
Inner Parallel Sets in Mixed-Integer
Optimization

Zur Erlangung des akademischen Grades
eines Doktors der Wirtschaftswissenschaften

Doktor rerum politicarum

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte Dissertation
von

Christoph Neumann, M.Sc.

Tag der mündlichen Prüfung: 22. Juli 2021
Referent: Prof. Dr. Oliver Stein
Korreferent: Prof. Dr. Anja Fischer

iii

Abstract

This thesis contains an extensive study of inner parallel sets in mixed-integer opti-
mization. Inner parallel sets are a recent idea in this context and offer a possibility to
relax the difficulties imposed by integrality constraints by guaranteeing feasibility of
roundings of their (continuous) elements. To be able to use inner parallel sets algo-
rithmically, various modifications, such as their enlargements and inner and outer
approximations, are helpful and sometimes even necessary. Such ideas are intro-
duced and investigated in this thesis, both theoretically as well as computationally.

From our theoretical study of inner parallel sets emerge a number of feasible
rounding approaches which mainly focus on the computation of good feasible points
for mixed-integer linear and nonlinear minimization problems. Good feasible points
are useful in the context of solving these problems by providing tight upper bounds
on the objective value. In especially difficult cases, feasible rounding approaches
may also be considered as an alternative to solving a problem.

The contributions of this thesis include a thorough discussion of possibilities to
enlarge inner parallel sets in the linear as well as in the nonlinear setting. Moreover,
we introduce a novel cutting plane method based on inner parallel sets for mixed-
integer convex minimization problems. This method, in addition to computing a
good feasible point, also provides a lower bound on the objective value which is
another important ingredient for solving such minimization problems. We study
the possibility of dealing with equality constraints on integer variables which at first
glance seem to prevent a nonempty inner parallel set. Under the occurrence of such
constraints, we show that inner parallel sets can be nonempty in a reduced variable
space, which allows the application of feasible rounding approaches. Finally, we in-
vestigate the behavior of inner parallel sets when integrated into search trees. Our
study gives rise to a novel diving method which turns out to be a major improve-
ment over standalone feasible rounding approaches.

We test the introduced methods on standard libraries for mixed-integer linear,
convex and nonconvex minimization problems separately in several computational
studies. The computational results illustrate the potential of our ideas.

v

Acknowledgements
The idea of using inner parallel sets for the computation of good feasible points for
mixed-integer optimization problems arose within Oliver Stein’s lecture "Gemischt-
ganzzahlige Optimierung" in 2016. He presented inner parallel sets in the context
of his recently published results on error bounds and I, at that time a student close
to the end of my master’s degree, wondered why we didn’t use this concept for the
computation of feasible points. Who would have guessed that today, 5 years later,
we have coauthored six papers on that topic?

So a first word of gratitude goes to you, Oliver. Your inspiring lecture was the
starting point for all ideas from this thesis. The detailed and nuanced feedback you
gave me in our joint projects were an immense contribution to my learning. For me,
the (by far) most joyous and exciting moments in the context of my PhD happened
when I popped into your office (without prior notice) with half-baked new ideas.
Thanks for bearing with me also at times when the ideas seemed clear in my head,
but not so much in my expression of speech.

Oliver later admitted that he initially was not very convinced that using inner
parallel sets for computing feasible points could be a fruitful idea. In fact, apparently
it took some persuasion of Nathan Sudermann-Merx, who was teaching assistant at
that time. So Nathan, big thanks to you for believing in this project, for putting in
the efforts to convince Oliver and for our fruitful discussions!

To be fair, Oliver was right in the sense that we needed several modifications,
in particular ideas around possibilities of enlarging inner parallel sets (which are
introduced in this thesis), to make this concept applicable to problems from practice.

Aside from Nathan and Oliver, I acknowledge the valuable input from Benjamin
Müller and Stefan Schwarze who helped to shape and to implement ideas presented
in Chapter 7 of this thesis. Adrian Kruck offered valuable support in the context
of implementing cutting plane ideas, and when installing open source optimization
software for computational studies I relied on the help of Thorsten Rüger, Peter Kirst
as well as the team around Coin-OR and SCIP. I was quite inexperienced in this en-
deavor which turned out to be much more difficult and frustrating than anticipated
(“that’s why you should use Linux!”). So thanks to everybody involved for your
patience and your valuable help.

During the time of my PhD, I enjoyed many fruitful conversations with my close
friends Jonas Kohler and Robert Mohr on related and unrelated research questions
(ranging from inner parallel sets over optimization in machine learning to medita-
tion and metaphysics). I’m sure that your wisdom and inspiration has found a way
into my writing.

I further would like to thank my colleagues Christian Füllner, Claudio Kretz,
Jana Rollmann, Marcel Sinske, Maren Beck, Martina Staiger, Michael Müller, Paula
Peters, Tobias Dittrich and (again) Robert and Stefan. Our “Aktivpausen”, playing
basketball, spikeball and table tennis, enriched the time of my PhD enormously.

In this context, I would also like to express a word of gratitude to Clemens Puppe.
You provided an excellent coffee machine that I was allowed use, even though I was
not employed at your chair. More importantly though, your lectures peaked my
interest in academic research already in the first semester of my bachelor’s degree,
so many thanks for your inspiring way of teaching.

A final word of appreciation is to you, Vivian. The possibility of doing this PhD
relied on moving to Karlsruhe and on traveling to quite a few conferences and thus
took up space in our relationship. You cheered me up when algorithms did not

vi

work as well as I had hoped and when reviews were frustrating to read. I am deeply
grateful for your support.

One perspective on this thesis is that it is concerned with improving optimization
algorithms which, as we shall explain shortly, can be used in different contexts and
may be helpful for solving various decision problems. Clearly the task of methodical
research is not dictate the field of its application, yet I would like to humbly express
a wish. May the knowledge accumulated in this thesis be in the service of solving
pressing issues of our time in a way that benefits our planet’s ecosystem and all
living beings.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Basic Ideas of Inner Parallel Sets 5
2.1 Motivation and Basic Notation . 5
2.2 Geometrical Intuition of the Inner Parallel Set 6
2.3 A Functional Description for the Inner Parallel Set 8

2.3.1 An Inner Approximation . 8
2.3.2 Computation of Lipschitz Constants 10

3 Enlarging Inner Parallel Sets 13
3.1 A Preprocessing Step . 13
3.2 Polyhedral Constraints . 15
3.3 Nonlinear Constraints . 19
3.4 The Interplay Between Enlargements and Lipschitz Constants 21
3.5 Pseudo-Granularity . 22

4 Using Inner Parallel Sets for Computing Feasible Points 27
4.1 Algorithmic Considerations . 27
4.2 Computational Study in the Polyhedral Case 29

4.2.1 Granular Optimization Problems from the MIPLIB Libraries . . 30
4.2.2 Comparison with Gurobi for Granular Optimization Problems 32
4.2.3 Comparison with Gurobi for Nongranular Optimization Prob-

lems . 36
4.2.4 Influence of Presolving Techniques 37

4.3 Computational Study in the Nonlinear Case 38
4.3.1 Computation of Lipschitz Constants 39
4.3.2 Pseudo-Granular Problems and Quality of the Generated Fea-

sible Points . 40
4.3.3 Effects of Different Enlargement Parameters for Box Constraints 45

4.4 Conclusions and Outlook . 45

5 Inner Parallel Cuts 47
5.1 The Special Role of Mixed-Integer Convex Optimization 47
5.2 Setting and Motivation . 48
5.3 The Inner Parallel Cutting Plane Method 50

5.3.1 Statement of the Algorithm . 50
5.3.2 Convergence of the Algorithm 53
5.3.3 Using Inner Parallel Cuts in Outer Approximation Based Meth-

ods . 56

viii

5.3.4 The Effect of a Nonlinear Objective Function 56
5.4 Bounds on the Objective Value . 57

5.4.1 A-Posteriori Bounds . 57
5.4.2 A-Priori Bounds . 59

5.5 Computational Study . 62
5.5.1 Instances with Feasible Points . 63
5.5.2 Non-granular Consistent Instances 71
5.5.3 Inconsistent Instances . 73

5.6 Conclusions . 74

6 Equality Constraints and Inner Parallel Sets 75
6.1 Basic Ideas and Different Possibilities 75
6.2 Reduced Problems . 78
6.3 A Reduction Technique Tailored to Feasible Rounding Approaches . . 82
6.4 Computational Results . 86

6.4.1 Practical Complexity of the Elimination Procedure 86
6.4.2 Granularity in Equality Constrained Problems 88

6.5 Conclusions and Further Investigations 92

7 Inner Parallel Sets in Search Trees 93
7.1 Preliminaries . 93
7.2 Fixing Variables and Inner Parallel Sets - a Geometrical Perspective . . 95
7.3 A Diving Heuristic for MILPs . 98

7.3.1 A Diving Step for a Nonempty Enlarged Inner Parallel Set . . . 98
7.3.2 A Diving Step for an Empty Enlarged Inner Parallel Set 100
7.3.3 An Algorithmic Framework for Inner Parallel Set Diving 104

7.4 Computational Study . 106
7.4.1 Selection of Indices . 107
7.4.2 Improvement Due to IPS-Diving Steps 107
7.4.3 Possibilities of Integrating Feasible Rounding Approaches and

Diving Ideas Into a Solver Framework 109
7.5 Conclusion and Outlook . 111

8 Conclusion and Directions for Future Research 113

A Complementary Material for the Computational Studies 115
A.1 Computational Results for Plain Feasible Rounding Approaches 115
A.2 Computational Results for Inner Parallel Cuts 118
A.3 Computational Results for Equality Constrained Problems 120
A.4 Computational Results for Diving Methods 123

Bibliography 129

Index 135

ix

List of Figures

2.1 Construction of the inner parallel set for a purely integer set on the
left-hand side and a mixed-integer set on the right-hand side 7

3.1 Construction of the (enlarged) inner parallel set for an MILP 17
3.2 Enlargement for a quadratic polynomial 20
3.3 rT´

(δ,τ) for different enlargement parameters δ and τ = 2.9 25

4.1 Number of instances for which feasible points are computed 35
4.2 Number of instances solved to the cutoff value given by FRA-SOR . . 44

5.1 Construction of the enlarged inner parallel set for an MICP 49
5.2 Idea of the IPCP for the MICP from Example 5.3.1 52
5.3 Cumulative histogram of (estimates of) the optimality gap (5.18) of

the feasible points . 68
5.4 Biased performance profile: Time (log scale) needed for SCIP and the

two Bonmin methods to compute a feasible point of similar quality as
that of the IPCP . 69

5.5 Maximum constraint violation g`k(qx
k, qyk) over iterations 71

5.6 Progress in the objective value before applying the post processing
step for problems where the algorithm terminates early 71

6.1 Eliminating the equality constraint from the original feasible set (left)
results in a nonempty inner parallel set in the reduced space (right) . . 77

6.2 Cumulative share of problems for which the reduction scheme can be
applied successfully over time . 87

6.3 Share of extracted equality constraints for instances with separable
continuous variables . 88

7.1 Construction of the inner parallel set xM´. The filled points are obtain-
able as roundings from xM´ and thus form the set R. 94

7.2 Construction of the i-`-relaxed feasible set (left) and the i-`-fixed inner
parallel sets (right) with i = 2 and ` P t0, 1u. 96

7.3 A comparison of diving methods among each other and with the root
node . 108

7.4 Computational effort and quality of the generated feasible point com-
pared to SCIPs incumbent solution in the root node 110

xi

List of Tables

4.1 Granular presolved instances from the MIPLIB libraries 31
4.2 A comparison of the feasible rounding approaches and Gurobi with

regard to time (seconds) and objective value on presolved models (I) . 33
4.3 A comparison of the feasible rounding approaches and Gurobi with

regard to time (seconds) and objective value on presolved models (II) . 34
4.4 Nongranular instances for which FRA-SLOR yields a feasible point . . 36
4.5 Instances where the computation of Lipschitz constants is especially

difficult . 39
4.6 Comparison of FRA-SOR with three algorithms implemented in Bon-

min for 39 instances from the MINLPLib 43
4.7 Instances where the computation of Lipschitz constants is possible for

δ = 0.5, but not for δ = 1´ 10´4 . 45

5.1 Problems for which the IPCP computes a feasible point 67
5.2 Time (seconds) needed to solve an instance with and without RIPCs . 70
5.3 Computed lower bounds after 1800 seconds run time with and with-

out RIPCs . 70
5.4 Computational cost of the non-granularity certificate for 24 consistent

instances from the MINLPLib, where ‹ and ‹‹ are representative for
20 and 30 variations of problems, respectively 72

5.5 Performance for difficult non-granular (inconsistent) problems 74

6.1 Instances where the the computation of CR,: was particularly impor-
tant. With q and q´ t we denote the number of rows of the matrices
C and rD2, respectively . 89

6.2 Comparison with Gurobi for granular problems 91

7.1 Instances where SCIP needs significantly more time to compute a fea-
sible point with similar quality . 110

A.1 A comparison of the feasible rounding approaches and Gurobi with
regard to time (seconds) and objective value on unaltered models (I) . 116

A.2 A comparison of the feasible rounding approaches and Gurobi with
regard to time (seconds) and objective value on unaltered models (II) . 117

A.3 Solver times (t) and lower bounds (lb) for original models (OM) and
models with reversed inner parallel cuts (RICPs). NaN means that a
solver error occurred . 119

A.4 Run times of each reduction step for reducible problems 122
A.5 Instances with some granular node, corresponding objective values

and number of feasibility diving iterations 127
A.6 A comparison of objective values for instances where feasible round-

ing approaches yield best incumbent solutions 128

1

Chapter 1

Introduction

Decision problems arise in different sectors of human endeavor including economics
(e.g. portfolio optimization), science (e.g. computer science in the context of artificial
intelligence), engineering (e.g. structural mechanics), logistics and many others (see
[18] for a comprehensive introduction).

As it is the case for the above mentioned areas, also in general it is often possi-
ble to find a precise mathematical formulation of a decision problem. This enables
resorting to and motivates the development of (efficient) algorithms for obtaining
their solutions which, due to the immense complexity of such problems, would oth-
erwise not be possible. By introducing new mathematical concepts and algorithmic
ideas this thesis thus aims to contribute to the solution of such decision problems.

Independently of the area of application, whether we are able to (algorithmi-
cally) solve a decision problem is to a large extend determined by the nature of the
involved mathematical functions and the structure of the feasible region. In fact, it
is possible to make several notable distinctions in the theoretical and practical com-
plexity of a decision problem.

Concerning the involved mathematical functions, important distinctions can be
made between cases where all of them are known to be affine (linear) or sufficiently
smooth and convex. In these cases problems are generally much easier to solve than
under the occurrence of nonconvex functions. With respect to the feasible region we
can state that a problem becomes more challenging if discrete (integer) variables are
needed for modeling the decision problem. Such variables occur, for instance, when
we want to optimize over indivisible goods or when logical connections between
variables are needed.

In fact, decision problems including discrete variables or nonconvex functions
are known to be NP-hard [68]. Loosely speaking, this means that finding an algo-
rithm which deterministically solves either of these problems and whose number of
iterations is bounded by a polynomial with respect to the input size of the problem
would solve a Millennium Prize Problem [19]. It might even turn out that such an
algorithm cannot be found at all. However, as we will elaborate a bit more fully,
this should not be confused with the statement that we are not able to solve such
problems of relevant sizes deterministically to global optimality.

The thesis at hand focuses on the case where the presence of discrete variables
poses additional challenges for solving the optimization problem. This very general
modeling paradigm allows for the presence of discrete and continuous variables and
such problems are accordingly coined mixed-integer (linear/convex/nonconvex)
optimization problems, dependently on the nature of the involved mathematical
functions.

In the past decades, many intriguing ideas formed the basis for the impressive
development of optimization software in mixed-integer optimization, dating back
at least to 1958, where Gomory generalized the simplex method to a finite algorithm

2 Chapter 1. Introduction

for integer linear optimization [32]. In his seminal paper, problems including up to
seven variables were solved on an E101 computer. Nowadays standard test libraries
of mixed integer (linear) optimization problems [31] contain instances with more
than 20 million variables which are quickly solved on standard commercial comput-
ers by state-of-the-art software. This immense improvement is partly driven by the
rapid increase in hardware capabilities but, as demonstrated in [11], even more so
by the development of new algorithmic ideas.

A notable example for the impact of algorithmic ideas from the mixed-integer
community on our ability to solve real world problems is the traveling-salesman
problem (TSP), which is also NP-hard. Here, a salesperson wants to find the shortest
path that visits every city on a list exactly once and to then return to the origin city.
This has proven to be an important problem which is widely applicable. A first major
breakthrough for the TSP is documented in a famous article from Dantzig, Fulkerson
and Johnson in 1954 [24] where they presented the first solution to a “large scale
TSP” which included 49 cities. Recently, the TSP has been solved up to 49.603 cities
using modern tools from integer linear optimization [23] which further highlights
the difference between NP-hard and not practically solvable.

These examples demonstrate that the advances in mixed-integer linear optimiza-
tion in recent years were enormous and have found their way into many applica-
tions. Interestingly, in contrast to their purely continuous counterpart, this is not
equally true for the field of mixed-integer convex optimization. In fact, this field is
only slowly starting to get more attraction and, apparently, “mixed-integer convex
programming has not entered the mainstream of optimization techniques” [51]. Due
to the additional difficulty introduced by nonconvexity, the research field of mixed-
inter nonconvex optimization problems is rather in its infancy with regard to general
purpose solvers, especially when compared to mixed-integer linear optimization.

The contribution of the thesis at hand is directed towards all these types of
mixed-integer optimization problems. We thoroughly investigate the interesting and
fruitful concept of inner parallel sets, which is a novelty in the context of computing
feasible points for mixed-integer optimization problems that allows us to relax the
difficulties posed by integer constraints. This, in turn, enables tackling (part of) the
mixed-integer problem by resorting to methods from continuous optimization. As
we shall discover, this concept is relatively widely applicable to mixed-integer linear
and nonlinear optimization problems and various intriguing effects occur that open
doors for further investigation.

Inner parallel sets were first used in the context of mixed-integer optimization in
[71] and [72]. In these articles, this concept is applied to derive error bounds for possi-
bly infeasible rounded optimal points of a continuous relaxation of the mixed-integer
optimization problem. In contrast, the thesis at hand focuses on using inner parallel
sets for guaranteeing feasibility of rounded points of certain continuous relaxations.

This work is organized as follows. Chapter 2 is introductory and familiarizes
the reader with the basic notation. It introduces the concept of an inner parallel
set and discusses its basic property for mixed-integer optimization problems - the
feasibility for roundings of its (continuous) elements. In Chapter 3 we illustrate why
enlarging this set is important and how this can be achieved practically. We further
discuss issues that appear in the enlargement process for mixed-integer nonlinear
optimization problems and offer remedies that partly resolve these issues.

Chapter 4 introduces feasible rounding approaches for the computation of good
feasible points for mixed-integer optimization problems that naturally emerge from

Chapter 1. Introduction 3

our theoretical considerations. Computational results for these algorithms on stan-
dard test libraries demonstrate that inner parallel sets can indeed be used success-
fully for the computation of such points in the linear and the nonlinear context.

In Chapter 5 we turn towards mixed-integer convex optimization problems and
develop a novel cutting-plane method that combines known ideas from Kelley’s cut-
ting plane method for convex optimization problems [44] with inner parallel sets.
Our computational results indicate that an integration of this approach into existing
outer approximation methods that aim at solving mixed-integer convex optimiza-
tion problems could be very fruitful.

All ideas from the preceding chapters are directly applicable to mixed-integer op-
timization problems under the absence of equality constraints on integer variables.
The reason being that, at first glance, the occurrence of such constraints seems to
prohibit a nonempty inner parallel set. In Chapter 6, however, we show that there is
the possibility of using inner parallel sets even under the occurrence of such equal-
ity constraints for the computation of feasible points by constructing an equivalent
model in a reduced variable space. In this chapter, we also computationally evaluate
the underlying reduction scheme.

Chapter 7 investigates the behavior of inner parallel sets in search trees. This cov-
ers the important case of examining theoretical properties when feasible rounding
approaches are integrated into branch-and-bound methods. Our theoretical results
additionally give rise to the development of a diving method for mixed-integer lin-
ear optimization problems which is based on inner parallel sets. This diving method
not only makes feasible rounding approaches available to more instances from prac-
tice, but is also able to improve the quality of the generated feasible points signif-
icantly. In a computational study, we quantify this improvement and evaluate the
potential of integrating feasible rounding approaches into state-of-the-art software.

Chapter 8 concludes this thesis. It highlights areas where the use of inner parallel
sets is particularly promising and points to possible avenues for future research.

This thesis is based upon a number of articles. The work of Chapters 2-4 are
based upon [61] and [63] published in Computational Optimization and Applica-
tions and Journal of Optimization Theory and Applications, respectively. Both are
joint work with Oliver Stein and Nathan Sudermann-Merx. The articles which are
the foundation for Chapter 5 and 6 are joint work with Oliver Stein and currently un-
der review. Preprints are available at [60] and [59]. Chapter 7 is based on a working
paper with Benjamin Müller, Stefan Schwarze and Oliver Stein. Further published
work that discusses error bounds of the generated feasible points of the methods
introduced in Chapter 4 can be found in [62] and is not part of this thesis.

5

Chapter 2

Basic Ideas of Inner Parallel Sets

In this chapter, we formally introduce mixed-integer optimization problems and the
notion of an inner parallel set. Moreover, we study the main properties of inner
parallel sets in the context of mixed-integer optimization problems. Initially, Sec-
tion 2.1 introduces the basic notation of mixed-integer linear and nonlinear opti-
mization problems which will be used throughout this thesis. In Section 2.2 we offer
a geometrical perspective on inner parallel sets and Section 2.3 presents ideas which
are fundamental for using inner parallel sets algorithmically.

2.1 Motivation and Basic Notation

We study mixed-integer (nonlinear) optimization problems of the form

MINLP : min
(x,y)PRnˆZm

f (x, y) s.t. gi(x, y) ď 0, i P I, (x, y) P D,

with real-valued functions f and gi, i P I, defined on Rn ˆRm, a finite index set
I = t1, . . . , qu, q P N0, and a nonempty and polyhedral set

D = t(x, y) P Rn ˆRm| Ax + By ď bu,

with a (p, n)-matrix A, a (p, m)-matrix B and b P Rp. In several cases, it will be illus-
trative to consider box constraints on the integral variables (as they usually appear
in practice) separately, that is, to write

D = t(x, y) P Rn ˆRm| Ax + By ď b, y` ď y ď yuu,

with y` P (ZY t´8u)m, yu P (ZY t8u)m and y` ď yu. At other times, writing these
constraints separately would burden the notation. Whenever this is the case, we
omit writing them explicitly and assume that they are modeled via the constraints
Ax + By ď b.

We denote the feasible set of the continuous (nonlinear) relaxation {MINLP of
MINLP by

xM = t(x, y) P D| g(x, y) ď 0u,

where g denotes the vector of functions gi, i P I. Thus, the feasible set M of MINLP
can be written as M = xMX (Rn ˆZm).

This thesis distinguishes three crucial instances of MINLP separately

• Mixed-integer linear optimization problems (MILPs), where I = H holds.

• Mixed-integer convex optimization problems (MICPs), where all constraint
functions gi, i P I, are convex on D.

6 Chapter 2. Basic Ideas of Inner Parallel Sets

• General mixed-integer nonlinear optimization problems which include non-
convex functions gi, i P I.

While methods for solving MINLP have their place in this thesis (e.g. in Chap-
ters 5 and 7), we will mostly be concerned with the related (sub)task of finding good
feasible points. In fact, finding a (good) feasible point is crucial for guaranteeing
(quick) convergence of methods that aim to solve MINLP. In any branch-and-bound
algorithm, upper bounds obtained from feasible points can be used to prune a po-
tentially large number of the nodes in the search tree. Moreover, by providing good
incumbent solutions early in the search process, downside effects of a premature
termination (e.g. due to time limits) are significantly reduced.

In the literature, methods that accomplish this task are coined primal heuristics
[7]. This is the case, even though the methods themselves can be deterministic in the
sense that given a particular input the method will always produce the same output
and that these methods may even have a guaranteed convergence in finite time.

Even for purely integer linear optimization problems, the construction of feasible
points is known to be an NP-hard problem [65]. Yet its importance in the quest
of solving mixed-integer optimization problems has triggered the development of
many search heuristics, among them the feasibility pump (cf e.g. [1, 12, 14, 26, 27]),
Undercover [9], relaxation enforced neighborhood search [8], diving strategies [15]
and many others (see [6, Section 6] for a survey).

Starting in this chapter but also as a general orientation in this thesis, instead of
initially introducing certain methods for computing feasible points and then show-
ing their properties (e.g. with respect to convergence), we rather focus on carefully
analyzing an underlying structural property. These considerations will then allow
us to understand the necessary and sufficient conditions for the applicability of the
approaches emerging from this structural property and form an interesting platform
for the development of further concepts and methods.

2.2 Geometrical Intuition of the Inner Parallel Set

In the following let us recall some constructions which were presented in the au-
thor’s master thesis [58]. Apart from Example 2.3.7, concepts, results and proofs in
this section are only slight modifications of those presented in [58], but need to be
introduced to keep this thesis self-contained.

For any point (x, y) P Rn ˆRm we call (qx, qy) a rounding if

qx = x and qy P Zm, |qyj ´ yj| ď
1
2 , j = 1, . . . , m,

hold, that is, y is rounded component-wise to a point in the integer grid Zm and x
remains unchanged. Note that a rounding does not have to be unique. With the sets

B8
(
0, 1

2

)
:= ty P Rm| }y}8 ď 1

2u and K := t0u ˆ B8
(
0, 1

2

)
any rounding of (x, y) satisfies

(qx, qy) P ((x, y) + K)X (Rn ˆZm) . (2.1)

The central object of all approaches presented in this thesis is the inner parallel set
of xM with respect to K,

xM´ := t(x, y) P Rn ˆRm| (x, y) + K Ď xMu.

2.2. Geometrical Intuition of the Inner Parallel Set 7

y2

y1

y

x

ȳ + K

xM´

(x̄, ȳ)

(x̄, ȳ) + K

xM´

ȳ

xM xM

FIGURE 2.1: Construction of the inner parallel set for a purely integer
set on the left-hand side and a mixed-integer set on the right-hand

side

The geometrical construction of inner parallel sets is illustrated in Figure 2.1 for a
purely integer feasible set on the left-hand side and a mixed-integer set on the right-
hand side. Notice that, while the relaxed feasible sets xM coincide, the inner parallel
set is actually larger in the mixed-integer case. This is precisely due to the fact that
the box K in the mixed-integer case is a proper subset of the box K in the purely
integer case.

In view of (2.1) for any (x, y) P xM´ we have

(qx, qy) P ((x, y) + K)X (Rn ˆZm) Ď xMX (Rn ˆZm) = M.

and thus the following Lemma

Lemma 2.2.1. Any rounding of any point (x, y) P xM´ lies in M.

Hence, as a first sufficient condition for consistency of M we obtain the following
result.

Proposition 2.2.2. If the inner parallel set xM´ is nonempty, then also M is nonempty.

While the applicability of Proposition 2.2.2 of course hinges on a functional de-
scription of the inner parallel set xM´, a more serious drawback is that this con-
dition may not be expected to show consistency of sets M involving binary vari-
ables, as they often appear in practice. In fact, if y1 is a binary variable modeled as
y1 P ZX [0, 1] then all (x, y) P xM´ must satisfy y1 = 1/2. This will often be ruled out
by other constraints, the more so if many binary variables appear. Consequently, the
set xM´ then is empty and the condition from Proposition 2.2.2 is useless. The result-
ing requirement to consider nonempty inner parallel sets gives rise to the following
definition.

Definition 2.2.3. We call the set M granular if the inner parallel set xM´ of xM is nonempty.
Moreover, we call a problem MINLP granular if its feasible set M is granular.

In this terminology Proposition 2.2.2 states that any granular problem MINLP is
consistent.

For practical purposes one needs to be able to compute at least a subset T´ of
xM´ explicitly. While in the linear case it turns out to be possible to find a closed-
form expression of the set xM´, we shall see that this is not generally possible with
nonlinear constraints. In the latter case, we initially show how to construct an inner

8 Chapter 2. Basic Ideas of Inner Parallel Sets

approximation of xM´ such that, like the set xM´, it is not restricted by integrality con-
straints, which is a crucial advantage compared to the set M. One can then perform
a feasibility test for T´ which, if successful, also implies that M is nonempty.

It may depend on the geometry of the relaxed feasible set xM whether M is gran-
ular or not. Fortunately, it turns out that the set xM can often be replaced by a set ĂM
in such a way that the corresponding new inner parallel set ĂM´ becomes larger than
xM´, but without losing the property that any rounding of any of its elements lies in
M. This will be the focus of Chapter 3 and allow us to show and exploit granularity
also for many MINLPs with binary variables.

2.3 A Functional Description for the Inner Parallel Set

For an algorithmic employment of Proposition 2.2.2 we aim at obtaining a functional
description of at least a subset of the inner parallel set xM´. Since with the abbrevia-
tion

G := t(x, y) P Rn ˆRm| g(x, y) ď 0u

we may write xM = DX G, the inner parallel set satisfies xM´ = D´ X G´. From [71,
Lemma 2.3] we know the closed-form expression for the inner parallel set of D,

D´ = t(x, y) P Rn ˆRm| Ax + By ď b´ 1
2}β}1u, (2.2)

where βᵀ
i , i = 1, . . . , p, denote the rows of the matrix B and, by a slight abuse of

notation, }β}1 stands for the vector (}β1}1, . . . , }βp}1)
ᵀ. This immediately yields the

following Proposition, which is algorithmically applicable to MILPs.

Proposition 2.3.1. Any rounding (qx, qy) of any point (x, y) P D´ lies in D.

Let us now turn towards the slightly more difficult case of nonlinear constraint
functions.

2.3.1 An Inner Approximation

Note that the definition of the set G´ yields

G´ = t(x, y) P Rn ˆRm| (x, y) + K Ď Gu

= t(x, y) P Rn ˆRm| g(x, y + η) ď 0 @ η P B8(0, 1
2)u.

While the semi-infinite constraints

gi(x, y + η) ď 0 @ η P B8(0, 1
2), i P I,

in the above description of G´ may in general not be rewritten explicitly by finitely
many smooth constraints, upper bounds for the terms gi(x, y + η) with η P B8(0, 1

2)

at least lead to a functional description of an inner approximation of xM´. Indeed,
for any functions ci, i P I, with

@ (x, y) P Rn ˆRm, η P B8(0, 1
2), i P I : gi(x, y + η) ď ci(x, y)

the set t(x, y) P Rn ˆRm| c(x, y) ď 0u is obviously a subset of G´.
We aim at the construction of a function c which inherits computationally attrac-

tive features of g. The following approach will accomplish this by defining c as the

2.3. A Functional Description for the Inner Parallel Set 9

sum of g with a nonnegative constant, which stems from global Lipschitz conditions
with respect to y uniformly in x for the functions gi, i P I, on the set D. This distinc-
tion between the roles of x and y is caused by the definition of inner parallel sets,
whose geometric construction only depends on the discrete variable y.

To be more specific, for any x P Rn we define the set

D(x) := ty P Rm| (x, y) P Du

and denote by
prxD := tx P Rn| D(x) ‰ Hu

the parallel projection of D to the “x-space” Rn. Then the functions gi, i P I, are
assumed to satisfy Lipschitz conditions with respect to the `8-norm on the fibers
txu ˆD(x), independently of the choice of x P prxD.

Assumption 2.3.2. For all i P I there exists some Li
8 ě 0 such that for all x P prxD and

all y1, y2 P D(x) we have

|gi(x, y1)´ gi(x, y2)| ď Li
8}(x, y1)´ (x, y2)}8 = Li

8}y
1 ´ y2}8.

We allow for vanishing Lipschitz constants to cover trivial cases. Some problem
classes for which the Lipschitz constants from Assumption 2.3.2 can be calculated
will be discussed in Section 2.3.2.

Under Assumption 2.3.2, and with L8 denoting the vector of Lipschitz constants
Li
8, i P I, we may define the set

T´ :=

(x, y) P D´| g(x, y) + 1
2 L8 ď 0

(

.

We next repeat the proof that T´ is indeed an inner approximation of xM´. A precur-
sor of this result was also used to show [72, Lemma 2.4].

Lemma 2.3.3. Under Assumption 2.3.2 we have T´ Ď xM´.

Proof. In the case T´ = H the assertion trivially holds. Otherwise, let (x, y) P T´.
We have to show that

(x, y + η) P xM = t(x, y) P D| gi(x, y) ď 0, i P Iu

holds for any η P B8
(
0, 1

2

)
.

First, (x, y) P D´ and (0, η) P K imply (x, y + η) = (x, y) + (0, η) P D. This also
yields x P prxD and y + η P D(x). As also y lies in D(x), Assumption 2.3.2 implies
for any i P I

gi(x, y + η)´ gi(x, y) ď Li
8 }η}8 ď 1

2 Li
8.

From the definition of T´ we thus obtain

gi(x, y + η) ď gi(x, y) + 1
2 Li
8 ď 0,

so that altogether we have shown (x, y) P xM´.

Lemma 2.3.3 implies the following result.

Theorem 2.3.4. Under Assumption 2.3.2 any rounding (qx, qy) of any point (x, y) P T´ lies
in M. In particular, if T´ is nonempty, then MINLP is granular and, thus, consistent.

10 Chapter 2. Basic Ideas of Inner Parallel Sets

2.3.2 Computation of Lipschitz Constants

Let us identify some problem classes which are suitable for the computation of the
necessary Lipschitz constants in Assumption 2.3.2. To ensure solvability of auxiliary
problems, we assume that the set D is bounded (and thus compact). From the mean
value theorem, the Hölder inequality and the Weierstrass theorem it is well-known
that for fixed x P prxD with a nonempty and compact set D(x) and a continuously
differentiable (in y) function gi(x, ¨), i P I, the value

Li
8(x) = max

yPD(x)
}∇ygi(x, y)}1 (2.3)

is a Lipschitz constant for gi(x, ¨) on D(x) with respect to the `8-norm.
We remark that the assertions of Theorem 2.3.4 also hold if the set T´ is replaced

by t(x, y) P D´| g(x, y) + L8(x)/2 ď 0u. However, the functional dependence of
L8 on x may in general not be expected to possess smoothness and convexity prop-
erties which are computationally useful. For this reason, Assumption 2.3.2 aims at
Lipschitz conditions which hold uniformly in x.

To achieve this uniformity, let us define the “worst case” Lipschitz constants
among those in (2.3) with respect to x P prxD,

Li
8 := sup

xPprx D
Li
8(x) = sup

xPprx D
max

yPD(x)
}∇ygi(x, y)}1, i P I.

As we assume D to be a polytope, this actually yields

Li
8 = max

(x,y)PD
}∇ygi(x, y)}1, i P I. (2.4)

Note that Li
8 is preferable over the Lipschitz constant

rLi
8 := max

(x,y)PD
}∇gi(x, y)}1 = max

(x,y)PD
(}∇xgi(x, y)}1 + }∇ygi(x, y)}1)

for gi on D, since it promotes a larger set T´. This shows that Assumption 2.3.2
is weaker than a general Lipschitz condition and illustrates our main motivation to
require Lipschitz conditions only on the the fibers txu ˆD(x).

Example 2.3.5. If for some i P I the entries of the gradient ∇ygi are factorable functions,
then techniques from interval arithmetic may be employed to compute Li

8 as a guaranteed
upper bound for max(x,y)PD }∇ygi(x, y)}1 (cf., e.g., [35, 57]). Again, since smaller Lipschitz
constants lead to larger sets T´, good upper bounds are beneficial for the consistency of T´.

Example 2.3.6. If for some i P I we have gi(x, y) = Fi(x) + βᵀ
i y, then (2.4) boils down to

Li
8 = }βi}1. This actually explains the inclusion “Ě” in (2.2).

The next example will be important for enlargement considerations in Chapter 3,
as well as for the computational study in Chapter 4 and corrects the author’s error
in [58]. In the following, e will denote the all-ones vector of suitable dimension.

Example 2.3.7. If for some i P I we have

gi(x, y) = F(x) + 1
2 yᵀQyy + yᵀQxx + βᵀy + q,

with an (m, m)-matrix Qy, an (m, n)-matrix Qx and q P R, then

Li
8 = max

(x,y)PD
}Qyy + Qxx + β}1

2.3. A Functional Description for the Inner Parallel Set 11

may be computed by the vertex theorem of convex maximization [67, Corollary 32.3.4] as

Li
8 = max

(x,y)PvertD
}Qyy + Qxx + β}1,

where vertD denotes the vertex set of D. Alternatively we may obtain Li
8 as the optimal

value of the linear program with complementarity constraints [29]

LPCC : max
x,y,u,v

eᵀ(u + v) s.t. Qyy + Qxx + β = u´ v, uᵀv = 0,

u, v ě 0, (x, y) P D.

As a third possibility, Li
8 can be computed as the optimal value of a mixed-integer linear

optimization problem. In fact, modeling the complementarity constraint uᵀv = 0 in the
above LPCC by a big-M reformulation results in the problem

MILP : max
x,y,u,v,z

eᵀ(u + v) s.t. Qyy + Qxx + β = u´ v,

u ď diag(Mu)z,
v ď diag(Mv)(e´ z),

u, v ě 0, (x, y) P D, z P Bm,

with Mu, Mv P Rm large enough, where diag(Mu) and diag(Mv) denote the diagonal
(m, m)-matrices with entries Mu and Mv (and, as announced, e stands for the m-dimensional
all-ones vector).

Notice that, in order to obtain a tight LP relaxation, we propose not one single big-M
constant, but different big-M’s for each variable ui, vi, i = 1, . . . , m. We stress that good
values for the entries of Mu and Mv can be computed explicitly from the problem data.
Indeed, with (qx)

ᵀ
k and (qy)

ᵀ
k denoting row k of the Matrix Qx and Qy, respectively, we may

set the k’th entries of Mu and Mv to

(Mu)k = max
(x,y)PD

(qx)
ᵀ
k x + (qy)

ᵀ
k y+ βk and (Mv)k = ´

(
min

(x,y)PD
(qx)

ᵀ
k x + (qy)

ᵀ
k y + βk

)
,

which comes at the cost of solving 2m LPs. The validity of theses bounds for u and v im-
mediately follows from the equality constraints Qyy + Qxx + β = u´ v together with the
(remodeled) complementarity constraints.

As our numerical study in Section 4.3 shall reveal, separable quadratic constraints gi
constitute a relevant special case of this setting. Since they satisfy Qx = 0, and under the
explicit knowledge of box constraints for y, that is y P [y`, yu] with y`, yu P Rm, we may
compute valid (albeit possibly coarser) values for (Mu)k and (Mv)k as

(Mu)k = max
yP[y`,yu]

m
ÿ

j=1

(qy)kjyj + βk

=
ÿ

j:(qy)kją0

(qy)kjyu
j +

ÿ

j:(qy)kjă0

(qy)kjy`j + βk , (2.5)

(Mv)k = ´

 min
yP[y`,yu]

m
ÿ

j=1

(qy)kjyj + βk

= ´

 ÿ

j:(qy)kją0

(qy)kjy`j +
ÿ

j:(qy)kjă0

(qy)kjyu
j + βk

 , (2.6)

12 Chapter 2. Basic Ideas of Inner Parallel Sets

where (qy)kj denotes the entry at row k and column j of Qy. Note that these bounds are valid
due to our previous construction and pryD Ď [y`, yu]. In our computational study, we shall
indeed use (2.5) and (2.6) to quickly compute Mu and Mv.

We remark that neither of the three above auxiliary problems for the computation of Li
8

is efficiently solvable in the sense that we may obtain an optimal value in polynomial time.
However, our computational study will reveal that the auxiliary MILP is quickly solvable
for many practical applications.

13

Chapter 3

Enlarging Inner Parallel Sets

Any relaxation of the constraints of the (inner approximation of the) inner parallel
set under which the assertions of Proposition 2.3.1 (Theorem 2.3.4) still hold is bene-
ficial, since it increases chances for proving granularity of M and using inner parallel
sets for the computation of feasible points. In this chapter we discuss the possibility
of such enlargements.

We begin our investigation with a geometrical perspective on enlargements in
Section 3.1. Subsequently, we study concrete enlargement ideas for polyhedral con-
straints in Section 3.2, and for nonlinear constraints in Section 3.3. Section 3.4 draws
these results together and discusses an unwanted side effect, which can partly be
resolved by a modification of the geometrically intuitive granularity concept to the
algorithmically more attractive notion of pseudo-granularity. This is the content of
Section 3.5.

Note that for MILPs we have I = H and thus

xM´ = pD´ = T´,

which we will not always make explicit in the following considerations but, for ease
of notation and to cover the possibility of nonlinear constraints, often simply refer
to as T´.

3.1 A Preprocessing Step

The main idea for the construction of such enlargements of T´ is a preprocessing
step for the functional description of MINLP. It first enlarges the relaxed feasible
set xM of M to some set ĂM Ě xM for which the feasible set M of MINLP can still be
written as

M = ĂMX (Rn ˆZm) . (3.1)

Then we call the inner parallel set

ĂM´ = t(x, y) P Rn ˆRm| (x, y) + K Ď ĂMu

of ĂM an enlarged inner parallel set of xM since the relation xM Ď ĂM implies xM´ Ď

ĂM´. Depending on the functional description of ĂM and, in particular, the appearing
Lipschitz constants, the inner approximation rT´ of ĂM´ may then be larger than T´

(cf. Section 3.4 for a discussion of the appearing issues).
In general, the approach for the construction of ĂM involves the replacement of

the set D by a different set rD as well as the replacement of the function g by a differ-
ent function rg. The possibilities for the appropriate constructions of rD and rg range
from small perturbations of D and g to the choice of structurally different objects.

14 Chapter 3. Enlarging Inner Parallel Sets

When applying branch and cut ideas, one is usually rather interested in a tight
formulation of a problem MINLP, that is, one wants to find a small set ĂM for which
(3.1) holds. We, on the other hand, are interested in a non-tight formulation and
hence a large set ĂM, in order to promote the consistency of its inner parallel set ĂM´.

Remark 3.1.1. The previous discussion shows that granularity of M and thus of MINLP
as defined in Definition 2.2.3 is dependent on the description of the relaxed feasible set. An
interesting question that arises from this dependency is whether a problem is granularity
representable, that is, if some set ĂM fulfilling Equation (3.1) with a nonempty inner par-
allel set ĂM´ exists.

Our main focus, however, will be developing conditions which are algorithmically testable
for specific initial representations xM and we hence link the concept of granularity to partic-
ular enlargement ideas that depend on the initial functional description of xM. Therefore, our
notion of granularity is in a sense context-dependent. Finding a granular problem in this
context-dependent sense implies its granular representability, yet the reverse implication is
generally not true and non-granular problems might well be granularity representable. This
connection will become more apparent in Example 3.2.5.

In fact, let us consider enlargements of xM resulting from constant additive re-
laxations of its constraints Ax + By ď b and g(x, y) ď 0, that is, we consider the
relaxed constraints Ax + By ď b + σ and g(x, y) ď τ with appropriately chosen vec-
tors σ, τ ě 0. This approach maintains algorithmically attractive properties like the
polyhedrality of D and differentiability or convexity of the functions gi, i P I. We set

Dσ := t(x, y) P Rn ˆRm| Ax + By ď b + σu

as well as
Gτ := t(x, y) P Rn ˆRm| g(x, y) ď τu.

Clearly, for each ρ := (σ, τ) ě 0 the set

xMρ := Dσ X Gτ (3.2)

satisfies xM Ď xMρ. Let us denote the appropriate choices of ρ for (3.1) by

R := tρ P Rp ˆRq| ρ ě 0, M = xMρ X (Rn ˆZm)u. (3.3)

Then, as in the derivation of Proposition 2.2.2, for each ρ P R any rounding of any
element of xM´

ρ lies in M. Furthermore, we have xM´ Ď xM´
ρ , so that xM´

ρ is more

likely to be nonempty than xM´. In fact, after preprocessing xM to xMρ for some ρ P R,
according to Definition 2.2.3 the set M and the problem MINLP are granular and,
thus, consistent if the enlarged inner parallel set xM´

ρ is nonempty. Note that due to

(3.2) we may write xM´
ρ = D´σ X G´τ with

D´σ = t(x, y) P Rn ˆRm| Ax + By ď b + σ´ 1
2}β}1u. (3.4)

The following example illustrates how a granularity proof for nonlinear binary
problems can benefit from this construction.

Example 3.1.2. Consider the nonlinear problem

min
(x,y)PRnˆBm

f (x, y) s.t. g(x, y) ď 0

3.2. Polyhedral Constraints 15

with binary variables yj P B = t0, 1u, j = 1, . . . , m. By rewriting the set Bm as ty P
Zm| 0 ď y ď eu, we obtain a problem of type MINLP with

D := t(x, y) P Rn ˆRm| ´ y ď 0, y ď eu.

This results in the continuously relaxed feasible set xM = DXG of M with the inner parallel
set

xM´ = D´ X G´ = t(x, y) P Rn ˆRm| ´ y ď ´1
2 e, y ď 1

2 eu X G´

= (Rn ˆ t 1
2 eu)X G´

which is likely to be inconsistent. However, for any 0 ď σ`, σu ă e we may also write

Bm = ty P Zm| ´ σ` ď y ď e + σuu

and define
Dσ := t(x, y) P Rn ˆRm| ´ y ď σ`, y ď e + σuu

with σ = (σ`, σu). With ρ = (σ, 0) this leads to the relaxed feasible set xMρ = Dσ X G
satisfying M = xMρ XZm, so that ρ = (σ, 0) lies in R for any 0 ď σ`, σu ă e. Due to

xM´ Ď xM´
ρ = t(x, y) P Rn ˆRm| ´ y ď σ` ´ 1

2 e, y ď 1
2 e + σuu X G´

= (Rn ˆ [1
2 e´ σ`, 1

2 e + σu])X G´

the chance for consistency of the enlarged inner parallel set xM´
ρ is larger than this chance for

xM´, where entries of σ` and σu close to one are particularly beneficial.
This shows that even nonlinear binary problems may be granular in the sense of Defini-

tion 2.2.3.

3.2 Polyhedral Constraints

Let us extend Example 3.1.2 to general polyhedral constraints. The focus of this
section will be on one specific enlargement procedure which is ready to implement
algorithmically. In fact, as we shall see next, enlarging D is efficiently possible for
any constraint i which is only posed on integral variables and possesses integer coef-
ficients, that is, for αi = 0 and βi P Zmzt0u where the vectors αᵀ

i , i = 1, . . . , p, denote
the rows of the matrix A. A proof for the following result may be found, e.g., in [22,
Corollary 1.9].

Lemma 3.2.1. For i P t1, . . . , pu let ωi denote the greatest common divisor of the entries of
βi P Zmzt0u. Then all values of βᵀ

i y with y P Zm are multiples of ωi.

In the following, for ai P R and ωi P N, let

taiuωi := maxtz P ωiZ| z ď aiu, and taiu0 := ai,

and for any a P Rp and ω P N
p
0 , let

tauω := (ta1uω1 , . . . , tapuωp)
ᵀ.

Lemma 3.2.1 suggests that for an inequality constraint i with αi = 0, we may relax
the components bi of the right-hand side vector arbitrarily close to tbiuωi +ωi without

16 Chapter 3. Enlarging Inner Parallel Sets

admitting any additional solution. Setting ωi to zero for any i P t1, . . . , pu for which
αi ‰ 0 or βi R Zm holds, and with ω := (ω1, . . . , ωp)ᵀ P N

p
0 , we define the set

Dσ(δ) := t(x, y) P Rn ˆRm| Ax + By ď tbuω + δω, y` ´ δe ď y ď yu + δeu (3.5)

with δ P (0, 1). For future reference we will abbreviate Dσ(δ) by Dδ.
The previous considerations give rise to the following result.

Lemma 3.2.2. For any δ P (0, 1), we have

M = Dδ X GX (Rm ˆZm) .

Proof. Take any row of the constraint matrix with αi = 0 and βi P Zm. From
Lemma 3.2.1, it follows that βᵀ

i y = tbiuωi + δωi has no integral solution for any δ P
(0, 1). Thus we may rewrite any inequality constraint βᵀ

i y ď bi as βᵀ
i y ď tbiuωi + δωi

without admitting any additional solution. Moreover, the box constraints on the
integral variables in (3.5) correspond to the special case of Lemma 3.2.1, where ω
is the m-dimensional vector of ones and the right-hand side vectors correspond to
´y` = t´y`uω and yu = tyuuω, respectively. For αi ‰ 0 or βi R Zm, an inequality
constraint i remains unchanged so that overall the assertion is shown.

Note that in the special case ω = 0, the enlarged inner parallel set collapses to
the inner parallel set. Otherwise, a restriction i is relaxed only if

δ ě
bi ´ tbiuωi

ωi

holds. As we want to ensure D Ď Dδ (and thus D´ Ď D´δ), even if ω is not the zero
vector, we need to add a lower bound

δe :=

#

max
!

bi´tbiuωi
ωi

ˇ

ˇ

ˇ
i = 1, . . . , p, ωi ‰ 0

)

, ω ‰ 0,

0 else
(3.6)

on δ, that is, δ P [δe, 1). Note that δe ă 1 always holds and that the interval [δe, 1) is
hence never empty. By using this construction, we indeed always obtain an enlarged
inner parallel set if ω ‰ 0 holds.

By Equation (2.2) the closed-form expression of the enlarged inner parallel set of
the polyhedral constraints may be written as

D´δ = t(x, y) P Rn ˆRm| Ax + By ď tbuω + δω´ 1
2 ‖β‖1 , (3.7)

y` + (1
2 ´ δ)e ď y ď yu + (δ´ 1

2)eu.

The following main result in this section immediately follows from Lemmata 2.2.1
and 3.2.2.

Theorem 3.2.3. For mixed-integer linear optimization problems (I = H), for any δ P
[δe, 1), any rounding of any point from D´δ lies in M.

Figure 3.1 depicts the construction of the inner parallel set xM´ (left) and the
enlarged inner parallel set xM´

δ (right) for a two dimensional purely integer linear
optimization problem. Note that from this example it follows that we do not nec-

3.2. Polyhedral Constraints 17

y2

y1

xM´
δ

xMδ

y2

y1

xM´

xM

FIGURE 3.1: Construction of the (enlarged) inner parallel set for an
MILP

essarily have xM´
δ Ď

xM, in particular under the occurrence of box constraints. How-
ever, the consistency of xM´

δ still guarantees consistency of xM: if xM´
δ ‰ H holds,

then we may choose some (x, y) P xM´
δ and for the corresponding rounding we have

(qx, qy) P M Ď xM.
The next example emphasizes the importance of enlarging the inner parallel set.

Example 3.2.4. Consider the following (binary) knapsack problem, where for the purpose of
illustration we are restricted to one item only:

KP : max
yPZm

dᵀy s.t.
m
ÿ

i=1

yi ď 1, 0 ď y ď e.

At first glance, the restriction
řm

i=1 yi ď 1 appears to inhibit granularity, as ‖β‖1 = m
increases linearly with dimensionality m and hence the enlarged inner parallel set

xM´
δ = ty P Rm|

m
ÿ

i=1

yi ď 1 + δ´ m
2 , y P [1

2 ´ δ, 1
2 + δ]mu

appears to be shrinking (eventually being empty) for increasing dimensionality.
However, note that for the enlarged inner parallel set, all m components of y may also

take a negative value up to (1
2 ´ δ) (with δ close to 1). Therefore, the point (1

2 ´ δ)e lies in
xM´

δ if and only if

m(
1
2
´ δ) ď 1 + δ´

m
2

holds, which is the case for any δ ě m´1
m+1 . Consequently, the problem KP is granular, inde-

pendently of the dimensionality m.
In fact, for a sufficiently large value δ ă 1, we may even construct a point yk P xM´

δ
such that qyk is the optimal solution of KP as follows. Assume the k-th item is optimal for
KP. Then the unique rounding qyk of the vector yk P Rm, which takes the value 1 at position
k and (1

2 ´ δ) elsewhere, is an optimal point. Moreover, we have yk P xM´
δ if and only if

m
ÿ

i=1

yk
i = (m´ 1)(

1
2
´ δ) + 1 ď 1 + δ´

m
2

,

18 Chapter 3. Enlarging Inner Parallel Sets

which is the case exactly for δ P [1´ 1
2m , 1). Hence, we may construct yk independently of

the dimensionality m.
This shows that even feasible sets with only a relatively small number of discrete points

can be granular and that we might actually be able to compute good points by rounding
points of xM´

δ .

Note that the arguments for the construction of an optimal point of Example 3.2.4
generalize to an arbitrary size of the knapsack.

Example 3.2.5. To demonstrate the general flexibility of enlargements and that granularity
is actually dependent on modeling techniques, let us again consider the problem KP from
Example 3.2.4, where we denote its feasible set by

K := ty P Zm|

m
ÿ

i=1

yi ď 1, y P [0, 1]mu,

and that of its equivalent set cover formulation by

Ksc := ty P Zm| yi + yj ď 1, i = 1, . . . , m, j = 1, . . . , m, i ‰ j, y P [0, 1]mu.

Although these two sets are identical, a comparison of their enlarged inner parallel sets

(pKsc)´δ = ty P Rm| yi + yj ď δ, i = 1, . . . , n, j = 1, . . . , n, i ‰ j, y P [1
2 ´ δ, 1

2 + δ]mu,

and
pK´δ = ty P Rm|

m
ÿ

i=1

yi ď 1 + δ´ m
2 , y P [1

2 ´ δ, 1
2 + δ]mu

reveals that, for m ą 2, the set cover formulation is better suited for our purpose due to
pK´δ Ď (pKsc)´δ . In fact, for any y P pK´δ , we have yi ě

1
2 ´ δ and hence for all i ‰ j

1 + δ´
m
2
ě

m
ÿ

i=1

yi ě yi + yj + (m´ 2)(
1
2
´ δ).

Therefore, for all i ‰ j and δ P (0, 1), any y P pK´δ satisfies

yi + yj ď (m´ 2)(δ´ 1) + δ ă δ,

and, thus, y P (pKsc)´δ . Moreover, for ȳ := (δ, 0, . . . , 0)ᵀ, we have ȳ P (pKsc)´δ , but ȳ R pK´δ
and hence pK´δ Ĺ (pKsc)´δ holds.

This indicates that partitioning dense constraints into several sparse constraints
may generally promote granularity.

The next example shows that presolving techniques, as commonly applied by
MILP-Solvers, can also influence granularity.

Example 3.2.6. Consider the feasible set of a purely integer linear optimization problem

M = ty P Z2| y1 + y2 ď
1
2 , y1 + y2 ě 0, y ě 0u.

The constraint y1 + y2 ě 0 is redundant and can be removed in a presolving step which
yields the enlarged inner parallel set

xM´
δ = ty1 + y2 ď δ´ 1, y ě (1

2 ´ δ)eu,

3.3. Nonlinear Constraints 19

which contains the point (´1
6 ,´1

6)
ᵀ for δ ě 2

3 and is hence nonempty for these values of δ.
Yet, keeping the redundant constraint results in the constraints

y1 + y2 ď δ´ 1
´y1 ´ y2 ď δ´ 1

which are not satisfiable for any δ ă 1.

3.3 Nonlinear Constraints

The next example shows that enlargement ideas may also be applied to the setting
of nonlinear inequality constraints.

Example 3.3.1. For n = 0 let us consider the set M = ty P D XZm| g(y) ď 0u with a
nonempty polyhedron D Ď Rm and the function g(y) = π(y)´ p0. We assume that π is a
real-valued multivariate polynomial

π(y) =
ÿ

αPA

pαyα,

where A Ď Nm
0 zt0u is a finite set, α P Nm

0 denotes a multi-index, and yα stands for the
product yα1

1 ¨ ¨ ¨ y
αm
m . Furthermore, for the coefficients we assume p0 P R and pα P Z, α P A.

Then π does not only map from Zm to Z, but the values in π(Zm) may even form a proper
subset of Z. In fact, let ω denote the greatest common divisor of the coefficients pα, α P A.
Then, since for each y P Zm and each α P A the value yα is integer, all elements of π(Zm)
are multiples of ω (cf. Lemma 3.2.1 and, e.g., [22, Corollary 1.9]).

To take advantage of this fact, we define

tp0uω := maxtz P ωZ| z ď p0u. (3.8)

Then, like in the polyhedral case, we may relax p0 to any value arbitrarily close to tp0uω + ω
without admitting any additional solution of the inequality constraint. More explicitly, for
every τ P [0, tp0uω + ω´ p0) the relaxation

Gτ := ty P Rm|π(y)´ p0 ď τu

of the set G = ty P Rm|π(y)´ p0 ď 0u leads to the relaxation xMρ := DX Gτ of xM with
ρ = (0, τ), and this relaxation satisfies M = xMρ XZm.

We emphasize that the above enlargement properties may even hold for τ ě tp0uω +ω´
p0, as for any α P Nn

0 with αj ‰ 1, j = 1, . . . , m, also the set tyα| y P Zmu is a proper subset
of Z. In fact, consider the enlargement for the set M = ty P D XZm| π(y) ď p0u with
a quadratic polynomial π(y) = yᵀQy + βᵀy. Then for any k P N it is possible to decide
whether the quadratic equation π(y) = p0 + k has a solution in integers [33, 70]. Hence,
with rk P N being the first number for which the equation is solvable with the right-hand side
p0 + rk, and with τ P [0,rk), we may enlarge the right-hand side of the inequality constraint
to p0 + τ without admitting additional integer solutions.

The subsequent example will show that p0 + rk may be strictly larger than the value
tp0uω + ω from the above construction for general polynomials. However, we are only aware
of effective implementations of procedures for the determination of rk in special cases, e.g.,
when m = 2 holds, or when π is a sum of squares.

20 Chapter 3. Enlarging Inner Parallel Sets

-3 -2 -1 0 1 2 3

y
1

-3

-2

-1

0

1

2

3

y
2

FIGURE 3.2: Enlargement for a quadratic polynomial

Example 3.3.2. The convex-quadratic inequality constraint 3y2
1 ´ y1y2 + 2y2

2 ď 9 is of the
form considered in Example 3.3.1 with A = t(2, 0), (1, 1), (0, 2)u, p(2,0) = 3, p(1,1) = ´1,
p(0,2) = 2 and p(0,0) = 9. Moreover, let D = ty P R2| ´ e ď y ď 2eu. Figure 3.2 shows
the box D, level lines of the function π(y) = 3y2

1 ´ y1y2 + 2y2
2 to the levels 9, 10, 11, and

12, and the set M = ty P DXZ2|π(y) ď 9u.
The first enlargement construction from Example 3.3.1 yields a greatest common divisor

ω = 1 for the coefficients of π and, thus, the possibility to extend the right-hand side 9 of the
inequality constraint to any value strictly below t9u1 + 1 = 10. Hence, for any τ P [0, 1)
the pair ρ = (0, τ) lies in R, and we obtain the enlarged inner parallel set

xM´
ρ = D´ X G´τ = ty P R2| ´ 1

2 e ď y ď 3
2 eu X G´τ .

On the other hand, by inspection of Figure 3.2, the second enlargement construction from
Example 3.3.1 yields rk = 3 with the additional integer solutions (2, 0), (2, 1) and, thus, the
possibility to even choose τ P [0, 3).

Next, let us discuss the effect of the proposed enlargement ideas on the inner
approximation T´ of xM´. We start by considering the case σ = 0, that is, only the
right-hand side of the nonlinear inequality constraint g(x, y) ď 0 is relaxed by some
τ ě 0, and we have ρ = (0, τ). Then Lemma 2.3.3 yields the inner approximation

T´ρ = t(x, y) P D´| g(x, y) + 1
2 L8 ď τu

of xM´
ρ , where the entries of the vector L8 are Lipschitz constants of the functions

gi(x, y)´ τi, i P I, on D in the sense of Assumption 2.3.2. These Lipschitz constants,
of course, coincide with those of the functions gi, i P I, so that the vector L8 does
not depend on τ.

Example 3.3.3. In Example 3.3.2 the corresponding Lipschitz constant for π(y) = 3y2
1 ´

y1y2 + 2y2
2 on D may be computed with the aid of Example 2.3.7, namely as the value

L8 = max
yPvertD

›

›

›

›

(
6 ´1
´1 4

)
y
›

›

›

›

1
=

›

›

›

›

(
6 ´1
´1 4

)(
2
´1

)›
›

›

›

1
= 19.

This yields the inner approximation

T´ρ = ty P R2| ´ 1
2 e ď y ď 3

2 e, 3y2
1 ´ y1y2 + 2y2

2 ´ 9 + 19
2 ď τu

= ty P R2| ´ 1
2 e ď y ď 3

2 e, 3y2
1 ´ y1y2 + 2y2

2 +
1
2 ď τu

3.4. The Interplay Between Enlargements and Lipschitz Constants 21

of xM´
ρ = D´ X G´τ for any τ P [0, 3). Hence, T´ρ is empty for all τ P [0, 1/2), but

nonempty for τ P [1/2, 3). In particular, the above enlargement approach based on the
computation of the greatest common divisor ω is already sufficient to enlarge the empty
inner approximation T´ of xM´ to a nonempty inner approximation, e.g., to T´

(0,3/4) and,
thus, to show granularity of the set M.

Note that, as in Example 3.3.3, also in general the monotonicity property T´
ρ1 Ď

T´
ρ2 holds for all ρ1, ρ2 P R with ρ1 ď ρ2 as long as σ1 and σ2 vanish.

After this consideration of the case σ = 0 let us turn to the effect of general
enlargements with ρ = (σ, τ) P R on the set T´. By Lemma 2.3.3 the set

T´ρ = t(x, y) P D´σ | g(x, y) + 1
2 L8 ď τu

still is an inner approximation of xM´
ρ if the vector L8 of Lipschitz constants is cho-

sen according to Assumption 2.3.2. However, L8 depends on σ, which implies the
undesirable effect that for ρ1, ρ2 P R with ρ1 ď ρ2 one may no longer expect the
inclusion T´

ρ1 Ď T´
ρ2 . The following section studies this issue in detail.

3.4 The Interplay Between Enlargements and Lipschitz Con-
stants

For ρ P R Assumption 2.3.2 requires for all i P I the existence of some Lσ,i
8 such that

for all x P prxDσ and all y1, y2 P Dσ(x) the estimate

|(gi(x, y1)´ τi)´ (gi(x, y2)´ τi)| = |gi(x, y1)´ gi(x, y2)| ď Lσ,i
8 }y

1 ´ y2}8

holds. While this condition does not depend on τ, for σ1 ď σ2 the larger set Dσ2

requires potentially larger Lipschitz constants than Dσ1 . More precisely, the vector
Lσ
8 is monotonic in σ in the sense that σ1 ď σ2 implies Lσ1

8 ď Lσ2

8 whenever the
smallest known Lipschitz constants are chosen. For later reference let us explicitly
state this modified version of Assumption 2.3.2.

Assumption 3.4.1. For all i P I there exists some Lσ,i
8 ě 0 such that for all x P prxDσ and

all y1, y2 P Dσ(x) we have

|gi(x, y1)´ gi(x, y2)| ď Lσ,i
8 }y

1 ´ y2}8.

The σ-dependence of Lσ
8 leads to the inner approximation

Γ´ρ := t(x, y) P Rn ˆRm| g(x, y) + 1
2 Lσ
8 ď τu

of G´τ which does not only depend on τ, but also on σ, and to the inner approxima-
tion

T´ρ = t(x, y) P D´σ | g(x, y) + 1
2 Lσ
8 ď τu = D´σ X Γ´ρ (3.9)

of xM´
ρ . The mentioned undesirable effect can now be formulated by the observation

that, on the one hand, for σ1 = σ2 and τ1 ď τ2 we have Γ´
ρ1 Ď Γ´

ρ2 whereas, on the

other hand, for σ1 ď σ2 and τ1 = τ2 the monotonicity of the Lipschitz constants
leads to the reverse inclusion Γ´

ρ1 Ě Γ´
ρ2 . Hence, for arbitrary ρ1 ď ρ2 the inclusion

T´
ρ1 Ď T´

ρ2 cannot be expected.

22 Chapter 3. Enlarging Inner Parallel Sets

At least we can state that an inner approximation T´ρ = D´σ X Γ´ρ becomes larger
when the vector τ is increased (component-wise), and that there is trade-off between
increasing D´σ and shrinking Γ´ρ when σ is increased (component-wise). If the size
of R permits, of course one may compensate the undesirable effect in the behavior
of Lσ

8 by choosing τ ě Lσ
8/2 for given σ. In general, however, the determination of

some ρ = (σ, τ) with T´ρ ‰ H is problem dependent and potentially nontrivial.

Example 3.4.2. In Example 3.3.2 the set D = ty P R2| ´ e ď y ď 2eu is described by box
constraints and may, hence, be enlarged by the technique from Example 3.1.2. We choose
to enlarge all four constraints simultaneously by δ P [0, 1), that is, we put Dδ := ty P
R2| ´ e´ δe ď y ď 2e + δeu. By Example 2.3.7 the corresponding Lipschitz constant for
π(y) = 3y2

1 ´ y1y2 + 2y2
2 on Dδ is

Lδ
8 = max

yPvertDδ

›

›

›

›

(
6 ´1
´1 4

)
y
›

›

›

›

1
=

›

›

›

›

(
6 ´1
´1 4

)(
2 + δ
´1´ δ

)›
›

›

›

1
= 19 + 12δ

which yields the inner approximation

T´
(δ,τ) = ty P R2| ´ 1

2 e´ δe ď y ď 3
2 e + δe, 3y2

1 ´ y1y2 + 2y2
2 +

1
2 + 6δ ď τu

of xM´

(δ,τ) = D´δ X G´τ for any δ P [0, 1) and τ P [0, 3). As we have seen in Example 3.3.3,
the set T´

(0,3/4) is nonempty. For increasing δ, however, instead of growing larger the set
T´
(δ,3/4) shrinks to a singleton for δ = 1/24 and then becomes empty.

3.5 Pseudo-Granularity

In the previous section we have seen that the size and behavior of the vector of Lip-
schitz constants Lσ

8 from Assumption 3.4.1 may have a strong effect on the chances
for consistency of the inner approximation

T´ρ = t(x, y) P D´σ | g(x, y) + 1
2 Lσ
8 ď τu

of xM´
ρ and, thus, on the chances for the algorithmic employment of granularity.

For this reason, the present section will introduce a way to work with smaller Lip-
schitz constants, albeit at the price of modifying the geometrically intuitive idea of
granularity to the algorithmically more attractive concept of pseudo-granularity. We
remark that we will only modify appearing Lipschitz constants in the construction
of T´ and hence this will only make a difference under the occurrence of nonlinear
constraint functions. In particular, pseudo-granularity will coincide with granular-
ity for MILPs.

Notice that replacing the set Dσ by a smaller set in Assumption 3.4.1 would ac-
tually allow to compute better Lipschitz constants and hence larger sets T´δ . The
present section will show how this idea can be employed if we do without inner
parallel sets and their inner approximations in the first place.

In fact, in this section let us write

M = t(x, y) P Rn ˆZm| Ax + By ď b, y` ď y ď yu, g(x, y) ď 0u.

We assume that no further box constraints on integer variables are modeled by the
system Ax + By ď b, that is, with αᵀ

i and βᵀ
i , i = 1, . . . , p, denoting the rows of A

3.5. Pseudo-Granularity 23

and B, respectively, in the case αi = 0 the vector βi contains at least two nonzero real
entries.

For the enlargement of D we choose σ := (σb, σ`, σu) ě 0 and define

Dσ := t(x, y) P Rn ˆRm| Ax + By ď b + σb, y` ´ σ` ď y ď yu + σuu

with the inner parallel set

D´σ := t(x, y) P Rn ˆRm| Ax + By ď b + σb ´ 1
2}β}1,

y` ´ σ` + 1
2 e ď y ď yu + σu ´ 1

2 eu.

Note that in contrast to (3.7) we allow for different enlargement parameters. As will
become apparent shortly, this enables dealing with the shrinking effects of Γ´ρ with
the enlargement of Dσ more effectively.

As above, we also consider the sets Gτ = t(x, y) P Rn ˆRm| g(x, y) ď τu and
xMρ = Dσ X Gτ and, as in (3.3), collect the enlargement vectors ρ = (σ, τ) ě 0
with M = xMρ X (Rn ˆZm) in the set R. Recall that the main arguments from the
previous sections relied on considering the inner parallel set xM´

ρ and, in particular,

the inclusion T´ρ Ď xM´
ρ . In the present section we follow a different route and define

a set rT´ρ Ě T´ρ for which we directly show that roundings of its elements lie in xMρ,
and thus in M.

First of all, from the observations in Example 3.1.2 it is clear that we may choose
ρ P R with 0 ď σ`, σu ă e. Also the vector σb may be constructed along the lines of
(3.7) which yields

σb
i P

#

[0, tbiuωi + ωi ´ bi), if ωi ą 0,
t0u, else.

(3.10)

Now let us focus on choices e/2 ď σ`, σu ă e. The crucial observation for the
following is that then elements from D´σ and their roundings not only lie in the set
Dσ but even in its subset

rDσ := t(x, y) P Rn ˆRm| Ax + By ď tbuω,

y` ´ σ` + 1
2 e ď y ď yu + σu ´ 1

2 eu.

Lemma 3.5.1. For D = t(x, y) P Rn ˆ Rm| Ax + By ď b, y` ď y ď yuu and any
σ = (σb, σ`, σu) with σb satisfying (3.10) as well as e/2 ď σ`, σu ă e, the following
assertions are true:

a) The chain of inclusions D´σ Ď rDσ Ď Dσ holds.

b) Any rounding (qx, qy) of any point (x, y) P D´σ lies in rDσ.

Proof. For the proof of the first inclusion in part a we show b + σb ´ }β}1/2 ď tbuω.
By (3.10) this relation is clear in all components with ωi = 0. Moreover, we have
σb

i ă tbiuωi + ωi ´ bi for all i with ωi ą 0 and, thus, it suffices to show ωi ď }βi}1/2
for these i. As the greatest common divisor of the entries of βi, each of these entries
upper bounds ωi, and since we assume at least two nonzero entries of βi, the re-
quired inequality follows. The second inclusion in part a immediately follows from
tbuω ď b and σb ě 0.

For the proof of part b let (x, y) P D´σ and let (qx, qy) denote one of its roundings.
The constraints y`´σ`+ e/2 ď y ď yu + σu´ e/2 with σ`, σu ă e enforce y` ď qy ď yu

and, due to σ`, σu ě e/2, also y` ´ σ` + e/2 ď qy ď yu + σu ´ e/2.

24 Chapter 3. Enlarging Inner Parallel Sets

It remains to show the validity of the constraint Aqx + Bqy ď tbuω. In fact, the
enlargement construction yields (qx, qy) P Dσ X (Rn ˆZm) = D X (Rn ˆZm) Ď D
which implies Aqx + Bqy ď b and, thus, the asserted constraint for each component
with ωi = 0. Moreover, in the case ωi ą 0 we have αi = 0 and βi P Zmzt0u so that for
qy P Zm the right-hand side bi of the constraint can be reduced to tbiuωi . The assertion
hence is shown.

In view of Lemma 3.5.1 we may replace the Lipschitz conditions on the set Dσ

from Assumption 3.4.1 by Lipschitz conditions on the smaller set rDσ to obtain po-
tentially smaller Lipschitz constants. The relaxed Assumption 3.4.1 reads as follows.

Assumption 3.5.2. For D = t(x, y) P Rn ˆRm| Ax + By ď b, y` ď y ď yuu and
σ = (σb, σ`, σu) with σb satisfying (3.10) as well as e/2 ď σ`, σu ă e, let for all i P I exist
some rLσ,i

8 ě 0 such that for all x P prx
rDσ and all y1, y2 P rDσ(x) we have

|gi(x, y1)´ gi(x, y2)| ď rLσ,i
8 }y

1 ´ y2}8.

Notice that, to ensure the validity of Lemma 3.5.1b for 0 ď σ`, σu ă e/2, we
would need to include at least unmodified box constraints y` ď y ď yu in rDσ. This
implies that in Assumption 3.5.2 choices 0 ď σ`, σu ă e/2 yield no advantage com-
pared to σ` = σu = e/2 and that considering only e/2 ď σ`, σu ă e therefore covers
all relevant cases.

With the aid of the Lipschitz constants from Assumption 3.5.2, and with some τ
such that ρ = (σ, τ) lies in R, we define the sets

rΓ´ρ := t(x, y) P Rn ˆRm| g(x, y) + 1
2
rLσ
8 ď τu

and
rT´ρ := t(x, y) P D´σ | g(x, y) + 1

2
rLσ
8 ď τu = D´σ X rΓ´ρ .

Note that rT´ρ differs from the set T´ρ in (3.9) only by the choice of the vector of Lip-
schitz constants. Recall that these Lipschitz constants may be too small to conduct
the proof of Lemma 2.3.3. In fact, examples show that rT´ρ is no longer necessarily

an inner approximation of the inner parallel set xM´
ρ and, hence, the consistency of

rT´ρ may not be used as a sufficient condition for the granularity of M. Since subse-
quently it will still turn out to be very useful, we formulate the following concept.

Definition 3.5.3. We call the set M pseudo-granular if for some ρ P R and for the Lip-
schitz constants from Assumption 3.5.2 the set rT´ρ is nonempty. Moreover, we call a problem
MINLP pseudo-granular if its feasible set M is pseudo-granular.

We mention that consistency of the set T´ρ from (3.9) is sufficient for granularity
of the problem MINLP (by Theorem 2.3.4) as well as for its pseudo-granularity (in
view of rLσ

8 ď Lσ
8 and, thus, T´ρ Ď rT´ρ). However, neither granularity nor pseudo-

granularity implies T´ρ ‰ H.
As the next result shows, it is possible to maintain the assertions of Theorem 2.3.4

when granularity is replaced by pseudo-granularity.

Theorem 3.5.4. Let D = t(x, y) P Rn ˆRm| Ax + By ď b, y` ď y ď yuu, let ρ =
(τ, σ) P R with σ = (σb, σ`, σu), σb satisfying (3.10) as well as e/2 ď σ`, σu ă e, and let
Assumption 3.5.2 hold. Then the following assertions are true:

3.5. Pseudo-Granularity 25

(a) δ = 0.5 (b) δ = 0.75 (c) δ = 0.99

FIGURE 3.3: rT´
(δ,τ) for different enlargement parameters δ and τ = 2.9

a) For any point (x, y) P rT´ρ , any of its roundings (qx, qy) lies in M.

b) If the problem MINLP is pseudo-granular, then it is consistent.

Proof. In the case rT´ρ = H the assertion of part a trivially holds. Otherwise, let
(x, y) P rT´ρ = D´σ X rΓ´ρ . We have to show that any rounding (qx, qy) of (x, y) lies in
M = Dσ X Gτ X (Rn ˆZm).

From the definition of a rounding, (qx, qy) P RnˆZm is clear. Furthermore, (x, y) P
D´σ implies (qx, qy) P Dσ.

It remains to show (qx, qy) P Gτ, that is, gi(qx, qy) ď τi for all i P I. In fact, for any
i P I we have gi(qx, qy) ď gi(x, y) + |gi(qx, qy) ´ gi(x, y)|, where Lemma 3.5.1 implies
(qx, qy), (x, y) P rDσ. Hence, with the Lipschitz constant rLσ,i

8 from Assumption 3.5.2 we
obtain

gi(qx, qy) ď gi(x, y) + rLσ,i
8 }qy´ y}8 ď gi(x, y) + 1

2
rLσ,i
8 ď τi

where the last inequality stems from the definition of rT´ρ . This shows (qx, qy) P Gτ

and, thus, the assertion of part a. In view of Definition 3.5.3, part b is an immediate
consequence of part a.

Example 3.5.5. The setting of Example 3.4.2 is suitable for the application of the above
techniques. In fact, to make this example more challenging and the occurring effects more
apparent, let us change the lower bounds of both variables from ´1 to 1. Thus, we obtain
D = ty P R2| e ď y ď 2eu and the feasible set M = DX G = t(1, 1)ᵀ, (1, 2)ᵀu contains
only two points. The square in Figure 3.3a actually illustrates the shape of the set D, and
the “outer” nonlinear level curve corresponds to the condition π(y) = 9, that is, to the
boundary points of the set G.

Since all inequality constraints in the description of D are box constraints, the set rDδ =
ty P R2| 3e/2´ δe ď y ď 3e/2+ δeu turns out to coincide with the enlarged inner parallel
set D´δ . Moreover, the condition e/2 ď σ`, σu ă 1 is satisfied for all choices δ P [1/2, 1),
and from Example 3.3.2 we know that with all choices τ P [0, 3) we have ρ = (δ, τ) P R.

The benefit of the pseudo-granularity concept is that for given ρ P R we do not have to
compute the Lipschitz constant of the function π on the set Dδ = ty P R2| e´ δe ď y ď
2e + δeu, but only on the smaller set rDδ. This Lipschitz constant from Assumption 3.5.2 is
computed to be

rLδ
8 = max

yPvert rDδ

›

›

›

›

(
6 ´1
´1 4

)
y
›

›

›

›

1
=

›

›

›

›

(
6 ´1
´1 4

)(
3/2 + δ
3/2 + δ

)›
›

›

›

1
= 12 + 8δ.

26 Chapter 3. Enlarging Inner Parallel Sets

It yields the sets

rΓ´
(δ,τ) = ty P R2| 3y2

1 ´ y1y2 + 2y2
2 ´ 3 + 4δ ď τu

and rT(δ,τ) = D´δ X rΓ´
(δ,τ). The structure of the latter set is illustrated in Figure 3.3 for the

cases τ = 2.9 and δ P t0.5, 0.75, 0.99u, where the “inner” nonlinear level curve visualizes
the shrinking behavior of the set rΓ´

(δ,τ) with increasing values of δ.
Since the coordinates of the lower left vertex of D´0.5 violate the inequality in the definition

of rΓ´
(0.5,τ) for any τ ă 3, the set rT´

(0.5,2.9) = D´0.5 X
rΓ´
(0.5,2.9) is empty. This corresponds to

the situation illustrated in Figure 3.3a. However, in this example the enlarging effect of D´δ
with increasing values of δ outweighs the shrinking effect of rΓ´

(δ,2.9) so that rT´
(δ,2.9) becomes

larger with increasing values of δ. In particular, rT´
(δ,2.9) is nonempty for any δ P (0.5, 1),

which proves the pseudo-granularity of the feasible set M. Figure 3.3 also illustrates that the
rounding of any point from the nonempty set rT´

(δ,2.9) turns out to be the point (1, 1)ᵀ P M.
We remark that, while pseudo-granularity of M holds, one cannot prove granularity of

M by showing the consistency of the set T´
(δ,τ) for some δ P [0, 1) and τ P [0, 1). Indeed,

computing the Lipschitz constant of π on Dδ yields Lδ
8 = 16 + 8δ and hence

T´
(δ,τ) = ty P D´δ | 3y2

1 ´ y1y2 + 2y2
2 ´ 1 + 4δ ď τu.

Again, since the lower left vertex of D´δ does not satisfy the nonlinear constraint for any
δ P [0, 1) and τ P [0, 3), the set T´

(δ,τ) is empty for all these parameters.

We remark that Theorem 3.5.4 has important implications for algorithmic con-
siderations. While we observe opposing effects regarding pseudo-granularity when
entries of σu and σ` vary between 1/2 and 1, the values for σb should always be
chosen as large as possible. Indeed, Theorem 3.5.4 eliminates all negative effects on
the Lipschitz constant that previously occurred with increasing values of σb, since
the set rDσ and the vector of corresponding Lipschitz constants rLσ

8 do not depend
on σb. Moreover, as highlighted in Example 3.5.5, the tighter box constraints in the
definition of the set rDσ compared to Dσ yield another crucial advantage.

27

Chapter 4

Using Inner Parallel Sets for
Computing Feasible Points

This chapter discusses the concrete algorithmic employment of the (pseudo-)granu-
larity concept and provides numerical results. In Section 4.1 we summarize the
findings from the previous chapters by developing a specific algorithmic scheme
that can be applied to mixed-integer linear and nonlinear optimization problems.
Subsequently, we conduct a comprehensive computational study on problems from
standard libraries. Sections 4.2 and 4.3 discuss results for mixed-integer linear and
nonlinear optimization problems, respectively, and Section 4.4 offers a brief sum-
mary.

4.1 Algorithmic Considerations

Before we introduce a feasibility test and a method for the construction of a good
feasible point, let us first summarize the necessary computation of parameters.

Computation of Pseudo-Granularity Parameters:

1. Set σ` and σu to some value satisfying e/2 ď σ`, σu ď e, and σb to some
value satisfying (3.10). We recommend using Equation (3.7) with δ close
to one.

2. For each i P I, compute a Lipschitz constant rLσ,i
8 as an upper bound for

the optimal value of

max }∇ygi(x, y)}1 s.t. Ax + By ď tbuω, y` ´ σ` + 1
2 e ď y ď yu + σu ´ 1

2 e

(cf. Section 2.3.2 and Section 3.5).

3. Determine valid nonlinear enlargement parameters τi, i P I, such that
ρ = (σ, τ) P R (cf. (3.3)).

After the computation of the parameters σ, τ and rLσ
8 all necessary data for comput-

ing the set
rT´ρ := t(x, y) P D´σ | g(x, y) + 1

2
rLσ
8 ď τu

is available.
According to Theorem 3.5.4b, a straightforward sufficient condition for the con-

sistency of MINLP is a successful feasibility test for the latter set, for example in the
following form.

28 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

FRA-SLOR (Feasible Rounding Approach by Shrink-Lift-Optimize-Round):

1. Compute the pseudo-granularity parameters σ, τ and rLσ
8.

2. Compute an optimal point (x f , y f) of the feasibility problem

F´ : min
(x,y,z)PRnˆRmˆR

z s.t. Ax + By´ ze ď b + σb ´ 1
2}β}1,

y` ´ σ` + 1
2 e´ ze ď y ď yu + σu ´ 1

2 e + ze,

g(x, y)´ ze ď τ´ 1
2
rLσ
8,

z ě ´1.

3. If vF´ is nonpositive, then MINLP is pseudo-granular and we can round
(x f , y f) to a feasible point (qx f , qy f).

Note that if all functions gi, i P I, are smooth and convex, the feasibility test FRA-
SLOR can be performed efficiently once all Lipschitz constants and enlargement pa-
rameters are determined. Under such assumptions, the test provides an efficiently
computable sufficient condition for the existence of feasible points for MINLP. As
indicated earlier, for the practical purpose of computing a feasible point of good
quality it is beneficial to explicitly take the objective function f into account.

FRA-SOR (Feasible Rounding Approach by Shrink-Optimize-Round):

1. Compute the pseudo-granularity parameters σ, τ and rLσ
8.

2. Compute an optimal point (xob, yob) of f over rT´ρ , that is, of the objective
based problem

Pob
ρ : min

(x,y)PRnˆRm
f (x, y) s.t. Ax + By ď b + σb ´ 1

2}β}1,

y` ´ σ` + 1
2 e ď y ď yu + σu ´ 1

2 e,

g(x, y) ď τ´ 1
2
rLσ
8.

3. Round (xob, yob) to (qxob, qyob) P M.

For MILPs, Step 1 of FRA-SLOR and FRA-SOR are simplified since from the three
steps in the computation of pseudo-granularity parameters only Step 1 has to be
performed. We also mention that the consistency of the optimization problem Pob

ρ in
Step 2 implies that the problem MINLP is pseudo-granular. Hence, the existence of
some optimal point of Pob

ρ in particular proves pseudo-granularity of MINLP.
For FRA-SLOR we emphasize that even if MINLP is not pseudo-granular, the

point (qx f , qy f) can nevertheless be feasible for MINLP. Even if it is infeasible, it
might at least be a good starting point for heuristic procedures, e.g., for pumping
cycles of the feasibility pump. Therefore, even for a non-granular problem MINLP,
FRA-SLOR might prove useful for the computation of feasible points.

Clearly this is a crucial advantage of FRA-SLOR over FRA-SOR, as well as the
fact that FRA-SLOR does not involve a potentially complicating objective function.
On the other hand we expect (qxob, qyob) to have a better objective value than (qx f , qy f).

4.2. Computational Study in the Polyhedral Case 29

As one is usually interested in good points in M, this is a significant advantage of
FRA-SOR over FRA-SLOR. In any case, one can initially check (pseudo-)granularity
by using FRA-SLOR and, in the (pseudo-)granular case, subsequently apply FRA-
SOR, using (x f , y f) as an initial feasible point.

In the computation of the set D´
σ(δ)

(cf. Equation (3.7)), if in some row i we only
have αi = 0 but not βi P Zm, we may either multiply βi and bi with a constant to
make all entries integer (which always is possible for rational entries) or, otherwise,
simply set ωi to zero. Moreover, although ω can be computed efficiently, we remark
that setting ωi := 1 for all rows with αi = 0 and βi P Zmzt0u also is a possible
choice which computationally comes for free and may thus be useful for practical
applications.

Remark 4.1.1. Due to rounding effects, we generally cannot expect the generated feasible
point to lie on the boundary of M. If continuous variables are present (n ą 0) we might
therefore end up with an idle potential for the objective function to be improved, which is
accessible by optimizing over the continuous variables with integer variables being fixed to
the values of the generated feasible point. We did not utilize this potential in the subsequent
computational analysis of this chapter, but shall formally introduce and explicitly use this
step in later chapters.

4.2 Computational Study in the Polyhedral Case

Our first computational study comprises results from a test bed of optimization
problems from the MIPLIB 2003 [3] and the MIPLIB 2010 [46]. The intention of our
computational study is fourfold.

Firstly, our algorithmic considerations imply that finding feasible points for gran-
ular mixed-integer linear problems is easy, at the very least if we apply the feasible
rounding approaches. Hence, by checking problems from our test bed for granu-
larity in Section 4.2.1 we obtain a certificate for the consistency of the feasible set
and for the possibility to efficiently compute a feasible point of the corresponding
problem.

Secondly, in contrast to other approaches from the literature, the feasible round-
ing approaches yield polynomial worst case complexity for computing feasible points
for these problems. It is natural to ask, however, if granularity coincides with a struc-
ture, which is (implicitly) exploited not only by the feasible rounding approaches,
but also by commonly used heuristics. We aim to answer this question in Sec-
tion 4.2.2 by a comparison of the feasible rounding approaches against Gurobi, which
we specifically tune on finding feasible points as quickly as possible. We stress that
the aim is not to benchmark our approaches against Gurobi’s vast arsenal of heuris-
tics. Rather, we wish to provide a proof of concept for our methods and to determine
if there are problems for which it is indeed advantageous to make explicit use of the
granularity concept.

Thirdly, in Section 4.2.3 we investigate if FRA-SLOR is also able to compute fea-
sible points for nongranular applications.

We emphasize that solvers like Gurobi apply a presolving step to optimization
models before actually solving them (cf. [2] for a recent survey on different tech-
niques). In order to also test the potential usefulness of our approaches within the
framework of such a solver, we conduct the main part of our computational study
(Sections 4.2.1 - 4.2.3) on presolved models.

Finally, in Section 4.2.4, we conclude our numerical analysis by investigating the
impact of this presolving step on granularity. Here, we evaluate in what way our

30 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

results change when we apply the feasible rounding approaches to models which are
not presolved. Recall that we illustrated the potential influence of different modeling
techniques on granularity in Section 3.2. We will demonstrate that similar effects
occur when presolving techniques are applied.

Both feasible rounding approaches are implemented in Matlab R2016b and all
arising optimization problems are solved with Gurobi 7. All tests are run on a per-
sonal computer with two cores à 2.3 GHz and 8 GB RAM. Unless stated otherwise,
we use Gurobi’s default parameters, including a feasibility tolerance of 10´6. We
constructed the enlarged inner parallel set in accordance to Equation (3.7) and set δ
to 1´ 10´4, so that our roundings do not produce infeasible points, even if Gurobi
returns a 10´6-(in)feasible point.

As mentioned in Remark 3.1.1, while a nonempty inner parallel set for a fixed
value of δ shows granularity and thus also the granular-representability of M, an
empty inner parallel set does not imply that M is not granularity-representable. In
this section we call a problem granular (not granular), if the enlarged inner parallel
set xM´

δ = D´δ is nonempty (empty) for the enlargement parameter δ = 1´ 10´4.
As indicated above, we only consider problems which do not contain equality

constraints on integral variables and leave studying these problems to Chapter 6.
On the other hand, equality constraints which only contain continuous variables
can be incorporated unaltered in the construction of the inner parallel set. Hence,
such instances are included in the current study.

Moreover, some problems from the libraries are formulated with non-integral
values in the constraint matrix B (at rows i where αi = 0 holds). With rational num-
bers, it is straightforward to scale these numbers such that the corresponding rows
of B are integral. However, their representation as floating point numbers makes this
scaling algorithmically intractable without changing the corresponding problem by
introducing computational errors. Therefore, we did not enlarge the respective re-
strictions for these problems in our computational study.

4.2.1 Granular Optimization Problems from the MIPLIB Libraries

Applying Gurobi’s presolving step and excluding problems with equality constraints
containing integral variables from the MIPLIB libraries results in 151 problems which
we may efficiently test for δ-granularity by using the feasible rounding approaches.
Out of these, 137 are from the MIPLIB 2010, 19 from the MIPLIB 2003, and 5 prob-
lems occur in both libraries.

We report that 81 problems from our test bed are granular. Recall that this im-
mediately proves consistency for these problems. Table 4.1 lists these problems, to-
gether with the number of continuous variables n, the number of integer variables
m, the number of binary variables b (ď m) and the number of rows p of the constraint
matrix. Problems marked with ˚ are from the MIPLIB 2003 and problems marked
with ˚˚ occur in both libraries. The remaining problems are from the MIPLIB 2010.
We remark that, due to Gurobi’s presolving step, the values of n, m, b and p often
differ from the ones stated in [3] and [46].

Remarkably, we find that even problems with a significant number of binary
variables are granular, which coincides with the intuition given in Examples 3.1.2
and 3.2.4. In fact, some problems like ex1010-pi only use binary variables. Therefore,
our first computational finding indicates that granularity is a characteristic which
may be expected in various real world problems. On the other hand, theoretical re-
sults from [62] predict a better performance (especially in terms of the objective value

4.2. Computational Study in the Polyhedral Case 31

name n m (b) p

30_70_4.5_0.95_100 0 10959(10958) 12503
50v-10 366 1647(1464) 233
a1c1s1˚˚ 2297 192(192) 2053
b2c1s1 2389 288(288) 2546
beasleyC3 852 852(852) 1153
bg512142 527 230(230) 897
buildingenergy 128688 26287(0) 277589
core2536-691 0 11053(11052) 1892
core4872-1529 0 14954(14954) 3981
cov1075 0 120(120) 637
dfn-gwin-UUM 846 90(0) 156
dg012142 1299 600(600) 1987
ex1010-pi 0 11568(11568) 1466
fast0507˚ 0 20334(20334) 440
fixnet6˚ 499 378(378) 477
g200x740i 740 740(740) 940
ger50_17_trans 4320 18062(0) 498
germany50-DBM 8078 88(0) 2510
go19 0 361(361) 361
iis-100-0-cov 0 100(100) 3831
iis-bupa-cov 0 337(337) 4796
iis-pima-cov 0 698(698) 7122
janos-us-DDM 2095 84(0) 755
k16x240 240 240(240) 256
m100n500k4r1 0 500(500) 100
macrophage 0 1889(1889) 2708
manna81˚ 0 3321(18) 6480
mc11 1517 1518(1518) 1917
methanosarcina 0 7865(7865) 14538
mik.250-1-100.1 1 250(100) 100
modglob˚ 256 98(98) 286
n15-3 152360 780(0) 29494
n3-3 8236 348(0) 2194
n3700 5000 5000(5000) 5150
n3705 5000 5000(5000) 5150
n370a 5000 5000(5000) 5150
n4-3 2950 150(0) 976
n9-3 6864 234(0) 2082
neos-1112782 2025 2025(2025) 2070
neos-1112787 1600 1600(1600) 1640
neos-1225589 625 625(625) 650

name n m(b) p

neos-1616732 0 200(200) 1026
neos-932816 148 6216(6216) 2568
neos-933638 800 8087(8087) 8053
neos-933966 800 7432(7432) 6590
neos-934278 767 7354(7354) 7238
neos15 545 154(154) 460
npmv07 158248 1880(1880) 60723
ns4-pr3 8045 58(0) 1936
ns4-pr9 6741 39(0) 1910
opm2-z10-s2 0 5940(5940) 65667
opm2-z11-s8 0 7636(7636) 88677
opm2-z12-s14 0 10323(10323) 124615
opm2-z12-s7 0 10328(10328) 124780
opm2-z7-s2 0 1892(1892) 15793
p100x588b 588 588(588) 688
p6b 0 451(451) 502
p80x400b 396 396(396) 474
pb-simp-nonunif 0 11710(11710) 122652
pp08a˚ 170 64(64) 133
pp08aCUTS˚ 171 64(64) 239
qiu˚˚ 792 48(48) 1192
queens-30 0 900(900) 900
r80x800 800 800(800) 880
ramos3 0 2187(2187) 2187
ran14x18.disj-8 252 252(252) 447
ran14x18 252 252(252) 284
ran16x16 256 256(256) 288
set1ch˚ 408 235(235) 423
set3-10 2501 176(176) 2481
set3-15 2501 176(176) 2537
set3-20 2501 176(176) 2537
seymour.disj-10 0 1022(987) 4800
seymour˚˚ 0 893(893) 4369
stockholm 9891 829(825) 21968
sts405 0 405(405) 27270
sts729 0 729(729) 88452
tanglegram1 0 32705(32705) 65152
tanglegram2 0 4058(4058) 7976
toll-like 0 2570(2570) 4038
zib54-UUE 4958 80(80) 1745

TABLE 4.1: Granular presolved instances from the MIPLIB libraries

of FRA-SOR) for problems where integer variables are not binary but are bounded
by some larger boxes.

Moreover, we find that only one problem has non-integral values in the con-
straint matrix B at rows i where αi = 0 holds. Finally we report that determining
the vector ω is generally an easy task as even an iterative implementation takes, for
most problems, not longer than a couple of seconds. However, we stress once more
that we can also simply set ω to ω̄, with

ω̄i :=

#

1, αi = 0, βi P Zm,
0, else

which computationally comes for free. In fact, for all presolved models from our
test bed the “true” ω actually coincides with ω̄. This is also the case for almost all

32 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

unaltered problems, as we shall further discuss in Section 4.2.4.

4.2.2 Comparison with Gurobi for Granular Optimization Problems

To determine if granularity is exploited not only by the feasible rounding approaches
but also by other commonly used heuristic techniques and to establish a proof of
concept for our methods, we compare the run time of the feasible rounding ap-
proaches to the time which Gurobi needs to find the first feasible point when tuned
to finding a feasible solution as fast as possible. We achieve this behavior by setting
the parameter values of SolutionLimit and MIPFocus to one, where Gurobi recom-
mends the latter for finding feasible solutions quickly. For a generalization of our
results we experiment with the parameter Heuristic which determines the amount of
time Gurobi spends in MIP heuristics.

As mentioned in the previous section, after the application of a presolving step
we can simply use ω̄ for enlarging the relaxed feasible set. Therefore, the main effort
in the computation of the data (Step 1 of our methods) is composed of (i) the calcu-
lation of ‖β‖1 and (ii) the identification of the rows i where βi P Zm and αi = 0 hold.
These two steps run within milliseconds for small and medium-sized problems and
take at most 0.02 seconds time for a few larger problems in our Matlab implementa-
tion. Thus, the main effort of our method occurs in Step 2 in which we need to solve
a linear optimization problem. As we do not wish to account for interfacing times
with Gurobi, we henceforth report run times of this main effort (Step 2) only. This
allows us to report the run time of the feasible rounding approaches by querying
Gurobi’s parameter runtime. We also use this parameter to report Gurobi’s run time,
and hence this yields a fair basis for a comparison.

Tables 4.2 and 4.3 report the run times and objective values of both feasible
rounding approaches and Gurobi. Moreover, our results are summarized in Fig-
ure 4.1, where we report the number of problems for which the different approaches
yield feasible points within a given time.

4.2. Computational Study in the Polyhedral Case 33

FRA-SOR FRA-SLOR Gurobi
name time objective time objective time objective

30_70_4.5_0.95_100 2.60 8878.00 0.31 19600.00 0.02 1033.00
50v-10 0.02 199236.75 0.00 1.420549e+07 0.00 31966.50
a1c1s1 0.03 23395.48 0.05 33278.38 0.08 19747.08
b2c1s1 0.06 77216.60 0.05 109582.11 0.19 63271.52
beasleyC3 0.00 4945.00 0.00 4945.00 0.05 922.00
bg512142 0.06 3.775710e+06 0.00 3.161667e+09 0.00 1.089073e+08
buildingenergy 14.94 44205.67 3.49 54541.38 0.06 1.624119e+07
core2536-691 1.88 10020.00 1.50 10554.00 0.00 892.00
core4872-1529 3.73 12826.00 2.57 13600.00 0.00 1934.00
cov1075 0.09 77.00 0.00 120.00 0.00 56.00
dfn-gwin-UUM 0.00 227208.00 0.00 488984.00 0.00 168924.00
dg012142 0.25 7.368098e+07 0.02 6.958340e+09 0.00 6.149438e+08
ex1010-pi 1.20 4641.00 0.02 11568.00 0.00 497.00
fast0507 0.52 18240.00 0.02 39500.00 0.00 321.00
fixnet6 0.00 93205.00 0.00 94980.01 0.00 22917.00
g200x740i 0.00 194475.00 0.02 197794.00 0.00 53393.00
ger50_17_trans 0.36 555975.25 0.05 657955.72 0.00 28622.18
germany50-DBM 0.92 610470.00 0.02 1.272850e+06 0.00 3.475250e+06
go19 0.05 297.00 0.00 361.00 0.00 95.00
iis-100-0-cov 0.03 100.00 0.00 100.00 0.00 35.00
iis-bupa-cov 0.17 107.00 0.02 337.00 0.00 48.00
iis-pima-cov 0.45 151.00 0.02 698.00 0.02 44.00
janos-us-DDM 0.00 1.508461e+06 0.00 3.437444e+06 0.00 5.628448e+06
k16x240 0.00 177473.00 0.00 185233.00 0.00 24175.00
m100n500k4r1 0.02 -11.00 0.00 0.00 0.00 -18.00
macrophage 0.06 1409.00 0.02 1409.00 0.00 581.00
manna81 0.02 -12869.00 0.00 0.00 0.00 -6954.00
mc11 0.02 128518.00 0.00 128518.00 0.11 13509.00
methanosarcina 1.20 7270.00 0.11 7270.00 0.00 5045.00
mik.250-1-100.1 0.00 0.00 0.00 2.000000e+07 0.00 446229.00
modglob 0.00 2.153798e+07 0.00 3.733806e+07 0.00 3.618051e+07
n15-3 18.81 89491.00 17.29 2.179122e+08 430.90 66291.00
n3-3 0.12 39030.00 0.05 6.960872e+07 0.72 22030.00
n3700 0.02 8.057113e+07 0.03 8.065223e+07 0.02 3.684658e+06
n3705 0.02 7.980784e+07 0.03 7.987856e+07 0.00 3.420830e+06
n370a 0.02 8.075517e+07 0.04 8.080776e+07 0.02 3.472063e+06
n4-3 0.03 18175.00 0.02 3.000411e+07 0.02 20115.00
n9-3 0.12 28425.00 0.05 4.680798e+07 0.52 19025.00
neos-1112782 0.02 2.477444e+13 0.00 2.477444e+13 0.00 2.248990e+12
neos-1112787 0.00 2.178675e+13 0.00 2.178675e+13 0.00 1.702341e+12
neos-1225589 0.00 9.819371e+10 0.00 9.819371e+10 0.00 3.866793e+09

TABLE 4.2: A comparison of the feasible rounding approaches and
Gurobi with regard to time (seconds) and objective value on pre-

solved models (I)

34 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

FRA-SOR FRA-SLOR Gurobi
name time objective time objective time objective

neos-1616732 0.05 197.00 0.00 200.00 0.00 173.00
neos-932816 0.05 5.723447e+06 0.00 6.728378e+06 0.02 513000.00
neos-933638 1.69 5.071322e+06 0.03 6.077942e+06 0.00 484000.00
neos-933966 1.09 5.071338e+06 0.02 6.078073e+06 0.00 484000.00
neos-934278 1.52 4.617128e+06 0.03 5.576040e+06 0.00 468000.00
neos15 0.00 145050.91 0.00 2.270029e+09 0.00 2.832237e+07
npmv07 2.23 1.049283e+11 1.05 5.832567e+11 0.05 4.608013e+11
ns4-pr3 0.11 38120.00 0.02 1.191060e+06 0.00 112045.00
ns4-pr9 0.11 36475.00 0.02 743380.00 0.00 94935.00
opm2-z10-s2 15.98 -1118.00 7.84 -3017.00 0.02 -8104.00
opm2-z11-s8 28.34 -1611.00 18.05 -2515.00 0.02 -9433.00
opm2-z12-s14 56.93 -1306.00 31.54 -3351.00 0.00 -11994.00
opm2-z12-s7 53.07 -1653.00 29.32 -4781.00 0.02 -12375.00
opm2-z7-s2 1.08 -1359.00 0.48 -955.00 0.00 -3515.00
p100x588b 0.00 448087.00 0.00 454481.00 0.00 94028.00
p6b 0.11 -4.00 0.00 0.00 0.00 -52.00
p80x400b 0.00 308006.00 0.00 313331.00 0.00 77458.00
pb-simp-nonunif 6.75 170.00 1.28 170.00 0.02 94.00
pp08a 0.00 18100.00 0.00 27519.09 0.00 13390.00
pp08aCUTS 0.00 20030.46 0.00 25880.21 0.00 15770.00
qiu 0.02 2603.42 0.02 4127.36 0.09 1120.97
queens-30 1.47 0.00 0.00 0.00 0.00 -29.00
r80x800 0.00 26891.00 0.00 40827.00 0.00 23943.00
ramos3 11.46 1077.00 0.00 2187.00 0.00 542.00
ran14x18.disj-8 0.02 42607.74 0.00 43141.00 0.00 7657.00
ran14x18 0.00 42659.02 0.02 43246.99 0.00 7657.00
ran16x16 0.00 42914.02 0.02 43727.02 0.00 7994.00
set1ch 0.00 169016.59 0.00 214781.71 0.00 133709.75
set3-10 0.03 1.993635e+06 0.02 3.192430e+06 0.00 5.086785e+06
set3-15 0.03 1.927219e+06 0.02 3.042305e+06 0.00 5.112993e+06
set3-20 0.05 1.917558e+06 0.02 2.912400e+06 0.00 4.396281e+06
seymour.disj-10 0.52 632.00 0.02 1111.00 0.00 362.00
seymour 1.91 648.00 0.00 1082.00 0.00 492.00
stockholm 1.09 785.00 7.54 838.00 17.57 150.00
sts405 0.06 405.00 0.03 405.00 0.00 357.00
sts729 0.47 729.00 0.14 729.00 0.00 665.00
tanglegram1 17.04 32576.00 0.11 32576.00 0.02 7505.00
tanglegram2 1.17 3989.00 0.02 3989.00 0.00 2022.00
toll-like 0.27 2055.00 0.02 2055.00 0.00 1134.00
zib54-UUE 0.28 2.404391e+07 0.02 2.404391e+07 0.00 2.404391e+07

TABLE 4.3: A comparison of the feasible rounding approaches and
Gurobi with regard to time (seconds) and objective value on pre-

solved models (II)

Firstly, notice that both feasible rounding approaches compute feasible points for
almost all problems from our test bed within 15 seconds. Moreover, in half the cases
(41/81) FRA-SLOR computes a feasible point at least as fast as Gurobi. Exceptions
are the binary problems opm2-z10-s2 to opm2-z7-s2 where the involved linear aux-
iliary problems seem to be particularly hard to solve. For these problems Gurobi
computes feasible points much faster.

Secondly, note that Gurobi yields feasible points within only one second for most
granular optimization problems. In 40 cases Gurobi is even faster than FRA-SLOR,
presumably due to the use of various primal heuristics. Interestingly, in 64 cases
Gurobi even yields a feasible point with a better objective value than that of the
point constructed by FRA-SOR, which is better in only 17 cases. Therefore, we may
conclude that for many granular practical applications, standard software already

4.2. Computational Study in the Polyhedral Case 35

FIGURE 4.1: Number of instances for which feasible points are com-
puted

computes feasible points quite quickly and that, in general, we cannot expect the ob-
jective value of FRA-SOR to outperform that of commonly used heuristic techniques.

However, this does not hold true for all problems, most notably for n15-3, stock-
holm and buildingenergy. For n15-3 and stockholm it takes Gurobi much longer than
both feasible rounding approaches to obtain a feasible solution. In fact, for n15-3 it
takes Gurobi 430.9 seconds to obtain the first feasible point, whereas FRA-SOR and
FRA-SLOR terminate after only 18.81 seconds and 17.29 seconds, respectively.

Let us next consider the problem buildingenergy which, like n15-3, contains no
binary variables. Here, Gurobi yields a feasible point within a fraction of a second,
whereas the feasible rounding approaches run 14.94 and 3.49 seconds, respectively.
However, the corresponding feasible point obtained by FRA-SOR has a significantly
better objective value compared to that of Gurobi. In fact, for this particular problem
(with the above mentioned parameters) it takes Gurobi more than 40 seconds until
generating a feasible point with better objective value than that of FRA-SOR.

Aside from the problems buildingenergy and n15-3 our test bed only contains 11
problems where at least half of the integer variables are not binary. We emphasize
that for these problems FRA-SOR and Gurobi run within roughly the same time and
that the feasible points obtained by our method actually yield better objective values
in 7 (out of 11) cases.

We report that our results do not qualitatively change when we vary the param-
eter Heuristic from 0.05 (default) to 1. In particular, Gurobi always spends more than
390 seconds until generating the first feasible point for the problem n15-3.

Therefore, although for the majority of practical problems exploiting granularity
does not seem to be necessary for quickly finding feasible points, at least for some in-
stances the granularity concept provides significant savings in run time. Moreover,

36 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

for most practical problems the run time of both feasible rounding approaches ex-
hibits the same order of magnitude as Gurobi. Finally we stress that the performance
of FRA-SOR is promoted by the presence of non-binary integer variables, which are
often even complicating for other approaches. Thus, applying FRA-SOR on prob-
lems containing relatively many non-binary integer variables, like it is the case for
buildingenergy and n15-3, seems to be particularly promising.

In an additional experiment we evaluated if rounded feasible points with im-
proved objective value can be found along the line segment connecting the point
generated by FRA-SOR and the optimal point of the continuous relaxation. We sys-
tematically checked this using an integer line search technique similar to the ones
presented in [12, 39]. Apart from 16 cases, this small effort always yielded an (often
significant) improvement. We remark that other methods of locally improving so-
lutions may work even better. Hence FRA-SOR may also be beneficial to generate
start solutions of local search heuristics.

One might argue that a-priori it is not known whether a general mixed-integer
linear optimization problem is granular. However, the feasible rounding approaches
always run efficiently, either terminating with a feasible point or reporting the non-
granularity of the problem. Therefore, we suggest to take both feasible rounding
approaches into consideration when choosing a method to come up with an initial
feasible point for mixed-integer linear optimization problems.

4.2.3 Comparison with Gurobi for Nongranular Optimization Problems

As mentioned before, FRA-SLOR can also yield a feasible point for optimization
problems which are not granular. Our computational study shows that this is the
case for 10 out of 70 nongranular optimization problems. These problems are listed
in Table 4.4 where we also present the run time for the computation and the objec-
tive value of the feasible points obtained by FRA-SLOR and Gurobi, as well as the
objective z f of the problem P f .

FRA-SLOR Gurobi
name n m (b) p time z f objective time objective

neos-1171692 819 819(819) 4239 0.03 0.00008 0.00 0.00 0.00
neos-1171737 1170 1170(1170) 4179 0.03 2.5 0.00 0.00 0.00
neos-1311124 546 546(546) 1643 0.00 1.75 0.00 0.00 0.00
neos-1426635 260 260(260) 796 0.00 1.75 0.00 0.00 0.00
neos-1426662 416 416(416) 1914 0.00 0.4 0.00 0.00 0.00
neos-1436709 338 338(338) 1417 0.02 0.00007 0.00 0.00 0.00
neos-1440460 234 234(234) 989 0.00 0.00008 0.00 0.00 0.00
neos-1442119 364 364(364) 1524 0.02 0.00008 0.00 0.00 0.00
neos-1442657 312 312(312) 1310 0.00 0.00008 0.00 0.00 0.00
neos13 12 1815(1815) 20852 0.55 21.065 0.00 0.02 0.00

TABLE 4.4: Nongranular instances for which FRA-SLOR yields a fea-
sible point

Note that, in contrast to Section 4.2.2, we no longer have a solid theoretical foun-
dation which explains why FRA-SLOR is able to compute a feasible point. However,
the optimal value z f might be an indicator, as well as the norm of each vector βi,
where αᵀ

i x f + βᵀ
i y f = z f holds. In fact, as shown in Table 4.4, for most of the prob-

lems z f is quite close to zero. Yet we stress that only z f = 0 guarantees the output of
a feasible point.

4.2. Computational Study in the Polyhedral Case 37

Concerning the run time and objective value, the performance of FRA-SLOR is
quite similar to that of Gurobi. One may wonder why the objective value is zero
for both approaches and all optimization problems. In fact, for the problems neos-
1171692 to neos-1442657 Gurobi and FRA-SLOR compute the (feasible) zero vector,
and for the problem neos13 the objective vector only contains 12 non-zero entries,
and the corresponding entries of the points obtained by FRA-SLOR and Gurobi are
zero.

4.2.4 Influence of Presolving Techniques

In Chapter 3 we illustrated that different modeling techniques may generally influ-
ence granularity. So far we have tested the feasible rounding approaches on pre-
solved models of optimization problems from the MIPLIB libraries. By also examin-
ing unaltered models, we shall see next that presolving techniques affect granularity
in the same manner.

Let us briefly discuss some rather apparent effects that occur when a presolving
step is applied. Firstly, the elimination of rows in the constraint matrix promotes
granularity because, as Example 3.2.6 shows, redundant constraints can become ac-
tive in the enlarged inner parallel set. Secondly, equality constraints may be elimi-
nated in a presolving step via simple or regular probing. Thirdly, constraint tighten-
ing techniques appear to have a negative influence on granularity. However, the en-
largement step in the construction of the enlarged inner parallel set actually reverses
many of them so that consequently they do not influence granularity. Moreover,
some constraint coefficients may become integral which further promotes granular-
ity, as it enables the enlargement of the corresponding constraint. Clearly these few
examples are not encompassing and we cannot use them to certainly predict the
influence of a presolving step on granularity.

However, our first glance suggests a granularity promoting influence of a pre-
solving step: Indeed, for unaltered models, we can test our methods on only 134
(instead of 151) problems, as for the remaining 17 problems the presolving step elim-
inated equality constraints which were posed on integral variables. Together with
the other effects discussed above this leads to the fact that six problems, beasleyC3,
core2536-691, core4872-1529, dg012142, go19 and pb-simp-nonunif, are only granular
when Gurobi’s presolving step is applied. On the other hand, we report two ad-
ditional granular unaltered problems, mas74 and mas76, for which only Gurobi’s
presolving step prevented granularity. In summary we obtain that 77 out of 134
unaltered optimization problems from the MIPLIB libraries are granular.

Quite similarly to the presolved case, the nonzero entries of ω only contain ones
for almost all granular optimization problems. The only exception is the problem
bg512142. Here, some of the (only 12) nonzero entries of ω obtain a value of 119. In
this case an exact computation of ω is crucial while for all other problems our results
also hold with the simple choice ω = ω̄. Finally, in contrast to the presolved models,
we find that actually eight problems possess non-integral values in the constraint
matrix B at rows where αi = 0 holds. For these models we did not enlarge the corre-
sponding constraints and hence the presolving step indeed promoted granularity.

We report run times and objective values for the unaltered problems in Tables A.1
and A.2 in the appendix. We find that the enlarged inner parallel set changes for
many optimization problems when a presolving step is applied, as we often obtain
slightly different objective values using the feasible rounding approaches on the un-
altered models (compared to the presolved models). Hence our results for unaltered

38 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

models slightly differ from those reported in Tables 4.2 and 4.3, but qualitatively
remain unaffected.

4.3 Computational Study in the Nonlinear Case

Our next computational study investigates the applicability of the feasible rounding
approach FRA-SOR to mixed-integer quadratically constrained quadratic problems
(MIQCQPs) from practice. With our study, we primarily intend to provide a proof
of concept of the method also in the nonlinear case. In particularly, we wish to shed
light on the following questions:

1. Under what circumstances is the computation of Lipschitz constants feasible
for MIQCQPs from practice?

2. Is pseudo-granularity a characteristic that can be expected in practical applica-
tions?

3. How “good” is the objective value of the feasible points computed by FRA-
SOR for pseudo-granular problems?

4. Are these results sensitive to variations of the enlargement values σ` and σu

for the box constraints?

To address these questions, we collected MIQCQPs from the MINLPLib [17]. We
looked for problems which are separable in x and y, that is, all quadratic constraints
are posed as

xᵀQxx + yᵀQyy + βᵀ
xx + βᵀ

yy ď q,

with an (n, n)-matrix Qx, an (m, m)-matrix Qy, βx P Rn, βy P Rm and q P R.
This not only allowed us to compute the Lipschitz constants using the problem

MILP from Example 2.3.7, but also to quickly obtain upper bounds for the Big-M
values using (2.5) and (2.6).

We implemented FRA-SOR in Python 3.6 using the Pyomo framework [36]. We
used Gurobi 8 for solving the auxiliary MILP and IPOPT [73] implemented in the
Coin infrastructure [21] for solving the auxiliary problem Pob

ρ . All tests were run on
a desktop computer with an Intel i7 processor with 8 cores à 3.6 GHz and 32 GB
RAM.

We computed the greatest common divisor ω of βy (and all entries of Qy) for
constraints where Qx = 0 and βx = 0 held for obtaining the enlargement parameters
σb (τ) for the corresponding (non)linear constraint. In fact, in the (non)linear case,
we set σb(τ) to tquω + (1´ 10´4)ω.

For our main analysis, we set σ` = σu = δe, with δ = 1´ 10´4, but we shall make
further remarks on the effects of changing these values in Section 4.3.3.

Our test bed contains 210 problems. Let us distinguish three cases, which vary
in their significance for our analysis. First, for 68 problems integer variables only
appear in linear constraints, that is, all nonlinear constraints are posed on continu-
ous variables only. For these problems, FRA-SOR basically reduces to the approach
presented in the polyhedral case, the only novelty being that nonlinear constraints
on x may be incorporated unaltered in the auxiliary optimization problem.

Secondly, in 10 instances integer variables appear in nonlinear constraints, but
only in a linear fashion, that is Qx ‰ 0, Qy = 0, βy ‰ 0. For such problems, we could
compute the Lipschitz constant in accordance with Example 2.3.6, which yields a
first major generalization compared to the purely polyhedral case discussed in the

4.3. Computational Study in the Nonlinear Case 39

previous Section. Notice that for both cases we can clearly answer Question 1 affir-
matively, as the computation of ‖β‖1 requires a relatively small number of opera-
tions.

Finally, the third and most interesting case leaves 132 instances, which contain
nonlinear constraints that have a nonlinear part in y. These problems are the most
challenging ones for the construction of the pseudo-granularity parameters and thus
also for the applicability of our approach.

4.3.1 Computation of Lipschitz Constants

In order to answer Question 1 comprehensively, let us start our analysis by investi-
gating the task of computing all Lipschitz constants. In fact, we were able to compute
all Lipschitz constants for 183 out of the 210 problems within a time limit of 30 min-
utes. We further report that, if successful, this task needed more than 5 seconds for
only 10 optimization problems. We list these problems in Table 4.5a next to 10 (out of
27) exemplary problems where we were not able to compute all Lipschitz constants
within 30 minutes (Table 4.5b).

m p time

edgecross10-040 90 480 26.10
edgecross10-050 90 480 51.44
edgecross10-070 90 480 1095.28
edgecross14-176 182 1456 240.80
sporttournament18 153 0 10.12
sporttournament20 190 0 16.81
sporttournament22 231 0 22.10
sporttournament24 276 0 188.42
sporttournament26 325 0 228.91
sporttournament28 378 0 470.62

(a) Lipschitz constant computable

m p

edgecross14-058 182 1456
edgecross20-040 380 4560
edgecross22-048 462 6160
edgecross24-057 552 8096
faclay20h 190 2280
faclay30h 435 8120
faclay33 528 10912
faclay35 595 13090
sporttournament30 435 0
sporttournament50 1225 0

(b) Lipschitz constant not computable

TABLE 4.5: Instances where the computation of Lipschitz constants is
especially difficult

We remark that all problems from Table 4.5 share a characteristic which makes
them particularly suitable for our analysis. All problems are epigraph reformula-
tions, in which we minimize an additional variable α, adding the constraint f (x, y) ď
α to the “original” model. Moreover, in all instances f (x, y) ď α is the only nonlinear
constraint, almost all variables appear in this constraint, and the Matrix Qy is there-
fore comparably dense (details on the sparsity can be obtained from the MINLPLib
website [54]). This means that the auxiliary MILP is much more difficult to solve
compared to problems where nonlinear constraints contain only a few integer vari-
ables with nonzero coefficients.

In Table 4.5 we also report the number of integer variables (m) and the number of
linear constraints (p) for all problems. Table 4.5a additionally lists the time needed
to solve the auxiliary MILP in seconds.

Observe that the number of variables occurring in a constraint seems to influ-
ence our ability to compute the Lipschitz constant, as well as the number of linear
constraints. However, a closer look actually reveals that the sparsity of Qy is more
important. Indeed, we need significantly more time to solve the auxiliary MILP
for edgecross10-070 compared to edgecross14-176, although the latter has more linear
constraints and more integer variables. Yet, the matrix Qy of edgecross10-070 is con-
siderably more dense, which appears to be the reason for the observed behavior.

40 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

Finally, we remark that the only real difficulties in the computation of the Lip-
schitz constant occurred with instances where a nonlinear constraint f (x, y) ď α
resulted from an epigraph reformulation. These problems were perfectly suitable
for analyzing the behavior of the time needed to solve MILP for different problem
sizes. However, we stress that a constraint coming from an epigraph reformulation
can be satisfied even without the computation of a Lipschitz constant. All we need to
do is to apply a post processing step, which sets the epigraph variable α to f (qxob, qyob),
the objective value generated by FRA-SOR.

4.3.2 Pseudo-Granular Problems and Quality of the Generated Feasible
Points

In this section we investigate Questions 2 and 3, that is, we look for pseudo-granular
instances and evaluate the quality of the feasible points generated by FRA-SOR for
such problems. We use three different methods implemented in Bonmin [13] for
our comparison. First, the outer-approximation based branch-and-cut algorithm (B-
Hyb), which is the recommended algorithmic choice for solving convex MINLPs us-
ing Bonmin. Secondly, the branch-and-bound algorithm (B-BB), which is Bonmin’s
recommendation for nonconvex MINLPs and, finally, the iterated feasibility pump
(B-iFP), which is suggested for quickly finding good solutions to very hard convex
MINLPs [16].

We set the time limit for FRA-SOR to 30 minutes, including the time needed to
solve the auxiliary MILP as well as the auxiliary NLP. We also used 30 minutes as a
time limit for all competing methods.

We report that we were able to use pseudo-granularity for the computation of
feasible points for 52 out of 183 problems. This indicates that pseudo-granularity is a
characteristic that can be expected to hold for a relevant size of practical applications.

Before we proceed with a comparison that evaluates the quality of the gener-
ated feasible points, let us initially remark that several problems were an equivalent
epigraph reformulation. Note that the output (qxob, qyob,qαob) of FRA-SOR applied to
an epigraph problem may not be expected to satisfy f (qxob, qyob) = qαob exactly, but
qαob will usually be a strict upper bound for f (qxob, qyob). However, for the original
MIQCQP the objective value f (qxob, qyob) then provides more useful information than
the auxiliary value qαob, so that it makes sense to update qαob to f (qxob, qyob) in a post
processing step after applying the FRA-SOR to epigraph reformulated problems.

Moreover, 13 of the 52 pseudo-granular problems are instances of the problems
sporttournament and autocorr_bern. Yet, these problems actually correspond to an
epigraph reformulation of an unconstrained problem. Note that for such problems
pseudo-granularity is an apparent characteristic and the point obtained by FRA-
SOR is actually not very interesting. In fact, it is easily verified that in such cases the
solution of FRA-SOR corresponds to the rounding of the solution of the original un-
constrained continuously relaxed problem. Therefore, we excluded these problems
from further comparison.

To obtain comparability for the remaining 39 pseudo-granular problems, we in-
vestigated the time which B-Hyb, B-BB and B-iFP need for computing a point that
is at least as good as the one provided by FRA-SOR. To do so, we set the parameter
“cutoff” to f (qxob, qyob), the objective value obtained by the FRA-SOR. This implicitly
added the constraint f (x, y) ď f (qxob, qyob) to the model, instructing the other meth-
ods to only search for feasible points of the prescribed quality.

4.3. Computational Study in the Nonlinear Case 41

We wish to point out the slightly biased nature of this experiment but also re-
mark that our ambition is not to benchmark FRA-SOR against all other methods.
Rather, we wish to find out if the objective values of the points generated by FRA-
SOR provide valuable information in the sense that they can potentially be used to
help speeding up exact algorithms.

The detailed results are shown in Table 4.6, where we also list a summary of the
problem data. Problems where all appearing functions are proven to be convex are
marked with an asterisk, and the columns of the table read as follows

• variables: overall number of variables, number of integer variables, number
of binary variables,

• constraints: overall number of constraints, number of nonlinear constraints,
number of nonlinear constraints where integer variables appear, number of
nonlinear constraints where integer variables appear in a nonlinear fashion,

• objective: objective value obtained by FRA-SOR and cutoff value for the other
methods,

• time (MILP): cumulative time in seconds needed to solve all auxiliary MILPs
for the computation of the Lipschitz constants,

• time (Pob
ρ): time needed to compute an optimal point of the purely continuous

nonlinear problem Pob
ρ ,

• time BB/B-Hyb/B-iFP: time needed for BB/B-Hyb/B-iFP to compute a feasible
point that meets the cutoff value in the column “objective”.

42
C

hapter
4.

U
sing

Inner
ParallelSets

for
C

om
puting

Feasible
Points

variables constraints objective time
MILP Pob

ρ B-BB B-Hyb B-iFP

cvxnonsep_normcon20r˚ (40, 10, 0) (21, 20, 10, 10) -14.65 1.37 0.05 0.09 0.20 0.14
cvxnonsep_normcon30r˚ (60, 15, 0) (31, 30, 15, 15) -14.80 1.73 0.02 0.14 0.08 0.06
ex1223a˚ (7, 4, 4) (9, 4, 4, 0) 6.07 0.00 0.05 0.03 0.09 0.08
ex4˚ (36, 25, 25) (30, 25, 25, 0) -6.70 0.00 0.03 0.08 0.81 0.83
genpooling_lee1 (49, 9, 9) (82, 20, 0, 0) -4309.83 0.00 0.70 - - -
genpooling_lee2 (53, 9, 9) (92, 30, 0, 0) -3849.24 0.00 0.37 0.45 0.42 0.64
genpooling_meyer10 (394, 187, 187) (423, 33, 0, 0) 5129659.13 0.00 0.72 5.67 5.36 2.81
genpooling_meyer15 (734, 352, 352) (768, 48, 0, 0) 6581050.03 0.00 1.35 57.19 6.92 4.28
ndcc12 (644, 46, 46) (237, 46, 0, 0) 108.11 0.00 0.14 0.30 1.77 1.69
ndcc13 (630, 42, 42) (254, 42, 0, 0) 107.57 0.00 0.23 2.23 6.75 6.14
ndcc14 (864, 54, 54) (305, 54, 0, 0) 143.31 0.00 0.59 0.80 27.48 -
ndcc15 (680, 40, 40) (306, 40, 0, 0) 102.42 0.00 0.30 0.33 4.53 3.56
ndcc16 (1080, 60, 60) (377, 60, 0, 0) 145.89 0.00 0.28 5.40 48.21 -
nous1 (50, 2, 2) (43, 28, 0, 0) 1.57 0.00 0.08 - - -
nous2 (50, 2, 2) (43, 28, 0, 0) 0.63 0.00 0.36 0.48 0.33 0.36
ringpack_10_1 (70, 50, 50) (385, 330, 330, 0) -4.17 0.00 0.22 0.12 - -
ringpack_10_2 (80, 60, 60) (475, 420, 420, 0) 0.00 0.00 0.44 0.14 2.38 -
ringpack_20_1 (215, 175, 175) (2547, 2337, 2337, 0) -4.17 0.00 161.93 0.61 - -
ringpack_20_2 (235, 195, 195) (2927, 2717, 2717, 0) 0.00 0.00 401.47 623.76 - -
ringpack_30_1 (433, 373, 373) (7898, 7433, 7433, 0) -6.26 0.00 400.71 2.25 29.98 -
smallinvDAXr1b150-165˚ (31, 30, 0) (4, 1, 1, 1) 100.66 0.14 0.05 0.20 11.79 -
smallinvDAXr1b200-220˚ (31, 30, 0) (4, 1, 1, 1) 175.19 0.12 0.05 0.16 11.61 -
smallinvDAXr2b150-165˚ (31, 30, 0) (4, 1, 1, 1) 100.66 0.12 0.06 0.25 12.01 -
smallinvDAXr2b200-220˚ (31, 30, 0) (4, 1, 1, 1) 175.19 0.14 0.05 0.12 12.34 -
smallinvDAXr3b150-165˚ (31, 30, 0) (4, 1, 1, 1) 100.66 0.14 0.03 0.23 11.70 -
smallinvDAXr3b200-220˚ (31, 30, 0) (4, 1, 1, 1) 175.19 0.12 0.06 0.13 12.11 -
smallinvDAXr4b150-165˚ (31, 30, 0) (4, 1, 1, 1) 100.66 0.12 0.05 0.20 12.79 -
smallinvDAXr4b200-220˚ (31, 30, 0) (4, 1, 1, 1) 175.19 0.15 0.05 0.12 11.84 -
smallinvDAXr5b150-165˚ (31, 30, 0) (4, 1, 1, 1) 100.66 0.12 0.05 0.23 12.12 -
smallinvDAXr5b200-220˚ (31, 30, 0) (4, 1, 1, 1) 175.19 0.12 0.05 0.16 12.73 -
sonet17v4 (136, 136, 136) (2057, 17, 17, 17) 1816146.00 2.35 6.37 9.34 30.51 -

Continued on next page

4.3.
C

om
putationalStudy

in
the

N
onlinear

C
ase

43

variables constraints objective time
MILP Pob

ρ B-BB B-Hyb B-iFP

sonet18v6 (153, 153, 153) (2466, 18, 18, 18) 6925440.00 2.56 19.75 36.06 77.93 13.21
sonet19v5 (171, 171, 171) (2926, 19, 19, 19) 4806792.00 2.75 20.45 33.84 63.97 -
sonet20v6 (190, 190, 190) (3440, 20, 20, 20) 9245610.00 3.03 36.54 182.47 119.61 -
sonet21v6 (210, 210, 210) (4011, 21, 21, 21) 10674610.00 3.32 63.06 38.74 12.63 -
sonet22v4 (231, 231, 231) (4642, 22, 22, 22) 3408192.00 3.60 122.41 48.88 13.43 -
sonet23v6 (253, 253, 253) (5336, 23, 23, 23) 12764340.00 3.91 161.96 244.36 264.25 -
sonet24v2 (276, 276, 276) (6096, 24, 24, 24) 21512599.00 4.26 636.22 - 874.83 -
supplychain (27, 3, 3) (30, 6, 0, 0) 2288.16 0.00 0.12 0.09 0.20 0.08

TABLE 4.6: Comparison of FRA-SOR with three algorithms implemented in Bonmin for 39 instances from the MINLPLib

44 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

10−1 100 101 102 103

Seconds

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f
In

s
ta

n
c
e
s

FRA-SOR

B-Hyb

B-BB

B-iFP

FIGURE 4.2: Number of instances solved to the cutoff value given by
FRA-SOR

Table 4.6 indicates that, similar to the findings for the linear case in the previous
section, the occurrence of binary variables does not prohibit pseudo-granularity for
mixed-integer nonlinear optimization problems. Moreover, in several cases we can
show pseudo-granularity for problems with a large number of linear and nonlinear
constraints and, in many cases, the explicit use of pseudo-granularity is indeed ad-
vantageous. In fact, in 22 out of 39 instances, all other methods need additional time
to compute a feasible point of the same quality.

In some cases, pseudo-granularity seems to be particularly useful. For example,
for several instances of the problem sonet it takes all other methods significantly
longer to compute a point of the prescribed quality as compared to using FRA-SOR.

On the other hand, in 15 cases B-BB finds a point of similar quality in less time.
In these cases, Pob

ρ often seems to be quite difficult to solve to optimality, like it is
the case for ringpack_30_1. Notice that these results could potentially be improved
by not computing an optimal point of Pob

ρ , but terminating earlier with some good
feasible point of Pob

ρ .
A summary of our comparison is visualized in Figure 4.2, where we plot the

number of instances solved to the quality prescribed by FRA-SOR over time. This
figure reveals that FRA-SOR terminates for many instances already within one sec-
ond, whereas all other methods need significantly more time to compute points of
similar quality for the same share of problems. This is especially true for B-Hyb and
B-iFP. Hence, our results indicates that, if the computation of the Lipschitz constant
is quick, using pseudo-granularity explicitly can be very beneficial.

We remark once more that our benchmark is performed only on pseudo-granular
instances and that the cutoff-value is given by the point obtained by FRA-SOR rather
than by some external value. Nonetheless, Figure 4.2 reveals that the application of
FRA-SOR provides valuable information if a pseudo-granular structure is present, in
the sense that we are then able to construct feasible points of a quality which is not
easily obtainable using other methods.

4.4. Conclusions and Outlook 45

4.3.3 Effects of Different Enlargement Parameters for Box Constraints

Let us next investigate how the above results depend on different values of σ` and
σu. In fact, with σ` = σu = δe, we repeated parts of the above analysis setting δ to
0.5 and 0.75, and observed three different patterns.

First, smaller values of δ made it easier for Gurobi to solve the auxiliary MILP.
Table 4.7 illustrates that, with δ = 0.5, we were able to compute Lipschitz constants
for constraints in much higher dimensions compared to δ = 1´ 10´4. This seems to
indicate that using lower values for δ can be beneficial.

m p time

edgecross14-058 182 1456 520.11
edgecross20-040 380 4560 1.98
edgecross22-048 462 6160 3.36
edgecross24-057 552 8096 14.25
faclay20h 190 2280 148.15
sporttournament30 435 0 10.40
sporttournament32 496 0 14.11

m p time

sporttournament34 561 0 87.51
sporttournament36 630 0 154.54
sporttournament38 703 0 283.66
sporttournament40 780 0 363.60
sporttournament42 861 0 1140.25
sporttournament46 1035 0 946.82
sporttournament48 1128 0 783.33

TABLE 4.7: Instances where the computation of Lipschitz constants is
possible for

δ = 0.5, but not for δ = 1´ 10´4

Yet, our second observation was that decreasing values of δ actually made it
less likely to obtain a nonempty set rT´ρ . In fact, while for δ = 1´ 10´4 this set was
nonempty for 52 out of 183 tested instances, for δ = 0.75 this was only the case for 41
out of 184 instances with available Lipschitz constants. Setting δ = 0.5 resulted in 42
problems with a nonempty set rT´ρ out of 197 instances with available Lipschitz con-
stants. Recall that pseudo-granularity for instances of the problem sporttournament is
actually trivial, so that this indeed shows a decreasing number of pseudo-granular
problems for decreasing values of δ.

Finally, different values of δ resulted in different feasible points. Setting δ = 0.75,
we were able to compute a feasible point for 27 of the 39 instances presented in
Section 4.3.2. Out of these, the objective value of the obtained feasible point was
similar to that presented in Section 4.3.2 in 6, better in 12, and worse in 9 cases.

Let us conclude this section with a short summary. First, the computation of
Lipschitz constants is possible for almost all separable MIQCQPs from practice. Sec-
ondly, we were able to use pseudo-granularity for the computation of feasible points
for roughly one out of four tested problems. This indicates that pseudo-granularity
may be expected in various practical applications. Thirdly, if pseudo-granularity is
present, then its explicit use is beneficial in a majority of cases.

Finally, we wish to remark that applying the presented ideas in combination with
other primal heuristics might greatly enhance the presented results. For instance,
postprocessing techniques like local search heuristics could be useful to improve the
quality of the generated feasible points.

4.4 Conclusions and Outlook

In this chapter, we introduced a feasibility test and a feasible rounding approach for
mixed-integer (nonlinear) optimization problems. In their basic form they make use
of a structural property called granularity which, for the nonlinear case, we extended
to the algorithmically more attractive concept of pseudo-granularity.

46 Chapter 4. Using Inner Parallel Sets for Computing Feasible Points

Indeed, tests on a subset of instances from the MIPLIB and the MINLPLib il-
lustrate that granularity in the linear setting, and pseudo-granularity in the non-
linear setting may be expected in various practical applications. Furthermore, our
results indicate that exploiting pseudo-granularity explicitly by applying the pro-
posed methods can be beneficial.

In comparison to mixed-integer nonlinear optimization problems, mixed-integer
linear optimization problems are very well studied. Hence it is no surprise that
the feasible rounding approaches seem to add more value in the the nonlinear case,
even though the possibility to explicitly compute inner parallel sets in the linear case
makes the method particularly suitable for these problems.

We stressed that feasible rounding approaches need not to be viewed as stand-
alone concepts and that the combination with other primal heuristics might greatly
improve their effectiveness. Moreover, the sizes of the Lipschitz constants are crucial
for the applicability of the presented approaches, and calculating at least good upper
bounds for them is of major importance. In special cases, for example for functions
in the description of the feasible set being separable in x and y as well as linear in
y, even the precise Lipschitz moduli can be computed. This makes these problems
especially suitable for the feasibility tests and feasible rounding approaches, partic-
ularly if used as a standalone concept.

If, on the other hand, the constraints do not fulfill such special properties, using
single, global Lipschitz constants may be insufficient to ensure pseudo-granularity.
Here, dividing the feasible set into multiple boxes, each with its own local Lipschitz
constant, increases the chance of finding a good feasible point. Therefore, combining
a feasible rounding approach with any concept like branch-and-bound, where opti-
mization problems have to be solved over multiple boxes of decreasing size, seems
to be particularly promising. We shall partly come back to these topics and investi-
gate them more fully in Chapter 7.

47

Chapter 5

Inner Parallel Cuts

In this chapter we discuss mixed-integer convex optimization problems (MICPs) and
develop a specialized cutting plane method that uses inner parallel sets as its basis.
It is structured as follows.

In Section 5.1 we outline the special role of MICP, discuss some basic solution
techniques and thus embed the ideas introduced in this chapter in the literature.
Section 5.2 revisits the concept of granularity and dwells on the difference between
the linear and the nonlinear case as a central motivation for the development of a
cutting plane method that uses inner parallel sets as its basis.

Subsequently, Section 5.3 presents an inner parallel cutting plane method (IPCP),
analyzes its properties with regard to convergence and discusses ways in which it
can be incorporated into state-of-the-art methods that aim to solve MICPs. In Sec-
tion 5.4 we provide worst case bounds on the objective values of the points obtained
by this approach. Its applicability is studied in computational experiments on op-
timization problems from the literature in Section 5.5, before Section 5.6 concludes
this chapter with some final remarks.

5.1 The Special Role of Mixed-Integer Convex Optimization

Mixed-Integer convex optimization problems occur in a variety of optimal decision
problems from science, engineering, and economic applications (cf. the application
matrix provided in [10]). This modeling framework allows us to accurately account
for the fact that causal relations are often nonlinear in practice. Equally important,
its practical complexity is just at the margin in the sense that we are able to compute
optimal solutions to decision problems of relevant sizes. This makes a contribution
in this field particularly appealing.

Leveraging on the development of powerful MILP-software which we have out-
lined in Chapter 1, one fruitful approach for solving MICPs is outer approximation
(OA) [25, 28], where convex constraints are relaxed by a finite number of half-spaces.
Based on the same principle, cutting-plane methods have been presented, includ-
ing the use of extended cutting planes [74] and extended supporting hyperplanes
[48]. In all these approaches, solving MICPs is reduced to solving a finite number of
MILPs (and continuous nonlinear optimization problems) for which effective solvers
exist.

For OA-based approaches to work well, convex constraints need to be well ap-
proximated by a preferably small number of half-spaces. While this can sometimes
be achieved, e.g. by constructing the approximation in a higher dimensional space
[38, 51], clearly good half-spaces that tightly outer-approximate convex constraints
of general MICPs are crucially important for solving MICPs.

48 Chapter 5. Inner Parallel Cuts

A second important aspect for solving MICPs is the availability of good feasible
points. As already mentioned earlier, they help to speed up convergence by provid-
ing an upper bound for the objective value - especially in hybrid approaches that
combine outer approximation with branch and bound concepts. Moreover, due to
the notorious difficulty of solving the latter, the time needed for convergence of ex-
act processes might sometimes not be practical. In such cases, a feasible point can be
considered a solution, although its objective value might not be optimal. Recall that
several existing ideas for the construction of feasible points were already outlined in
Chapter 2.

In this chapter, we suggest an inner parallel cutting plane method (IPCP) that
neatly combines these two important aspects, i.e. quickly constructing a feasible
point and generating valid cutting planes for OA-based methods. Remarkably, it
only needs to solve linear optimization problems (LPs) which ensures fast conver-
gence for practical applications. The proposed method is inspired by feasible round-
ing approaches for MILPs introduced in the previous chapters and Kelley’s (ex-
tended) cutting plane method [44, 74]. Before we introduce the method formally,
let us next motivate its development by revisiting the advantages of the granularity
concept in the linear compared to the nonlinear case.

5.2 Setting and Motivation

In this chapter we consider mixed-integer convex optimization problems of the form

MICP : min
(x,y)PRnˆZm

cᵀx + dᵀy s.t. gi(x, y) ď 0, i P I,

Ax + By ď b, y` ď y ď yu,

with c P Rn and d P Rm and real-valued convex constraint functions gi, i P I, defined
on RnˆRm. Note that the assumption of a linear objective function is not restrictive.
In fact, in the case of a nonlinear objective function f , we can minimize an additional
variable z P R with the additional constraint f (x, y) ď z which fits the model MICP
(cf. Section 5.3.4 for further discussion).

In this chapter, we write the purely continuous relaxation of the feasible set M of
MICP as

xM = D0 X G,

where the set D0 := D includes all linear and the set G all nonlinear constraint func-
tions. Here we replace set D by D0 to be able to capture the iteratively changing
polyhedral outer approximation of the relaxed feasible set. To guarantee conver-
gence of the method, in this chapter we impose the assumption that the set described
by the linear restrictions D0 is bounded.

We will make frequent use of the monotonicity of inner parallel sets and their
compatibility with intersections. To be more precise, for S1 Ď S2 Ď (Rn ˆRm) we
have S´1 Ď S´2 and (S1 X S2)´ = S´1 X S´2 .

We specify the method for the enlarged inner parallel set (D0
δ)
´ from Equation

(3.7) but stress that also other enlargement techniques are possible. Using this tech-
nique for some fixed δ P [0, 1), a problem is granular if the enlarged inner parallel
set

xM´
δ := (D0

δ)
´ X G

is nonempty.

5.2. Setting and Motivation 49

y

x

D0
δ

M1/2

1

2

3

31 2

4

xMg1/2

y

x

(D0
δ)
´

(xMg1/2)´

= (xM1/2)
´
δ

1

2

3

31 2

4

FIGURE 5.1: Construction of the enlarged inner parallel set for an
MICP

Remark 5.2.1. The developments in this section would be equally possible after applying an
enlargement step to the nonlinear constraints of the set G as presented in Section 3.3. Yet, we
propose not to enlarge nonlinear constraints in this context mainly because this will allow
deeper cutting planes and thus a faster convergence of the method we present.

The developments in this chapter only need as a foundation the concept of gran-
ularity (and not that of pseudo-granularity). This is because, instead of computing
approximations of the inner parallel set via Lipschitz constants, we will be able to
work with polyhedral approximations directly for which a closed-form expression
is available. Let us next elaborate this more fully.

Recall that, while consistency of T´ρ (cf. Equation (3.9)) for some ρ entailed gran-
ularity of the underlying MICP, there are granular MICPs with empty sets T´ρ for
any ρ P R. We illustrate this by the following example which we shall also revisit in
Section 5.3.1.

Example 5.2.2. Let us consider the two dimensional mixed-integer set

Mr := t(x, y) P RˆZ| (x´ 3)2 + (y´ 3)2 ď r2, ´ 2
3 x + y ď 2, 1

3 x + y ě 2, x ď 3u

with r ě 0, which is illustrated on the left-hand side of Figure 5.1 for r = 1/2. In this
notation we may write xMr = D0 X Gr with

D0 := t(x, y) P R2| ´ 2
3 x + y ď 2, 1

3 x + y ě 2, x ď 3u

and gr(x, y) := (x´ 3)2 + (y´ 3)2´ r2. Observe that an enlargement of D0 and Gr is not
possible, as all constraint functions contain continuous variables with nonzero coefficients.
Consequently, all sets D0

δ and (D0
δ)
´ coincide with D0 and (D0)´, respectively. This further

implies that the sets Tr and rTr,ρ coincide and that the notion of pseudo-granularity hence
offers no advantage in this example.

Let us first study the case r = 1/2 illustrated on the right-hand side of Figure 5.1. Using
the relation

t(3, 3)ᵀu+ t0u ˆ B8(0, 1
2) = t3u ˆ [5

2 , 7
2] Ď G1/2

we obtain (3, 3)ᵀ P G´1/2. Moreover, with g1/2(3, 5
2) = g1/2(3, 7

2) = 0 it is easily verified
that G´1/2 actually coincides with the singleton t(3, 3)ᵀu. With ‖β‖1 = (1

2 , 1
2)

ᵀ we thus

50 Chapter 5. Inner Parallel Cuts

obtain the (enlarged) inner parallel set

xM´
1/2 = t(x, y) P R2| ´ 2

3 x + y ď 3
2 , 1

3 x + y ě 5
2 , x ď 3u X t(3, 3)ᵀu = t(3, 3)ᵀu.

Hence, the set M1/2 is granular. With similar arguments it is not hard to see that Mr is
granular for all r ě 1/2, but not granular for any 0 ď r ă 1/2.

Furthermore, for any r ě 0 the function gr possesses the Lipschitz modulus Lg
8 = 4 on

D0 in the sense of Assumption 2.3.2. This results in

T´r = t(x, y) P R2| ´ 2
3 x + y ď 3

2 , 1
3 x + y ě 5

2 , x ď 3, (x´ 3)2 + (y´ 3)2 ď r2 ´ 2u

for all r ě 0 so that T is empty for any 0 ď r ă
?

2.
Altogether this shows that for all r P [1/2,

?
2) the set Mr is granular, while Tr is empty.

As indicated earlier, none of the enlargement techniques outlined in Chapter 3 are available
in our example and the fact that T´r is empty for any r P [1/2,

?
2) hence also implies that

the problem is not pseudo-granular for these choices of r.

Note that the undesirable effect in the computation of Tr stems from the fact
that we use global information (i.e. Lipschitz constants) to locally approximate the
enlarged inner parallel set. In contrast, the IPCP will only use local information at
given points and thereby iteratively create polyhedral outer approximations of the
enlarged inner parallel set. This, in addition to the cutting planes generated on the
fly, will turn out to be the main potential of the proposed method.

5.3 The Inner Parallel Cutting Plane Method

In this section we present the inner parallel cutting plane method and outline how
inner parallel cuts can be used to support OA-based methods. We show conver-
gence of the method, demonstrate how cuts can be modified so that they are valid
for MICP and conclude with some remarks on the effects of a nonlinear objective
function.

5.3.1 Statement of the Algorithm

The IPCP is specified in detail in Algorithm 1 and may be summarized as follows.
We start by minimizing cᵀx + dᵀy over (D0

δ)
´, denoting the optimization problem

by LP0. If (D0
δ)
´ is empty, then we can certify that xM´

δ is empty as well. Otherwise,
we compute an optimal point (px0, py0) of LP0 and round it to (qx0, qy0). Note that
this is possible due to our boundedness assumption on D0. In view of (qx0, qy0) P
D0

δ X (Rn ˆZm) and
M = D0

δ X GX (Rn ˆZm),

we call the point (qx0, qy0) ε-feasible with a prescribed tolerance ε ě 0 if

gi(qx0, qy0) ď ε, i P I,

holds. If (qx0, qy0) is ε-feasible, then the algorithm terminates.
Otherwise, we update the set (D0

δ)
´ to (D1

δ)
´ by adding an inner parallel cut

(C0)´. The latter corresponds to the inner parallel set of a usual Kelley cutting plane
C0, but is defined via the rounded point (qx0, qy0) instead of the optimal point (px0, py0).

Note that this is necessary, as defining a cutting plane via (px0, py0) might just add
a redundant constraint in cases where we have gi(px0, py0) ď ε, i P I, but gi(qx0, qy0) ą ε

5.3. The Inner Parallel Cutting Plane Method 51

Algorithm 1: Inner parallel cutting plane method (IPCP)

Data: A problem MICP with bounded set D0, an enlargement parameter
δ P [0, 1) and a feasibility tolerance ε ą 0

Result: A good ε-feasible point (qx‹, qy‹) P M, or a certificate for xM´
δ = H

1 begin
2 set k Ð ´1 and (D0

δ)
´ Ð t(x, y) P Rn ˆRm| Ax + By ď

tbuω + δω´ 1
2 ‖β‖1 , y` + (1

2 ´ δ)e ď y ď yu + (δ´ 1
2)eu

3 if (D0
δ)
´ = H then

4 return xM´
δ = H

5 end
6 repeat
7 set k Ð k + 1
8 compute an optimal point (pxk, pyk) of the problem

LPk : min
(x,y)PRnˆRm

cᵀx + dᵀy s.t. (x, y) P (Dk
δ)
´

and round it to (qxk, qyk). Choose some `k P I with

g`k(qx
k, qyk) = max

iPI
gi(qxk, qyk)

if g`k(qx
k, qyk) ą ε then

9 set (Dk+1
δ)´ Ð (Dk

δ)
´ X (Ck)´, with

(Ck)´ Ð

(x, y) P Rn ˆRm| g`k(qx
k, qyk) +

〈
∇g`k(qx

k, qyk),
(

x´ qxk

y´ qyk

)〉
+ 1

2

∥∥∇yg`k(qx
k, qyk)

∥∥
1 ď 0

(

10

11 end
12 until g`k(qx

k, qyk) ď ε or (Dk+1
δ)´ = H;

13 if (Dk+1
δ)´ = H then

14 return xM´
δ = H

15 else
16 return (qx‹, qy‹)Ð (qxk, qyk)
17 end
18 end

for some i. Moreover, due to the polyhedrality of a cutting plane, we have a closed-
form expression (cf. line 10 of Algorithm 1) for the corresponding inner parallel set.
The steps described above are then repeated, until we either find (Dk+1

δ)´ = H and
thus xM´

δ = H, or an ε-feasible point (qxk, qyk).
Let us emphasize that, by the intersection compatibility of inner parallel sets, for

each k the set

(Dk+1
δ)´ = (D0

δ)
´ X

k
č

j=0

(Cj)´ (5.1)

52 Chapter 5. Inner Parallel Cuts

y

x

(pL0
δ)
´

(pL1
δ)
´

(qx0, qy0)

(C1)´

(qx1, qy1)

= (qx‹, qy‹)

31 2

1

2

3

4

FIGURE 5.2: Idea of the IPCP for the MICP from Example 5.3.1

generated in line 10 of Algorithm 1 is the inner parallel set of

Dk+1
δ := D0

δ X

k
č

j=0

Cj, (5.2)

with the Kelley cutting planes

Cj :=
"

(x, y) P Rn ˆRm| g`j(qx
j, qyj) +

〈
∇g`j(qx

j, qyj),
(

x´ qxj

y´ qyj

)〉
ď 0

*

(5.3)

to G, which can be used for OA-based methods.

Example 5.3.1. The IPCP is visualized in Figure 5.2 for an MICP with the feasible set M1/2
from Example 5.2.2 and the objective function ´x + y. In the first iteration, the algorithm
computes the infeasible point (qx0, qy0) = (3, 2) and adds the inner parallel cut

(C1)´ = t(x, y) P R2| y ě 2.875u.

It then terminates in the second iteration, returning the feasible point (qx‹, qy‹) = (3, 3)ᵀ.

While the analysis of Section 5.3.2 will expose that granularity (xM´
δ ‰ H) is

a sufficient condition for the IPCP to compute an ε-feasible point, Example 5.3.1
already shows that granularity is not necessary. In fact, while none of the sets Mr
with 0 ď r ă 1/2 from Example 5.2.2 is granular, the IPCP still computes the feasible
point (qx‹, qy‹) = (3, 3)ᵀ after two iterations.

Note that for I = H the MICP is an MILP, and the IPCP then corresponds to the
FRA-SOR from Chapter 4. In particular, this entails that it terminates after the first
iteration. Moreover, for m = 0, the IPCP collapses to Kelley’s cutting plane method.

Remark 5.3.2. We already mentioned in Remark 4.1.1 that when continuous variables are
present we might be able to improve the objective value when applying a postprocessing step.

5.3. The Inner Parallel Cutting Plane Method 53

In fact, fixing the integer variables to qy‹, we may update qx‹ by computing an optimal point
of the continuous convex optimization problem

CP(qy‹) : min
xPRn

cᵀx s.t. (x, qy‹) P xM.

Indeed, in our computational study we observed that this postprocessing step was useful for
many applications.

5.3.2 Convergence of the Algorithm

Before we proceed by studying the convergence of the algorithm, let us initially es-
tablish the validity of the two termination criteria of the IPCP for the claimed outputs
(either finding an ε-feasible point or certifying xM´

δ = H).
Firstly, if g`k(qx

k, qyk) ď ε holds in some iteration k, then due to (qxk, qyk) P D0 and
qyk P Zm the output from line 16 of Algorithm 1 is indeed an ε-feasible point.

Secondly, the subsequent Lemma 5.3.3 will show that for any k the set (Dk
δ)
´

provides an outer approximation of the enlarged inner parallel set xM´
δ so that also

the statement of lines 13 and 14 in Algorithm 1 is correct.

Lemma 5.3.3. xM´
δ Ď (Dk

δ)
´ holds for all k P N0.

Proof. Due to the convexity of the functions gi, i P I, and the resulting outer approx-
imation property of the sets Cj, 0 ď j ď k, for G we have

xMδ = D0
δ X G Ď D0

δ X

k´1
č

j=0

Cj = Dk
δ (5.4)

and, by the monotonicity of inner parallel sets, xM´
δ Ď (Dk

δ)
´.

Lemma 5.3.3 substantiates the already mentioned advantage of the IPCP: While
determining the set T´δ required the computation of global Lipschitz constants which
lead to an inner approximation, inner parallel sets of Kelley cutting planes are ex-
plicitly computable from local information and thus create outer approximations of
the enlarged inner parallel set.

Let us next investigate the convergence properties of the IPCP. We will initially
establish that the inner parallel set of a cutting plane not only excludes the point
(qxk, qyk), but also all other points that are potentially rounded to (qxk, qyk).

Lemma 5.3.4. For any iterate (qxk, qyk) and any rounding (qx, qy) of any point (px, py) P (Ck)´

we have (qx, qy) ‰ (qxk, qyk).

Proof. Firstly, (px, py) P (Ck)´ and rounding properties imply

(qx, qy) P (px, py) + K Ď Ck.

Moreover, because Ck corresponds to a cutting plane that is generated via (qxk, qyk)
(cf. (5.3)), clearly we also have (qxk, qyk) R Ck so that the assertion is shown.

Note that the proof of Lemma 5.3.4 does not use specific information about the
cutting planes, but only requires that the point (qxk, qyk) is excluded from subsequent
iterations. Hence, this result is actually equally valid for methods that generate a se-
quence of inner parallel sets of other (not necessarily gradient based) cutting planes.

54 Chapter 5. Inner Parallel Cuts

Proposition 5.3.5. The sequence
(
(qxk, qyk)

)
contains pairwise different points.

Proof. For any (qxk1 , qyk1), (qxk2 , qyk2) P
(
(qxk, qyk)

)
with k2 ą k1 we have (pxk2 , pyk2) P

(Ck1)´ which, together with Lemma 5.3.4, shows the assertion.

We can now prove our first main result for purely integer convex optimization
problems (n = 0).

Theorem 5.3.6. For any purely integer convex optimization problem, any ε ě 0, and any
δ P [0, 1) the IPCP terminates in finitely many steps with either an ε-feasible point or a
certificate for xM´

δ = H.

Proof. If Algorithm 1 terminates after finitely many steps due to (Dk+1
δ)´ = H, this

is a certificate for xM´
δ = H. Otherwise, assume infinitely many iterations and let

(Dk+1
δ)´ ‰ H hold in all iterations. Then Proposition 5.3.5 and the fact that the

sequence of iterates (qyk) lies in the bounded set D lead to a contradiction. Conse-
quently, the IPCP terminates after finitely many steps.

Hence, for granular integer convex optimization problems, we may even set ε
to zero and find a feasible point after finitely many iterations. Let us next extend
the finding from Theorem 5.3.6 to the general mixed-integer case where, like in the
purely continuous case, the presence of continuous variables leads to the necessity
to choose a positive termination tolerance ε.

Theorem 5.3.7. For any mixed-integer convex optimization problem, any ε ą 0, and any
δ P [0, 1) the IPCP terminates in finitely many steps with either an ε-feasible point or a
certificate for xM´

δ = H.

Proof. As in the proof of Theorem 5.3.6 we may assume (Dk+1
δ)´ ‰ H in all itera-

tions.
Then, as D0 is bounded, there exists a subsequence

(
(qxk, qyk)

)
with limk(qxk, qyk) =

(rx, ry) P D0 X (Rn ˆZm) and g`k(qx
k, qyk) ą ε for all k P N0. Moreover, since the index

set I is finite, we may choose this subsequence so that `k = r` P I holds for all k P N0.
Taking the limit then results in g

r`
(rx, ry) ě ε.

On the other hand, for any k P N0 the point (qxk+1, qyk+1) lies in Ck, as it is a
rounding of the optimal point (pxk+1, pyk+1) P (Dk+1

δ)´ Ď (Ck)´. Hence it satisfies the
inequality

0 ě g
r`
(qxk, qyk) +

〈
∇g

r`
(qxk, qyk),

(
qxk+1 ´ qxk

qyk+1 ´ qyk

)〉
which, in the limit, yields the contradiction 0 ě g

r`
(rx, ry).

We shall demonstrate next that we indeed need ε ą 0 to guarantee convergence
of the inner parallel cutting plane method in the general mixed integer case.

Example 5.3.8. Consider the two dimensional mixed-integer problem

MICP : min
x,y

´x s.t. g(x, y) ď 0, 0 ď x ď 1, 0 ď y ď 1, y P Z

with g(x, y) := x2 + (y´ 1
2)

2 ´ 1
4 . Note that the feasible set of MICP consists merely of

the two points t(0, 0), (0, 1)u, and that the enlarged inner parallel set xM´
δ contains only the

point (x̄, ȳ) = (0, 1
2) for any δ P [0, 1). By Theorem 5.3.7, this implies that for any ε ą 0

the IPCP finds an ε-feasible point in finitely many iterations.

5.3. The Inner Parallel Cutting Plane Method 55

Assume that the algorithm even terminates for ε = 0 in any iteration k ě 0. This can
only happen if (pxk, pyk) P t0u ˆ [1

2 ´ δ, 1
2 + δ] holds. Then the point (x̄, ȳ) P xM´

δ Ď (Dk
δ)
´

(Lemma 5.3.3) possesses the same objective function value as the optimal point (pxk, pyk) of
LPk and is, thus, also optimal for LPk. We will show, however, that (x̄, ȳ) cannot be optimal
for any problem LPk with k ě 0, leading to a contradiction.

In fact, independently of the choice of δ, (x̄, ȳ) is clearly not optimal for the problem LP0

with the feasible set

(D0
δ)
´ = t(x, y) P R2| 0 ď x ď 1, ´δ + 1

2 ď y ď δ + 1
2u.

Therefore, for any k ě 1 the optimality of (x̄, ȳ) for LPk requires the activity of at least one of
the cutting planes (Cj)´, j P t0, . . . , k´ 1u, constructed so far. For the corresponding index
j this means

(qxj)2 + (qyj ´ 1
2)

2 ´ 1
4 +

B(
2qxj

2qyj ´ 1

)
,
(

0´ qxj

1
2 ´ qyj

)F
+ 1

2 |2qy
j ´ 1| = 0.

Due to qyj P t0, 1u this condition implies qxj = 0, so that (qxj, qyj) lies in M and the algorithm
must already have terminated in iteration j.

Hence, for purely integer convex optimization problems with an nonempty en-
larged inner parallel set, the IPCP terminates with a feasible point, whereas in the
mixed-integer case, it may produce only an outer approximation of a feasible point.

Remark 5.3.9. Central to the convergence results of the IPCP is the assumption that the
points (pxk, pyk) are feasible for LPk, which ensures that the sequence of iterates ((qxk, qyk))
contains pairwise different points (cf. Lemma 5.3.4). Because LP-solvers work with feasi-
bility tolerances, this assumption may sometimes be violated in practice. This will indeed
become relevant in our numerical study in Section 5.5. The next arguments illustrate that
convergence of the method can still be guaranteed, as long as the feasibility tolerance εLP of
the LP-solver is smaller than the feasibility tolerance ε of IPCP.

More specifically, for iterations k1, k2 P N with k1 ă k2 let (pxk2 , pyk2) be εLP-feasible for
(Ck1)´, that is,

g`k1
(qxk1 , qyk1) +

〈
∇g`k1

(qxk1 , qyk1),
(

pxk2 ´ qxk1

pyk2 ´ qyk1

)〉
+ 1

2

∥∥∇yg`k(qx
k1 , qyk1)

∥∥
1 ď εLP (5.5)

holds and let εLP ă ε hold.
Now assume that two iterates generated by the IPCP are identical, that is (qxk1 , qyk1) =

(qxk2 , qyk2). This yields pxk2 = qxk1 and |pyk2 ´ qyk1 |(= |pyk2 ´ qyk2 |) ď 1
2 and thus by Hölder’s

inequality 〈
∇g`k1

(qxk1 , qyk1),
(

pxk2 ´ qxk1

pyk2 ´ qyk1

)〉
+ 1

2

∥∥∇yg`k(qx
k1 , qyk1)

∥∥
1 ě 0. (5.6)

Inequalities (5.5) and (5.6) imply g`k1
(qxk1 , qyk1) ď εLP, which contradicts g`k1

(qxk1 , qyk1) ą ε,
the condition for generating the cutting plane (Ck1)´.

This recovers Proposition 5.3.5. Hence, we may simply reuse all arguments presented
in Theorem 5.3.6 to show convergence in the purely integer case for 0 ă εLP ă ε. The
proof of Theorem 5.3.7 can also be extended to such cases with small modifications. Indeed,
perturbing the right-hand sides of the constraints of (Dj

δ)
´, j = 1, . . . , k + 1, by εLP allows

us to reuse all presented arguments.

56 Chapter 5. Inner Parallel Cuts

5.3.3 Using Inner Parallel Cuts in Outer Approximation Based Methods

There are different possibilities to integrate the IPCP into OA-based methods. In
particular, it seems very promising to initially run the IPCP with the post processing
step from Remark 4.1.1 and then to initialize the auxiliary MILP with a number of
reversed inner parallel cutting planes Ck. To be more specific, let

(Ck)´ = t(x, y) P Rn ˆRm| αᵀ
k x + βᵀ

k y ď bku

be some cutting plane provided by the IPCP, then by (5.4) the reversed inner parallel
cut (RIPC)

αᵀ
k x + βᵀ

k y ď bk +
1
2 ‖βk‖1

is valid for MICP and may help to better approximate the latter. In addition, if the
method successfully returned a feasible point (qx‹, qy‹), we can incorporate into the
auxiliary MILP further potentially useful information, like the objective bound

cᵀx + dᵀy ď cᵀqx‹ + dᵀqy‹

and the linearizations

g`(qx‹, qy‹) +
〈
∇g`(qx‹, qy‹),

(
x´ qx‹
qy´ y‹

)〉
ď 0

of some (almost) active constraints g`.
We further remark that the IPCP can be started in any iteration of OA-based

methods, where D0 then corresponds to the relaxed feasible set of the auxiliary
MILP of the current iteration. Moreover, instead of waiting for the method to con-
verge, one could also run it for a certain number of iterations until some criterion
concerning the quality of enhancement of the outer approximation is satisfied.

5.3.4 The Effect of a Nonlinear Objective Function

Within the scope of solving practical problems, one often has to deal with a nonlin-
ear convex objective function f : Rn ˆRm Ñ R. If the latter can be, from a practical
perspective, efficiently minimized over a polyhedron, we may just apply the IPCP
as formulated in Algorithm 1, replacing cᵀx + dᵀy with f . Often, however, the poly-
hedrality of the sub-problems LPk is beneficial. Then we may apply the IPCP to
the equivalent epigraph reformulation of MICP, where we minimize an additional
continuous variable z under the constraints (x, y, z) P MˆR and f (x, y) ď z. The
following proposition shows that this reformulation preserves granularity.

Proposition 5.3.10. The mixed-integer convex optimization problem

MICP : min
x,y

f (x, y) s.t. (x, y) P M

is granular if and only if its epigraph reformulation

MICPepi : min
x,y,z

z s.t. (x, y) P M, f (x, y) ď z

is granular.

Proof. First, the granularity of MICPepi implies the existence of some δ P [0, 1) and
(x̄, ȳ) P xM´

δ which immediately entails the granularity of MICP. It remains to show
that the granularity of MICP implies the granularity of MICPepi.

5.4. Bounds on the Objective Value 57

In fact, if MICP is granular, then there exist some δ P [0, 1) and (x̄, ȳ) P xM´
δ .

Hence, it suffices to show the existence of some z̄ P R which satisfies f (x̄, ȳ + η) ď z̄
for all η P B8(0, 1

2). Since, being convex on Rn ˆRm, the function f is continuous,
and since the set B8(0, 1

2) is nonempty and compact, the assertion follows from the
Weierstrass theorem.

We remark that the convexity of MICP does not play a role for the validity of
Proposition 5.3.10 and that the epigraph reformulation hence generally preserves
granularity for continuous objective functions.

To have the epigraph reformulation MICPepi meet the input requirements of the
IPCP, in addition to its assumptions on MICP, lower and upper bounds for the aux-
iliary variable z must be available which do not interfere with the values of f on
M. A lower bound for z, which is necessary for the boundedness of the problem
LP0, can be obtained by computing the minimal value of f over the polyhedral set
D0 Ě M. For obtaining an upper bound, we may, e.g., employ techniques from
interval arithmetic (cf., e.g., [35, 57]). From a practical perspective, however, the
explicit knowledge of this upper bound is not necessary because z is minimized in
each iteration of the IPCP.

Let us briefly discuss the case when the objective function f is the only source
of nonlinearity in the problem MICP, that is, its feasible set M is polyhedral. Then,
although the feasible set of MICPepi is nonpolyhedral, all iterates of the IPCP ap-
plied to MICPepi are feasible for MICP. Yet, the IPCP iteratively incorporates more
information from the objective function by adding inner parallel objective cuts

f (qxk, qyk) +

〈
∇ f (qxk, qyk),

(
x´ qxk

y´ qyk

)〉
+ 1

2

∥∥∇y f (qxk, qyk)
∥∥

1 ď z

until the termination criterion f (qxk, qyk) ď qzk + ε is met. Any premature termination
of the IPCP hence at least yields a feasible point for MICP, but with an idle potential
to improve its objective value.

We shall further discuss these effects in our computational study in Section 5.5
for several practical applications with a nonlinear objective function.

5.4 Bounds on the Objective Value

In this section we give a theoretical analysis for the objective values of the iterates
generated by the IPCP. Note that, if successful, the IPCP does not heuristically gen-
erate some arbitrary ε-feasible point of the problem MICP, but takes into account its
objective function, as well as a set that is closely linked to its feasible set M. Clearly,
due to the necessary modifications of the feasible set on the transition from MICP
to LPk, as well as due to rounding effects, we cannot expect the IPCP to compute an
optimal point of MICP. We can, however, derive bounds on the objective value of
the iterates that merely depend on the problem data. To evaluate the quality of some
IPCP iterate (qxk, qyk), we will compare its objective value qvk := cᵀqxk + dᵀqyk with the
optimal value v of MICP.

5.4.1 A-Posteriori Bounds

As the value v is unknown, a computable upper bound of qvk ´ v relies on a com-
putable lower bound for v. Let us mention three possibilities to establish such

58 Chapter 5. Inner Parallel Cuts

bounds which are a-posteriori in the sense that, upon termination of the IPCP, addi-
tional auxiliary optimization problems have to be solved.

Firstly, we may compare qvk to the optimal value vCP of the continuous relaxation

CP : min
(x,y)PRnˆRm

cᵀx + dᵀy s.t. (x, y) P D0, gi(x, y) ď 0, i P I,

of MICP and obtain the upper bound

qvk ´ v ď qvk ´ vCP. (5.7)

Observe that for the construction of the relaxed problem CP it would not make
sense to replace D0 by an enlargement D0

δ with δ ą 0 since this would lead to a
worse lower bound vCP,δ ď vCP. On the other hand, in the term qvk ´ vCP the value
qvk does depend on δ as it is computed via an enlarged inner parallel set in line 8 of
Algorithm 1.

In this approach it would neither make sense to add the reversed inner parallel
cuts (RIPCs) available in iteration k to the feasible set xM of CP, that is, to replace the
set D0 by Dk := D0 X

Şk´1
j=1 Cj. In fact, by (5.4) the set Dk forms an outer approxima-

tion for xM and the RIPCs are, thus, redundant in this construction.
A second possibility to lower bound v is the computation of the optimal value of

the MILP relaxation of MICP. While employing a positive enlargement parameter
δ still would not make sense in this approach, including the available RIPCs can be
expected to improve the bound since in the MILP relaxation the original nonlinear
constraints gi, i P I, are dropped. By the relaxation property of RIPCs from (5.4) the
optimal value vk

MILP of the problem

MILPk : min
(x,y)PRnˆRm

cᵀx + dᵀy s.t. (x, y) P Dk X (Rn ˆZm)

is a valid lower bound for v, leading to the estimate

qvk ´ v ď qvk ´ vk
MILP. (5.8)

Note that the gap v´ vk
MILP decreases with increasing values of k when useful RIPCs

are added to D0. A tight bound qvk ´ vk
MILP thus not only demonstrates that the gen-

erated feasible point is of good quality, but also points to the fact that the gener-
ated cutting planes are probably helpful. Moreover, qvk ´ vk

MILP can be compared to
qvk ´ v0

MILP to determine more specifically if the RIPCs are useful. We shall come
back to this comparison in our computational study in Section 5.5.

Thirdly, dropping the integrality constraints of MILPk yields the continuous lin-
ear problem

LPk : min
(x,y)PRnˆRm

cᵀx + dᵀy s.t. (x, y) P Dk (5.9)

with minimum value vk
LP. This value satisfies vk

LP ď vk
MILP and, thus,

qvk ´ v ď qvk ´ vk
LP (5.10)

is another option for a computable upper bound. Whereas the explicit computations
of the upper bounds (5.7) and (5.8) need the solution of a CP and an MILP, respec-
tively, for the potentially larger bound from (5.10) we only need to solve an LP.

5.4. Bounds on the Objective Value 59

5.4.2 A-Priori Bounds

In contrast to a-posteriori bounds, a-priori bounds do not rely on the solution of ad-
ditional optimization problems, but they merely depend on the problem data. Such
bounds facilitate the sensitivity analysis of the algorithmic output with respect to
changes in the input data. Since they usually involve constants which are hard to
compute explicitly (see below for details), a-priori bounds often are rather of theo-
retical than of computational interest.

Recall that in the feasible rounding approach FRA-SOR for general MINLPs from
Chapter 4, the computed optimal point (xob, yob) of f over rT´ρ is rounded to (qxob, qyob)

with objective value qvob := f (qxob, qyob). In [62] an a-priori bound for the deviation
qvob ´ v is given. We will state this bound for the setting of the present MICP and
show that an analogous a-priori bound also holds for qvk ´ v.

Earlier, we emphasized that a crucial advantage of the IPCP is that it does not
necessarily need granularity for the computation of a feasible point (cf., e.g., Exam-
ple 5.3.1). Yet, the bound from [62] is stated under more restrictive assumptions,
including that of a nonempty inner approximation of the enlarged inner parallel set.
To adapt this bound to the present setting and to show its validity for the IPCP, we
will initially also rely on these assumptions. Subsequently we shall demonstrate that
it is possible to state a similar, but slightly different bound for qvk ´ v under signifi-
cantly milder assumptions.

For the statement of the bound from [62] let δ = 0 and let L8 denote the vector
of Lipschitz constants from Assumption 2.3.2. We may thus write

T´ := T´0 = t(x, y) P (D0)´| g(x, y) + 1
2 L8 ď 0u

and assume T´ ‰ H.
For the objective function f (x, y) = cᵀx + dᵀy and any optimal point (px, py) of CP

[62, Lemma 1] yields the estimate

qvob ´ v ď 1
2 ‖d‖1 + ‖(c, d)‖2 dist((px, py), T´), (5.11)

where dist((px, py), T´) := inf(x,y)PT´ ‖(x, y)´ (px, py)‖2 denotes the Euclidean distance
of (px, py) from T´.

A further estimate of dist((px, py), T´) in terms of the problem data is possible by
a global error bound

dist((x, y), T´)

ď γ
∥∥∥(Ax + By´ b + ‖β‖1

2

)
+

,
(

y` + e
2 ´ y

)
+

,
(
y´ yu + e

2

)
+

,
(

g(x, y) + L8
2

)
+

∥∥∥
8

(5.12)

for any (x, y) P RnˆRm, where γ ą 0 is a Hoffman constant and, with the component-
wise positive-part operator a+ := (maxt0, a1u, . . . , maxt0, aqu)ᵀ for vectors a P Rq,
the second factor on the right-hand side of (5.12) is a penalty function for the set T´.

Due to the seminal work [40] of Hoffman, in the polyhedral setting a constant
γ with (5.12) exists without any further assumptions. Its computation, on the other
hand, is often intricate even in the polyhedral case. Several suggestions are given
[45, 49, 50, 53, 75], often based on the global solution of some nonconvex optimiza-
tion problem. For global error bounds of broader problem classes see, for example,
the surveys [5, 64]. To cite an early result for the nonpolyhedral case from [66], if
for convex functions gi, i P I, the set T´ is bounded and satisfies Slater’s condition,

60 Chapter 5. Inner Parallel Cuts

then the global error bound (5.12) holds with some γ ą 0. As in our application the
boundedness of T´ follows from the boundedness of D0, assuming Slater’s condi-
tion in T´ guarantees (5.12).

Since in the present approach the considered optimal point (px, py) of CP lies in xM,
the estimate (5.12) can be shown [62, 72] to reduce to

dist((px, py), T´) ď 1
2 γ ‖(‖β‖1 , e, e, L8)‖8 = 1

2 γ maxt‖(‖β‖1)‖8 , 1, ‖L8‖8u. (5.13)

The combination of (5.11) and (5.13) yields the a-priori bound

qvob ´ v ď 1
2

(
‖d‖1 + ‖(c, d)‖2 γ maxt‖(‖β‖1)‖8 , 1, ‖L8‖8u

)
(5.14)

as an adaption of [62, Theorem 3] to the present setting, whenever T´ satisfies
Slater’s condition.

As announced, next we shall show that in (5.14) the value qvob may be replaced
by qvk. It suffices to show that this replacement is possible in (5.11). To this end, recall
that qvk depends on the enlargement parameter δ. To ensure xM Ď xMδ in the following
let δ P [δe, 1) with δe from Equation (3.6). The main consequence of this choice of δ is
that it guarantees the chain of inclusions

T´ Ď xM´ Ď xM´
δ Ď (Dk

δ)
´, (5.15)

where the last inclusion holds by Lemma 5.3.3.
The proof of the next result follows the lines of the proof for [62, Lemma 1], but

it takes account of the difference in the computation of qvk compared to qvob.

Lemma 5.4.1. Let T´ ‰ H, let (px, py) denote any optimal point of CP, let δ P [δe, 1), and
let (qxk, qyk) be the current iterate of IPCP in some iteration k P N0. Then its objective value
qvk = cᵀqxk + dᵀqyk satisfies

qvk ´ v ď 1
2 ‖d‖1 + ‖(c, d)‖2 dist ((px, py), T´) .

Proof. Since T´ is a nonempty subset of the bounded set D0, the Weierstrass theorem
guarantees the existence of an optimal point of the orthogonal projection problem

Pr
(
(px, py), T´

)
: min

(x,y)PRnˆRm

∥∥∥∥(x´ px
y´ py

)∥∥∥∥
2

s.t. (x, y) P T´

which we denote by (xπ, yπ). Furthermore, let (pxk, pyk) be the minimal point of LPk

which is rounded to (qxk, qyk) by the IPCP. Then, using (5.7) we may bound qvk ´ v
above by

qvk ´ v ď qvk ´ vCP = (cᵀqxk + dᵀqyk)´ (cᵀpx + dᵀpy)

=
(
(cᵀqxk + dᵀqyk)´ (cᵀpxk + dᵀpyk)

)
+
(
(cᵀpxk + dᵀpyk)´ (cᵀxπ + dᵀyπ)

)
+
(
(cᵀxπ + dᵀyπ)´ (cᵀpx + dᵀpy)

)
. (5.16)

Due to qxk = pxk, Hölder’s inequality and the definition of a rounding, for the first
term in (5.16) we obtain

(cᵀqxk + dᵀqyk)´ (cᵀpxk + dᵀpyk) ď ‖d‖1 }qy
k ´ pyk}8 ď

1
2}d}1.

5.4. Bounds on the Objective Value 61

Regarding the second term in (5.16), by (5.15) the point (xπ, yπ) P T´ is feasible for
LPk so that the optimality of (pxk, pyk) for LPk yields

(cᵀpxk + dᵀpyk)´ (cᵀxπ + dᵀyπ) ď 0.

Finally, for the third term in (5.16) the Cauchy-Schwarz inequality and the fact that
(xπ, yπ) is the orthogonal projection of (px, py) to T´ imply

(cᵀxπ + dᵀyπ)´ (cᵀpx + dᵀpy) ď ‖(c, d)‖2 dist
(
(px, py), T´

)
.

This shows the assertion.

The combination of Lemma 5.4.1 with (5.13) yields the following result which
verifies that the a-priori bound for qvob from the setting of [62] also holds for qvk.

Theorem 5.4.2. Let T´ satisfy Slater’s condition, let γ satisfy (5.12), let δ P [δe, 1), and
let (qxk, qyk) be the current iterate of IPCP in some iteration k P N0. Then its objective value
qvk = cᵀqxk + dᵀqyk satisfies

qvk ´ v ď 1
2

(
‖d‖1 + ‖(c, d)‖2 γ maxt‖(‖β‖1)‖8 , 1, ‖L8‖8u

)
.

A similar analysis is possible based on the continuous linear problem LPk from
(5.9) in place of the continuous convex problem CP. This allows us to drop the
restrictive assumption T´ ‰ H and offers some further insights into how inner par-
allel cuts affect the deviation qvk ´ v.

In this setting, Lemma 5.4.1 can be shown with T´ replaced by (Dk)´ and with
(px, py) replaced by any optimal point (x̄k, ȳk) of LPk. The corresponding global error
bound then has to be formulated for the constraints describing (Dk)´. It is of the
form

dist((x, y), (Dk)´) (5.17)

ď γk
∥∥∥(Ax + By´ b + ‖β‖1

2

)
+

,
(

y` + e
2 ´ y

)
+

,
(
y´ yu + e

2

)
+

, (cj(x, y))+, j = 1, . . . , k
∥∥∥
8

for all (x, y) P Rn ˆRm, with the functions

cj(x, y) := g`j(qx
j, qyj) +

〈
∇g`j(qx

j, qyj),
(

x´ qxj

y´ qyj

)〉
+ 1

2}∇yg`j(qx
j, qyj)}1.

For any (x̄, ȳ) P Dk it reduces to

dist
(
(x̄, ȳ), (Dk)´

)
ď 1

2 γk
∥∥∥(}β}1, 1, }∇yg`j(qx

j, qyj)}1, j = 1, . . . , k
)∥∥∥
8

,

so that the following variation of Theorem 5.4.2 can be shown. Recall that in this
polyhedral setting a Hoffman constant γk with (5.17) exists without further assump-
tions.

Theorem 5.4.3. Let δ P [δe, 1), for some iteration k P N0 let γk satisfy (5.17), and let
(qxj, qyj), j = 1, . . . , k, be the history of iterates of IPCP. Then the objective value qvk =
cᵀqxk + dᵀqyk satisfies

qvk ´ v ď 1
2

(
‖d‖1 + ‖(c, d)‖2 γk maxt‖(}β}1)‖8 , 1, maxj=1,...,k }∇yg`j(qx

j, qyj)}1u
)

.

62 Chapter 5. Inner Parallel Cuts

Note that the upper bound from Theorem 5.4.3 may increase in each iteration.
However, this is in accordance with the fact that in the IPCP, as in any outer approx-
imation method, one has to expect increasing objective values of the iterates.

In view of the mentioned effort to compute Hoffman constants γk, one may not
expect to be able to compute the upper bound from Theorem 5.4.3 explicitly. How-
ever, a possible qualitative interpretation is that one may expect small deviations of
the iterates’ objective values from v if, firstly, the vectors c, d, and }β}1 are sparse and
possess small entries and, secondly, if one generates sparse cuts with small entries.

For a comparison of the two bounds from Theorem 5.4.2 and Theorem 5.4.3 ob-
serve that with the valid Lipschitz constants

Lgi
8 := max

(x,y)PD0
}∇ygi(x, y)}1, i P I,

and due to (qxk, qyk) P D0
δ , k P N0, we obtain∥∥∥∇yg`k(qx

k, qyk)
∥∥∥

1
ď L

g`k
8

for each k. Under the considerably weaker assumptions of Theorem 5.4.3 this yields
the upper bound

qvk ´ v ď 1
2

(
‖d‖1 + ‖(c, d)‖2 γk maxt‖(}β}1)‖8 , 1,

∥∥Lg
8

∥∥
8
u
)

which closely resembles the one from Theorem 5.4.2. The involved Hoffman con-
stants γk depend, however, on the current iteration, so that in this sense it is not an
a-priori bound. Moreover, examples show that the estimate γk ď γ with γ from
(5.12) does not necessarily hold. Whenever it does hold, the upper bound from The-
orem 5.4.3 is not only based on less restrictive assumptions, but also better then the
one from Theorem 5.4.2.

5.5 Computational Study

With our computational study we wish to shed light on the potential of the IPCP
for computing good feasible points as well as for enhancing polyhedral outer ap-
proximations for MICPs. To do so, we first intend to clarify if the method is able to
compute feasible points for problems from the literature, or if most of them exhibit
a non-granular structure. This is done in Section 5.5.1, where we present problems
for which the method is able to compute a feasible point. For these problems, we
evaluate the computational cost of the algorithm and the quality of the generated
feasible points and cutting planes.

Subsequently, we study non-granular and inconsistent problems in Sections 5.5.2
and 5.5.3, respectively. The analysis of these sections will not only reveal non-
granular problems from the library, but also evaluate the difficulty of the numerical
certificate using the IPCP. In this numerical study we again set δ := 1´ 10´4 and
consider a problem to be granular if xMδ ‰ H holds.

Our computational study comprises 139 consistent and 6 inconsistent convex
problems from the MINLPLib [17]. We have collected problems which contain at
least one integer variable and where all inequality constraint functions are proven to
be convex. As the main intention of this study is to establish the validity of the algo-
rithm and to show its potential, we have excluded such problems from our test bed

5.5. Computational Study 63

and postpone a thorough numerical study on the influence of equality constraints
on granularity to Chapter 6.

We have implemented the IPCP in Python 3.7. We used the Pyomo framework
[36] for obtaining and modifying the (non)linear models and Clp and Ipopt from the
Coin infrastructure [21] for solving the appearing linear and nonlinear subproblems.

We initially ran our experiments with a feasibility tolerance of ε = 10´6 but ob-
served difficulties with a few ill-conditioned LPs, where Clp returned a point that
was not ε-feasible for the sub-LP, which forced the IPCP to stall (cf. Remark 5.3.9).
Setting ε to 2 ¨ 10´6 the method terminated for these problems and we decided to
use this tolerance throughout our computational study. As we shall report shortly,
almost all generated feasible points were nonetheless 10´6-feasible, which is a more
common feasibility tolerance for MICPs. Moreover, for some (potentially ill-con-
ditioned) problems, when applying the postprocessing step, Ipopt returned points
that were more than 2 ¨10´6 infeasible, evaluated in our Python environment. When-
ever this was the case, we used the point obtained by the IPCP without postprocess-
ing.

All tests were run on a computer with an Intel i7 processor with 8 cores with
3.60 GHz and 32 GB of RAM. The source code and the data of our experiments are
publicly available under https://github.com/ChristophNeumann/IPCP.

5.5.1 Instances with Feasible Points

In this section we study problems where the IPCP yields a feasible point. The main
focus will be answering the question if the method has the potential to successfully
support (OA-based) solvers. In our analysis, we have three main questions in mind:
(i) does the IPCP converge quickly for practical problems, (ii) are the feasible points
helpful in the sense that they are not easily obtainable with OA-based methods, and
(iii) can the feasible points and cutting planes help these methods to converge more
quickly.

We use the publicly available OA-based methods B-OA and B-Hyb implemented
in Bonmin 1.8.7 [13] for this evaluation as well as SCIP 7.0.1 [30], compiled with Ipopt
and SOPLEX, which is also publicly available. All methods (including the IPCP)
use Ipopt 3.12.12 as NLP-Solver and are equipped with non-commercial LP-Solvers,
which enables a balanced comparison.

In Section 5.3.4 we discussed that if the only source of nonlinearity stems from
the objective function, we may just terminate at any iteration with a feasible point.
In fact, this was the case for several problems from our test bed. For these problems
we terminate if we do not make progress in the objective value of the iterates for 20
iterations and return the best iterate. We shall add some further remarks for these
problems at the end of this section.

We report that the IPCP is able to compute feasible points for 67 out of 139 tested
consistent problems from the MINLPLib. We list these problems in Table 5.1, where
we also state the number of (integer) variables, the number of (nonlinear) constraints
and the optimal objective value v which is listed on the MINLPLib website [54].

The subscript epi means that we applied the epigraph reformulation to the prob-
lem, including a valid lower bound for the epigraph variable that we obtained by
solving the convex relaxation of MICP, before applying the IPCP. For each problem,
we further report the objective value of the computed feasible point (obj), the lower
bounds vk

MILP and v0
MILP (cf. (5.8)), the number of iterations (iter), the maximum con-

straint violation of the point computed by the IPCP (gmax), and the cumulative run

https://github.com/ChristophNeumann/IPCP

64 Chapter 5. Inner Parallel Cuts

time (time, in seconds) of all auxiliary problems, which includes the postprocessing
step from Remark 5.3.2.

Moreover, to provide context of the quality of the obtained feasible points and
to answer questions (ii) and (iii), we list the time needed by B-Hyb, B-OA and SCIP
to compute a feasible point of similar quality. We obtained these values by running
all methods with default settings and a time limit of 30 minutes, and searching the
log-files for the first time a feasible point with an objective value is reported that is
at least as good as that of the IPCP. To let SCIP know that all constraint functions are
convex, we added the recommended option assumeconvex=TRUE.

For the problems ex4, nvs10, st_miqp2 and st_test4, we observed inconsistencies
either with B-Hyb or B-OA. In the epigraph reformulated version that we used when
applying the IPCP, these models were correctly solved and we report the corre-
sponding values in Table 5.1.

5.5.
C

om
putationalStudy

65

problem data IPCP time solvers
variables constraints v obj vk

MILP v0
MILP iter gmax (10´6) time B-Hyb B-OA SCIP

cvxnonsep_normcon20 20(10) 1(1) -21.7 -20.8 -23.3 -41.4 46 0.0 0.4 14.5 36.3 0.3
cvxnonsep_normcon20r 40(10) 21(20) -21.7 -20.6 -41.4 -41.4 157 1.0 1.4 0.2 0.0 0.2
cvxnonsep_normcon30 30(15) 1(1) -34.2 -33.0 -38.7 -82.3 82 0.0 0.8 ą1800 ą1800 1.7
cvxnonsep_normcon30r 60(15) 31(30) -34.2 -31.5 -82.3 -82.3 238 1.0 2.1 0.1 0.0 0.2
cvxnonsep_normcon40 40(20) 1(1) -32.6 -31.1 -37.0 -89.4 181 0.0 2.0 ą1800 ą1800 4.2
cvxnonsep_normcon40r 80(20) 41(40) -32.6 -29.7 -67.6 -89.4 289 1.0 2.7 0.2 0.0 0.2
cvxnonsep_nsig20 20(10) 1(1) 80.9 82.2 77.0 10.9 201 0.0 2.0 16.2 0.7 6.7
cvxnonsep_nsig20r 40(10) 21(20) 80.9 82.6 10.9 10.9 146 0.0 1.3 0.1 0.0 0.0
cvxnonsep_nsig30 30(15) 1(1) 130.6 132.2 124.1 16.9 461 0.0 6.6 ą1800 20.4 108.0
cvxnonsep_nsig30r 60(15) 31(30) 156.4 157.5 16.9 16.9 192 0.0 1.7 10.3 0.1 0.0
cvxnonsep_nsig40 40(20) 1(1) 134.0 134.9 127.4 18.0 801 0.0 18.3 319.8 13.6 ą1800
cvxnonsep_nsig40r 80(20) 41(40) 134.0 134.5 18.0 18.0 263 0.0 2.4 327.8 0.0 0.1
cvxnonsep_pcon20 20(10) 1(1) -21.5 -20.6 -23.6 -49.8 123 0.0 1.1 0.1 0.2 0.1
cvxnonsep_pcon20r 39(10) 20(19) -21.5 -19.7 -49.8 -49.8 149 1.5 1.3 0.0 0.0 0.1
cvxnonsep_pcon30 30(15) 1(1) -36.0 -34.0 -38.8 -77.5 207 0.0 2.2 1.3 4.0 1.4
cvxnonsep_pcon30r 59(15) 30(29) -36.0 -33.6 -77.5 -77.5 239 1.8 2.2 0.1 0.0 0.1
cvxnonsep_pcon40 40(20) 1(1) -46.6 -44.4 -49.7 -100.8 336 0.0 4.4 1337.0 2.2 2.3
cvxnonsep_pcon40r 79(20) 40(39) -46.6 -43.6 -100.8 -100.8 307 2.3 2.9 0.1 0.0 0.0
cvxnonsep_psig20r 42(10) 22(21) 95.9 96.7 20.0 20.0 146 -0.0 1.3 0.1 0.0 0.0
cvxnonsep_psig30r 62(15) 32(31) 79.0 81.9 30.0 30.0 184 -0.0 1.6 0.1 0.0 0.1
cvxnonsep_psig40r 82(20) 42(41) 86.5 88.9 40.0 40.0 219 -0.2 2.0 0.1 0.0 0.1
du-optepi 21(13) 10(1) 3.6 4.7 3.3 3.3 26 0.0 0.2 10.1 0.0 0.1
ex1223aepi 8(4) 10(5) 4.6 7.6 4.5 4.5 6 -120006.3 0.1 0.0 0.0 0.0
ex1223bepi 8(4) 10(5) 4.6 8.0 3.9 3.9 9 -0.1 0.1 0.0 0.0 0.0
ex4epi 37(25) 31(26) -8.1 -4.4 -9.7 -16.7 24 0.0 0.2 0.2 0.2 0.0
gbdepi 5(3) 5(1) 2.2 2.2 2.2 2.2 2 0.0 0.0 0.0 0.0 0.0
nvs03epi 3(2) 3(2) 16.0 16.0 16.0 8.2 5 -400000.0 0.0 0.0 0.0 0.0
nvs10epi 3(2) 3(3) -310.8 -303.4 -313.1 -313.1 8 0.0 0.1 0.0 0.0 0.0

Continued on next page

66
C

hapter
5.

Inner
ParallelC

uts

problem data IPCP time solvers
variables constraints v obj vk

MILP v0
MILP iter gmax (10´6) time B-Hyb B-OA SCIP

nvs11epi 4(3) 4(4) -431.0 -427.8 -432.8 -432.8 11 0.0 0.1 0.0 0.0 0.0
nvs12epi 5(4) 5(5) -481.2 -467.5 -483.2 -483.2 18 0.0 0.2 0.0 0.0 0.0
nvs15epi 4(3) 2(1) 1.0 1.0 0.1 0.1 4 0.0 0.0 0.0 0.0 0.0
portfol_buyin 17(8) 19(2) 0.0 0.1 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0
smallinvDAXr1b150-165 31(30) 4(1) 88.1 102.3 86.2 -inf 34 0.0 0.3 0.1 2.3 0.0
smallinvDAXr1b200-220 31(30) 4(1) 156.6 175.1 154.2 -inf 34 0.0 0.3 10.1 10.5 0.0
smallinvDAXr2b150-165 31(30) 4(1) 88.1 101.3 86.4 -inf 34 0.0 0.3 10.1 8.5 0.0
smallinvDAXr2b200-220 31(30) 4(1) 156.6 175.4 154.2 -inf 34 0.0 0.3 10.0 4.1 0.0
smallinvDAXr3b150-165 31(30) 4(1) 88.1 101.1 86.6 -inf 34 0.0 0.3 16.0 4.7 0.0
smallinvDAXr3b200-220 31(30) 4(1) 156.6 175.5 155.2 -inf 38 0.0 0.4 0.3 3.6 0.0
smallinvDAXr4b150-165 31(30) 4(1) 88.1 102.4 86.2 -inf 32 0.0 0.3 10.3 5.6 0.0
smallinvDAXr4b200-220 31(30) 4(1) 156.6 174.0 153.9 -inf 28 0.0 0.2 10.1 2.6 0.0
smallinvDAXr5b150-165 31(30) 4(1) 88.1 101.9 85.8 -inf 33 0.0 0.3 10.2 4.1 0.0
smallinvDAXr5b200-220 31(30) 4(1) 156.6 175.9 154.5 -inf 34 0.0 0.3 3.4 7.2 0.0
squfl010-025epi 261(10) 276(1) 214.1 214.1 105.9 105.9 15 0.0 0.2 0.7 8.0 294.0
squfl010-040epi 411(10) 441(1) 240.6 294.5 136.8 136.8 44 0.0 1.1 10.7 1.2 25.4
squfl010-080epi 811(10) 881(1) 509.7 581.6 258.9 258.9 33 0.0 2.0 12.9 4.1 83.2
squfl015-060epi 916(15) 961(1) 366.6 417.8 152.5 152.5 16 0.0 0.5 11.3 217.6 108.0
squfl015-080epi 1216(15) 1281(1) 402.5 493.3 172.6 172.6 25 0.0 2.5 13.2 373.7 348.0
squfl020-040epi 821(20) 841(1) 209.3 272.4 98.1 98.1 7 0.0 0.2 14.4 45.8 0.0
squfl020-050epi 1021(20) 1051(1) 230.2 356.7 99.2 99.2 15 0.0 0.5 12.1 78.1 0.1
squfl020-150epi 3021(20) 3151(1) 557.8 636.4 226.3 226.3 24 0.0 7.5 250.7 ą1800 888.0
squfl025-025epi 651(25) 651(1) 168.8 244.4 68.0 68.0 2 0.0 0.1 10.3 28.8 0.0
squfl025-030epi 776(25) 781(1) 205.5 215.3 81.3 81.3 2 0.0 0.1 10.3 53.3 0.0
squfl025-040epi 1026(25) 1041(1) 197.3 248.4 76.9 76.9 9 0.0 0.3 10.6 378.5 0.1
squfl030-100epi 3031(30) 3101(1) 363.1 425.9 123.9 123.9 8 0.0 0.8 318.3 ą1800 0.1
squfl030-150epi 4531(30) 4651(1) 430.6 628.1 158.9 158.9 22 0.0 8.1 52.7 ą1800 0.2
squfl040-080epi 3241(40) 3281(1) 263.9 431.0 91.5 91.5 14 0.0 1.9 52.9 ą1800 0.1

Continued on next page

5.5.
C

om
putationalStudy

67

problem data IPCP time solvers
variables constraints v obj vk

MILP v0
MILP iter gmax (10´6) time B-Hyb B-OA SCIP

st_miqp1epi 6(5) 2(1) 281.0 378.0 231.0 228.0 2 0.0 0.0 0.0 0.0 0.0
st_miqp2epi 5(4) 4(1) 2.0 2.0 -1.0 -5.6 5 0.0 0.1 0.1 0.0 0.0
st_miqp3epi 3(2) 2(1) -6.0 0.0 -6.0 -6.0 4 0.0 0.0 0.0 0.0 0.0
st_miqp4epi 7(3) 5(1) -4574.0 -4574.0 -4574.0 -4885.9 4 0.0 0.0 10.0 0.0 0.0
st_test1epi 6(5) 2(1) 0.0 0.0 -47.5 -63.3 5 0.0 0.1 0.0 0.0 0.0
st_test2epi 7(6) 3(1) -9.2 -7.2 -10.8 -25.1 2 0.0 0.0 10.0 0.0 0.0
st_test3epi 14(13) 11(1) -7.0 -5.0 -12.0 -12.9 3 0.0 0.0 10.0 0.0 0.0
st_test4epi 7(6) 6(1) -7.0 -5.0 -7.0 -12.5 3 0.0 0.0 0.0 0.0 0.0
st_testgr1epi 11(10) 6(1) -12.8 -12.7 -12.9 -13.4 16 0.0 0.1 0.1 0.0 0.0
st_testgr3epi 21(20) 21(1) -20.6 -20.2 -20.8 -22.1 4 0.0 0.0 10.0 0.0 0.0
st_testph4epi 4(3) 11(1) -80.5 -80.5 -80.5 -83.0 4 0.0 0.0 10.0 0.0 0.0

TABLE 5.1: Problems for which the IPCP computes a feasible point

68 Chapter 5. Inner Parallel Cuts

1e
-0

6

0.
01 0.
1

0.
2

1.
0

0

10

20

30

40

50

60
estimate MILP 0
estimate MILP k
optimality gap

FIGURE 5.3: Cumulative histogram of (estimates of) the optimality
gap (5.18) of the feasible points

Let us next summarize our findings. First, notice that the IPCP terminates in less
than 20 seconds with a relatively small number of sub LPs for all tested problems.
We remark that using the Pyomo interface, we were not able to exploit warm start
capabilities of Clp but solved each LP from scratch. Hence we expect that the method
could converge significantly faster when carefully integrated into a solver.

Secondly, even though we set ε to 2 ¨ 10´6, in all but 3 cases we obtained 10´6-
feasible points, either due to the postprocessing step of Ipopt, or due to the method
itself. Hence, almost all computed points can be used by solvers with a usual fea-
sibility tolerance. For the problem cvxnonsep_pcon40r, a linear constraint is violated
by more than 2 ¨ 10´6 and hence this value is greater than the anticipated feasibility
tolerance.

Moreover, the objective values are remarkably close to the optimal ones in almost
all cases which indicates that they might provide valuable information. Indeed, the
cumulative histogram in Figure 5.3 shows that the optimality gap

(qvk ´ v)/ mint|qvk|, |v|u (5.18)

is less than 10% for more than half of the problems. This figure further illustrates
that the estimated gap obtained by replacing v with vk

MILP, which is available af-
ter termination of the algorithm by solving an MILP, is also very small in many
instances. This gap is often significantly better compared to the one obtainable by
MILP0. Hence, this analysis not only proves the good quality of the generated fea-
sible points, but also indicates that the RIPCs could help to outer approximate these
problems well and to thus potentially speed up the solution process of MICP-solvers.

Moreover, the biased performance profile in Figure 5.4 reveals that for several
instances, the same objective value is not easily obtained by B-OA, B-Hyb and SCIP.
These solvers are by default equipped with an arsenal of primal heuristics which are
thus all included in this comparison. While (the collections of) these primal heuris-
tics are able to compute feasible points of similar quality quickly for many problems
from our test bed (especially those implemented in SCIP), for several problems they
take orders of magnitude longer, or even entirely fail to compute such a point within
30 minutes.

5.5. Computational Study 69

10 1 100 101 102 103

Seconds

0

10

20

30

40

50

60

70
Nu

m
be

r o
f I

ns
ta

nc
es

IPCP
SCIP
B-Hyb
B-OA

FIGURE 5.4: Biased performance profile: Time (log scale) needed for
SCIP and the two Bonmin methods to compute a feasible point of

similar quality as that of the IPCP

We wish to point out that the performance profile is necessarily biased in the
sense that we “compare” methods with different purposes and that B-OA, B-Hyb
and SCIP do much more than just computing a feasible point in that time. Yet, the
point is not to state that the IPCP outperforms these methods, but rather to observe
that in several cases, feasible points can provide useful information for providing
upper bounds and cutting planes.

To address question (iii) more fully, we ran a second experiment, testing B-Hyb,
B-OA and SCIP on modified models. We created the modified models according
to Section 5.3.3, adding the last m reversed inner parallel cuts (RIPCs) along with
the other proposed polyhedral constraints, and thus “prototyped” a straightforward
integration of the IPCP into OA-based methods. We report results for solving times
and lower bounds after (a possibly early) termination in Table A.3 in the appendix.
Let us next give a quick summary.

Firstly, the reversed inner parallel cuts were able to significantly speed up all
solvers for some instances. Secondly, the speedup was very problem- and solver-
specific and sometimes the solution process was actually prolonged by the cuts so
that a careful investigation is needed, when integrating the RIPCs into a solver. Gen-
erally, the potential is most apparent with B-Hyb, where we were able to correctly
solve 14 additional problems using reversed inner parallel cuts. Yet we also ob-
served some solver errors and false termination statements when using B-Hyb (with
and without RICPs). Therefore, we would be cautious to place too much emphasis
on these B-Hyb results. For SCIP and B-OA the results were generally stable; both
methods solved the same problems independently of added RIPCs. Yet, in several
cases the solving times differed significantly.

Some examples of problems where the RIPCs had a significant influence on the
solving times are given in Table 5.2, where we list the run times of all methods for
proving optimality for models with and without RICPs. While the times for running
the IPCP are not included in this analysis, they are comparably small (cf. Table 5.1)
and hence do not contribute to the effects we demonstrate. For instance the problem
cvxnonsep_nsig20 is solved much faster by SCIP and by B-Hyb after RICPs are added.
The two smallinvDAX instances along with cvxnonsep_normcon20 are examples of
instances which are correctly solved by B-Hyb only if RICPs are added. All four cases

70 Chapter 5. Inner Parallel Cuts

Scip B-Hyb B-OA
RIPC OM RIPC OM RIPC OM

cvxnonsep_normcon20 1.44 1.33 65.32 ą1800 14.47 98.94
cvxnonsep_normcon40 601.36 681.81 ą1800 ą1800 ą1800 ą1800
cvxnonsep_nsig20 2.14 272.68 156.60 1261.60 14.80 10.06
du-opt 0.89 5.86 24.93 12.62 3.01 2.95
smallinvDAXr2b200-220 0.31 0.36 99.74 ą1800 130.84 143.27
smallinvDAXr5b200-220 0.44 0.38 56.77 ą1800 105.79 171.73
squfl010-025 1049.77 413.89 10.73 1.05 295.49 418.10

TABLE 5.2: Time (seconds) needed to solve an instance with and with-
out RIPCs

Scip B-Hyb B-OA
RIPC OM RIPC OM RIPC OM

cvxnonsep_nsig30 128.07 121.17 130.48 130.48 130.60 130.61
cvxnonsep_nsig40 130.57 94.71 133.74 133.74 133.74 133.85
squfl020-150 226.34 0.00 297.58 286.17 229.32 227.04
squfl030-100 123.89 0.00 151.99 151.69 127.51 126.47

TABLE 5.3: Computed lower bounds after 1800 seconds run time with
and without RIPCs

further illustrate that the usefulness of the RICPs strongly depends on the interplay
between the solver and the specific instance. Finally, with the example squfl010-025
we wish to point out that occasionally problems were solved significantly faster by
some solvers when no RICPs were added. This further highlights the importance of
carefully selecting those cuts that actually help the solver-specific solution process.

Table 5.3 complements this analysis by stating computed lower bounds for prob-
lems where all solvers failed to terminate within 30 minutes, stating the best bounds
of the methods upon termination. In almost all cases, the bounds improve when
RIPCs are added to the model.

Remarkably, for cvxnonsep_nsig30 and cvxnonsep_nsig40, the lower bounds ob-
tained by solving MILPk are already better than the ones SCIP generates after 30
minutes (cf. Table 5.1). Hence, taking all results into account, we can at the very
least state that the feasible points and cutting planes have the potential to speed up
the solution process of OA-based methods.

Let us conclude this section with some remarks on the algorithm’s behavior on
several problems with distinct characteristics. Figure 5.5 shows (in log scale) the
maximum constraint violation, g`k(qx

k, qyk), over the iterates k for the problems ex4,
smallinvDAXr3b200-220, cvxnonsep_nsig40, and cvxnonsep_nsig40r.

While the decrease shown in Figures 5.5a and 5.5b appears to be (almost) mono-
tonic, Figure 5.5c shows large fluctuations from a trend of decreasing feasibility er-
ror. In Figure 5.5d the constraint violation even increases quite strongly within the
first 40 iterations, eventually approaching zero smoothly after 100 iterations. Note
that, even though the behavior is quite different for the distinct problems, Figure 5.5
reveals a monotonically decreasing pattern (with cyclic fluctuations), at least after
a certain number of iterations. Hence, we indeed observe that the IPCP does not
compute a feasible point “by accident”, but rather by systematically reducing the
feasibility error.

5.5. Computational Study 71

0 5 10 15 20
k

101

102

103

g `
k
(x̌

k
,y̌

k
)

(a) ex4

0 10 20 30
k

100

101

102

103

g `
k
(x̌

k
,y̌

k
)

(b) smallinvDAXr3b200-220

0 200 400 600 800
k

10−2

10−1

100

g `
k
(x̌

k
,y̌

k
)

(c) cvxnonsep_nsig40

0 50 100 150 200 250
k

10−5

10−3

10−1

101

g `
k
(x̌

k
,y̌

k
)

(d) cvxnonsep_nsig40r

FIGURE 5.5: Maximum constraint violation g`k
(qxk, qyk) over iterations

0 10 20 30 40
k

400

600

800

1000

1200

f
(x̌

k
,y̌

k
)

(a) squfl010-040

0 10 20 30
k

800

1000

1200

1400

1600

1800

f
(x̌

k
,y̌

k
)

(b) squfl1010-080

FIGURE 5.6: Progress in the objective value before applying the post
processing step for problems where the algorithm terminates early

Moreover, Figure 5.6 plots the progress in the objective value of the iterates for
two problems where the only source of nonlinearity stems from the objective func-
tion. In contrast to the progress towards feasibility, we only occasionally observe
an improvement after a certain amount of cutting planes have been added. Hence,
stopping the algorithm early indeed appears to be reasonable for these problems.

5.5.2 Non-granular Consistent Instances

We will now turn towards a less fortunate case: to consistent problems where the
method reports non-granularity. This will gather information about the computa-
tional costs of the numerical certificate for non-granularity which enables us to draw
a more holistic picture of the potential benefits and the costs of the method. Further-
more, these results will reveal optimization problems for which we are unable to

72 Chapter 5. Inner Parallel Cuts

instance variables constraints iterations time

alanepi 9(4) 8(1) 1 0.02
ball_mk2_10 10(10) 1(1) 23 0.20
ball_mk2_30 30(30) 1(1) 103 1.03
du-opt5epi 21(13) 10(1) 1 0.01
fo7 114(42) 211(14) 1 0.01
fo7_2 114(42) 211(14) 1 0.01
fo8 146(56) 273(16) 1 0.01
fo9 182(72) 343(18) 1 0.01
m3 26(6) 43(6) 1 0.01
m6 86(30) 157(12) 1 0.01
m7 114(42) 211(14) 1 0.01
meanvarxepi 36(14) 45(1) 1 0.01
o7 114(42) 211(14) 1 0.01
o7_2 114(42) 211(14) 1 0.01
portfol_classical050_1 150(50) 103(1) 1 0.01
portfol_classical200_2 600(200) 403(1) 1 0.03
smallinvDAX‹ 31(30) 4(1) 1 0.01
smallinvSNP‹‹ 101(100) 4(1) 1 0.01
st_miqp5epi 8(2) 14(1) 1 0.01
st_test5epi 11(10) 12(1) 1 0.01
st_test6epi 11(10) 6(1) 1 0.01
st_test8epi 25(24) 21(1) 1 0.01
synthes1epi 7(3) 7(3) 1 0.01
unitcommit1epi 961(720) 5330(1) 1 0.06

TABLE 5.4: Computational cost of the non-granularity certificate for
24 consistent instances from the MINLPLib, where ‹ and ‹‹ are rep-

resentative for 20 and 30 variations of problems, respectively

directly use the granularity concept for the computation of feasible points, at least
without altering the model in some granularity-promoting way.

We obtain a certificate for non-granularity for 72 out of 139 consistent instances
from our test bed. Among them are all 30 variations of the problem smallinvSNP, as
well as 20 variations of the problem smallinvDAX. The number of iterations and the
cumulative run times are quite similar for all these variations and hence we only list
one representative instance each in Table 5.4, together with the remaining 22 non-
granular instances.

Note that the IPCP detects non-granularity very quickly for all instances from
our test bed. In fact, for almost all problems, already the initial outer approximation
of the enlarged inner parallel set is empty and hence the algorithm terminates after
only one iteration within a fraction of a second. This indicates that, especially when
dealing with a non-granular problem, we do not need to wait long for the IPCP to
terminate. Rather, we immediately obtain a certificate for the non-granularity and
thus know that we have to use another method for computing a feasible point. This
unfortunately also implies that we cannot create inner parallel cutting planes in most
of these cases.

A slight exception are the two variations of the problem ball_mk_2. Here, the
method needs 28 and 134 iterations respectively to prove non-granularity. We shall
further elaborate the reason for this behavior in the next section by looking at the

5.5. Computational Study 73

structure of variations of this problem, which turns out to be particularly difficult
for the application of the IPCP.

5.5.3 Inconsistent Instances

While it is trivial to see that inconsistent problems are not granular, the focus of this
section will be comparing the cost of certifying non-granularity to the harder task of
proving that a problem is inconsistent. We thus intend to reveal information about
the performance of the method for unfavorable problems. Moreover, by examining
these problems, we will also get a glimpse on the behavior of the IPCP when the
initial linear outer approximation D becomes larger.

We tested the IPCP on several variations of the geometrical problem suggested
in [38], where also the difficult consistent instances (ball_mk_2) from the previous
section stem from. In the example given in [38] the feasible set is the intersection of (a
subset of) Zm with a ball with center p = (1/2, . . . , 1/2)ᵀ and radius r =

?
m´ 1/2,

B(p, r) =

$

&

%

y P Zm|

m
ÿ

j=1

(
yj ´

1
2

)2
ď

m´ 1
4

, y` ď y ď yu

,

.

-

,

which is easily seen to be empty for any y`, yu P Zm. Even for y` = 0, yu = e, any
outer approximation method needs 2m iterations to certify infeasibility of this set
[38]. Note that in outer approximation algorithms for solving MICPs, each iteration
involves the solution of an MILP and, hence, this problem is intractable for such
methods even for a small dimension m.

Interestingly, this example is constructed in such a way that also non-granularity
appears to be especially hard to certify due to the following reasons: first, the IPCP is
closely linked to the extended cutting plane method and hence some variation of an
outer approximation algorithm. Secondly, and even more importantly, the problem
is almost granular. In fact, if we enlarged the radius to r =

?
m/2, the set B(p, r)

would not only become consistent but even granular, as the center 1
2 e then also lies

in the inner parallel set (pB(p, r))´. Certifying non-granularity for an almost granular
problem appears to be one of the hardest tasks for the IPCP, so our sincere hope is
that the following test sheds light on the algorithm’s practical worst case behavior.

Table 5.5 lists results of the IPCP for six infeasible problems from the MINLPLib.
Here, we try to minimize different linear objective functions over an empty feasible
set which slightly varies from the above example. In particular, the ball is replaced
by a general ellipsoid. The table also states the dimension m, as well as the common
lower bound y`i and the common upper bound yu

i posed on all integer variables,
i = 1, . . . , m.

Remarkably, the number of iterations needed to certify non-granularity is far
from exponential. Moreover, we stress that for the last three problems the initial
polyhedral outer approximation is quite coarse (D = [´100, 100]m) compared to the
first three problems (D = [´1, 2]m). Although this clearly influences the number of
iterations, the increase is not as significant as the increase of the size of D. Hence, the
number of iterations of the IPCP appears to remain relatively small even for unfa-
vorable problems where the initial polyhedral relaxation D is a bad approximation
of the relaxed feasible set xM.

Clearly, the task of certifying non-granularity is significantly easier and less in-
formative compared to proving the inconsistency of a problem. However, one might
have expected this to show up rather in the cumulative run time (as we need to only

74 Chapter 5. Inner Parallel Cuts

m y`i yu
i iterations time

ball_mk3_10 10 -1 2 31 0.24
ball_mk3_20 20 -1 2 77 0.63
ball_mk3_30 30 -1 2 142 1.37
ball_mk4_05 10 -100 100 168 1.37
ball_mk4_10 20 -100 100 524 6.71
ball_mk4_15 30 -100 100 958 21.29

TABLE 5.5: Performance for difficult non-granular (inconsistent)
problems

solve LPs instead of MILPs) and not necessarily in the number of iterations. There-
fore, our results demonstrate that even for problems with a relatively unfavorable
structure, the IPCP runs quite quickly.

5.6 Conclusions

In this chapter we presented and analyzed an inner parallel cutting plane method
for computing good feasible points along with valid cutting planes for mixed-integer
convex optimization problems. The crucial advantage of this method is that it only
needs to solve continuous linear subproblems. Compared to other methods from the
literature, this results in significantly lower per iteration costs and, as our computa-
tional study reveals, also in a fast convergence for practical problems. The objective
values of the generated feasible points are generally of good quality and often not
easily obtainable by other methods and the generated cutting planes helped, in sev-
eral instances, to significantly speed up convergence of outer approximation meth-
ods.

We remark that there exist consistent non-granular problems for which, instead
of computing a feasible point, the method might only certify the non-granularity of
the problem. In our computational study this was the case for roughly half of the
problems. However, we emphasize that for these problems the method converges
especially quickly and hence argue that the potential benefits of applying the method
clearly exceed its costs.

Finally, we may adapt the IPCP in such a way that it mimics the outer approx-
imation method it intends to support. In fact, instead of using Kelley’s method as
a basis, one could also investigate inner cutting plane methods that are inspired by
other outer approximation methods. This vast subject is beyond the scope of this
thesis and hence postponed to future research. The extension to the nonconvex case
will also be the subject of future research.

75

Chapter 6

Equality Constraints and Inner
Parallel Sets

The previous chapters assumed the absence of equality constraints that include in-
teger variables in the formulation of the mixed-integer optimization problem. In
this chapter we drop this assumption and investigate the possibilities of using inner
parallel sets for obtaining feasible roundings under the occurrence of such equality
constraints.

We might be tempted to intuitively argue that equality constraints on integer
variables immediately imply an empty inner parallel set and thus render the concept
useless for problems where such constraints occur. Section 6.1 demonstrates that this
intuition is indeed true if we think of an equality constraint as two inequalities and
limit our construction of an inner parallel set to the original variable space. However,
it will turn out that there is the possibility of constructing a potentially nonempty
inner parallel set in a reduced space.

This concept of reduction is further pursued and elaborated in Section 6.2 where
we work out a general reduction scheme that is applicable to mixed-integer opti-
mization problems with linear equality constraints. While the techniques for this
approach are known (cf. e.g. [47, 65]), we did not find results in the literature that
explicitly state this reduced MILP, and our hope is that this may also be helpful for
other purposes.

In Section 6.3 we tailor these results to the application of feasible rounding ap-
proaches to MILPs with equality constraints on integer variables. Section 6.4 evalu-
ates the elimination procedure and the application of feasible rounding approaches
to equality constrained problems numerically and Section 6.5 concludes this chapter
with some final remarks.

For simplicity and clarity of presentation, we focus our attention on MILPs. Yet
we stress that the approach is equally applicable to all MI(NL)Ps that only contain
linear equality constraints on integer variables, like it is the case for convex MINLPs.

6.1 Basic Ideas and Different Possibilities

In this chapter, we consider equality constrained optimization problems of the form

MILP : min
(x,y)PRnˆZm

cᵀx + dᵀy s.t. Ax + By ď b

Cx + Dy = γ

with vectors c P Rn, d P Rm, b P Rp, γ P Rq, a (p, n)-matrix A, a (p, m)-matrix B, a
(q, n)-matrix C and a (q, m)-matrix D, where C and D possess rational entries.

76 Chapter 6. Equality Constraints and Inner Parallel Sets

In view of the formulation of the enlarged inner parallel set, the granularity con-
cept and the resulting possibility to obtain feasible points of an MILP at first glance
seem to be restricted to problems without equality constraints. Two obvious pos-
sibilities to incorporate equality constraints are their reformulation as pairs of in-
equality constraints, and their elimination by explicit computation of their solution
space. In the present section we illustrate that the former approach is compatible
with granularity only in special cases, while the latter approach bears a potential
also for general equality constraints.

In fact, as mentioned earlier, equality constraints that are posed only on continu-
ous variables may be remodeled as pairs of inequality constraints while maintaining
the possibility of granularity. Recall the enlarged inner parallel set from (3.7) which,
in the present MILP setting, reads

xM´
δ = t(x, y) P Rn ˆRm| Ax + By ď tbuω + δω´ 1

2 ‖β‖1 , (6.1)

y` + (1
2 ´ δ)e ď y ď yu + (δ´ 1

2)eu

and assume that an equality constraint i posed only on continuous variables is re-
modeled as a pair of inequality constraints i1 and i2. Then, due to ωi1 = ωi2 = 0,
for the resulting inequality constraints we have tbi1uωi1

= bi, tbi2uωi2
= ´bi and

1
2 ‖βi1‖1 = 1

2 ‖βi2‖1 = 0 and δωi1 = δωi2 = 0, and hence their right-hand sides
remain unchanged in the transition to the enlarged inner parallel set. Therefore, this
construction does not rule out that xM´

δ is nonempty for some δ P [0, 1).
For equality constraints including integer variables, this is usually not the case.

Indeed, we will now introduce conditions under which this simple treatment of
equality constraints immediately results in an empty set xM´

δ for any δ P [0, 1).

Proposition 6.1.1. For some i1 and i2, let αi1 = ´αi2 , βi1 = ´βi2 and bi1 = ´bi2 hold with
βi1 ‰ 0 (that is, an equality constraint with integer variables is modeled as two inequality
constraints). Moreover, let at least one of the following conditions hold:

i) αi1 ‰ 0,

ii) βi1 contains at least two entries.

Then, the enlarged inner parallel set xM´
δ is empty for any δ P [0, 1).

Proof. In view of αi1 = ´αi2 and βi1 = ´βi2 , adding the rows i1 and i2 in the con-
straint system describing xM´

δ yields

0 ď tbi1uωi1
+ tbi2uωi2

´ 1
2 (‖βi1‖1 + ‖βi2‖1) + δ(ωi1 + ωi2)

ď bi1 + bi2 ´
1
2 (‖βi1‖1 + ‖βi2‖1) + δ(ωi1 + ωi2).

By construction, this is the case if and only if

‖βi1‖1 ď 2δωi1

holds. With i) this leads to a contradiction due to ωi1 = 0 and ‖βi1‖1 ą 0. If ii) holds,
the contradiction follows from δ ă 1, along with the fact that βi1 contains at least
two entries each of which upper bounds ωi1 .

Proposition 6.1.1 shows the impossibility of remodeling equality constraints as
two inequality constraints under the preservation of the potential for granularity, if
at least two variables appear in the equation and at least one of them is integer. Let

6.1. Basic Ideas and Different Possibilities 77

y1 y2

y3

y3

y2

(xMred)
´
δ

xMred

FIGURE 6.1: Eliminating the equality constraint from the original fea-
sible set (left) results in a nonempty inner parallel set in the reduced

space (right)

us briefly examine the case where exactly one integer variable j appears in equation
i (and no continuous variables). Without loss of generality, let β j be the j-th unit
vector. Then, with αi = 0, yj is fixed to the value bi, and a reformulation as two
inequality constraints is possible while maintaining the possibility for a nonempty
inner parallel set.

Indeed, reformulating yj = bi as two inequalities yields the constraints

´t´biu +
1
2 ´ δ ď yj ď tbiu´

1
2 + δ

for the enlarged inner parallel set. Due to

´t´biu =

#

tbiu, bi P Z

tbiu + 1, otherwise,

for δ ě 1
2 these constraints are attainable if and only if bi P Z, exactly as it is the case

for the original equality constraint. Of course, in applications and from an algorith-
mic perspective, it makes sense to eliminate such fixed variables from the problem
formulation.

The above discussion shows in particular that conditions i) and ii) in Proposi-
tion 6.1.1 are actually necessary to prove that inconsistency of xM´

δ follows from the
reformulation of an equality constraint as a pair of inequalities.

The next example illustrates how, rather than the reformulation as a pair of in-
equalities, also an elimination step may be possible for a general equality constraint
containing integers, and how the granularity concept can benefit from it.

Example 6.1.2. Consider the feasible set

M = ty P Z3| 0 ď y ď 2e, y1 + y2 + 2y3 = 2u,

which is illustrated on the left-hand side of Figure 6.1. Proposition 6.1.1 implies that re-
formulating the equality constraint as two inequalities would rule out granularity. Notice,
however, that we can actually eliminate y1 using the substitution

y1 = 2´ y2 ´ 2y3 (6.2)

78 Chapter 6. Equality Constraints and Inner Parallel Sets

while guaranteeing y1 P Z if y2, y3 P Z. Also note that eliminating y3 would not be possible
in the same manner. This yields the reduced feasible set

Mred = ty(:= (y2, y3)
ᵀ) P Z2| 0 ď y ď 2e, y2 + 2y3 ď 2, y2 + 2y3 ě 0u

and the corresponding enlarged inner parallel set

(xMred)
´
δ = ty P R2| (1

2 ´ δ)e ď y ď (3
2 + δ)e, y2 + 2y3 ď

1
2 + δ, y2 + 2y3 ě

3
2 ´ δu.

Now, any rounding from (xMred)
´
δ yields a feasible point for Mred which, together with (6.2),

yields a point in M.
The set (xMred)

´
δ is illustrated on the right-hand side of Figure 6.1 with δ = 0.9. Re-

markably, now actually any point from Mred and thus any point in M can be obtained by
rounding a point from (xMred)

´
δ .

Example 6.1.2 shows the potential of the granularity concept also for problems
with equality constraints, if we eliminate variables while ensuring integrality condi-
tions for eliminated integer variables.

Remark 6.1.3. Notice that in the set Mred from Example 6.1.2, the constraint y2 + 2y3 ě 0
is redundant and can be removed from the formulation. While this constraint does not impact
the set xMred, its inner parallel set (xMred)

´
δ would actually become larger by removing it. This

again illustrates how granularity can benefit from the application of presolving techniques.

6.2 Reduced Problems

Let us next extend Example 6.1.2 to general equality constrained mixed-integer lin-
ear optimization problems by examining the system Cx + Dy = γ, y P Zm. If the
latter has no solution then clearly M is empty and MILP inconsistent (and thus also
not granular). If, on the other hand, it is solvable, we may initially compute its solu-
tion space explicitly and incorporate it into the objective function cᵀx + dᵀy and into
the inequality constraints Ax + By ď b of MILP. This generates an equivalent opti-
mization problem MILPred not only of smaller dimension, but in particular without
equality constraints, which allows us to compute a potentially nonempty enlarged
inner parallel set of the reduced problem.

The main challenge in the following will be to take care of the integrality condi-
tions for the dependent integer variables in the explicit computation of the solution
space of the equality constraints. In fact, to be able to take care of integrality condi-
tions, dependent integer variables need to be separated from continuous variables,
for which we propose the following concept.

Definition 6.2.1. A (q, n + m)-matrix F is in partial reduced row echelon form (prref), if
for some t ď mintq, nu it has the form

F =

(
F1 F2
0 F3

)
,

with a (t, n)-matrix F1 of rank t in reduced row echelon form, a (t, m)-matrix F2, and a
(q´ t, m)-matrix F3.

In fact, applying Gauss-Jordan elimination to the matrix C yields a nonsingular
(q, q)-matrix T which transforms the matrix (C, D) into prref with t = rank(C), that

6.2. Reduced Problems 79

is (
rC rD1

0 rD2

)
= T(C, D).

Note that the entries of rC, rD1 and rD2 are again rational and that the reduced row

echelon form of C is
(
rC
0

)
with the (t, n)-matrix rC and t = rank(C).

Finding all solutions to the system Cx + By = γ is then equivalent to solving the
two systems (

rC, rD1

)(x
y

)
= rγ1, (6.3)

rD2y = rγ2, (6.4)

with rγ = Tγ, and rγ1 = rγ[1:t], rγ2 = rγ[t+1:q]. Here, for a vector v and an index set
I, vI denotes the subvector with the entries vi, i P I, of v. The notation I = [` : u]
with ` ď u is shorthand for the index set I = t`, . . . , uu. Moreover, in the following
for a matrix F and index sets I, J, FI,J will denote the submatrix of F with entries Fij,
i P I, j P J. The notation FI,: stands for the submatrix of F consisting of the rows
with index i P I, while F:,J denotes the submatrix of F consisting of the columns with
index j P J.

With respect to the reduced row echelon form of C, let BV Ď t1, . . . , nu denote
the index set of continuous basic (dependent) variables that correspond to the pivot
elements of rC, and NV Ď t1, . . . , nu the indices of continuous nonbasic (independent)
variables. In the sequel, we will distinguish three cases:

1. All dependent variables are continuous (t = q).

2. The set of continuous dependent variables is empty (t = 0).

3. Some continuous and some integral variables are dependent (0 ă t ă q).

Let us initially discuss the first of the above cases, in which no integrality conditions
on dependent variables appear. Although the corresponding elimination of equality
constraints is well-known and straightforward, we give some details which will be
analogous but not repeated in later proofs.

Lemma 6.2.2. Let the (q, n + m)-matrix (C, D) have full row rank and let T(C, D) be in
partial reduced row echelon form (cf. Definition 6.2.1) with t = q, F1 := rC, F2 := rD, and
an empty matrix F3. Then, the problem MILP is equivalent to

MILPred : min
(xNV ,y)PRn´qˆZm

(cᵀNV ´ cᵀBV
rC:,NV)xNV + (dᵀ ´ cᵀBV

rD)y

s.t. (A:,NV ´ A:,BV rC:,NV)xNV + (B´ A:,BV rD)y ď b´ A:,BV rγ.

Proof. Due to t = q, Cx + Dy = γ reduces to (6.3) with rD1 = rD and rγ1 = rγ, which
we may rearrange to

xBV = rC´1
:,BV(rγ´

rC:,NV xNV ´ rDy) = rγ´ rC:,NV xNV ´ rDy,

80 Chapter 6. Equality Constraints and Inner Parallel Sets

where the second equality stems from the fact that, in the reduced row echelon form,
rC:,BV is the (q, q)-identity matrix. Moreover, we may rewrite the system of inequali-
ties in the description of M as

b ě A:,BV xBV + A:,NV xNV + By

= A:,BV(rγ´ rC:,NV xNV ´ rDy) + A:,NV xNV + By,

and the objective function of MILP as

cᵀBV xBV + cᵀNV xNV + dᵀy = cᵀBV(rγ´
rC:,NV xNV ´ rDy) + cᵀNV xNV + dᵀy

which overall yields the assertion.
Note that the optimal value of MILP differs from the optimal value of MILPred

by the constant cᵀBV rγ.
Next, we investigate the second case (t = 0). As this only happens for C = 0 or

n = 0, the original system Cx+Dy = γ collapses to the system of linear Diophantine
equations Dy = γ, which coincides with its partial reduced row echelon form. In
particular, we will need to ensure integrality conditions on all dependent variables.
To this end, we may use a series of elementary (unimodular) column operations to
bring D into its Hermite normal form (HNF) [37]. A matrix is said to be in HNF
if it has the form (K, 0), with a nonsingular, lower triangular, nonnegative matrix
K, in which each row has a unique maximum entry located on its main diagonal.
Elementary column operations consist of

• exchanging two columns;

• multiplying a column by ´1;

• adding an integral multiple of one column to another column.

Performing any of these operations is equivalent to post-multiplying D by a uni-
modular matrix (an integer matrix with a determinant of +1 or ´1). The Hermite
normal form theorem states that any rational matrix of full row rank can be brought
into a unique HNF by a series of elementary column operations (cf. [37], or, e.g.,
[69] for a comprehensive introduction). In fact, one may find an unimodular (m, m)-
matrix U such that

DU = (K, 0)

is the HNF of D. With the algorithm introduced in [43], this may even be done in
polynomial time with respect to the length of the binary encoded input data.

With U1 := U:,[1:q] it is straightforward to see that ȳ := U1K´1γ is a particular
solution of the system Dy = γ. Even better, Dy = γ is solvable if and only if
K´1γ is integral (cf, e.g., [69, Corollary 5.3 b.]). Therefore, if K´1γ is not integral, we
immediately obtain M = H. Hence, in the following let K´1γ be integral. Then the
set of all integral solutions of Dy = γ may be determined as follows.

Lemma 6.2.3 ([69, Corollary 5.3 c.]). Let (K, 0) be the HNF of D with DU = (K, 0), let
K´1γ be integral, and define U1 := U:,[1:q] as well as U2 := U:,[q+1:m]. Then the identity

ty P Zm|Dy = γu =
!

U1K´1γ + U2η| η P Zm´q
)

holds.

Substituting y in MILP in accordance with Lemma 6.2.3 immediately yields the
following result.

6.2. Reduced Problems 81

Proposition 6.2.4. Let C = 0 or n = 0, let the (q, m)-matrix D have full row rank, let
(K, 0) be the HNF of D with DU = (K, 0), let K´1γ be integral, and define U1 := U:,[1:q]
as well as U2 := U:,[q+1:m]. Then, the problem MILP is equivalent to

MILPred : min
(x,η)PRnˆZm´q

cᵀx + dᵀU2η

s.t. Ax + BU2η ď b´ BU1K´1γ.

Note that the optimal value of MILP differs from the optimal value of MILPred
by the constant dᵀU1K´1γ. In case that D does not possess full row rank, again by
Gaussian elimination redundant equations can be removed, so that Proposition 6.2.4
becomes applicable. An analogous remark applies to the subsequent Theorem 6.2.5.

Next we shall see how solving the third of the above cases (0 ă t ă q) may be
accomplished by combining the first and second case (Lemma 6.2.2 and Proposi-
tion 6.2.4, resp.). Here, we initially determine the solution space to (6.4) and subse-
quently incorporate the latter in (6.3).

Theorem 6.2.5. Let T(C, D) be the partial reduced row echelon form of the (q, n + m)-
matrix (C, D) with 0 ă t = rank(C) ă q, F1 := rC, F2 := rD1, and F3 := rD2 (cf.
Definition 6.2.1), where rD2 has full row rank. Furthermore, let (K, 0) be the HNF of rD2

with rD2U = (K, 0), let K´1
rγ2 be integral, and define U1 := U:,[1:q´t] as well as U2 :=

U:,[q´t+1:m]. Then, the problem MILP is equivalent to

MILPred : min
(xNV ,η)PRn´tˆZm´q+t

(cᵀNV ´ cᵀBV
rC:,NV)xNV + (dᵀ ´ cᵀBV

rD1)U2η

s.t. (A:,NV ´ A:,BV rC:,NV)xNV + (B´ A:,BV rD1)U2η ď b´ k,

with k = A:,BV(rγ1 ´ rD1U1K´1
rγ2) + BU1K´1

rγ2.

Proof. We may substitute y in accordance with Lemma 6.2.3 by initially determining
the solution space for (6.4) as

y = U1K´1
rγ2 + U2η, (6.5)

with η P Zm´q+t. Moreover, solving (6.3) for xBV yields

xBV = rγ1 ´ rC:,NV xNV ´ rD1y

= rγ1 ´ rC:,NV xNV ´ rD1(U1K´1
rγ2 + U2η), (6.6)

with xNV P Rn´t. The proof is completed along the lines of the one for Lemma 6.2.2.

Note that the optimal value of MILP differs from the optimal value of MILPred

by the constant cᵀBV(rγ1 ´ rD1U1K´1
rγ2) + dᵀU1K´1

rγ2. Moreover, recall that the viola-
tion of our assumption of integrality of K´1

rγ2 in Theorem 6.2.5 (or K´1γ in Proposi-
tion 6.2.4) actually reveals inconsistency of MILP.

Remark 6.2.6. As variables are usually box constrained, it is useful to explicitly write how
these can be incorporated into the reduced model if not covered by the matrices A and B.
Let y` P (ZY t´8u)m, yu P (ZY t8u)m denote the vectors of lower and upper bounds
on the integral variables and x` P (RY t´8u)n, xu P (RY t8u)n correspondingly those
of the continuous variables. In fact, with Lemma 6.2.3 it is straightforward to see that box

82 Chapter 6. Equality Constraints and Inner Parallel Sets

constraints posed on integral variables, y` ď y ď yu, result in the constraints

y` ´U1K´1
rγ2 ď U2η ď yu ´U1K´1

rγ2

and analogously those on continuous basic variables yield the inequalities

rC:,NV xNV + rD1U2η ď ´x`BV + rγ1 ´ rD1U1K´1
rγ2,

´ rC:,NV xNV ´ rD1U2η ď xu
BV ´ rγ1 + rD1U1K´1

rγ2,

which potentially couple the variables xNV and η. Also note that box constraints on nonbasic
continuous variables xNV can be incorporated without modification into the new model.

6.3 A Reduction Technique Tailored to Feasible Rounding
Approaches

In the previous sections we have seen how equality constraints can be removed from
the problem formulation while ensuring integrality conditions on integer variables
and how this can, in principle, be useful for the application of feasible rounding
approaches. Building on these results, we next develop a general reduction scheme
specifically tuned to the application of feasible rounding approaches.

While equality constraints containing discrete variables need to be eliminated
from the problem formulation to apply feasible rounding approaches (cf. Propo-
sition 6.1.1), this is actually not the case for equality constraints only posed on con-
tinuous variables. Because LP-solvers can deal efficiently with equality constraints,
it is beneficial to pass them to the solver instead of applying the effort to eliminate
them.

This can certainly be achieved after the computation of the prref by selecting rows
that contain only zero entries in rD1. Yet, our aim is to also reduce the computational
effort due to Gaussian elimination on a potentially large system Cx + Dy = γ by ex-
cluding these variables before the computation of the prref. Note that only excluding
rows from (C, D) where all entries of D are zero is often not feasible for this aim, be-
cause continuous variables that are coupled to integer variables via other constraints
can still occur in such rows. The following running example of this section illustrates
this.

Example 6.3.1. Consider the case n = 4, m = 2 and the system Cx + Dy = γ, y P Z2,
with

C =

1 3 0 0
0 0 2 1
0 0 0 1
0 0 0 0

 , D =

0 0
0 0
1 0
1 1

 and γ =

4
4
2
3

 .

Here, only constraints 3 and 4 explicitly contain integer variables. Yet, even though D2,: =
(0, 0) holds, constraint 2 implicitly contains integer variables because x4 is coupled to y1
via constraint 3. In contrast, no variables occurring in constraint 1 are coupled to integer
variables, which enables a separate treatment for this constraint.

Thus, the challenge becomes to a-priori find continuous variables that are not
coupled to integer variables. In the following, partly inspired by the discussion from
[41], we show that this can indeed be achieved with a small computational effort.

For a matrix F, with spm(F) we denote its “sparsity pattern matrix”, that is
(spm(F))ij = 0 if Fij = 0, and (spm(F))ij = 1, if Fij ‰ 0, and let z = (x, y)ᵀ P Rn+m.

6.3. A Reduction Technique Tailored to Feasible Rounding Approaches 83

The next lemma provides a direction how the matrix H = spm(C, D)ᵀ spm(C, D)
can be used to understand how the entries of z are linked via (C, D).

Lemma 6.3.2. With i, j P t1, . . . , m + nu, i ‰ j, the variables zi and zj are directly coupled
by some row k P t1, . . . , qu of (C, D) if and only if Hij is nonzero.

Proof. Writing

Hij =

q
ÿ

k=1

(spm(C, D)ᵀ)ik(spm(C, D))kj =

q
ÿ

k=1

(spm(C, D))ki(spm(C, D))kj

reveals that Hij counts the number of rows in which both variables i and j occur
which proves the assertion.

Example 6.3.3. For the data from Example 6.3.1 one easily computes

H = spm(C, D)ᵀ spm(C, D) =

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 1

 .

Using Lemma 6.3.2, and with diag(H) denoting the diagonal matrix with diago-
nal entries from H, we can now view spm(H ´ diag(H)) as the adjacency matrix of
an undirected graph Γ whose nodes represent the entries of z, and where we have
edges between variables if they are directly coupled by some constraint.

This leads us to consider the connected components Γ1, . . . , Γ` of Γ with ` ď n + m.
Let the entry σj of the vector σ P t1, . . . , `un+m denote the index of the connected com-
ponent which variable zj is placed in. Thus the set CCI = tσn+1, . . . , σn+mu collects
all connected components that are related to integer variables, and a (continuous)
variable xj is only coupled to an integer variable by some constraint, if σj P CCI
holds.

Note that any row i of (C, D) connects all variables with nonzero entries, and that
thus each constraint maps to exactly one connected component. We can therefore
choose the first nonzero entry k of row i of (C, D) and set row i’s component to
Ji = σk.

Example 6.3.4. For Example 6.3.1, and with H from Example 6.3.3, we find two connected
components Γ1 and Γ2 of Γ with σ = (1, 1, 2, 2, 2, 2)ᵀ and J1 = 1 as well as J2 = J3 = J4 =
2. In view of CCI = tσ5, σ6u = t2u we obtain J1 R CCI , and J2, J3, J4 P CCI .

Example 6.3.4 indicates that the set R := ti| Ji R CCIu collects the indices of
constraints that can be excluded from the elimination procedure. With (C1, D1) :=
(C, D)Rc,: denoting the submatrix of (C, D) with row indices outside of R, the next
proposition shows this formally and further illustrates how exactly these constraints
can be incorporated in the reduced model.

Proposition 6.3.5. Let

(
rC1 rD11
0 rD12

)
be the prref of (C1, D1) and let BV1, NV1 denote the

basic and nonbasic variables of rC1, respectively. Then the constraints from Cx + Dy = γ

84 Chapter 6. Equality Constraints and Inner Parallel Sets

with indices in R = ti| Ji R CCIu can be incorporated into the reduced model separately by
the system CR,NV1 xNV1 = γR.

Proof. Since CCI collects connected components associated with any integer variable,
let us initially note that DR,: is the zero matrix.

Furthermore, no variable can occur both in a row of (C, D) with index from R
and in some row of (C1, D1) with a nonzero coefficient, because otherwise these rows
would map to the same connected component of Γ. By definition all basic variables
BV1 must have some nonzero coefficient in some row from (C1, D1), which implies
that also CR,BV1 is the zero matrix.

Thus, the constraints from Cx + Dy = γ with indices in R can be written as

CR,NV1 xNV1 = γR,

which, because xNV1 consists of variables from the reduced model, can be directly
incorporated into the latter.

Connected components of a graph can be determined for example by breadth-
first search in linear time with respect to the number of vertices and edges of the
graph. This means that it is at most quadratic in m + n which yields indeed a the-
oretical advantage over computing the reduced row echelon form, in particular for
large values of q.

Overall, Proposition 6.3.5 leads to the reduced problem and to the feasible round-
ing approach in Algorithm 2. The main computational effort occurs in Steps 6, 7 and
11, at least with regard to worst-case complexity.

Clearly, the possibility of quickly computing a feasible point will not justify the
application of the reduction technique for all sizes of (C, D). Therefore, one interest-
ing question we shall come back to in our numerical study is to determine sizes of
(C, D) that are reducible within a reasonable time after extracting constraints with
indices in R from the system.

Example 6.3.6. Let us illustrate the reduction scheme and the feasible rounding approach
as presented in Algorithm 2 on the problem

MILP : min
x,yPR4ˆZ2

eᵀx + eᵀy s.t. Cx + Dy = γ, 0 ď x ď 2e, 0 ď y ď 2e

with the all-ones vector e and C, D, γ from Example 6.3.1.
Steps 1 to 4 have already been performed in Example 6.3.3 and Example 6.3.4. Step 5

yields R = t1u and, thus, CR,: =
(
1 3 0 0

)
and γR = 4. Note that this already points

to the fact that variables 1 and 2 need to be nonbasic variables. Indeed, computing the prref
of (C, D)Rc,: in Step 6, we obtain

rC =

(
0 0 1 0
0 0 0 1

)
, rD1 =

(
´0.5 0

1 0

)
, rD2 =

(
1 1

)
, rγ1 =

(
1
2

)
, rγ2 = 3,

and computing the HNF of rD2 yields U =

(
0 1
1 ´1

)
and K = 1.

We can now use Remark 6.2.6 for the transformation of box constraints, where (after
removing redundant constraints) the box constraints on y and on xBV yield η P [1, 2].

6.3. A Reduction Technique Tailored to Feasible Rounding Approaches 85

Algorithm 2: Feasible Rounding Approach for equality constrained MILPs
Data: a problem MILP
Result: a feasible point (qxob, qyob), or “MILP not granular”, or “MILP

unbounded”
1 Compute H = spm(C, D)ᵀ spm(C, D)
2 Determine the connected components of the graph of spm(H ´ diag(H)),

store them in σ P Rn+m

3 Set CCI = tσn+1, . . . , σn+mu

4 For i = 1, . . . , q compute Ji = σk, where k is chosen such that (C, D)ik ‰ 0
holds

5 Set R = ti| Ji R CCIu

6 Compute the prref of

(
rC rD1

0 rD2

)
of (C, D)Rc,: with basic variables BV and

nonbasic variables NV
7 Determine U = (U1, U2) and K by computing the HNF rD2U = (K, 0)
8 Set rA = (A:,NV ´ A:,BV rC:,NV) and rB = (B´ A:,BV rD1)U2, and let rαᵀ

i and rβᵀ
i

denote the rows of rA and rB, respectively
9 Compute the enlargement vector ω with

ωi =

#

gcd(rβi), if rβi P Zm´q+t and rαi = 0
0, otherwise

10 Compute the shrinkage-vector s = 1
2 (
∥∥∥rβ1

∥∥∥
1

, . . . ,
∥∥∥rβp

∥∥∥
1
)ᵀ

11 Try to compute an optimal point (pxob
NV , pηob) of the objective based LP

Pob
red : min

(xNV ,η)PRn´tˆRm´q+t
(cᵀNV ´ cᵀBV

rC:,NV)xNV + (dᵀ ´ cᵀBV
rD1)U2η

s.t. rαᵀ
i xNV + rβᵀ

i η ď tbi ´ kiuωi + δωi ´ si, i = 1, . . . , p,
CR,NV xNV = γR,

with k = A:,BV(rγ1 ´ rD1U1K´1
rγ2) + BU1K´1

rγ2

12 if Pob
red is infeasible then

13 return “MILP not granular”
14 else if Pob

red is unbounded then
15 return “MILP is unbounded”
16 else
17 Compute a rounding (qxob

NV , qηob) of (pxob
NV , pηob) and the corresponding

feasible point (qxob, qyob) P M using Equations (6.5) and (6.6)
18 return (qxob, qyob)

19 end

Overall, we thus obtain the problem

Pob
red : min

(x,η)PR2ˆR
x1 + x2 ´

1
2 η s.t. x1 + 3x2 = 4, 0 ď x ď 2e, 3

2 ´ δ ď η ď 3
2 + δ

with optimal point (pxob, pηob) = (0, 4
3 , 3

2 + δ)ᵀ and thus, for any δ P [0, 1), the feasible
rounding (qxob, qηob) = (0, 4

3 , 2)ᵀ for the reduced model. Using Equations (6.5) and (6.6),
we can transform this point back to the feasible point (qxob, qyob) = (0, 4

3 , 2, 0, 2, 1)ᵀ of the

86 Chapter 6. Equality Constraints and Inner Parallel Sets

original problem, which is the output of Algorithm 2. Coincidentally, this is also an optimal
point of MILP.

Finally, as already suggested in Remark 5.3.2, we can potentially improve the
obtained feasible point by applying a simple post processing step where we fix the
integer variables to qyob, solve the continuous problem

Ppp(qyob) : min
x

cᵀx + dᵀy s.t. (x, qyob) P M

and then update (qxob, qyob) to the optimal point of Ppp.

6.4 Computational Results

The purpose of our computational study is twofold. First, we wish to investigate
if the reduction technique introduced in this chapter is computationally feasible for
optimization problems from practice. Secondly, we wish to determine if the granu-
larity concept can be used for computing good feasible points for relevant optimiza-
tion problems which contain equality constraints.

We have implemented the reduction procedure and the feasible rounding ap-
proach outlined in Algorithm 2 in Matlab R2020a. For the computation of the con-
nected components and the HNF we used standard Matlab functions. For deter-
mining the prref, we used the code from [4], which was (sometimes more than 5)
orders of magnitudes faster than the Matlab’s standard implementation. Moreover,
we used Gurobi 8.1 to solve the appearing linear optimization problems and also as
an evaluation for the cases where we obtained a feasible point. Our tests were run
on a desktop computer with an Intel i7 processor with 4 cores à 4 GHz Turbo Boost
and 16 GB RAM.

6.4.1 Practical Complexity of the Elimination Procedure

To obtain relevant test problems, we collected instances from the MIPLIB 2010 [46]
and the MIPLIB 2017 [31]. We discarded duplicates and problems where no equal-
ity constraints on integer variables occur. Moreover, to avoid memory problems in
computations, we restricted our study to problems smaller than 30 megabytes in the
.mps format. This preselection yielded a test bed of 591 problems.

In Section 6.3, we already indicated that one limiting factor of the reduction
scheme might be the computation of the prref and the HNF. In our study, we found
that this was indeed the case. Due to the missing possibility to execute these Matlab
functions with a preset time limit, we ran some initial experiments to obtain an im-
pression of which problems are reducible within a reasonable time. We were looking
for simple decision rules permitting to test the algorithm on a large data set without
having to interfere manually.

In the computational study from Section 4.2, the optimization over the enlarged
inner parallel set (of problems without equality constraints on integer variables) took
less than one minute for all instances. We wanted the time for the computation of the
HNF and the prref not to exceed this value by orders of magnitude, and decided that
an estimated upper bound for these computations should not exceed 15 minutes.

For the computations on our machine we found the following two heuristic de-
cision criteria useful:

(i) Compute the prref, if q ď 3 ¨ 104 and n ď 3 ¨ 105 holds.

6.4. Computational Results 87

10 1 100 101 102 103

Seconds

0

25

50

75

100

125

150

175

200
Nu

m
be

r o
f I

ns
ta

nc
es

construction of CR, :
construction of prref
full reduction
granularity test

FIGURE 6.2: Cumulative share of problems for which the reduction
scheme can be applied successfully over time

(ii) Compute the HNF, if the inequality 5.9(q´ t) + 0.79m ď 1517 is satisfied.

We remark that we left out important other factors, like the magnitude of the integer
entries - which can generally play an important role in the computation of the HNF
but was quite similar for all tested instances.

Using decision criterion (i), we were able to apply the prref for 583 problems. The
computation of the prref needed at most one minute for all these instances, apart
from the instance uc-case11, where the reduction of a (19350, 29934)-matrix did not
finish after one hour. This yielded 582 remaining potential instances for reduction.
Apart from 5 problems, the resulting matrix rD2 was always integral for problems
where decision criterion (ii) applied, which is the required input for Matlab’s HNF
function. In principle, scaling these (rational) matrices by the least common multi-
ples of the denominators is possible but can result in (potentially significantly) larger
values of rD2 and thus in a longer run time in the computation of the HNF. We there-
fore excluded these 5 instances from our test bed.

From the remaining 577 problems, we were able to compute the HNF, and thus
to fully reduce the model, for 192 instances using decision criterion (ii). Hence, a first
main finding of our computational study is that the reduction technique is applicable
to a relevant proportion of problems from practice.

Figure 6.2 summarizes the time needed for the reduction of these 192 instances
by plotting the share of problems over time, for which different steps of Algorithm 2
could be performed. The individual curves include the construction of CR,: (Step 1 –
Step 5), the computation of the prref (Step 6), that of the HNF (Step 7) and solving the
problem Pob

δ (Step 11). Detailed results for all 192 problems can be found in Table A.4
in the appendix.

For 83% of these instances, full reduction and a granularity test was possible
within 100 seconds. Moreover, the construction of CR,: and of the prref was gen-
erally quite fast and only took a fraction of a second for most instances. Yet, the
computation of the HNF took excessively long for several instances, even exceeding
our (estimated) limit of 15 minutes in 11 cases.

88 Chapter 6. Equality Constraints and Inner Parallel Sets

0.0 0.2 0.4 0.6 0.8 1.0
Share of equality constraints

0

3

6

9

12

15

18

21
Nu

m
be

r o
f i

ns
ta

nc
es

FIGURE 6.3: Share of extracted equality constraints for instances with
separable continuous variables

Compared to all reduction steps combined, the optimization over the enlarged
inner parallel set was very quick and took on average 0.08 and at most 4.89 sec-
onds. This becomes visible in Figure 6.2 by the fact that the curves “full reduction”
and “granularity test” are almost identical. This indicates that for the purpose of
computing a feasible point by using the granularity concept, restricting oneself to
smaller dimensions of systems of equations in the computation of the HNF might be
more appropriate. We shall return to this observation in Section 6.4.2.

Due to its potential to reduce the time needed for the computation of the prref,
separating equality constraints via the computation of connected components clearly
can play a significant role in enhancing the chances of quick reducibility of a prob-
lem. Let us next shed some light on how this played out for the problems from our
test bed.

We were able to extract a sometimes significant number of equality constraints
for 129 (out of 591) instances. For these, Figure 6.3 shows a histogram of the share
of equality constraints that could be incorporated separately, where the dotted line
corresponds to the arithmetic mean. We remark that for 48 problems, this share was
more than half, which indicates that this step was important for several problems.
Moreover, Table 6.1 collects instances where more than 2000 constraints could be
incorporated separately. Notice that these are partly problems with a very large
number of variables and equality constraints and that for 3 of these instances, the
computation of R lead to a quick reducibility.

6.4.2 Granularity in Equality Constrained Problems

Let us next investigate the possibility of applying the feasible rounding approach
to equality constrained problems. From the 192 instances that remained from the
reduction scheme, we obtained a nonempty enlarged inner parallel set for 30 in-
stances. Hence, granularity is possible but generally less likely to occur for MILPs
when equality constraints on integer variables are present. Indeed, while roughly
half of the problems in the study in Section 4.2 were granular, here it is only one out
of six.

6.4. Computational Results 89

data time
|R| q n q´ t m CR,: prref HNF

mod011 4368 16 10879 0 96 0.06 0.00 0.00
neos-1061020 4227 6391 79 5349 13931 0.22 0.00 inf
neos-1423785 14964 960 19586 960 1920 0.01 0.00 inf
neos-3754224-navua 82485 2194 146654 2115 3574 0.09 0.04 inf
neos-4230265-orari 2370 5740 19590 2890 13390 0.04 4.04 inf
neos-4232544-orira 4740 11460 43080 5769 43980 0.07 29.14 inf
neos-4264598-oueme 4760 5740 41180 2880 13370 0.06 4.07 inf
neos-4292145-piako 2360 5740 19580 2880 13370 0.03 4.03 inf
neos-4300652-rahue 6006 96 12103 77 20900 0.05 0.00 inf
neos-5188808-nattai 5544 146 14256 146 288 0.00 0.00 29.97
neos-799711 22947 444 41088 444 910 1.09 0.00 inf
neos-799716 22943 444 29709 444 910 0.02 0.00 inf
ns1111636 4567 4400 347622 4400 13200 2.87 0.00 inf
ns2122698 40332 26932 138656 64 16447 0.26 0.03 inf
ns2124243 40332 26932 139636 64 16447 0.29 0.04 inf
shipsched 2001 6312 3045 6312 10549 0.00 0.00 inf
unitcal_7 2890 17 22899 0 2856 0.06 0.00 0.00

TABLE 6.1: Instances where the the computation of CR,: was partic-
ularly important. With q and q´ t we denote the number of rows of

the matrices C and rD2, respectively

Table 6.2 lists these granular problems along with the problem data and comput-
ing times for the important steps of the algorithm. To evaluate the quality of the
generated feasible point, we furthermore list the run time Gurobi needs to compute
a feasible point whose objective value is at least as good.

To compute this value, we passed the objective value of the feasible point ob-
tained by our approach (including the post processing step) to Gurobi using the
parameter “cutoff” and we set the parameter “heuristics” to the maximum value
of one. The latter determines Gurobi’s emphasis on finding good feasible points,
where “larger values produce more and better feasible solutions, at a cost of slower
progress in the best bound”[34].

90
C

hapter
6.

Equality
C

onstraints
and

Inner
ParallelSets

data time
instance q n q´ t m CR,: prref HNF Pob

red Gurobi

breastcancer-regularized.mps 4 9 4 706 0.13 0.00 1454.53 0.03 0.15
dc1l.mps 1638 1659 0 35638 3.56 0.01 0.00 1.39 26.08
ej.mps 1 0 1 3 0.00 0.00 0.04 0.00 0.00
enlight13.mps 169 0 169 338 0.00 0.00 491.58 0.01 0.01
enlight8.mps 64 0 64 128 0.01 0.00 32.71 0.00 0.00
enlight_hard.mps 100 0 100 200 0.00 0.00 102.61 0.00 0.00
go19.mps 80 0 80 441 0.00 0.00 21.06 0.04 0.49
markshare1.mps 6 12 0 50 0.01 0.01 0.00 0.00 0.00
markshare2.mps 7 14 0 60 0.00 0.00 0.00 0.00 0.01
markshare_4_0.mps 4 4 0 30 0.00 0.00 0.00 0.00 0.00
markshare_5_0.mps 5 5 0 40 0.00 0.01 0.00 0.00 0.00
neos-3116779-oban.mps 1 1 0 5140 0.00 0.02 0.00 0.00 0.00
neos-3118745-obra.mps 1 1 0 1130 0.00 0.00 0.00 0.01 0.03
neos-3352863-ancoa.mps 1 1 0 20045 0.00 0.00 0.00 3.05 3.10
neos-3610040-iskar.mps 1 345 0 85 0.00 0.00 0.00 0.00 0.03
neos-3610051-istra.mps 1 729 0 76 0.00 0.00 0.00 0.02 0.05
neos-3610173-itata.mps 1 767 0 77 0.00 0.00 0.00 0.01 0.03
neos-3611447-jijia.mps 1 387 0 85 0.00 0.00 0.00 0.00 0.02
neos-3611689-kaihu.mps 1 333 0 88 0.00 0.00 0.00 0.00 0.03
neos-935234.mps 139 2779 0 7530 0.01 0.00 0.00 0.27 29.96
neos-935627.mps 139 2779 0 7522 0.01 0.00 0.00 0.21 29.37
neos-935769.mps 139 2779 0 7020 0.01 0.00 0.00 0.22 12.15
neos-937511.mps 160 2770 0 8562 0.01 0.00 0.00 0.30 25.65
neos-937815.mps 160 2770 0 8876 0.02 0.00 0.00 0.34 28.80
neos-941262.mps 160 2770 0 6710 0.01 0.00 0.00 0.32 19.90

Continued on next page

6.4.
C

om
putationalR

esults
91

data time
instance q n q´ t m CR,: prref HNF Pob

red Gurobi

neos-948126.mps 156 2586 0 6965 0.01 0.00 0.00 0.29 33.54
neos-983171.mps 158 2408 0 6557 0.01 0.00 0.00 0.30 37.42
neos-984165.mps 155 2405 0 6478 0.01 0.00 0.00 0.32 46.45
pk1.mps 15 31 0 55 0.00 0.00 0.00 0.00 0.02
supportcase35.mps 2880 12365 0 576 0.01 0.17 0.00 0.53 0.04

TABLE 6.2: Comparison with Gurobi for granular problems

92 Chapter 6. Equality Constraints and Inner Parallel Sets

For 19 instances it took Gurobi more time to compute a point of similar quality
than the reduction steps and solving the problem Pob

red combined. This suggests that
points computed by the feasible rounding approach could provide valuable infor-
mation for equality constrained MILPs.

Moreover, Table 6.2 indicates that it is not likely that an application of the feasible
rounding approach is helpful, if the run time of the reduction procedure exceeds 30
seconds. Interestingly, if one only takes problems into account where q´ t is at most
one, the share of granular problems is 25 out of 99 and the chances of obtaining a
granular problem after reduction are increased to roughly one out of four.

This also indicates that granularity is generally less likely to occur when discrete
variables are eliminated using the HNF. From a practical point of view, one may
hence restrict the application of the feasible rounding approaches to problems where
q´ t or m is very small.

Notice that if we limit the application of the feasible rounding approach to such
problems, the neos-instances in Table 6.2 are still included. The approach seems to be
especially useful for these instances and also runs quite fast for all other remaining
instances. Hence, we conclude that it may indeed be helpful for the computation of
good feasible points when applied only to problems with a relatively small number
of remaining equality constraints on integer variables (after the computation of the
prref).

6.5 Conclusions and Further Investigations

In this chapter we have introduced an algorithmic framework that extends the ap-
plicability of the granularity concept to equality constrained MILPs. While naive
approaches of dealing with equality constraints on integer variables prevent find-
ing a nonempty inner parallel set, the tailored reduction scheme introduced in this
chapter eliminates such constraints and thus indeed promotes the possibility for this
set to be nonempty.

Our computational study indicates that the reduction scheme is possible for a
relevant share of problems from standard libraries. Our study further shows that
the granularity concept can be useful for the computation of good feasible points for
equality constrained MILPs, if the number of equality constraints on integer vari-
ables is relatively small. When it is necessary to eliminate many integer variables
from the model (i.e. when the matrix rD2 has more than a few rows and m is large),
the chances of granularity are significantly reduced and using other techniques for
the computation of feasible points is likely to be more appropriate.

One reason for the decreasing chances of granularity under the occurrence of
equality constraints might be the sparsity of the reduced problem compared to the
original formulation. While MILPs often reveal a sparse pattern in the coefficient
matrix of the inequality constraints, this is unlikely to occur after the reduction step.
Because a relatively dense coefficient matrix for integer variables implies large val-
ues of the shrinkage-vector (cf. Line 10 of Algorithm 2), it is precisely this attribute
that may prevent granularity for these problems.

This issue may be circumvented by developing alternative formulations for these
problems, either before, or after the reduction step. An investigation of the possibil-
ity of (automatically) applying remodeling ideas on equality constrained MILPs in
granularity promoting ways is thus an interesting field of investigation for future re-
search. Finally, we leave the evaluation of applying the present approach to convex
MINLPs with equality constraints to future research.

93

Chapter 7

Inner Parallel Sets in Search Trees

In the previous chapters, feasible rounding ideas were introduced and successfully
tested as standalone concepts for mixed-integer linear and nonlinear optimization
problems. Yet, so far it is untested how these approaches might function when in-
tegrated in branch-and-bound methods. In particular, it has not been studied how
inner parallel sets behave when we move down a search tree.

In this chapter we intend to close this gap. Additionally, based on these results,
we develop a novel method that combines feasible rounding approaches and diving
ideas. This chapter is structured as follows.

In Section 7.1 we recall the general setting and briefly introduce some additional
concepts. We then provide a theoretical analysis of the behavior of inner parallel sets
when variables are fixed in Section 7.2. Thus we investigate the theoretical potential
of integrating feasible rounding approaches into branch-and-bound methods. More-
over, the results from this section give rise to new diving ideas which can improve
standalone feasible rounding approaches. This is the content of Section 7.3. To arrive
at a specific algorithm, we formulate a method for MILPs. Finally, in Section 7.4, we
conduct a computational study on a standard test library of MILPs [31] that sheds
a light on the effectiveness of these diving strategies and also on the potential bene-
fit of integrating feasible rounding approaches into a solver framework. Section 7.5
concludes the chapter and offers directions for further research.

7.1 Preliminaries

In this section, we initially rehash some constructions from the previous chapters
and fit them into the present setting.

In this chapter, we study general mixed-integer nonlinear optimization problems
of the form

MINLP : min
(x,y)PRnˆZm

cᵀx + dᵀy s.t. gi(x, y) ď 0, i P I, Ax + By ď b,

y` ď y ď yu,

that is, we use the general setting from Section 2.1 but without loss of generality
assume a linear objective function. We will also be interested in the special case of
MILPs (I = H) for which we will develop a novel diving heuristic in Section 7.3.

Recall that we call (qx, qy) rounding of a point (x, y) P Rn ˆRm, if

qx = x, qy P Zm, |qyj ´ yj| ď
1
2 , j = 1, . . . m (7.1)

94 Chapter 7. Inner Parallel Sets in Search Trees

y2

y1

B8(ȳ, 1
2)

xM´
ȳ

xM

FIGURE 7.1: Construction of the inner parallel set xM´. The filled
points are obtainable as roundings from xM´ and thus form the set R.

hold. Then, for a set S Ď Rn ˆRm let us define the set of roundings obtainable from
S as

R(S) := t(qx, qy) P Rn ˆZm| (x, y) P S and (7.1)u

and abbreviate R := R(xM´).
Figure 7.1 illustrates the construction of the inner parallel set xM´ for a two di-

mensional purely integer example. The set M consists of four feasible points, but
only the filled points are obtainable as roundings from xM´, that is, the relation
R = t(0, 1)ᵀ, (0, 2)ᵀu holds.

Recall from Chapter 3 that in the linear case, with an enlargement parameter
δ P [0, 1), the vector ω of greatest common divisors, rb := tbuω + δω and the all-ones
vector e of dimension m, an explicitly computable enlarged relaxed feasible set is

ĂM = t(x, y) P Rn ˆRm| Ax + By ď rb, y` ´ δe ď y ď yu + δeu. (7.2)

For ease of notation, in this chapter we omit the δ-dependency of ĂM. Correspond-
ingly, the enlarged inner parallel set can be written as

ĂM´ = t(x, y) P Rn ˆRm| Ax + By ď rb´ 1
2 ‖β‖1 , y` + (1

2 ´ δ)e ď y ď yu ´ (1
2 ´ δ)eu.

(7.3)
We next illustrate the computation of the enlarged inner parallel set for a binary
knapsack example which we shall also revisit in Section 7.2 to demonstrate the use-
fulness of fixing binary variables. Here, we use the abbreviation rR := R(ĂM´).

Example 7.1.1. Let us consider the (binary knapsack) feasible set

M = ty P B3| 1 ď
3
ÿ

i=1

yi ď 2u.

Using (7.3) with ω = (1, 1)ᵀ and ‖β‖1 = (3, 3)ᵀ the enlarged inner parallel set is

ĂM´ = ty P R3| 5
2 ´ δ ď

ř3
i=1 yi ď

1
2 + δ, (1

2 ´ δ)e ď y ď (1
2 + δ)eu,

which is empty for any δ P [0, 1). This also implies rR = H for this example.

7.2. Fixing Variables and Inner Parallel Sets - a Geometrical Perspective 95

7.2 Fixing Variables and Inner Parallel Sets - a Geometrical
Perspective

In this section, we present a geometrical perspective on the effects that occur when
we move down a search tree. We investigate the implications of fixing integer vari-
ables to values ` P Z. This covers the important case of branching on binary vari-
ables and is often also feasible for an integer variable i when the difference of the
bounds yu

i ´ y`i is small enough. Feasible rounding approaches work especially well
for problems with a relatively small number of binary variables compared to gen-
eral integer variables, which we noted in the computational study in Chapter 4 and
is further substantiated by the theoretical bounds derived in [62]. Therefore, the case
of fixing binary variables is of particular interest for our present analysis.

In the following, we make no further distinction between different nodes of
a branch-and-bound tree, and demonstrate the effects only for the root node of
MINLP. We stress that this is for notational convenience only and that our results
are applicable to any branch-and-bound node.

As we shall presently demonstrate, fixing integer variables increases the chances
for finding good feasible points using feasible rounding approaches. To be more
specific, fixing an integer variable i to a value ` P ZX [y`i , yu

i] results in the i-`-fixed
relaxed feasible set

xM(i)(`) = t(x, ry) P Rn ˆRm´1| (x, (ry1, . . . , ryi´1, `, ryi, . . . , rym´1)) P xMu. (7.4)

Moreover, with

xM(i)(`)
´ = t(x, ry) P Rn ˆRm´1| txu ˆ B8(ry, 1

2) Ď
xM(i)(`)u (7.5)

we denote the i-`-fixed inner parallel set. We abbreviate the set of roundings obtain-
able from this set as R(i)(`) := R(xM(i)(`)

´).

Remark 7.2.1. The analysis in this section makes a connection between inner parallel sets
and i-`-fixed inner parallel sets that is independent of an enlargement step. Hence, while we
make this connection only explicit for the sets xM´ and xM(i)(`)

´, all results will be equally
valid for the connection of enlarged inner parallel sets ĂM´ and their enlarged i-`-fixed inner
parallel sets ĂM(i)(`)

´.

The following notation facilitates a comparison of inner parallel sets with i-`-
fixed inner parallel sets and thus the investigation of the effects of fixing integer
variables. For y P Rm and i P t1, . . . , mu let

y´i := (y1, . . . , yi´1, yi+1, . . . , ym)
ᵀ P Rm´1, (7.6)

and, correspondingly, for y P Rm´1 and some ` P R, let

y+i(`) := (y1, . . . , yi´1, `, yi, . . . , ym´1)
ᵀ P Rm (7.7)

denote the vectors where we remove or insert an element at position i, respectively.
Moreover, for S1 Ď R and S2 Ď Rm´1, let

S1 ˆi S2 := ts+i(s1) P Rm| s1 P S1, s P S2u.

96 Chapter 7. Inner Parallel Sets in Search Trees

y2

y1

t0u ˆ2 xM(2)(0)´

t1u ˆ2 xM(2)(1)´
y2

y1

t1u ˆ2 xM(2)(1)

t0u ˆ2 xM(2)(0)

FIGURE 7.2: Construction of the i-`-relaxed feasible set (left) and the
i-`-fixed inner parallel sets (right) with i = 2 and ` P t0, 1u.

The construction of i-`-fixed (inner parallel) sets is illustrated in Figure 7.2 for
i = 2 and ` P t0, 1u. Remarkably, fixing y2 results in

t0u ˆ2 R(2)(0) = t(0, 0)ᵀ, (0, 1)ᵀ, (0, 2)ᵀu, t1u ˆ2 R(2)(1) = t(1, 1)ᵀu

and thus allows us to obtain all points in M as roundings from i-`-fixed inner par-
allel sets. Recall from Figure 7.1 that we were only able to obtain the two points
(0, 1)ᵀ, (0, 2)ᵀ as roundings from the inner parallel set xM´. Hence, this example
shows that the number of roundings obtainable with feasible rounding approaches
can increase when we move down a search tree. We will presently show that there is
a crucial theoretical link between roundings from inner parallel sets and roundings
from i-`-fixed inner parallel sets which offers an explanation for this observation.

In fact, this link is already depicted on the right-hand side of Figure 7.2: for
any point y P xM´, we have a “corresponding point” y´2 P (xM(2)(0))´, which is
illustrated by the dashed lines from xM´ to (xM(2)(0))´. The next lemma proves that
this is not a coincidence, but that for any point from the inner parallel set, we always
have a corresponding point in the i-`-fixed inner parallel set if we choose ` to be the
rounding of component i of y.

Lemma 7.2.2. For any (x, y) P xM´ and any i P t1, . . . , mu, we have (x, y´i) P xM(i)(qyi)
´.

Proof. Let (x, y) P xM´. Then by definition of xM´ we have

txu ˆ B8(y, 1
2) = txu ˆ [yi ´

1
2 , yi +

1
2]ˆi B8(y´i, 1

2) Ď
xM.

With qyi P [yi ´
1
2 , yi +

1
2], this implies

txu ˆ tqyiu ˆi B8(y´i, 1
2) Ď

xMX (Rn ˆ ty P Rm| yi = qyiu) = tqyiu ˆn+i xM(i)(qyi),

and dropping tqyiu in the cross product yields

txu ˆ B8(y´i, 1
2) Ď

xM(i)(qyi),

which shows the assertion.

The next theorem uses this connection to show that the number of roundings
obtainable from the inner parallel set is non-decreasing with increasing depth of the
search tree.

Theorem 7.2.3. For any i = 1, . . . , m, we have R Ď
Ť

`PZX[y`i ,yu
i]

(
t`u ˆn+i R(i)(`)

)
.

7.2. Fixing Variables and Inner Parallel Sets - a Geometrical Perspective 97

Proof. Let (qx, qy) P R. For a corresponding point (x, y) P xM´, Lemma 7.2.2 implies
(x, y´i) P xM(i)(qyi)

´. Note that, although the rounding (qx, (|y´i)) of (x, y´i) is in

general not unique, it can be chosen such that (|y´i) = (qy)´i holds.
This shows (qx, (qy)´i) P R(i)(qyi) and, with ` := qyi P (ZX [y`i , yu

i]), implies

(qx, qy) P t`u ˆn+i R(i)(`),

which proves the assertion.

In summary, Theorem 7.2.3 together with our considerations from Figures 7.1
and 7.2 immediately yields the following corollary.

Corollary 7.2.4. The set of feasible points obtainable by the feasible rounding approaches is
nondecreasing and potentially increases with increasing depth of the search tree.

Let us next revisit Example 7.1.1 to illustrate the explicit construction of i-`-fixed
enlarged inner parallel sets for MILPs.

Example 7.2.5. Let us consider the feasible set M from Example 7.1.1 and fix y3. Again,
with ω = (1, 1)ᵀ, this results in the two 3-`-fixed enlarged sets

ĂM(3)(0) = try P R2| 1´ δ ď ry1 + ry2 ď 2 + δ, ´δe ď ry ď (1 + δ)eu,
ĂM(3)(1) = try P R2| ´ δ ď ry1 + ry2 ď 1 + δ, ´δe ď ry ď (1 + δ)eu,

and, with ‖β‖1 = (2, 2)ᵀ, yields the enlarged inner parallel sets

ĂM(3)(0)
´ = try P R2| 2´ δ ď ry1 + ry2 ď 1 + δ, (1

2 ´ δ)e ď ry ď (1
2 + δ)eu,

ĂM(3)(1)
´ = try P R2| 1´ δ ď ry1 + ry2 ď δ, (1

2 ´ δ)e ď ry ď (1
2 + δ)eu.

The crucial difference compared to the (unfixed) enlarged inner parallel set is that we no
longer have to account for possible rounding errors of y3 which results in the fact that each
value of ‖β‖1 can be reduced from 3 to 2. Thus, while the enlarged inner parallel set of the
original feasible set is empty for any δ P [0, 1), both i-3-fixed enlarged inner parallel sets are
nonempty for δ P [1

2 , 1).
With rR(i)(`) := R(ĂM(i)(`)

´), we even have (t0uˆ3 rR(3)(0))Y (t1uˆ3 rR(3)(1)) = M
for δ P [1

2 , 1), that is, all feasible points may be obtained as roundings from these 3-`-fixed
inner parallel sets.

Hence, Example 7.2.5 not only offers a computational perspective on the con-
struction of i-`-fixed inner parallel sets, but also further substantiates the potential
of fixing integer variables for feasible rounding approaches.

Let us conclude this section with some considerations on the enlargement step.
In Remark 7.2.1 we highlighted that the transition from ĂM´ to ĂM´

(i)(`) is analogous

to that from xM´ to xM´

(i)(`) and that all results derived in this section are hence
equally valid for this transition. Yet, there is an additional potential that can be har-
vested: there can be the possibility to enlarge the set ĂM(i)(`) even further, once vari-
able i is fixed to `. As an example, consider a constraint βᵀ

i y ď bi with βi = (1, 3, 3)ᵀ

and bi = 3. Then, when fixing y1 and using the enlargement techniques from (7.2),
the entry ωi can be increased from 1 to 3 in the transition from the set ĂM to ĂM(i)(`).
We will exploit this fact in our development of a diving method for MILPs in the
following section.

98 Chapter 7. Inner Parallel Sets in Search Trees

7.3 A Diving Heuristic for MILPs

In this section we elaborate some algorithmic ideas on how the results from the pre-
vious section can be used for the development of a diving heuristic. We develop a
method for mixed-integer linear optimization problems MILP and use the notation
introduced in Section 7.1 for MINLP with I = H. In particular, we employ the
construction of the enlarged inner parallel set from (7.3).

We initially elaborate diving approaches for the cases of a nonempty and an
empty inner parallel set separately, and subsequently bring them together into a
general framework. In the first case, we show how to ensure that inner parallel sets
of resulting child nodes remain nonempty. Our aim will be to find a feasible point
with improved objective value. For empty inner parallel sets we show how certain
auxiliary optimization problems and ways of fixing variables are likely to generate
nonempty inner parallel sets of child nodes.

7.3.1 A Diving Step for a Nonempty Enlarged Inner Parallel Set

Let us initially elaborate a method for ĂM´ ‰ H. Minimizing the objective function
of MILP over the enlarged inner parallel set yields the objective based problem

Pob : min
(x,y)PRnˆRm

cᵀx + dᵀy s.t. (x, y) P ĂM´.

Due to our assumption ĂM´ ‰ H, the problem Pob is either solvable or unbounded,
where unboundedness of Pob would imply unboundedness of MILP. As we develop
a method that generates good feasible points, the latter case is not interesting in our
context. In this section, we therefore assume that MILP is bounded. This, together
with ĂM´ ‰ H, guarantees the existence of an optimal point (xob, yob) of Pob. We
denote any rounding of (xob, yob) by (qxob, qyob) and the objective value of the rounded
optimal point by qvob = cᵀqxob + dᵀqyob.

One crucial observation from Lemma 7.2.2 is that if the enlarged inner parallel set
of some branch-and-bound node is nonempty and (x, y) is any of its feasible points,
we immediately obtain m nonempty i-`-fixed (child node) enlarged inner parallel
sets, where i P t1, . . . , mu and ` = qyi.

Then, as a diving step, we may solve a corresponding i-`-fixed objective based
problem

Pob
(i)(`) : min

(x,ry)PRnˆRm´1
cᵀx + (d´i)ᵀry + di` s.t. (x, ry) P ĂM(i)(`)

´,

denote any of its optimal points by (xob, ryob) and its optimal value by vob
(i)(`). Due to

the previous considerations on the possibility of an additional enlargement step of
the i-`-fixed inner parallel set, we suggest to fix variable i to ` before determining the
vector ω in the computation of ĂM(i)(`)

´ in accordance with (7.3).
We abbreviate

(xob, ryob)(i)(`) := (xob, (ryob)+i(`)) (7.8)

so that we can analogously denote the (rounded) MILP-feasible point obtained by
solving the i-`-fixed objective based problem, rounding all y components and “re-
inserting“ value ` at position i with (qxob, qyob)(i)(`). Moreover, the objective value of
(qxob, qyob)(i)(`) is denoted by qvob

(i)(`).

7.3. A Diving Heuristic for MILPs 99

While this applies to roundings of any feasible point from ĂM´, one fruitful idea
is to (iteratively) use roundings of optimal points of (i-`-fixed) objective based prob-
lems, that is, to set ` = qyob

i . The next example elaborates this idea more fully and
shows that, even though the fixing value for variable i is given by qyob

i , different or-
ders of selecting variables can yield different feasible points.

Example 7.3.1. Consider the optimization problem

IP : min
yPZ3

´y1 ´ 3y3 s.t. y1 + y2 + 2y3 ď 3, ´2y1 ´ 2y2 + y3 ď ´1, 0 ď y ď 2e.

By using Equation (7.3) with δ = 0.9, we can formulate the objective based problem

Pob : min
yPR3

´y1 ´ 3y3 s.t. y1 + y2 + 2y3 ď 1.9, ´2y1 ´ 2y2 + y3 ď ´2.6,

´0.4e ď y ď 2.4e,

and compute its optimal point yob = (1.82,´0.4, 0.24)ᵀ. Rounding yob yields the IP-
feasible point qyob = (2, 0, 0)ᵀ with objective value qvob = ´2.

Fixing y2 = 0 and setting ry := (y1, y3)ᵀ yields the 2-0-fixed objective based problem

Pob
(2)(0) : min

ryPR2
´y1 ´ 3y3 s.t. y1 + 2y3 ď 2.4, ´2y1 + y3 ď ´1.6,

´0.4e ď y ď 2.4e

with optimal point ryob = (1.12, 0.64)ᵀ and thus the IP-feasible point qyob
(2)(0) = (1, 0, 1)ᵀ

with improved objective value qvob
(2)(0) = ´4.

After solving the problem Pob, we also had the options to fix y1 = 2 or y3 = 0. Note
that both fixings rule out the possibility to obtain the feasible point (1, 0, 1)ᵀ on a path in the
search tree and that this point is hence only obtainable if we initially fix y2 = 0.

Example 7.3.1 shows that fixing components of rounded optimal points from Pob

has the potential to yield improved points and that the choice of variables actually
matters. When fixing one component, new options for other components become
available - and thus new feasible points. In a diving heuristic, this allows the flex-
ibility to select a component and thus to choose the order of fixing while ensuring
nonempty inner parallel sets of child nodes. We will make some remarks on possible
strategies for fixing variables in Section 7.3.3.

Remark 7.3.2. The main reason for our choice of fixing variable i to qyob
i was that it guaran-

teed granularity of child nodes and that this particular choice is promising with regard to the
objective value. Yet, to have more flexibility may be fertile for developing further diving ideas
and may offer possibilities to obtain better feasible roundings. In this regard, note that if we
have two points (x1, y1), (x2, y2) P ĂM´, again by Lemma 7.2.2 we can fix any i of these k
variables to values ` P tqy1

i , qy2
i u. In our linear setting, the inner parallel set is convex and

hence even all values from the interval [mintqy1
i , qy2

i u, maxtqy1
i , qy2

i u] are possible.

As a next step, we consider diving possibilities similar to those developed so far
for an empty enlarged inner parallel set.

100 Chapter 7. Inner Parallel Sets in Search Trees

7.3.2 A Diving Step for an Empty Enlarged Inner Parallel Set

In this section, we develop a diving method for non-granular nodes. To gather infor-
mation about the “degree of non-granularity“ and about the impact of fixing vari-
ables, it will turn out to be beneficial to investigate the (solvable) feasibility problem

P f : min
(x,y,z)PRnˆRmˆR

z s.t. (x, y, z) P ĂM´
L ,

where the feasible set of P f is the lifted enlarged inner parallel set of xM,

ĂM´
L = t(x, y, z) P Rn ˆRm ˆR|

Ax + By´ ze ď rb´ 1
2 ‖β‖1 , y` + (1

2 ´ δ)e ď y ď yu ´ (1
2 ´ δ)e, z ě ´1u.

Note that the introduced enlargement techniques work only for constraints where
continuous variables are absent. Therefore, it is crucial to lift the problem after the
application of an enlargement step, that is, after the computation of ω.

We denote an optimal point of P f by (x f , y f , z f) and its optimal value by v f . As
already mentioned in Chapter 4, granularity is equivalent to v f ď 0 which implies
(x f , y f) P ĂM´ and thus (qx f , qy f) P M. Moreover, we may obtain an MILP-feasible
point even in the case of a non-granular problem where v f ą 0 holds. Hence, the
“reverse implication” (v f ą 0)ñ (qx f , qy f) R M is not true. Of course, this possibility
to generate non-granular feasible roundings can be used algorithmically to find feasible
points for more problems from practice.

We next establish a crucial property of diving methods that fix y-components
to roundings qy f of y f : this way of fixing entails that the optimal value v f of the
auxiliary problem P f cannot deteriorate. To state this formally, analogously to the
i-`-fixed objective-based problem, with

P f
(i)(`) : min

(x,ry,z)PRnˆRm´1ˆR
z s.t. (x, ry, z) P (ĂML)(i)(`)

´

we denote the i-`-fixed feasibility problem, with (x f , ry f , z f) any of its optimal points
and with v f

(i)(`) its optimal value.

Proposition 7.3.3. Let (x f , y f , z f) be an optimal point of P f . Then for any i P t1, . . . , mu
the following assertions are true:

(a) (x f , (y f)´i, z f) is feasible for P f
(i)(qyi).

(b) the inequality v f
(i)(qy

f
i) ď v f is valid.

Proof. Part a is an immediate consequence of Lemma 7.2.2. It implies v f
(i)(qyi) ď z f =

v f and thus part b of the assertion.

Proposition 7.3.3b establishes a firm basis for a diving step in the sense that it of-
fers possibilities to fix variables which guarantee that the degree of non-granularity
cannot deteriorate. Of course, we are interested in actually improving upon the
value v f ą 0, which is not ruled out, but also not immediately implied by Proposi-
tion 7.3.3. Therefore, we next derive conditions under which actual progress towards
feasibility in the i-`-fixed feasibility problem (i.e. v(i)(qy

f
i) ă v f) is guaranteed. This

will also help us to determine components of y whose fixings might be fruitful.

7.3. A Diving Heuristic for MILPs 101

In this regard, let us examine a constraint j from ĂM´
L evaluated at (x f , y f , z f),

αᵀ
j x f + βᵀ

j y f ´ z f ď rbj ´
1
2

∥∥β j
∥∥

1 .

With Bji denoting the entry located at row j and column i of B, using the relations∥∥β j
∥∥

1 =
∥∥∥β´i

j

∥∥∥
1
+ |Bji|, and βᵀ

j y f = (β´i
j)ᵀ(y f)´i + Bjiy

f
i ,

this constraint can be written as

αᵀ
j x f + (β´i

j)ᵀ(y f)´i ´ z f ď rbj ´
1
2 (
∥∥∥β´i

j

∥∥∥
1
+ |Bji|)´ Bjiy

f
i . (7.9)

Proposition 7.3.3a implies that when we evaluate the corresponding constraint j of
(ĂML)(i)(qy

f
i)
´ at (x f , (y f)´i, z f), we obtain the valid inequality

αᵀ
j x f + (β´i

j)ᵀ(y f)´i ´ z f ď rbj ´
1
2

∥∥∥β´i
j

∥∥∥
1
´ Bjiqy

f
i . (7.10)

Moreover, because the left-hand sides of inequalities (7.9) and (7.10) coincide, we
can now compare their right-hand sides to see if constraint j is relaxed in the transi-
tion from P f to P f

(i)(`). Subtracting the right-hand side of (7.9) from the right-hand
side of (7.10) yields the degree of freedom

f ji =
1
2 |Bji|+ Bji(y

f
i ´ qy f

i) (7.11)

that becomes available in constraint j of the problem P f
(i)(qy

f
i) due to fixing variable

i. Note that f ji P [0, |Bji|] not only confirms Proposition 7.3.3a, but also shows that
often some leverage is possible in constraint j. In fact, we only have f ji = 0, if either

Bji = 0, or |y f
i ´ qy f

i | =
1
2 holds, where in the latter case additionally y f

i ´ qy f
i needs to

have the opposite sign as Bji. Hence, if a variable appears in a constraint, usually also

a strictly positive degree of freedom is possible, in particular because |y f
i ´ qy f

i | =
1
2

implies ambiguity of the rounding qy f
i , so that one might be able to choose qy f

i such
that f ji = |Bji| holds.

In the following, let JA Ď t1, . . . , pu denote the index set of rows of Ax + By´
ze ď rb ´ 1

2 ‖β‖1 that are active at (x f , y f , z f). Moreover, let fi P R|JA| denote the
vector with entries f ji, j P JA, where |JA| ď p denotes the cardinality of JA.

The next lemma shows that progress towards feasibility due to fixing variables
can be guaranteed for each variable i which has a strictly positive degree of freedom
in all active constraints, that is, fi ą 0.

Lemma 7.3.4. With an optimal point (x f , y f , z f) of P f and v f ą 0, for some i P t1, . . . , mu
let fi ą 0. Then we have v(i)(qy

f
i) ă v f .

Proof. By Proposition 7.3.3a, the point (x f , (y f)´i, z f) is feasible for P f
(i)(qyi). As its

objective value coincides with v f , it suffices to show that it is not optimal for P f
(i)(qyi).

Indeed, optimality of (x f , (y f)´i, z f) requires the activity of at least one constraint
of (ĂML)(i)(qy

f
i)
´ where z f occurs, that is, due to z f = v f ą 0, inequality (7.10) holds

with equality for some j P t1, . . . , pu.
For j P JA this is ruled out by our assumption f ji ą 0. Moreover, for j P

t1, . . . , puzJA inequality (7.9) is strictly satisfied. This, with f ji ě 0, implies that also

102 Chapter 7. Inner Parallel Sets in Search Trees

inequality (7.10) is strictly satisfied. Hence, (x f , (y f)´i, z f) cannot be optimal and
the assertion is shown.

The next example illustrates how the degree of freedom fi may indeed guide us
towards a successful diving step.

Example 7.3.5. Consider a linear optimization problem with the feasible set

M = ty P B3| y1 + y2 + 2y3 ď 2, ´y1 ´ y2 ´ 2y3 ď ´1, 2y1 ´ y2 ´ y3 ď 1u.

Adding the first two constraints of the corresponding feasibility problem

P f : min
(y,z)PR4

z s.t. y1 + y2 + 2y3 ´ z ď δ,

´y1 ´ y2 ´ 2y3 ´ z ď ´3 + δ,
2y1 ´ y2 ´ y3 ´ z ď ´1 + δ,

z ě ´1

yields the lower bound on the optimal value z ě 3
2 ´ δ ą 0 which proves that M is not

granular. This also shows that the P f -feasible point (y f , z f) = (1
2 ´ δ, 1

2 + δ, 1
4 , 3

2 ´ δ)ᵀ

which realizes this lower bound is optimal for P f .
In the following, let us assume δ ą 0 so that the rounding of y f is uniquely defined by

qy f = (0, 1, 0)ᵀ. Notice that qy f is a non-granular feasible rounding which is already useful if
one is interested in computing some feasible point of M. Yet, to be able to compute feasible
points with improved objective value, e.g. by using objective diving steps, a granular node is
crucial so that a feasibility diving step still makes sense.

For the selection of a fixing variable, only the first two constraints are active in (y f , z f)
independently of the choice of δ ą 0, that is, JA = t1, 2u. Computing the degree of freedom
thus yields the three positive vectors

f1 =

(1
2 + 1(1

2 ´ δ´ 0)
1
2 ´ 1(1

2 ´ δ´ 0)

)
, f2 =

(1
2 + 1(1

2 + δ´ 1)
1
2 ´ 1(1

2 + δ´ 1)

)
, and f3 =

(
1 + 2(1

4 ´ 0)
1´ 2(1

4 ´ 0)

)
.

To promote granularity, one usually chooses δ close to one (e.g. 1´ 10´4) and hence only
fixing y3 offers a notable degree of freedom for both constraints.

This positive degree of freedom is sufficient to yield a granular 3-0-child node. Indeed,
when fixing y3 = 0 we obtain the enlarged inner parallel set

ĂM(3)(0)
´ = ty P R2| y1 + y2 ď 1 + δ, ´y1 ´ y2 ď ´2 + δ, 2y1 ´ y2 ď ´

1
2 + δu

which is nonempty for any δ ě 1
2 because it contains the feasible point (1

2 , 1
2 + δ)ᵀ.

On the other hand, the 1-0-fixed enlarged inner parallel set contains the two inequalities

y2 + 2y3 ď δ + 1
2 ,

´y2 ´ 2y3 ď δ´ 5
2 .

Adding these constraints together with δ ă 1 again shows that they are unattainable and that
we thus have ĂM(1)(0)´ = H. Using the same arguments, one easily sees that ĂM(2)(1)´ =
H holds as well so that deciding by the degree of freedom indeed seems to be a fruitful possi-
bility for fixing variables.

For practical applications of larger dimensions, the requirement of Lemma 7.3.4
might often be too strict; a necessary condition which will often be violated is that

7.3. A Diving Heuristic for MILPs 103

one integer variable occurs in every active constraint. The next result shows how this
requirement can be weakened, if we allow the flexibility to fix multiple variables in
one diving step. Indeed, we will presently show that then it is sufficient if each active
constraint contains at least one variable from a group of variables with a positive
degree of freedom.

To state this formally, with k ď m, an index set Ī = ti1, . . . , iku Ď t1, . . . , mu and
a set of corresponding integer values L̄ = t`i1 , . . . , `iku, in the following let the Ī-L̄-
fixed enlarged inner parallel set ĂM(Ī)(L̄)´ be defined analogously to Equations (7.4)
and (7.5) where, instead of fixing one variable yi to `i, we now fix each yi with i P Ī
to the corresponding value `i P L̄. Moreover, we extend this notation to the Ī-L̄-
objective based problem and the Ī-L̄-feasibility problem, as well as to their feasible
sets, (rounded) optimal points and (optimal) objective values. For this purpose, y Ī P

R| Ī| denotes the vector with entries yi, i P Ī.
We are again interested in values L̄ that correspond to roundings of components

of an P f -optimal point, that is L̄ = tqy f
i1

, . . . , qy f
ik
u. Then, a repeated application of

Lemma 7.2.2 shows that (x f , (y f)´ Ī , z f) is feasible for P f
(Ī)(L̄). Moreover, using the

arguments from Equations (7.9) - (7.11), it is straightforward to see that the degree
of freedom f j Ī for constraint j which is available by fixing variables i P Ī coincides
with the sum of degrees of freedoms of these variables, that is,

f j Ī =
ÿ

iP Ī

f ji =
ÿ

iP Ī

(
1
2 |Bji|+ Bji(y

f
i ´ qy f

i)
)

. (7.12)

Again with f Ī P R|JA| defined as the vector with entries f j Ī , j P JA, we can extend
Lemma 7.3.4 to the following proposition.

Proposition 7.3.6. With an optimal point (x f , y f , z f) of P f , for some Ī Ď t1, . . . , mu let
f Ī ą 0. Then we have v f

(Ī)(qy
f
Ī) ă v f .

For a variable i, let Ji := tj P JA| f ji ą 0u denote the index set of constraints
for which variable i has a strictly positive degree of freedom. Then with JU =
Ť

iPt1,...,mu Ji there exists some index set Ī with f Ī ą 0, if and only if JU = JA holds.

Therefore, by Proposition 7.3.6, JU = JA is sufficient to ensure v f
(Ī)(qy

f
Ī) ă v f .

If this is the case, a natural task for a diving step is to find the minimum number
of variables to fix such that progress towards feasibility is guaranteed. This question
coincides with the set covering problem (cf., e.g., [56]), where JU is the universe and
tJi| i P t1, . . . , muu is the collection of sets. This set covering problem is also of interest
for JU Ĺ JA. In this case, it minimizes the number of fixings which guarantees a
positive degree of freedom for those active constraints for which a positive degree
of freedom is possible.

As the set covering problem is NP-hard, solving this problem to optimality just
for deciding which variables to fix seems to be out of order. Hence we suggest to use
a greedy method instead, where theoretical results for worst case objective bounds
on the greedy algorithm for set covering problems [20, 42] make it a suitable choice
for our purpose.

Applied to our context, the greedy algorithm starts with k = 0, Ī0 = H and
iteratively chooses a variable ik so that Jik contains the largest number of uncovered
elements of JU , i.e.

ik = arg max
iPt1,...,mu

|tj P Ji| j P JUz(
ď

īP Īk

Jī)u|. (7.13)

104 Chapter 7. Inner Parallel Sets in Search Trees

Algorithm 3: feasibility-IPS-diving
Data: a problem MILP
Result: a non-granularity measure v f d with fixed variable-value pairs Ī,L̄,

and, if successful, an MILP-feasible point (qx f d, qy f d)
1 set k Ð 0, Īk ÐH, L̄k ÐH, v f d Ð8

2 while v f d ą 0 and Īk Ĺ t1, . . . , mu do
3 compute a minimal point (xk, yk, zk) of

P f
(Īk)

(L̄k) : min
(x,ry,z)PRnˆRm´| Īk|ˆR

z s.t. (x, ry, z) P (ĂML)(Īk)(L̄k)´,

with merged rounding (qx f , qy f)(Īk)(L̄k) and non-gran. measure v f
(Īk)

(L̄k)

4 set v f d Ð v f
(Īk)

(L̄k)

5 if (qx f , qy f)(Īk)(L̄k) P M then
6 (qx f d, qy f d)Ð (qx f , qy f)(Īk)(L̄k)

7 end
8 choose a set of indices Ik Ď t1, . . . , muz Īk

9 set Īk+1 Ð Īk Y Ik, L̄k+1 Ð L̄k Y tqyk
ik
| ik P Iku, k Ð k + 1

10 end
11 set Ī Ð Īk´1, L̄ Ð L̄k´1

It then updates Īk+1 = Īk Y ik and k = k + 1.
For obtaining a feasible solution to the set covering problem, this is repeated un-

til JU =
Ť

iP Īk Ji holds. This leads to the fact that in each diving step the number
of variables to be fixed may differ. If one is interested in specifying the number of
variables to be fixed in each diving step, the greedy method can run some prede-
fined number of iterations, fixing only the corresponding variables. We will specify
this idea more precisely in our computational study. Let us next use the preceding
considerations for the development of concrete algorithms.

7.3.3 An Algorithmic Framework for Inner Parallel Set Diving

In this section we tie together considerations from the previous sections and illus-
trate how diving ideas can be used to extend and improve feasible rounding ap-
proaches. Like in the previous sections, we describe these methods as starting from
the root node of a search tree but stress that this is for notational convenience only
and that they can be applied in any node of a search tree.

We may either solve the problem Pob or the problem P f to determine if the en-
larged inner parallel set of the root node is nonempty. If it is empty, we can ap-
ply feasibility diving steps as introduced in Section 7.3.2, until we possibly obtain a
nonempty enlarged inner parallel set of some child node. The detailed procedure,
feasibility-InnerParallelSet-diving, is outlined in Algorithm 3 and can be summa-
rized as follows.

In each iteration k, we fix variables to roundings of optimal points of the Īk-L̄k-
fixed feasibility problem. Recall that we obtain a nonempty Īk-L̄k-fixed enlarged
inner parallel set, if and only if the optimal value v f

(Īk)
(L̄k) of P f

(Īk)
(L̄k) is less or equal

than zero, and that obtaining an MILP-feasible point is possible even if v f
(Īk)

(L̄k) ą 0

7.3. A Diving Heuristic for MILPs 105

Algorithm 4: objective-IPS-diving

Data: a bounded problem MILP, an index set Ī0 and corresponding values
L̄0 such that ĂM(Ī0)(L̄0)´ ‰ H

Result: a good MILP-feasible point (qxobd, qyobd) with objective value qvobd

1 set k Ð 0, qvobd Ð +8

2 while some quality criterion is not met and Īk Ĺ t1, . . . , mu do
3 compute an optimal point (xk, yk) of the problem

Pob
(Īk)(L̄k) : min

(x,ry)PRnˆRm´| Īk|
cᵀx+(d´ Īk

)ᵀry+
ÿ

iP Īk

di`i s.t. (x, ry) P ĂM(Īk)(L̄k)´,

with merged rounding (qxob, qyob)(Īk)(L̄k) and its objective value qvob
(Īk)

(L̄k)

4 if qvob
(Īk)

(L̄k) ă qvobd then
5 (qxobd, qyobd)Ð (qxob, qyob)(Īk)(L̄k)

6 qvobd Ð qvob
(Īk)

(L̄k)

7 end
8 choose a set of indices Ik Ď t1, . . . , muz Īk

9 set Īk+1 Ð Īk Y Ik, L̄k+1 Ð L̄k Y tqyk
ik
| ik P Iku, k Ð k + 1

10 end

holds (cf. Example 7.3.5). Hence we check if (qx f , qy f)(Īk)(L̄k) is feasible for MILP in
every iteration and, if this is the case, store it (cf. Line 6) so that a feasible point can
be returned after termination of the method even in the non-granular case.

The method terminates when the optimal value of the Īk-L̄k-fixed feasibility prob-
lem is nonpositive, or when all variables are fixed. For choosing a set of indices to
be fixed in Line 8, one possibility is to use the greedy algorithm aiming at impacting
as many active constraints as possible.

If feasibility-IPS-diving terminates with an index set Ī and a corresponding value
set L̄ such that v f d ď 0 holds, the Ī-L̄-fixed objective based problem is consistent
and we can apply objective based diving steps. Note that the case Ī = L̄ = H

corresponds to a granular root node.
This is the starting point for Algorithm 4, which outlines a method that takes as

input a nonempty Ī-L̄-fixed enlarged inner parallel set and aims at obtaining a fea-
sible point (qxobd, qyobd) with improved objective value qvobd for the bounded problem
MILP. We remark that the boundedness assumption is only for the sake of read-
ability and our focus on computing good feasible points. In fact, Algorithm 4 could
be modified to encompass unbounded MILPs as well by additionally checking if
Pob
(Ī)(L̄) is unbounded and, if this is the case, returning a certificate for unbounded-

ness of MILP.
Boundedness of MILP implies that every problem Pob

(Īk)
(L̄k) is also bounded.

Moreover, consistency of Pob
(Īk)

(L̄k) follows from Lemma 7.2.2 together with the con-
sistency of the initial Ī-L̄-fixed enlarged inner parallel set. Hence we can iteratively
compute rounded optimal points of Īk-L̄k-fixed objective based problems. If the ob-
jective value qvob

(Īk)
(L̄k) = cᵀqxk + dᵀqyk +

ř

iP Īk di`i of the rounded (and merged) opti-

mal point (qxob, qyob)(Īk)(L̄k) improves upon that of previously found points, the latter
is stored in Line 5.

When integrating such diving approaches into a solver framework it makes sense

106 Chapter 7. Inner Parallel Sets in Search Trees

to apply a probing step after fixing variables Īk to L̄k which potentially allows to fix
additional variables and thus to speed up the diving process.

Let us conclude this section with a few remarks on the choice of indices in Line 8.
We only derived sufficient conditions for progress in the objective value of the fea-
sibility problem in Proposition 7.3.6, but similar ideas apply to the objective based
problem as well. In particular, the sets ĂM´ and ĂM´

L as well as their i-`-fixed coun-
terparts only differ in the appearance of the variable z. Therefore, by using equa-
tions (7.9) and (7.10) without the occurrence of z, we see that the degree of freedom
gained in the transition from ĂM´ to ĂM´

(i)(`) exactly coincides with (7.11). Yet, no-

tice that while the optimal value v f
(Ī)(L̄) is meaningful in the sense that it contains

information about the degree of non-granularity, this is not the case for the value
vob
(Ī)(L̄). Indeed, within the framework of objective-IPS-diving, we would rather be

interested in certifying progress of the objective value of the rounded optimal point
qvob
(Ī)(L̄). Due to the appearance of the term

ř

iP Ī di`i in the objective function as well
as due to rounding effects, this is however more intricate and not easy to predict.
Still, choosing indices in accordance with equation (7.13) offers new flexibility in the
constraints and is thus likely to enable the possibility of obtaining a different round-
ing, which might be beneficial for obtaining new (and hopefully improved) values
v f
(Ī)(L̄).

7.4 Computational Study

The main intention of our computational study is to see if feasible rounding ap-
proaches can benefit from applying diving steps as outlined in Algorithms 3 and 4.
In particular, we wish to determine if the granularity concept can be extended to
encompass more problems by using feasibility-IPS-diving, and if the objective val-
ues of the feasible points generated in the root node can be improved by applying
objective-IPS-diving steps.

Corollary 7.2.4 states that the number of roundings is non-decreasing and po-
tentially increasing with increasing depth of the search tree. Our analysis will thus
additionally offer an intuition of whether we can actually expect to obtain an in-
creasing number of feasible roundings via inner parallel sets in branch-and-bound
trees for problems from practice.

A second intention of our study is to examine the influence of different choices
of fixing variables and in particular to evaluate the introduced greedy strategy for
feasibility-IPS-diving. Finally, we address the important question whether the gen-
erated points can add value to the arsenal of primal heuristics within the solver
framework SCIP.

The test bed of our computational study stems from the collection set of the MI-
PLIB 2017 [31]. We collected problems in standard form of size less than 30 megabyte
which contain no equality constraints on integer variables, as the treatment of such
constraints when using feasible rounding approaches needs special attention (cf.
Chapter 6). Additionally discarding all infeasible problems results in a test bed con-
taining 244 instances.

We have implemented the feasible rounding approaches with diving strategies
outlined in Algorithms 3 and 4 in Matlab R2020a and in Pyscipopt [52]. All tests are
run on a an Intel i7 processor with 8 cores with 3.60 GHz and 32 GB of RAM.

7.4. Computational Study 107

Before we report the results of our computational study, we initially clarify the
selection of variables in the diving steps. Subsequently, in the first part of our com-
putational study, we evaluate the improvements gained by feasibility- and objective-
IPS-diving compared to the root node using our Matlab implementation. We con-
clude our study with evaluating the possible benefit of integrating feasible rounding
approaches and diving ideas into the solver framework SCIP. In this last part of our
study, we focus on objective-IPS-diving for problems which are root-node granular.

7.4.1 Selection of Indices

Recall that the flexibility of our diving method introduced in Section 7.3.3 lies in
the choice of the variables to fix. We propose and evaluate two methods for this.
The first is to select fixing variables at random. The second method is to run the
greedy algorithm in each iteration, choosing the variables to be fixed according to
equation (7.13). To avoid collecting variable constraint pairs (i, j) with trivial degrees
of freedom, we set Ji := tj P JA| f ji ą 10´4|Bji|u.

To ensure comparability, we fix k = rm/30s variables in each step for the greedy
as well as for the random method. This guarantees at most 30 rounds of fixing even
if all child nodes are non-granular.

For the greedy algorithm, this has two effects. First, the number of fixings might
not be enough to cover all active constraints. Secondly, we might have covered all
active constraints with less than k variables so we need a secondary selection crite-
rion. Concerning the latter, we decided to use the overall impact on all active con-
straints, that is, once all constraints were covered, we selected remaining variables i
according to their overall impact

f JAi =
ÿ

jPJA

f ji =
ÿ

jPJA

1
2 |Bji|+ Bji(y

f
i ´ qy f

i).

Note that, while f j Ī P R denotes the impact on constraint j of fixing all variables
from Ī, the value f JAi P R stands for the added up impact on all active constraints of
fixing variable i.

7.4.2 Improvement Due to IPS-Diving Steps

In this section, we investigate the effectiveness of IPS-diving ideas. First, we eval-
uate feasibility-IPS-diving steps by comparing the number of (root node) granular
problems to that of problems where our diving strategies found some granular node.
Secondly, we examine if applying objective-IPS-diving steps yields improved feasi-
ble points and assess the significance of this (potential) improvement.

Out of the 244 instances from our test bed, we find that 121 are granular in the
root node. Using feasibility-IPS-diving with both diving strategies, we are able to
find granular nodes for 148 problems so that the share of problems for which we may
compute granularity based feasible points increases from 49.6% (root node only)
to 60.7% (using feasibility-IPS-diving). Thus our first finding is that using diving
steps significantly increases the applicability of the granularity concept. We report
detailed results for these 148 problems in Table A.5 in the appendix.

As a comparison of the two methods for selecting fixing indices (random and
greedy), we can state that for 20 non-granular instances both diving methods are able
to find granular nodes. The random strategy finds a granular node in 4 additional
cases, and in 3 cases only the greedy strategy yields a granular node.

108 Chapter 7. Inner Parallel Sets in Search Trees

greedy random
0

5

10

15

20

25

30

(a) Number of diving steps to a granular node

[0,0.1) [0.3,0.4) [0.6,0.7) [0.9,1]
0

20

40

60

80

100

120

in
st

an
ce

s

greedy
random
best

(b) Remaining optimality gap (7.14)

FIGURE 7.3: A comparison of diving methods among each other and
with the root node

This shows that different orders of fixing indeed yield different outcomes and
points to the fact that different strategies can be complementary. Concerning the
chances of finding some granular node, the greedy strategy does not seem to offer an
advantage over randomly fixing indices. Yet, as the boxplot of the number of itera-
tions of both methods shown in Figure 7.3a reveals, the greedy method usually finds
granular nodes much earlier in the search tree. Indeed, for the 20 instances where
both methods yield a granular node, the median number of iterations is 7.5 for the
greedy and 22 for the random method and also the 25th and 75th percentiles differ
significantly. Additionally, a direct comparison of the number of iterations for each
problem individually shows that the greedy method needs (often significantly) less
iterations in 13 cases and more iterations in only 2 cases. Hence, if we are interested
in quickly finding granular nodes, the greedy strategy seems to be the appropriate
choice.

For the 121 (root-node) granular problems, we can compute and evaluate the im-
provement yielded by objective-IPS-diving. In this regard, with v denoting the opti-
mal (or best known) value obtained from the MIPLIB website [55], for each problem
with qvob ‰ v we compute the value

gapclosed = (qvob ´ qvobd)/(qvob ´ v) (7.14)

which measures the optimality gap closed by IPS-diving steps (recall that qvob and
qvobd stand for the objective values of the points obtained by solving the objective
based problem in the root node and by applying objective-IPS-diving, respectively).
This ratio is one, if and only if objective-IPS-diving finds an optimal point, and zero,
if there is no improvement in the objective value.

For one instance (p500x2988d) the rounding of the optimal point of the objec-
tive based problem (qxob, qyob) was already optimal for MILP and we therefore subse-
quently analyze only the remaining 120 problems.

Figure 7.3b summarizes our results by plotting a cumulative histogram of the
number of instances over the remaining optimality gap, that is, over 1´ gapclosed. It
includes the bounds closed by both strategies individually, as well as a third option
best, which is the bound closed collectively by both strategies. This can be seen as
a scenario where we run both diving strategies in the root node and use the best
feasible point.

We find that for 61 of the 120 problems, more than half of the optimality gap is

7.4. Computational Study 109

closed by applying both diving strategies. For the random and the greedy method
individually, this is the case for 50 and 40 problems, respectively. Moreover, in our
test bed the greedy strategy performed better than the random strategy in closing
more than 80% of the optimality gap (shown in the first and second set of bars), but
the random strategy outperformed the greedy method with respect to closing more
moderate optimality gaps, e.g. the above mentioned 50%. This points to the fact that
both methods might be complementary to each other and at least demonstrates that
it is beneficial to apply different fixing strategies from the root node.

Overall we may conclude that combining feasible rounding approaches with div-
ing strategies yields a significant improvement over their application in the root
node only. The greedy fixing method is particularly promising for finding granu-
lar nodes early, yet when performing objective-IPS-diving steps at granular nodes it
does not offer an advantage over randomly fixing indices.

7.4.3 Possibilities of Integrating Feasible Rounding Approaches and Div-
ing Ideas Into a Solver Framework

In a second experiment, we study the potential benefit of integrating feasible round-
ing approaches with and without diving steps into a solver framework. We use SCIP
for this purpose and initially evaluate the quality of the generated feasible points
compared to the best solution SCIP obtains with its various heuristics after solving
the root node. To this end, we test the method in the Pyscipopt framework, executing
it after the processing of a node is finished.

We focus our analysis on instances where the root node is granular and apply up
to 5 runs of diving using the random strategy with different seeds. As described in
Section 7.4.1 in each run we need to solve at most 30 linear optimization problems (of
decreasing size). One advantage of SCIP is that after fixing variables, probing steps
can be applied so that the number of diving steps needed can often be significantly
reduced.

After SCIP’s preprocessing steps, we obtain a test set of 107 granular problems.
In 13 cases, we report that the feasible rounding obtained by solving the objective-
based problem in the root node is able to improve upon those previously found by
SCIP. By applying 1, 3 and 5 random diving runs, this number is increased to 22, 28
and 29, respectively. Detailed results for the 29 instances where 5 diving runs yield
best incumbent solutions can be found in Table A.6 in the appendix. The significant
increase in best incumbent solutions again highlights the potential of applying div-
ing steps when using feasible roundings approaches. Moreover, the number of best
incumbent solutions increases significantly when 3 diving runs are applied (com-
pared to 1). With 5 random diving runs, we only obtain 1 additional best incumbent
solution (compared to 3 runs) which suggests that 3 runs might be a good compro-
mise between effort and benefit of the method.

This is further substantiated in Figure 7.4. In Figure 7.4a we compare the cumu-
lative time of solving all appearing LPs tdiving with the time SCIP used previous to
applying the diving methods tscip. Here, we show a boxplot of the ratio tdiving/tscip.
For 3 diving runs, this ratio is between 0.022 and 9.89, with median 0.43 and 75th
percentile of 1.85 which seems to be within a reasonable range.

Figure 7.4b gives an impression of the relative improvement of the best incum-
bent solutions in a cumulative histogram. Once more we display the remaining op-
timality gap 1´ gapclosed, where the qvob in Equation (7.14) is replaced with the best
incumbent solution of SCIP. For 15 problems, more than half of the optimality gap is
closed by the points obtained within 3 rounds of diving. For one diving round, this

110 Chapter 7. Inner Parallel Sets in Search Trees

1 3 5
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(a) Box plot of the time ratio tdiving/tscip

[0,0.1) [0.3,0.4) [0.6,0.7) [0.9,1]
0

5

10

15

20

25

30

in
st

an
ce

s

1 run
3 runs
5 runs

(b) Remaining optimality gap

FIGURE 7.4: Computational effort and quality of the generated feasi-
ble point compared to SCIPs incumbent solution in the root node

is the case only for 9 problems which again shows that running objective-IPS-diving
more than one time can be beneficial.

To give a fuller impression of the potential of integrating these methods into
SCIP, we ran a second experiment. Here, we compared the time SCIP needs to com-
pute a feasible point of similar quality without integrating feasible rounding ap-
proaches with diving steps for the 28 problems where 3 rounds of diving yield best
incumbent solutions.

We report that in 25 cases, SCIP needs additional time to compute a feasible point
of similar quality. To give an impression of the potential benefit of the method, we
list the 12 instances in Table 7.1 where SCIP needs more than 30 seconds additional
time to compute a feasible point of similar quality. Here we report the objective
value obtained in the root node and after 3 diving rounds, as well as the optimal (or
best known) objective value. As a comparison, we list the time for these three diving
rounds and that of SCIP for computing a feasible point of similar quality.

objective time
name root diving optimal diving SCIP

b1c1s1 72555.0 69071.5 24544.2 0.8 35.2
b2c1s1 73676.5 68701.5 25687.9 1.5 45.5
dg012142 25623489.0 14373382.6 2300867.0 6.8 41.0
gsvm2rl11 42635.3 39792.8 18121.6 15.9 64.8
gsvm2rl12 34.4 34.4 22.1 29.4 ą1800.0
gsvm2rl9 16382.8 13611.9 7438.2 3.9 368.0
mushroom-best 3613.9 2072.9 0.1 11.4 80.0
neos-983171 50987.0 8747.0 2360.0 84.7 230.0
opm2-z10-s4 -1489.0 -22681.0 -33269.0 18.2 299.0
opm2-z8-s0 -2220.0 -11328.0 -15775.0 6.7 50.7
sorrell7 -45.0 -160.0 -196.0 622.1 1770.0
sorrell8 -168.0 -324.0 -350.0 11.8 560.0

TABLE 7.1: Instances where SCIP needs significantly more time to
compute a feasible point with similar quality

In most instances from Table 7.1, the additional time SCIP needs to compute a
point of similar quality is quite significant. This is particularly true for the problem

7.5. Conclusion and Outlook 111

gsvm2rl12, where SCIP fails to find such a point within 30 minutes. Interestingly, for
this problem the objective value is already available without applying diving steps
and even applying 3 rounds of diving take no longer than 30 seconds. For both listed
instances of the problem sorell, the time difference is also quite remarkable and, in
contrast to the problem gsvm2rl12, here the diving steps are crucial.

These examples demonstrate that in some cases, feasible rounding approaches
combined with the introduced diving ideas can be very beneficial and help state-of-
the-art software to compute good feasible points more quickly. While this improve-
ment is possible in the root node (e.g. in the case of gsvm2rl12), the application of
diving steps makes it significantly more likely.

7.5 Conclusion and Outlook

In this chapter we investigated the effects of feasible rounding approaches when
combined with branch-and-bound methods. We showed that the number of round-
ings obtainable within a search tree is non-decreasing and potentially increasing
with increasing depth of the search tree.

Moreover, based on these results we developed a novel diving method for MILPs
with two remarkable features. First, applying an objective based diving step to a
granular node retains granularity. Secondly, the measure of non-granularity of a
feasibility diving step in a non-granular node cannot deteriorate after the application
of this step. In the latter case we additionally derived sufficient conditions for an
actual improvement in the measure of non-granularity.

Our computational study on problems from the MIPLIB 2017 shows two main
benefits of the diving methods. First, a considerable number of instances is not gran-
ular in the root node but becomes granular in some child node explored by our div-
ing strategies. Secondly, for granular nodes, our evaluation of the closed optimality
gap shows that objective diving steps are able to significantly improve the quality of
feasible roundings compared to the root node. This second effect is further substan-
tiated by a comparison with SCIP, where the number of best incumbent solutions
provided by feasible rounding approaches is significantly increased when objective-
IPS-diving steps are applied.

Both effects not only confirm the effectiveness of the diving method, but also
show that the number of roundings obtainable with feasible rounding approaches
can be expected to be increasing with the exploration of a branch-and-bound tree.

Finally, we wish to point out that within the scope of our diving approaches,
the appearing linear optimization problems solved sequentially are closely related.
Therefore, it might be interesting to investigate warm-start possibilities which we
leave for future research.

113

Chapter 8

Conclusion and Directions for
Future Research

An apparent conclusion from the preceding chapters is that the concept of inner par-
allel sets is widely applicable within mixed-integer optimization. Indeed, after the
application of various enlargement and approximation techniques presented in this
thesis, inner parallel sets of many problems from practice turned out to be nonempty.
This enabled resorting to feasible rounding approaches based on this concept, which
proved to be able to compute good feasible points for mixed-integer linear, convex
and nonconvex optimization problems.

The possibility of a closed-form expression of inner parallel sets for mixed-integer
linear problems allows a straight-forward application of algorithmic ideas in this
context. This is also one of the main advantages of computing polyhedral outer ap-
proximations of the inner parallel set via inner parallel cutting planes in the case of
mixed-integer convex optimization problems.

When dealing with nonconvex nonlinear constraint functions, the computation
of an (inner) approximation of the inner parallel set based on Lipschitz constants
is generally more intricate. To broaden the range of applications, in these cases we
extended the geometrically intuitive idea of granularity (which is based on inner
parallel sets) to the algorithmically more attractive concept of pseudo-granularity.
This enabled the successful application of feasible rounding approaches to a sig-
nificant number of mixed-integer quadratically constrained quadratic optimization
problems from practice.

Generally, the presented approaches work best under the absence of equality
constraints on integer variables in the problem formulation. We showed that if such
constraints are present, inner parallel sets can be nonempty in a reduced variable
space. Yet, this is less likely to happen compared to problems without equality con-
straints on integer variables in the original variable space.

Computationally, the inner parallel cutting plane method for mixed-integer con-
vex optimization problems seems to be particularly promising, as well as diving
strategies based on inner parallel sets. So far, we introduced and tested such diving
strategies only on mixed-integer linear optimization problems; a combination of cut-
ting planes and diving ideas is hence not part of this thesis but an interesting avenue
for future research.

An integration of our diving ideas could also significantly improve the presented
feasible rounding approach for mixed-integer nonlinear problems that uses the con-
cept of pseudo-granularity. Here, the drawback that in the computation of Lipschitz
constants we use global information to locally approximate the inner parallel set
becomes less important when the sizes of considered boxes decrease.

114 Chapter 8. Conclusion and Directions for Future Research

Enlargement ideas of the relaxed feasible set are crucial for the applicability of
feasible rounding approaches. The ideas presented in this thesis focused on addi-
tive relaxations of the defining functions of the feasible set. We briefly indicated
that there is also the possibility of using structurally different functions. The general
idea is to “reverse” the tightening ideas usually employed in mixed-integer opti-
mization. This idea might have, in particular, the potential to make the introduced
reduction scheme for problems where equality constraints on integer variables ap-
pear more widely applicable. Indeed, there might be ways to circumvent the dense
structure of (the constraint matrices of) the reduced problem, which we suspect to
be the main reason for empty inner parallel sets of many applications. This investi-
gation of beneficial structural reformulations is beyond the scope of this thesis and
also a promising field for future research.

115

Appendix A

Complementary Material for the
Computational Studies

A.1 Computational Results for Plain Feasible Rounding Ap-
proaches

116 Appendix A. Complementary Material for the Computational Studies

FRA-SOR FRA-SLOR Gurobi
name time objective time objective time objective
30_70_4.5_0.95_100 2.49 8885.00 0.30 19611.00 0.00 1144.00
50v-10 0.02 199236.75 0.00 1.420549e+07 0.00 31966.50
a1c1s1 0.02 23143.23 0.09 35639.32 0.09 19747.08
b2c1s1 0.05 76071.01 0.08 117226.42 0.19 62796.52
bg512142 0.07 3.984866e+06 0.00 1.851402e+08 0.00 9.399349e+07
buildingenergy 14.10 44205.67 2.92 54541.38 0.06 1.624119e+07
cov1075 0.08 77.00 0.00 120.00 0.00 56.00
dfn-gwin-UUM 0.00 227208.00 0.00 478056.00 0.00 174600.00
ex1010-pi 1.41 8599.00 0.03 25200.00 0.00 641.00
fast0507 1.08 55653.00 0.09 122425.00 0.02 351.00
fixnet6 0.00 92716.00 0.00 94378.00 0.00 20415.00
g200x740i 0.02 194475.00 0.00 197794.00 0.00 53393.00
ger50_17_trans 0.39 555975.25 0.03 657982.99 0.02 30068.24
germany50-DBM 1.11 606750.00 0.02 1.290160e+06 0.00 2.823860e+06
iis-100-0-cov 0.03 100.00 0.02 100.00 0.00 35.00
iis-bupa-cov 0.19 107.00 0.00 345.00 0.00 48.00
iis-pima-cov 0.39 153.00 0.02 768.00 0.00 44.00
janos-us-DDM 0.00 1.508461e+06 0.00 3.506885e+06 0.00 6.029231e+06
k16x240 0.00 177473.00 0.00 185233.00 0.00 24175.00
m100n500k4r1 0.02 -11.00 0.00 0.00 0.00 -18.00
macrophage 0.06 1582.00 0.02 1582.00 0.00 609.00
manna81 0.03 -12869.00 0.00 0.00 0.00 -6954.00
mas74 0.00 736774.15 0.00 1.000000e+12 0.00 157344.61
mas76 0.00 782652.58 0.00 1.000000e+12 0.00 157344.61
mc11 0.02 128960.00 0.00 128960.00 0.11 13509.00
methanosarcina 1.14 7302.00 0.09 7302.00 0.00 5046.00
mik.250-1-100.1 0.02 0.00 0.00 2.000000e+07 0.00 446229.00
modglob 0.00 2.153798e+07 0.00 6.688030e+08 0.00 6.896386e+08
n15-3 6.54 88891.00 9.73 1.776685e+08 426.81 66291.00
n3-3 0.22 40030.00 0.22 7.320524e+07 0.85 22030.00
n3700 0.02 8.057113e+07 0.03 8.065223e+07 0.00 3.034453e+06
n3705 0.02 7.980784e+07 0.05 7.987833e+07 0.00 2.756298e+06
n370a 0.02 8.075517e+07 0.05 8.080840e+07 0.00 3.144278e+06
n4-3 0.05 19275.00 0.03 3.480254e+07 0.11 12175.00
n9-3 0.13 28825.00 0.11 5.040473e+07 0.66 19025.00
neos-1112782 0.00 2.477444e+13 0.00 2.477444e+13 0.00 2.248990e+12
neos-1112787 0.00 2.178675e+13 0.00 2.178675e+13 0.00 1.702341e+12
neos-1225589 0.00 9.819371e+10 0.00 9.819371e+10 0.00 3.866793e+09
neos-1616732 0.00 200.00 0.00 200.00 0.00 173.00

TABLE A.1: A comparison of the feasible rounding approaches and
Gurobi with regard to time (seconds) and objective value on unal-

tered models (I)

A.1. Computational Results for Plain Feasible Rounding Approaches 117

FRA-SOR FRA-SLOR Gurobi
name time objective time objective time objective
neos-932816 0.45 5.487565e+06 0.16 6.727970e+06 0.00 513000.00
neos-933638 2.52 5.074448e+06 0.08 6.077942e+06 0.00 484000.00
neos-933966 2.11 5.074471e+06 0.06 6.078073e+06 0.00 484000.00
neos-934278 1.86 4.618871e+06 0.05 5.576040e+06 0.00 468000.00
neos15 0.00 144796.91 0.00 3.610584e+08 0.00 2.790968e+07
npmv07 3.57 1.049283e+11 1.46 5.994301e+11 4.22 1.048114e+11
ns4-pr3 0.13 38220.00 0.02 607015.00 0.00 132965.00
ns4-pr9 0.08 36375.00 0.02 360295.00 0.00 105945.00
opm2-z10-s2 14.50 -1118.00 8.21 0.00 0.02 -8104.00
opm2-z11-s8 24.75 -1611.00 27.83 -2193.00 0.03 -9433.00
opm2-z12-s14 45.84 -1306.00 42.27 0.00 0.03 -11994.00
opm2-z12-s7 48.09 -1653.00 43.07 0.00 0.02 -12375.00
opm2-z7-s2 1.08 -1359.00 0.61 -1156.00 0.00 -3515.00
p100x588b 0.00 448087.00 0.00 454481.00 0.00 94028.00
p6b 0.00 0.00 0.00 0.00 0.00 -52.00
p80x400b 0.00 311096.00 0.00 316421.00 0.00 139650.00
pp08a 0.00 18100.00 0.02 27958.79 0.00 13560.00
pp08aCUTS 0.00 20030.46 0.00 23739.61 0.00 13560.00
qiu 0.03 3059.55 0.02 4127.36 0.08 1120.97
queens-30 1.37 0.00 0.02 0.00 0.02 -29.00
r80x800 0.00 26891.00 0.00 40827.00 0.00 23943.00
ramos3 9.13 1077.00 0.02 2187.00 0.00 542.00
ran14x18.disj-8 0.02 42607.74 0.00 43141.00 0.00 7657.00
ran14x18 0.00 42659.02 0.00 43246.99 0.00 8870.00
ran16x16 0.00 42914.02 0.02 43787.05 0.00 6587.00
set1ch 0.00 170115.59 0.02 244167.96 0.00 139113.00
set3-10 0.03 1.992090e+06 0.02 4.187314e+06 0.14 1.756477e+06
set3-15 0.06 1.925868e+06 0.02 3.955883e+06 0.20 1.610398e+06
set3-20 0.05 1.916274e+06 0.02 3.896786e+06 0.16 1.712935e+06
seymour.disj-10 0.46 677.00 0.02 1209.00 0.00 366.00
seymour 0.30 773.00 0.02 1372.00 0.00 502.00
stockholm 1.36 962.00 2.45 962.00 20.81 151.00
sts405 0.06 405.00 0.03 405.00 0.00 357.00
sts729 0.43 729.00 0.11 729.00 0.02 665.00
tanglegram1 9.42 34171.00 0.13 34171.00 0.00 7843.00
tanglegram2 1.14 4490.00 0.02 4490.00 0.02 2160.00
toll-like 0.23 2204.00 0.02 2204.00 0.00 1155.00
zib54-UUE 0.23 2.404391e+07 0.02 2.404391e+07 0.56 1.888427e+07

TABLE A.2: A comparison of the feasible rounding approaches and
Gurobi with regard to time (seconds) and objective value on unal-

tered models (II)

118
A

ppendix
A

.
C

om
plem

entary
M

aterialfor
the

C
om

putationalStudies

A.2 Computational Results for Inner Parallel Cuts

SCIP B-Hyb B-OA SCIP B-Hyb B-OA
t(RICP) t(OM) t(RICP) t(OM) t(RICP) t(OM) lb(RICP) lb(OM) lb(RICP) lb(OM) lb(RICP) lb(OM)

cvxnonsep_normcon20 1.44 1.33 65.32 ą1800 14.47 98.94 -21.75 -21.75 -21.75 -21.76 -21.75 -21.75
cvxnonsep_normcon20r 0.17 0.20 0.33 0.27 0.07 0.06 -21.75 -21.75 -21.75 -21.75 -21.75 -21.75
cvxnonsep_normcon30 15.53 15.77 ą1800 ą1800 ą1800 ą1800 -34.24 -34.24 -34.43 -34.43 -34.40 -34.43
cvxnonsep_normcon30r 0.28 0.25 1.05 0.34 0.11 0.08 -34.24 -34.24 -34.24 -34.24 -34.24 -34.24
cvxnonsep_normcon40 601.36 681.81 ą1800 ą1800 ą1800 ą1800 -32.63 -32.63 -32.89 -32.89 -32.89 -32.89
cvxnonsep_normcon40r 0.31 0.34 1.02 0.38 0.16 0.04 -32.63 -32.63 -32.63 -32.63 -32.63 -32.63
cvxnonsep_nsig20 2.14 272.68 156.60 1261.60 14.80 10.06 80.95 80.95 80.95 80.95 80.95 80.95
cvxnonsep_nsig20r 0.10 0.08 1.23 0.09 0.07 0.05 80.95 80.95 80.95 80.95 80.95 80.95
cvxnonsep_nsig30 ą1800 ą1800 ą1800 ą1800 ą1800 ą1800 128.07 121.17 130.48 130.48 130.60 130.61
cvxnonsep_nsig30r 0.28 0.16 307.29 ą1800 0.14 0.11 156.43 156.43 156.43 156.37 156.43 156.43
cvxnonsep_nsig40 ą1800 ą1800 ą1800 ą1800 ą1800 ą1800 130.57 94.71 133.74 133.74 133.74 133.85
cvxnonsep_nsig40r 0.25 0.21 ą1800 ą1800 0.27 0.09 133.96 133.96 133.83 133.80 133.96 133.96
cvxnonsep_pcon20 0.99 0.64 7.78 0.77 1.49 1.55 -21.51 -21.51 -21.51 -21.51 -21.51 -21.51
cvxnonsep_pcon20r 0.15 0.11 0.30 0.06 0.15 0.08 -21.51 -21.51 -21.51 -21.51 -21.51 -21.51
cvxnonsep_pcon30 6.99 6.68 300.90 ą1800 110.25 80.47 -35.99 -35.99 -35.99 -36.16 -35.99 -35.99
cvxnonsep_pcon30r 0.07 0.33 0.47 0.22 0.36 0.43 -35.99 -35.99 -35.99 -35.99 -35.99 -35.99
cvxnonsep_pcon40 19.96 43.72 1652.65 ą1800 829.18 450.75 -46.60 -46.60 -46.60 -46.78 -46.60 -46.60
cvxnonsep_pcon40r 0.40 0.53 1.05 0.26 0.31 0.12 -46.60 -46.60 -46.60 -46.47 -46.60 -46.60
cvxnonsep_psig20r 0.19 0.11 ą1800 0.42 0.11 0.06 95.90 95.90 95.81 95.90 95.90 95.90
cvxnonsep_psig30r 0.19 0.16 ą1800 0.20 0.18 0.07 79.00 79.00 78.88 79.00 79.00 79.00
cvxnonsep_psig40r 0.22 0.28 ą1800 0.23 0.19 0.07 86.55 86.55 86.43 86.55 86.55 86.55
du-opt 0.89 5.86 24.93 12.62 3.01 2.95 3.56 3.56 3.56 3.56 3.56 3.56
ex1223a 0.02 0.02 0.03 0.03 0.00 0.00 4.58 4.58 4.58 4.58 4.58 4.58
ex1223b 0.03 0.11 0.05 0.04 0.04 0.02 4.58 4.58 4.58 5.58 4.58 4.58
ex4 1.19 1.60 0.52 0.66 0.33 0.30 -8.06 -8.06 -8.06 48233.05 -8.06 -8.06
gbd 0.00 0.00 0.01 0.01 0.00 0.00 2.20 2.20 2.20 2.20 2.20 2.20
nvs03 0.00 0.01 0.02 0.01 0.00 0.00 16.00 16.00 16.00 16.00 16.00 16.00
nvs10 0.00 0.00 0.03 0.01 0.00 0.00 -310.80 -310.80 -310.80 -296.80 -310.80 -310.80
nvs11 0.01 0.03 0.02 0.02 0.01 0.03 -431.00 -431.00 -431.00 -431.00 -431.00 -431.00
nvs12 0.02 0.04 0.19 0.03 0.02 0.03 -481.20 -481.20 -481.20 -481.20 -481.20 -481.20
nvs15 0.00 0.02 0.02 0.03 0.01 0.01 1.00 1.00 1.00 1.00 1.00 1.00
portfol_buyin 0.09 0.18 0.03 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
smallinvDAXr1b150-165 0.43 0.37 38.07 ą1800 136.00 101.16 88.10 88.10 88.10 88.08 88.10 88.10
smallinvDAXr1b200-220 0.32 0.33 49.88 ą1800 135.84 159.22 156.60 156.60 156.60 156.59 156.60 156.60

Continued on next page

A
.2.

C
om

putationalR
esults

for
Inner

ParallelC
uts

119

SCIP B-Hyb B-OA SCIP B-Hyb B-OA
t(RICP) t(OM) t(RICP) t(OM) t(RICP) t(OM) lb(RICP) lb(OM) lb(RICP) lb(OM) lb(RICP) lb(OM)

smallinvDAXr2b150-165 0.49 0.40 116.96 ą1800 96.22 80.76 88.10 88.10 88.10 88.08 88.10 88.10
smallinvDAXr2b200-220 0.31 0.36 99.74 ą1800 130.84 143.27 156.60 156.60 156.60 156.59 156.60 156.60
smallinvDAXr3b150-165 0.44 0.39 47.91 ą1800 100.45 107.92 88.10 88.10 88.10 88.08 88.10 88.10
smallinvDAXr3b200-220 0.40 0.38 86.55 1405.79 87.81 96.35 156.60 156.60 156.60 156.60 156.60 156.60
smallinvDAXr4b150-165 0.50 0.39 34.55 ą1800 70.89 153.74 88.10 88.10 88.10 88.08 88.10 88.10
smallinvDAXr4b200-220 0.28 0.38 37.50 ą1800 103.11 150.65 156.60 156.60 156.60 156.59 156.60 156.60
smallinvDAXr5b150-165 0.50 0.39 24.78 ą1800 78.57 90.96 88.10 88.10 88.10 88.08 88.10 88.10
smallinvDAXr5b200-220 0.44 0.38 56.77 ą1800 105.79 171.73 156.60 156.60 156.60 156.59 156.60 156.60
squfl010-025 1049.77 413.89 10.73 1.05 295.49 418.10 214.11 214.11 214.11 214.11 214.11 214.11
squfl010-040 ą1800 ą1800 100.62 12.45 1328.76 1232.22 136.84 184.14 255.75 240.60 240.60 240.60
squfl010-080 ą1800 ą1800 208.62 40.19 ą1800 ą1800 258.90 240.54 571.55 509.71 397.03 365.99
squfl015-060 ą1800 ą1800 65.80 45.97 ą1800 ą1800 152.47 207.82 396.81 366.62 231.55 205.36
squfl015-080 ą1800 ą1800 NaN 648.13 ą1800 ą1800 172.58 155.88 NaN 402.49 207.31 197.74
squfl020-040 ą1800 ą1800 354.36 96.77 ą1800 ą1800 98.14 128.38 224.70 209.25 147.38 127.90
squfl020-050 ą1800 ą1800 116.05 961.13 ą1800 ą1800 99.24 122.33 235.74 230.20 116.24 113.64
squfl020-150 ą1800 ą1800 ą1800 ą1800 ą1800 ą1800 226.34 0.00 297.58 286.17 229.32 227.04
squfl025-025 ą1800 ą1800 17.62 11.21 ą1800 ą1800 80.00 141.20 182.53 178.63 107.65 100.69
squfl025-030 ą1800 ą1800 24.75 12.97 ą1800 ą1800 81.33 139.84 214.73 205.50 138.37 117.86
squfl025-040 ą1800 ą1800 989.93 22.57 ą1800 ą1800 76.87 67.31 212.99 199.16 92.00 88.37
squfl030-100 ą1800 ą1800 ą1800 ą1800 ą1800 ą1800 123.89 0.00 151.99 151.69 127.51 126.47
squfl030-150 ą1800 ą1800 ą1800 ą1800 ą1800 ą1800 158.93 0.00 159.05 177.94 158.93 158.93
squfl040-080 ą1800 ą1800 NaN ą1800 ą1800 ą1800 91.49 0.00 NaN 105.04 92.04 91.91
st_miqp1 0.00 0.00 0.02 0.02 0.00 0.00 281.00 281.00 281.00 281.00 281.00 281.00
st_miqp2 0.00 0.00 0.04 NaN 0.01 NaN 2.00 2.00 2.00 NaN 2.00 NaN
st_miqp3 0.00 0.00 0.07 10.00 0.00 0.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00
st_miqp4 0.00 0.01 0.13 10.01 0.01 0.00 -4574.00 -4574.00 -4574.00 -4574.00 -4574.00 -4574.00
st_test1 0.00 0.00 0.03 10.00 0.01 0.01 0.00 0.00 -0.00 0.00 -0.00 0.00
st_test2 0.00 0.00 0.07 10.02 0.00 0.00 -9.25 -9.25 -9.25 -9.25 -9.25 -9.25
st_test3 0.00 0.00 0.08 10.01 0.00 0.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00
st_test4 0.00 0.00 0.08 NaN 0.00 NaN -7.00 -7.00 -7.00 NaN -7.00 NaN
st_testgr1 0.02 0.03 0.36 0.10 0.14 0.23 -12.81 -12.81 -12.81 -12.81 -12.81 -12.81
st_testgr3 0.03 0.03 0.06 10.06 0.14 0.15 -20.59 -20.59 -20.59 -20.59 -20.59 -20.59
st_testph4 0.00 0.00 0.02 10.00 0.00 0.00 -80.50 -80.50 -80.50 -80.50 -80.50 -80.50

TABLE A.3: Solver times (t) and lower bounds (lb) for original models (OM) and models with reversed inner parallel cuts (RICPs). NaN
means that a solver error occurred

120 Appendix A. Complementary Material for the Computational Studies

A.3 Computational Results for Equality Constrained Prob-
lems

data time
instance |R| q n q´ t m CR,: prref HNF Ps

red

22433 0 198 198 0.00 231.00 0.01 0.01 0.00 0.00
23588 0 137 137 0.00 231.00 0.01 0.00 0.00 0.00
aflow30a 29 29 421 29.00 421.00 0.00 0.00 68.93 0.00
aflow40b 39 39 1364 39.00 1364.00 0.01 0.00 1598.39 0.00
arki001 0 20 850 0.00 538.00 0.06 0.00 0.00 0.01
assign1-10-4 0 62 52 61.00 520.00 0.00 0.00 305.79 0.01
assign1-5-8 0 31 26 30.00 130.00 0.00 0.00 7.16 0.00
b-ball 0 19 12 8.00 88.00 0.00 0.00 2.70 0.00
bc 784 1 1268 0.00 483.00 0.29 0.03 0.00 0.11
bc1 784 1 1499 0.00 252.00 0.30 0.00 0.00 0.10
biella1 0 1197 1218 0.00 6110.00 0.09 0.00 0.00 0.05
bienst1 112 16 477 4.00 28.00 0.00 0.00 0.13 0.00
bienst2 112 16 470 5.00 35.00 0.00 0.00 0.20 0.00
binkar10_1 0 1016 2128 0.00 170.00 0.00 0.08 0.00 0.00
blend2 0 89 89 0.00 264.00 0.00 0.00 0.00 0.00
blp-ar98 0 215 215 0.00 15806.00 15.76 0.00 0.00 0.04
blp-ic97 0 92 92 0.00 9753.00 5.92 0.00 0.00 0.02
blp-ic98 0 90 90 0.00 13550.00 12.17 0.00 0.00 0.04
blp-ir98 0 66 66 0.00 6031.00 2.39 0.00 0.00 0.01
bppc4-08 0 20 2 20.00 1454.00 0.00 0.00 560.28 0.00
bppc8-02 0 20 2 20.00 230.00 0.00 0.00 6.28 0.00
bppc8-09 0 18 2 18.00 429.00 0.00 0.00 23.06 0.00
breastcancer-regularized 0 4 9 4.00 706.00 0.01 0.00 1401.02 0.04
cdma 0 60 3656 0.00 4235.00 0.14 0.01 0.00 0.02
control20-5-10-5 410 20 1210 20.00 100.00 0.01 0.00 1.84 0.01
control30-3-2-3 122 30 242 30.00 90.00 0.00 0.00 1.32 0.00
control30-5-10-4 610 30 1810 30.00 150.00 0.00 0.00 3.30 0.00
csched007 0 301 301 50.00 1457.00 0.01 0.01 582.97 0.01
csched008 0 301 252 50.00 1284.00 0.00 0.01 341.57 0.01
csched010 0 301 301 50.00 1457.00 0.00 0.00 623.88 0.01
dano3_3 1176 48 13804 3.00 69.00 0.38 0.02 1.16 0.01
dano3_5 1176 48 13758 5.00 115.00 0.38 0.02 2.23 0.01
dano3mip 1176 48 13321 47.00 552.00 0.38 0.00 839.58 0.01
danoint 128 16 465 15.00 56.00 0.00 0.00 1.42 0.00
dc1c 0 1638 1659 0.00 8380.00 0.28 0.00 0.00 0.08
dc1l 0 1638 1659 0.00 35638.00 3.50 0.00 0.00 1.27
dcmulti 75 3 473 3.00 75.00 0.00 0.00 0.49 0.00
dell 0 31 521 0.00 105.00 0.01 0.00 0.00 0.00
dolom1 0 1693 1892 0.00 9720.00 0.35 0.00 0.00 0.12
dsbmip 403 40 1745 40.00 192.00 0.00 0.00 4.77 0.00
ej 0 1 0 1.00 3.00 0.03 0.01 0.33 0.01
enlight11 0 121 0 121.00 242.00 0.00 0.00 176.04 0.00
enlight4 0 16 0 16.00 32.00 0.00 0.00 0.70 0.00
enlight8 0 64 0 64.00 128.00 0.00 0.00 28.47 0.00
enlight9 0 81 0 81.00 162.00 0.00 0.00 55.22 0.00
enlight_hard 0 100 0 100.00 200.00 0.00 0.00 102.83 0.00
eva1aprime5x5opt 112 192 1312 192.00 400.00 0.00 0.00 76.78 0.13
fastxgemm-n2r6s0t2 0 144 736 0.00 48.00 0.00 0.00 0.00 0.01
fastxgemm-n2r7s4t1 0 168 848 0.00 56.00 0.00 0.00 0.00 0.01
gen 0 150 720 6.00 150.00 0.00 0.00 6.07 0.00
germanrr 0 239 239 0.00 10574.00 6.84 0.00 0.00 0.03
glass4 0 36 20 36.00 302.00 0.01 0.00 19.64 0.00
gmu-35-40 0 5 5 0.00 1200.00 0.00 0.03 0.00 0.00
gmu-35-50 0 5 5 0.00 1914.00 0.01 0.00 0.00 0.01
gmut-76-40 0 6 6 0.00 24332.00 1.32 0.00 0.00 0.11
graphdraw-domain 0 45 54 45.00 200.00 0.00 0.00 5.69 0.02
graphdraw-gemcutter 0 28 38 28.00 128.00 0.00 0.00 2.13 0.01
ic97_tension 0 319 523 0.00 180.00 0.00 0.07 0.00 0.00
icir97_tension 1 1202 1659 0.00 835.00 0.01 3.39 0.00 0.00
mad 0 30 20 20.00 200.00 0.00 0.00 11.73 0.00
markshare1 0 6 12 0.00 50.00 0.02 0.01 0.00 0.01
markshare2 0 7 14 0.00 60.00 0.00 0.00 0.00 0.00

Continued on next page

A.3. Computational Results for Equality Constrained Problems 121

data time
instance |R| q n q´ t m CR,: prref HNF Ps

red

markshare_4_0 0 4 4 0.00 30.00 0.00 0.01 0.00 0.00
markshare_5_0 0 5 5 0.00 40.00 0.00 0.00 0.00 0.00
milo-v12-6-r1-58-1 1140 300 2940 0.00 1500.00 0.00 0.00 0.00 0.08
milo-v12-6-r1-75-1 1463 385 3773 0.00 1925.00 0.00 0.00 0.00 0.18
milo-v12-6-r2-40-1 798 210 1848 0.00 840.00 0.00 0.00 0.00 0.04
milo-v13-4-3d-3-0 216 120 396 60.00 120.00 0.00 0.00 2.84 0.00
milo-v13-4-3d-4-0 288 160 528 80.00 160.00 0.00 0.00 4.87 0.01
misc04inf 0 311 4867 0.00 30.00 0.04 0.00 0.00 0.00
misc05inf 0 29 62 15.00 74.00 0.00 0.00 2.14 0.00
misc07 0 35 1 31.00 259.00 0.00 0.00 67.54 0.00
mkc 0 2 2 0.00 5323.00 0.33 0.00 0.00 0.01
mkc1 0 2 2238 0.00 3087.00 0.34 0.01 0.00 0.00
mod011 4368 16 10879 0.00 96.00 0.06 0.00 0.00 0.00
nag 1 1374 1499 35.00 1385.00 0.00 0.00 108.28 0.01
neos-1396125 396 21 1032 21.00 129.00 0.00 0.00 7.41 0.00
neos-1420790 0 2280 4386 90.00 540.00 0.00 0.00 62.01 0.03
neos-1425699 0 26 20 6.00 85.00 0.00 0.00 1.33 0.00
neos-1445532 0 923 12407 0.00 1999.00 0.02 0.00 0.00 0.01
neos-2629914-sudost 0 32 240 31.00 256.00 0.00 0.00 34.37 0.06
neos-2978193-inde 324 8 20736 8.00 64.00 0.09 0.00 1.71 0.02
neos-2978205-isar 324 8 103680 8.00 320.00 1.35 0.00 88.32 0.06
neos-3046601-motu 0 272 19 136.00 289.00 0.00 0.00 29.05 0.00
neos-3046615-murg 0 240 18 120.00 256.00 0.00 0.00 15.52 0.00
neos-3065804-namu 0 1095 2551 0.00 2190.00 0.03 0.71 0.00 2.07
neos-3116779-oban 0 1 1 0.00 5140.00 0.00 0.03 0.00 0.01
neos-3118745-obra 0 1 1 0.00 1130.00 0.00 0.00 0.00 0.02
neos-3135526-osun 0 32 22 21.00 170.00 0.00 0.00 13.14 0.00
neos-3209462-rhin 0 176 56070 43.00 383.00 0.00 0.01 36.24 0.09
neos-3352863-ancoa 0 1 1 0.00 20045.00 0.00 0.00 0.00 4.89
neos-3372571-onahau 0 3601 12901 66.00 185.00 12.37 0.05 3.22 0.16
neos-3421095-cinca 1 24 737 24.00 159.00 0.00 0.00 3.67 0.01
neos-3610040-iskar 0 1 345 0.00 85.00 0.00 0.00 0.00 0.00
neos-3610051-istra 0 1 729 0.00 76.00 0.00 0.00 0.00 0.02
neos-3610173-itata 0 1 767 0.00 77.00 0.00 0.00 0.00 0.02
neos-3611447-jijia 0 1 387 0.00 85.00 0.00 0.00 0.00 0.01
neos-3611689-kaihu 0 1 333 0.00 88.00 0.00 0.00 0.00 0.00
neos-3627168-kasai 463 2 927 0.00 535.00 0.02 0.00 0.00 0.00
neos-3660371-kurow 0 1974 4578 24.00 144.00 0.00 1.27 3.43 0.00
neos-3699377-maori 740 180 15377 0.00 1856.00 0.12 0.02 0.00 0.04
neos-3703351-marne 584 140 7445 0.00 1382.00 0.03 0.00 0.00 0.01
neos-3761878-oglio 584 140 5177 0.00 1312.00 0.01 0.01 0.00 0.01
neos-3762025-ognon 428 100 3725 0.00 948.00 0.01 0.00 0.00 0.01
neos-4333596-skien 199 26 545 25.00 460.00 0.00 0.00 43.40 0.00
neos-480878 24 12 345 12.00 189.00 0.00 0.00 2.19 0.00
neos-5041756-cobark 0 300 301 0.00 60000.00 0.50 0.00 0.00 0.03
neos-5045105-creuse 0 48 68 0.00 3780.00 0.05 0.00 0.00 0.09
neos-5051588-culgoa 0 72 138 0.00 3780.00 0.06 0.00 0.00 0.01
neos-5075914-elvire 1118 118 2365 0.00 2638.00 0.00 0.00 0.00 0.00
neos-5140963-mincio 0 28 13 27.00 183.00 0.00 0.00 34.47 0.00
neos-5182409-nasivi 0 264 405 20.00 1600.00 0.03 0.00 1121.98 0.01
neos-5188808-nattai 5544 146 14256 146.00 288.00 0.00 0.00 29.97 0.02
neos-574665 0 456 492 0.00 248.00 0.00 0.01 0.00 0.02
neos-585467 150 1116 1270 116.00 846.00 0.07 1.83 321.14 0.02
neos-595904 132 20 3360 20.00 1148.00 0.02 0.00 229.27 0.00
neos-807639 0 850 950 0.00 80.00 0.00 0.28 0.00 0.01
neos-860300 0 20 1 18.00 1384.00 0.02 0.00 2813.93 0.02
neos-911970 0 35 48 35.00 840.00 0.00 0.00 138.06 0.01
neos-935234 0 139 2779 0.00 7530.00 0.01 0.00 0.00 0.24
neos-935769 0 139 2779 0.00 7020.00 0.01 0.00 0.00 0.21
neos-983171 0 158 2408 0.00 6557.00 0.01 0.00 0.00 0.28
neos16 0 10 0 10.00 377.00 0.00 0.00 8.66 0.00
neos2 30 13 1061 13.00 1040.00 0.01 0.00 233.50 0.00
neos4 453 684 5712 0.00 17172.00 0.02 0.00 0.00 0.03
neos6 0 223 446 0.00 8340.00 0.79 0.00 0.00 0.11
neos859080 4 39 0 39.00 160.00 0.00 0.00 21.64 0.00
newdano 112 16 449 15.00 56.00 0.00 0.00 1.43 0.00
nh97_tension 0 737 958 0.00 618.00 0.00 0.59 0.00 0.00
noswot 0 2 28 0.00 100.00 0.00 0.00 0.00 0.00

Continued on next page

122 Appendix A. Complementary Material for the Computational Studies

data time
instance |R| q n q´ t m CR,: prref HNF Ps

red

nsa 0 37 352 0.00 36.00 0.00 0.00 0.00 0.00
nsr8k 0 6195 6316 0.00 32040.00 0.57 0.00 0.00 0.34
opt1217 0 48 1 48.00 768.00 0.02 0.00 269.05 0.00
p2m2p1m1p0n100 0 1 1 0.00 100.00 0.00 0.00 0.00 0.00
pg 0 100 2600 0.00 100.00 0.00 0.00 0.00 0.00
pigeon-08 0 48 72 40.00 272.00 0.00 0.00 6.53 0.00
pigeon-10 0 60 90 50.00 400.00 0.00 0.00 14.18 0.00
pigeon-13 0 78 117 65.00 637.00 0.00 0.00 35.00 0.00
pigeon-16 0 96 144 80.00 928.00 0.00 0.00 90.37 0.00
pk1 0 15 31 0.00 55.00 0.00 0.00 0.00 0.00
ponderthis0517-inf 0 26 0 26.00 975.00 0.00 0.00 262.45 0.00
prod1 1 7 101 7.00 149.00 0.00 0.00 1.77 0.00
prod2 1 10 101 10.00 200.00 0.00 0.00 4.76 0.00
pw-myciel4 0 45 0 45.00 1059.00 0.00 0.00 259.04 0.01
r4l4-02-tree-bounds-50 0 4768 6700 0.00 4768.00 0.00 0.00 0.00 0.00
rmatr100-p10 0 1 7259 1.00 100.00 0.00 0.00 21.86 0.01
rmatr100-p5 0 1 8684 1.00 100.00 0.00 0.00 18.51 0.01
rmatr200-p10 0 1 35054 1.00 200.00 0.00 0.00 146.73 0.08
rmatr200-p20 0 1 29405 1.00 200.00 0.00 0.00 148.00 0.06
rmatr200-p5 0 1 37616 1.00 200.00 0.00 0.00 143.96 0.12
roll3000 0 174 428 0.00 738.00 0.02 0.00 0.00 0.01
rout 0 31 241 15.00 315.00 0.01 0.00 44.35 0.00
sct1 0 1290 12574 0.00 10312.00 1.30 0.00 0.00 0.03
sct2 0 360 3013 0.00 2872.00 0.09 0.00 0.00 0.01
sct31 0 553 2995 0.00 5520.00 0.35 0.00 0.00 0.01
sct32 0 553 2039 0.00 7728.00 0.70 0.00 0.00 0.01
sct5 0 1279 14261 0.00 23004.00 7.04 0.00 0.00 0.03
siena1 0 1808 1966 0.00 11775.00 0.33 0.00 0.00 0.19
supportcase30 0 4 0 4.00 1024.00 0.01 0.00 3485.22 0.00
supportcase35 0 2880 12365 0.00 576.00 0.01 0.16 0.00 0.62
timtab1 0 171 226 0.00 171.00 0.00 0.02 0.00 0.00
timtab1CUTS 0 171 226 0.00 171.00 0.00 0.01 0.00 0.00
trento1 0 1248 1272 0.00 6415.00 0.20 0.00 0.00 0.07
tw-myciel4 0 71 0 71.00 760.00 0.00 0.00 49.68 0.44
uccase8 0 12381 27837 0.00 9576.00 0.11 4.24 0.00 0.07
uct-subprob 20 881 1877 0.00 379.00 0.00 0.00 0.00 0.00
unitcal_7 2890 17 22899 0.00 2856.00 0.06 0.00 0.00 0.02
xmas10-2 2 4645 7200 26.00 900.00 0.00 1.31 30.26 0.03
enlight13 0 169 0 169.00 338.00 0.00 0.00 445.97 0.01
enlight14 0 196 0 196.00 392.00 0.00 0.00 1000.28 0.00
gmut-77-40 0 6 6 0.00 24332.00 1.27 0.02 0.00 0.11
go19 0 80 0 80.00 441.00 0.00 0.00 19.64 0.04
lrsa120 0 119 3600 0.00 239.00 0.01 0.00 0.00 0.01
neos-1620770 0 35 0 35.00 792.00 0.00 0.00 139.77 0.01
neos-506422 0 7 2464 7.00 63.00 0.00 0.00 0.51 0.00
neos-820146 0 15 0 15.00 600.00 0.00 0.00 40.93 0.00
neos-820157 0 120 0 75.00 1200.00 0.00 0.00 325.69 0.00
neos-847302 0 141 8 141.00 729.00 0.00 0.00 1398.33 0.00
neos-911880 0 35 48 35.00 840.00 0.00 0.00 136.07 0.00
neos-935627 0 139 2779 0.00 7522.00 0.01 0.00 0.00 0.19
neos-937511 0 160 2770 0.00 8562.00 0.01 0.00 0.00 0.24
neos-937815 0 160 2770 0.00 8876.00 0.01 0.00 0.00 0.31
neos-941262 0 160 2770 0.00 6710.00 0.01 0.00 0.00 0.30
neos-948126 0 156 2586 0.00 6965.00 0.01 0.00 0.00 0.35
neos-984165 0 155 2405 0.00 6478.00 0.01 0.00 0.00 0.27
neos858960 4 47 0 47.00 160.00 0.00 0.00 123.25 0.00
ns1702808 6 82 138 76.00 666.00 0.00 0.00 674.91 0.00
ns1766074 0 20 10 19.00 90.00 0.00 0.00 4.97 0.00
ns2081729 0 30 61 30.00 600.00 0.00 0.00 11.66 0.01
pigeon-11 0 66 99 55.00 473.00 0.00 0.00 19.21 0.00
pigeon-12 0 72 108 60.00 552.00 0.00 0.00 27.16 0.00
uc-case3 0 13725 26493 0.00 11256.00 0.39 8.17 0.00 0.08

TABLE A.4: Run times of each reduction step for reducible problems

A
.4.

C
om

putationalR
esults

for
D

iving
M

ethods
123

A.4 Computational Results for Diving Methods

granular objective iterations
root greedy random root greedy random best known greedy random

30_70_45_05_100 True True True 9473.00 3840.00 4488.00 9.00 0 0
30_70_45_095_100 True True True 8778.00 3310.00 4119.00 3.00 0 0
30_70_45_095_98 True True True 9195.00 4344.00 4175.00 12.00 0 0
50v-10 True True True 199236.75 30232.08 97076.88 3311.18 0 0
a1c1s1 True True True 21033.23 21029.39 21029.39 11503.44 0 0
a2c1s1 True True True 20866.08 20865.33 20865.33 10889.14 0 0
ab51-40-100 True True True -1024393739.00 -5583762710.00 -2814631027.00 -10420305975.00 0 0
ab67-40-100 True True True -1278992345.00 -4600773056.00 -4396351421.00 -11186253442.00 0 0
ab69-40-100 True True True -1172879898.00 -3498179839.00 -2658682925.00 -11186281442.00 0 0
ab71-20-100 True True True -1740358396.00 -6891846490.00 -4870493333.00 -10420305975.00 0 0
ab72-40-100 True True True -1298844792.00 -3687915681.00 -3608237166.00 -11186620442.00 0 0
app3 False False True inf inf 6449642.38 5751714.33 25 25
australia-abs-cta False True True inf 4613.65 3593.32 106.90 30 30
b1c1s1 True True True 69466.45 69376.94 69336.06 24544.25 0 0
b2c1s1 True True True 69351.01 67975.52 66085.52 25687.90 0 0
beasleyC1 True True True 102.00 102.00 102.00 85.00 0 0
beasleyC2 True True True 232.00 232.00 217.00 144.00 0 0
beasleyC3 False True True 6844.00 964.00 4710.00 754.00 1 20
berlin True True True 1921.00 1921.00 1321.00 1044.00 0 0
berlin_5_8_0 False True True inf 95.00 92.00 62.00 4 15
bg512142 True True True 3968845.86 293461.73 267769.75 184202.75 0 0
bmoipr2 False True True 383315500000.00 108118487164.11 164298702888.88 -46416168.30 20 30
brasil True True True 32720.00 32720.00 19702.00 13655.00 0 0
cbs-cta False True False inf 110276062.82 inf 0.00 30 30
cdc7-4-3-2 True True True 0.00 -133.00 -136.00 -289.00 0 0
cod105 True True True 0.00 -2.00 -4.00 -12.00 0 0
core2536-691 False False True inf inf 7059.00 689.00 30 9
cost266-UUE True True True 42188320.70 42008592.16 42014519.80 25148940.56 0 0
cvs08r139-94 True True True -86.00 -86.00 -86.00 -116.00 0 0
cvs16r106-72 True True True -33.00 -51.00 -39.00 -81.00 0 0
cvs16r128-89 True True True -79.00 -79.00 -79.00 -97.00 0 0
cvs16r70-62 True True True -15.00 -18.00 -15.00 -42.00 0 0
cvs16r89-60 True True True -17.00 -32.00 -32.00 -65.00 0 0
dale-cta False True True inf 584.22 584.22 0.00 30 30

Continued on next page

124
A

ppendix
A

.
C

om
plem

entary
M

aterialfor
the

C
om

putationalStudies

granular objective iterations
root greedy random root greedy random best known greedy random

dg012142 True True True 77158148.08 12353298.33 12347007.75 2300867.00 0 0
ex1010-pi True True True 8595.00 2813.00 4305.00 235.00 0 0
fast0507 True True True 55643.00 2520.00 28290.00 174.00 0 0
g200x740 True True True 45614.00 45558.00 45614.00 44316.00 0 0
gen-ip002 True True True -3543.64 -4573.41 -4550.52 -4783.73 0 0
gen-ip016 True True True -7700.61 -8783.06 -9052.59 -9476.16 0 0
gen-ip021 True True True 3014.67 2738.20 2478.29 2361.45 0 0
gen-ip036 True True True -3827.20 -4552.37 -4500.01 -4606.68 0 0
gen-ip054 True True True 11138.24 7593.88 7923.48 6840.97 0 0
ger50-17-ptp-pop-3t True True True 14477.03 13687.20 9191.84 5231.11 0 0
ger50-17-ptp-pop-6t True True True 17651.44 16456.02 11865.07 8942.63 0 0
ger50-17-trans-dfn-3t True True True 553623.65 492635.07 256747.00 3969.43 0 0
ger50-17-trans-pop-3t True True True 553803.46 495392.25 263898.10 4038.44 0 0
ger50_17_trans True True True 555975.25 503750.31 265018.82 7393.26 0 0
germany50-UUM True True True 751380.00 688720.00 666830.00 628490.00 0 0
glass-sc True True True 74.00 47.00 51.00 23.00 0 0
gr4x6 True True True 284.05 252.15 222.15 202.35 0 0
gsvm2rl11 True True True 43040.05 42693.90 41964.44 18121.64 0 0
gsvm2rl12 True True True 50.00 42.17 36.74 22.12 0 0
gsvm2rl3 True True True 0.60 0.60 0.60 0.34 0 0
gsvm2rl5 True True True 10.00 10.00 10.00 5.42 0 0
gsvm2rl9 True True True 15597.47 15597.47 14896.93 7438.18 0 0
iis-glass-cov True True True 73.00 46.00 50.00 21.00 0 0
iis-hc-cov True True True 78.00 49.00 50.00 17.00 0 0
istanbul-no-cutoff False True True 330.32 330.32 322.56 204.08 25 30
k16x240b True True True 12874.00 12874.00 12779.00 11393.00 0 0
khb05250 True True True 126786075.50 120511827.00 122443058.00 106940226.00 0 0
manna81 True True True -12867.00 -13162.00 -13162.00 -13164.00 0 0
mas74 True True True 736774.15 50264.53 28886.86 11801.19 0 0
mas76 True True True 782652.58 69745.40 64247.85 40005.05 0 0
mc11 True True True 13548.00 13548.00 13167.00 11689.00 0 0
mc7 True True True 5884.00 5875.00 4740.00 3417.00 0 0
mc8 True True True 1994.00 1977.00 1865.00 1566.00 0 0
mik-250-20-75-1 True True True 0.00 0.00 0.00 -49716.00 0 0
mik-250-20-75-2 True True True 0.00 0.00 0.00 -50768.00 0 0
mik-250-20-75-3 True True True 0.00 0.00 0.00 -52242.00 0 0
mik-250-20-75-4 True True True 0.00 0.00 0.00 -52301.00 0 0

Continued on next page

A
.4.

C
om

putationalR
esults

for
D

iving
M

ethods
125

granular objective iterations
root greedy random root greedy random best known greedy random

mik-250-20-75-5 True True True 0.00 0.00 0.00 -51532.00 0 0
n13-3 True True True 20570.00 17275.00 17325.00 13385.00 0 0
n3700 True True True 1831715.07 1654139.00 1426174.05 1227629.00 0 0
n3705 True True True 1847346.12 1597719.00 1442446.00 1225465.00 0 0
n3707 True True True 1788849.26 1625368.00 1354690.01 1186691.00 0 0
n3709 True True True 1811682.71 1676838.00 1405693.00 1207965.00 0 0
n370b True True True 1911867.06 1669199.00 1442808.00 1236963.00 0 0
n5-3 True True True 16325.00 12725.00 14285.00 8105.00 0 0
n6-3 True True True 25100.00 19400.00 21550.00 15175.00 0 0
n7-3 True True True 22010.00 17890.00 19325.00 15426.00 0 0
n9-3 True True True 28825.00 21995.00 26030.00 14409.00 0 0
neos-1112782 True True True 22500000000000.00 22500000000000.00 1065578894123.88 571844066711.00 0 0
neos-1112787 True True True 20000000000000.00 20000000000000.00 593525796221.26 564772773667.00 0 0
neos-1171737 False False True inf inf -34.00 -195.00 30 30
neos-1367061 True True True 31856051.54 31780764.13 31781395.61 31320456.26 0 0
neos-1430701 False True True 0.00 -42.00 -18.00 -77.00 12 25
neos-1442119 False True True 0.00 -98.00 -54.00 -181.00 13 27
neos-1603965 True True True 865504980.43 627172725.19 859650980.43 619244367.66 0 0
neos-2987310-joes False True False inf -222862.32 inf -607702988.30 30 30
neos-3072252-nete False True True 24183360.00 23371673.00 13723328.00 11807698.00 27 27
neos-4290317-perth False True True inf 3257293.75 3912559.02 3017324.03 1 18
neos-4954672-berkel False True True 18517796.00 9962581.00 8110833.00 2612710.00 2 28
neos-5076235-embley False True True inf 3150.00 3224.00 2362.00 22 23
neos-5079731-flyers False False True inf inf 3650.00 2440.00 25 23
neos-5192052-neckar False True True -1100000.00 -9030000.00 -11280000.00 -11670000.00 2 6
neos-787933 True True True 1764.00 1764.00 1748.00 30.00 0 0
neos-848198 True True True 170974.00 72169.00 66620.00 51837.00 0 0
neos-872648 True True True 52.57 52.57 48.77 48.61 0 0
neos-873061 True True True 152.43 152.43 145.98 113.66 0 0
neos-933638 True True True 5074461.10 133369.00 141463.70 276.00 0 0
neos-933966 True True True 5074480.10 111392.00 149438.90 318.00 0 0
neos17 True True True 0.49 0.36 0.40 0.15 0 0
neos22 False True True inf 939684.38 1188643.75 779715.00 29 29
neos5 True True True 38.50 17.00 22.00 15.00 0 0
nexp-150-20-1-5 True True True 102.00 89.00 82.00 66.00 0 0
nexp-150-20-8-5 True True True 17880.00 4288.00 15864.00 231.00 0 0
nexp-50-20-1-1 False True True inf 68.00 58.00 29.00 8 6

Continued on next page

126
A

ppendix
A

.
C

om
plem

entary
M

aterialfor
the

C
om

putationalStudies

granular objective iterations
root greedy random root greedy random best known greedy random

nexp-50-20-4-2 False True True inf 340.00 739.00 71.00 5 9
ns4-pr6 True True True 29550.00 29453.00 29452.00 29314.00 0 0
opm2-z10-s4 True True True -1489.00 -3122.00 -2983.00 -33269.00 0 0
opm2-z6-s1 True True True -1076.00 -2174.00 -1510.00 -6202.00 0 0
opm2-z7-s8 True True True -1654.00 -4881.00 -2503.00 -11242.00 0 0
opm2-z8-s0 True True True -2220.00 -5443.00 -3066.00 -15775.00 0 0
osorio-cta False True True inf 0.04 0.04 0.03 7 7
p200x1188c True True True 20962.00 20962.00 17373.00 15078.00 0 0
p500x2988 True True True 72594.00 72561.00 72542.00 71836.00 0 0
p500x2988c True True True 17538.39 17538.00 17538.00 15215.00 0 0
p500x2988d True True True 6.00 6.00 6.00 6.00 0 0
qiu True True True 1805.18 744.15 314.45 -132.87 0 0
queens-30 True True True 0.00 -3.00 -15.00 -40.00 0 0
r50x360 True True True 2016.00 2016.00 2016.00 1653.00 0 0
rail507 False True False inf 1759.00 inf 174.00 23 30
railway_8_1_0 False True True inf 482.00 486.00 400.00 5 20
ramos3 True True True 1095.00 543.00 642.00 192.00 0 0
ran12x21 True True True 5550.05 4751.00 4537.00 3664.00 0 0
ran13x13 True True True 4439.02 4122.00 3940.00 3252.00 0 0
ran14x18-disj-8 True True True 9675.74 5423.00 4758.00 3712.00 0 0
set3-09 True True True 1985526.93 1759784.82 1759789.87 176497.15 0 0
set3-10 True True True 1992089.60 1756477.36 1756482.40 185179.04 0 0
set3-15 True True True 1925867.59 1701104.14 1701109.19 124886.00 0 0
set3-16 True True True 1919621.67 1701416.05 1701421.27 134040.41 0 0
set3-20 True True True 1916274.13 1712935.20 1712940.25 159462.57 0 0
seymour True True True 743.00 501.00 559.00 423.00 0 0
seymour1 True True True 476.57 418.34 438.53 410.76 0 0
sorrell7 True True True 0.00 -140.00 -65.00 -196.00 0 0
sorrell8 True True True 0.00 -298.00 -171.00 -350.00 0 0
sp150x300d True True True 70.00 69.00 70.00 69.00 0 0
stockholm True True True 156.00 152.00 146.00 125.00 0 0
supportcase39 True True True -1078779.33 -1081369.98 -1082077.66 -1085069.60 0 0
supportcase42 True True True 10.45 9.00 9.00 7.76 0 0
ta1-UUM True True True 510951307.90 289145959.41 293656954.80 7518328.20 0 0
tanglegram4 True True True 55202.00 24714.00 27548.00 10696.00 0 0
tanglegram6 True True True 8856.00 3425.00 4865.00 1224.00 0 0
toll-like True True True 2204.00 729.00 1345.00 610.00 0 0

Continued on next page

A
.4.

C
om

putationalR
esults

for
D

iving
M

ethods
127

granular objective iterations
root greedy random root greedy random best known greedy random

tr12-30 False True True inf 196614.00 185722.86 130596.00 7 6
usAbbrv-8-25_70 False True True inf 200.00 193.00 120.00 4 21
v150d30-2hopcds True True True 117.00 55.00 68.00 41.00 0 0

TABLE A.5: Instances with some granular node, corresponding objective values and number of feasibility diving iterations

128
A

ppendix
A

.
C

om
plem

entary
M

aterialfor
the

C
om

putationalStudies

root node 1 dive 3 dives 5 dives SCIP best known

set3-09 1122029.59 1042062.59 1030350.59 938802.21 1759784.82 176497.15
set3-20 1663579.45 1141125.67 863520.06 771482.81 1712935.20 159462.57
neos-983171 50987.00 9431.00 8747.00 8747.00 9272.00 2360.00
b1c1s1 72555.00 71900.43 69071.53 61920.13 69333.52 24544.25
neos-1445743 -3187.00 -12951.00 -15684.00 -15684.00 -11109.00 -17905.00
opm2-z6-s1 -1040.00 -3986.00 -4494.00 -4494.00 -3808.00 -6202.00
set3-10 1679684.07 991124.54 961363.41 750274.15 1756477.36 185179.04
gen-ip054 10928.19 7875.28 7620.17 7207.21 7235.30 6840.97
neos-1367061 31780762.62 31780762.62 31780762.62 31780762.62 33300456.26 31320456.26
bg512142 302107.00 275544.50 273390.00 273390.00 6301928.50 184202.75
neos-1445765 -2468.00 -13730.00 -13823.00 -14019.00 -11513.00 -17783.00
gsvm2rl9 16382.76 13611.89 13611.89 13611.89 31802.40 7438.18
opm2-z10-s4 -1489.00 -18032.00 -22681.00 -22871.00 -20344.00 -33269.00
sorrell7 -45.00 -153.00 -160.00 -160.00 -152.00 -196.00
b2c1s1 73676.52 69221.52 68701.52 68701.52 71120.52 25687.90
opm2-z8-s0 -2220.00 -10005.00 -11328.00 -11328.00 -9833.00 -15775.00
sorrell8 -168.00 -324.00 -324.00 -329.00 -301.00 -350.00
gsvm2rl12 34.35 34.35 34.35 34.35 50.00 22.12
seymour1 437.31 425.43 421.72 421.45 438.08 410.76
set3-16 1209249.73 913569.70 877326.71 661927.58 1701416.05 134040.41
mushroom-best 3613.90 2285.86 2072.90 2063.90 4208.00 0.06
gr4x6 332.35 236.50 218.60 218.60 219.35 202.35
qiu 3173.59 1919.21 603.68 603.68 1805.18 -132.87
gsvm2rl11 42635.34 41080.59 39792.84 39792.84 83555.95 18121.64
gsvm2rl5 10.00 10.00 9.07 8.81 10.00 5.42
neos-1112787 20002990000000.00 1095537656401.14 1070535971510.15 590877191280.26 21786753400000.00 564772773667.00
dg012142 25623489.00 14981424.74 14373382.60 14373382.60 33433439.00 2300867.00
opm2-z7-s8 -1654.00 -7243.00 -7638.00 -7681.00 -5599.00 -11242.00
haprp 4604106.31 3813762.73 3792385.43 3792385.43 4557402.61 3673280.68

TABLE A.6: A comparison of objective values for instances where feasible rounding approaches yield best incumbent solutions

129

Bibliography

[1] T. Achterberg and T. Berthold. “Improving the feasibility pump”. In: Discrete
Optimization 4.1 (2007), pp. 77–86. DOI: 10.1016/j.disopt.2006.10.004.

[2] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. “Presolve Re-
ductions in Mixed Integer Programming”. In: INFORMS Journal on Computing
32.2 (2019), pp. 473–506. DOI: 10.1287/ijoc.2018.0857.

[3] T. Achterberg, T. Koch, and A. Martin. “MIPLIB 2003”. In: Operations Research
Letters 34.4 (2006), pp. 361–372. DOI: 10.1016/j.orl.2005.07.009.

[4] A. Ataei. Fast Reduced Row Echelon Form. MATLAB Central File Exchange. URL:
https://www.mathworks.com/matlabcentral/fileexchange/21583-fast-

reduced-row-echelon-form (visited on 09/02/2020).

[5] D. Azé. “A survey on error bounds for lower semicontinuous functions”. In:
ESAIM: Proceedings 13 (2003), pp. 1–17. DOI: 10.1051/proc:2003004.

[6] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan.
“Mixed-integer nonlinear optimization”. In: Acta Numerica 22 (2013), pp. 1–
131. DOI: 10.1017/S0962492913000032.

[7] T. Berthold. Heuristic algorithms in global MINLP solvers: Zugl.: Berlin, Techn.
Univ., Diss., 2014. 1. Aufl. München: Verl. Dr. Hut, 2015.

[8] T. Berthold. “RENS”. In: Mathematical Programming Computation 6.1 (2014), pp. 33–
54. DOI: 10.1007/s12532-013-0060-9.

[9] T. Berthold and A. M. Gleixner. “Undercover: a primal MINLP heuristic ex-
ploring a largest sub-MIP”. In: Mathematical Programming 144.1-2 (2014), pp. 315–
346. DOI: 10.1007/s10107-013-0635-2.

[10] L. T. Biegler and I. E. Grossmann. “Retrospective on optimization”. In: Com-
puters & Chemical Engineering 28.8 (2004), pp. 1169–1192. DOI: 10.1016/j.
compchemeng.2003.11.003.

[11] R. E. Bixby. “A brief history of linear and mixed-integer programming com-
putation”. In: Documenta Mathematica (2012), pp. 107–121.

[12] N. L. Boland, A. C. Eberhard, F. G. Engineer, M. Fischetti, M. W. P. Savelsbergh,
and A. Tsoukalas. “Boosting the feasibility pump”. In: Mathematical Program-
ming Computation 6.3 (2014), pp. 255–279. DOI: 10.1007/s12532-014-0068-9.

[13] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. “An algorithmic
framework for convex mixed integer nonlinear programs”. In: Discrete Opti-
mization 5.2 (2008), pp. 186–204. DOI: 10.1016/j.disopt.2006.10.011.

[14] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. “A Feasibility Pump for
mixed integer nonlinear programs”. In: Mathematical Programming 119.2 (2009),
pp. 331–352. DOI: 10.1007/s10107-008-0212-2.

https://doi.org/10.1016/j.disopt.2006.10.004
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1016/j.orl.2005.07.009
https://www.mathworks.com/matlabcentral/fileexchange/21583-fast-reduced-row-echelon-form
https://www.mathworks.com/matlabcentral/fileexchange/21583-fast-reduced-row-echelon-form
https://doi.org/10.1051/proc:2003004
https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1007/s12532-013-0060-9
https://doi.org/10.1007/s10107-013-0635-2
https://doi.org/10.1016/j.compchemeng.2003.11.003
https://doi.org/10.1016/j.compchemeng.2003.11.003
https://doi.org/10.1007/s12532-014-0068-9
https://doi.org/10.1016/j.disopt.2006.10.011
https://doi.org/10.1007/s10107-008-0212-2

130 Bibliography

[15] P. Bonami and J. P. M. Gonçalves. “Heuristics for convex mixed integer non-
linear programs”. In: Computational Optimization and Applications 51.2 (2012),
pp. 729–747. DOI: 10.1007/s10589-010-9350-6.

[16] P. Bonami and J. Lee. Bonmin users’ manual: Version 1.8. 2013. URL: https://
projects.coin-or.org/Bonmin/browser/stable/1.8/Bonmin/doc/BONMIN_

UsersManual.pdf?format=raw (visited on 03/17/2020).

[17] M. R. Bussieck, A. S. Drud, and A. Meeraus. “MINLPLib—A Collection of Test
Models for Mixed-Integer Nonlinear Programming”. In: INFORMS Journal on
Computing 15.1 (2003), pp. 114–119. DOI: 10.1287/ijoc.15.1.114.15159.

[18] G. C. Calafiore and L. El Ghaoui, eds. Optimization Models. Cambridge Univer-
sity Press, 2018. DOI: 10.1017/CBO9781107279667.

[19] J. Carlson, A. M. Jaffe, and A. Wiles. The Millennium Prize problems. Cambridge,
Mass. and Providence, RI: Clay Mathematics Inst and American Mathematical
Soc, 2006.

[20] V. Chvatal. “A Greedy Heuristic for the Set-Covering Problem”. In: Mathemat-
ics of Operations Research 4.3 (1979), pp. 233–235. DOI: 10.1287/moor.4.3.233.

[21] COIN-OR. URL: https://www.coin-or.org/ (visited on 03/16/2020).

[22] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Vol. 271.
Cham: Springer International Publishing, 2014. DOI: 10.1007/978- 3- 319-
11008-0.

[23] W. Cook. “Computing in Combinatorial Optimization”. In: Computing and Soft-
ware Science. Ed. by B. Steffen and G. Woeginger. Vol. 10000. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2019, pp. 27–47.
DOI: 10.1007/978-3-319-91908-9_3.

[24] G. Dantzig, D. R. Fulkerson, and S. Johnson. “Solution of a Large-Scale Traveling-
Salesman Problem”. In: Journal of the Operations Research Society of America 2.4
(1954), pp. 393–410. DOI: 10.1287/opre.2.4.393.

[25] M. A. Duran and I. E. Grossmann. “An outer-approximation algorithm for a
class of mixed-integer nonlinear programs”. In: Mathematical Programming 36.3
(1986), pp. 307–339. DOI: 10.1007/BF02592064.

[26] M. Fischetti, F. Glover, and A. Lodi. “The feasibility pump”. In: Mathematical
Programming 104.1 (2005), pp. 91–104. DOI: 10.1007/s10107-004-0570-3.

[27] M. Fischetti and D. Salvagnin. “Feasibility pump 2.0”. In: Mathematical Pro-
gramming Computation 1.2-3 (2009), pp. 201–222. DOI: 10.1007/s12532-009-
0007-3.

[28] R. Fletcher and S. Leyffer. “Solving mixed integer nonlinear programs by outer
approximation”. In: Mathematical Programming 66.1-3 (1994), pp. 327–349. DOI:
10.1007/BF01581153.

[29] M. Fukushima and J.-S. Pang. “Some Feasibility Issues in Mathematical Pro-
grams with Equilibrium Constraints”. In: SIAM Journal on Optimization 8.3
(1998), pp. 673–681. DOI: 10.1137/S105262349731577X.

[30] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P.
Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch,
P. Le Bodic, S. Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M.
Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegschei-
der, D. Weninger, and J. Witzig. The SCIP Optimization Suite 7.0. ZIB, Takustr.
7, 14195 Berlin, 2020.

https://doi.org/10.1007/s10589-010-9350-6
https://projects.coin-or.org/Bonmin/browser/stable/1.8/Bonmin/doc/BONMIN_UsersManual.pdf?format=raw
https://projects.coin-or.org/Bonmin/browser/stable/1.8/Bonmin/doc/BONMIN_UsersManual.pdf?format=raw
https://projects.coin-or.org/Bonmin/browser/stable/1.8/Bonmin/doc/BONMIN_UsersManual.pdf?format=raw
https://doi.org/10.1287/ijoc.15.1.114.15159
https://doi.org/10.1017/CBO9781107279667
https://doi.org/10.1287/moor.4.3.233
https://www.coin-or.org/
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1007/978-3-319-91908-9_3
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1007/BF02592064
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1007/s12532-009-0007-3
https://doi.org/10.1007/s12532-009-0007-3
https://doi.org/10.1007/BF01581153
https://doi.org/10.1137/S105262349731577X

Bibliography 131

[31] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold,
P. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H. D. Mittelmann,
D. Ozyurt, T. K. Ralphs, D. Salvagnin, and Y. Shinano. “MIPLIB 2017: data-
driven compilation of the 6th mixed-integer programming library”. In: Math-
ematical Programming Computation 34.4 (2021), p. 361. DOI: 10.1007/s12532-
020-00194-3.

[32] R. E. Gomory. “Outline of an Algorithm for Integer Solutions to Linear Pro-
grams and An Algorithm for the Mixed Integer Problem”. In: 50 Years of Inte-
ger Programming 1958-2008. Ed. by M. Jünger, T. M. Liebling, D. Naddef, G. L.
Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 77–103. DOI: 10.1007/978-
3-540-68279-0_4.

[33] F. J. Grunewald and D. Segal. “How to solve a quadratic equation in integers”.
In: Mathematical Proceedings of the Cambridge Philosophical Society 89.1 (1981),
pp. 1–5. DOI: 10.1017/S030500410005787X.

[34] L. L. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020. URL: https:
//www.gurobi.com/wp-content/plugins/hd_documentations/documentation/

8.1/refman.pdf (visited on 05/04/2021).

[35] E. R. Hansen and G. W. Walster. Global optimization using interval analysis. 2. ed.,
rev. and expanded. Vol. 264. Monographs and textbooks in pure and applied
mathematics. New York: Dekker, 2004. DOI: 10.1201/9780203026922.

[36] W. E. Hart, J.-P. Watson, and D. L. Woodruff. “Pyomo: modeling and solving
mathematical programs in Python”. In: Mathematical Programming Computation
3.3 (2011), pp. 219–260. DOI: 10.1007/s12532-011-0026-8.

[37] C. Hermite. “Sur l’introduction des variables continues dans la théorie des
nombres.” In: Journal für die reine und angewandte Mathematik 41 (1851), pp. 191–
216.

[38] H. Hijazi, P. Bonami, and A. Ouorou. “An Outer-Inner Approximation for Sep-
arable Mixed-Integer Nonlinear Programs”. In: INFORMS Journal on Comput-
ing 26.1 (2014), pp. 31–44. DOI: 10.1287/ijoc.1120.0545.

[39] F. S. Hillier. “Efficient Heuristic Procedures for Integer Linear Programming
with an Interior”. In: Operations Research 17.4 (1969), pp. 600–637. DOI: 10 .
1287/opre.17.4.600.

[40] A. J. Hoffman. “On Approximate Solutions of Systems of Linear Inequalities”.
In: Journal of Research of the National Bureau of Standards 1952.49 (1952), pp. 263–
265.

[41] J. Hughes. Extract independent sub-systems from a bigger linear Eq. System. Math-
ematics Stack Exchange. URL: https://math.stackexchange.com/q/2340486
(visited on 08/26/2020).

[42] D. S. Johnson. “Approximation algorithms for combinatorial problems”. In:
Journal of Computer and System Sciences 9.3 (1974), pp. 256–278. DOI: 10.1016/
S0022-0000(74)80044-9.

[43] R. Kannan and A. Bachem. “Polynomial Algorithms for Computing the Smith
and Hermite Normal Forms of an Integer Matrix”. In: SIAM Journal on Com-
puting 8.4 (1979), pp. 499–507. DOI: 10.1137/0208040.

https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/978-3-540-68279-0_4
https://doi.org/10.1007/978-3-540-68279-0_4
https://doi.org/10.1017/S030500410005787X
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/8.1/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/8.1/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/8.1/refman.pdf
https://doi.org/10.1201/9780203026922
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1287/ijoc.1120.0545
https://doi.org/10.1287/opre.17.4.600
https://doi.org/10.1287/opre.17.4.600
https://math.stackexchange.com/q/2340486
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1137/0208040

132 Bibliography

[44] J. E. Kelley JR. “The cutting-plane method for solving convex programs”. In:
Journal of the society for Industrial and Applied Mathematics 8.4 (1960), pp. 703–
712.

[45] D. Klatte and G. Thiere. “Error bounds for solutions of linear equations and
inequalities”. In: ZOR Mathematical Methods of Operations Research 41.2 (1995),
pp. 191–214. DOI: 10.1007/BF01432655.

[46] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E.
Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T.
Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. “MIPLIB 2010”. In: Mathemat-
ical Programming Computation 3.2 (2011), pp. 103–163. DOI: 10.1007/s12532-
011-0025-9.

[47] M. Köppe and R. Weismantel. “Cutting planes from a mixed integer Farkas
lemma”. In: Operations Research Letters 32.3 (2004), pp. 207–211. DOI: 10.1016/
j.orl.2003.08.003.

[48] J. Kronqvist, A. Lundell, and T. Westerlund. “The extended supporting hyper-
plane algorithm for convex mixed-integer nonlinear programming”. In: Jour-
nal of Global Optimization 64.2 (2016), pp. 249–272. DOI: 10.1007/s10898-015-
0322-3.

[49] W. Li. “Sharp Lipschitz Constants for Basic Optimal Solutions and Basic Feasi-
ble Solutions of Linear Programs”. In: SIAM Journal on Control and Optimization
32.1 (1994), pp. 140–153. DOI: 10.1137/S036301299222723X.

[50] W. Li. “The sharp Lipschitz constants for feasible and optimal solutions of a
perturbed linear program”. In: Linear Algebra and its Applications 187 (1993),
pp. 15–40. DOI: 10.1016/0024-3795(93)90125-8.

[51] M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. “Polyhedral approximation
in mixed-integer convex optimization”. In: Mathematical Programming 172.1-2
(2018), pp. 139–168. DOI: 10.1007/s10107-017-1191-y.

[52] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and F. Ser-
rano. “PySCIPOpt: Mathematical Programming in Python with the SCIP Op-
timization Suite”. In: Mathematical Software - ICMS 2016. Ed. by G.-M. Greuel,
T. Koch, P. Paule, and A. Sommese. Lecture Notes in Computer Science. Cham
and Heidelberg: Springer, 2016, pp. 301–307. DOI: 10 . 1007 / 978 - 3 - 319 -
42432-3_37.

[53] O. L. Mangasarian and T.-H. Shiau. “Lipschitz Continuity of Solutions of Lin-
ear Inequalities, Programs and Complementarity Problems”. In: SIAM Journal
on Control and Optimization 25.3 (1987), pp. 583–595. DOI: 10.1137/0325033.

[54] MINLPLib. URL: http://www.minlplib.org/instances.html (visited on
03/16/2020).

[55] MIPLIB 2017 website. URL: https://miplib.zib.de/tag_collection.html
(visited on 03/02/2021).

[56] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience series in discrete mathematics and optimization. New York: Wiley,
2010. DOI: 10.1002/9781118627372.

[57] A. Neumaier. Interval methods for systems of equations. Vol. volume 37. Encyclo-
pedia of mathematics and its applications. Cambridge: Cambridge University
Press, 1990. DOI: 10.1017/CBO9780511526473.

https://doi.org/10.1007/BF01432655
https://doi.org/10.1007/s12532-011-0025-9
https://doi.org/10.1007/s12532-011-0025-9
https://doi.org/10.1016/j.orl.2003.08.003
https://doi.org/10.1016/j.orl.2003.08.003
https://doi.org/10.1007/s10898-015-0322-3
https://doi.org/10.1007/s10898-015-0322-3
https://doi.org/10.1137/S036301299222723X
https://doi.org/10.1016/0024-3795(93)90125-8
https://doi.org/10.1007/s10107-017-1191-y
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1137/0325033
http://www.minlplib.org/instances.html
https://miplib.zib.de/tag_collection.html
https://doi.org/10.1002/9781118627372
https://doi.org/10.1017/CBO9780511526473

Bibliography 133

[58] C. Neumann. “A Feasible Rounding Approach for Mixed-Integer Optimiza-
tion Problems”. Unpublished Master Thesis, Karlsruhe, 2017.

[59] C. Neumann and O. Stein. “Feasible rounding approaches for equality con-
strained mixed-integer optimization problems”. In: Optimization Online, Preprint
ID 2020-10-8045 (2020).

[60] C. Neumann and O. Stein. “Generating feasible points for mixed-integer con-
vex optimization problems by inner parallel cuts”. In: Optimization Online,
Preprint ID 2018-11-6947 (2020).

[61] C. Neumann, O. Stein, and N. Sudermann-Merx. “A feasible rounding ap-
proach for mixed-integer optimization problems”. In: Computational Optimiza-
tion and Applications 72.2 (2019), pp. 309–337. DOI: 10.1007/s10589-018-0042-
y.

[62] C. Neumann, O. Stein, and N. Sudermann-Merx. “Bounds on the Objective
Value of Feasible Roundings”. In: Vietnam Journal of Mathematics 48.2 (2020),
pp. 299–313. DOI: 10.1007/s10013-020-00393-4.

[63] C. Neumann, O. Stein, and N. Sudermann-Merx. “Granularity in Nonlinear
Mixed-Integer Optimization”. In: Journal of Optimization Theory and Applica-
tions 184.2 (2020), pp. 433–465. DOI: 10.1007/s10957-019-01591-y.

[64] J.-S. Pang. “Error bounds in mathematical programming”. In: Mathematical
Programming 79.1-3 (1997), pp. 299–332. DOI: 10.1007/BF02614322.

[65] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover Books on Computer Science. Newburyport: Dover Pub-
lications, 2013.

[66] S. M. Robinson. “An Application of Error Bounds for Convex Programming
in a Linear Space”. In: SIAM Journal on Control 13.2 (1975), pp. 271–273. DOI:
10.1137/0313015.

[67] R. T. Rockafellar. Convex analysis. Princeton paperbacks. Princeton, N.J: Prince-
ton University Press, 1997. DOI: 10.2307/j.ctt14bs1ff.

[68] S. Sahni. “Computationally Related Problems”. In: SIAM Journal on Computing
3.4 (1974), pp. 262–279. DOI: 10.1137/0203021.

[69] A. Schrijver. Theory of linear and integer programming. Reprinted. A Wiley-Inter-
science publication. Chichester: Wiley, 2000.

[70] C. L. Siegel. “Über Die Analytische Theorie Der Quadratischen Formen”. In:
The Annals of Mathematics 36.3 (1935), p. 527. DOI: 10.2307/1968644.

[71] O. Stein. “Error bounds for mixed integer linear optimization problems”. In:
Mathematical Programming 156.1-2 (2016), pp. 101–123. DOI: 10.1007/s10107-
015-0872-7.

[72] O. Stein. “Error bounds for mixed integer nonlinear optimization problems”.
In: Optimization Letters 10.6 (2016), pp. 1153–1168. DOI: 10.1007/s11590-016-
1011-y.

[73] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathemati-
cal Programming 106.1 (2006), pp. 25–57. DOI: 10.1007/s10107-004-0559-y.

[74] T. Westerlund and F. Pettersson. “An extended cutting plane method for solv-
ing convex MINLP problems”. In: Computers & Chemical Engineering 19 (1995),
pp. 131–136. DOI: 10.1016/0098-1354(95)87027-X.

https://doi.org/10.1007/s10589-018-0042-y
https://doi.org/10.1007/s10589-018-0042-y
https://doi.org/10.1007/s10013-020-00393-4
https://doi.org/10.1007/s10957-019-01591-y
https://doi.org/10.1007/BF02614322
https://doi.org/10.1137/0313015
https://doi.org/10.2307/j.ctt14bs1ff
https://doi.org/10.1137/0203021
https://doi.org/10.2307/1968644
https://doi.org/10.1007/s10107-015-0872-7
https://doi.org/10.1007/s10107-015-0872-7
https://doi.org/10.1007/s11590-016-1011-y
https://doi.org/10.1007/s11590-016-1011-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1016/0098-1354(95)87027-X

134 Bibliography

[75] C. Zualinescu. “Sharp Estimates for Hoffman’s Constant for Systems of Lin-
ear Inequalities and Equalities”. In: SIAM Journal on Optimization 14.2 (2003),
pp. 517–533. DOI: 10.1137/S1052623402403505.

https://doi.org/10.1137/S1052623402403505

135

Index

Additive relaxation, 14, 114

Basic variables, 79
Big-M reformulation, 11, 38
Binary variables

difficulties with, 7
example with, 14, 94
in practical applications, 30, 35, 44

Bonmin, comparison with, 40–44, 63–
71

Computation of
connected components, 84
enlargements, see Enlargement(s)
feasible points, see Feasible

point(s)
Lipschitz constants, see Lipschitz

constants
pseudo-granularity parameters,

27
Computational results

for (integer) equality constrained
MILPs, 86–92

for connected components, 88
for inconsistent instances, 73–74
for IPS-diving, 107–111
for MICPs, 62–74
for MILPs, 29–38, 107–111
for MIQCQPs, 38–45
for optimality gap closed by div-

ing, 109
for plain feasible rounding ap-

proaches, 29–45, 107–111
for reversed inner parallel cuts, 69
for the connected components, 88
for the HNF, 87
for the IPCP, 62–74
for the prref, 87
of the elimination procedure, 86–

88
Connected components, 83, 84, see also

Computational results
Convergence of the IPCP, 53–55
Coupled variables, 82–84

Cutting plane method
extended, 48
inner parallel, see also Inner paral-

lel cuts, 50
Kelley, 48, 50, 52

Cutting planes, see also Inner parallel
cuts, 47, 50, 53

Degree of freedom, 101–103, 107
Diving

heuristic for MILPs, 98–106
steps for empty inner parallel sets,

100–104
steps for nonempty inner parallel

sets, 98–99

Elementary column operations, 80
Enlargement(s)

computation of, 30, 38, 45
effects on Lipschitz constants of,

21
example of, 14, 16, 18, 19, 21, 22,

25
for nonlinear constraints, 19
for polyhedral constraints, 15, 23
main idea of, 8, 13
of fixed sets, see Fixing variables
trade off with, 22, 38, 45

Epigraph reformulation, 39, 40, 48, 63
and granularity, 56

Equality constraints
elimination of, 78–82
example for the elimination of, 77
preservation of the potential for

granularity with, 76
treatment of, 30, 76

Error bounds, 2, 3, 31
a comparison of, 62
for the IPCP, a-posteriori, 58
for the IPCP, a-priori, 59–62

Feasibility problem, 28, 100
optimal value of, 100

Feasibility test, 27

136 INDEX

Feasibility tolerance, 30, 50
of LP solvers, 55
of the IPCP, 55

Feasible point(s)
for (integer) equality constrained

MILPs, 92
for granular problems, 30, 64
for non-granular problems, 37
for pseudo-granular problems, 40
quality of the FRA-SOR-

generated, 35, 40
quality of the IPCP-generated, 68
rounded and merged, 98

Feasible rounding approach
combined with diving steps, 104
for (integer) equality constrained

problems, 85
Shrink-Lift-Optimize-Round, 27
Shrink-Optimize-Round, 27, 28

Fixed inner parallel set(s), see Inner
parallel set(s)

Fixed relaxed feasible set, 95
Fixing variables

enlargements and, 97
geometrical perspective on, 95–97
order of, 99
selection of indices for, 103, 106–

108

Gauss-Jordan elimination, 78
Granularity, 7, 24, 26, 48

a remark on, 14
and Epigraph reformulation, 56
and equality constraints on in-

teger variables, see Equality
constraint(s)

representable, 14
Greatest common divisor, 15, 19–21,

23, 31, 38, 98
Greedy algorithm, 103, 106, 107
Gurobi, comparison with, 29–37, 86,

89

Hermite normal form (HNF), see also
Computational results, 80

Hermite normal form theorem, 80
Hoffman constant, 61, 62

Inner parallel cuts
closed-form expression of, 51
objective, 57
reversed, 52, 56, 58, 69

Inner parallel set(s)
closed-form expression of, 7, 8, 49
computation of, 29
enlarged, closed-form expression

of, 16
enlargement of, 14
fixed, 95
geometrical definition of, 6
inner approximation of, 8, 9, 21, 22
intersection of, 48, 51
outer approximation of, 52, 53

Integer line search, 36
Integrality conditions, 78
Interval arithmetic, 10, 57
IPOPT, 38

Knapsack problem, see Optimization
problem

Lipschitz constants
assumption of, 9, 24
computation of, 10, 11, 20, 22, 25–

27, 38, 39, 45, 46, 50
dependency on enlargements of

the, 21
global information for the compu-

tation of, 50, 53
monotonicity of, 21
smaller, 24, 25

Lower bounds via inner parallel cuts,
58, 63, 69

Matlab, 30, 86
MIPLIB

2003, 29, 30
2010, 29, 30, 86
2017, 86

Modeling techniques, 18, 72, 92
Monotonicity

of enlargements, 21
of inner parallel sets, 48
of Lipschitz constants, 21
of the reduction of the feasibility

error, 70

Non-binary integer variables, 35
Non-granularity measure, see also Fea-

sibility problem
improvement of the, 101
non deterioration of, 100

Nonbasic variables, 79

Objective based problem, 28, 98

INDEX 137

example of an, 99
fixed, 98

Optimization problem
binary knapsack, 17, 18, 94
equality constrained mixed-

integer linear, 75
mixed-integer (nonconvex)

quadratically constrained
quadratic, 10–12, 40

mixed-integer convex, 5, 47
mixed-integer linear, 5, 29, 98
mixed-integer nonconvex, 6, 40
mixed-integer nonlinear, 5, 93
reduced, 79–86
with complementarity con-

straints, 11
Outer approximation, 47, 73

Polynomial, real-valued multivariate,
19

Postprocessing step, 36, 52, 64, 86
Presolving step, 18, 29, 30, 32, 37, 78
Primal heuristic, 6, 35, 45, 68, 106
Pseudo-granular MIQCQP instances,

40
Pseudo-granularity, 22–28, 39, 44, 45,

49
Pyomo, 38, 63, 68

Rounding(s)
definition of, 6, 93
excluded by inner parallel cuts, see

also Convergence of the IPCP,
53

feasibility of, 7, 8, 23, 25
from an interval, 99
increasing number of, 99
nondecreasing number of, 97
obtainable from fixed inner paral-

lel sets, 95
obtainable from the inner parallel

set, 94
Row echelon form

partial, see also Computational re-
sults, 78

reduced, 78

SCIP, comparison with, 63–71, 109–111
Set covering problem, 103
Sparsity, 39, 92, 114
Sparsity pattern matrix, 82

Unimodular
matrix, 80
column operations, see Elemen-

tary column operations

Worst case behavior of the IPCP, 73

	Abstract
	Acknowledgements
	Introduction
	Basic Ideas of Inner Parallel Sets
	Motivation and Basic Notation
	Geometrical Intuition of the Inner Parallel Set
	A Functional Description for the Inner Parallel Set
	An Inner Approximation
	Computation of Lipschitz Constants

	Enlarging Inner Parallel Sets
	A Preprocessing Step
	Polyhedral Constraints
	Nonlinear Constraints
	The Interplay Between Enlargements and Lipschitz Constants
	Pseudo-Granularity

	Using Inner Parallel Sets for Computing Feasible Points
	Algorithmic Considerations
	Computational Study in the Polyhedral Case
	Granular Optimization Problems from the MIPLIB Libraries
	Comparison with Gurobi for Granular Optimization Problems
	Comparison with Gurobi for Nongranular Optimization Problems
	Influence of Presolving Techniques

	Computational Study in the Nonlinear Case
	Computation of Lipschitz Constants
	Pseudo-Granular Problems and Quality of the Generated Feasible Points
	Effects of Different Enlargement Parameters for Box Constraints

	Conclusions and Outlook

	Inner Parallel Cuts
	The Special Role of Mixed-Integer Convex Optimization
	Setting and Motivation
	The Inner Parallel Cutting Plane Method
	Statement of the Algorithm
	Convergence of the Algorithm
	Using Inner Parallel Cuts in Outer Approximation Based Methods
	The Effect of a Nonlinear Objective Function

	Bounds on the Objective Value
	A-Posteriori Bounds
	A-Priori Bounds

	Computational Study
	Instances with Feasible Points
	Non-granular Consistent Instances
	Inconsistent Instances

	Conclusions

	Equality Constraints and Inner Parallel Sets
	Basic Ideas and Different Possibilities
	Reduced Problems
	A Reduction Technique Tailored to Feasible Rounding Approaches
	Computational Results
	Practical Complexity of the Elimination Procedure
	Granularity in Equality Constrained Problems

	Conclusions and Further Investigations

	Inner Parallel Sets in Search Trees
	Preliminaries
	Fixing Variables and Inner Parallel Sets - a Geometrical Perspective
	A Diving Heuristic for MILPs
	A Diving Step for a Nonempty Enlarged Inner Parallel Set
	A Diving Step for an Empty Enlarged Inner Parallel Set
	An Algorithmic Framework for Inner Parallel Set Diving

	Computational Study
	Selection of Indices
	Improvement Due to IPS-Diving Steps
	Possibilities of Integrating Feasible Rounding Approaches and Diving Ideas Into a Solver Framework

	Conclusion and Outlook

	Conclusion and Directions for Future Research
	Complementary Material for the Computational Studies
	Computational Results for Plain Feasible Rounding Approaches
	Computational Results for Inner Parallel Cuts
	Computational Results for Equality Constrained Problems
	Computational Results for Diving Methods

	Bibliography
	Index

