
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Architectural Uncertainty Analysis for
Access Control Scenarios in Industry 4.0

Master’s Thesis of

Nicolas Boltz

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Maximilian Walter

Second advisor: M.Sc. Sebastian Hahner

11. Jan 2021 – 12. Jul 2021

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. .

(Nicolas Boltz)

Abstract

Industry 4.0 systems are characterized by their high complexity, connectivity and data

exchange. Due to these characteristics, it is critical to ensure con�dentiality of data.

An often-used mechanism to ensure con�dentiality is the use of access control. Based

on software architecture modeling, access control can conceptually be applied during

design time of the system, which enables early identi�cation of potential con�dentiality

issues and the ability to analyze the impact of what-if scenarios on con�dentiality before

deploying changes. However, uncertainties of the systems environment, which result from

the abstract view of the software architecture model, or ambiguity in the early stages of

development can have an direct e�ect on existing access control policies, which might

result in reduced con�dentiality. To mitigate their e�ect on access control, it is important

to identify and handle these uncertainties.

In this thesis, we present our approach to handle uncertainty in access control during design

time. We de�ne a characterization of uncertainties in access control on the architectural

level to provide a better understanding and overview of the kinds of uncertainty that are

present. We describe a concept of trust in the validity of access control properties, as a

way to handle uncertainty, that has been described in publications de�ning or extending

access control models. The concept of trust is a composition of environmental factors that

impact the validity of and consequently trust in access control properties. We propose

the use of fuzzy inference systems as a way of de�ning how environmental factors are

combined to calculate trust values for each individual access control property. These trust

values are than used by an analysis process to identify issues which can result from a lack

of trust.

We extend an existing data �ow diagram approach to design time information �ow and

access control analysis with our concept of trust. Our approach of adding knowledge

to a software architecture model and providing a way to analyze model instances for

access control violations shall enable software architects to increase the quality of models

and further verify access control requirements under uncertainty, in early stages of the

software development.

We evaluate the applicability based on the availability of necessary data during di�erent

phases of development and the potential value that can be added to existing systems. We

also measure the accuracy of the analysis in identifying issues and the scalability regarding

the execution time, when individually scaling the model aspects we add as part of our

approach.

i

Zusammenfassung

Industrie 4.0-Systeme zeichnen sich durch ihre hohe Komplexität, Konnektivität und ih-

ren hohen Datenaustausch aus. Aufgrund dieser Eigenschaften ist es entscheidend, eine

Vertraulichkeit der Daten sicher zu stellen. Ein häu�g verwendetes Verfahren zum Si-

cherstellen von Vertraulichkeit ist das Verwenden von Zugri�skontrolle. Basierend auf

modellierter Softwarearchitektur, kann eine Zugri�skontrolle bereits während der Ent-

wurfszeit konzeptionell auf das System angewendet werden. Dies ermöglicht es, potentielle

Vertraulichkeitsprobleme bereits früh zu identi�zieren und bietet die Möglichkeit, die Aus-

wirkungen von Was-wäre-wenn-Szenarien auf die Vertraulichkeit zu analysieren, bevor

entsprechende Änderungen umgesetzt werden. Ungewissheiten der Systemumgebung,

die sich aus Unklarheiten in den frühen Phasen der Entwicklung oder der abstrakten

Sicht des Softwarearchitekturmodells ergeben, können sich jedoch direkt auf bestehende

Zugri�skontrollrichtlinien auswirken und zu einer reduzierten Vertraulichkeit führen. Um

dies abzuschwächen, ist es wichtig, Ungewissheiten zu identi�zieren und zu behandeln.

In dieser Arbeit stellen wir unseren Ansatz zum Umgang mit Ungewissheiten der Zu-

gri�skontrolle während der Entwurfszeit vor. Wir erstellen eine Charakterisierung von

Ungewissheiten in der Zugri�skontrolle auf der Architekturebene, um ein besseres Ver-

ständnis über die existierenden Arten von Ungewissheiten zu erhalten. Darauf basierend

de�nieren wir ein Konzept des Vertrauens in die Gültigkeit von Eigenschaften der Zu-

gri�skontrolle. Dieses Konzept bietet die Möglichkeit mit Ungewissheiten umzugehen, die

bereits in Publikationen zu Zugri�skontrollmodellen beschrieben wurden. Das Konzept

des Vertrauens ist eine Zusammensetzung von Umgebungsfaktoren, die die Gültigkeit von

und folglich das Vertrauen in Zugri�skontrolleigenschaften beein�ussen. Um Umgebungs-

faktoren zu kombinieren und so Vertrauenswerte von Zugri�skontrolleigenschaften zu

erhalten, nutzen wir Fuzzy-Inferenzsysteme. Diese erhaltenen Vertrauenswerte werden

von einem Analyseprozess mit in Betracht gezogen, um Probleme zu identi�zieren, die

aus einem Mangel an Vertrauen entstehen.

Wir erweitern einen bestehenden Ansatz zur Analyse von Informations�uss und Zugri�s-

kontrolle zur Entwurfszeit, basierend auf Daten�ussdiagrammen. Das Wissen, welches wir

mit unserem Konzept des Vertrauens hinzufügen, soll Softwarearchitekten die Möglichkeit

geben, die Qualität ihrer Modelle zu erhöhen und Anforderungen an die Zugri�skontrolle

ihrer Systeme bereits in frühen Phasen der Softwareentwicklung, unter Berücksichtigung

von Ungewissheiten zu veri�zieren.

Die Anwendbarkeit unseres Ansatzes evaluieren wir anhand der Verfügbarkeit der notwen-

digen Daten in verschiedenen Phasen der Softwareentwicklung, sowie des potenziellen

Mehrwerts für bestehende Systeme. Wir messen die Genauigkeit der Analyse beim Iden-

ti�zieren von Problemen und die Skalierbarkeit hinsichtlich der Ausführungszeit, wenn

verschiedene Modellaspekte individuell vergrößert werden.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Contribution . 2

1.2 Outline . 2

2 Foundations 5
2.1 Uncertainty Classi�cation . 5

2.2 Data Flow Diagrams . 6

2.2.1 Extended Data Flow Diagram . 6

2.2.2 Transformation to Logic Program 7

2.2.3 Analysis . 8

2.3 Fuzzy Inference Systems . 9

3 RelatedWork 13
3.1 Uncertainty . 13

3.1.1 Uncertainty During Design-Time 13

3.1.2 Uncertainty in Access Control . 13

3.1.3 Uncertainty Associated with Cyber-Physical Systems 14

3.1.4 Using Fuzzy Logic . 14

3.2 Analyses of Software Architecture and Security 14

3.2.1 Palladio . 15

3.2.2 Model-Driven Security Modeling 15

3.2.3 Data Flow Modeling . 16

3.2.4 Source Code Con�dentiality Analysis 16

3.2.5 Comparison . 17

4 Characterizing Uncertainty 19
4.1 Uncertainty in Software Architectures . 19

4.2 Uncertainty in Access Control . 20

4.2.1 Access Control Properties for Industry 4.0 20

4.2.2 Trust in Access Control Properties 21

4.2.3 Environmental Factors . 22

4.3 Uncertainty of Trust . 23

5 Running Example 25

v

Contents

6 Metamodel Extension 29
6.1 Fuzzy Inference System Modeling . 29

6.2 Representation of Trust . 33

6.3 Extended DFD Metamodel . 34

6.3.1 Information Services . 35

6.3.2 Extending Characteristics . 35

6.3.3 Behavior De�nition . 36

7 Analysis Process 41
7.1 Calculation of Trust . 41

7.2 Extended Prolog Mapping . 41

7.3 Prolog Query . 43

8 Evaluation 47
8.1 Evaluation Design . 47

8.1.1 Evaluation Design for Applicability 47

8.1.2 Evaluation Design for Accuracy 48

8.1.3 Evaluation Design for Scalability 49

8.2 Evaluation Setup . 50

8.2.1 Setups for Evaluating Applicability 50

8.2.2 Setups for Evaluating Accuracy 51

8.2.3 Setups for Evaluating Scalability 58

8.3 Evaluation Results . 61

8.3.1 Discussion on Applicability . 61

8.3.2 Findings and Discussion on Accuracy 65

8.3.3 Findings and Discussion on Scalability 66

8.4 Threats to Validity . 70

8.5 Assumptions and Limitations . 72

8.6 Data Availability . 73

9 Conclusion 75
9.1 Summary . 75

9.2 Future Work . 76

9.3 Acknowledgments . 77

Bibliography 79

vi

List of Figures

2.1 Uncertainty taxonomy of Perez-Palacin et al [51]. 5

2.2 Metamodel of DFD with con�dentiality extensions [66]. 7

2.3 Basic structure of a FIS [50]. 9

2.4 Linguistic concept ’heaviness of rain’, with exemplary linguistic values. . 10

2.5 Inferences with Mamdani’s min, max operators and GOG defuzzi�cation

[24]. 12

4.1 Highlighted uncertainty taxonomy. 24

5.1 Initial setup of the running example. 25

5.2 Data �ow diagram of the initial setup of the running example. 26

5.3 Progressed setup, with uncertainty about Visitor location. 26

5.4 Data �ow diagram, with unidenti�ed illegal data �ow to Visitor. 27

5.5 Data �ow diagram, with added trust. 27

6.1 Class diagram excerpt of the FIS metamodel representation. 30

6.2 Class diagram excerpt of the membership functions of the FIS metamodel. 31

6.3 Examples of membership functions. 31

6.4 Membership functions of inputs and output of the running example. . . . 32

6.5 Class diagram showing the extended metamodel representation of the DFD. 35

6.6 Extended behavior templates [66]. 37

6.7 Behavior templates [66] that change or add labels. 38

6.8 Proposed behavior templates that explicitly change trust of an label. . . . 38

6.9 Object diagram excerpt of the running example DFD. 39

8.1 Increased number of scenarios that have to be considered for accuracy. . 48

8.2 Representation of the ABAC use case data �ow diagram [66]. 51

8.3 Reduced representation of the ABAC data �ow diagram, with an introduced

issue regarding mismatched properties. 52

8.4 Fuzzy input of information age of the manager role provider service. . . 54

8.5 Reduced representation of the ABAC data �ow diagram of the S2.1 scenario. 55

8.6 Reduced representation of the ABAC data �ow diagram, using the MaxMind-

GeoLite database. 56

8.7 Reduced representation of the ABAC data �ow diagram of the S2.3 scenario. 58

8.8 Membership function example of the fuzzy ouput regarding the setup of

Q3.3. 60

8.9 Findings on Q3.1. 67

8.10 Time for the transformation to Prolog code, with increasing number in-

formation services. 68

vii

List of Figures

8.11 Time for the transformation to Prolog code, with increasing size of trust

enumeration. 69

8.12 Time for the transformation to Prolog code, with an increasing number of

types of properties. 70

viii

List of Tables

2.1 Operators that can be used for the logical connection in rules. [34] 11

2.2 Accumulation methods. [34] . 11

2.3 Calculation rules for the defuzzi�cation process. [24] 12

3.1 Comparison of related work regarding design time analysis of software

architecture. 17

8.1 Metrics of access control cases realized in the original DFD syntax used to

evaluate expressiveness [66]. 64

8.2 Evaluated metrics for Q2.1. 65

ix

1 Introduction

Organizations always try to optimize and streamline production lines and supply chains

to increase productivity and save costs. To achieve these goals, the use of the concepts

and technologies associated with cyber-physical systems (CPS), the Internet of Things

(IoT), and the Internet of Services (IoS) have steadily increased. This lead to the concept

of Industry 4.0 (I4.0) [60] or Industrial Internet of Things (IIoT) [11]. Boyes et al. [11] de-

scribe the IIoT as a system that is comprised of multiple subsystems, including networked

smart objects, cyber-physical assents, and generic information technologies, as well as

optional cloud or edge computing platforms. The interconnected system enables real-time,

intelligent, and autonomous access, collection, analysis, and exchange of process, product,

and/or service information. This way, the overall production value can be optimized. The

production process can be streamlined by implementing self-organizing product lines and

supply chains, with ad-hoc cooperation between the involved machines, humans, and

organizations. For organizations, this may improve product or service delivery, boost

overall productivity, reduce labor cost and energy consumption, as well as reducing the

build-to-order cycle [11].

I4.0 and IIoT systems use and process data of the involved entities as decentralized re-

sources that communicate with each other. As much communication happens with outside

organizations like, for example, suppliers or producers, there is much concern about unau-

thorized access to each other’s data. The high �exibility and complexity and the amount

of data exchange of such systems makes it more critical than ever to be able to ensure the

con�dentiality of data [60].

An often-used measure to ensure this kind of con�dentiality is using access control mech-

anisms to authorize access or processing of data. Depending on the underlying access

control model, varying information is used to determine whether access should be granted

or denied in a speci�c scenario. The information is processed by various services, which

provide this information to the access control system. The services that provide this

information to the system introduce an element of uncertainty to the access control that

might implicate reduced validity or con�dentiality. For example, there are multiple ways

to obtain an employee’s location, each with di�ering uncertainties: Physical access control

systems can verify the position within a building as soon as the employee enters a room

using his magnet card on an RFID reader. However, an RFID reader cannot know whether

multiple people entered the room at the same time or whether the room has already been

left. A GPS sensor might experience inaccuracies and varying processing delays depending

on satellite reception or signal dampening [33]. Depending on the environment, these

factors can result in a deviation of the position supplied by the GPS sensor of multiple

meters. This deviation causes, e.g., the assignment of a person to a speci�c room to be

error-prone and reduces the validity of this information. Delays and the general age of

the supplied information might also decrease its validity and increase uncertainty. The

1

1 Introduction

�exible and distributed property of I4.0 and IIoT systems also introduces uncertainty about

the current system structure, system behavior, and system environment [13]. This is why

uncertainty in access control needs to be considered, especially in the context of I4.0 or

IIoT.

In the following, we present the outline of our contribution and give an overview of the

thesis’ structure.

1.1 Contribution

We propose an approach of narrowing down and handling uncertainty in access control

within the context of design time software architecture modeling of Industry 4.0 systems.

We aim to de�ne a characterization of uncertainties in access control on the architectural

level, to be able to better understand the kinds of uncertainty that can be present. To do

so, we �rst discuss how characteristics of existing uncertainty taxonomies [51], [75] can

be applied to design time software architecture. We further classify properties used in

access control and speci�c uncertainties that can be associated with these properties.

With this characterization, we aim to identify scenarios in research regarding access

control in which uncertainty is described. We use these scenarios to further narrow down

the characterization of uncertainty and de�ne a way to handle the in�uence of uncertainty

on access control. Using our approach shall enable software architects of I4.0 systems to

not only analyze the validity of data-�ow criteria based on �xed access control information

but also to factor in uncertainties of the system and its environment.

As part of this thesis, we aim to answer the following research questions:

RQ1 Which kinds of uncertainty exist in access control on the architectural level, and

how do these uncertainties manifest themselves?

RQ2 How can the uncertainty be handled in access control analyses on the architectural

level?

We answer RQ1 by creating the characterization of uncertainties in access control on the

architectural level, we have described above.

To answer RQ2, we make model uncertainty explicit by de�ning the concept trust as

a composition of environmental factors of the system that in�uence the correctness or

validity of access control properties. We extend an existing data �ow based software

architecture analysis approach with this concept [66].

1.2 Outline

The remainder of this thesis is structured as follows: In Chapter 2, we explain our founda-

tions, like uncertainty classi�cation, data �ow modeling, and fuzzy inference systems. In

Chapter 3, we present related work regarding uncertainty in software and access control, as

well as analysis of architectural models. We elaborate our characterization of uncertainty

in the I4.0 environment, in Chapter 4, narrowing down and combining several views

2

1.2 Outline

on uncertainty in software architecture and access control. In Chapter 5 we present a

running example that we use throughout the remainder of the thesis. Chapter 6 gives a

detailed overview of the extension to a data �ow model to include the concept of trust.

We explain how we utilize the extended data �ow model by extending an existing access

control analysis approach in Chapter 7. In Chapter 8 we evaluate our approach. Chapter 9

concludes the thesis and provides an outlook on the future.

3

2 Foundations

This chapter gives an overview of the foundations the contributions of this thesis are

based on. Section 2.1 covers the uncertainty characterization that we discuss in this thesis,

which strongly bases on the taxonomy of uncertainty for software systems [51] and the

general de�nition of uncertainty [75], that the taxonomy bases on. The implementation

of our concept relies on two main foundations. Section 2.2 covers the data �ow diagram

approach [66], which builds our foundation for a data �ow de�nition and analysis. In

Section 2.3 we explain the fundamentals of fuzzy logic and fuzzy inference systems (FIS),

which we utilize as part of our contribution.

2.1 Uncertainty Classification

One of the most prominent publications regarding uncertainty is the paper "De�ning

Uncertainty" from Walker et al. [75]. They describe a terminology and typology and a

three-dimensional uncertainty matrix for identifying and characterizing uncertainty. The

three dimensions of uncertainty are the location, level, and nature. The location indicates

where the uncertainty manifests itself within the observed system. They de�ne some

generic locations that apply to most models. These locations are Context uncertainty,

model structure uncertainty, model technical uncertainty, parameter uncertainty, and

model outcome uncertainty. The level of uncertainty is dependent on the knowledge about

uncertainty. It raises with an increase of uncertainty and a decrease of knowledge about

the uncertainty. The level terminology is structured as follows: Determinism, statistical

uncertainty, scenario uncertainty, recognized ignorance, and total ignorance. Nature is

divided into uncertainty, resulting from the imperfection of knowledge (epistemic) or

inherent variability present in a system, e.g., through human behavior or random events in

nature (aleatory). The taxonomy of Perez-Palacin and Mirandola [51] is heavily based on

Uncertainty

location level nature

0: lack of uncertainty

1: lack of knowledge

2: lack of awareness

3: lack of process

context

structural

input

epistemic

aleatory

Figure 2.1: Uncertainty taxonomy of Perez-Palacin et al [51].

5

2 Foundations

the three dimensions of the uncertainty matrix of [75], but coin them to be more focused

on software engineering. This three-dimension classi�cation is shown in Figure 2.1. They

narrow down the originally very open de�nition of the locations to be speci�c to software

systems. Instead of the progressive transition of levels proposed by [75], they propose a

scale of �ve clearly de�ned levels of uncertainty, based on the �ve orders of ignorance [3].

Nature is de�ned slightly di�erently, but the overall proposition remains unchanged.

2.2 Data Flow Diagrams

The data �ow diagram (DFD) approach of Seifermann et al. [66] is based on the DFD

notion of DeMarco [18]. They propose an extension of the DFD syntax to overcome several

limitations regarding the usability for con�dentiality analyses.

Instances of the extended DFD are analyzed using a logic program given in Prolog [12].

The DFD instance is �rst transformed to Prolog facts and rules, which de�ne the structure

of the DFD and relationships between structural entities. These facts and rules are later

used to de�ne queries used to identify possibly illegal data �ows.

2.2.1 Extended Data Flow Diagram

Data �ow diagrams are unidirectional graphs representing the viewpoint on systems based

on data processing. The extended DFD metamodel is shown in Figure 2.2 and is made up

of several elements:

Graph Nodes are either Actors, Processes, Stores or ActorProcesses. Edges that connect Nodes
are called Data �ows and describe a data transmission between the connected nodes.

Actors are source and sink nodes, which start or terminate a sequence of data �ows.

In Process nodes, incoming data is transformed and passed on as outgoing data. The

ActorProcess nodes describe complex data processing on behalf of an actor. Store nodes

hold or emit data.

Characteristics represent properties of nodes. Each Characteristic is an instance of a

CharacteristicType. This strong typing of Characteristic makes it possible to identify and

match properties of the same type. The value of a property can be one out of a set of

discrete values. These sets are represented by an Enumeration and the discrete values

are represented by Label. Each CharacteristicType de�nes a Enumeration as the range of

possible values for properties of the corresponding type. A Characteristic selects a subset

of available labels from its type. Each node can hold multiple Characteristics. This means,

that a Node has the properties that correspond to the labels of its held Characteristics.
A Pin describes required input data or output data of a node. The entirety of Pins of a Node
represents the interface of the Node. Instead of connecting Nodes, the DataFlow edges

connect output pins to input pins. Using Pins lowers the modeling e�ort by enabling the

reuse of nodes. An additional edge from an input pin represents an alternative data �ow.

An additional edge to an output pin represents another forked data �ow.

The way Nodes manipulate and transform data is represented by BehaviorDe�nitions. A

BehaviorDe�nition consists of input and output pins and Assignments. The Terms of an

6

2.2 Data Flow Diagrams

Assignment describe how labels are assigned to output pins. This assignment can refer to

labels of input pins or constants. [66]

Store Actor

ActorProcess

Process

**

DataFlowdiagram

src
dst

srcPin dstPin

DataFlow Node

BehaviorDefinition

Label

inputs
*

outputs
*

Pin
*

*

Characteristic

type

type

0..1

CharacteristicType

type

{ordered}
*Enumeration

rhs
Term

lhs

0..1

DataCharacteristicReference

/behavior

owned
Behavior

0..1
referenced
Behavior

0..1

Behaving

*
{ordered}

Assignment

Figure 2.2: Metamodel of DFD with con�dentiality extensions [66].

2.2.2 Transformation to Logic Program

As shown in Figure 2.2, actors, stores, processes, and actor processes are subclasses of

node. Each node is transformed to one Prolog fact, which corresponds to its actual type,

replacing the placeholder variable N in Line 1 of Listing 2.1 with the identi�er of the

node. For actor processes, the placeholder variable A is replaced by the identi�er of the

corresponding actor. Characteristic types are transformed by creating a fact as shown in

line 2 of Listing 2.1, replacing CT with the identi�er of the characteristic type. For each

label of the enumeration, which the characteristic type refers to, a fact as shown in line 3

of Listing 2.1 is created. CT is replaced by the identi�er of the characteristic type, V with

the identi�er of the actual label, and I with the position of the label in the enumeration.

Each label that is assigned to a node becomes one fact by replacing the N in line 4 of Listing

7

2 Foundations

2.1 with the identi�er of the node, CT with the identi�er of the characteristic type and V
with the identi�er of the assigned label.

Listing 2.1: Prolog facts representing the DFD structure [66].

1 actor(N), store(N), process(N), actorProcess(N, A),
2 characteristicType(CT),
3 characteristicTypeValue(CT, V, I),
4 nodeCharacteristic(N, CT, V).

Facts are created for every input and output pin of each node, by replacing N in line 1

of Listing 2.2 with the identi�er of the corresponding node and PIN with the identi�er

of the pin. Data �ows are transformed to facts, shown line 2 of Listing 2.2. F is replaced

by the identi�er of the data �ow, N_SRC and PIN_SRC are replaced by the identi�ers

of the source node and pin, N_DST and PIN_DST are replaced by the identi�ers of the

destination node and pin. As behavior is speci�ed for a pin of a node, we replace the

variables N and PIN, of the rule shown in line 3 of Listing 2.2, with the identi�ers of the

pin and corresponding node. The rule body is created in a way, that it evaluates to true,

if the value label V of characteristic type CT is available on the pin PIN of node N. S
represents a �ow tree, that will be traversed, VF represents a list of all �ows that have

already been traversed. [66]

Listing 2.2: Prolog facts and rule representing node behaviors [66].

1 inputPin(N, PIN), outputPin(N, PIN),
2 dataflow(F, N_SRC, PIN_SRC, N_DST, PIN_DST),
3 characteristic(N, PIN, CT, V, S, VF) :- ...

2.2.3 Analysis

The analysis is de�ned with a query to the Prolog program. Prolog automatically tries

to solve the query and by doing so considers all data paths via backtracking. For access

control, the queries compare labels of the nodes receiving data with labels of the received

data, or labels of data to each other.

The Prolog clauses that can be used to de�ne analysis queries are the union of the Prolog

facts and rules described in the previous section and additional helper clauses. Line 1 of

Listing 2.1 shows the clauses to �nd an identi�er N representing one of the node types

described in Section 2.2.1. Lines 2 and 3 of show clauses to �nd the identi�er CT of a

characteristic type and the label identi�er V of characteristic type CT. Line 4 of shows the

clause to �nd the label identi�er V of characteristic type CT that is active on the node with

identi�er N.

Line 1 in Listing 2.2 shows clauses to �nd an identi�er PIN for either input or output pins

of a node with identi�er N. Line 2 shows the clause to �nd an identi�er F of a data �ow,

that connects the pin with identi�er PIN_SRC of the node with identi�er N_SRC to the

pin with identi�er PIN_DST of the node with identi�er N_DST. Line 3 Listing 2.2 shows

the clause to �nd the label identi�er V of characteristic type CT that is available on the

pin with identi�er PIN of the node with identi�er N.

8

2.3 Fuzzy Inference Systems

Line 1 in Listing 2.3 shows the clause to �nd all input pins PINS for a given node with

identi�er N. Line 2 shows the clause to build a valid �ow tree S for the pin with identi�er

PIN of the node with identi�er N. Line 3 shows the clause to �nd out if the node with

identi�er N has been traversed by the �ow tree S.

Using these clauses di�erent queries can be tailored to �t di�erent policy types.

Listing 2.3: Helper clauses for analysis queries [66].

1 findAllInputPins(N, PINS),
2 flowTree(N, PIN, S),
3 traversedNode(S, N).

2.3 Fuzzy Inference Systems

Fuzzy Inference Systems (FIS) use fuzzy set theory to map system inputs to outputs. The

Mamdani fuzzy inference system [43] that we use in this thesis was initially developed

to control the steam engine and boiler combination. FISs are used for several use cases,

including handwriting recognition, prediction systems for early recognition of earthquakes

[5] and as adaptive-network-based fuzzy inference systems (ANFIS) [35] in the �eld of

arti�cial neural networks and machine learning [68], [74].

A FIS is made up of four main components [14], [39], [50], shown in Figure 2.3:

• A fuzzi�er, which translates the crisp inputs to the system into fuzzy values, by

applying the real-valued crisp input values to a set of membership functions.

• A fuzzy inference engine, which uses the fuzzy input from the fuzzi�er and available

fuzzy rules to infer a fuzzy output.

• A defuzzi�er, which translates the fuzzy output of the inference engine back to a

crisp value, by aggregating the fuzzy outputs using a defuzzi�cation method.

• A knowledge base, which comprises a collection of fuzzy rules, the rule base, and a

collection of membership functions, the database.

fuzzy input
Fuzzyfier

fuzzy output
Fuzzy Inference

Engine Defuzzifier

Knowledge base

Database

Rule base

crisp
input

crisp
output

Figure 2.3: Basic structure of a FIS [50].

9

2 Foundations

In the fuzzi�er, the crisp numerical inputs to the system are assigned to fuzzy sets. This

assignment is represented by a degree of membership within an interval of [0,1]. The

degree of membership value represents the degree of truth that the input value belongs

to the fuzzy set. These fuzzy sets are de�ned by their respective membership function,

which calculates the degree of membership for a given value.

Referencing natural language, each input represents a linguistic concept used to abstract

from the actual crisp inputs. The membership functions represent the linguistic values of

the corresponding concept. For example, rainfall might be measured by the number of

liters per square meter. This measurement is the crisp input. A linguistic concept might be

the Heaviness of Rain [46]. Figure 2.4 shows the exemplary fuzzy input for the heaviness

of rain, depending on the amount of rainfall in liters per square meter. The linguistic

values might be lite, medium, or heavy rain. Three corresponding fuzzy sets are de�ned

by the membership functions lite, medium and heavy. A crisp value of 7.5 liters of

rain, results in degrees of truth of 0.2 for lite, 0.55 for medium and 0.0 for heavy.

0 5 10 15 20 25

Rainfall [l/m 2]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

Heaviness of Rain

light
medium
heavy

Figure 2.4: Linguistic concept ’heaviness of rain’, with exemplary linguistic values.

While the fuzzy sets in Figure 2.4 are de�ned by gaussian functions, in general any fuzzy

set � can be de�ned by a function `� over a discrete universe - with the mapping rule

`� : - → [0, 1] [76].

Fuzzy rules which characterize the behavior of the fuzzy inference engine, are a set of

linguistic description rules. The rules are structured in the form IF (a set of conditions are

satis�ed) THEN (a set of consequences can be inferred). For a FIS with two inputs and

one output a rule is structured like this:

IF 0 8B �8 0=3 1 8B �8 THEN I 8B /8 .

Here a and b are inputs structured similar to the example input in Figure 2.4, �8 , �8 and /8
are fuzzy sets or membership functions, from each respective input/output. This rule is

10

2.3 Fuzzy Inference Systems

implemented by a fuzzy implication '8 , which is de�ned as

'8 (D, E,F) = [�8 (D) 0=3 �8 (E)] → /8 (F).

The logical connection 0=3 , and corresponding >A , can be implemented by a variety of

functions. The Fuzzy Logic Toolbox in MATLAB [44] and the ISO IEC 61131 standard

regarding fuzzy control programming [34] de�ne the min operator of Mamdani (MIN), the

product (PROD), and the bounded di�erence (BDIF) for the logical 0=3 . For the logical >A ,

the max operator of Mamdani (MAX), the algebraic sum (ASUM), and the bounded sum

(BSUM) are de�ned. The corresponding formulas are presented in Table 2.1. For Mamdani

FISs, the default implementation is the MIN operator ∧. This results in

[�8 (D) ∧ �8 (E)] → /8 (F) =<8={�8 (D), �8 (E)} → /8 (F).

And Operator

MIN <8=(=,<)
PROD = ·<
BDIF <0G (0, = +< − 1)

Or Operator

MAX <0G (=,<)
ASUM = +< − = ·<
BSUM <8=(1, = +<)

Table 2.1: Operators that can be used for the logical connection in rules. [34]

Multiple rules of this kind might be de�ned. To obtain the fuzzy output, the fuzzy inference

engine utilizes the given fuzzy inputs 00 and 10 to calculate the consequent fuzzy output

/ . / (F) is calculated by accumulating the result of the fuzzy implications of each rule:

/ (F) = �22D (�1(00) ∧ �1(10) → /1(F), ..., �= (00) ∧ �= (10) → /= (F)) ∀F ∈,

Similar to logical connections 0=3 and >A , MATLAB [44] and the ISO IEC 61131 standard

[34] de�ne the max operator of Mamdani (MAX), the bounded sum (BSUM) and the

normalized sum (NSUM) as operators for �22D. The corresponding formulas are presented

in Table 2.2. For Mamdani FIS �22D is de�ned as the MAX operator ∨.

/ (F) = /1(F) ∨ ... ∨ /= (F) =<0G{/1(F), ..., /= (F)}

Accu Operator

Mamdani max MAX <0G (=,<)
bounded sum BSUM <8=(1, = +<)
normalized sum NSUM

=+<
<0G (1,"�- (=′+<′))

Table 2.2: Accumulation methods. [34]

In the defuzzi�er, the calculated fuzzy output / is translated back to a crisp value I0. This

is done by utilizing a defuzzi�cation operator: I0 = 34 5 DII8 5 84A (/). Fuller et al. [24]

11

2 Foundations

de�ne the center of gravity (COG), center of area (COA), left most max (LM) and right

most max (RM) as defuzzi�cation operators. The corresponding formulas are presented in

Table 2.3.

Defuzzi�action Method

center of gravity COG

∫
,
G/ (G) 3G∫

,
/ (G) 3G

center of area COA

∑
9 G 9/ (G 9)∑
9 / (G 9)

left most max LM <8={G |/ (G) =<0GF (/ (F))}
right most max RM <0G{G |/ (G) =<0GF (/ (F))}

Table 2.3: Calculation rules for the defuzzi�cation process. [24]

Figure 2.5 shows the process of making inferences with a multiple-input-single-output

(MISO) FIS, in this case two-input-single-output. The shown example uses the Mamdani

min and max operators for the logical and connection and aggregation. For defuzzi�cation,

the described COG operator is used. G0, ~0 represent crisp input values, I0 represents the

crisp output value.

u v

u v

w

wa0 min

w

b0

A1

A2

B1

B2

Z1

Z2

z0
COG

max

Z

Figure 2.5: Inferences with Mamdani’s min, max operators and GOG defuzzi�cation [24].

12

3 RelatedWork

In this chapter, we give an overview of the related work of this thesis. We split the related

work into two areas of research. In Section 3.1, we discuss di�erent areas where uncertainty

has been researched and distinguish our contribution from approaches in these areas. We

also discuss related work regarding the design-time analysis of software architectures,

describe di�erent existing approaches, and di�erentiate our contribution of this thesis

from these approaches in Section 3.2.

3.1 Uncertainty

The related work presented in this section focuses on uncertainty in various research

areas that are partly related to the contribution of this thesis. In Section 3.1.1 we present

related work in the area of design-time uncertainty. Section 3.1.2 gives an overview of

multiple approaches that address uncertainty in access control. In Section 3.1.3 we present

three related publications in the topic of uncertainty and cyber-physical systems. Finally,

in Section 3.1.4 we present related work that uses fuzzy systems to handle or represent

uncertainty in the context of access control.

3.1.1 Uncertainty During Design-Time

Lytra and Zdun [41] propose a fuzzy logic-based approach for architectural design decision

making to provide automated guidance for recurring architectural design decisions under

uncertainty. They create a DSL for specifying decision models with uncertainty and

implement a fuzzy inference system for deriving best-�tting design solutions.

Famelis and Chechik [21] propose a methodological approach for managing uncertainty

using partial models. They work out stages in the lifecycle of uncertainty-related design

decisions and encapsulate abstracted information of the lifecycle of design-time uncertainty

in software artifacts in the so-called Design-Time Uncertainty Management (DeTUM)

model.

Both approaches provide a good base understanding of uncertainty during design-time

but primarily focus on uncertainty in the structure and input of the software system. The

characteristic of uncertainty in the system context, as described in Section 2.1, is not

regarded.

3.1.2 Uncertainty in Access Control

Hengartner and Ge [29] present an access control model that addresses challenges that

arise when deploying uncertainty-aware access control. They de�ne these challenges as

13

3 Related Work

identifying and authenticating people and their intended actions, associating uncertainty

with time, and handling similar/redundant uncertain statements.

Bures et al. [13] present access-control related situational patterns for tackling uncertainty

in a system. They provide a classi�cation and representative examples of uncertainty in

access control in Industry 4.0 systems. the situational patterns are based on the classi�ca-

tion and are aimed to serve as meta-adaptation strategies in unanticipated situations.

While we use many aspects of these approaches for our proposed concept, they only focus

on representing uncertainty present at runtime.

3.1.3 Uncertainty Associated with Cyber-Physical Systems

There are multiple publications of Zhang et al. that revolve around the topic of uncertainty

and cyber-physical systems (CPS). The �rst publication [79] de�nes the uncertainty which

is inherent in situations where CPS might interact with environmental factors like humans.

Other publications focus on testing and test generation [77][78], which leverage the

uncertainty of its operating environment to ensure its reliable operation.

While CPS generally �ts in the theme of I4.0, the uncertainty involving the environment

and operation of CPS shows no direct relation to the theme of uncertainty in access control

of I4.0 systems.

3.1.4 Using Fuzzy Logic

Several fuzzy logic approaches describe how to handle uncertainty. In the realm of access

control, we found an approach of Hosmer [30] that uses fuzzy logic to represent security

patterns. Cheng et al. [15] use the inherent uncertainty and risk in access control decisions

to create a fuzzy logic risk-adaptive access control model. They illustrate their approach

by showing how it could be used to implement a fuzzy multi-level-security model.

The work of Platenius et al. [52], [53] uses fuzzy logic to match service requests to

potentially incomplete service speci�cations using signature or privacy policy matching.

Similar to the approach of Lytra and Zdun [41] the fuzzy logic approaches focus on making

decisions by factoring in uncertainty. This thesis, however, mainly focuses on representing

uncertainty in the software architecture and providing a process to analyze the e�ect of

uncertainty on access control during design time.

3.2 Analyses of So�ware Architecture and Security

The related work presented in this section focuses on approaches of analyzing software

architecture or security analysis which are partly related to our contribution. We �rst

describe the Palladio approach of software architecture modeling and simulation in Section

3.2.1. In Section 3.2.2 we present an approach of model driven security analysis. Section

3.2.3 gives an overview of several data �ow modeling and analysis approaches. In Section

3.2.4 we present two analysis approaches which base on source code. We conclude this

section in Section 3.2.4 with a comparison of all the presented approaches and compare

them to our contribution.

14

3.2 Analyses of Software Architecture and Security

3.2.1 Palladio

Palladio is a tool-supported software architecture simulation approach used to predict an

architecture’s Quality of Software properties, like performance or reliability.

The Palladio Component Model (PCM) is a metamodel of component-based software

architectures [59]. The basic PCM consists of a repository, system, resource environment,

allocation, and usage metamodel, each representing a di�erent architectural view on a

system.

The repository model describes components and their interfaces, with the inner behavior

of components being described by service e�ect speci�cations (SEFF). The system model

combines components that are described in the repository model to specify the software

architecture. The resource environment model describes the speci�cations of available

processing resources. The allocation model describes which components are deployed

on which resource. The usage model describes the behavior of users interacting with the

system [59].

There are multiple approaches to analyzing PCM model instances. The most prominent

is the method of simulation for performance predictions during the design process [7].

Another analysis method has been presented by Koziolek et al. [40], transforming the

PCM to layered queueing networks (LQN) and using an LQN solver. This approach gives a

performance advantage over the previously described discrete-time simulations, but results

need to be interpreted manually. A di�erent simulation approach has been proposed by

Meier et al. [47]. The approach provides an automated model-to-model transformation

that transforms PCM model instances to queuing petri nets (QPN). The modeled system is

then analyzed by simulating the resulting QPN.

All of the before mentioned approaches based on the Palladio Component Model (PCM)

focus on performance prediction during design time and not access control.

In previous work, Seifermann et al. propose a software architecture description and

analysis process, called Data-Driven Software Architecture (DDSA) [65]. The approach

extends the PCM and utilizes the control �ow derived from a PCM instance for access

control analysis. They introduce the concept of data and data processing operators as

�rst-class entities to the PCM. Data can have sets of characteristics, which represent

abstract meta-data of the a�liated data [64]. The analysis is realized as queries to a Prolog

program that a transformation chain derives from the extended PCM instances. While

the DDSA approach can analyze a software architecture model instance for access control

violations, the focus of the access control analysis is on the control �ow and not the more

�ne granular �ow of data.

3.2.2 Model-Driven Security Modeling

Model-driven security approaches try to solve security questions during design time.

Similar to the Palladio approach described in Section 3.2.1, modeling and analysis of

critical security aspects in the early stages of the system development process can prevent

more cost-intensive changes in subsequent stages.

Jürjens et al. describe an approach which is based on Uni�ed Modeling Language (UML),

called UMLSec [36]. With the use of stereotypes and constraints, standard UML diagrams

15

3 Related Work

are annotated with security attributes. Model instances with those security attributes are

transformed into abstract state machines and analyzed with a model checking approach.

The approach supports analyses of information �ow and access control in the form of

RBAC policies. While the proposed information �ow analysis considers data, the RBAC

access control analysis only considers actions.

3.2.3 Data FlowModeling

Additional to the data �ow diagram approach of Seiferman et al. [66], which we have

described in Section 2.2, there are several other data �ow oriented security analysis

approaches.

Katkalov et al. propose an environment for modeling �ow-sensitive applications, called

IFlow [38]. Similar to the UMLSec approach, an annotated UML diagram is transformed

into an abstract state machine. The resulting machine is then used as an input for theorem

proving. The goals are automatically generated based on annotations by the user. To

realize an information �ow analysis, IFlow requires behavior descriptions, which are very

detailed and are challenging to properly create during design time [66], [73].

Peldszus et al. present an approach using an annotated architectural level data �ow diagram

model, called SecDFD [49]. They propose a mapping between DFD and a codebase, which

includes the matching of structures and signatures. The mapping can be used to apply

security metrics as a form of compliance check.

The FlowUML approach of Alghathbar et al. [1] is a "logic-based system to validate

information �ow policies at the requirements speci�cation phase of UML based designs

[1]." The approach derives DFDs from UML sequence diagrams and maps them in a logic

program. They describe how to create policies that can detect violations in information �ow

and access control. However, the access control policies are limited to the Discretionary

Access Control (DAC) and Mandatory Access Control (MAC) models. Also, at the time of

writing this thesis, there exist no publications that report on an evaluation of FlowUML.

3.2.4 Source Code Confidentiality Analysis

When focusing on security analysis, there also are multiple approaches revolving around

the topic of source code con�dentiality analysis. As the �eld is very big, we only present

two di�erent approaches as our related work.

The generic information �ow analysis JOANA of Snelting et al. [72] supports �agging of

data and the use of multiple security levels.

More speci�ed approaches, like the FlowDroid approach of Arzt, Steven, et al. present

a static source code analysis for Android applications [4]. They utilize the technique of

’tainting’ data to track sensitive information through an application.

While both approaches can detect violations in information �ows, they can only be used

in a later development phase when source code is already available. At this time in the

development process, the approaches can detect the e�ect of a design issue, but do not

reveal the design issue itself [66].

16

3.2 Analyses of Software Architecture and Security

3.2.5 Comparison

We add Table 3.1 to better summarize the comparison and describe our reasoning in using

the DFD approach of Seifermann et al. (see Section 2.2) as the base for our contribution.

The Palladio and DDSA approaches only focus on the control �ow. Even though DDSA

allows for access control, it is not de�ned on the data level. The IFlow and SecDFD

approaches focus on information �ow but do not provide the possibility of de�ning

access control policies. While the UMLsec and FlowUML approaches generally allow for

the de�nition of access control policies, they come with many restrictions and are not

universally applicable. The approaches regarding source code analysis fall out of the scope

for our contribution, as we aim to focus on the design time software architecture.

The DFD approach of Seifermann et al. (see Section 2.2), o�ers access control analysis

on the data level, during design time. The de�nition of access control policies is also not

restricted, like the UMLsec and FlowUML approaches, and is able to de�ne access control

policies for all commonly known access control models.

Approach Development
phase

Scope Analysis method

Palladio design time control �ow analytical solver

& simulation

DDSA design time control �ow &

access control

logic program

UMLsec design time information �ow

(& access control)

model checking

IFlow design time information �ow theorem proving

SecDFD design time information �ow theorem proving

FlowUML design time information �ow

(& access control)

logic program

FlowDroid implementation information �ow static taint analysis

JOANA implementation information �ow static code analysis

Contribution

(based on 2.2)

design time information �ow

& access control

logic program

Table 3.1: Comparison of related work regarding design time analysis of software archi-

tecture.

17

4 Characterizing Uncertainty

In this chapter, we discuss how uncertainty can be characterized. In Section 4.1 we narrow

down an existing characterization of uncertainty to �t the area of software architecture.

We further narrow down our characterization with regards to access control in Section 4.2

by conducting a preliminary literature research regarding access control properties and

discussing how some publications already consider uncertainty in di�erent ways. Based

on our research, we de�ne our concept of trust in the validity of an access control property

to handle the observed uncertainty in Section 4.3.

4.1 Uncertainty in So�ware Architectures

To characterize and discuss the uncertainty in access control on the architectural layer, we

�rst need to establish a general characterization of uncertainty in software architecture

modeling and software architecture analysis. We base our characterization on the classi�-

cation of Perez-Palacin, and Mirandola [51], described in Section 2.1.

To narrow down this classi�cation and characterize uncertainty in software architecture,

we �rst analyze if the characteristics are applicable in the context of software architecture:

Level: Level 0 uncertainty, or lack of uncertainty establishes a theoretical base for the

level characteristic of uncertainties and exists in every system. A system that only has

level 0 uncertainties is equivalent to a deterministic system without uncertainties. Any

software architecture analysis approach can already cover this kind of uncertainty if no

uncertainty exists in the system.

Level 1 uncertainty, or lack of knowledge is uncertainty that one is aware of but is not

resolvable to level 0 due to missing knowledge. Considering software architecture, if

there is awareness about uncertainty, it might be possible to gather the information

related to the uncertainty and add it to the software architecture. A software architecture

analysis process can use this added information to gain knowledge and mitigate the

uncertainty. However, during design time, the software architecture might still be made

up of assumptions, approximations, or averages which are uncertainties in themselves.

Additionally, uncertainties that one is not aware of might still be present, so fully reducing

the uncertainty to level 0 is not universally possible.

To consider and consequently handle uncertainty in an analysis on the architectural level, it

needs to be treated as a �rst-class entity and explicitly represented. To have a representation

of something in a model, one needs to be aware of its existence. Uncertainties on levels 2,

lack of awareness, and 3, lack of process, exist in a system because there is no awareness

about the uncertainty or no known process to gain awareness of that uncertainty. This

means that uncertainties of levels 2 and 3 can theoretically always be present in software

architecture.

19

4 Characterizing Uncertainty

Location: The taxonomy of Perez-Palacin and Mirandola [51] is already focused on the

modeling of software systems, so the locations of the taxonomy can directly be applied to

software architecture. Context uncertainty concerns the completeness of the metamodel

that is used to create a software architecture with respect to the real world. Model structural
uncertainty concerns how accurately the structure of the software architecture represents

the modeled subset of the real world. Input parameter uncertainty is associated with the

uncertainty about the actual value of variables given as input to the software architecture.

Nature: Both natures, epistemic and aleatory, can be present in software architecture.

However, aleatory uncertainty, due to the inherent variability of parts of the system or

random events, can not be reduced with an analysis approach, as this kind of randomness

can always occur. Epistemic uncertainty can be reduced by collecting more precise data

about the system and analyzing the improved software architecture.

4.2 Uncertainty in Access Control

To further narrow down the kinds of uncertainty relevant to an architectural access control

analysis for Industry 4.0, we aggregate relevant access control properties from the literature.

We utilize these properties to further narrow down the uncertainty characteristics that we

focus on in this thesis.

4.2.1 Access Control Properties for Industry 4.0

When observing an I4.0 software system and its environment, many properties could be

considered for access control. To get an overview about which access control properties

might be used and in how far they can experience uncertainty, we conduct preliminary

literature research to �nd access control properties that are well documented or researched.

Our research suggested that the subject area of access control is extensive while at the

same time yielding only minimal information regarding actual access control properties,

especially with a focus on industrial applications like I4.0 or IIoT systems. This is why

we decided to widen our view and focus on well-documented access control properties in

general.

From preliminary work [10] we already know the concepts of role-based access control

(RBAC) and Organization Based Access Control (OrBAC). We also know that location

information can be used to express access control rules or requirements. Using this

knowledge as our base, we explored research regarding these three main types of properties.

The characteristic of a property can di�er within the same property type. For example,

the location can specify the position within the perimeter of a production plant or the

country/city geolocation. The location information can originate from various sources,

like GPS-Sensors, but can also be derived from IP-address resolution. Within a chosen

access control model, similar properties can also be represented in entirely di�erent ways.

We chose the presented publications because they directly focus on the access control

property and not only the access control model. Many of the presented publications go

into detail on how a property is obtained and what characteristics make up the property.

Some publications go as far and to describe a kind of uncertainty that can coincide with

20

4.2 Uncertainty in Access Control

the characteristics of the presented access control property. We explicitly do not list the

property of current time and attempted action, as we did not �nd su�cient publications

speci�cally addressing these properties or the uncertainty that might come with them.

We categorize the identi�ed access control properties by the information they are based

on. Properties that we can identify are:

4.2.1.1 (Geo-)Location

Ardagna et al. [2] de�ne an approach to Location-Based Access Control (LBAC). This

access control model only uses location-based conditions and predicates to de�ne access

control policies. The model considers the limitations of technology by including con�dence

and timeout values of the location providing services.

Ray et al. [58] extend the Role-Based Access Control (RBAC) model to incorporate locations

and show how location information can be used to determine whether a subject has access

to a given object. They formalize their model using the Z speci�cation language [71].

Damiani et al., which proposes an extension of the RBAC model, has suggested a similar

approach, enhanced with spatial-and location-based information.

Skandhakumar et al. [70] propose a graph theoretic representation of building information

models (BIM) that can be used to improve access control administration.

We additionally identi�ed some more general approaches to access control that use the

location as a minor matter, or in examples [16], [29], [57].

4.2.1.2 Roles

Role-based Access Control (RBAC) has been covered by multiple publications [22], [23],

[63]. Permissions are associated with roles, and roles are assigned to users, thereby

acquiring the roles’ permissions. This reduces the complexity and cost of setting up large-

scale authorization management.

As RBAC and roles are a well known concept in the �eld of access control, roles are often

used in examples of related publications [17], [29], [32], [57], [58].

4.2.1.3 Organizational A�iliation

The Organization-based Access Control (OrBAC) model, suggested by Kalam et al. [37],

extends the RBAC model by introducing the concept of organizations and contexts. Organi-

zations are a set of subjects, e.g., users or other organizations. Contexts are used to specify

the concrete circumstances or conditions in which speci�c permissions are granted.

The organizational a�liation is also considered in the de�nition of ABAC [32] and access

control models for cloud computing systems [42], [62].

4.2.2 Trust in Access Control Properties

In the publication "Guide to Attribute Based Access Control (ABAC) De�nition and Con-

siderations [32]" of the National Institute of Standards and Technology (NIST), Hu et al.

describe the trust chain of ABAC, regarding the attributes used to make access control

decisions. Trust chains help determine the ownership of information and services and

21

4 Characterizing Uncertainty

requirements for technical solutions to validate and enforce trust relationships. The predi-

cate of a trust relationship revolves around the idea that the access control system can

trust the validity or correctness of the information, e.g., attributes supplied by the owner,

e.g., an authorization service. Depending on the access control model, many trust relation-

ships are required to achieve a properly working access control system. In a subsequent

publication regarding ABAC, Hu et al. de�ne levels of attribute assurance (LOAA) [31].

An LOAA combines the Accuracy, Integrity and Availability properties of attributes which

are supplied via the described trust chains to give an approximation about the assurance

that the access control system has a valid attribute at its disposal.

Considering RBAC, there might be di�erent services that verify a particular role of a user,

see Section 4.2.1.2. Depending on the kind of service, the trust in a supplied role might be

higher, e.g., using face recognition, or lower, e.g., using magnet cards. This is similar to

the con�dence value of di�erent location services described in [2]. A con�dence value

that a location service can guarantee is composed by combining accuracy, environmental

and weather conditions, requested location, and measurement technique.

This trust in attributes is crucial for Industry 4.0 software systems, as these systems are

often comprised of many subsystems and might even span multiple organizations, as we

described in the introduction 1. If, for example, a technician of another organization is

called in, the trust in the role of technician needs to be deliberated, as the owner of that

information is the other organization.

4.2.3 Environmental Factors

Interpreting the research regarding access control properties we have already done in

Section 4.2.1, we assume that uncertainty of the environment of the system has a signi�cant

impact on access control. For example, the con�dence value de�ned by Ardagna et al. [2] is

dependent on the service and environmental conditions. The con�dence can be considered

as the certainty in the location’s validity, which depends on environmental factors. The

spatial context de�nition of Cuppens et al. [16] precisely combines the hardware and

software architecture and the environment as an additional condition for access control.

Based on the work of Hengartner and Ge [29], and Bures et al. [13] we can identify

environmental factors that in�uence the uncertainty in access control. These factors are

generally applicable to all access control properties we have identi�ed in Section 4.2.1.

They also align well with the idea of trust relationships we discuss in Section 4.2.2 and

can be represented in software architecture:

• Source of the information

• Age of the information

• Amount of redundant information

In big and distributed systems, such as I4.0 systems, multiple services might exist and

use di�erent sources to deliver similar information that the access control properties are

relying on. Location information, for example, might be derived from a physical access

control mechanism or GPS data. Each of these sources has a di�erent margin of error

22

4.3 Uncertainty of Trust

or accuracy. The physical access control mechanism might verify that a person is in a

particular room, even though he only opened the door and never entered. The GPS, on the

other hand, has varying accuracy that might be dependent on environmental in�uences,

as we discussed in the introduction.

The age of the information is a combination of the time it took for a service to gather the

information and for that information to be processed to an access control property and

the overall time that has passed since this access control property has been created. With

an increase in age, the uncertainty rises. For example, the processing time of a GPS sensor

might increase if satellite reception is not optimal. The location of a moving person might

have changed signi�cantly at the time the processing has �nished.

The amount of redundant information could either increase or decrease uncertainty.

Location information from a physical access control system using magnet cards and GPS

location information can either decrease the uncertainty if they complement and verify

each other or increase uncertainty if the information is con�icting. Using redundant

information to make access control decisions violates monotonicity [8] or opens up the

possibility for Sybil attacks [19]. Monotonicity in access control ensures that, given a set

of access control properties grants access, a superset of this set will not deny access [8].

This means that uncertainty can only be decreased and not increased when combining

redundant information. A Sybil attack exploits monotonicity by creating a lot of similar

information that complements each other. Even if each information has high uncertainty,

by verifying each other, the combined uncertainty could be decreased to the point of being

su�ciently low for somebody to be granted access [29].

To further narrow down our view on uncertainty and how it can impact architectural

access control analysis, we need to discuss how to classify these environmental factors

regarding the uncertainty taxonomy of Perez-Palacin, and Mirandola [51]. We have already

narrowed down the taxonomy to be more compliant with software architecture modeling

and software architecture analysis in Section 4.1. Bures et al. [13] suggest a variation on

the uncertainty taxonomy of Perez-Palacin and Mirandola [51], to classify uncertainty

in access control, mainly changing the de�nition of the location property. They de�ne

the location of system environment as a combination of the context in which the system

is executed and the input data for the system, which �ts the identi�ed environmental

factors. This de�nition aligns with the context and input parameter location de�ned by

Perez-Palacin and Mirandola.

Combining the discussion about uncertainty in software architecture, in Section 4.1, with

the uncertainty regarding access control, we narrow down the kind of uncertainty we

aim to mitigate as a contribution of this thesis. Figure 4.1 shows a version of the original

taxonomy, with our narrowed-down view of uncertainty highlighted.

4.3 Uncertainty of Trust

By researching uncertainty in software architecture and access control in this chapter,

we became aware that uncertainty in the validity of access control properties exists. By

gaining this awareness, we reduce the level 2 uncertainty related to the described validity

of access control properties to an uncertainty of level 1. We can now address and try to

23

4 Characterizing Uncertainty

Uncertainty

location level nature

0: lack of uncertainty

1: lack of knowledge

2: lack of awareness

3: lack of process

context

structural

input

epistemic

aleatory

Figure 4.1: Highlighted uncertainty taxonomy.

handle this level 1 uncertainty, by using software architecture modeling and analysis, as

described in Section 4.1.

To handle the uncertainty, we add the concept of trust in the validity of access control

properties to an already existing software architecture model and access control analysis

on the architectural level. We de�ne trust as a composition of the environmental factors

described in Section 4.2.3. The trust in an access control property is generally similar to

the con�dence level of location services described by Ardagna et al. [2]. The con�dence

level depends on the extent to which given environmental factors a�ect the validity of the

individual location services. However, our concept of trust will be applied to all services

that supply information used for access control while additionally taking the actual source

and age of the information into account (see Section 4.2.3).

We extend the data �ow approach described in Section 2.2, as it already o�ers a data

�ow model to represent software architecture and an automated analysis that can be

used to detect access violations. By extending the DFD model syntax with the concept

of trust, we include context uncertainty into the software architecture and enable a closer

representation of the real world. As each of the environmental factors that in�uence the

trust in a service needs to be represented, the number of input parameters of the model

increases, consequently increasing the input parameter uncertainty.

We reckon that an analysis approach can more easily address input parameter uncertainty
by executing multiple analysis runs with varying input parameters. This procedure

simultaneously enables the handling of epistemic uncertainty, as each analysis run results

in data that can be used to get better knowledge about the software architecture, as well

as handling the described level 1 uncertainty.

24

5 Running Example

This chapter introduces an example scenario, which we use to demonstrate our contribution

regarding an extended software architecture model and mapping to a logic program.

The example is based on the inaccuracy of using GPS for location detection, depending

on various environmental factors. For this example, we additionally focus on the reduced

signal quality and increased acquisition time of indoor operation [20].

The scenario is comprised of three actors:

• Visitor, an actor that does not belong to the company but has a meeting in the

meeting room.

• Worker, an actor working for the company, currently in the meeting room waiting

for the Visitor.

• Scientist, an actor that works in the laboratory and has exclusive access to the room.

The location of each actor is monitored using a GPS location service. The location services

of the Worker and Scientist use a high-sensitivity GPS sensor, while the service of the

Visitor uses a standard GPS sensor. The blue circles, shown in Figure 5.1, represent the

position accuracy of these sensors.

Scientist

Worker

Meeting Room

Outside

Laboratory

Visitor

Figure 5.1: Initial setup of the running example.

In the scenario, a database exists, which is comprised of sensitive research data from the

Scientist. Read and write access to the database is only permitted if the accessing user is

located inside the laboratory. We de�ne a data �ow diagram of the scenario, shown in

Figure 5.2. The data �ow from the Scientist to the Write DB Process and from the Write
DB Process to the Laboratory DB shows the sensitive research data, which is stored in the

25

5 Running Example

database. Regularly, only data �ows are allowed to the Scientist, as he has exclusive access

to the laboratory. Both data �ows from the Read DB Process to the Worker and Visitor,

which are normally prohibited, are highlighted in red. These prohibited data �ows could

be found with an access control analysis of this data �ow diagram.

Scientist

Worker

Visitor

Read DB Process

Laboratory DB

restricted data

restricted data

UserLocation

ReadAccess

Write DB Process

research data

restricted data
restricted data

research data

Outside

Meeting Room

Laboratory

Laboratory

Figure 5.2: Data �ow diagram of the initial setup of the running example.

The Visitor now enters the meeting room to meet with the Worker. This reduces the

position accuracy and signal quality and increases the acquisition time of the standard

GPS sensor used by the Visitor’s location service. As shown in Figure 5.3, this increases

the overall location deviation and introduces uncertainty about the actual location of the

Visitor.

Scientist

Worker

Visitor

Meeting Room

Outside

Laboratory

Figure 5.3: Progressed setup, with uncertainty about Visitor location.

As the exact location is uncertain, the location service of the Visitor might report that

the Visitor is located in the laboratory. This results in the data �ow diagram shown in

Figure 5.4, where a normally prohibited data �ow can not be identi�ed as such by an access

control analysis.

26

Scientist

Worker

Visitor

Read DB Process

Laboratory DB

restricted data

restricted data

UserLocation

ReadAccess

Write DB Process

research data

restricted data
restricted data

research data

Laboratory

Meeting Room

Laboratory

Laboratory

Meeting Room
Outside

Figure 5.4: Data �ow diagram, with unidenti�ed illegal data �ow to Visitor.

By adding our concept of trust, we combine the environmental factors of the location

service. Due to the reduced position accuracy and signal quality of the location service,

we can calculate that the trust in the correctness of the location information of the Visitor

is low. We also add a trust requirement to the read access location, which is required to

access the laboratory database. This results in the data �ow diagram shown in Figure 5.5,

where the illegal data �ow to the Visitor can be correctly identi�ed again.

Scientist

Worker

Visitor

Read DB Process

Laboratory DB

restricted data

restricted data

UserLocation

ReadAccess

Write DB Process

research data

restricted data
restricted data

research data

high

high high

low

LaboratoryMeeting Room

Laboratory

Laboratory
Meeting Room

Outside Trust

Figure 5.5: Data �ow diagram, with added trust.

27

6 Metamodel Extension

In this chapter, we present the metamodel representation of the concept of trust we have

de�ned in Chapter 4. We �rst give a very detailed description of our model representation

of fuzzy inference systems (FIS) as means to combine environmental factors of the access

control properties into a trust value in Section 6.1. In Section 6.2 we discuss the possibilities

of how to represent trust in a model and explain our reasoning behind the representation

we chose as part of our contribution. Finally, Section 6.3 describes how we extend the DFD

metamodel to cover everything described in the previous sections. We go into detail on

how trust is calculated, how we extend characteristics, and how existing reusable behavior

de�nitions are modi�ed to consider our concept of trust.

6.1 Fuzzy Inference SystemModeling

We de�ne our concept of trust as a composition of environmental factors. Consequently,

we need to de�ne a way to combine values of environmental factors to form a single value

that represents trust.

We propose the use of FISs to provide a way of combining the environmental factors.

Our proposed FIS �rst fuzzi�es the crisp input values of the environmental factors by

mapping values to existing linguistic values. An example is the way we mapped the crisp

value of 7.5 liters of rain per< to the values of the linguistic concept of ’heaviness of rain’

in Section 2.3, using the membership functions shown in Figure 2.4. Rules utilize these

linguistic values to combine inputs and form a trust output distribution. The resulting

distribution is then defuzzi�ed, using one of a set of prede�ned defuzzi�cation functions,

to create a crisp trust output value. This trust value represents the trust in the correctness

of the access control properties supplied from the service. We see multiple bene�ts from

using FIS:

Linguistic concepts are used to abstract from the actual mathematical input and to enable

the implementation of rules in a natural language way. This increases the understandability

of de�ned inputs, rules, and trust output, making it easier to create new and interpret

existing FISs calculation rules. When compared to a calculation rule in the form of a

formula, the FIS’s increased interpretability allows the calculation rule to be extended and

modi�ed more easily.

Another bene�t of using linguistic concepts as input is that a software architect, creating

the calculation rules, does not necessarily have to deal with the actual values of the

environmental factors. The knowledge of which speci�c value may be ’high’ or ’low’, for

example, can be taken over by someone else involved in the development process. The

software architect only has to work with linguistic concepts he might already be familiar

with. The concrete input membership functions of the linguistic values might be de�ned

29

6 Metamodel Extension

by another role (security expert, system administrator), which is familiar with, e.g., the

technical speci�cations of the used sensors or how physical conditions in�uence them.

When using our proposed FIS, we can ensure that the same kinds of properties, e.g.,

location information from di�erent services, work with the same defuzzi�er and set of

trust membership functions. This makes the resulting trust values of di�erent information

services comparable to each other while having di�erent inputs and rules.

We create a metamodel representation of our proposed FIS. Creating this metamodel

representation enables a software architect or security expert to de�ne a FIS without the

need to utilize tools they might not already be familiar with, like the Fuzzy Logic Toolbox

of MATLAB [44].

MembershipFunction

+ calculateTrustWeight(x double): double

FuzzyFunction

+ rage: double

FuzzyficationFunction DefuzzyficationFunction

output

1..1input 1..*

FuzzyInferenceSystem

+ METHOD : DEFUZZY_Method
+ ACCU : ACCU_Method
+ AND : AMD_Operator
+ OR : OR_Operator

1..*
term

inputs
1..*

rules

1..*

Rule

+ operator : RULE_Operator output
1..1

DEFUZZY_Method

- COG
- COA
- LM
- RM

RULE_Operator

- AND
- OR

ACCU_Operator

- MAX
- BSUM
- NSUM

AND_Operator

- MIN
- PROD
- BDIF

OR_Operator

- MAX
- ASUM
- BSUM

Figure 6.1: Class diagram excerpt of the FIS metamodel representation.

Figure 6.1 shows a class diagram representation of our metamodel representation. A

FuzzyInferenceSystem class contains the fuzzi�er, defuzzi�er, and rules and also represents

the knowledge base of the FIS, see 2.3.

The database of the FIS is split into Fuzzi�cationFunction, utilized by the fuzzi�er, and

Defuzzi�cationFunction, utilized by the defuzzi�er. The set of instances of Fuzzi�cation-
Function represent the inputs in the FIS, Defuzzi�cationFunction represents the outputs.

As we only aim to calculate a single trust output, the amount of Defuzzi�cationFunction of

each FuzzyInferenceSystem is limited to one. Both Fuzzi�cationFunction and Defuzzi�ca-
tionFunction are derived from FuzzyFunction. FuzzyFunction is an abstract representation of

a linguistic concept used by the FIS as input or output. The FuzzyFunction de�nes a range

and contains a set of MembershipFunction. As the naming suggests, MembershipFunction
represent fuzzy sets of the linguistic values.

30

6.1 Fuzzy Inference System Modeling

MembershipFunction

+ calculateTrustWeight(x double): double

GeneralizedBellMF

+ a : double
+ b : double
+ c : double

ZMF

+ a : double
+ b : double

SMF

+ a : double
+ b : double

TriangularMF

+ a : double
+ b : double
+ m : double

GaussianMF

+ o : double
+ m : double

TrapezoidalMF

+ a : double
+ b : double
+ c : double
+ d : double

Figure 6.2: Class diagram excerpt of the membership functions of the FIS metamodel.

Following the Fuzzy Logic Toolbox [44], we implement six prede�ned kinds of membership

functions, shown in Figure 6.3. Each membership function o�ers a di�erent set of parame-

ters that in�uence the general shape of the function. Exemplary instances to showcase the

overall shape of the membership functions are shown in Figure 6.3. As shown in Figure

6.3, each MembershipFunction implements calculateTrustWeight(x), which calculates the

trust weight of x, with regards to the instance and parameters of the membership function.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) GeneralizedBell

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Gaussian

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Triangular

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) ZMF

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) SMF

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Trapezoidal

Figure 6.3: Examples of membership functions.

31

6 Metamodel Extension

Figure 6.4, shows the environmental factor inputs and trust output we have de�ned for

our running example. Figures 6.4a, 6.4b, 6.4c show the inputs for the three environmental

factors of a GPS location service. As described in Chapter 5, we derive the shape and

values of the membership functions and corresponding fuzzy sets from the sample data we

could extract from existing literature [20]. For the trust output shown in Figure 6.4d, we

simply de�ned three equal gaussian membership functions which are an equal distance

apart.

0 10 20 30 40 50

Signal Dampening [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

low
mid
high

(a) Signal dampening

0 100 200 300 400 500

GPS Reciever Total Acquisition Time [ms]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

em
be

rs
hi

p
low
mid
high

(b) Acquisition time

0 10 20 30 40 50

Position Deviation Diameter [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

low
mid
high

(c) Position deviation

0 20 40 60 80 100

Trust

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

low
mid
high

(d) Trust

Figure 6.4: Membership functions of inputs and output of the running example.

The rule base of the FIS is made up of a set of Rule. Each Rule references a set if Mem-
bershipFunction as inputs which are connected logically, with a RULE_Operator. The

RULE_Operators are either the logical AND or OR operator.

The FuzzyInferenceSystem contains multiple enumeration values to instantiate the actual

operators used for the mapping of the input to output values. All of the possible operators

and calculation rules we represent in our model are based on the settings which are possible

in Fuzzy Logic Toolbox in MATLAB [44] and the ISO IEC 61131 standard regarding fuzzy

control programming [34].

The DEFUZZY_Method speci�es the calculation rule used in the defuzzi�cation process.

We support the center of gravity (COG), center of area (COA), left most max (LM), and

right most max (RM). The corresponding formulas are presented in Table 2.3.

The ACCU_Operator de�nes the methods used for accumulating the results of each rule

to the fuzzy output. We support the max operator of Mamdani (MAX), the bounded sum

(BSUM), and the normalized sum (NSUM). The corresponding formulas are presented in

Table 2.2.

The AND_Operator and OR_Operator specify the operators that can be used as the im-

32

6.2 Representation of Trust

plementation of the logical connection in Rule. For the logical AND, we support the min

operator of Mamdani (MIN), the product (PROD), and the bounded di�erence (BDIF).

For the logical OR, we support the max operator of Mamdani (MAX), the algebraic sum

(ASUM), and the bounded sum (BSUM). The corresponding formulas are presented in

Table 2.1.

6.2 Representation of Trust

Using the FISs described in Section 6.1 to calculate the trust still leaves the question on

how to represent trust in a metamodel and analysis explicitly. As we focus on Industry 4.0

software systems, the applicability to Industry 4.0 speci�c scenarios must be considered

when choosing a representation. For an analysis approach, trust in a property of, e.g., an

actor, needs to be compared to the trust in properties that make up data classi�cations, so

the comparability of the chosen representation is crucial.

We identify three possible solutions for trust to be represented:

Crisp output value The crisp output value of the FIS can be represented using a double

value. This makes it possible to compare the value to possible access control requirements

very accurately. During an analysis run, e.g., using data �ows, see Section 2.2, changes to

the trust of a property can be made. A valid use case might be data �owing through a �lter,

which reduces sensor noise by a given factor, thus increasing the trust value of speci�c

properties. These changes can be made very �nely granular, depending on the context.

Especially in edge cases, these �ne granular changes could result in better analysis results

or reveal unexpected outcomes. At the time of writing this thesis, however, we struggle

to identify use cases, either from real-world industry applications or scienti�c research,

which would bene�t from these kinds of �ne granular changes. Additionally, it is tough to

reason why a certain part of the system might increase or decrease trust by a �xed factor.

In the sensor noise use case, trust values might not just be dependent on sensor noise but

rather be a combination of varying environmental factors. As there might be di�erent

services supplying similar properties, which experience di�erent environmental factors,

see Section 4.2.3, reducing sensor noise might not increase the trust value equally for each

service.

For trust values to be comparable, they need to be based on the same mathematical interval

or range of values. As described before, di�erent services might supply similar properties,

but the calculation of their trust value is done using di�erent FIS. To make the resulting

values comparable, each trust value must be calculated with the same possible range.

When considering the crisp trust value as a percent value, this interval would be [0, 100].
Additionally, it would need to be assured that the output of each FIS can reach the outer

limits of the interval. This is not always possible depending on the fuzzy inputs, rules,

and output of a FIS. A solution would be to normalize each trust value to be in the same

interval. To do so, the theoretical minimum and maximum crisp output value of each FIS

would need to be known. Calculating the minimum and maximum can only be done by

calculating the crisp output of the FIS for each possible combination of input values. The

amount of combinations scales exponentially with the number of inputs in the FIS, making

this solution very computationally intensive.

33

6 Metamodel Extension

Fuzzy output function Using the fuzzy output function, as shown in Figure 2.5, to rep-

resent the trust has similar advantages to using the crisp output value. It enables even

more �ne granular changes to the trust, as much information is still present compared to

the defuzzi�ed crisp value. However, one of the most signi�cant downsides is that these

potentially complex functions are hard to represent in a model. Additionally, like when

using the crisp output value, it is hard to �nd valid reasoning for doing any of the �ne

granular changes, as we do not have information about any use cases or scenarios from

the real world. The problem regarding comparability is emphasized due to the variability

in comparing functions.

Labels Using labels to represent trust is inspired by the way properties are represented

in the data �ow analysis approach described in Section 2.2. Labels can be represented as

literals of an enumeration. We propose a mapping of the crisp output value to one of a

�xed set of labels. Each label represents one fuzzy set of the fuzzy output of a FIS. A trust

output of a FIS, which is made up of three fuzzy sets, ’low’, ’mid’, and ’high’, results in

three possible trust values that can be utilized for access control analysis. Simply de�ning

the possible trust labels beforehand and forcing each output of a FIS to be made up of

fuzzy sets according to these labels makes the resulting mapped trust labels comparable.

Depending on the situation or system setup, a change in trust is achieved by choosing a

trust label that is semantically higher or lower than the current label. This makes changes

in the trust values less abstract and easier to understand than the two previous solutions.

More �ne granular changes to the trust are not possible. By increasing the number of

trust labels and consequently the number of fuzzy sets of the fuzzy output of a FIS, we can

generally increase the granularity, with the downside of simultaneously increasing the

complexity and modeling e�ort of the FIS. However, this solution still grants the software

architect the ability to analyze the system and change environment parameters of services

iteratively, and monitor if these changes in the system’s deployment can result in potential

violations against access control rules. Additionally, as discussed in the two previous

solutions, we currently do not have any use cases that would bene�t from �ne granular

changes in trust or where these changes could not be represented equally using labels.

As we have discussed, we currently do not see any real-world bene�t of representing

trust as the fuzzy or crisp outputs. Since it integrates well with the existing DFD ap-

proach, we described in Section 2.2, and as we currently see no bene�t in using the other

representations, we choose to represent trust as labels.

6.3 Extended DFDMetamodel

As we have discussed in Section 6.2, we choose to use labels to represent trust in access

control properties. Using labels to represent the trust enables us to reuse concepts and

model elements that already exist in the DFD approach we described in Section 2.2. The

concept of labels is used in the DFD model and analysis to represent the clearance of

nodes and the classi�cation data. We add additional labels representing trust that can be

calculated using a FIS and explicitly assigned to property labels. An excerpt of the class

diagram representation of the extended metamodel is shown in Figure 6.5. We highlight

the model elements added by our approach by using bold lines.

34

6.3 Extended DFD Metamodel

Label

*
value

*

Characteristic

type

CharacteristicType

type
{ordered}

*EnumerationTerm

literal

0..1rhs
lhs

trust

TrustedCharacteristicType

trust

0..1

TrustedDataCharacteristicReference

/trustedType

source
1..1

TrustedCharacteristic

type

0..1

DataCharacteristicReference

can be derived to

InformationService

+ inputs : double [1..*]
+ fis : FuzzyInferenceSystem

Figure 6.5: Class diagram showing the extended metamodel representation of the DFD.

6.3.1 Information Services

InformationService is an explicit representation of a service that supplies information used

for access control, as we have described in Section 4.3. An information service contains a

set of inputs and a FIS.

The set of inputs represents the values of environmental factors that in�uence the trust

in the validity or correctness of the information. Environmental factors might be the

accuracy of the source that is used to measure the information, e.g., a sensor, the average

age of the supplied information, and various actual environment parameters that in�uence

the trust.

The FIS speci�es how the trust is calculated, that is associated with the properties supplied

by the InformationService.

6.3.2 Extending Characteristics

To add the trust labels to the model, we add the TrustedCharacteristicType, which derives

from CharacteristicType. In addition to CharacteristicType, the TrustedCharacteristicType
references an additional Enumeration, which is made up of the trust labels.

To explicitly correlate a InformationService with a property, we add TrustedCharacteristic,
which derives from Characteristic. TrustedCharacteristic references a InformationService
and a TrustedCharacteristicType, which is derived from the type reference of Characteristic.
The value reference, which represents an access control property is trusted with the trust

label that can be calculated from the service referenced with source.
Based on the way we added TrustedCharacteristic, we also add TrustedDataCharacteristi-
cReference, which derives from DataCharacteristicReference, which refers to an additional

35

6 Metamodel Extension

Label representing the trust in the label referenced as literal. The TrustedDataCharacteris-
ticReference enables the use of trust labels in assignments of behavior de�nitions.

Using our extended data �ow diagram metamodel, we have implemented the running

example that we describe in Chapter 5. We present an object diagram representation of

an excerpt of this metamodel instance in Figure 6.9. The Scientist, Worker, and Visitor

are represented by instances of Actor. Each of the actors has an owned behavior and

a TrustedCharacteristic. The behavior is not specially shown in the model. The char-

acteristics are of the type ’Location’, which represents the location of the actor. In the

running example, the location information of the scientist and worker is supplied by a

service, which uses a high sensitivity GPS sensor. In contrast, the visitor’s location is

supplied by a service that uses a standard GPS sensor. These services are represented by

the instances of InformationService ’HighSensitivityGPS’ and ’StandardSensitivityGPS’.

We have already described the FIS instance of the information services in Section 6.1, and

show a representation of the membership functions in Figure 6.4. The characteristic of

the scientist has the value ’Laboratory’, and the characteristic of the worker has the value

’Meeting_Room’ because the high sensitivity service supplies the precise location. Due to

the poor quality of the standard sensitivity service when used indoors, the characteristic

of the visitor has the values, ’Outside’, ’Meeting_Room’ and ’Laboratory’.

The ’read_DB’ instance of Process connects two instances of DataFlow. One data �ow from

the laboratory database to the process and a data �ow from the process to the actors. The

laboratory database is represented by an instance of Store. Similar to the other actors, the

laboratory database has an instance of TrustedCharacteristic. In the running example, this

characteristic de�nes the access rights for read access. The database should only be read

by actors located in the laboratory, so the characteristic’s value is ’Laboratory’. The trust

of the characteristic is �xed to ’trust_high’, as the access rights should not depend on

environmental factors of the system.

6.3.3 Behavior Definition

The data �ow diagram approach we described in Section 2.2 represents behavior de�nitions

as a combination of input and output pins, as well as Assignments. These assignments

are made up of Terms which de�ne how properties are assigned from the input pin to the

output pin.

The original publication of the data �ow diagram approach describes behavior templates

that de�ne reoccurring behavior of nodes in use-cases and case studies:

• Forward

• Sync

• Declassify

• Characteristic Changer

• Join

36

6.3 Extended DFD Metamodel

Figures 6.6, 6.7 and 6.8 give a visual representation of the behavior templates. Each pair of

purple and orange rectangles represents a characteristic, which either is the input or the

output of the behavior. The purple rectangle represents the access control property label,

which the TrustedCharacteristic references with value. The orange rectangle represents the

trust label of the corresponding access control property, which the TrustedCharacteristic
references with trust. These characteristics de�ne the properties required to access the

data that �ows to or from the node for access control.

We split these �ve behavior templates in two categories, templates where the behavior

does not modify the input characteristics before passing it on as their output and templates

where the behavior modi�es the input in some way.

Figure 6.6 shows the two behavior templates, that do not modify the input. The Forwarder
directly copies the characteristic from input to output, without changing it. A Syncer acts

like the Forwarder behavior template, but waits for additional input, without considering

the characteristics of the additional input.

Forwarder
Trust a
Value A

Trust a
Value A

Syncer
Trust a
Value A

Trust a
Value A

Figure 6.6: Extended behavior templates [66].

The behavior templates that modify the input characteristics are shown in Figure 6.7. The

Declassi�er copies the characteristics from the input and adds a prede�ned characteristic

to the output. For access control, the characteristics represent access rights. By including

an additional access right, the Declassi�er loosens the overall constraints of the output.

The Characteristic Changer acts like the Forwarder but changes the value of the input

characteristic to a de�ned value. For example, for a node that moves data from a database

located in the USA to a database located in Asia, the Characteristic Changer template might

be used to change the location value of the input characteristic from ’USA’ to ’Asia’.

The Joiner determines the output characteristics by merging the received value labels of

each input characteristic. The merging can be speci�ed depending on the use case. For

example, the Joiner might propagate the highest classifying label, create a union of all

incoming data characteristics, or apply an intersection. As can be seen in Figures 6.6 and

6.7, the described behavior templates do not address the added trust directly and only

forward the trust labels. We propose two additional behavior templates, shown in Figure

6.8, which are explicitly centered around changes in trust.

The �rst proposed behavior template is the Trust Decreaser. Similar to the Declassify
behavior shown in Figure 6.7, the Trust Decreaser copies the input value and trust com-

bination and adds an additional value trust combination to the output. The added value

trust combination has the same value as the input but sets the trust to a de�ned label.

The second proposed behavior template is the Trust Changer. The Trust Changer behavior

template is based on the Characteristic Changer behavior. Instead of explicitly changing

the value of a characteristic, the Trust Changer changes the trust label to an explicitly set

37

6 Metamodel Extension

DeclassifyTrust a
Value A

Trust a
Value A

Trust a
Value B

CharacteristicChangerTrust a
Value A

Trust a
Value X

Joiner
Trust a
Value A

Trust x
Value X Trust z

Value Z

Figure 6.7: Behavior templates [66] that change or add labels.

trust label.

Trust labels can be viewed as hierarchical, where a higher label implies the existence of

the lower labels. It is up to the query that is to be executed to de�ne whether or not the

hierarchies are considered. If the query takes the hierarchy of trust labels into account,

using a Trust Changer to change the input trust label to a lower one, or a Trust Decreaser
to add an additional characteristic with a lower trust label, have an equal e�ect, as the

lower trust labels already implied the higher trust labels. However, if these hierarchies

are not taken into account by the query, reducing the required trust label with the Trust
Decreaser leaves access with a higher trust label still allowed, while changing the trust

label with the Trust Changer excludes access with higher trust labels.

TrustDecreaserTrust a
Value A

Trust a
Value A

Trust b
Value A

TrustChangerTrust a
Value A

Trust x
Value A

Figure 6.8: Proposed behavior templates that explicitly change trust of an label.

All the behavior templates we describe in this section can be combined to represent the

behavior of a system with our extended data �ow diagram metamodel. As described in

the original publication [66], instances of nodes that have one of these templates as their

behavior can be connected to represent system behavior. For example, a node might

declassify the characteristic value, followed by another node which increases the trust.

Changes in characteristic value and trust might occur simultaneously, and representing

this behavior in two separate nodes might be semantically incorrect. To combat this

situation, all behavior templates we describe in this section can be combined to form a

single behavior. For example, the Declassifyer and Trust Increaser are combined into one

behavior, which can be set as the behavior of a single node.

As shown in Figure 6.9, we use the Forwarder template as the behavior of the ’read_DB’

instance of Process and the ’Laboratory_DB’ instance of Store. Additionally, all behaviors

add the value and trust label of the current node to the data.

38

6.3
Extended

D
FD

M
etam

odel

characteristics

:TrustedCharacteristic

value = Outside,
 Meeting_Room,
 Laboratory
type = Location

:TrustedCharacteristic

value = Meeting_Room
type = Location

characteristics

:TrustedCharacteristic

value = Laboratory
type = Location

read_DB:Process Laboratory_DB:Store

characteristic

:TrustedCharacteristic

value = Laboratory
trust = trust_high
type = Read_Access

behavior

Forward:BehaviorDefinition

behavior

Forward:BehaviorDefinition

service service

HighSensitivityGPS:InformationService

inputs = 18.0, 0.8, 4.0
fis = HighSensitivityFIS

service

StandardSensitivityGPS:InformationService

inputs = 20.0, 455, 25.0
fis = StandardSensitivityFIS

in out

:DataFlow

in in outin

:DataFlow

Scientist:Actor

behavior = OwnedBehavior

Worker:Actor

behavior = OwnedBehavior

characteristics

Visitor:Actor

behavior = OwnedBehavior

Figure 6.9: Object diagram excerpt of the running example DFD.

3
9

7 Analysis Process

This chapter focuses on our extended analysis process that is used with the data �ow

diagrams that we describe in Chapter 6. The analysis process consists of the transformation

of the data �ow diagram to a Prolog code base, which we describe in Section 7.2. This

transformation includes the calculation of a trust value based on the added information

services, which is described in Section 7.1. The resulting Prolog code base is then used

to solve a Prolog query that describes illegal data �ows. A query usually consists of a

conjunction of clauses. We describe the query for our running example (see Chapter 5) in

Section 7.3.

7.1 Calculation of Trust

The calculation of the actual trust values is done during the transformation of the data

�ow model to Prolog. We transform each InformationService to a single label. First, we

transform the contained FIS to a �s �le. This �le format is de�ned by the Fuzzy Logic

Toolbox of MATLAB [44] to have a textual representation of a FIS. Using fuzzy logic

control libraries [56] with the created .�s �le, we run the FIS, pass the input values of the

InformationService as inputs and receive the defuzzi�ed crisp output as a result.

To map the crisp output value to �xed labels, as described in Section 6.2, we �rst calculate

the truth values for each membership function, of which the output of the transformed FIS

is made up of. Due to the restriction that forces each FIS output to be made up of fuzzy sets

according to the set of trust labels, we can map the resulting truth-values to each of the

corresponding trust labels. As we want to transform each InformationService to a single

trust label, we choose the label with the highest truth value. If two labels have an equal

truth value, the one that represents the weaker linguistic value is chosen, i.e., if ’high’ and

’mid’ trust have the same truth value, ’mid’ is chosen as label. Choosing the truest truth

label seemed the most logical approach, especially considering that use cases, which could

be used to deduce other more demanding selection processes, are currently not available.

We have already described this problem in Section 6.2, where we decided to use labels

because there are no use cases that would demand more �ne granular representation.

7.2 Extended Prolog Mapping

To take advantage of the newly added trust value in the DFD analysis (see Section 2.2.3),

we have to extend the transformation of the DFD model instance to Prolog. This transfor-

mation has already been described in Section 2.2.2, so we will only cover the parts of the

transformation that we had to modify to add the trust value.

41

7 Analysis Process

Listing 7.1: Prolog facts representing the DFD structure, extended with trust label.

1 characteristicType(CT),
2 characteristicTypeValue(CT, V, I),
3 characteristicTypeTrust(CT, T, I),
4 nodeCharacteristic(N, CT, V, T).

Similar to the model representation in Section 6.3, our changes to the transformation of

DFD to Prolog are mainly focused on characteristics and characteristic types. We underline

our newly added fact and changes to the existing facts, in Listing 7.1 and Listing 7.4. The

transformation of characteristic types shown in line 1 and 2 of Listing 7.1 stays unchanged.

For each label of the enumeration to which a trusted characteristic type refers to as trust,
we add the creation of a fact, shown in line 3 of Listing 7.1. Similar to line 2 of Listing 7.1

we replace CT with the identi�er of the trusted characteristic type and T with the identi�er

of the trust label. I is replaced with the position of the trust label in the enumeration.

When transforming to the nodeCharacteristic fact in line 4 of Listing 7.1, we do

not want to create a fact for each label assigned to a node, like it is described in Section

2.2, as this would mix value labels and trust labels. We rather view the trust labels as

additional information to value labels, as a trust label does re�ect trust in the correctness

of a value (see Section 6.2). Consequently we create a fact as shown in line 4 of Listing

7.1 for each characteristic, that is assigned to a node. We �rst calculate the trust value

of the referenced InformationService and map the value to a trust label, see Section 7.1.

Similar to the original transformation (see Section 2.2.2), we replace N with the identi�er

of the corresponding node, CT with the identi�er of the characteristic type and V with the

identi�er of the value label. We replace T with the identi�er of the trust label, that has

been calculated and corresponds to the value label, assigned to the node.

Listing 7.2: TrustedCharacteristicType Location of the running example transformed to

Prolog.

1 characteristicType(’Location’).
2 characteristicTypeValue(’Location’, ’Outside’, 0).
3 characteristicTypeValue(’Location’, ’MeetingRoom’, 1).
4 characteristicTypeValue(’Location’, ’Laboratory’, 2).
5 characteristicTypeTrust(’Location’, ’trust_low’, 0).
6 characteristicTypeTrust(’Location’, ’trust_mid’, 1).
7 characteristicTypeTrust(’Location’, ’trust_high’, 2).

Listing 7.2 shows the transformation of the trusted characteristic type Location from our

running example, see Chapter 5. The three value labels are each transformed to the Prolog

facts in lines 2 to 4. The corresponding trust labels are transformed to the Prolog facts

in lines 5 to 7. In their �rst argument, the facts representing the value labels and the

facts representing the trust labels explicitly point to ’Location’, which is de�ned as a

characteristic type in line 1.

Listing 7.3 shows the transformation of the characteristics which are assigned to the Visitor
of our running example once he enters the meeting room. Like described in Section 2.2.2,

the Visitor node is de�ned as an actor in line 1. Lines 2 to 4 each describe a characteristic

42

7.3 Prolog Query

of the Visitor. For each of these characteristics, the trust label is calculated, as described in

Section 7.1, and set as the last argument of each of the Prolog facts.

Listing 7.3: Visitor node characteristic value labels and calculated trust label.

1 actor(’Visitor’).
2 nodeCharacteristic(’Visitor’, ’Location’, ’Laboratory’, ’

trust_low’).
3 nodeCharacteristic(’Visitor’, ’Location’, ’MeetingRoom’, ’

trust_low’).
4 nodeCharacteristic(’Visitor’, ’Location’, ’Outside’, ’trust_low

’).

Listing 7.4: Prolog rule representing node behavior, extended with trust label.

1 characteristic(N, PIN, CT, V, T, S, VF) :- ...

The behavior speci�cation rule shown in line 1 of Listing 7.4, also needs to consider trust.

Consequently, with the added trust, the rule body is now created in a way, that it evaluates

to true, if the value label V and trust label T of characteristic type CT is available on the

pin PIN of node N.

Listing 7.5: read_DB behavior Prolog transformation excerpt of forward behavior.

1 process(’read_DB’).
2 inputPin(’read_DB’, ’in’).
3 outputPin(’read_DB’, ’out’).
4 characteristic(’read_DB’, ’out’, ’Location’, ’Laboratory’,

’trust_high’, S, VISITED) :-
5 inputFlow(’read_DB’, ’in’, _, F0, VISITED),
6 S0 = [F0 | _],
7 S = [S0],
8 characteristic(’read_DB’, ’in’, ’Location’, ’Laboratory’,

’trust_high’, S0, VISITED).

For the read_DB process in our running example, Listing 7.5 shows an excerpt of the

transformed behavior description. Line 1 de�nes that read_DB is a process node. Line 2

and 3 de�ne an input and output pin, which are assigned to the read_DB process.

The characteristic rule in line 4 of Listing 7.5, is de�ned for the output pin from

line 3. Lines 5 to 8 de�ne the rule body. The ’read_DB’ process has the forward behavior

described in Section 6.3.3. The rule states that the value label ’Laboratory’ with trust label

’trust_high’ of type ’Location’ is available at the output pin ’out’ if there is an input �ow

to the process that has the same labels.

7.3 Prolog Query

As described in Section 2.2.3, the analysis is realized with queries to the generated Prolog

program. The clauses that can be used to de�ne the queries are based on the facts and

rules that make up the Prolog program. To account for the trust labels we added, we add a

43

7 Analysis Process

new clause and extend two clauses that were described in Section 2.2.3. We underline our

newly added clause and changes to the existing clauses, shown in Listing 7.6.

Listing 7.6: Modi�ed clauses of the Prolog API to specify con�dentiality analyses.

1 characteristicTypeTrust(CT, T, I),
2 nodeCharacteristic(N, CT, V, T),
3 characteristic(N, PIN, CT, V, T, S).

The clause in line 1 of Listing 7.6 is similar to characteristicTypeValue(CT, V,
I) in Listing 2.3. It can be used to �nd the trust label identi�er T of characteristic type

CT. Line 2 shows a clause to �nd a tuple of label identi�er V and corresponding trust label

identi�er T of characteristic type CT that is active on the node with identi�er N. Line 3

shows the clause to �nd a tuple of label identi�er V and corresponding trust label identi�er

T of characteristic type CT that is available on the pin with identi�er PIN of the node wit

identi�er N.

Listing 7.7: Query to �nd illegal data �ows in our running example.

1 actor(A),
2 store(ST),
3 inputPin(A, PIN),
4 flowTree(A, PIN, S),
5 traversedNode(S, ST),
6 nodeCharacteristic(A, ’Location’, LOC, TRUST),
7 \+ nodeCharacteristic(ST, ’Read_Access’, LOC, TRUST).

For our running example, the clauses are combined to form the query shown in Listing

7.7. In our running example, each actor has one or multiple active ’Location’ values and

trust label pairs that indicate the actor’s location. The Laboratory DB store has an active

’Read_Acess’ value and trust label pair that de�nes the location that is required in order to

access the data base. For the analysis, we want to match the ’Location’ value and trust

label pairs of the actors with the ’Read_Access’ value and trust label pair of the store. If

no label pair can be matched, the corresponding data �ow is illegal.

In lines 1 and 2, we �rst de�ne that the identi�er A belongs to an actor and identi�er ST
belongs to a store. Line 3 de�nes that the pin with identi�er PIN is an input pin of the

actor with identi�er A. As we only compare labels of nodes, we do not have a �ow tree

from a characteristic clause to verify that there even exists a data �ow between

actor and store. Line 4 contains the helper clause to build a �ow tree S of data �ows that

arrive at the input pin with the identi�er PIN of the actor with identi�er A. Line 5 checks

if the store with identi�er ST is traversed in the �ow tree S. Line 6 de�nes, LOC and

TRUST as placeholders for all tuples of label and trust label identi�ers of the ’Location’

characteristic type that are active on actor A. Line 7 de�nes that the tuple of placeholders

LOC and TRUST are also identi�ers of labels of the ’Read_Access’ characteristic type and

active on store ST. However, the line starts with \+ which is the ’not provable’ operator of

Prolog. This means that line 7 is only true if the labels with identi�ers LOC and Trust are

either not from characteristic type ’Read_Access’ or are not active on store ST, e�ectively

saying that the labels could not be matched.

44

7.3 Prolog Query

Listing 7.8: .

1 solution 0:
2 A: Worker
3 ST: Laboratory DB
4 LOC: MeetingRoom
5 TRUST: trust_high
6 S: invalid read(dbEntry), LaboratoryDB->readDB(dbEntry),

write(dbEntry)->LaboratoryDB, Scientist->write(dbEntry)

8 solution 1:
9 A: Visitor

10 ST: Laboratory DB
11 LOC: Laboratory
12 TRUST: trust_low
13 S: invalid read(dbEntry), LaboratoryDB->readDB(dbEntry),

write(dbEntry)->LaboratoryDB, Scientist->write(dbEntry)

15 solution 2:
16 A: Visitor
17 ST: Laboratory DB
18 LOC: MeetingRoom
19 TRUST: trust_low
20 S: invalid read(dbEntry), LaboratoryDB->readDB(dbEntry),

write(dbEntry)->LaboratoryDB, Scientist->write(dbEntry)

22 solution 3:
23 A: Visitor
24 ST: Laboratory DB
25 LOC: Outside
26 TRUST: trust_low
27 S: invalid read(dbEntry), LaboratoryDB->readDB(dbEntry),

write(dbEntry)->LaboratoryDB, Scientist->write(dbEntry)

Executing the described query shown in Listing 7.7 on the situation of our running example

shown in Figure 5.5 yields the solutions shown in Listing 7.8. Each solution states the

actual values of attributes that Prolog was able to resolve. For the query in Listing 7.7 this

is the actor A that reads data from the database but is not supposed to, the store ST which

de�nes his read access rules and from which the data is read, the location LOC and trust

TRUST of the actor, that do not match with the read access rules de�ned by the store. S
shows the �ow tree, which can be used to trace the data �ow to its origin.

Solution 0 in lines 1 to 6 show the solution that correctly identi�es the illegal data �ow to

the Worker as the location is mismatched. Solutions 1 to 3 correctly identify the illegal

data �ow to the Visitor. Lines 8 to 13 show one violation as the trust is low, even though

the location theoretically matches. Lines 15 to 20 and 22 to 27 show other violations that

occur as the other locations and trust of the Visitor do not match the read access rules of

the store either.

45

8 Evaluation

In this chapter, we present the evaluation of our contribution. To gain a well-designed

evaluation structure, we use the Goal Question Metric (GQM) approach of [6]. We further

partition this chapter in the following sections:

Section 8.1 covers the evaluation design, including the GQM plan. In the evaluation design,

we de�ne our evaluation goals of Applicability, Accuracy, and Scalability. We further

describe each goal and de�ne the corresponding questions and metrics. In Section 8.2, we

give a detailed description of the exact setups that we used to evaluate each question. In

Section 8.3 we present and brie�y discuss the �ndings of the evaluation of each question.

To conclude this chapter, we discuss the threads of validity of our evaluation and the

assumptions and limitations of our contribution in Section 8.4 and Section 8.5.

8.1 Evaluation Design

To gain a well-designed evaluation structure, we use the Goal Question Metric (GQM)

approach of [6]. We de�ne three evaluation goals:

• EG-1: Examine the applicability of the approach regarding the iterative creation

process of software architecture.

• EG-2: Examine the accuracy of the approach, with de�ned classes of errors, by

comparing the output of analysis runs to expected results.

• EG-3: Examine the scalability of the approach when analyzing large systems.

8.1.1 Evaluation Design for Applicability

To evaluate the applicability of the proposed concept of trust, we focus on the iterative

creation and evolution process of software architecture. This raises questions regarding

the applicability during design time and when the system is actively in use. Another part

of the contribution is the calculation of trust by the means of a FIS. This raises a question

about the applicability of FISs within the software development process. Another part

of applicability is the ability of the extended data �ow diagram to de�ne con�dentiality

analyses, which raises a question about the expressive power of our approach.

47

8 Evaluation

We formulate the following questions:

• Q1.1 Is the information to apply the proposed concept of trust to the described

metamodel and analysis process available during design time?

• Q1.2 Does adding the proposed concept of trust to the described metamodel and

analysis process produce additional value if a system is already deployed?

• Q1.3 Is the proposed FIS suitable to describe calculation rules for trust values?

• Q1.4 Is the expressiveness of the original data �ow diagram approach and analysis

a�ected by the addition of the proposed concept of trust?

Since the questions described are not suited to be answered through metrics or measure-

ments, we strive to answer the questions argumentatively. All questions will be discussed

and, if appropriate, answered using examples.

8.1.2 Evaluation Design for Accuracy

To evaluate the accuracy, we base our evaluation design regarding evaluation goal EG-2
on the way the data �ow diagram approach that our contribution is based on (see Section

2.2) was evaluated. The left side of Figure 8.1 shows the original design. They de�ne a pair

of scenarios for a given data �ow diagram instance. One scenario without an issue and an

additional scenario where an issue has been introduced that leads to violations concerning

the analysis. The issues are either derived from related work or by themselves.

By adding our concept of trust, we identify di�erent kinds of issues concerning the analysis.

An issue can be due to mismatched characteristic labels or be due to mismatched trust

labels. Based on this distinction, we de�ne four di�erent scenarios, which need to be

considered to evaluate the accuracy of our contribution. Figure 8.1 shows the pair of

scenarios of the original approach, compared to the four scenarios we de�ne for our

contribution.

The four scenarios we de�ne are:

S0:
No Issue

S1:
Property Issue

S2:
Trust Issue

S3:
Property & Trust

Issue

Tr
us

t

S0:
No Issue

S1:
Issue

Original DFD Approach

Original DFD Approach

Figure 8.1: Increased number of scenarios that have to be considered for accuracy.

48

8.1 Evaluation Design

S0: No issue.

S1: An issue that is due to mismatched property labels is introduced by adding an illegal

data �ow to the data �ow diagram.

S2: An issue that is due to mismatched trust labels is introduced by identifying a scenario

based on the data �ow diagram that reduces the trust label of a property.

S3: An issue is introduced, that is due to mismatched property and trust labels, by

combining S1 and S2.

From these scenarios, we derive the following evaluation questions to evaluate EG-2:

• Q2.1 What is the accuracy of the extended analysis in identifying issues in data �ows

regarding issues that result from mismatched properties?

• Q2.2 What is the accuracy of the extended analysis in identifying issues in data �ows

regarding issues that result from low trust?

• Q2.3 What is the accuracy of the extended analysis in identifying issues in data �ows

regarding issues that result from a combination of mismatched properties and low

trust?

To answer the questions we create pairs of scenarios. Each pair consists of a S0 scenario

without an issue and either a S1, S2 or S3 scenario, depending on the evaluation question.

The metrics used to evaluate the questions concerned with goals EG-2 are:

M-2.1 Precision (p) calculates the ratio of correctly identi�ed issues C? to the sum of C? + 5? .

5? , or the false positive value, are the number of issues that where identi�ed as such, but

actually are not an issue that was introduced in the S1, S2 or S3 scenarios. ? =
C?

C?+5? [55].

M-2.2 Recall (r) calculates the ratio of correctly identi�ed issues C? to the overall positive

value % . For our use, the overall positive value % is the number of actually introduced

issues in the S1, S2 or S3 scenarios. % is the sum C? + 5= . 5= , or the false negative value, are

the number of issues that should have been identi�ed, but where not. A =
C?

%
=

C?

C?+5= [55].

8.1.3 Evaluation Design for Scalability

Since our approach can be used to represent large systems, with many di�erent Infor-
mationServices, trust values and general types of properties, our third evaluation goal

(EG-3) is concerned with the scalability of our approach. The execution time of a query

on the Prolog code mainly depends on the structure of the data �ow diagram instance,

the executed query, the used Prolog library, and optimization techniques, which is out

of the scope of this thesis. For the scalability evaluation, we focus on the time needed to

calculate trust and the time needed to map an extended data �ow diagram to Prolog code,

as our approach primarily in�uences the mapping. The execution time of the mapping

mainly depends on the size of the resulting Prolog code. Some model aspects, like the

number of characteristics and pins of each node or the amount of data �ows in the system,

49

8 Evaluation

can have a strong impact on the size of the created Prolog code. Each assignment of

the behavior of a node, for example, adds a characteristic(N, PIN, CT, V, T,
S, VF) :- ... rule for each value of each characteristic type to the Prolog clauses of

the corresponding node (see Section 7.2). However, we want to focus on the scalability of

the model aspects we added or modi�ed as part of our approach.

This raises the following questions:

• Q3.1 How does the time required for calculating the trust label scale when increasing

the number of environmental factors that impact trust?

• Q3.2 How does the time to map the model to Prolog scale when increasing the

number of information services and properties?

• Q3.3 How does the time to map the model to Prolog scale when increasing the

number of trust labels?

• Q3.4 How does the time to map the model to Prolog scale when increasing the

number of types of properties?

We use the time needed for each run of the FIS or mapping as metric M-3 to evaluate the

questions concerned with EG-3. The times needed to answer each question are measured,

and corresponding aspects of the models are incremented individually. The times of each

increment of runs are plotted to better view the general tendency of the time behavior.

8.2 Evaluation Setup

In this section, we de�ne the setups that we use to answer the questions presented in the

previous section. These setups describe the DFD instances and analysis queries used to

evaluate the applicability, accuracy, and scalability of our approach.

8.2.1 Setups for Evaluating Applicability

The �rst two questions regarding applicability, Q1.1 and Q1.2, both focus on the appli-

cability of our approach in di�erent phases of the software development process. We

generally view the software development process to be of iterative nature. During design

time, the software architect iteratively constructs and changes the software architecture.

After each iterative change, the model can be validated against a set of requirements using

an analysis process like the one we present in our contribution. This iterative process

continues after the system is deployed. Detailed models that re�ect the deployed system

are used with analysis processes to investigate the impact of what-if scenarios before

implementing them. This reduces the risk of introducing errors into the existing system,

which is particularly important in the context of access control.

50

8.2 Evaluation Setup

8.2.2 Setups for Evaluating Accuracy

Due to the lack of existing publications that focus on the trust in access control properties,

see Section 6.2, we can not use any existing scenarios from other publications for the trust

issue scenarios (S2) described in the evaluation design. For property issue scenarios (S1),

we can reuse the scenarios that were used by the original data �ow diagram approach [66],

that our contribution is based on.

To still be able to answer Q2.2 and Q2.3, we extend existing use-cases with real-world

environmental factors that are comprehensible and consistent with the use case description.

We extract exact values for these environmental factors that produce a potential issue from

existing research. As the research regarding real-world environmental factors, without

any background knowledge, was very time consuming and had to be done for each use

case individually in order to be consistent with the use case description, we base the

accuracy evaluation regarding questions Q2.2 and Q2.3 on only one use case. To answer

questions Q2.2 and Q2.3, we use the ABAC use case, which has also be used to evaluate

the original data �ow diagram approach [66]. We chose the ABAC use case, as the ABAC

model has high expressive power. Additionally, the trust chains, we have already described

in Section 4.2.2, are originally de�ned for the ABAC access control model and can be

closely represented with the environmental factors of our concept of trust.

The existing ABAC use case describes a banking system, which is deployed in the USA and

Asia. Actors in the system can be Clerks or Managers. Clerks can register customers, look

them up and determine a credit line. Managers can additionally also register celebrities, or

move customers between regions. A data �ow diagram representation of the use case is

shown in Figure 8.2.

Clerk Asia

find customer

determine credit line

Customer
Storage

celebrity customer
details

Manager

Clerk US

determine credit line

find customer

Customer
Storage

register customer

customer

customers
customercredit line

customer name

customer name

customer

credit line

customer

customers

move customer

customer

customer

customer name

Celebrity
Customer
Storage

customerregister celebrity

customer details

Regular

Regular

Regular

Celebrity

Clerk
USA

Manager
USA

Clerk
Asia

Role
Location

Origin
Status

Data
Properties

Node
Properties

Join Forward Location
Changer

Behavior Templates

Asia

Regular
USA

USA

USA

USA

Regular
Asia

Figure 8.2: Representation of the ABAC use case data �ow diagram [66].

51

8 Evaluation

Four properties are used for access control.

• The Role of an actor in the data �ow model, e.g. Clerk, Manager.

• The Location describes the location of an actor, e.g. USA, Asia.

• The Status of a customer, which data is processed, e.g. Regular, Celebrity.

• The Origin of the customer data, e.g. USA, Asia.

Setup for Q2.1

To answer the question concerned with the accuracy in identifying issues in data �ows

that result from mismatched properties, we de�ne a pair of scenarios that consist of a

S0 and a S1 scenario. We reuse the pair of scenarios that were used for the original

data �ow diagram approach [66]. As these scenarios do not contain our concept of trust,

trust values need to be de�ned for each characteristic. For this question, trust should not

introduce an issue to the S0 scenario and have no e�ect on the mismatched properties

of the S1 scenario. We add a default trust value to every characteristic. The default trust

label represents complete trust in the validity of the property. This way, the resulting

scenarios semantically match the original scenarios, as the properties are always valid and

environmental factors are not considered.

celebrity customer
details

celebrity customer
details

Manager

Clerk US

determine
credit line

find customer

Customer
Storage

register
customer

customer

customers

customercredit line

customer name

move customer

customer

customer name

Celebrity
Customer
Storage

register
celebrity

customer details

Regular

Regular

Celebritydefault
Manager

Role
Location

Origin
Status

Data
Properties

Node
Properties

Join Forward Location
Changer

Behavior Templates

Trust

Regular

default
USA

default
USA

default
USA

default
USA

defaultdefault

default

Clerk

USA

customer

USA

customer

Figure 8.3: Reduced representation of the ABAC data �ow diagram, with an introduced

issue regarding mismatched properties.

This way, we can also ensure, that functionality of the original approach is preserved and

our extension has not a�ected the capability of the analysis in �nding issues in data �ows

52

8.2 Evaluation Setup

that result from mismatched properties. An example data �ow diagram representation

of the previously described ABAC use case, with default trust is shown in Figure 8.3. An

exemplary issue that is introduced in the S1 scenario is highlighted in red.

For the sake of clarity, we only brie�y describe the remaining use cases used to answer

Q2.1. Seifermann et al. have created a data set [67], containing detailed descriptions of the

use cases, as well as S0 and S1 scenarios. The data set also contains the data �ow diagram

instances that we use as a base for this setup and add our previously described default
trust to.

• DAC: A �le-sharing system used by a family to share and view pictures. The actors

mother and dad add and view pictures. The actor aunt only views pictures. An actor

called indexing bot might discover the stored pictures but is not allowed to access

them. To introduce the issue, a �ow is added that represents a scenario where the

indexing bot views the pictures.

• MAC: A airspace monitoring system with three levels of classi�cation. The is used to

monitor civil and military planes. The actor clerk uses the system to create and store

weather reports. An actor �ight controller registers civil airplanes and determines

new routes based on the clerks weather reports and the position of other civil planes.

The actor military �ight controller registers military airplanes and determines new

routes for military airplanes by taking into account the weather reports of the clerk
and the civil airplane positions of the �ight controller. The issue is added by creating

a scenario, where the �ight controller also takes into account the positions of military

planes when determining new routes.

• ContactSMS: A user managing his contacts and sending SMS. The actor User can

perform multiple actions on his list of contacts, including sending an SMS to a

selected contact. To send an SMS, the number of the contact is extracted and sent

to the actor SMS Gateway. To introduce the issue, the extraction of the number is

skipped, e�ectively sending all contact information to the SMS Gateway.

• DistanceTracker: A service that tracks locations and running statistics. The actor

User sends his location to a distance tracker service that stores the locations. The

locations are used by the distance tracker service to calculate the distance and, with

the User’s consent, sends the distance to a tracking service, which stores the distance.

The issue is introduced by skipping the declassi�cation process, which requires the

User’s consent.

• TravelPlanner: A user booking a �ight with a travel planner app. The app connects

to a travel agency, which connects to the airline, to show and book available �ights.

To pay for a �ight, the User’s credit card information is taken from a banking app.

To introduce an issue, the declassi�cation of the User’s credit card information is

bypassed, allowing for unwanted banking information to be sent to the travel agency

and airline.

53

8 Evaluation

Setup for Q2.2

To answer the question concerned with the accuracy in identifying issues in data �ows

that result from a lowered trust, we de�ne a pair of scenarios that consist of a S0 and a S2
scenario. To properly cover all aspects of the used ABAC use case, we split the S2 scenario

into two sub-scenarios. The �rst scenario (S2.1) covers the trust in the Role properties

of the actors, the second scenario (S2.2) covers the trust in the Location property of the

actors. We further de�ne an analysis query that is applied for both scenarios.

Role The scenario that introduces a trust issue in the Role of an actor focuses on the

age of the role information. Similar to the de�nition of the ABAC access control model

[32] we do not directly address authentication mechanisms or other aspects of identity

management, as the �eld is very wide, and we can not create a representative use case for

real-world scenarios without applicable case studies. We thus assume that the actors in

the ABAC use case are bound to identity providers. Identity providers are services that

verify that an actor has a certain role by using a user name and password. A role and IP

address pair is saved in a database, which the access control system uses to determine

if an actor has a certain role. After a set amount of time, the role and IP address pair is

removed from the database, which requires the actor to reverify his role with the identity

provider before executing an access that requires a certain role.

If the manager wants to register a new celebrity, the banking system requires that the last

veri�cation of the manager role is less than 2 minutes old. However, to move a regular

customer from the USA to Asia, the last veri�cation of the manager role is required to

be less than 5 minutes old. The original data �ow diagram representation of the banking

system can only represent this requirement by adding multiple hierarchical roles, mixing

the semantics of roles with the semantics of time or age. With our concept of trust, we can

de�ne decreasing trust, depending on the age of the role information. For our extended

model, we de�ne a manager role provider service. The trust in the information supplied

by the service is only dependent on the age of the role information. The FIS input of role

0 100 200 300 400 500 600

Age of Role [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

invalid
intermediate
new

Figure 8.4: Fuzzy input of information age of the manager role provider service.

age is shown in Figure 8.4, the trust output is similar to the output de�ned for our running

example, shown in Figure 6.4d. We chose the input membership functions to represent

the prior description of the veri�cation times for di�erent actions of the manager. New

54

8.2 Evaluation Setup

age corresponds to high trust, which is necessary to register a celebrity. Intermediate age

corresponds to mid trust, which is necessary to move a regular customer from the USA to

Asia.

For our scenario, the manager wants to register a new celebrity. The manager veri�es

his role with the manager role provider service and can then enter the celebrity customer

details. However, the manager takes > 2 minutes to enter all of the celebrity customer

details, and the action is aborted, e�ectively locking out the manager of registering new

celebrities. A reduced representation of the extended data �ow diagram is shown in Figure

8.5.

celebrity customer
details

Manager

Clerk US

determine
credit line

find customer

Customer
Storage

register
customer

customer

customers

customercredit line

customer name

move customer

customer

customer name

Celebrity
Customer
Storage

register
celebrity

customer details

Regular

Regular

Celebritymid
Manager

Role
Location

Origin
Status

Data
Properties

Node
Properties

Join Forward Location
Changer

Behavior Templates

Trust

Regular

default
USA

default
USA

default
USA

default
USA

defaulthigh

default

Clerk

USA

customer

USA

customer

Figure 8.5: Reduced representation of the ABAC data �ow diagram of the S2.1 scenario.

Location The scenario that introduces a trust issue in the Location of actors focuses on

the resolution of the country geolocation from the IP addresses of the actors in the system.

Actual accurate information about the geolocation of a related IP is only known by the

internet service provider (ISP). This data is not available for commercial applications, like

the banking system of the ABAC use case. The banking system has to rely on public or

commercial geolocation databases and geolocation services. These databases use specially

aggregated blocks of IP addresses to match the IP addresses to geolocations.

Even though vendors of such databases claim country-level geolocation accuracy of greater

than 97%, this claim can not be universally con�rmed [69]. A vast majority of entries in

the databases refer only to a few popular countries, e.g., USA and Russia. This imbalance

in the representation of countries creates an accuracy bias towards speci�c countries.

Depending on the database, errors in the reported position range between 200Km and

800Km [54]. When looking at router, instead of end-host IP addresses, the country-level

geolocation accuracy can di�er by nearly 50% between databases [25].

For our scenario, we make the locations of the ABAC case study more speci�c. Instead of

55

8 Evaluation

the regions USA and Asia, we narrow the locations down to the speci�c countries USA
and Hong Kong.

As a cost-saving measure, the banking system switches the geolocation database, which

provides the location information, from the commercial NetAcuity [48] database to the

free MaxMind-GeoLite [45] database. For the US, this change only reduces the country

geolocation accuracy by a negligible amount. However, for countries like Hong Kong, this

change reduces the country geolocation accuracy by more than 40%.

This low accuracy could result in incorrect system behavior once deployed and opens up

the possibility for attacks utilizing the inaccurate country geolocation resolution. In our

example, this issue results in the clerk from Hong Kong sometimes not being able to access

the Hong Kong customer storage, as the access control system in place would block all

data �ows.

The original data �ow diagram representation of the banking system has no way of

representing this change. Consequently, analyzing the data �ow diagram does not yield

any insight into the changed situation. With our concept of trust, this change in databases

can be represented in the model. A reduces representation of the extended data �ow

diagram is shown in Figure 8.6. The low accuracy directly impacts the trust in the location.

This way, the analysis can identify that using the MaxMind-GeoLite database results in a

trust issue in multiple data �ows.

Clerk HK

find customer

determine credit line

Customer
Storage

Clerk US

determine credit line

find customer

Customer
Storage

register customer

customer

customers
customercredit line

customer name

customer name

customer

credit line customer

customers

move customer

customer

customer

customer details

Regular

Regular

Regular

default
Clerk

high
USA

default
Clerk

low
Hong Kong

Role
Location

Origin
Status

Data
Properties

Node
Properties

Join Forward Location
Changer

Behavior Templates

Trust

high
Hong Kong

high
USA

high
USA

Regular
high

Hong Kongcustomer name

Figure 8.6: Reduced representation of the ABAC data �ow diagram, using the MaxMind-

GeoLite database.

56

8.2 Evaluation Setup

Query We analyze both scenarios with the Prolog query, shown in Listing 8.1.

The query evaluates whether at least one of three kinds of data �ows exist in the model. In

line 1 of the query, we �rst ensure that node A is an actor node. Line 2 ensures that the pin

PIN is considered an actual input pin of the actor A. The facts in lines 3 and 4 check the

characteristics of the actor A, while the facts in lines 5 and 6 check the characteristics of

the data that can �ow to PIN of actor A. Lines 8, 9, and 10 de�ne a disjunction, where each

line contains a conjunction of facts that refer to the value or trust of the characteristics

that are checked in lines 3 to 6.

Line 8 de�nes that a data �ow is considered illegal, if the Location LOC of the actor is

equal to the Origin ORIG of the customer nodeLiteral(CV, N),whose data is in the system,

but the trust in the actors Location LOC_TRUST is not equal to the trust in the customer

Origin ORIG_TRUST. With this statement issues like the one described in scenario S2.2
can be identi�ed.

Lines 9 and 10 de�ne the use case that has been described for scenario S2.1. The facts in

line 9 de�ne that a data �ow is illegal if the actor Location LOC of the actor and the Origin
ORIG of the customer data are di�erent and the actor does not have the ’Manager’ role

or trust in the ’Manager’ role is ’low’. This means that only an actor with the ’Manager’

role that is at least trusted ’mid’ is allowed to move customers. Line 10 de�nes that a

data �ow is illegal if actors handle customer data with the status ’Celebrity’ without the

’Manager’ role or trust in the ’Manager’ role is ’mid’. This means that only an actor with

the ’Manager’ role that is trusted ’high’ is allowed to register celebrity customers.

Listing 8.1: The query used for the analysis of the two S2 scenarios.

1 actor(A),
2 inputPin(A,PIN),
3 nodeCharacteristic(A, ’Location’, LOC, LOC_TRUST),
4 nodeCharacteristic(A, ’Role’, ROLE, ROLE_TRUST),
5 characteristic(A, PIN, ’Origin’, ORIG, ORIG_TRUST, S),
6 characteristic(A, PIN, ’Status’, STAT, STAT_TRUST, S),
7 (
8 LOC = ORIG, LOC_TRUST \= ORIG_TRUST;
9 LOC \= ORIG, (ROLE \= ’Manager’; ROLE_TRUST = ’low’);

10 STAT = ’Celebrity’, (ROLE \= ’Manager’; ROLE_TRUST = ’mid’)
11).

Setup for Q2.3

To answer the question regarding the accuracy in identifying issues that result from

mismatched properties and lowered trust, we de�ne a pair of scenarios that consists of a

S0 and a S3 scenario. To create the S3 scenario, we reuse the S1 scenario of the ABAC use

case, that we use for Q2.1 and combine it with the S2.1 scenario, that we de�ne for Q2.2.

The S0 scenario is shown in Figure 8.2. Figure 8.7 shows the S3 scenario. The ’Manager’

role’s reduced trust introduces trust issues in the data �ows to the ’register celebrity’ and

’move customer’ nodes, while the added data �ow to ’register customer’ introduces a

57

8 Evaluation

property issue. For the analysis, we use the same query that has been used for the setup

of Q2.2, shown in Listing 8.1.

celebrity customer
details

celebrity customer
details

Manager

Clerk US

determine
credit line

find customer

Customer
Storage

register
customer

customer

customers

customercredit line

customer name

move customer

customer

customer name

Celebrity
Customer
Storage

register
celebrity

customer details

Regular

Regular

Celebritymid
Manager

Role
Location

Origin
Status

Data
Properties

Node
Properties

Join Forward Location
Changer

Behavior Templates

Trust

Regular

default
USA

default
USA

default
USA

default
USA

defaulthigh

default

Clerk

USA

customer

USA

customer

Figure 8.7: Reduced representation of the ABAC data �ow diagram of the S2.3 scenario.

8.2.3 Setups for Evaluating Scalability

Each setup is run with increasing numbers, starting at 1, doubling the value till 2048 is

reached. Each of these setups is executed ten times to reduce the side e�ects of the JVM

and get a good variance when averaging the values.

All scalability setups are run on the following con�guration:

• Intel i5 5200U (2 cores, 4 threads) @ 2.20 - 2.70 GHz

• 8 GB RAM

• 500 GB SSD hard drive

• Ubuntu 20.04 LTS, 64-Bit

• Java 11 (OpenJDK 64-Bit, version 11.0.11)

Setup for Q3.1

The �rst question regarding scalability focuses on the time required for calculating the

trust labels, depending on the number of environmental factors. We utilize the FIS of the

high sensitivity GPS location service we already created for the running example, see

58

8.2 Evaluation Setup

Chapter 5, as a base.

We increase the number of inputs by adding randomly created Fuzzy�cationFunctions

to the existing FIS. To ensure that the randomly created Fuzzy�cationFunctions are well-

formed, we limit the Fuzzy�cationFunction only to be made up of between two and �ve

triangular membership functions. We also limit the range of the Fuzzy�cationFunctions to

start at 0 and end at a random number between 10 and 1000.

Rules are generated by combining a randomly chosen membership function of each

Fuzzy�cationFunction. We limit these rules to only use the AND RULE_Operator. To cover

every possible membership function once, we generate �ve rules. If every membership

function of a Fuzzy�cationFunction with less than �ve membership functions is already

used once, a random membership function of the Fuzzy�cationFunction is chosen for

subsequent rules. The Defuzzy�cationFunction is the same as the one we use in the running

example, shown in Figure 6.4d. It is made up of three Gaussian membership functions, each

representing a trust label. A random membership function of the Defuzzy�cationFunction

is chosen for each rule.

We initialize the FIS with the MIN AND_Operator, MAX ACCU_Operator, and center of

gravity as defuzzi�cation method.

Setup for Q3.2

The second question regarding scalability focuses on the time required to transform the

model to Prolog code, depending on the number of information services. This question

explores the trade-o� in time associated with a more �ne granular division and represen-

tation of di�erent information services.

To be mapped to Prolog, an information service has to be linked to at least one TrustedChar-

acteristic. In the sense of the access control analysis, a TrustedCharacteristic represents a

property that may be used in access control. This means that additionally to the increased

number of information services in the model, we consequently increase the number of

properties.

Based on the running example, see Chapter 5, we add information services with ran-

domized input values. To minimize the in�uence of the FIS on the time needed to map

to Prolog, each information service references the same FIS of the high sensitivity GPS

location service of the running example. This should reduce the impact of the FIS to a

constant.

For each added information service, we add a TrustedCharacteristic with the ’Location’

TrustedCharacteristicType. To add the TrustedCharacteristics to a node, we assign them

to each of the actors of the running example. The node behavior in our running example is

only made up of the forward behavior template so that the behavior can remain unchanged.

Setup for Q3.3

The third question regarding scalability focuses on the time required to map the model to

Prolog code, depending on the size of the trust enumeration of a TrustedCharacteristic-

Type. This question explores the trade-o� in time associated with more �ne granular trust

handling using many trust labels.

59

8 Evaluation

To isolate the e�ect of the size of the trust enumeration, we only create a single Trust-

edCharacteristic and InformationService. The FIS of the InformationService is made up

of the tree Fuzzy�cationFunction inputs of our running example from Chapter 5. To

match the increasing number of trust labels, we at the same time add a corresponding

membership function to the Defuzzi�cationFunction. As we scale to a maximum of 2048

trust labels, the Defuzzi�cationFunction is generated with a range interval of [0, 10240].
This way, each membership function can cover a range of 5 without overlapping each

other too much. We add Gaussian membership functions with < = (8 ∗ 5) + 2.5 and

f = 1.5, with 8 being the index of the corresponding trust label in the trust enumeration.

An example of this membership function, with a reduced range of [0, 50], is shown in

Figure 8.8. Rules of the FIS are randomly generated in the same way described in the

Setup of Q3.1. The goal is not to generate rules that cover every possible membership

function of the Defuzzi�cationFunction, but only to generate a functioning FIS that can

be evaluated to a trust label. As the FIS of our running example has three inputs with

three membership functions each, we generate 27 rules, covering every combination of the

membership functions. The input values of the InformationService are randomly chosen

within the range of the randomly created Fuzzy�cationFunctions.

The remaining data �ow model is based on our running example of Chapter 5. For an

enumeration to be regarded in the mapping to Prolog, it needs to be assigned to a Trust-

edCharacteristicType. We create a new TrustedCharacteristicType, with the ’Location’

enumeration of the running example as type and the generated trust enumeration as trust.
We set a randomly chosen location label as the value and the newly created TrustedChar-

acteristicType as type of the single TrustedCharacteristic and assign it to each actor. In our

running example, we only use the forward behavior template so that the node behavior

can remain unchanged.

0 10 20 30 40 50

Trust

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

Figure 8.8: Membership function example of the fuzzy ouput regarding the setup of Q3.3.

60

8.3 Evaluation Results

Setup for Q3.4

The last question regarding scalability focuses on the time required to map the model to

Prolog code, depending on the number of di�erent types of properties used for access

control. We utilize the data �ow model of our running example as a base. For each increase

in properties, we add a duplicate of the existing ’Location’ TrustedCharacteristicType.

For each added TrustedCharacteristicType, we duplicate the TrustedCharacteristic, which

are assigned to each actor. We modify these TrustedCharacteristics to be of the added

TrustedCharacteristicType. As the TrustedCharacteristicType is equal to the already

existing one, the TrustedCharacteristics information services and values do not need to

be changed. The node behavior in our running example is only made up of the forward

behavior template so that the behavior can remain unchanged.

8.3 Evaluation Results

In this section, we present and discuss the �ndings of our evaluation that was de�ned in

the previous sections.

8.3.1 Discussion on Applicability

As our evaluation regarding applicability was mostly argumentative, we discuss every

aspect of the corresponding questions and try to come to a conclusion that answers the

question.

Discussion on Q1.1

To answer if the information to apply our proposed concept of trust is available during

design time, we focus on the availability of the information during the very early stages of

the iterative development described in Section 8.2.1.

We reckon that information about sensors and environmental factors can initially be

assumed and re�ned during the iterative development process. As we have shown with

our running example (see Chapter 5) and the ABAC scenarios (see Section 8.2.2), it is

possible to make some general assumptions about environmental factors from existing

literature. Although the described ABAC scenarios describe a situation where the system

is already deployed, we still came up with the scenarios without using actual run time

details. We only used the existing ABAC DFD model of Seifermann et al. [66] and existing

literature which is exactly what might be available during design time.

More precise measurements, e.g., regarding the signal damping inside the actual buildings,

could be conducted, or technical speci�cations of actually used sensors become available

during the subsequent process. This increasingly more precise knowledge can be used to

re�ne the calculation of trust in the model. Through the iterative re�nement of the model,

the results of an analysis using the model can increasingly re�ect the real-world situation

in which the system is to be deployed.

If the DFD approach of Seifermann et al. [66] is already used to validate system require-

ments regarding access control, our concept of trust can be added once system requirements

61

8 Evaluation

change in a way that makes it necessary to handle this uncertainty. Our approach does

not aim to replace the existing DFD approach but rather represents an optional step that

incorporates more information in order to be able to verify requirements more accurately

to the real world.

Discussion on Q1.2

To answer whether our concept of trust adds value for already deployed systems, we

discuss the availability of information and describe a what-if scenario, which showcases

that issues that result from changes in trust can be identi�ed.

The handling of uncertainty we propose with our concept of trust relies on information

regarding the service used to get access control properties. In order to calculate the trust in

a service, there needs to be knowledge about the source, e.g., sensors and the environmental

factors that in�uence the service. During run time, this information is already present. This

enables the software architect to create a very detailed model representation of the system,

which includes our concept of trust. These detailed models can be used to investigate the

impact of changes from what-if scenarios on the access control of the deployed systems

before implementing them.

The ABAC use case, we have described in Section 8.2.2 presents a situation where using

our concept of trust is especially worthwhile for deployed systems.

In the described situation, changes in the environmental factors do not introduce new

potential issues with con�dentiality but rather introduce usability issues. Changes to the

database used for country geolocation a�ect the usability of the banking service deployed

in Hong Kong. The accuracy in resolving the country geolocation from the IP addresses

of the actors in Hong Kong decreases drastically due to the change. With the reduced

accuracy, the location property is not always properly set to Hong Kong. As a result,

the access control system, which is in place, might block most data �ows to the actors,

e�ectively locking them out of accessing the Hong Kong customer storage. The original

DFD approach of Seifermann et al. [66] is not able to identify this issue, as the information

about the databases that are used to resolve IP addresses to geolocations is not taken into

account.

With our concept of trust, this information is added to the DFD representation of the

system. The changes to the database result in lower trust in the location property and

therefore enable the analysis to identify the issue beforehand, preserving the usability of

deployed systems.

Discussion on Q1.3

As we have described in Section 2.3 and 6.1, we use fuzzy inference systems to describe

calculation rules to utilize multiple di�erent inputs and derive a trust value. To evaluate

whether FISs are suitable for the proposed use, we focus on the knowledge required to

create, understand and extend a FIS:

In the book "Fuzzy sets and fuzzy logic: theory and applications," George Klir and Bo

Yuan [39] address signi�cant topics of fuzzy set theory and fuzzy logic, including fuzzy

inference systems. They describe that through fuzzi�cation, an enhanced ability to model

62

8.3 Evaluation Results

real-world problems is gained, lowering overall solution cost. The use of fuzziness also

serves to achieve "greater capability to capture human common-sense reasoning, decision

making, and other aspects of human cognition [39, pages 32f.]."

When setting up a calculation rule in general, the system’s properties and environment are

abstracted and simpli�ed. As a result, information about the inputs and their in�uence on

the result is lost. A FIS conserves more knowledge about the inputs and their in�uence on

the calculated trust value than a conventional mathematical function by mapping inputs

to membership functions and working with natural language concepts.

Additionally, a FIS "has the capability to capture and deal with meanings of sentences

expressed in natural language [39, pages 32f.]," which enables, e.g., a software architect

or security expert to more easily map statements or requirements about the in�uence

of environmental factors on trust, to calculation rules. The additional knowledge, easy-

to-understand linguistic concepts, and captured human decision-making allow for more

informed changes or extensions to the calculation rule. Fuzzy control and fuzzy decision-

making are also already relevant topics in industrial engineering. Domain experts that

are involved in the creation process might already be familiar with the concept of fuzzy

control/inference.

However, the quality and accuracy of the knowledge contained in a FIS depends heavily

on the ability to create appropriate membership functions. As the membership functions

capture linguistic concepts, their de�nition can be vague and context-dependent. This

makes it hard to de�ne meaningful membership functions. George Klir and Bo Yuan

address this topic by describing various methods to create membership functions that

carry appropriate meaning, given their context. These methods include direct and indirect

methods involving one or more experts, as well as the creation of membership functions

based on sample data [39, pages 280�.]. These methods make it possible to iteratively create

and increase the quality of the membership functions for the environmental factor inputs

and trust output of our proposed FIS. Although the ability to iteratively create and improve

the quality of the membership functions integrates well with the iterative nature of the

development process (see Section 8.2.1), the methods described are rather cumbersome,

time-intensive, and require good input of data or expert knowledge. However, while the

initial e�ort to create such FISs may be higher, their understandability and extensibility

make them a viable option in their proposed use.

Discussion on Q1.4

To answer if the expressiveness of the original DFD approach of Seifermann et al. [66]

is a�ected by the addition of our concept of trust, we evaluate the expressiveness of

our extended DFD approach in the same way it was done for the original approach and

compare results.

To evaluate the expressiveness of their approach regarding access control, Seifermann et

al. [66] de�ne two questions:

• Is the proposed syntax capable of representing systems and their behavior relevant

for access control?

63

8 Evaluation

• Are the proposed analysis semantics capable of de�ning analyses of access control

violations?

To answer these questions, they select six known use cases, three of which represent the

RBAC model and are taken from previous work [65]. The three remaining represent the

common access control models DAC, MAC and ABAC. By creating instances of these use

cases using the original DFD syntax, they answer the �rst question.

We can answer the �rst question in the same way, by using the default trust approach, we

have also used to answer question Q2.1 in Section 8.2.2. We modify the DFD instances

of Seifermann et al. to use our extended DFD while still representing the identical use

case. The default trust approach adds our concept of trust to a DFD instance but does

not change the semantic of the DFD instance, e�ectively emulating a DFD without trust

labels. Table 8.1 gives an overview of the size of the DFD instance for each use case. To

Case Nodes Edges Behaviors Characteristic Types Labels

TravelPlanner 17 19 8 2 3

DistanceTracker 8 9 6 2 3

ContacSMS 9 12 7 2 3

DAC 7 7 6 4 4

MAC 15 22 7 2 3

ABAC 13 18 6 4 6

Table 8.1: Metrics of access control cases realized in the original DFD syntax used to

evaluate expressiveness [66].

answer their second question, Seifermann et al. [66] de�ne Prolog queries for each use

case. The query for a use case can be used with the result of the transformation of the

corresponding DFD instance. As we have only slightly modi�ed the transformation to

Prolog to handle our trust labels, we can replicate the queries almost exactly. Instead of

the original nodeCharacteristic and characteristic facts, we use the corre-

sponding facts we have extended with a trust label (see Section 7.2).

Being able to answer both questions in the same way as the original DFD approach suggests,

that adding our concept of trust to the DFD and analysis did not impact the expressiveness.

The added concept of trust, on the other hand, enables properties to incorporate informa-

tion about environmental factors. This allows for more �ne granular de�nition of access

control properties and rules. The original approach allows for

∏�ℎ0A)~?4B
#E0;D4! possible

property combinations, where CharTypes is the set of characteristic types, #value is the

number of value labels of the characteristic type. Including trust increases the number of

possible combinations to

∏)ADBC43�ℎ0A)~?4B
#E0;D4#CADBC !, where TrustedCharTypes is the set

of trusted characteristic types, #value is the number of value labels of the characteristic

type and #trust is the number of trust labels of the characteristic type.

A similar result could be archived by implementing many �ne granular property hierar-

chies. However, these properties would mix the semantics of the original property with the

semantics of trust, making them less comprehensible. Through trust, the environmental

64

8.3 Evaluation Results

factors have a direct e�ect on the expressive power of the corresponding property, gen-

erally increasing the expressiveness of our approach, compared to the original approach

from Seifermann et al. [66].

8.3.2 Findings and Discussion on Accuracy

In this section, we present and discuss our �ndings regarding the accuracy of our extended

analysis. We calculate the proposed precision and recall metrics based on the �ndings of

each question and brie�y discuss the meaning of the values of both metrics.

Findings on Q2.1

We executed the model instances for the S0 and S1 scenarios of every use case we have

described in Section 8.2.2. We correctly did not identify an issue in the six S0 scenarios,

which contain no issue. For the six corresponding S1 scenarios, we were able to identify

the contained issues correctly. Table 8.2 shows the number of issues introduced to each

use case to form S1 scenarios, compared to the number of these issues we were able to

identify.

For our described metrics the number of identi�ed issues in the S1 scenarios represent

the true positive value C? = 6. We did not identify non existing issues in the S0 scenarios

resulting in the false positive value of 5? = 0. This results in a precision of ? = 6

6+0 = 1.0.

As shown in Table 8.2, we did not miss any of the introduced issues in the S1 scenarios,

so the false negative value amounts to 5= = 0. This results in a recall of A = 6

6+0 = 1.0. As

S1 issues

Case introduced identi�ed

TravelPlanner 1 1

DistanceTracker 1 1

ContacSMS 1 1

DAC 2 2

MAC 3 3

ABAC 3 3

Table 8.2: Evaluated metrics for Q2.1.

we have described, our S1 scenarios and queries are semantically equal to the scenarios

that were de�ned by Seifermann et al. when evaluating the accuracy of the original DFD

approach [66]. When comparing our results to the results of Seifermann et al., we can see,

that the addition of our concept of trust did not impact the ability of the DFD approach

to correctly identify access control issues, that result from mismatched properties. This

shows, that while we extend the ability of the DFD approach to represent and identify

issues that result from trust, we did not impair the original accuracy.

65

8 Evaluation

Findings on Q2.2

For question Q2.2 we only base our evaluation of accuracy on the ABAC use case, described

in Section 8.2.2. We divided the S2 scenario in the two sub-scenarios S2.1 and S2.2. S2.1
introduces a trust issue regarding the role property. S2.2 introduces a trust issue regarding

the location property. We correctly did not identify an issue in the corresponding S0
scenario, which contains no issue. For the scenarios S2.1 and S2.2, we where able to

correctly identify the introduced issue.

We calculate the metrics similarly to how they are calculated for the �ndings on Q2.1. The

number of correctly identi�ed issues in the S2 scenarios is C? = 2. We did not identify non

existing issues in the S0 scenarios and did not miss any of the two introduced issues, so

the false positive value amounts to 5? = 0 and the false negative value amounts to 5= = 0.

This results in a precision of ? = 2

2+0 = 1.0 and a recall of A = 2

2+0 = 1.0

We did expect similar results, as property issues and trust issues both result from mis-

matched labels. In our approach, the way trust labels are compared is equal to how the

normal property labels are compared. Bad accuracy for S1 scenarios should result in bad

accuracy in S2 scenarios and vice versa.

However, as we were not able to de�ne equivalence classes for the entirety of trust issues

and test them individually, there can exist situations where this might not be the case.

Findings on Q2.3

For question Q2.3 we combine the S1 scenario of the ABAC use case with the S2.1 scenario

to form a single S3 scenario.

As in the �ndings on Q2.1 and Q2.2, we correctly did not identify an issue in the corre-

sponding S0 scenario. In the S3 scenario, we can exclusively identify the three issues that

correspond to the S1 scenario and the single issue that corresponds to the S2.1 scenario.

As we only use one S3 scenario, the calculation of metrics is trivial. The precision and

recall are ? = 1.0 and A = 1.0.

We did expect similar results, as the analysis is already able to identify issues from mis-

matched properties and trust independently. As we use the same query that was used

for the ABAC situations of Q2.1 and Q2.2, solutions that were found for Q2.1 can still be

found, and solutions that were found for Q2.2 can still be found, e�ectively creating the

union of both results.

8.3.3 Findings and Discussion on Scalability

In this section, we present and discuss our �ndings regarding the scalability of the trans-

formation from DFD to Prolog. In each question, we scale a di�erent aspect of the model,

which we added as part of the contribution of this thesis. The measured execution times

are gathered and plotted to give a better visual representation of the prevalent execution

time behavior that results from the scaling the model aspect.

66

8.3 Evaluation Results

Findings on Q3.1

We divided our results regarding Q3.1 into the generation of the �s �le and the execution of

the FIS. Both combined make up our process of calculating a trust label from environmental

factors. Our �ndings are plotted, and the results are shown in Figures 8.9.

Figure 8.9a shows the time needed to generate the �s �le. With an increasing number

of environmental factors, i.e., the inputs to the FIS, we can identify a tipping point in

generation time at 32 environmental factors. At this point, the nearly constant generation

time behavior changes to linear behavior.

The execution time behavior of the FIS, shown in Figure 8.9b, shows exponential growth

behavior with an increase of environmental factors. While the generation of the �s �le has

been fully implemented by us, we rely on third-party fuzzy inference libraries to execute

the actual FIS, in our case FuzzyLite [56]. Utilizing libraries from other parties might result

in varying execution time behavior. Additionally, when focusing on the actual median

times of the highest iteration of our testing, we can see that the time needed to generate

the �s �le still is higher than the actual execution time of the associated FIS. This makes

the generation of the �s �le the dominant factor in the process of executing a FIS model

instance with a high number of inputs. If the generation and execution time continue to

grow with the observed behavior, this might change for FISs with even more inputs.

● ● ● ● ●

●

●

●

●

●

●

Median Generation Time of fis File

Number of Environmental Factors

M
ed

ia
n

of
 G

en
er

at
io

n
T

im
e

[m
s]

2 4 8 16 32 64 128 256 512 1024 2048

1

2

4

16

58

215

882
Generation Time
Linear Reference

(a) Times needed to generate �s �le from FIS

model instance, with increasing number of

inputs.

● ● ●

●

●

●

●

●

●

●

●

Median Execution Time of FIS

Number of Environmental Factors

M
ed

ia
n

of
 E

xe
cu

tio
n

T
im

e
[m

s]

2 4 8 16 32 64 128 256 512 1024 2048

5
6

12

19

31

74

215

701
Run Time
Exponential Reference

(b) Times needed to execute a �s �le and calcu-

lating trust label, with increasing number of

inputs.

Figure 8.9: Findings on Q3.1.

However, we believe that over 2000 environmental factors are far beyond the number

of environmental factors that might be modeled during design time. With our approach,

each factor would require multiple membership functions. While membership functions

might be created using sample data (see Section 8.3.1), extensive rules that utilize them as

inputs sill would need to be created by hand. We reckon that due to the extensive e�ort

67

8 Evaluation

involved, information services with more than 128 environmental factors will be seldom,

and most will have far less. This results in a combined time for executing a FIS of mostly

less than 23 ms, which is an almost negligible in�uence on the general running time.

Findings on Q3.2

The times needed for the transformation to and generation of the Prolog code, with an

increasing number of information services and properties, are shown in Figure 8.10.

With an increase in information services and properties, we can identify that the plotted

graph grows exponentially for smaller iterations but transitions into linear growth, be-

ginning at 32 information services. This transition can be traced back to the number of

information services and corresponding constant time to calculate their respective trust

value becoming the dominant factor for the mapping time to Prolog. Regarding the size

of the generated Prolog code, while increasing the number of information services and

properties in a model increases the overall size and complexity of the model instance itself,

it does not impact the size of the generated Prolog code.

●

●

●

●

●

●

●

●

●

●

●

Median Mapping Time to Prolog Code

Number of Information Services

M
ed

ia
n

of
 M

ap
pi

ng
 T

im
e

[m
s]

2 4 8 16 32 64 128 256 512 1024 2048

151
194
239

360

575

1044

1908

3806

7482

14700

29260
Mapping Time
Linear Reference

Figure 8.10: Time for the transformation to Prolog code, with increasing number informa-

tion services.

Findings on Q3.3

The times needed to transform model instances with an increasing number of trust labels

to Prolog code are shown in Figure 8.11. Similar to our �ndings on Q3.2, we can identify

a point in the plotted graph where the superlinear growth in time transitions to linear

growth. A big di�erence to our �ndings on Q3.2 is that the size of the trust enumeration

impacts the size of the generate Prolog code radically. This was expected, as each added

label is transformed to its own characteristicTypeTrust(CT, T, I) Prolog

fact, as we describe in Section 7.2. Each additional trust label also adds lines to the

Prolog representation of the behavior of the nodes, as each assignment of each behavior

68

8.3 Evaluation Results

adds a characteristic(N, PIN, CT, V, T, S, VF) :- ... rule for each

possible value and trust combination of each characteristic type.

●

●

●

●

●

●

●

●

●

●

●

Median Mapping Time to Prolog Code

Number of Trust Labels in single Enumeration

M
ed

ia
n

of
 M

ap
pi

ng
 T

im
e

[m
s]

2 4 8 16 32 64 128 256 512 1024 2048

65

86

129

184

303

488

880

1873

3578

7408

14991
Mapping Time
Linear Reference

Figure 8.11: Time for the transformation to Prolog code, with increasing size of trust

enumeration.

Similar to what we describe in our �ndings on Q3.1, we believe that de�ning over 2000

individual trust values for a single characteristic type is far beyond what might be modeled

during design time. However, as the number of trust labels only in�uences the execution

time in a linear manner, even a very �ne-grained de�nition of trust labels should not result

in excessive execution times of the mapping.

Findings on Q3.4

The times needed for the transformation and generation of Prolog code, with an increasing

number of types of properties, are shown in Figure 8.12. Looking at Figure 8.12, we can

identify, that overall the execution time behavior of the transformation to Prolog shows

linear growth when increasing the number of instances of TrustedCharacteristicType.
Similar to our �ndings on Q3.3, the size of the Prolog code is impacted radically, as

each instance of TrustedCharacteristicType is transformed to the Prolog facts described

in Listing 7.1. For our setup, with three value labels and three trust labels, each added

TrustedCharacteristicType adds seven additional Prolog facts.

Generally, with the �ndings for Q3.2, Q3.3, and Q3.4, we can conclude that the model

aspects we add as part of our approach only in�uence the execution time of the mapping

to Prolog in a linear manner. We believe that this linear in�uence will not negatively

impact the overall execution time behavior of the original mapping to Prolog. The original

mapping also increases the size of the mapped Prolog code for each additional model

element, which should also result in a linear execution time behavior.

69

8 Evaluation

●

● ●

●

●

●

●

●

●

●

●

Median Mapping Time to Prolog Code

Number of TrustedCharacteristicTypes

M
ed

ia
n

of
 M

ap
pi

ng
 T

im
e

[m
s]

2 4 8 16 32 64 128 256 512 1024 2048

106

186

302

549

981

1912

3773

7490

14852

29670
Mapping Time
Linear Reference

Figure 8.12: Time for the transformation to Prolog code, with an increasing number of

types of properties.

8.4 Threats to Validity

As the evaluation of our approach is partly evaluated with case studies, we discuss the

internal validity, external validity, construct validity, and reliability of our contribution, as

characterized by Runeson, Höst, Austen, and Regnell [61].

As our evaluation goals are structured in applicability, accuracy, and scalability, we discuss

our threads to validity for each of our goals separately.

Internal validity ensures that causal relations are valid, i.e., the factor that is expected to

have an in�uence is the only in�uencing factor.

The main threat to the internal validity of our evaluation of applicability is whether or

not our chosen questions and discussed results hold enough weight to make a proper

statement about applicability. The discussed additional value of our contribution for run

time systems in question Q1.2 highly depends on the system and its area of application.

However, as we have discussed in the evaluation, we still were able to create multiple

problematic real-world situations, using actual values of environmental factors taken

from existing literature. This also mitigates the thread regarding Q1.1, as we were able to

identify applicable environmental factors for various situations from existing literature,

using only the described use cases as a base.

As the setup of our evaluation of accuracy is strongly based on the evaluation of the DFD

approach of Seifermann et al. [66], the same factors that in�uence the internal validity

still hold: Analysis queries or DFDs that are incorrect can still yield the expected result,

which might be an identi�ed violation or not. We address this issue by de�ning three

distinct types of issues in our S1, S2, and S3 scenarios as well as the corresponding S0

scenarios without issues and analyze them with the same query. Queries that are overly

customized to �nd a speci�c issue, e.g., by encoding the violation that is to be identi�ed

directly in the query, can positively impact the accuracy. To combat this threat, we use

70

8.4 Threats to Validity

the same queries for the evaluation of Q2.1 that have been used by Seifermann et al.. To

avoid these over�tted queries, for questions Q2.2 and Q2.3, we extend the access control

query of the ABAC use case to directly take our concept of trust into account and use this

distinct query to evaluate the three situation pairs of questions Q2.2 and Q2.3. A threat to

the internal validity of our scalability evaluation using di�erent base models instances for

each scaled aspect of a model. Some base model setups can positively impact the execution

time on some test cases because they omit the parts of the transformation algorithm that

are impacted by the scaled aspect of the model. Also, using di�erent base model instances

makes it impossible to properly compare the resulting execution time behavior of di�erent

scaled model aspects. To combat this threat, we use the same model instance as a base

for Q3.2, Q3.3, and Q3.4 of our scalability evaluation. With a uniform base, the in�uence

of the remaining aspects of the model remains constant and does not a�ect the overall

observed behavior. We also focus on a single aspect for each question, explicitly only

scaling the model elements necessary for the scaled model aspect to be taken into account

by the transformation algorithm.

External validity ensures that the �ndings are only generalized if they can validly be

applied to other situations, groups, or events.

For our evaluation of applicability, a threat to validity is the author’s bias towards his own

contribution and his own limited experience regarding real-world access control setups.

However, we base most of our statements on existing literature. Moreover, our evaluation

of applicability already contains a discussion about external validity, as the proposition

of applicability already covers how far something can be generalized or holds value for

others.

The main threat to external validity of our accuracy evaluation stems from the small

number of S2 and S3 scenarios we cover when answering questions Q2.2 and Q2.3. As

we have discussed multiple times throughout this thesis, at the time of writing this thesis,

there is little existing literature that describes use cases that cover all details that are

necessary to apply our concept. This lack of usable information makes it impossible to

derive meaningful equivalence classes for trust and evaluate the accuracy of our analysis

in �nding issues with trust in a structured way. We still try to partly mitigate this thread by

de�ning our S2 and S3 scenarios using real-world environmental factors and measurements

from exiting literature to create appropriate use cases, removing our bias towards using

solely made-up values that positively in�uence the accuracy. Additionally, the S2 and S3

scenarios are based on the ABAC use case of Seifermann et al. [66]. As we have described

in Chapter 4, our concept of trust is based around the idea of trust relationships and

attribute assurance, described in the NIST publication de�ning ABAC [31], [32]. By adding

our concept of trust to the ABAC use case, we can show that we are not only able to

represent but also accurately identify issues in trust chains during design time, as well as

analyze whether the availability of appropriate attributes is assured.

Another threat to external validity are the selected accuracy values we base the setup of

question Q2.2 on. We take the geolocation accuracy values for the S2.2 scenario from the

publications [25], [54], [69]. The geolocation database data used by these publications is

from 2016 or older. According to the statement on the website of MaxMind-GeoLite [45],

their databases are updated weekly. As we have no way of reevaluating the results of our

71

8 Evaluation

referenced publications with current databases, the problem described in this setup might

not exist anymore or be less drastic than described. However, the described situation still

presented an issue in 2016, and issues of a similar nature might still occur.

Construct validity assures that our selected metrics can answer our research questions

and that the questions contribute to the de�ned evaluation goals. For our metrics, we chose

a discussion to rate applicability, precision, and recall to rate accuracy and the execution

time to rate scalability. Using metrics to summarize the applicability of an approach is not

su�ciently possible, as the applicability is generally very dependent on variations and

limitations of the actual system an approach is applied at. We still discuss the applicability

during two general phases of software development, design time and run time, which

every production system undergoes. The included discussion about expressiveness is

fully based on the evaluation of the original DFD approach our contribution is based on.

Consequently, we share the same threads to validity, which have already been discussed

by Seifermann et al. [66].

The precision and recall metrics are common for evaluating accuracy and are used evaluate

related work [4], [66].

Measuring the execution time for tasks with increasing size and discussing the observed

execution time behavior is also a common way to evaluate the scalability. Especially for

approaches in the domain of system architecture modeling, where the formulated problems

can vary in size drastically, for example [27]. In our evaluation of scalability, we only

focus on the mapping of DFD instances to Prolog code and not the actual execution of

an analysis by running a query on the resulting Prolog code. As we have already brie�y

discussed in Section 8.1.3, the execution time of the Prolog code depends on other factors

that are more closely related to the original DFD approach of Seifermann et al. [66] than

to our approach of this thesis, like the general structure of the data �ow diagram instance,

the kind of executed query, the Prolog library and optimization techniques that were used.

As we only base the implementation of our approach on the DFD approach of Seifermann

et al., we believe that evaluating the impact of these more general factors on the scalability

of running the analysis is out of scope for this thesis.

Reliability assures that other researchers can repeat the evaluation and come to the same

results. As discussed before, our discussion regarding applicability is based on existing

literature. Still, our discussion but might still leave room for further interpretation, which

is an issue we can not directly address. To mitigate any remaining threads regarding the

reliability of our evaluation, we publish our implementation and model extension as well

as all model instances of every analyzed scenario in our data set [9]. This allows others to

reproduce the results of our accuracy and scalability evaluation.

8.5 Assumptions and Limitations

We distinguish between our assumptions and limitations of our proposed concept of trust,

as well as of our evaluation:

Regarding our concept of trust, we make some assumptions regarding the environmental

factors and their in�uence in the calculation of trust. Generally, we assume that developers

72

8.6 Data Availability

have to know which environmental factors in�uence trust of a service or have a process of

identifying environmental factors and their corresponding in�uence on trust. While adding

newly emerging environmental factors to the calculation can be done with little e�ort,

as we have discussed in Section 8.3.1, knowledge about the environmental factors has to

already exists. We also assume that all environmental factors are quanti�able and can be

taken into account by the trust calculation. Additionally, linguistic concepts or membership

functions for environmental factors have to already exist, or it is always possible to apply

one of the processes described in Section 8.3.1 to derive �tting membership functions, i.e.,

either expert knowledge or sample data exists and can be used.

A limitation of our approach is that there is no way to draw conclusions based on a

trust label about which exact environmental factors of which InformationService have

led to the trust label. Di�erent information services can provide the same property, e.g.,

a location in a building, but be in�uenced by di�erent environmental factors and in

di�erent ways. The characteristics associated with these information services have the

same characteristic type, which makes the, e.g., location properties and trust comparable

with each other. It is therefore not necessarily possible to tell based on a trust label from

which InformationService it originated and thus which exact environmental factors had

which in�uence.

We make two assumptions in our evaluation that do not directly pose a threat to validity

but need mentioning for the sake of completeness:

For our evaluation, we assume that the architectural model always describes the software

or run time system adequately. For our approach, this means that the model includes the

correct speci�cations for every information service and that changes in the software or

run time system are correctly propagated to the model. If this is not the case, transferring

conclusions from an analysis based on the model to the software or runtime system could

lead to errors.

With existing approaches which use system monitoring data to align architectural models

with the run time system, such as iObserve [27], this assumption could be achieved with

less e�ort.

8.6 Data Availability

All data of this thesis is made publicly available in our data set [9]. We include our data �ow

diagram extension, extended Prolog transformation algorithm, and all test implementations

or model instances used for the evaluation.

73

9 Conclusion

To conclude this thesis, we summarize our contribution in Section 9.1 and give an outlook

on future work in Section 9.2. Finally, we express our acknowledgments in Section 9.3.

9.1 Summary

In this thesis, we proposed our approach to handle uncertainty in access control during

design time. We de�ned a characterization of uncertainties in access control on the archi-

tectural level to provide a better understanding of the kinds of uncertainty that can be

present. By de�ning our concept of trust, we raise awareness about existing uncertainty,

enabling the handling of the corresponding uncertainty. Adding additional information to

design time software architecture models and providing a way to analyze model instances

for access control violations enables software architects to further increase the quality of

models and verify requirements regarding access control under uncertainty in the early

stages of the software development process.

We de�ned our concept of trust as a composition of environmental factors, e.g., environ-

mental conditions of nature, age of information, and used hardware of a modeled system,

that impact the validity of and consequently trust in access control properties. To combine

the environmental factors, we proposed the use of fuzzy inference systems as a way of

calculating trust values for access control properties.

We extended the existing DFD approach of Seifermann et al. [66] to design time information

�ow and access control analysis. The existing approach uses a transformation algorithm to

map instances of a DFD metamodel to a Prolog logic program and uses queries to analyze

the DFD and detect violations. Access control properties are represented by labels, which

are propagated along the �ow of data. We extended the existing DFD metamodel by explic-

itly representing services that supply access control properties. Each information service

has a trust associated with them, which di�erent environmental factors can in�uence in

di�erent ways. To describe how environmental factors are mapped to trust values, we

proposed the use of fuzzy inference systems as a way of de�ning calculation rules. We

introduced trust labels as a way of representing trust in the DFD metamodel. We further

extended the existing transformation to Prolog by adding additional label propagation

logic for our trust labels.

In our evaluation, we discussed the overall applicability of our proposed concept of trust.

Using manually created scenarios and values for environmental factors we extract from

existing literature, we showed that our concept of trust can generally be applied to system

models during design and run time of the system. We also showed that there can be

situations even after the system has already been deployed where the addition of our

concept of trust to the system model provides additional value. We show that our use of

75

9 Conclusion

FISs as a way of de�ning a mapping from environmental factors to a trust value makes it

more natural for humans to de�ne these kinds of calculation rules and holds additional

information, which aids in the extensibility of existing FISs. Additionally, we compared the

expressiveness of the existing DFD approach in representing systems and de�ning analyses

for access control, with and without our extension, which showed that our extension did

not impact expressiveness.

We also evaluated the accuracy of our approach in correctly identifying access control

issues. We de�ned three classes of issues that result in an access control issue and showed

that our approach could correctly identify each issue. Finally, for our evaluation, we

observed the execution time behavior of the mapping from DFD to Prolog. We scaled the

size of the model aspects that were added by our approach. This showed that even for

large systems with very detailed trust de�nitions, the mapping to Prolog only exhibits

linear execution time behavior.

9.2 Future Work

While working on this thesis, we identi�ed three points of future work.

One of the biggest obstacles throughout the work on the thesis was the poor supply

of publications dealing with similar problems that could be applied to our contribution.

Further research regarding real-world scenarios or use cases regarding access control

properties and uncertainty could improve the quality of the evaluation of applicability and

accuracy of our approach. Additionally, this would not only help to provide a better base

for other publications in this �eld but could also help to better identify and address actual

real-world issues.

Our contribution still requires the software architect to create the Prolog query data �ow

constraints by hand and have knowledge about the structure of the Prolog program that

results from the transformation of a DFD instance. Similar to our contribution, the data

�ow constraints approach of Hahner et al. [26] is also integrated with the DFD approach

of Seifermann et al. [66]. The use of the domain-speci�c language (DSL) for modeling data

�ow constraints would simplify the process of de�ning constraints and reduce the need to

know details about the actual mapping to Prolog.

While working on this thesis, we presented our approach in the context of a meeting of

the members of the FluidTrust research project [28]. The following discussion centered

around the FISs and the possibility of applying machine learning to increase the quality of

the FISs overall.

For the membership functions of the inputs and outputs of the FISs, there are already

existing approaches that utilize sample data [39, 290�.], which could be adapted to machine

learning. However, while it conceptually should be possible to create the rules for a FIS of

an InformationService using machine learning, some major problems and limitations need

to be considered. As an InformationService can generally supply any kind of property

for the access control model, the data required to learn rules might be di�erent for each

kind of property. This is a problem, as machine learning is very dependent on the amount

of available and prepared data. Additionally, if a new environmental factor is added to a

FIS, the whole rule set needs to be relearned completely, eliminating the normally easy

76

9.3 Acknowledgments

extensibility of a FIS. While the described problems exist, the possibility of using machine

learning with our contribution should be further researched.

9.3 Acknowledgments

I want to thank the members of the FluidTrust research project for their comprehensive

feedback, which provided an outside view on our approach. I especially want to thank

Stephan Seifermann for his inputs and advice regarding the creation and analysis of models

using his DFD approach. Finally, I want to thank my advisors, Maximilian Walter, and

Sebastian Hahner, for their continuous input, support, and feedback throughout the time

of this thesis.

77

Bibliography

[1] Khaled Alghathbar, Csilla Farkas, and Duminda Wijesekera. “Securing UML infor-

mation �ow using FlowUML”. In: Journal of Research and Practice in Information
Technology 38.1 (2006), pp. 111–120.

[2] Claudio A. Ardagna et al. “Supporting location-based conditions in access control

policies”. In: Proceedings of the 2006 ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’06 2006 (2006), pp. 212–222.

[3] Phillip G Armour. “The �ve orders of ignorance”. In: Communications of the ACM
43.10 (2000), pp. 17–20.

[4] Steven Arzt et al. “Flowdroid: Precise context, �ow, �eld, object-sensitive and

lifecycle-aware taint analysis for android apps”. In: Acm Sigplan Notices 49.6 (2014),

pp. 259–269.

[5] Nitin A Bansod, Marshall Kulkarni, and SH Patil. “Soft computing-a fuzzy logic

approach”. In: Soft Computing 73 (2005).

[6] Victor R Basili, Gianluigi Caldiera, and H Dieter Rombach. “The goal question metric

approach”. In: Encyclopedia of Software Engineering 2 (1994), pp. 528–532.

[7] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “Model-Based performance pre-

diction with the palladio component model”. In: Proceedings of the 6th International
Workshop on Software and Performance, WOPS’07. WOSP ’07. ACM, 2007, pp. 54–65.

[8] Matt Blaze, Joan Feigenbaum, and Martin Strauss. “Compliance checking in the

policymaker trust management system”. In: International Conference on Financial
Cryptography. Springer. 1998, pp. 254–274.

[9] Nicolas Boltz. Architectural Uncertainty Analysis for Access Control Scenarios in
Industry 4.0 - Data Set. 2021. doi: 10.5281/zenodo.5093176. url: https:
//doi.org/10.5281/zenodo.5093176.

[10] Nicolas Boltz, Maximilian Walter, and Robert Heinrich. “Context-based con�den-

tiality analysis for industrial iot”. In: 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE. 2020, pp. 589–596.

[11] Hugh Boyes et al. “The industrial internet of things (IIoT): An analysis framework”.

In: Computers in Industry 101 (2018), pp. 1–12.

[12] Max Bramer. Logic programming with Prolog. Vol. 9. Springer, 2005.

[13] Tomas Bures et al. “Capturing Dynamicity and Uncertainty in Security and Trust

via Situational Patterns”. In: 9th International Symposium on Leveraging Applications
of Formal Methods, ISoLA 2020. Vol. October. 2020.

79

https://doi.org/10.5281/zenodo.5093176
https://doi.org/10.5281/zenodo.5093176
https://doi.org/10.5281/zenodo.5093176

Bibliography

[14] Swati Chaudhari and Manoj Patil. “Study and Review of Fuzzy Inference Systems

for Decision Making and Control”. In: ISSN ISSN (CD-ROM American International
Journal of Research in Science Technology, Engineering & Mathematics AIJRSTEM
(2014), pp. 2328–3491.

[15] Pau Chen Cheng et al. “Fuzzy Multi-Level Security: An experiment on quanti�ed

risk-adaptive access control”. In: Proceedings - IEEE Symposium on Security and
Privacy (2007), pp. 222–227.

[16] Frédéric Cuppens and Alexandre Miege. “Modelling contexts in the Or-BAC model”.

In: 19th Annual Computer Security Applications Conference, 2003. Proceedings. IEEE.

2003, pp. 416–425.

[17] Maria Luisa Damiani et al. “GEO-RBAC: a spatially aware RBAC”. In: ACM Transac-
tions on Information and System Security (TISSEC) 10.1 (2007), 2–es.

[18] Tom DeMarco. “Structure analysis and system speci�cation”. In: Pioneers and Their
Contributions to Software Engineering. Springer, 1979, pp. 255–288.

[19] John R. Douceur. “The sybil attack”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics)
2429 (2002), pp. 251–260.

[20] Bernd Eissfeller, Andreas Teuber, and Peter Zucker. “Indoor-GPS: ist der Satelliten-

empfang in Gebäuden möglich”. In: ZfV, Zeitschrift für Vermessung 4 (2005), p. 130.

[21] Michalis Famelis and Marsha Chechik. “Managing design-time uncertainty”. In:

Software and Systems Modeling 18.2 (2019), pp. 1249–1284.

[22] David Ferraiolo, D Richard Kuhn, and Ramaswamy Chandramouli. Role-based access
control. Artech House, 2003.

[23] David F. Ferraiolo et al. “Proposed NIST Standard for Role-Based Access Control”.

In: ACM Transactions on Information and System Security 4.3 (2001), pp. 224–274.

[24] Robert Fullér. “Neural fuzzy systems”. In: (1995).

[25] Manaf Gharaibeh et al. “A look at router geolocation in public and commercial

databases”. In: Proceedings of the 2017 Internet Measurement Conference. 2017, pp. 463–

469.

[26] Sebastian Hahner et al. “Modeling Data Flow Constraints for Design-Time Con�-

dentiality Analyses”. In: 2021 IEEE International Conference on Software Architecture
Companion (ICSA-C). IEEE, 2021, pp. 15–21.

[27] Robert Heinrich. “Architectural runtime models for integrating runtime observations

and component-based models”. In: Journal of Systems and Software 169 (2020).

[28] Robert Heinrich et al. FluidTrust. 2021. url: https://fluidtrust.ipd.kit.
edu/.

[29] Urs Hengartner and Zhong Ge. “Distributed, uncertainty-aware access control for

pervasive computing”. In: Proceedings - Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops, PerCom Workshops 2007
(2007), pp. 241–246.

80

https://fluidtrust.ipd.kit.edu/
https://fluidtrust.ipd.kit.edu/

[30] Hilary H. Hosmer. “Using fuzzy logic to represent security policies in the multipolicy

paradigm”. In: ACM SIGSAC Review 10.4 (1992), pp. 12–21.

[31] Vincent C Hu et al. “Attribute-Based Access Control”. In: IEEE Computer 48.2 (2015),

pp. 85–88.

[32] Vincent C. Hu et al. “Guide to Attribute Based Access Control (ABAC) De�nition

and Considerations”. In: NIST Special Publication 800.162 (2014).

[33] Asim Iqbal et al. “An overview of the factors responsible for GPS signal error: Origin

and solution”. In: International Conference on Wireless Networks and Information
Systems, WNIS 2009 1 (2009), pp. 294–299.

[34] ISO. ISO IEC 61131 – Part 7: Fuzzy Control Programming. Standard. International

Electrotechnical Commission, Oct. 2001.

[35] J-SR Jang. “ANFIS: adaptive-network-based fuzzy inference system”. In: IEEE trans-
actions on systems, man, and cybernetics 23.3 (1993), pp. 665–685.

[36] Jan Jürjens and Pasha Shabalin. “Automated veri�cation of UMLsec models for

security requirements”. In: International Conference on the Uni�edModeling Language.
Springer. 2004, pp. 365–379.

[37] A. A.E. Kalam et al. “Organization based access control”. In: Proceedings - POLICY
2003: IEEE 4th International Workshop on Policies for Distributed Systems and Networks
(2003), pp. 120–131.

[38] Kuzman Katkalov et al. “Model-driven development of information �ow-secure

systems with IFlow”. In: 2013 International Conference on Social Computing. IEEE.

2013, pp. 51–56.

[39] George Klir and Bo Yuan. Fuzzy sets and fuzzy logic. Vol. 4. Prentice hall New Jersey,

1995.

[40] Heiko Koziolek and Ralf Reussner. “A model transformation from the palladio

component model to layered queueing networks”. In: SPEC International Performance
Evaluation Workshop. Springer. 2008, pp. 58–78.

[41] Ioanna Lytra and Uwe Zdun. “Supporting architectural decision making for systems-

of-systems design under uncertainty”. In: 1st ACM SIGSOFT/SIGPLAN International
Workshop on Software Engineering for Systems-of-Systems, SESoS 2013 Proceedings
(2013), pp. 43–46.

[42] Abhishek Majumder, Suyel Namasudra, and Samir Nath. Taxonomy and Classi�cation
of Access Control Models for Cloud Environments. 2014, pp. 55–99.

[43] Ebrahim H Mamdani and Sedrak Assilian. “An experiment in linguistic synthesis

with a fuzzy logic controller”. In: International journal of man-machine studies 7.1

(1975), pp. 1–13.

[44] Inc. Math Works. Fuzzy Logic Toolbox for Use with MATLAB. MathWorks, 2001.

[45] MaxMind-GeoLite2. 2021. url: https://dev.maxmind.com/geoip.

81

https://dev.maxmind.com/geoip

Bibliography

[46] Amir H Meghdadi and M-R Akbarzadeh-T. “Probabilistic fuzzy logic and probabilistic

fuzzy systems”. In: 10th IEEE International Conference on Fuzzy Systems.(Cat. No.
01CH37297). Vol. 3. IEEE. 2001, pp. 1127–1130.

[47] Philipp Meier, Samuel Kounev, and Heiko Koziolek. “Automated transformation

of component-based software architecture models to queueing petri nets”. In: 2011
IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems. IEEE. 2011, pp. 339–348.

[48] NetAcuity. 2021. url: https://www.digitalelement.com/solutions/
ip-location-targeting/netacuity/.

[49] Sven Peldszus et al. “Secure Data-Flow Compliance Checks between Models and

Code based on Automated Mappings”. In: 2019 ACM/IEEE 22nd International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). IEEE. 2019,

pp. 23–33.

[50] Carlos-Andrés Peña-Reyes and Moshe Sipper. “Fuzzy CoCo: Balancing Accuracy and

Interpretability of Fuzzy Models by Means of Coevolution”. In: Studies in Fuzziness
and Soft Computing (2003), pp. 119–146.

[51] Diego Perez-Palacin and Ra�aela Mirandola. “Uncertainties in the modeling of self-

adaptive systems: A taxonomy and an example of availability evaluation”. In: ICPE
2014 - Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (2014), pp. 3–14.

[52] Marie Christin Platenius. “Fuzzy matching of comprehensive service speci�cations”.

PhD thesis. Universität Paderborn, 2016, p. 262.

[53] Marie Christin Platenius et al. “Matching of Incomplete Service Speci�cations Exem-

pli�ed by Privacy Policy Matching”. In:Communications in Computer and Information
Science. Vol. 508. September. 2015, pp. 6–17.

[54] Ingmar Poese et al. “IP geolocation databases: Unreliable?” In: ACM SIGCOMM
Computer Communication Review 41.2 (2011), pp. 53–56.

[55] David M. W. Powers. “Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation”. In: Journal of Machine Learning Tech-
nologies 2.1 (2020), pp. 37–63.

[56] Juan Rada-Vilela. The FuzzyLite Libraries for Fuzzy Logic Control. 2018. url: https:
//fuzzylite.com/.

[57] Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. At-
tributes Enhanced Role-Based Access Control Model. Vol. 14. 1. 2015, pp. 16–17.

[58] Indrakshi Ray, Mahendra Kumar, and Lijun Yu. “LRBAC: A Location-Aware Role-

Based Access Control Model”. In: International Conference on Information Systems
Security, ICISS 2006. Vol. 1716. Springer, Berlin, Heidelberg, 2006, pp. 147–161.

[59] Ralf H Reussner et al. Modeling and Simulating Software Architectures – The Palladio
Approach. Cambridge, Massachusetts: MIT Press, 2016, p. 377.

82

https://www.digitalelement.com/solutions/ip-location-targeting/netacuity/
https://www.digitalelement.com/solutions/ip-location-targeting/netacuity/
https://fuzzylite.com/
https://fuzzylite.com/

[60] Vasja Roblek, Maja Meško, and Alojz Krapež. “A Complex View of Industry 4.0”. In:

SAGE Open 6.2 (2016).

[61] Per Runeson et al. Case Study Research in Software Engineering: Guidelines and
Examples. John Wiley & Sons, 2012.

[62] Mustapha Ben Saidi, AA Elkalam, and Abderrahim Marzouk. “TOrBAC: A trust orga-

nization based access control model for cloud computing systems”. In: International
Journal of Soft Computing and Engineering 2.4 (2012), pp. 122–130.

[63] Ravi S Sandhu. “Role-based access control”. In: Advances in computers. Vol. 46.

Elsevier, 1998, pp. 237–286.

[64] Stephan Seifermann. “Architectural data �ow analysis”. In: Proceedings - 2016 13th
Working IEEE/IFIP Conference on Software Architecture, WICSA 2016. WICSA’16. IEEE,

2016, pp. 270–271.

[65] Stephan Seifermann, Robert Heinrich, and Ralf Reussner. “Data-driven software

architecture for analyzing con�dentiality”. In: Proceedings - 2019 IEEE International
Conference on Software Architecture, ICSA 2019. IEEE, 2019, pp. 1–10.

[66] Stephan Seifermann et al. “Detecting Violations of Access Control and Information

Flow Policies in Data Flow Diagrams”. In: Journal of Systems and Software (2021).

Submitted.

[67] Stephan Seifermann et al. Evaluation data set. 2021. url: https://figshare.
com/s/6379cecec327eb627aaf.

[68] Minakshi Sharma and Sourabh Mukharjee. “Brain tumor segmentation using ge-

netic algorithm and arti�cial neural network fuzzy inference system (ANFIS)”. In:

Advances in Computing and Information Technology. Springer, 2013, pp. 329–339.

[69] Yuval Shavitt and Noa Zilberman. “A geolocation databases study”. In: IEEE Journal
on Selected Areas in Communications 29.10 (2011), pp. 2044–2056.

[70] Nimalaprakasan Skandhakumar et al. “Graph theory based representation of building

information models for access control applications”. In: Automation in Construction
68 (2016), pp. 44–51.

[71] Graeme Smith. The Object-Z speci�cation language. Vol. 1. Springer Science & Busi-

ness Media, 2012.

[72] Gregor Snelting et al. “Checking probabilistic noninterference using JOANA”. In:

it-Information Technology 56.6 (2014), pp. 280–287.

[73] Kurt Stenzel et al. “Declassi�cation of Information with Complex Filter Functions.”

In: ICISSP. 2016, pp. 490–497.

[74] İsmail Üstün et al. “A comparative study of estimating solar radiation using machine

learning approaches: DL, SMGRT, and ANFIS”. In: Energy Sources, Part A: Recovery,
Utilization, and Environmental E�ects 0.0 (2020), pp. 1–24.

[75] W.E. Walker et al. “De�ning Uncertainty: A Conceptual Basis for Uncertainty Man-

agement in Model-Based Decision Support”. In: Integrated Assessment 4.1 (2003),

pp. 5–17.

83

https://figshare.com/s/6379cecec327eb627aaf
https://figshare.com/s/6379cecec327eb627aaf

Bibliography

[76] Mark J Wierman. “An Introduction to the Mathematics of Uncertainty: including

Set Theory, Logic, Probability, Fuzzy Sets, Rough Sets, and Evidence Theory”. In:

Creighton University. Retrieved 16 (2016).

[77] Man Zhang, Shaukat Ali, and Tao Yue. “Uncertainty-wise test case generation and

minimization for Cyber-Physical Systems”. In: Journal of Systems and Software 153

(2019), pp. 1–21.

[78] Man Zhang et al. “Uncertainty-Wise Cyber-Physical System test modeling”. In:

Software and Systems Modeling 18.2 (2019), pp. 1379–1418.

[79] Man Zhang et al. “Understanding uncertainty in cyber-physical systems: A con-

ceptual model”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics). Vol. 9764. Springer

Verlag, 2016, pp. 247–264.

84

	Abstract
	Zusammenfassung
	Introduction
	Contribution
	Outline

	Foundations
	Uncertainty Classification
	Data Flow Diagrams
	Extended Data Flow Diagram
	Transformation to Logic Program
	Analysis

	Fuzzy Inference Systems

	Related Work
	Uncertainty
	Uncertainty During Design-Time
	Uncertainty in Access Control
	Uncertainty Associated with Cyber-Physical Systems
	Using Fuzzy Logic

	Analyses of Software Architecture and Security
	Palladio
	Model-Driven Security Modeling
	Data Flow Modeling
	Source Code Confidentiality Analysis
	Comparison

	Characterizing Uncertainty
	Uncertainty in Software Architectures
	Uncertainty in Access Control
	Access Control Properties for Industry 4.0
	Trust in Access Control Properties
	Environmental Factors

	Uncertainty of Trust

	Running Example
	Metamodel Extension
	Fuzzy Inference System Modeling
	Representation of Trust
	Extended DFD Metamodel
	Information Services
	Extending Characteristics
	Behavior Definition

	Analysis Process
	Calculation of Trust
	Extended Prolog Mapping
	Prolog Query

	Evaluation
	Evaluation Design
	Evaluation Design for Applicability
	Evaluation Design for Accuracy
	Evaluation Design for Scalability

	Evaluation Setup
	Setups for Evaluating Applicability
	Setups for Evaluating Accuracy
	Setups for Evaluating Scalability

	Evaluation Results
	Discussion on Applicability
	Findings and Discussion on Accuracy
	Findings and Discussion on Scalability

	Threats to Validity
	Assumptions and Limitations
	Data Availability

	Conclusion
	Summary
	Future Work
	Acknowledgments

	Bibliography

