ¼ s � B2
i s½ � ¼ Bi s½ � � Bi s½ � ¼ jjBi s½ �jj2 
 0 for all s 2 SymðdÞ: (2.26)

In addition to the damage functions, we assume a hardening-type damage-surface potential of
power-law type

hðqÞ ¼
XM
i¼1

Gi

mi þ 1
qmiþ1
i ; mi > 0; (2.27)

involving a positive, dimension-free power-law exponent mi and a positive hardening parameter Gi

with dimensions of stress. Thus, according to (2.22), the damage-driving forces compute as

bi ¼ �Giq
mi

i ; i ¼ 1; . . . ;M: (2.28)

In view of the force potential U� (2.20) and the driving forces T (2.18) and b (2.28), there is an
elastic domain in the (extended) stress space, described by the conditions

jjBi r½ �jj2 � r20;i þ GiHi q
mi

i ; i ¼ 1; . . . ;M; (2.29)

where no damage occurs. As defined in equations ð2:21Þ, the evolutions of the compliance and the
damage-surface variables are governed by

_S ¼ 2
XM
i¼1

_li B
2
i and _qi ¼ _liHi; i ¼ 1; . . . ;M; (2.30)

in case of an active damage system at index i – otherwise, _li ¼ 0 holds.
Several simplifications are in order. First, notice that the parameters Gi and Hi only enter (2.29)

as the product GiHi. As we may redefine ~Gi ¼ ~Hi ¼
ffiffiffiffiffiffiffiffiffiffi
GiHi

p
without changing the elastic domain

(2.29), we assume Gi ¼ Hi. Secondly, we may eliminate the consistency parameter from the evolu-
tion of the compliance ð2:30Þ and integrate to get
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SðtÞ ¼ S0 þ 2
XM
i¼1

qiðtÞ
Hi

B
2
i ; (2.31)

where S0 ¼ Sð0Þ is the initial compliance. Thirdly, in three spatial dimensions d¼ 3, the compliance

tensor S is described by 21 independent parameters. The latter formula (2.31) permits us to express

the current compliance tensor S in terms of the internal variables q. Thus, with an eye towards an

efficient implementation, we may a posteriori eliminate the compliance tensor S from the model.

Furthermore, as stated above, notice that the equations (2.30) permit us to eliminate the parameters

_l completely. Last but not least, in view of the elastic domain (2.29), we may work with the damage-

activation functions fi

fi : SymðdÞ � R! R; ðr; qiÞ 7! jjBi r½ �jj2 � r20;i �H2
i q

mi

i ; i ¼ 1; . . . ;M; (2.32)

instead of the original functions /i (2.25). For the convenience of the reader, we summarize the key

aspects of the model in the following box.

Summary of compliance-based convex damage model (primal formulation)

Input Initial compliance tensor S0, extraction tensors Bi, hardening moduli Hi > 0, damage thresholds

r0;i > 0, power-law exponents mi > 0 ði ¼ 1; . . . ;MÞ.
Evolution equations For given strain path e : ½0; T� ! SymðdÞ, find damage-hardening variables q : ½0; T� !
R

M and a stress path r : ½0; T� ! SymðdÞ, s. t.

fiðr; qiÞ � 0; _qi 
 0; _qi fiðr; qiÞ ¼ 0; i ¼ 1; . . . ;M; (2.33)

holds, with initial conditions qð0Þ ¼ 0, and where

fiðr; qiÞ ¼ jjBi r½ �jj2 � r20;i �H2
i q

mi

i and e ¼ S0 þ 2
XM
i¼1

qi
Hi

B
2
i

 !
r½ �: (2.34)

Computational predictor-corrector framework

In this section, upon an implicit Euler discretization in time, we discuss a predictor-corrector solu-

tion strategy for the model introduced in the previous section in strict analogy to associative

elastoplasticity, see Chapter 2 in Simo and Hughes (1998). Suppose that a number of discrete

time steps 0 ¼ t0 < t1 < . . . < tN�1 < tN ¼ T is given, together with prescribed strain tensors

e0; e1; . . . eN, an initial compliance tensor S0 and the initial damage-hardening variable

q0 	 0 2 R
M. For any n ¼ 0; . . . ;N� 1, dropping the subscript nþ 1 for simplicity of notation,

we seek ðr; qÞ 2 SymðdÞ � R
M solving the system of equations
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e ¼ S0 þ 2
XM
i¼1

qi
Hi

B
2
i

 !
r½ �

fiðr; qiÞ � 0; qi � qi;n 
 0; ðqi � qi;nÞ fiðr; qiÞ ¼ 0; i ¼ 1; . . . ;M;

(2.35)

with the damage functions fi ð2:34Þ1. With a computational resolution in mind, we rewrite the system
(2.35) in terms of active sets. For any ðr; qÞ 2 SymðdÞ � R

M, the active set Aðr; qÞ is defined as

Aðr; qÞ ¼ i 2 1; 2; . . . ;Mf g j fiðr; qiÞ 
 0
� 	

; (2.36)

collecting all indices of inequality constraints that are either violated or satisfied exactly. Then, as a
consequence of the complementarity condition in the system (2.35), ðr; qÞ 2 SymðdÞ � R

M solves the
system (2.35) precisely if it satisfies qi 
 qi;n ði ¼ 1; . . . ;MÞ and solves

S0 þ 2
XM
i¼1

qi
Hi

B
2
i

 !
r½ � ¼ e

fiðr; qiÞ ¼ 0 for all i 2 Aðr; qÞ:
(2.37)

We solve the latter problem by an active set strategy (Bergounioux et al., 1999, 2000), i.e., by
solving the system (2.37) with a Newton method, updating the currently active set at each Newton
iteration and accounting for the constraints qi 
 qi;n ði ¼ 1; . . . ;MÞ via backtracking. The details
comprise Alg. 1, where c 2 ð0; 1Þ is a backtracking factor. We use a backtracking factor of c ¼ 0:9 in
our presented examples.

As long as the damage constraints are linearly independent, due to the established connections of
active set strategies to semi-smooth Newton methods, see Hintermüller et al. (2002), a locally
superlinear convergence behavior can be expected. A schematic of the predictor-corrector strategy
is shown in Figure 3 with

residualðr; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr� S0 þ 2

XM

i¼1 qi B
2
i =Hi


 ��1
e½ �k2 þ

XM

i¼1 maxf0; fiðr; qiÞg
r

jjrjj (2.38)

for measuring convergence. Whenever the trial stress fails to be contained in the elastic region, an
iterative process is initiated which ensures that the final stress state again lies on the boundary of the
elastic domain. For the latter, both the elastic region may grow – as a result of the damage-
hardening – and the stress may decrease – owing to increasing compliance.

For solving problem (2.37), we assemble the Newton system for the active set Aðr; qÞ

S0 þ 2
XM
i¼1

qi
Hi

B
2
i

 !
�r½ � þ

XM
i¼1

2

Hi
B
2
i r½ ��qi ¼ e� S0 þ 2

XM
i¼1

qi
Hi

B
2
i

 !
r½ �

2

Hi
B
2
i r½ �

� �
��r�miHiq

mi�1
i �qi ¼ � 1

Hi
jjBi r½ �jj2 � r20;i �H2

i q
mi

i


 � (2.39)

for all i 2 Aðr; qÞ, where we divided the second line by Hi to ensure a symmetric Newton system.
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Algorithm 1 Predictor-corrector strategy e; qi;nð Þ with model parameters S0;Bi;Hi;r0;i;mið Þ and algorithm

parameters maxit; tol; cð Þ
1: Elastic predictor

2: q qn

3: r S0 þ 2
XM
i¼1

qi B
2
i =Hi

 !
e½ �

4: if all fi � 0 then

5: no damage evolution, elastic predictor step correct

6: else

7: Damage corrector

8: k 1 " Iteration counter

9: Update residual (2.38)

10: while k < maxit and residual > tol do

11: A  Aðr; qÞ
12: assemble and solve the Newton system (2.39) for ð�r;�qÞ " �qi :¼ 0 for i 6¼ A
13: s 1 "Full step size

14: ðr; qÞ  ðrþ s�r; qþ sDqÞ
15: j 0 " Counts backtracking steps

16: residualold  residual

17: Update residual (2.38)

18: while residual > residualold or qi < qi;n for some i do " Backtracking, typically c ¼ 0:9
19: ðr; qÞ  ðrþ ðcs� sÞ�r; qþ ðcs� sÞ�qÞ
20: s cs " Reduce current step size

21: Update residual (2.38)

22: j jþ 1

23: end while

24: k kþ 1

25: end while

26: end if

27: compute Calgo

28: Output

29: return r, q, Calgo

Figure 3. Evolution of the elastic region upon loading within a predictor-corrector framework.
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Damage models with Puck-type extraction tensors

Basic idea

Puck (Knops, 2008; Puck and Schürmann, 2002) introduced strength-estimation models for com-

posites reinforced by continuous fibers based on specfic failure scenarios that are commonly

observed in post-critical investigations of failed specimens. For the current article at hand,

we will use these so-called Puck cases as primary drivers of the anisotropic damage

evolution presented in the previous section. More precisely, we will investigate the Puck cases

individually, and determine proper extraction tensors (BI - BIV). These Puck-type

extraction tensors are motivated by the stress and corresponding damage states present in the

fiber bundle mesostructure of Sheet Molding Compound (SMC) composites (Dumont et al.,

2007; G€orthofer et al., 2019).
We introduce a local Cartesian coordinate system fe1; e2; e3g, s. t. the fibers are aligned to the

e1-direction, see Figure 4(a). Then, the stress state r may be decomposed into blocks

r ¼
r11 r12 r13
r12 r22 r23
r13 r23 r33

0
B@

1
CA; (3.1)

where r11 is the stress in fiber direction, the lower right block describes the stresses in the plane

orthogonal to the fiber direction, and ðr12; r13Þ collects the remaining shear stresses. Adopting ideas

of Puck (Knops, 2008; Puck and Schürmann, 2002), we distinguish four basic cases which drive the

damage evolution in a fiber bundle, for instance.

(I) Normal loading in fiber direction r11 . Figure 4(a) and (b)

(II) Normal loading perpendicular to fiber direction r22; r33 . Figure 4(c) and (d)

(III) Shear loading perpendicular to fiber direction r23 . Figure 4(e)

(IV) Shear loading in fiber direction r12; r13 . Figure 4(f)

The loading scenarios shown in Figure 4 are only examples, e.g., loadings perpendicular to the

fiber direction need not necessarily follow direction e2. Instead, any other direction in the

e2-e3-plane could be used, as well. Nevertheless, we may regard a general loading scenario as a

superposition of the four introduced cases. In the following sections, we will derive appropriate

extraction tensors (BI - BIV) corresponding to each of the four presented cases based on averaged

stress conditions. The presented model cannot distinguish between tensile and compressive loading,

as the driving force T (2.18) is quadratic in the stress r. Consequently, the six sketched loading

scenarios in Figure 4 reduce to the mentioned four cases, as the scenarios Figure 4(a) and (b), as well

as Figure 4(c) and (d) coincide for our model.

Case I: Normal loading in fiber direction

The first damage case is governed by loading in fiber or bundle direction, respectively, and thus

solely concerns the stress r11. For fiber direction e1, the fourth-order extraction tensor BI extracting
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the stress in bundle direction r11 from an arbitrary stress state r is given by

BI ¼ e�41 : (3.2)

The associated damage function ð2:34Þ1 with case I extraction tensor BI (3.2) reads

fIðr; qÞ ¼ r211 �H2qm � r20; (3.3)

and will solely induce a decrease in the Young’s modulus in e1-direction. As a general note, although

the damage parameters like r0, H, m may differ for the considered cases I to IV, we do not include

additional subscripts for the sake of readability.

Case II: Normal loading perpendicular to fiber direction

To quantify damaging due to normal loading in any direction S2�n?e1 perpendicular to the fiber

direction (a unit vector with S2 ¼ fx 2 R
3 j jjxjj ¼ 1g), for a general stress state r, we measure the

average normal stress perpendicular to the fiber direction

1

2p

Z 2p

0

nðhÞ�4 r½ � dh with nðhÞ ¼̂ ð0; cosh; sinhÞ: (3.4)

The latter average may be represented in the form

1

2p

Z 2p

0

nðhÞ�4 r½ � dh¼! BII r½ � (3.5)

Figure 4. Regions of major damage (blue) resulting from different loading scenarios in a cell with aligned fibers (dark
green). (a) Extension in fiber direction. (b) Compression in fiber direction. (c) Extension \ to fiber direction. (d)
Compression \ to fiber direction. (e) Shearing \ to fiber direction. (f) Shearing in fiber direction.
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in terms of the extraction tensor BII

BII ¼ 1

2p

Z 2p

0

nðhÞ�4 dh with nðhÞ ¼̂ ð0; cosh; sinhÞ: (3.6)

Evaluating the integral explicitly, see Appendix C for details, yields

BII ¼ 1

4
ðe�22 þ e�23 Þ�2 þ

1

8
ðe�22 � e�23 Þ�2 þ

1

2
ðe2�Se3Þ�2: (3.7)

This extraction tensor BII is identical to the fourth-order fiber-orientation tensor for a planar

isotropic orientation, see Advani and Tucker (1987). The damage function ð2:34Þ1 involving the case
II extraction tensor BII (3.7) reads

fIIðr; qÞ ¼ 1

32
5r222 þ 5r233 þ 6r22r33 þ 4r223
� �

�H2qm � r20: (3.8)

Case III: Shear loading perpendicular to fiber direction

In addition to damage caused by normal loading, we also want to account for shear-loading induced

damage. For a general stress state r, the average shear stress transverse to the fiber direction is given by

1

2p

Z 2p

0

nðhÞ�SmðhÞð Þ�2 r½ � dh (3.9)

with nðhÞ ¼̂ ð0; cosh; sinhÞ and mðhÞ ¼̂ ð0;�sinh; coshÞ:

We may rewrite this expression

1

2p

Z 2p

0

nðhÞ�SmðhÞð Þ�2 r½ � dh!BIII r½ � (3.10)

in terms of the extraction tensor BIII as

BIII ¼ 1

2p

Z 2p

0

nðhÞ�SmðhÞð Þ�2 dh (3.11)

with nðhÞ ¼̂ ð0; cosh; sinhÞ and mðhÞ ¼̂ ð0;�sinh; coshÞ:

Explicitly evaluating the integral (3.11) yields

BIII ¼ 1

8
e�22 � e�23

� ��2 þ 1

2
ðe2�Se3Þ�2: (3.12)
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The damage function ð2:34Þ1 for the case III extraction tensor BIII (3.12) reads

fIIIðr; qÞ ¼ 1

32
r222 þ r233 � 2r22r33 þ 4r223
� �

�H2qm � r20: (3.13)

Comparing the extraction tensors BII (3.7) and BIII (3.12), some similarities between these tensors

become apparent. In fact, these similarities reflect the relationship between normal loadings (espe-

cially compression) and shear loadings perpendicular to the fiber direction, that are familiar from

undergraduate engineering mechanics (Hibbeler, 2001), i.e., Mohr’s circle (Mohr, 1900).

Case IV: Shear loading in fiber direction

To evaluate damage induced by shearing in fiber direction e1, we evaluate

1

2p

Z 2p

0

nðhÞ�Se1ð Þ�2 r½ � dh with nðhÞ ¼̂ ð0; cosh; sinhÞ; (3.14)

which we represent in the form

1

2p

Z 2p

0

nðhÞ�Se1ð Þ�2 r½ � dh¼! BIV r½ � (3.15)

with extraction tensor BIV

BIV ¼ 1

2p

Z 2p

0

ðnðhÞ�Se1Þ�2 dh and nðhÞ ¼̂ ð0; cosh; sinhÞ: (3.16)

The resulting extraction tensor for case IV may be expressed via

BIV ¼ 1

2
ðe1�Se2Þ�2 þ 1

2
ðe1�Se3Þ�2: (3.17)

The damage function ð2:34Þ1 with case IV extraction tensor BIV (3.17) becomes

fIVðr; qÞ ¼ 1

8
r212 þ r213
� �

�H2qm � r20: (3.18)

Computational investigations

Setup

We integrated the proposed damage model as a user-defined subroutine into an in-house OpenMP-

parallel FFT-based computational homogenization code written in Python 3.7 with Cython exten-

sions (Behnel et al., 2011) and FFTW (Frigo and Johnson, 2005) bindings, as described, e.g., by

Schneider (2019). The balance of linear momentum was discretized on a staggered grid (Schneider

et al., 2016b) and the ensuing nonlinear systems of equations were solved by a Newton-CG scheme
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(G�el�ebart and Mondon-Cancel, 2013; Kabel et al., 2014; Wicht et al., 2020). The computations ran on

6 - 12 threads on a desktop computer with 32 GB RAM and an Intel i7-8700K CPU with 6 cores and

a clock rate of 3.7GHz. The plain-weave presented at the end of this section was computed on a

workstation with two AMD EPYC 7642 and 48 physical cores each, enabled SMT, and 1024 GB of

DRAM.
For the following studies, we use the isotropic elastic parameters of unsaturated polyester-

polyurethane hybrid (UPPH) resin and E-glass fibers, see Kehrer et al. (2018), respectively, if not

specified otherwise. Furthermore, we use the damage parameters r0, H and m listed in Table 1 as a

point of departure for parameter variation and the different introduced damage cases. Due to the

small-strain setting, we limit the strain axes to 5% in magnitude.

Numerical studies on integration-point level

Parameter study for Puck-type extraction tensor I. The first study concerns the effects of the damage

parameters r0, H and m on the stress and damage evolution. For this purpose, we investigate the

model behavior for one active damage function and the Puck-type extraction tensor I only. We vary

the parameters and evaluate the stress-strain curves, as well as the normalized Young’s modulus

E11=E
0
11 for uniaxial extension in e1-direction and a prescribed strain e11.

For the case at hand, we extract the current Young’s modulus in e1-direction from equation

(2.31) by

E11 ¼ HE0
11=ðHþ 2 qE0

11Þ; (4.1)

where E0
11 stands for the initial Young’s modulus in e1-direction. Please note that E�111 may be

regarded as a component of a (fourth-order) tensor, as it is the 1111 component of the correspond-

ing compliance S. For the sake of simplicity, we will use such shorthand index notation for certain

Young’s moduli throughout the remainder of this work.
The influence of the damage-activation threshold r0 on the stress and normalized stiffness in

e1-direction is shown in Figure 5. The higher the damage-activation threshold r0, the later the

damage evolution initiates w. r. t. the applied strain e11. In Figure 5(a), we observe damage to

initiate as soon as the stress r11 equals the damage-activation threshold r0, which is expected.

The convex hardening nature of our model gives rise to a decreasing slope of the stress-strain

curve. This slope tends to zero at infinity, but remains non-negative.
With increasing damage-activation thresholds r0, the stress-strain behavior approaches a plateau

beyond the elastic region, in which an increase of strain does not induce a further increase of stress.

The reduced stiffness E11 in e1-direction equals the slope of the stress-strain curve during unloading

(which returns to the origin in our pure elastic-damage framework). Whereas the plateaus are more

pronounced for higher damage-activation thresholds r0, the increase in damage and the (normal-

ized) stiffness reduction are less pronounced, see Figure 5(b).

Table 1. Standard material parameters (Kehrer et al., 2018) and reference damage parameters, serving as point of
departure depending on the corresponding damage case.

UPPH matrix E-glass fibers Damage parameters

EM ¼ 3:4 GPa EF ¼ 72 GPa r0 2 5; 30½ � MPa, m ¼ 1

�M ¼ 0:385 �F ¼ 0:22 H 2 30; 80½ � MPa
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Due to the thermodynamically consistent GSM framework of our proposed model, an upper

bound for the damage variables is ensured, governing the asymptotic behavior of the (normalized)

stiffness reduction, see Figure 5(b). Evaluating the CDI (2.2) for the considered case at hand, we

find the upper bound for the damage variable w. r. t. Puck case I to be qI �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r211=H

2m

q
.

The effect of changing the hardening parameter H on the stress and damage evolution is shown

in Figure 6. As the damage-activation threshold r0 remains unchanged for this study, the elastic

regions (r11 below 30MPa) coincide for all stress-strain curves, see Figure 6(a).
In the damage region, the slope of the stress-strain curve increases with the hardening parameterH.

Indeed, the hardening parameter H describes the hardening capacity of the model. For H! 0, the

slope tends to zero and approaches the plateau already observed in Figure 5(a). ForH!1, an active

(a) (b)

Figure 5. Varying the initial stress r0 for the proposed model. (a) Stress-strain curve. (b) Normalized Young’s
modulus vs. applied strain.

(a) (b)

Figure 6. Varying the hardening parameter H for the proposed model. (a) Stress-strain curve. (b) Normalized
Young’s modulus vs. applied strain.
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damage function f (2.34)1 will become inactive for small values of the damage variable q! 0, result-
ing in a damage region that can hardly be distinguished from a purely elastic material behavior.

Independent of the hardening parameter, damage evolution initiates at the same strain level (and
therefore the same stress level), see Figure 6(b). The stiffness reduction is inversely proportional to
the hardening parameter H.

In Figure 7, we fix the damage-activation threshold r0 as well as the hardening parameter H and
vary the power-law exponent m. In contrast to the influence of the hardening parameter H (see
Figure 6), the slope of the stress-strain curve is inversely proportional to the exponent m in the
damage region, see Figure 7(a).

For increasing exponents m, the stress-strain curves approach the plateau-like behavior. For small
values of m, after exceeding the damage-activation threshold r0, the stress-strain curves remain
approximately linear and only develop a significant amount of damage for higher loading levels.

Figure 7(b) shows the damage evolution to be inversely proportional to the exponent m, leading
to a lower remaining (normalized) stiffness component E11 for higher exponents m.

For representing the stiffness tensor C ¼ S
�1 graphically, we use the Young’s modulus surface

(YMS) plots introduced by B€ohlke and Brüggemann (2001), i.e., for fixed compliance tensor S 2 Sd,
the image of the nonlinear mapping

S2 ! R
3; n 7! EðS; nÞn; (4.2)

where the Young’s modulus EðS; nÞ in direction n is determined by

EðS; nÞ ¼ 1

n� nð Þ � S n� n½ � : (4.3)

Asymmetry properties of the stiffness tensorC become apparent in the corresponding YMS plot.
Examples of such YMS plots are shown in Figure 8. The initially isotropic stiffness tensor with

UPPH material parameters (see Table 1) has a spherical shape, as shown in Figure 8(a). As

Figure 7. Varying the power-law exponent m for the proposed model. (a) Stress-strain curve. (b) Normalized
Young’s modulus vs. applied strain.
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discussed above, the induced damage model based on Puck case I leads to a reduction of the
stiffness E11 in the e1-direction. The YMS plot is contracted in the direction of loading, whereas

the directional Young’s moduli in the orthogonal plane remain unaffected, see Figure 8(b).

Stiffness reduction for different Puck-type extraction tensors. In the following, we will discuss possible
damage evolutions and corresponding stiffness reductions based on Puck-type extraction tensors

II, III and IV. For these cases, the influence of the damage-hardening parameters r0, H and m is
similar to case I, which we discussed in the previous section. We consider an initially

isotropic stiffness tensor with UPPH material parameters. The corresponding YMS plot is shown
in Figure 8(a). Specific loadings will evoke a damage evolution due to the Puck cases II, III and IV.
We apply a normal strain e22 for case II, a shear strain e23 for case III and a shear strain e13 for case
IV, forcing the respective complementary stress components to zero. The resulting YMS plots are
shown in Figure 9. For all three cases the Young’s modulus in e1-direction remains unchanged. As

shortly discussed in the previous chapter, Puck cases II and III are interlinked due to similar effects
of averaged normal loadings and shear loadings perpendicular to the fiber direction. Inspecting

Figure 9(a) and (b), corresponding to Puck cases II and III, we observe a reduction of the Young’s
moduli within the e2-e3-plane for both cases, but with different characteristics. For the loading
scenarios considered here, the stiffness reduction in directions e2 and e3 is more pronounced for

Puck case II compared to Puck case III. Figure 9(c) shows that damage based on Puck case IV does
not affect the Young’s moduli in the e2-e3-plane. Young’s moduli in the e1-e3-plane and e1-e2-plane

are reduced equally, leading to a transversely isotropic stiffness with the fiber direction e1 as the axis
of symmetry.

Non-monotonic loading. To show the capabilities of our model in general, we perform loading-

unloading experiments for different loading directions in a successive fashion. To mimic uniaxial
normal loadings and corresponding shear loadings, we subsequently apply normal and shear strains

e11; e22; e33; e23; e13 and e12, each with mixed boundary conditions permitting solely the corre-
sponding stresses r11; r22; r33; r23; r13 and r12, to be non-zero, see Figure 10(a) and (b). Lateral
contraction is permitted. Between each of these six loading steps we unload to zero strain and stress.

The resulting evolution of the stress components is plotted in Figure 10(b). We see a linear elastic
region for each individual loading step and a damage region for all but the r33 and r12 cases. On

Figure 8. YMS plots (see B€ohlke and Brüggemann, 2001) showing the reduction of the stiffness tensor based on
Puck case I. (a) Initial isotropic state. (b) Final anisotropic state.
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these occasions, the threshold for damage initiation is not triggered. As all normal loadings in the

e2-e3-plane evoke damage due to case II, r33 cannot induce damage beyond the level previously

induced. The stress-strain curves for the shear stresses r13 and r12 exhibit a similar behavior.
These observations are also reflected in the damage evolution, see Figure 10(c). Due to the

applied stress r22, the damage variable representing case II increases. For increasing stress r33,
the damage variables remain unaffected up to the level r33 ¼ r22. The same line of argument applies

to r13 and r12. Again, we observe the connection between Puck cases II and III, i. e., each of the

damage variables increases whenever a loading scenario is applied which progresses the other case.

The damaged stiffness tensors corresponding to each loading step are visualized via their YMS plots

in Figure 11. The different colors of the plots represent the different loading steps shown in

Figure 10. Note that the ranges of the axes are adjusted accordingly and therefore vary from

plot to plot as the damage increases from step to step.
Comparing Figure 11(b) and (c), as well as Figure 11(e) and (f), we see that, in accordance with

Figure 10(c), no further damage is induced between these loading steps. The presented YMS plots

demonstrate the capability of our model to evolve the stiffness tensor in a complex and anisotropic

way. The model is capable of handling any initial stiffness, not restricted by a specific symmetry

class, i.e., transversely isotropic or orthotropic. Furthermore, the stiffness tensor may also develop

anisotropy - within the permissible set Sd (2.8) - as a result of a damaging process, owing to the

introduced damage functions.

Figure 9. YMS plots (see B€ohlke and Brüggemann, 2001) illustrating the reduction of the stiffness tensor based on
the Puck cases II, III and IV. (a) Case II. (b) Case III. (c) Case IV.
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Figure 10. Complex loading history addressing each stress-tensor component separately. (a) Strain vs. time.
(b) Stress vs. time. (c) Damage evolution over time.

G€orthofer et al. 23



Multiaxial loading with increasing loading level. In a study combining the six loading steps from the

previous section to one superposed loading case, we apply a three-dimensional strain state s. t.

all strains are active simultaneously. To investigate the model behavior, the predicted stiffness

degradation, as well as the evolution of the damage variables more closely, we gradually increase

the strain levels in five steps from 0% to 5% via 1% increments with intermediate unloading, see

Figure 12(a). As in the previous section, we analyze the stress and the damage evolution, as well as

the stiffness reduction. Figure 12(b) shows the evolution of the individual stress components during

the combined loading. We see that after each loading-unloading step the level of damage increases.

This is also reflected in the evolution of the damage variables, see Figure 12(c). After each loading-

unloading step, the damage variables continue to increase whenever the maximum stresses of the

previous step are exceeded. The YMS plots corresponding to 2% and 5% loading, as well as the

initially isotropic YMS plot, are shown in Figure 13. The stiffness tensor gradually reduces based on

all four introduced Puck cases simultaneously. Apparently, the multiaxial loading evokes a stiffness

reduction in all directions, as we observe a superposition of the individual loading scenarios inves-

tigated in the previous sections. Please note, that, similar to these previous section, the ranges of the

axes are adjusted accordingly and therefore vary from plot to plot.

Cyclic tensile loading with increasing loading level. We conduct an analysis of the model response upon

cyclic loading via uniaxial extension. We successively apply a normal strain e11 to induce cyclic

uniaxial loading in the e1-direction. We apply the strain e11 in five cycles from 0% to 5% with an

increasing magnitude of 1% per cycle. For this analysis, we restrict to Puck case I. The resulting

stress-strain curves and damage-strain curves are shown in Figure 14.

Figure 11. Evolution of an initially isotropic stiffness upon complex loading, see Figure 10(a), visualized via YMS
plots. (a) After loading step 1 (e11). (b) After loading step 2 (e11 and e22). (c) After loading step 3 (e11, e22 and e33).
(d) After loading step 4 (e11, e22, e33 and e23). (e) After loading step 5 (e11, e22, e33, e23 and e13). (f) After loading step 6
(e11, e22, e33, e23, e13 and e12).
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Upon loading, the material behaves linear elastically until a specific critical stress threshold or the
maximum stress of the previous cycle is reached, see Figure 14(a). During the in-between unloading
to e11 ¼ 0% and reloading, the damage variables do not evolve further. Besides, the pure damaging
character of the model is highlighted, as no remaining residual strains occur. The step wise evolution
of the damage variable q is shown in Figure 14(b).
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Figure 12. Step wise increase of multiaxial loading to evoke all stresses and damage functions simultaneously.
(a) Strain vs. time. (b) Stress vs. time. (c) Damage evolution over time.

Figure 13. Evolution of an initially isotropic stiffness during multiaxial loading steps, visualized via YMS plots.
(a) Strain 0%. (b) Strain 2%. (c) Strain 5%.

(a) (b)

Figure 14. Cyclic tensile loading with increasing loading level for Puck case I. (a) Stress-strain curve. (b) Damage-
strain curve.
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Note that the presented model is capable to predict damage onset upon both, tensile and com-
pressive loading. Due to the definition of the damage functions the quadratic nature of the driving

force T (2.18), the damage evolution is driven in similar fashions by both, tensile and compressive

stresses. Considering a single damage variable q for, both, the tensile and the compressive regime,
would lead to a combined damage evolution. Accounting for tension-compression asymmetry

requires an extension of the model at hand, see the conclusion.

Model response for a continuous-fiber microstructure

Application of separate loading cases with Puck-type extraction tensors. After discussing the model response

for homogeneous stress states, we account for heterogeneous stress states in two ways to show the
basic feasibilities of our damage model. First, we shall investigate a microstructure with a contin-

uous fiber reinforcement. In the next section, we will turn our attention to a mesoscale simulation.
To account for damage evolution in the matrix, we introduce two extraction tensor correspond-

ing to the spherical and deviatoric projectors of fourth-order

Bsph ¼ P1 ¼ 1

3
I � I; Bdev ¼ P2 ¼ I

S � P1; (4.4)

that allow describing a damage evolution in response to dilatation and distortion. We use damage-

activation functions based on these two extraction tensors (4.4) and corresponding damage

parameters r0 ¼ 30 MPa; H ¼ 130 MPa and m ¼ 1 for both cases. Furthermore, the matrix of
the fiber-reinforced microstructure is endowed with the elastic properties of UPPH, as defined in

Table 1. The fibers are modeled in a purely elastic fashion using the elastic moduli of E-glass, see

Table 1. The continuous-fiber reinforced microstructure is geometrically modeled by 50 inclusions
with a diameter of 13 mm and a total volume fraction of about 40%. We generated the microstruc-

ture by the adaptive shrinking-cell algorithm of Torquato and Jiao (2010). The setup represents

aligned fibers in a UPPH matrix as present in SMC composite bundles (Dumont et al., 2007; Kim
et al., 2011; Meyer et al., 2020), where the fiber direction e1 coincides with the primary direction of

the Puck cases.
In three different loading scenarios, we apply three different macroscopic strains via mixed

boundary conditions, see Kabel et al. (2016) for details. For each scenario, we analyze the induced

damage fields of the associated variables qsph and qdev. In scenario 1, we apply the macroscopic

normal strain �e22 perpendicular to the fiber direction (in horizontal direction). In scenarios 2 and 3,
we apply macroscopic shear strains �e12 and �e23, in fiber direction and transverse to the fiber direc-

tion, respectively.
The average runtime for a resolution of 256� 256 pixels and 50 time steps was about 100 s on 12

threads. An accompanying resolution study is discussed in the following section. Figure 15 shows

the damage fields for qsph and qdev for the introduced cases and corresponding to the different

loading scenarios. Figure 15(a) shows that normal loading perpendicular to the fiber direction leads
to a dilatation-triggered damage evolution in the respective direction, as a result of stress concen-

trations at the inclusion boundaries. As a consequence of the complexity of the induced stress state,

damage due to distortion is initiated, as well, see Figure 15(a). In general, the stress level is higher
for regions with more closely packed inclusions, inducing a significantly higher level of damage in

those regions. Damage initiates at the inclusion boundaries and evolves in the loading direction,

deflected by other inclusions. Shear loading in fiber direction leads to an associated damage evo-
lution due to distortion, as shown in Figure 15(f). As the applied shear is oriented in fiber direction,
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the deformation is not hindered by these fibers and spherical stresses do not occur. Hence, damage

due to dilatation does not evolve, see Figure 15(b). Applying a macroscopic shear perpendicular to

fiber direction evokes both, the evolution of damage due to spherical stresses, see Figure 15(c), as

well as deviatoric stresses, see Figure 15(g).

Resolution study. The presented resolution study demonstrates that the proposed damage model leads

to mesh-independent results even without gradient enhancement. This does not come by surprise, as

we specifically designed such a hardening-type damage model. Still, even in the case of hardening, a

resolution study is imperative to ensure mesh-independent results. In particular, we will justify the

resolution employed in the previous section.
Figure 16 shows a continuous-fiber reinforced microstructure with the same properties as for

Figure 15. We vary the resolution from 64� 64 to 1024� 1024 pixels. Similar to scenario 1, see

Figure 15(a), we apply a macroscopic strain �e22 for all resolutions, so that both damage cases, i.e.,

dilatation and distortion, are being activated. The strain is successively increased from 0% to 5%

within 50 equidistant loading steps.
The resulting distribution of the predominant damage variable qsph for damage due to dilatation

is shown in Figure 16. We observe that areas of low and high damage level are captured also for low

resolution, but there are slight differences in the achieved damage level. Also, as expected, locali-

zation behavior is not evident. To get a more qualitative insight, the macroscopic stress-strain

curves are shown in Figure 17(a). For a resolution of 64� 64 pixels, the computed stresses are

overestimated. For higher resolutions with 128� 128 to 1024� 1024 pixels, the differences are

small. Investigating the relative deviations �rreso
22 � �r1024

22

� �
=�r1024

22 of the computed effective stress

�r22 relative to the stress at a resolution of 1024� 1024, see Figure 17(b), we observe that, for

resolutions with 256� 256 pixels and higher, the deviations are below 1%. The iteration counts

and timings are collected in Table 2. The total outer iterations (including Newton and CG

Figure 15. Model response for a continuous-fiber reinforced microstructure based on spherical and deviatoric
damage and three different loading cases. (a) Loading �e22; qsph. (b) Loading �e12; qsph. (c) Loading �e23; qsph. (d) Loading
�e22; qdev. (e) Loading �e12; qdev. (f) Loading �e23; qdev.
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iterations) for all loading steps vary in a narrow window around approximately 2 950 for all
resolutions considered. To give a comparable standard for the inner (material) iterations, we com-
pute the average number of inner iterations over all voxels and subsequently take the maximum
value over all loading steps. A value of about 2:8 inner iterations per voxel, irrespective of the
resolution, indicates quadratic convergence of the Newton method. Both, the overall timing for
computing all inner iterations, as well as the total timing, increase roughly with the degrees of
freedom.

Figure 16. Model response for a continuous-fiber reinforced microstructure evaluated at five different resolutions.
(a) 642. (b) 1282. (c) 2562. (d) 5122. (e) 10242.

(a) (b)

Figure 17. Resolution study for the continuous-fiber reinforced microstructure. (a) Stress-strain curve. (b) Relative
stress deviation w. r. t. �r22 for 10242 pixels.

Table 2. Iterations and timings for the conducted resolution study.

Resolution

Iterations Timings

Total outer Max. average inner tinner ttotal

642 2 953 2:774 2 s 9 s

1282 2 897 2:814 6 s 26 s

2562 3 012 2:843 22 s 108 s

5122 3 023 2:853 88 s 524 s

10242 2 987 2:858 352 s 1793 s
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Based on this resolution study, a resolution of 256� 256 pixels represents a compromise between

an accurate prediction and a short runtime.

A Plain-weave composite under shear loading

Last but not least, we demonstrate the utility of our model framework for modeling anisotropic

damage evolution in a woven fiber-reinforced composite. Simon et al. (2017) investigated the

mechanical behavior of a plain-weave composite manufactured from continuous carbon fibers

reinforcing an epoxy matrix resin, see Figure 18(a). The carbon fibers are aligned unidirectionally

in fiber tows that are regularly interwoven. As each of these tows consists of thousands of carbon

fibers, it is customary to work with a multiscale scheme that considers three different scales: the

macroscopic scale is large compared to the woven unit cell, see Figure 18(a), which constitutes the

mesoscale. Within the latter, the tows are considered homogeneous and anisotropic. On the micro-

scale, the tows get resolved in terms of continuous carbon fibers in an epoxy resin.
The linear elastic moduli of the considered materials are listed in Table 3. These comprise the

isotropic epoxy matrix and the transversely isotropic carbon fibers. The transversely isotropic engi-

neering constants for the tows were obtained by linear elastic homogenization. Please note that the

subscript “L” and “T” refer to longitudinal and transverse, respectively.
Based on earlier work (Bednarcyk et al., 2015, 2014; Stier et al., 2015), Simon et al. (2017)

presented a regularized orthotropic continuum damage-model based on the framework developed

by Barbero and co-workers (Barbero and Lonetti, 2002; Lonetti et al., 2003, 2004) and concisely

summarized in his book (Barbero, 2013). More precisely, their strategy takes the orthotropic engi-

neering constants as the point of departure, and models their degradation on an individual basis in

terms of associated scalar damage variables. Based on the associated driving forces, damage sur-

faces are defined, together with appropriate kinetic laws.

Figure 18. Microstructure and predicted relative reduction of the shear modulus G12 in a plain weave composite.
(a) Voxelized weave microstructure with four tows. (b) Relative reduction (4.8) of shear modulus G12.

Table 3. Elastic moduli of matrix, fibers and tows (Simon et al., 2017, Tables 1 and 2).

Constituent

Young’s modulus Shear modulus

Poisson’s ratioin GPa in GPa

Epoxy E ¼ 3 G ¼ 1:09 � ¼ 0:38
Carbon fibers EL ¼ 290 GLT ¼ 20 �LT ¼ 0:2

ET ¼ 20 GTT ¼ 9 �TT ¼ 0:11
Tows EL ¼ 144 GLT ¼ 2:58 �LT ¼ 0:29

ET ¼ 7:84 GTT ¼ 1:91 �TT ¼ 0:39
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Expressing the dependence of the stiffness tensor on the orthotropic engineering constants is
most easily realized in terms of the compliance tensor, the approach of Simon et al. (2017) appears
superficially similar to our approach. However, we do not fix the damage variables a priori. Rather,
they emerge naturally in our framework based on the chosen extraction tensors and damage-
activation functions.

In this paragraph, we demonstrate that our model is capable of reproducing the damage behavior
upon quasi-static loading of the weave composite. The protocol we present is straightforward and
proceeds step by step. As a first step, we introduce a number of extraction tensors which capture
elementary damage cases evoked by pure normal- and shear-loading scenarios. The tensors extract the
associated normal and shear stress components from the applied stress state r. These extraction
tensors are uncoupled. Hence, damage in a certain direction is solely driven by the associated loading
case, e. g., normal damage in e1-direction due to normal loading in e1-direction,

B11 ¼ e�41 ; B22 ¼ e�42 ; B33 ¼ e�43 ; (4.5)

B23 ¼ e2�Se3ð Þ�2; B13 ¼ e1�Se3ð Þ�2; B12 ¼ e1�Se2ð Þ�2: (4.6)

Combining suitable damage-activation functions based on these extraction tensors permit model-
ing a wide range of damage-evolution predictions. In particular, they enable us to describe the
stiffness reduction for the scenario considered by Simon et al. (2017).

We first capture the damage evolution in a neat epoxy sample under non-monotonic uniaxial
loading and choose an extraction tensor of type (4.5)1. Subsequently, we account for the damage
onset due to shear loading by using a second damage-activation function in combination with an
extraction tensor of type (4.6)3. The identified parameters for the epoxy damage-model are sum-
marized in Table 4, which were chosen to reproduce the results of Simon et al. (2017) best.

Furthermore, we employ a number of damage-activation functions and suitable extraction ten-
sors to capture the damage evolution in the fiber tows. We fix the longitudinal tow direction to
correspond to the local e1-direction. The response to shear loading in longitudinal and transverse
directions is best described with extraction tensors of the forms (4.6)1 and (4.6)3. As the reduction of
the two orthotropic Young’s moduli in the transverse plane (and hence the associated damage
evolutions) is not identical, we introduce an additional extraction tensor

B ¼ 4 e�42 þ e�43 ; (4.7)

which is supplemented by a fourth damage-activation function with an extraction tensor that drives
damage in e2-direction (4.5)2 only. Table 4 comprises a complete list of the identified damage
parameters. The listed extraction tensors and damage parameters at hand allow us to reproduce
the structural behavior of, both, the neat epoxy and the tows, the latter in terms of stress-strain
curves and the reduction of the orthotropic engineering constants. The corresponding results are
shown in Figure 19.

With the introduced extraction tensors and damage parameters at hand, we are able to reproduce
the experimental results obtained for the neat epoxy resin, as well es the predictions computed by
Simon et al. (2017) quite accurately, see Figure 19(a). The decrease in the individual orthotropic
engineering-constants are shown in Figure 19(b) to (d), where dashed lines correspond to our model
and solid lines refer to the references Simon et al. (2017) and Bednarcyk et al. (2015). For all
considered loading cases, our proposed modeling framework makes it simple to account for
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Table 4. Extraction tensors and identified damage parameters to capture the mechanical behavior of epoxy and tow.

Constituent Extraction tensor r0 in MPa H in MPa m

Epoxy (4.5)1 0:5 180 0:47
(4.6)3 101 41 0:97

Tow (4.6)1 8 275 0:3
(4.6)3 10 245 0:3
(4.5)2 79 30 0:9
(4.7) 200 630 0:4

Figure 19. Comparison of predicted stress-strain curve and reductions of the orthotropic engineering constants
based on introduced extraction tensors (see Table 4). Our model predictions are dashed in (b)–(d). (a) Neat epoxy
behavior under normal loading. (b) Tow behavior under transverse normal loading. (c) Tow behavior under transverse
shear loading. (d) Tow behavior under longitudinal shear loading.
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those engineering constants which remain unaffected during the loading. Figure 19(b) shows that

the reduction of Young’s modulus E33 is predicted correctly up to an applied strain of 10%. The

shear moduli are predicted quite well up to a strain level of 5%, see Figure 19(c) and (d). Only the

evolution of Young’s modulus E22 shows some deviations beyond a strain level of 3%, as our model

is unable to capture the slope of reduction accurately enough for this case. To sum up, the proposed

modeling framework permits reproducing the reduction of all affected engineering constants accu-

rately for small deformations of up to 3%. For the identified parameter set, we investigate the

plain-weave composite that was also studied by Simon et al. (2017), see Figure 18(a). The meso-

structure, with a required tow-volume fraction of approximately 75%, was generated by a level-set

approach developed by Sonon and co-workers (Sonon et al., 2012; Sonon and Massart, 2013;

Wintiba et al., 2017) and discretized on a regular grid with 512� 512� 56 voxels. Just as Simon

et al. (2017), we investigate the longitudinal shear response of the plain-weave cell. For this purpose,

we analyze the effective stress-strain curve, as well as the reduction of the shear modulus G12

measured in terms of the relative error

�G12 ¼ G0
12 � G12 (4.8)

w. r. t. the initial, undamaged shear modulus G0
12. The predicted full-field distribution of this relative

reduction is shown in Figure 18(b), and coincides well with the results presented by (Simon et al.,

2017, Figure 9). Moreover, the effective stress-strain curves of the plain-weave composite subjected

to longitudinal shear match well for the entire loading regime, see Figure 20.

Summary and conclusions

In this article, a generalized standard material (GSM) model for anisotropic damage evolution based

on the compliance tensor as the primary damage variable was developed. Based on the insight that the

Hookean elastic energy density, considered as a function of the elastic strain and the compliance

tensor, is a convex function of both arguments, a convex framework for quasi-static damage evolution

was established, preventing damage localization intrinsically. Indeed, by choosing the energy (density)

related to the progressive degradation of the material appropriately, the condensed incremental

Figure 20. Comparison of effective stress-strain curves for plain weave under shear loading.
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potential (Miehe, 2002) is strictly convex and of superlinear growth, which prevents localization for

such a model. Of course, working with a softening-type energy for the damage-surface variables is also

possible, and should be studied more closely in subsequent work.
The second section is organized to emphasize the modular fashion that the compliance-based

damage model is built up. The model might be extended in subsequent work, for instance account-

ing for strain-rate sensitivity within the model. For an overview of the assumptions leading to

specific specializations of the evolution of internal variables, we refer to the overview in

Appendix A. The modeling framework is general enough to incorporate coupling to other inelastic

models, such as plasticity or viscoplasticity (McDowell, 2008; Rousselier, 1979), entirely within the

proposed framework. Also, due to its inherent stability, an extension to fatigue damage, as observed

for certain fiber-reinforced polymers (Bartkowiak et al., 2019, 2020; Sauer and Richardson, 1980),

appears promising (Magino et al., 2021).
The modular character of the model was exemplified by specific damage-extraction tensors

motivated by Puck’s anisotropic failure criteria (Knops, 2008; Puck and Schürmann, 2002). With

these ingredients at hand, we demonstrated the model’s capabilities of developing complex aniso-

tropic stiffness states, not restricted a priori by a specific degree of (an)isotropy of the stiffness

tensor, emphasizing that the model is capable of handling any initial stiffness. We also showed the

model’s capabilities on meso and volume-element scale, based upon a straightforward numerical

treatment. With these achievements at hand, accounting for additional failure criteria (Bouhala

et al., 2013; Fritzsche et al., 2008; Kaddour et al., 2004) or coupling the model to phase-field

fracture models (Gerasimov and De Lorenzis, 2019; Miehe et al., 2010; Schneider et al., 2016a)

appears possible.
Returning to our original motivation, i.e., modeling anisotropic damage of SMC composite

materials, requires incorporating the presented modeling framework into a three-scale homogeni-

zation scheme (Anagnostou et al., 2018). The underlying fiber bundle mesostructure (Dumont et al.,

2007; Meyer et al., 2020; Sch€ottl et al., 2019) has to be accounted for, and the model parameters

have to be fitted to experimental data. For the latter purpose, a convenient experimental program is

necessary (Schemmann et al., 2018c).
From a mathematical perspective, a thorough mathematical analysis of our model is desirable,

whereas an extension to tension-compression asymmetry appears imperative in order to model load

reversals.
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Appendix A: Summary of formulations for evolution equations

In this appendix, we give a short overview on the formulations regarding the evolution of the

internal variables. The specification of the introduced model and the level of detail are increased

from the general formulation (2.4) up to the evolution equations (2.30). For the sake of complete-

ness, the corresponding KKT-conditions (2.23) are added.

Appendix B: Convexity of the Hookean elastic energy density

In this appendix, we compute the Hessian of the Hookean elastic energy (density) we, see formula

(2.11). For a twice (Fr�echet) differentiable function f : U � X! R on an open subset of a (Banach)

vector space, the Hessian at some point x 2 U may be represented as a quadratic form

D2fðxÞ : X! R; (B.1)
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which may be computed by the directional second derivative

D2fðxÞ½y� ¼ 1

2

d2

dk2
fðxþ kyÞjk¼0: (B.2)

For our problem at hand, we have U ¼ SymðdÞ � Sd and X ¼ SymðdÞ � SymðSymðdÞÞ. Then,
the Hessian of the elastic energy (2.11)

we : SymðdÞ � Sd ! R

weðe; SÞ ¼ 1

2
e � S�1 e½ � (B.3)

at ðe; SÞ in direction ðn;LÞ computes as

D2weðe; SÞ½n;L�

¼ 1

2

d2

dk2
1

2
ðeþ knÞ � ðSþ kLÞ�1 eþ kn½ �

� ����
k¼0

¼ 1

2

d

dk
n � ðSþ kLÞ�1 eþ kn½ � � 1

2
ðeþ knÞ � ðSþ kLÞ�1LðSþ kLÞ�1 eþ kn½ �

� ����
k¼0

¼ � 1

2
n � S�1LS�1 e½ � þ 1

2
n � S�1 n½ � � 1

2
e � S�1LS�1 n½ � þ 1

2
e � S�1LS�1LS�1 e½ �

¼ 1

2
n � S�1 n½ � � n � S�1LS�1 e½ � þ 1

2
e � S�1LS�1LS�1 e½ �

¼ 1

2
ðn� LS

�1 e½ �Þ � S�1 n� LS
�1 e½ �

h i
:

(B.4)

Appendix C: Extraction tensors based on Puck’s theory

Case II: Normal loading perpendicular to fiber direction

As presented in equation (3.6), we define the extraction tensor for case II via

BII ¼ 1

2p

Z 2p

0

nðhÞ�4 dh with nðhÞ?e1: (C.1)

In terms of an orthonormal basis fe1; e2; e3g with the e1-axis aligned to the fiber direction, the

direction n and the unit vector e1 are nðhÞ ¼̂ 0; cosh; sinhð Þ and e1 ¼̂ 1; 0; 0ð Þ. We can evaluate the

integration for each component of the extraction tensor separately. As n?e1, all components of BII

with at least one index” 1” are zero. The remaining components are

BII
2222 ¼

1

2p

Z 2p

0

cos4h dh ¼ 3

8
; (C.2)
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BII
2233 ¼

1

2p

Z 2p

0

cos2hsin2h dh ¼ BII
3322 ¼ BII

2323 ¼ BII
2332 ¼ BII

3232 ¼ BII
3223 ¼

1

8
; (C.3)

BII
3333 ¼

1

2p

Z 2p

0

sin4hdh ¼ 3

8
; (C.4)

BII
2223 ¼

1

2p

Z 2p

0

cos3hsinh dh ¼ BII
2232 ¼ BII

2322 ¼ BII
3222 ¼ 0; (C.5)

BII
3332 ¼

1

2p

Z 2p

0

coshsin3h dh ¼ BII
3323 ¼ BII

3233 ¼ BII
2333 ¼ 0: (C.6)

Hence, the extraction tensor for case II has the form

BII ¼ 1

4
ðe�22 þ e�23 Þ�2 þ

1

8
ðe�22 � e�23 Þ�2 þ

1

2
ðe2�Se3Þ�2 (C.7)

as presented in (3.7). The composition of the extraction tensor with itself is

B
2
II ¼

1

8
ðe�22 þ e�23 Þ�2 þ

1

32
ðe�22 � e�23 Þ�2 þ

1

8
ðe2�Se3Þ�2: (C.8)

Case III: Shear loading perpendicular to fiber direction

Based on analogous ideas as for case II, we define the extraction tensor (3.11) for case III via an

integration over all possible directions in the e2-e3-plane perpendicular to the fiber direction e1

BIII ¼ 1

2p

Z 2p

0

nðhÞ�SmðhÞð Þ�2 dh with nðhÞ?mðhÞ?e1: (C.9)

With respect to the basis fe1; e2; e3g, the directions n and m are defined as n ¼̂ 0; cosh; sinhð Þ and
m ¼̂ 0;�sinh; coshð Þ. We can evaluate the integration for each component of the extraction tensor

separately. As n?m?e1 and n1 ¼ m1 ¼ 0, all components with at least one index” 1” are zero. For

the remaining components we get

BIII
2222 ¼

1

2p

Z 2p

0

cos2hsin2h dh ¼ 1

8
; (C.10)

BIII
2233 ¼ �

1

2p

Z 2p

0

sin2hcos2hdh ¼ BIII
3322 ¼ �

1

8
; (C.11)

BIII
2323 ¼

1

2p

Z 2p

0

1

4
sin4hþ cos4h� 2sin2hcos2hð Þdh ¼ BIII

2332 ¼ BIII
3232 ¼ BIII

3223 ¼
1

8
; (C.12)

BIII
3333 ¼

1

2p

Z 2p

0

sin2hcos2h dh ¼ 1

8
; (C.13)
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BIII
2223 ¼

1

4p

Z 2p

0

sin3hcosh� sinhcos3hð Þ dh ¼ BIII
2232 ¼ BIII

2322 ¼ BIII
3222 ¼ 0; (C.14)

BIII
3332 ¼

1

4p

Z 2p

0

sinhcos3h� sin3hcoshð Þ dh ¼ BIII
3323 ¼ BIII

3233 ¼ BIII
2333 ¼ 0: (C.15)

As presented in (3.12), the extraction tensor for case III therefore has the form

BIII ¼ 1

8
e�22 � e�23

� ��2 þ 1

2
ðe2�Se3Þ�2: (C.16)

The composition of the extraction tensor with itself is

B
2
III ¼

1

4
BIII: (C.17)

Case IV: Shear loading in fiber direction

In analogy to case II and case III we define the corresponding extraction tensor (3.16) for case IV as

BIV ¼ 1

2p

Z 2p

0

ðnðhÞ�Se1Þ�2 dh with nðhÞ?e1 (C.18)

Again, we can evaluate the integration for each component of the extraction tensor separately.
The directions are defined as n ¼̂ ð0; cosh; sinhÞ and e1 ¼̂ 1; 0; 0ð Þ, with n?e1. Hence, the only non-
zero components are B2121; B2112; B1221; B1212; B3131; B3113; B1331 and B1313. These components are
computed as

BIV
2121 ¼

1

8p

Z 2p

0

cos2hdh ¼ BIV
2112 ¼ BIV

1221 ¼ BIV
1212 ¼

1

8
; (C.19)

BIV
3131 ¼

1

8p

Z 2p

0

sin2h dh ¼ BIV
3113 ¼ BIV

1331 ¼ BIV
1313 ¼

1

8
: (C.20)

The extraction tensor for case IV therefore has the presented form (3.17)

BIV ¼ 1

2
ðe1�Se2Þ�2 þ 1

2
ðe1�Se3Þ�2: (C.21)

The composition of the extraction tensor with itself is

B
2
IV ¼

1

4
BIV: (C.22)
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