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Abstract
We consider elliptic systems of order 2m in dimension 2m which are generalizations of
extrinsic and intrinsic polyharmonic maps. We show the existence of a conservation law for
these systems by using a small perturbation of Uhlenbeck’s gauge fixing matrix.

1 Introduction

The regularity of critical points of geometric variational problems for maps between two Rie-
mannian manifolds attracted a lot of attention over the last two decades. The most prominent
example are the harmonic maps which are critical points u ∈ W 1,2(M, N ) of the Dirichlet
energy

E(u) = 1

2

∫
M

|∇u|2 dvg,

where (M, g) and (N , h) are two smooth and compact manifolds without boundary and N
is isometrically embedded into some euclidean space Rn . They solve the elliptic system

−�u = A(u)(∇u,∇u),

where A is the second fundamental form of the embedding N ↪→ R
n . The Dirichlet energy is

scaling invariant in dimension two, which is called the critical dimension, and it was shown
by Hélein [10] that weakly harmonic maps are smooth in this case.
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This result was substantially extended by Rivière [15] to more general elliptic systems of
the form

−�u = � · ∇u,

where � ∈ L2(B2, so(n) ⊗ ∧1(R2)) and B2 denotes the unit ball in R
2. Rivière obtained

the regularity of weak solutions as a consequence of a conservation law which he derived
using the antisymmetry of �. The key ingredient here was the use of the Uhlenbeck gauge
fixing result [20], see Theorem 3.2. Note that the Euler-Lagrange equation of all quadratic
and conformally invariant variational integrals satisfies an equation of the type above. We
sketch a version of this result in Sect. 3.

The regularity result of Hélein was than extended to the so-called weakly biharmonic
maps in R

4, i.e. critical points of the functional

E2(u) = 1

2

∫
M

|�u|2 dvg

by Chang-Wang-Yang [3] for spherical targets and by Wang [21] for general targets. Later,
the second author and Rivière [14] were able to show a conservation law for a suitable
generalization of the biharmonic map equation in the spirit of the before mentioned paper of
Rivière. A modified version of this conservation law was later obtained by Struwe [18].

De Longueville and Gastel [5] recently extended this result to systems of order 2m in
the critical dimension. The motivating example behind this system are the m-polyharmonic
maps u ∈ W m,2(B2m, N ), which are critical points of the functional

Em(u) = 1

2

∫
B2m

|∇mu|2 dvg.

The Euler-Lagrange equation for Em was calculated by Angelsberg-Pumberger [1] resp.
Gastel-Scheven [6]. In the latter paper the authors also showed the regularity for these critical
points using Hélein’s moving frame technique.

In the following we consider systems of the from

�mu =
m−1∑
k=0

�k〈Vk, du〉 +
m−2∑
k=0

�kδ(wkdu). (1.1)

with coefficient functions

wk ∈ W 2k+2−m,2(B2m,Rn×n) for k ∈ {0, ..., m − 2},
Vk ∈ W 2k+1−m,2(B2m,Rn×n ⊗ ∧1

R
2m) for k ∈ {0, ..., m − 1}, where

V0 = dη + F, η ∈ W 2−m,2(B2m, so(n)), F ∈ W 2−m, 2m
m+1 ,1(B2m,Rn×n ⊗ ∧1

R
2m).

It was shown by De Longueville and Gastel [5] that m-polyharminic maps are solutions of a
system of this type. Note that the definition and the basic properties of the negative Sobolev
spaces arising in this equation are collected in Sect. 2.

In our main Theorem 2.13 we establish a new conservation law for systems of the form
(1.1). The novelty here is that we use a small perturbation of the gauge fixing matrix P in a
suitable variant of the Uhlenbeck result, see Theorem 4.1.

The paper is organized as follows. In Sect. 2 we recall some basic definitions and proper-
ties for negative Sobolev and Lorentz-Sobolev spaces and we show a suitable higher order
generalization of theWente Lemma.Moreover, we state and comment on our main Theorem.
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In Sect. 3 we review the second order case of our main result, a proof of which was already
sketched by Rivière in [16].

In Sect. 4 we finally show our main Theorem.

2 Lorentz-Sobolev spaces and themain result

In this section we start by recalling the definitions of the relevant function spaces we need
in order to obtain the desired conservation law. Moreover, we show a preliminary result on
a higher order version of the famous Wente lemma [22] and we state our main result.

2.1 Lorentz- and Lorentz-Sobolev spaces

Important function spaces in our paper are the so called Lorentz spaces. They are interpolation
spaces of the classical L p-spaces and in the following we briefly collect a few properties of
these spaces. For detailed proofs see for example [5,8,11,12,19,23]. We start with a Lemma
on the Hölder inequality for these functions

Lemma 2.1 (Hölder inequality) Let f ∈ L p1,q1(Rn) and g ∈ L p2,q2(Rn) with 1
p1

+ 1
p2

=
1
p , 1

q1
+ 1

q2
= 1

q and p1, p2 ∈ (1,∞), q1, q2 ∈ [1,∞]. Then

|| f g||L p,q (Rn) ≤ || f ||L p1,q1 (Rn)||g||L p2,q2 (Rn).

Additionally, we also need the following estimates.

Lemma 2.2 Let f : Rn → R be measurable.

1. Let 1 < p ≤ ∞ and 1 ≤ q < Q ≤ ∞. Then we have

|| f ||L p,Q (Rn) ≤ c|| f ||L p,q (Rn).

2. Let 1 < p < P ≤ ∞, 1 ≤ q1, q2 ≤ ∞ and let � ⊂ R
n be bounded. Then we have

|| f ||L p,q1 (�) ≤ c|�| 1p − 1
P || f ||L P,q2 (�).

Next we come to Lorentz-Sobolev spaces. If a function f ∈ L p,q(Rn) has derivatives
D j f ∈ L p,q(Rn) for all 1 ≤ j ≤ k ∈ N, then f is an element of the so-called Lorentz-
Sobolev space W k,p,q(Rn).

Definition 2.3 Let 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and k ∈ N. Let f ∈ L p,q(Rn) be k timesweakly

differentiable and for all multiindices α ∈ N
n
0 with |α| ≤ k let ∂ |α|

∂α1 x1...∂αn xn
f ∈ L p,q(Rn).

Then f is an element of the Lorentz-Sobolev space W k,p,q(Rn) with norm

|| f ||W k,p,q (Rn) :=
∑

0≤|α|≤k

∥∥∥∥ ∂ |α|

∂α1x1...∂αn xn
f

∥∥∥∥
L p,q (Rn)

.

We have a generalized Sobolev embedding theorem for these spaces.

Lemma 2.4 Let k, n ∈ N, 1 < p < n
k and 1 ≤ q ≤ ∞. Then

W k,p,q(Bn) ↪→ L p∗,q(Bn)

for 1
p∗ = 1

p + k
n with the estimate

|| f ||L p∗,q (Bn) ≤ c|| f |W k,p,q (Bn) for any f ∈ W k,p,q(Bn).
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Similar to Lemma 2.1 we have a product estimate for Lorentz-Sobolev functions.

Lemma 2.5 Let s, k ∈ N, p, p′, q, q ′ ∈ R with 1 < p, p′, q, q ′ < ∞, kp < n, sp′ <

n, s ≤ k, t := npp′
n(p+p′)−kpp′ > 1 and 1

u := min{ 1q + 1
q ′ , 1}. Further let Bn ⊂ R

n. If

f ∈ W k,p,q(Bn), g ∈ W s,p′,q ′
(Bn), then

f g ∈ W s,t,u(Bn)

and

|| f g||W s,t,u(Bn) ≤ c|| f ||W k,p,q (Bn)||g||W s,p′q′
(Bn)

with c = c(Bn).

Furthermore, we need an optimal Sobolev embedding result.

Lemma 2.6 Let Bn ⊂ R
n. If f ∈ W k, n

k ,1(Bn), then f is continuous on Bn.

Later on we also use Lorentz-Sobolev spaces W −k,p′,q ′
. These are distribution spaces and

for p, q > 1 they are the dual spaces of W k,p,q .

Definition 2.7 Let 1 < p, q < ∞, 1
p + 1

p′ = 1
q + 1

q ′ = 1 and k ∈ N. Then W −k,p,q(Bn) is
the space of distributions 	 ∈ (C∞

c (Bn))′ such that

|	[ f ]| ≤ c|| f ||W k,p′,q′
(Bn)

∀ f ∈ C∞
c (Bn).

Each element of W −k,p,q has a representation in terms of derivatives of Lorentz functions:

Lemma 2.8 Let 1 < p, q < ∞, k ∈ N, Bn ⊂ R
n and f ∈ W −k,p,q(Bn). Then there exist

fα ∈ L p,q(Bn) so that

f =
∑
|α|≤k

∂α fα.

Note that this representation is not unique. We define the norm on W −k,p,q(Bn) by

|| f ||W−k,p,q (Bn) := inf

⎧⎨
⎩

∑
|α|≤k

|| fα||L p,q (Bn) : f =
∑
|α|≤k

∂α fα

⎫⎬
⎭ .

The definition of negative Lorentz-Sobolev spaces as dual spaces does not hold for p, q =
1 since L p,1, L p′,∞ are not reflexive. In this case we define the space W −k,p,1 as follows

Definition 2.9 Let 1 < p < ∞, k ∈ N. Then

W −k,p,1(Bn) :=
⎧⎨
⎩ f =

∑
|α|≤k

∂α fα : fα ∈ L p,1(Bn)

⎫⎬
⎭

with norm

|| f ||W−k,p,1(Bn) := inf

⎧⎨
⎩

∑
|α|≤k

|| fα||L p,1(Bn) : f =
∑
|α|≤k

∂α fα

⎫⎬
⎭

Finally we have an embedding theorem and a Hölder inequality.
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Lemma 2.10 Let Bn ⊂ R
n, 1 < p < n, 1 ≤ q ≤ p, l, s, t ∈ N0 with tp < n and

f ∈ W −s,p,q(Bn,∧l
R

n). Then f ∈ W −(s+t), np
n−tp ,q

(Bn,∧l
R

n) and

|| f ||
W

−(s+t), np
n−tp ,q

(Bn)
≤ c|| f ||W−s,p,q (Bn).

Lemma 2.11 Let s, t ∈ N, t ≤ s, 1 < p, p′ < ∞ with 1
p + 1

p′ ≤ 1 and tp < n, sp′ <

n, 1 ≤ q, q ′ < ∞. Let f ∈ W −t,p,q(Bn) and g ∈ W s,p′,q ′
(Bn). Then

f g ∈ W −t,x,y(Bn)

with x = dpp′
n(p+p′)−spp′ and 1

y = min{1, 1
q , 1

q ′ }. Further

|| f g||W−t,x,y(Bn) ≤ c|| f ||W−t,p,q (Bn)||g||W s,p′,q′
(Bn)

.

More details about these spaces and proofs of the above results can be found in [4].

2.2 A generalizedWente lemma

A key ingredient in the proof of the main Theorem later on will be the following Wente-type
lemma in the spirit of Bethuel and Ghidaglia [2]. A fourth order version of this result can
already be found in [14].

Lemma 2.12 Let σ > 0, f ∈ L
2m

2m−1−|γ | ,1(B2m,Rn) for |γ | ≤ m − 2 and P ∈
W m,2(B2m, SO(n)) with ||d P||W m−1,2 ≤ σ . There exists σ0 > 0 such that if σ < σ0

there exists a unique solution u ∈ W 2m−1, 2m
2m−1−|γ | ,1(B2m, M(n)) of

{
�(�m−1u · P) = δ f in B2m,

� j u = 0 on ∂ B2m for j = 0, ..., m − 1,
(2.1)

with

||D2m−1u||
L

2m
2m−1−|γ | ,1(B2m )

+ ||u||L∞(B2m ) ≤ c|| f ||
L

2m
2m−1−|γ | ,1(B2m )

.

Proof The boundary conditions determine a solution u of (2.1) uniquely. To see this we
assume there exist solutions u1, u2 and we let v := u1 − u2. Then �(�m−1v · P) = 0.
Testing this equation with �m−1v · P and integrating by parts gives

0 =
∫

B2m
�(�m−1v · P)(�m−1v · P) = −

∫
B2m

|D(�m−1v · P)|2.

Thus we have D(�m−1v · P) = 0 and therefore�m−1v · P = const . Because P is invertible
and �m−1v = 0 on ∂ B2m we get �m−1v = 0. Iteratively we get v = 0 and thus u1 = u2.

Now we approximate f by f̄ ∈ C∞
c (R2m) so that f̄ = 0 on R2m \ B2m and

|| f̄ ||
L

2m
2m−1−|γ | ,1(R2m )

≤ c|| f ||
L

2m
2m−1−|γ | ,1(B2m )

.

Standard L p-theory and interpolation results (see [11] Theorem 3.3.3) yield

||D(�m−1u P)||
L

2m
2m−1−|γ | ,1(B2m )

≤ c|| f ||
L

2m
2m−1−|γ | ,1(B2m )

.
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With Hölder’s inequality for Lorentz spaces and the embedding theorem we estimate

||D�m−1u||
L

2m
2m−1−|γ | ,1(B2m )

≤ c

(
|| f ||

L
2m

2m−1−|γ | ,1(B2m )
+ ||D2m−2u||

L
2m

2m−2−|γ | ,2(B2m )
||d P||L2m,2(B2m )

)

≤ c

(
|| f ||

L
2m

2m−1−|γ | ,1(B2m )
+ ||u||

W
2m−1, 2m

2m−1−|γ | ,1(B2m )
||d P||W m−1,2(B2m )

)
.

We interchange derivatives and apply the Calderon-Zygmund inequality

||D2m−1u||
L

2m
2m−1−|γ | ,1(B2m )

≤ c

(
|| f ||

L
2m

2m−1−|γ | ,1(B2m )
+ ||u||

W
2m−1, 2m

2m−1−|γ | ,1(B2m )
||d P||W m−1,2(B2m )

)
.

Since ||d P||W m−1,2(B2m ) < σ we absorb the second term to the left-hand side. The density of
C∞

c (B2m) in L p,q(B2m) finishes the proof. ��

2.3 Themain result

Before we are able to state ourmain result we introduce somemore notation. Let∧k
R
2m, k ∈

N0 be the space of k-forms on R2m . Further let

d : W 1,p(R2m,∧k
R
2m) → L p(R2m,∧k+1

R
2m)

be the exterior derivative and

δ : W 1,p(R2m,∧k
R
2m) → L p(R2m,∧k−1

R
2m)

the codifferential. We have dd = δδ = 0 and the Laplacian is given by

� = dδ + δd.

If f is a function, the exterior derivative of f is just the gradient ∇ f . Let 0 ≤ k ≤ 2m with
k ∈ N, then we let

∗ : ∧k
R
2m → ∧2m−k

R
2m

be the Hodge-Star operator. For a k-form ω we have

δω = (−1)2m(k+1)+1 ∗ d ∗ ω (2.2)

and

∗∗ : (−1)k(2m−k) : ∧k
R
2m → ∧k

R
2m . (2.3)

(see e.g. [13]).
The following is the main result of this paper.

Theorem 2.13 Assume m ≥ 2, n ∈ N. Let coefficient functions be given as

wk ∈ W 2k+2−m,2(B2m,Rn×n) for k ∈ {0, ..., m − 2},
Vk ∈ W 2k+1−m,2(B2m,Rn×n ⊗ ∧1

R
2m) for k ∈ {0, ..., m − 1}, where

V0 = dη + F, η ∈ W 2−m,2(B2m, so(n)), F ∈ W 2−m, 2m
m+1 ,1(B2m,Rn×n ⊗ ∧1

R
2m)
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We consider the equation

�mu =
m−1∑
k=0

�k〈Vk, du〉 +
m−2∑
k=0

�kδ(wkdu). (2.4)

For this equation, the following statements hold.

(i) Let

σ :=
m−2∑
k=0

||wk ||W 2k+2−m,2(B2m ) +
m−1∑
k=1

||Vk ||W 2k+1−m,2(B2m )

+ ||η||W 2−m,2(B2m ) + ||F ||
W

2−m, 2m
m+1 ,1

(B2m )
.

(2.5)

There is σ0 > 0 such that whenever σ < σ0, there exist ε ∈ W m,2 ∩ L∞(B2m
1/2; M(n))

with

||ε||W m,2(B2m
1/2)

+ ||ε||L∞(B2m
1/2)

≤ cσ,

a function P ∈ W m,2(B1/2; SO(n)) and a distribution B ∈ W 2−m,2
loc (B2m

1/2,R
n×n ⊗

∧2
R
2m) which solves

δB =
m−1∑
k=0

�k((id + ε)P)Vk −
m−2∑
k=0

d�k((id + ε)P)wk + d�m−1((id + ε)P).

(ii) A function u ∈ W m,2(B2m
1/2,R

n) solves (2.4) weakly if and only if it is a distributional
solution of the conservation law

δ

[ m−1∑
l=0

�l((id + ε)P)�m−l−1du −
m−2∑
l=0

d�l((id + ε)P)�m−l−1u

−
m−1∑
k=0

k−1∑
l=0

�l((id + ε)P)�k−l−1d〈Vk, du〉

+
m−1∑
k=0

k−1∑
l=0

d�l((id + ε)P)�k−l−1〈Vk, du〉

−
m−2∑
k=0

k∑
l=0

�l((id + ε)P)d�k−l−1δ(wkdu)

+
m−2∑
k=0

k−1∑
l=0

d�l((id + ε)P)�k−l−1δ(wkdu) − 〈B, du〉
]

= 0. (2.6)

(iii) Every weak solution u of (2.4) is continuous.

A different variant of this result has been obtained earlier by Lamm and Rivière [14] in the
case m = 2 and by De Longueville and Gastel [5] for general m. The key difference to these
papers is that we use a small perturbation (id + ε)P of the Uhlenbeck gauge matrix P , see
Theorem 4.1, to establish the conservation law. This Ansatz highlights the strong connection
between the conservation law and the matrix P more explicitly than the previous papers.
Another new ingredient in our approach is Lemma 2.12, a generalization of an estimate by
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Bethuel and Ghidaglia [2], which we use instead of a Wente type result for the poly-Laplace
operator. This allows for more general elliptic operators in divergence form and simplifies
the argument.

We also remark that in a recent paper by Guo and Xiang [9] it was shown that weak
solutions of (2.4) are not only continuous but even Hölder continuous for some positive
exponent.

3 Second order case

In this section we briefly review the second order case of the main Theorem 2.13. We will not
discuss the original proof in [15] but we will focus on Rivière’s subsequent idea to establish a
conservation law by using a small perturbation of the Uhlenbeck gauge matrix P . This proof
was already sketched in [16], chapter VI, but since we will follow the same strategy in the
proof of our main Theorem we decided to include this argument here.

Theorem 3.1 Let n ∈ N and N be an oriented submanifold of Rn. Let u ∈ W 1,2(B2, N ) be
a solution of

−�u = � · ∇u, (3.1)

where � ∈ L2(B2, so(n) ⊗ ∧1
R
2) and let σ := ||�||L2 . There exists σ0 > 0 such that

whenever σ < σ0, there exist ε ∈ W 1,2 ∩ L∞(B2, M(n)), P ∈ W 1,2(B2, SO(n)) and
ξ ∈ W 1,2(B2, so(n)) with

‖ε‖L∞(B2) + ‖∇ε‖L2(B2) + ||ξ ||W 1,2(B2) + ||∇ P||L2(B2) ≤ cσ,

and B ∈ W 1,2(B2) that solve

∇⊥ B = ∇εP − (id + ε)∇⊥ξ P.

Further u solves (3.1) if and only if it is a solution of

−div((id + ε)P∇u) = ∇⊥ B · ∇u

and u is continuous.

The proof of Theorem 3.1 relies heavily on Uhlenbeck’s gauge theorem, see for example
[15,17,20].

Theorem 3.2 [Uhlenbeck gauge] There exists σ > 0 and c > 0 such that for every � ∈
L2(B2, so(n) ⊗ ∧1

R
2) satisfying ||�||L2(B2) < σ there exist P ∈ W 1,2(B2, SO(n)) and

ξ ∈ W 1,2(B2, so(n)) such that

� = P−1∇⊥ξ P + P−1∇ P

and

||ξ ||W 1,2(B2) + ||∇ P||L2(B2) ≤ c||�||L2(B2).

Proof of Theorem 3.1: Assume ||�||L2(B2) < σ as in Theorem 3.2. Then we get P ∈
W 1,2(B2, SO(n)), ξ ∈ W 1,2(B2, so(n)) such that

� = P−1∇⊥ξ P + P−1∇ P and

||ξ ||W 1,2(B2) + ||∇ P||L2(B2) ≤ c||�||L2(B2).
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We multiply (3.1) with (id + ε)P , where ε ∈ W 1,2 ∩ L∞(B2, M(n)) and id is the identity
matrix in R

n , and obtain

−(id + ε)P�u = (id + ε)P� · ∇u

⇔ −div [(id + ε)P∇u] = [−∇εP + (id + ε)(−∇ P + P�)] · ∇u

⇔ −div [(id + ε)P∇u] =
[
−∇εP + (id + ε)∇⊥ξ P

]
· ∇u. (3.2)

We choose ε ∈ W 1,2 ∩ L∞(B2, M(n)) such that

div
[
−∇εP + (id + ε)∇⊥ξ P

]
= 0. (3.3)

To do this we apply a fixed point argument. Let

ψ : W 1,2 ∩ L∞(B2) → W 1,2 ∩ L∞(B2)

ε �→ solution λof (3.4)

where
{

div[∇λP] = ∇((id + ε)P) · ∇⊥ξ in B2,

λ = 0 on ∂ B2.
(3.4)

Let ε1, ε2 ∈ W 1,2∩L∞(B2) andψ(ε1) = λ1, ψ(ε2) = λ2 be the corresponding solutions
of (3.4). Then � := λ1 − λ2 solves

{
div[∇�P] = ∇((ε1 − ε2)P) · ∇⊥ξ in B2,

� = 0 on ∂ B2.

Since P takes values in SO(n) it satisfies the assumptions of Theorem 1.3 in [2] and we have

||�||L∞(B2) + ||∇�||L2(B2) ≤ c

(
||∇ε1 − ∇ε2||L2(B2)||P||L∞(B2)

+ ||ε1 − ε2||L∞(B2)||∇ P||L2(B2)

)
· ||∇ξ ||L2(B2)

≤ cσ
(||∇ε1 − ∇ε2||L2(B2) + ||ε1 − ε2||L∞(B2)

)
.

For σ small enough we conclude that ψ is a contraction. To show that ψ is a self-map from
a small ball in W 1,2 ∩ L∞(B2) into itself, we use again Theorem 1.3 in [2] to get

||λ||L∞(B2) + ||∇λ||L2(B2) ≤ c||∇ξ ||L2(B2)

(||∇ε||L2(B2)

+ (1 + ||ε||L∞(B2))||∇ P||L2(B2)

)
.

The Banach fixed point theorem yields a unique ε∗ ∈ W 1,2 ∩ L∞(B2, M(n)) solving (3.4)
and hence also (3.3) and with the estiamte above we get

‖ε∗‖L∞(B2) + ‖∇ε∗‖L2(B2) ≤ cσ.

By the Poincaré lemma there exists B ∈ W 1,2(B2) such that

∇⊥ B = −∇ε∗ P + (id + ε∗)∇⊥ξ P

and (3.1) is equivalent to

−div((id + ε∗)P∇u) = ∇⊥ B · ∇u.
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Nowthatwehaveour equation in the desireddivergence-free form,wecan show the continuity
of the solution u using the Hodge decomposition (see Corollary 10.70 in [7])

(id + ε∗)P∇u = ∇V + ∇⊥W

and arguing as in [15]. ��

4 Proof of theorem 2.13

Wesplit the proof of this result into several steps and present each step in a separate subsection.

4.1 Gauge fixing

Following the work of de Longueville and Gastel in the proof of Theorem 4.1 (i) in [5] we
repeatedly solve Neumann problems to find � ∈ W m−1,2(B2m, so(n) ⊗ ∧1

R
2m) such that

�m−2δ� = −η in B2m and (4.1)

||�||W m−1,2(B2m ) ≤ c||η||W 2−m,2(B2m ) ≤ cσ. (4.2)

Next we need the following higher order version of the Uhlenbeck gauge fixing result which
is due to De Longueville and Gastel.

Theorem 4.1 [Theorem 2.4 in [5]] Assume that m, n ∈ N and Br ⊂ R
2m is a ball of radius

r . Then there is ε > 0 such that for all � ∈ W m−1,2(Br , so(n) ⊗ ∧1
R
2m) satisfying

||�||W m−1,2(Br )
< ε,

there are functions P ∈ W m,2(Br/2; SO(n)) and ξ ∈ W m,2(Br/2, so(n)⊗∧2
R
2m) such that

� = Pd P−1 + Pδξ P−1 (4.3)

holds on Br/2. Moreover, we have the estimate

||d P||W m−1,2(Br/2)
+ ||δξ ||W m−1,2(Br/2)

≤ c||�||W m−1,2(Br )
. (4.4)

We apply this result for σ > 0 sufficiently small, and get ξ ∈ W m,2(B2m
1/2, so(n) ⊗ ∧2

R
2m)

and P ∈ W m,2(B2m
1/2, SO(n)) such that

d P = P� − δξ P and

||d P||W m−1,2(B2m
1/2)

+ ||δξ ||W m−1,2(B2m
1/2)

≤ c||�||Lm−1,2(B2m ).
(4.5)
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4.2 Rewriting the system

We let ε ∈ W m,2 ∩ L∞(B2m
1/2, M(n)) and we multiply (2.4) with (id + ε)P and calculate

(id + ε)P�mu = (id + ε)P

[ m−1∑
k=0

�k〈Vk, du〉 +
m−2∑
k=0

�kδ(wkdu)

]

⇔
[ m−1∑

k=0

�k((id + ε)P)Vk −
m−2∑
k=0

d�k((id + ε)P)wk + d�m−1((id + ε)P)

]
· du

= δ

[ m−1∑
l=0

�l((id + ε)P)�m−l−1du −
m−2∑
l=0

d�l((id + ε)P)�m−l−1u

−
m−1∑
k=0

k−1∑
l=0

�l((id + ε)P)�k−l−1d〈Vk, du〉

+
m−1∑
k=0

k−1∑
l=0

d�l((id + ε)P)�k−l−1〈Vk, du〉

−
m−2∑
k=0

k∑
l=0

�l((id + ε)P)d�k−l−1δ(wkdu)

+
m−2∑
k=0

k−1∑
l=0

d�l((id + ε)P)�k−l−1δ(wkdu)

]
. (4.6)

The right-hand side of this system is already in divergence form, hence in order to obtain a
conservation law we need to find ε ∈ W m,2 ∩ L∞(B2m

1/2, M(n)) such that

δ

[ m−1∑
k=0

�k((id + ε)P)Vk −
m−2∑
k=0

d�k((id + ε)P)wk + d�m−1((id + ε)P)

]
= 0 (4.7)

on B2m
1/2. As in Sect. 3 wewant to apply a fixed point argument to solve this problem. However

to do this we need to have a certain control on the terms in (4.7) and the terms involving V0

are problematic. We know that V0 = dη+ F and we control F ∈ W 2−m, 2m
m+1 ,1(B2m) by (2.5)

but dη ∈ W 1−m,2(B2m) is a priori not bounded. Thus our goal is to remove dη.
To do this we take a closer look at d�m−1((id + ε)P) and note that we can rewrite the

highest order term (id + ε)d�m−1P so that it cancels (id + ε)Pdη in (4.7). To see this we
use (2.2), (2.3) as well as (4.1) and (4.5) .

d�m−1P = d�m−2δ (P� − δξ P)

= d�m−2(d P�) + d�m−2(Pδ�) − d�m−2(∗d ∗ (∗d ∗ ξ P))

=
2m−2∑
i=1

ci∇ i P∇2m−2−i� − d(Pη) + d�m−2(∗(d ∗ ξ ∧ d P))

=
2m−2∑
i=1

ci∇ i P∇2m−2−i� − d Pη − P(V0 − F) + d�m−2(∗(d ∗ ξ ∧ d P)),
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with constants ci ∈ N0, 1 ≤ i ≤ 2m − 2 and

∇k =
{

�
k
2 , if k even,

d�
k−1
2 , if k odd.

Plugging this back into (4.7) and rearranging we get

�(�m−1ε · P) = δ

[
−

2m−2∑
j=1

c̃ j∇ jε∇2m−1− j P − (id + ε)

( 2m−2∑
i=1

ci∇ i P∇2m−2−i�

− d Pη + P F + d�m−2(∗(d ∗ ξ ∧ d P))

)

−
m−1∑
k=1

�k((id + ε)P)Vk +
m−2∑
k=0

d�k((id + ε)P)wk

]
in B2m

1/2,

(4.8)

where c̃ j are constants in N0. Now that we have removed the “worst” terms we want to
examine this equation further and take a closer look at the function spaces of the summands.
We separate the ε component from the rest and use the embedding results for Lorentz-Sobolev
spaces in Lemma 2.10 and Lemma 2.11 repeatedly. We use the notation Dk A�Dl B for any
linear combination of Dk A and Dl B and D denotes the full derivative. For the first term we
have

2m−2∑
j=1

D jε�D2m−1− j P =
2m−2∑

j=1

W m− j,2 · W −m+1+ j,2,

For the third and fourth term we get

(id + ε)d Pη = L∞ · W m−1,2 · W 2−m,2 ↪→ L∞ · W 2−m, 2m
m+1 ,1,

(id + ε)P F = L∞ · L∞ · W 2−m, 2m
m+1 ,1.

The second term is of the from

(id + ε)

( 2m−3∑
j=1

D j��D2m−2− j P + ��D2m−2P

)

=
2m−3∑

j=1

L∞ · W m−1− j,2 · W −m+2+ j,2 + L∞ · W m−1,2 · W 2−m,2

↪→
m−2∑
j=1

L∞ · W −m+2+ j, 2m
m+1+ j ,1 +

2m−3∑
j=m−1

L∞ · W m−1− j, 2m
3m−2− j ,1

+ L∞ · W 2−m, 2m
m+1 ,1

↪→ L∞ · W 2−m, 2m
m+1 ,1,

where we used Lemma 2.11 in the first step and Lemma 2.10 with s = m − 2 − j, p =
2m

m+1+ j , t = j for j = 1, ..., m − 2 and s = −m + 1 + j, p = 2m
3m−2− j , t = 2m − 3 − j
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for j = m − 1, ..., 2m − 3 in the second step. The fifth term follows in the same way

(id + ε)d�m−2 (∗(d P ∧ d ∗ ξ)) = (id + ε)

2m−2∑
j=1

D j ξ�D2m−1− j P

=
2m−2∑

j=1

L∞ · W m− j,2 · W −m+1+ j,2

↪→ L∞ · W 2−m, 2m
m+1 ,1.

For the last two terms we apply again Lemma 2.11 and 2.10 with s = m − 2k − 1, p =
2m

m+2k− j , t = 2k − j for 2k +1−m < m −2k + j and s = 2k − j −m, p = 2m
3m−2k−1 , t =

2m − 2k − 1 for m − 2k + j ≤ 2k + 1 − m.

m−1∑
k=1

�k((id + ε)P)Vk =
m−1∑
k=1

( 2k−1∑
j=1

D jε�D2k− j P + (id + ε)�k P + �kεP

)
Vk

=
m−1∑
k=1

2k−1∑
j=1

W m− j,2 · W m−2k+ j,2 · W 2k+1−m,2 +
m−1∑
k=1

L∞ · W m−2k,2 · W 2k+1−m,2

↪→
∑

j,k∈N, j≤2k−1, k≤m−1
2k+1−m<m−2k+ j

W m− j,2 · W 2k+1−m, 2m
m+2k− j

+
∑

j,k∈N, j≤2k−1, k≤m−1
m−2k+ j≤2k+1−m

W m− j,2 · W m−2k+ j, 2m
3m−2k−1

+
∑

k∈N, k≤m−1
2k+1−m<m−2k

L∞ · W 2k+1−m, 2m
m+2k ,1 +

∑
k∈N, k≤m−1

m−2k≤2k+1−m

L∞ · W m−2k, 2m
3m−2k−1 ,1

↪→
2m−3∑

j=1

W m− j,2 · W −m+1+ j,2 + L∞ · W 2−m, 2m
m+1 ,1

and analogously

m−2∑
k=0

∇�k((id + ε)P)wk

=
m−2∑
k=0

( 2k∑
j=1

D jε�D2k+1− j P + (id + ε)δ�k P + δ�kεP

)
wk

=
m−2∑
k=0

2k∑
j=1

W m− j,2 · W m−2k−1+ j,2 · W 2k+2−m,2 +
m−2∑
k=0

L∞ · W m−2k+1 · W 2k+2−m,2

↪→
2m−3∑

j=1

W m− j,2 · W −m+1+ j,2 + L∞ · W 2−m, 2m
m+1 ,1.

Observe that all terms on the right-hand side of (4.8) consist of products W m− j,2 ·
W j+1−m,2, j = 1, ..., 2m − 2 and L∞ · W 2−m, 2m

m+1 ,1. Thus we can simplify (4.8) further
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and write

�(�m−1ε · P) = δ

( 2m−2∑
j=1

D jε�K j + (id + ε)�K0

)
(4.9)

with K j ∈ W j+1−m,2(B2m
1/2), K0 ∈ W 2−m, 2m

m+1 ,1(B2m
1/2). Moreover with (4.4) and (2.5) we

estimate

||K0||
W

2−m, 2m
m+1 ,1

(B2m
1/2)

+
2m−2∑

j=1

||K j ||W j+1−m,2(B2m
1/2)

≤ cσ. (4.10)

However the equation still contains distributions. To take care of these we apply the same
technique as de Longueville and Gastel and use the representation of negative Lorentz-
Sobolev spaces (see Lemma 2.8).

ε =
∑

|α|≤m−2

∂αεα, εα ∈ W 2m−1, 2m
2m−1−|α| ,1(B2m

1/2),

K0 =
∑

|α|≤m−2

∂α K α
0 , K α

0 ∈ L
2m

m+1 ,1(B2m
1/2),

K j =
∑

|α|≤m−1− j

∂α K α
j , K α

j ∈ L2(B2m
1/2).

(4.11)

Together with (4.10) we get∑
|α|≤m−1− j

||K α
j ||L2(B2m

1/2)
≤ c||K j ||W j+1−m,2(B2m

1/2)
≤ cσ,

∑
|α|≤m−2

||K α
0 ||

L
2m

m+1 ,1
(B2m

1/2)
≤ c||K0||

W
2−m, 2m

m+1 ,1
(B2m

1/2)
≤ cσ.

(4.12)

Note that we assume ε ∈ W m+1, 2m
m+1 ,1 for this representation, which is slightly better than

the original assumption ε ∈ W m,2 ∩ L∞. We will see that we can solve (4.8) in this better

space and since W m+1, 2m
m+1 ,1(B2m) ↪→ W m,2 ∩ L∞(B2m) we get the desired result.

This new representation allows us to shift derivatives away from the distributional part.
Let cαγ , cβγ ∈ Z. With the product rule we get for j = 1, ..., m − 2

D jε�K j =
∑

|α|≤m−2
|β|≤m−1− j

D j∂αεα�∂β K β
j =

∑
|α|≤m−2

|β|≤m−1− j

∑
γ≤β

∂γ
(
cβγ ∂β−γ ∂α D jεα�K β

j

)

The case j = 0 follows analogously

(id + ε)�K0 =
∑

|γ |≤m−2

∂γ K γ
0 +

∑
|α|≤m−2
|β|≤m−2

∂αεα�∂β K β
0

=
∑

|γ |≤m−2

∂γ K γ
0 +

∑
|α|≤m−2
|β|≤m−2

∑
γ≤β

∂γ
(
cβγ ∂β−γ ∂αεα�K β

0

)
.

For j = m − 1, ..., 2m − 2 with |α| ≤ j + 1 − m we get

D jε�K j =
∑

|α|≤m−2

D j∂αεα�K j =
∑

|α|≤m−2

∑
γ≤α

∂γ
(
cαγ D jεα�∂α−γ K j

)
.
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If |α| > j + 1 − m we choose β ≤ α with |β| = j + 1 − m and

D jε�K j =
∑

|α|≤m−2

D j∂αεα�K j

=
∑

|α|≤m−2

∑
γ≤β

|β|= j+1−m

∂γ
(
cβγ ∂α−β D jεα�∂β−γ K j

)
.

We rewrite the left-hand side of (4.9) in the same way.

�(�m−1ε · P) =
∑

|α|≤m−2

�(�m−1∂αεα · P)

=
∑

|α|≤m−2

∑
γ≤α

∂γ �(cαγ �m−1εα∂α−γ P)

=
∑

|γ |≤m−2

∂γ �(�m−1εγ · P) +
∑

|α|≤m−2

∑
γ<α

∂γ �(cαγ �m−1εα∂α−γ P).

For the last term note that P ∈ W m,2(B2m
1/2, SO(n)). Thus we identify P with K2m−1 and

write

∑
|α|≤m−2

∑
γ<α

∂γ �(cαγ �m−1εα∂α−γ P)

= δ

[ ∑
|α|≤m−2

∑
γ<α

1∑
i=0

∂γ
(

cαγ D2m−2−iεα�∂α−γ D1−i K2m−1

) ]
.

Putting all of this together we get an equation equivalent to (4.7)

∑
|γ |≤m−2

∂γ �(�m−1εγ · P)

= δ

[ ∑
|γ |≤m−2

∂γ K γ
0 +

∑
|α|≤m−2
|β|≤m−2

∑
γ≤β

∂γ
(
cβγ ∂β−γ ∂αεα�K β

0

)

+
m−2∑
j=1

∑
|α|≤m−2

|β|≤m−1− j

∑
γ≤β

∂γ
(
cβγ ∂β−γ ∂α D jεα�K β

j

)

+
2m−2∑
j=m−1

|α|≤ j+1−m

∑
|α|≤m−2

∑
γ≤α

∂γ
(
cαγ D jεα�∂α−γ K j

)

+
2m−2∑
j=m−1

|α|> j+1−m

∑
|α|≤m−2

∑
γ≤β

|β|= j+1−m

∂γ
(
cβγ ∂α−β D jεα�∂β−γ K j

)

+
1∑

i=0

∑
|α|≤m−2

∑
γ<α

∂γ
(

cαγ D2m−2−iεα�∂α−γ D1−i K2m−1

) ]
.
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We simplify this further by setting

∑
|γ |≤m−2

∂γ �(�m−1εγ · P) =: δ

[ ∑
|γ |≤m−2

∂γ
(〈ε, K 〉γ + K γ

0

) ]
(4.13)

with

||K γ
0 ||

L
2m

2m−1−|γ | ,1(B2m
1/2)

+ ||〈ε, K 〉γ ||
L

2m
2m−1−|γ | ,1(B2m

1/2)

≤ cσ

⎛
⎝ ∑

|α|≤m−2

||εα||
W

2m−1, 2m
2m−1−|α| ,1(B2m

1/2)
+ 1

⎞
⎠ (4.14)

for every γ with |γ | ≤ m − 2. To see this last inequality we use (4.12) and estimate each
term separately

||K γ
0 ||

L
2m

2m−1−|γ | ,1(B2m
1/2)

≤ c||K γ
0 ||

L
2m

m+1 ,1
(B2m

1/2)
≤ cσ ;

since K γ
0 ∈ L

2m
m+1 ,1 and L

2m
m+1 ,1 ↪→ L

2m
2m−1−|γ | ,1(B2m

1/2) by Lemma 2.2. Further we have

W 2m−1−|β|+|γ |−|α|− j, 2m
2m−1−|α| ,1 ↪→ L

2m
j+|β|−|γ | ,1 ↪→ L

2m
m−1−|γ | ,1(B2m

1/2)

by Lemma 2.4 and Lemma 2.2 since |β| ≤ m − j − 1. With Lemma 2.1 and 2.2 we have

L
2m

m−1−|γ | ,1 · L2 ↪→ L
2m

2m−1−|γ | ,1 and since γ ≤ β

||∂β−γ ∂α D jεα�K β
j ||

L
2m

2m−1−|γ | ,1(B2m
1/2)

≤ c||εα||
W

2m−1− j−|α|−|β|+|γ |, 2m
2m−1−|α| ,1

(B2m
1/2)

||K β
j ||L2(B2m

1/2)

≤ cσ ||εα||
W

2m−1, 2m
2m−1−|α| ,1

(B2m
1/2)

.

The remaining terms follow in a similar way. With Lemma 2.4

W 2m−1−|β|+|γ |−|α|, 2m
2m−1−|α| ,1 ↪→ L

2m
|β|−|γ | ,1(B2m

1/2)

and by Lemma 2.1 and 2.2 with |β| ≤ m − 2

L
2m

|β|−|γ | ,1 · L
2m

m+1 ,1 ↪→ L
2m

m+|β|−|γ |+1 ,1
↪→ L

2m
2m−1−|γ | ,1(B2m

1/2).

With this and γ ≤ β

||∂β−γ ∂αεα�K β
0 ||

L
2m

2m−1−|γ | ,1

≤ c||εα||
W

2m−1−|α|−|β|+|γ |, 2m
2m−1−|α| ,1 ||K β

0 ||L2 ≤ cσ ||εα||
W

2m−1, 2m
2m−1−|α| ,1 .

For the next term we have with Lemma 2.4 and 2.1

W 2m−1− j, 2m
2m−1−|α| ,1 · W j+1−m−|α|+|γ |,2 ↪→ L

2m
j−|α| ,1 · L

2m
2m+|α|−|γ |− j−1 ,2

↪→ L
2m

2m−1−|γ | ,1(B2m
1/2)
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so that with γ ≤ α

||D jεα�∂α−γ K j ||
L

2m
2m−1−|γ | ,1

≤ c||εα||
W

2m−1− j, 2m
2m−1−|α| ,1 ||K j ||W j+1−m+|γ |−|α|,2 ≤ cσ ||εα||

W
2m−1, 2m

2m−1−|α| ,1 .

In the fifth term we use |β| = j + 1 − m, Lemma 2.4 and 2.1 to get

W 2m−1−|α|+|β|− j, 2m
2m−1−|α| ,1 · W j+1−m−|β|+|γ |,2 ↪→ L

2m
m−1 ,1 · L

2m
m−|γ | ,2

↪→ L
2m

2m−1−|γ | ,1(B2m
1/2)

and

||∂α−β D jεα�∂β−γ K j ||
L

2m
2m−1−|γ | ,1

≤ c||εα||
W

2m−1− j−|α|+|β|, 2m
2m−1−|α| ,1 ||K j ||W j+1−m+|γ |−|β|,2

≤ cσ ||εα||
W

2m−1, 2m
2m−1−|α| ,1

.

Finally we estimate for i = 0, 1 with (4.4) and γ ≤ α

||D2m−2−iεα�∂α−γ D1−i K2m−1||
L

2m
2m−1−|γ | ,1

≤ ||εα||
W

1+i, 2m
2m−1−|α| ,1

||P||W m−|α|+|γ |−1+i,2 ≤ cσ ||εα||
W

2m−1, 2m
2m−1−|α| ,1

and this proves (4.14).

4.3 The fixed point argument

Instead of solving (4.13) we solve the system

�(�m−1εγ · P) = δ
(〈ε, K 〉γ + K γ

0

)
for every γ with |γ | ≤ m − 2. (4.15)

Todo thisweapply afixedpoint argument:Let Xγ := {u ∈ M(n) : ||u||
W

2m−1, 2m
2m−1−|γ | ,1

(B2m
1/2)

< ∞} and X = ⊕|γ |≤m−2Xγ . We define maps ψγ : Xγ → Xγ by

ψγ : εγ �→ solution λγ of (4.16)

with
{

�(�m−1λγ · P) = δ
(〈ε, K 〉γ + K γ

0

)
in B2m

1/2,

� jλγ = 0 on ∂ B2m
1/2 for j = 0, ..., m − 1.

(4.16)

Let λ̂ = ∑
|γ |≤m−2 λγ and ε̂ = ∑

|γ |≤m−2 εγ , where λγ is a solution of (4.16) for every γ

with corresponding εγ . Let � = ⊕|γ |≤m−2ψγ and

μ := ||ε̂||X :=
∑

|γ |≤m−2

||D2m−1εγ ||
L

2m
2m−1−|γ | ,1(B2m

1/2)
.

123



125 Page 18 of 23 J. Hörter , T. Lamm

We apply Lemma 2.12 and (4.14) to estimate

||D2m−1λγ ||
L

2m
2m−1−|γ | ,1(B2m

1/2)
≤ c||〈ε, K 〉γ + K γ

0 ||
L

2m
2m−1−|γ | ,1(B2m

1/2)

≤ cσ

⎛
⎝ ∑

|γ |≤m−2

||εγ ||
W

2m−1, 2m
2m−1−|γ | ,1(B2m

1/2)
+ 1

⎞
⎠

≤ c1σ(μ + 1).

We choose σ <
μ

2c1(μ+1) to get

||λ̂||X ≤ μ

2
.

Next we show that ψγ is a contraction. Let λ1γ , λ2γ be solutions of (4.16) with ε1γ , ε2γ

respectively. Then �γ := λ1γ − λ2γ is a solution of

{
�(�m−1�γ · P) = δ

(〈ε1 − ε2, K 〉γ
)

in B2m
1/2,

� j�γ = 0 on ∂ B2m
1/2 for j = 0, ..., m − 1.

Applying Lemma 2.12 and (4.14) again yields

||D2m−1λ1γ − D2m−1λ2γ ||
L

2m
2m−1−|γ | ,1(B2m

1/2)

≤ cσ
∑

|γ |≤m−2

||ε1γ − ε2γ ||
W

2m−1, 2m
2m−1−|γ | ,1(B2m

1/2)
.

With this we have

||λ̂1 − λ̂2||X ≤ c2σ ||ε̂1 − ε̂2||X .

Choosing σ < min{ μ
2c1(μ+1) ,

1
2c2

} shows that � is a contraction. Now we can apply the
Banach fixed point theorem which yields a unique ε̂∗ ∈ X solving (4.15) and by Lemma
2.12 and (4.14)

∑
|γ |≤m−2

||ε∗
γ ||

W
2m−1, 2m

2m−1−|γ | ,1(B2m
1/2)

≤ cσ.

Thus we have

0 = δ
(

d�m−1ε∗
γ · P − 〈ε∗, K 〉γ + K γ

0

)
(4.17)

for every γ with |γ | ≤ m − 2. What is left to show is that these ε∗
γ are the Sobolev functions

in the representation (4.11) of ε and this ε solves (4.7).

4.4 Going back to the original system

In order to go back to our original system, we reverse the abbreviations we made at the
beginning to get a detailed look at (4.17). To do this we go back to (4.8). As we have seen
before, each term of this equation is a product of a distribution and a Sobolev function.

More precisely, the terms are of the form L∞ · W 2−m, 2m
m−1 and W m−k,2 · W −m+1+k,2, k =
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1, ..., 2m −2. We use the following representations for the distributions according to Lemma
2.8

F P − d�m−2δ(�P) + d�m−2δ�P − d�m−2(∗(d P ∧ d ∗ ξ))

=
∑

|α|≤m−2

(
F P − d�m−2δ(�P) + d�m−2δ�P − d�m−2(∗(d P ∧ d ∗ ξ))

)α

,

(
F P − d�m−2δ(�P) + d�m−2δ�P − d�m−2(∗(d P ∧ d ∗ ξ))

)α

∈ L
2m

m+1 ,1(B2m
1/2)

�k P · Vk =
∑

|α|≤m−2

∂α(�k PVk)
α, (�k PVk)

α ∈ L
2m

m+1 ,1(B2m
1/2), k �= 0

d�k Pwk =
∑

|α|≤m−2

∂α(d�k Pwk)
α, (d�k Pwk)

α ∈ L
2m

m+1 ,1(B2m
1/2)

∇2k−l P · Vk =
∑

|α|≤m−1−l

∂α(∇2k−l PVk)
α, (∇2k−l PVk)

α ∈ L2(B2m
1/2), k �= 0

∇2k+1−l P · wk =
∑

|α|≤m−1−l

∂α(∇2k+1−l Pwk)
α, (∇2k+1−l Pwk)

α ∈ L2(B2m
1/2),

∇2m−1−k P =
∑

|α|≤m−1−k

∂α(∇2m−1−k P)α, (∇2m−1−k P)α ∈ L2(B2m
1/2).

Then we shift derivatives to get an equation of the form
∑

|γ |≤m−2 ∂γ (...)γ = 0 as in (4.13).
Using this we see that (4.17) is equivalent to

0 = δ

[ ∑
1≤k≤m−2

|α|≤m−1−k

ck,αγ ∂α−γ ∇k∂βε∗
β(∇2m−1−k P)α

+
∑

m−1≤k≤2m−1
|α|≤k+1−m

ck,αγ ∇kε∗
α∂α−γ ∇2m−1−k P

+
∑

m−1≤k≤2m−1
|α|>m−1−k
|β|=m−1−k

ck,βγ ∂α−β∇kε∗
α∂β−γ ∇2m−1−k P

+
(

F P − d�m−2δ(�P) + d�m−2δ�P − d�m−2(∗(d P ∧ d ∗ ξ))

)γ

+
∑

|α|,|β|≤m−2

cβγ ∂β−γ ∂αε∗
α

(
F P − d�m−2δ(�P) + d�m−2δ�P

− d�m−2(∗(d P ∧ d ∗ ξ))

)β

+
m−1∑
k=1

(�k PVk)
γ +

m−1∑
k=0

∑
|α|,|β|≤m−2

cβγ ∂β−γ ∂αε∗
α(�k PVk)

β

+
m−1∑
k=1

∑
1≤l≤m−2

l≤2k
|α|≤l+1−m

cl,αγ ∂α−γ ∇l∂βε∗
β(∇2k−l PVk)

α
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+
m−1∑
k=1

∑
m−1≤l≤2m−2

l≤2k
|α|≤l+1−m

cl,αγ ∇lε∗
α∂α−γ ∇2k−l PVk

+
m−1∑
k=1

∑
m−1≤l≤2m−2

l≤2k
|α|>l+1−m
|β|=l+1−m

cl,βγ ∂α−β∇lε∗
α∂β−γ ∇2k−l PVk

−
m−2∑
k=0

(d�k Pwk)
γ −

m−2∑
k=0

∑
|α|,|β|≤m−2

cβγ ∂β−γ ∂αε∗
α(d�k Pwk)

β

−
m−2∑
k=0

∑
1≤l≤m−2
l≤2k+1

|α|≤l+1−m

cl,αγ ∂α−γ ∇l∂βε∗
β(∇2k+1−l Pwk)

α

−
m−2∑
k=0

∑
m−1≤l≤2m−3

l≤2k+1
|α|≤l+1−m

cl,αγ ∇lε∗
α∂α−γ ∇2k+1−l Pwk

−
m−2∑
k=0

∑
m−1≤l≤2m−3

l≤2k+1
|α|>l+1−m
|β|=l+1−m

cl,βγ ∂α−β∇lε∗
α∂β−γ ∇2k+1−l Pwk

]

=: δ[...]γ .

By the PoincaréLemma (seeLemma10.68 in [7]) there exist Bγ ∈ W
1, 2m

2m−2−|γ |
loc (B2m

1/2,R
n×n⊗

∧2
R
2m) for |γ | ≤ m − 2 such that

δBγ = [...]γ
Now we transform ε̂∗ = ∑

|γ |≤m−2 ε∗
γ and B̂ = ∑

|γ |≤m−2 Bγ back. Then we have ε ∈
W m+1, 2m

m−1 ,1(B2m
1/2, M(n)) with

||ε||
W

m+1, 2m
m−1 ,1

(B2m
1/2)

+ ||ε||L∞(B2m
1/2)

≤ cσ

and

ε =
∑

|γ |≤m−2

∂γ ε∗
γ solves (4.7).

Further B = ∑
|γ |≤m−2 ∂γ Bγ ∈ W 2−m,2

loc (B2m
1/2,R

n×n ⊗ ∧2
R
2m) with

δB =
m−1∑
k=0

�k((id + ε)P)Vk −
m−2∑
k=0

d�k((id + ε)P)wk + d�m−1((id + ε)P)
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and

δ

[ m−1∑
l=0

�l((id + ε)P)�m−l−1du −
m−2∑
l=0

d�l((id + ε)P)�m−l−1u

−
m−1∑
k=0

k−1∑
l=0

�l((id + ε)P)�k−l−1d〈Vk, du〉

+
m−1∑
k=0

k−1∑
l=0

d�l((id + ε)P)�k−l−1〈Vk, du〉

−
m−2∑
k=0

k∑
l=0

�l((id + ε)P)d�k−l−1δ(wkdu)

+
m−2∑
k=0

k−1∑
l=0

d�l((id + ε)P)�k−l−1δ(wkdu) − 〈B, du〉
]

= 0.

4.5 Regularity

To show (i i i) we abbreviate the conservation law (2.6)

�
(
(id + ε)P�m−1u

) + δC = 0 on B2m
1/2, (4.18)

whereC ∈ W 2−m, 2m
m+1 ,1(B2m

1/2). Since ε ∈ W m+1, 2m
m−1 ,1∩ L∞(B2m

1/2), P ∈ W m,2∩ L∞(B2m
1/2)

and �m−1ur ∈ W 2−m,2(B2m
1/2) we have

(id + ε)P�m−1u ∈ W 2−m,2(B2m
1/2). (4.19)

Set f = (id + ε)P�m−1u. Then

−� f = δC on B2m
1/2.

By Theorem 6.2 in [4] we get f ∈ W 3−m, 2m
m+1 ,1(Bλ) on a smaller ball with radius 0 < λ <

1/2. Since (id + ε)P is invertible we rewrite (4.19)

�m−1u = [(id + ε)P]−1 f

and �m−1u ∈ W 3−m, 2m
m+1 ,1(B2m

λ ). But this means u ∈ W m+1, 2m
m+1 ,1(B2m

λ ) and W m+1, 2m
m+1 ,1

(B2m
λ ) ↪→ C0(B2m

λ ) (see Theorem 2.3 in [5]).
Up until now we have assumed that σ is arbitrarily small so that it satisfies the assump-

tions of Theorem 4.1 and the fixed point argument. A priori this is not true for components
Vk, wk of a system of the form (2.4). However any solution u is continuous. To see this
we rescale u (see [4] for a detailed proof). Let x0 ∈ B2m and r > 0 small enough so that
ur : B2m → R

n, ur (x) := u(x0 + r x) is a solution of (2.4) on B2m with corresponding
rescaled components Vk,r and wk,r ,

σr :=
m−2∑
k=0

||wk,r ||W 2k+2−m,2(B2m ) +
m−1∑
k=1

||Vk,r ||W 2k+1−m,2(B2m )

+ ||ηr ||W 2−m,2(B2m ) + ||Fr ||
W

2−m, 2m
m+1 ,1

(B2m )
,
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σr < σ0 and B2m
r (x0) ⊂ B2m . By the above we have ur ∈ C0(B2m

λ ) which is the same as
u ∈ C0(B2m

rλ (x0)). A simple covering argument yields u ∈ C0(B2m). ��
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